200947762 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種光電組件及其製造方法。 本專利申請案主張德國專利申請案10 2008 006 988.4 之優先權,其已揭示的整個內容在此一倂作爲參考。 【先前技術】 爲了藉助於光電組件而產生白光,則光電組件可以傳 統方式而設有一種含有一轉換物質的外罩。此轉換物質將 © 該光電組件所發出的第一波長範圍之輻射(主輻射)轉換成 第二波長範圍之輻射(二次輻射),第二波長範圍與第一波 長範圍不同。白光可以此種方式產生,即:主輻射是與二 次輻射相混合或已轉換的輻射之彩色成份互相混合而發出 白光。 另一傳統的構造之設計方式在於,一起使用多個分別 發出不同波長範圍之輻射之光電組件。此種構造的總輻射 包括各別組件之相加而成的波長範圍。 【發明内容】 本發明的目的是提供一種光電組件及其製造方法,其 可簡易且省空間地製成且更有效。 上述目的藉由一種具有申請專利範圍第1項特徵之光 電組件或具有申請專利範圍第14項特徵之方法來達成。 光電組件包括第一半導體層堆疊,其具有一用來發出 輻射之層和一主面。在此一主面上配置一隔離層,其形成 一種半透明的鏡面。此光電組件包括第二半導體層堆疊, 200947762 其配置在該隔離層上且具有另一用來發出輻射之活性層和 一主面。 由第一半導體層堆疊之活性層所發出之輻射可由第一 半導體層堆疊之主面發出。第一半導體層堆叠之活性層所 發出的輻射可耦合至第二半導體層堆疊中。第一半導體層 堆疊之活性層所發出的輻射和第二半導體層堆疊之活性層 所發出的輻射可由第二半導體層堆叠之主面發出。 該二個半導體層堆疊之活性層可用來發出二種不同波 © 長範圍之輻射。該隔離層可使第一波長範圍之輻射透過且 可將第二波長範圍之輻射予以反射。 該隔離層可另外由至少二個層來形成,其中各層具有 至少二種不同的折射率。該隔離層可包括一種導電材料, 該隔離層亦可包括一種介電質。該隔離層可包括一種結 構。該隔離層可另外包括一種凹口,該凹口中施加一種導 電材料。 該光電組件可另外包括第一半導體層堆叠之第一接觸 © 元件,其配置在第一半導體層堆疊之另一主面上。該另一 主面是與第一主面相面對。該光電組件可包括第一半導體 層堆叠之第二接觸元件,其配置在第一半導體層堆疊之又 另一主面上。該又另一主面可配置在該主面和該另一主面 之間》第一接觸元件和第二接觸元件可提供一種對該第一 半導體層堆疊之活性層之電性接觸區。 上述光電組件之第一和第二半導體層堆疊分別包括至 少一η-和一 p-摻雜層。第一接觸元件是與第一摻雜型之層 相接觸,且第二接觸元件是與第二摻雜型之其它層相接觸。 -4- 200947762 在第二半導體層堆叠上可配置一第三接觸元件, 與第二半導體層堆疊之活性層形成電性接觸。第三接 件可與第一摻雜型之層相接觸。 在另一實施形式中,該光電組件可包括第一接 件,其配置在第二半導體層堆叠上;以及第二接觸元 其配置在第二半導體層堆叠上》第一接觸元件和第二 元件提供了第二半導體層堆疊之活性層之電性接觸區 光電組件可具有至少另一接觸元件,其配置在第一半 0 層堆疊上且與第一半導體層堆疊之活性層形成電性接1 上述光電組件之不同之半導體層堆叠,特別是各 用來發出輻射之層,可分別受到控制。特別是上述光 件之不同的半導體層堆疊,特別是各別的用來發出輻 層,可在電性上分別受到控制。上述光電組件可發光 藉由各別由不同的半導體層堆疊所發出的輻射之組合 生。 上述光電組件可另外包括一種轉換物質以將輻射 〇 部份進行波長轉換。該轉換物質可配置在第二半導體 叠之主面上。此光電組件可發出輻射,其藉由不同的 體層堆疊所發出的輻射和該轉換物質之輻射之組合 生。 一種光電組件之製造方法包括:提供第一基板、 一基板上產生第一半導體層堆疊,其具有一用來發出 的活性層、以及由該半導體層堆疊剝除該基板。 製備第二基板,第二基板上產生第二半導體層堆 其具有一用來發出輻射的活性層。將此第二基板由第 其是 觸元 觸元 件, 接觸 。此 導體 獨。 別的 電組 射之 ,其 而產 的一 層堆 半導 而產 在第 輻射 疊, 二半 200947762 導體層堆疊剝除。 上述製造方法另外包括:在至少一個半導體層堆疊上 施加一隔離層,其形成一種半透明鏡面,且在第一半導體 層堆叠上施加第二半導體層堆疊,使該隔離層配置在第一 和第二半導體層堆叠之間。 在第二半導體層堆疊之與第二半導體層堆疊之主面相 面對的另一主面上施加第一輔助載體。一第二輔助載體可 施加在第二半導體層堆叠之主面上。第一輔助載體和第二 φ 輔助載體可被剝除。在第一半導體層堆疊之主面上可施加 另一輔助載體且又予以剝除。 上述製造方法可另外包括:在第一半導體層堆叠之活 性層上形成至少二個接觸元件。在第二半導體層堆疊之活 性層上形成至少另一接觸元件。 在另一實施形式中,上述製造方法可包括:在第二半 導體層堆叠之活性層上形成至少二個接觸元件。在第一半 導體層堆疊之活性層上形成至少另一接觸元件。 〇 半導體層堆疊之產生可包括:磊晶沈積至少二個不同 摻雜之半導體層;以及將已摻雜之半導體層結構化成電性 接觸區。 在第一半導體層堆疊中形成至少一凹口,其經由第一 摻雜型之層和該活性層而至少到達第二導電型之一層。 在第二半導體層堆疊中形成至少一凹口,其經由第一 摻雜型之層和該活性層而至少到達第二導電型之一層。 該隔離層可由至少二個層所形成,其中該至少二個層 具有至少二種不同的折射率。該隔離層可具有一種結構。 200947762 該隔離層可以至少一凹口來形成,且該凹口中以一種導電 材料來塡入。 在第二半導體層堆疊之主面上可施加一種轉換物質以 將所發出的輻射之一部份的波長予以轉換。 本發明的其它特徵、優點和形式描述在第1至5圖所 示之例子中。 【實施方式】 第1圖顯示一光電組件100,其具有第一半導體層堆疊 © 101和第二半導體層堆疊102。第1圖另外顯示一隔離層 103,其具有一凹口 104;—活性層110; —第一主面111; —第一接觸元件112;另一主面113;另一接觸元件114; 另一主面115;—第二活性層120;第二半導體層堆疊121 之一主面;以及另一接觸元件122。 半導體層堆疊101在第1圖中具有三個層。第一層116 具有第一導電型(例如,P-摻雜)以及一主面113。活性層110 鄰接於第一層而與一面113相面對。另一半導體層(117)鄰 ® 接於該活性層且爲η-摻雜者。該活性層具有一產生輻射之 ρη-接面,其藉由ρ-摻雜層和η-摻雜層而形成且鄰接於該活 性層。 該隔離層103可配置在該主面111上。該隔離層可包 圍著該凹口 104。在該隔離層上可配置第二半導體層堆叠, 其同樣可具有三個層。 鄰接於該隔離層之層(123)例如是一種η-摻雜層,其上 有一活性層和一ρ_摻雜層(124)。此活性層另外具有一種產 生輻射之ρη-接面。第一和第二半導體層堆叠亦可具有多於 200947762 三個之層,例如,可另外具有一緩衝層。經由第一和第二 半導體層堆叠而與該隔離層相鄰接的各層可具有相同的摻 雜型。 該隔離層可由多個層來形成。該隔離層具有至少二個 層,其材料或層厚度可互相不同。該隔離層之各層可分別 具有不同的折射率。各層的折射率例如以規則的距離而重 複。該隔離層例如是一種介電質,其可由氧化矽、氧化鋅 或銦錫氧化物來形成,但其亦可具有其它材料。該隔離層 〇 可包括一種結構,例如,微結構,特別是一種奈米結構, 特別是包括至少一光子晶體,其形成在第一、第二或此二 個半導體層堆疊上。 該接觸元件112可配置在第一半導體層堆疊之p-摻雜 層之主面113上。該接觸元件可由一接觸面來形成,但亦 可由多個接觸面來形成。 在本實施形式中,該主面121是與主面113相距最遠》 該主面111與主面121之距離大於與主面113之距離。主 Ο 面115與主面111之距離大於與主面113之距離。 半導體層堆疊101可具有一凹口以與η-摻雜層相接 觸,該凹口經由Ρ-摻雜區和活性層。η-摻雜層例如具有一 主面115,其上施加一第二接觸元件114»半導體層堆疊可 具有一個此種凹口,但亦可具有多個凹口。 各接觸元件例如由導電材料所形成。當光電組件安裝 在相對應的載體元件上時,電壓可經由各接觸元件而供應 至該半導體層堆疊10卜由半導體層堆叠(特別是活性層110) 在施加電壓時所發出的輻射主要是由該面111發出。 200947762 爲了施加一種電壓至第二半導體層堆 121上施加該接觸元件122。該接觸元件可 形成,但亦可由多個接觸面所形成。該接 該P-摻雜層。可經由該接觸元件114或該 隔離層之凹口 104中之導電材料來與半導 η-摻雜層相接觸。例如,經由各接觸元件 電至半導體層堆疊102。各接觸元件可具, 例如含有氧化銦。 〇 各接觸元件可由該面121之方向來接 —凹口可由該層124和120來形成。至少^ 124、層120、層123和該隔離層來形成。 層124、層120、層123、隔離層、層117 形成。至少另一凹口可由其它層來形成。 至少一接觸元件。 半導體層堆疊發出不同波長範圍之輻 疊101例如所發出的波長較半導體層堆疊 © 長。例如,第一半導體層堆疊101發出紅会 奈米)之輻射,半導體層堆疊102發出藍色 奈米)之輻射。 該隔離層儘可能可透過該半導體層堆 輻射之波長範圍。該隔離層儘可能使半導 發出的輻射不能透過且將該輻射之儘可能 射。半導體層堆疊102之輻射在半導體層 之被吸收量因此可大大地減少。半導體層 的輻射以及半導體層堆疊102所發出的輻 疊102,可在該面 由一個接觸面所 觸元件122接觸 隔離層或藉由該 體層堆疊102之 114和122而供 『透光之導體,其 觸活性層。至少 一凹口可由層 至少一凹口可由 和活性層110來 該凹口中可配置 射。半導體層堆 102的波長還 i範圍(625至740 L範圍(400至500 疊1 0 1所發出的 體層堆叠102所 多的成份予以反 堆疊101中實際 堆叠1 0 1所發出 射基本上是由該 200947762 面121中發出。各別所發出的輻射之光譜範圍相加成一種 總光譜。 藉由施加不同的電壓至各別的半導體層堆疊,則不同 的波長範圍可以不同的強度加入至總光譜中。因此,在該 光電組件之操作期間可調整所期望的彩色位置。 第2圖顯示另一種形式的光電組件200,其具有半導體 層堆叠201和另一個半導體層堆叠20 2。第2圖另外顯示一 種隔離層203、一轉換物質204、一第一活性層210、一主 〇 面211、一第一接觸元件212、一第二主面213、一第二接 觸元件214、另一主面215、一活性層220、另一主面221、 以及一接觸元件222。 半導體層堆疊201具有至少三個層,例如,p_摻雜層、 活性層和η-摻雜層。半導體層堆疊2〇〗可另外具有多個凹 口’其例如可到達η-摻雜層。在與該η_摻雜層相面對的一 主面213上配置該隔離層,該主面213例如配置在該卜摻 雜層上。本實施例中該隔離層具有導電性。 © 在該隔離層上例如配置第二半導體層堆疊202,其同樣 具有三個層。η-慘雜層配置成與該隔離層相鄰接。該活性 層配置成與該η-摻雜層相鄰接,且ρ摻雜層配置成與該活 性層相鄰接。該ρ-慘雜層具有主面221。在該主面221上 可配置該轉換物質。 質在藉由特定的波長範圍的電磁輻射來激發 時可發出另~~波長範圍的輻射。於此,該轉換物質含有至 少一發光材料。此發光材料可含有一種無機-或有機發光材 料。 -10- 200947762 激發而得的波長範圍和該轉換物質所發出之 長範圍可互不相同。該轉換物質可將入射至其上 總輻射予以轉換,但亦可只將所入射的輻射的一 轉換且使其餘的部份通過而不會使已通過的輻射 圍受到明顯的影響。 在該半導體層序列201之凹口中,可在一主 配置該接觸元件214。在主面213上可配置另一 ί 212。可經由各接觸元件來對該半導體層序列供應 〇 且因此發出輻射。此輻射透過該隔離層203。此輻 第二半導體層序列202中。 可自由選取各接觸元件之配置。半導體層序 方式可由其前側向Ρ-側接觸區和η-側接觸區來形 後側向Ρ-側和η-側接觸區來形成、由其前側向ρ 且由其後側向η-側接觸區來形成、由其前側向η 且由其後側向Ρ-側接觸區來形成、以及由前側和 η_側及/或ρ·側接觸區來形成。 ❹ 可經由例如配置在該主面221上的接觸元件 由該接觸元件214以及因此亦經由該隔離層203 供應至該半導體層序列202。此隔離層包括導電木 隔離層在電性上具有絕緣作用,則其包括至少一 凹口中以一種導電材料來塡入,如第1圖所示。 施加一種電壓至該半導體層序列202時,該半導 202可發出輻射。此種在由該半導體層序列202之 發出的波長範圍中的輻射可儘可能良好地被該隔 所反射。 輻射的波 的輻射之 部份予以 之波長範 面215上 妾觸元件 一種電壓 射耦合至 列的形成 成、由其 -側接觸區 側接觸區 由後側向 222、且經 而將電壓 ί料。若此 凹口,此 因此,當 體層序列 .活性層所 離層203 -11 - 200947762 第一半導體層序列所發出的輻射之波長範 二半導體層序列所發出的輻射的波長範圍。該 第二半導體層序列之波長範圍中的輻射的一部 換。該轉換物質可使位於第一半導體層序列之 的輻射透過。該半導體組件所發出之輻射之總 由至少三種不同的波長範圍所組成。 第3A和3B圖顯示一主面301、一接觸元4 主面303、另一接觸元件3 04、另一主面305和 ❹ 件306。 第3A圖顯示第1圖中之光電組件之下側G 例如P-摻雜之半導體層之面。此面上施加該接 此接觸元件在本實施形式中是一種相連的元件 多個各別的區域所形成。該光電組件例如可在 凹口,其經由例如該P-摻雜層和一活性層而到 η-摻雜層。此種η·摻雜層具有主面303。此主面 —接觸元件304。各接觸元件302和304用來將 © 半導體組件。各層之摻雜型式亦可不同於本實 者。例如,Ρ-摻雜層可以變成η-摻雜層且反之 電組件之下側可具有其它的元件,例如,金屬 板。 第3Β圖顯示一種對應於第3Α圖之光電組 其具有主面305 ,其上施加該接觸元件306。該ί 例如直接施加在該接觸元件305上。 藉由該接觸元件3 06直接配置在該接觸元 方,則該光電組件整體上可具有不發出輻射之 圍不同於第 轉換物質將 份予以轉 波長範圍中 光譜例如可 牛302、另一 另一接觸元 謝。面3 0 1是 觸元件302。 ,但亦可由 中央具有一 達例如一種 丨上可施加另 :電壓供應至 施形式中 亦可。該光 層或載體基 L件之表面, 妾觸元件306 件3 05上 儘可能小的 -12- 200947762 區域。然而,該接觸元件306亦可配置在該主面3 05之另 一位置上,例如,可配置在一邊緣區域中。亦可配置多個 接觸元件。特別是該接觸元件305和306的數目可不相同。 在該接觸元件和主面之間亦可施加一透明的導電材料,以 使接觸性獲得改良》 第4A和4B圖顯示一主面401、一第一接觸元件402、 一主面403、一第二接觸元件404、另一主面405、另一接 觸元件406。 © 第4A圖顯示第3A圖所示的結構有四個形成在一光電 組件上。在主面401上可施加該接觸元件402。此接觸元件 可由多個單一部份來形成。可對該面403形成接觸作用的 各凹口可任意地重複。本實施例中具有多個接觸元件404 之多個凹口對稱地配置著,但各凹口亦可以其它方式來配 置。 第4B圖顯示一光電組件之對應的俯視圖。各接觸元件 406可配置在該接觸元件404上方之主面405上,各接觸元 © 件406可具有和該接觸元件404相同數目的單一部份,但 亦可具有更多或較少的單一部份。該接觸元件406之各單 一部份可如圖所示直接配置在該接觸元件404上方,但亦 可任意地配置在該接觸面405上的不同處。 第5A圖顯示一基板晶圓500和半導體層堆疊501之一 部份,該半導體層堆叠501包括一摻雜層502、一活性層 503和另一摻雜層504。 該基板晶圓例如由砷化鎵所形成。該半導體層堆叠可 含有其它的層。該基板晶圓亦可由其它適當的材料來形 -13- 200947762 成。本方法中可在一基板晶圓上形成多個半導體層堆疊, 其在稍後的步驟中被劃分。 在一步驟中,半導體層堆疊501之各層生長在該基板 上。該半導體層堆叠例如以一種η-摻雜層而開始在基板上 生長。然後,例如生長該活性層和一種Ρ-摻雜層。接著, 將該基板由該半導體層堆叠中去除。在去除該基板之前, 可在該半導體層堆疊上施加一種輔助載體。 第5Β圖顯示第5Α圖中無該基板晶圓時的半導體層堆 〇 疊。在該層502上施加一隔離層505。此隔離層例如由多個 層所形成。此隔離層形成一種鏡面,其是半透明的鏡面》 此隔離層例如儘可能可透過特定的波長範圍且將其它的波 長範圍予以反射。 第5C圖顯示另一基板510和另一半導體層堆叠511, 其具有第一摻雜層512、一活性層513和另一摻雜層514。 此層堆疊生長在例如包括藍寶石之基板晶圓上且所包括之 層數亦可多於3層。例如,該半導體層堆疊以一種η-摻雜 〇 層而開始生長。在該基板晶圓510上可形成多個半導體層 堆疊,其在稍後的步驟中被劃分。 該隔離層5 05亦可施加在該半導體層堆疊511上。該 隔離層5 05亦可施加在多個半導體層堆疊中之一個上,但 亦可施加在二個半導體層堆疊上。 第5D圖顯示一實施例的步驟,其中在第二半導體層堆 疊上施加一輔助載體515,特別是施加在該層514上。 如第5Ε圖所示,第二輔助載體516施加在半導體層堆 叠511上,特別是施加在該層512上,且基板510由該半 -14 - 200947762 導體層堆疊中剝除。 第5F圖顯示已執行了第一輔助載體515之剝除步驟後 的情況。第5 Β和5F圖所示的元件可相組合。 第5G圖顯示第5Β圖之施加在該層514上的元件,使 該隔離層505配置在該二個半導體層堆叠之間》 第5Η圖顯示第二輔助載體516由該層512剝除之後的 半導體層堆疊。所示的半導體層堆疊現在基本上對應於第 1圖所示之光電組件之半導體層堆疊。 〇 本方法可包括其它步驟,例如,施加一種轉換物質至 該層512上或在半導體層上形成多個接觸元件。本方法另 外亦可包括該隔離層之凹口之形成且將一種導電材料塡入 至該隔離層。特別是本方法不必包括上述全部的步驟。例 如,在基板去除之前,第一半導體層堆疊可施加在第二半 導體層堆疊上。半導體層堆叠之製造可不包括該輔助載 體、亦可包括一個或二個輔助載體。 【圖式簡單說明】 ® 第1圖光電組件之一實施形式的圖解。 第2圖光電組件之另一形式。 第3Α圖光電組件之一實施例之俯視圖。 第3 Β圖光電組件之下側之圖解。 第4Α圖光電組件之另一實施例之俯視圖。 第4Β圖光電組件之下側之圖解。 第5Α至5Η圖不同的步驟期間半導體層堆疊之切面 圖。 -15- 200947762 【主要元件符號說明】200947762 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optoelectronic component and a method of manufacturing the same. The present patent application claims the priority of the German Patent Application No. 10 2008 006 988.4, the entire disclosure of which is hereby incorporated by reference. [Prior Art] In order to generate white light by means of an optoelectronic component, the optoelectronic component can be provided in a conventional manner with a housing containing a conversion substance. The conversion substance converts the radiation of the first wavelength range emitted by the optoelectronic component (primary radiation) into the radiation of the second wavelength range (secondary radiation), and the second wavelength range is different from the first wavelength range. White light can be produced in such a way that the primary radiation is mixed with the secondary radiation or the colored components of the converted radiation are mixed with each other to emit white light. Another conventional configuration is designed in such a way that a plurality of optoelectronic components that emit radiation of different wavelength ranges are used together. The total radiation of this configuration includes the sum of the wavelength ranges of the individual components. SUMMARY OF THE INVENTION An object of the present invention is to provide an optoelectronic component and a method of fabricating the same that can be made simple and space-saving and more efficient. The above object is achieved by a photovoltaic module having the features of claim 1 or a method having the features of claim 14 of the patent application. The optoelectronic component includes a first stack of semiconductor layers having a layer for emitting radiation and a major surface. An isolation layer is disposed on the major surface to form a translucent mirror. The optoelectronic component includes a second semiconductor layer stack, 200947762 which is disposed on the isolation layer and has another active layer and a major surface for emitting radiation. The radiation emitted by the active layer of the first semiconductor layer stack may be emitted by the main surface of the first semiconductor layer stack. The radiation emitted by the active layer of the first semiconductor layer stack can be coupled into the second semiconductor layer stack. The radiation emitted by the active layer of the first semiconductor layer stack and the radiation emitted by the active layer of the second semiconductor layer stack may be emitted by the main surface of the second semiconductor layer stack. The active layers of the two semiconductor layer stacks can be used to emit two different waves of long range radiation. The spacer layer transmits radiation in the first wavelength range and reflects radiation in the second wavelength range. The spacer layer may additionally be formed of at least two layers, wherein each layer has at least two different indices of refraction. The spacer layer can comprise a conductive material, and the spacer layer can also comprise a dielectric. The spacer layer can comprise a structure. The spacer layer may additionally include a recess in which a conductive material is applied. The optoelectronic component can additionally include a first contact © component of the first semiconductor layer stack disposed on the other major face of the first semiconductor layer stack. The other main face is facing the first main face. The optoelectronic component can include a second contact element of the first semiconductor layer stack disposed on yet another major side of the first semiconductor layer stack. The further major surface can be disposed between the major surface and the other major surface. The first contact element and the second contact element can provide an electrical contact region for the active layer of the first semiconductor layer stack. The first and second semiconductor layer stacks of the above photovoltaic module respectively include at least one η- and one p-doped layer. The first contact element is in contact with the first doped type of layer and the second contact element is in contact with other layers of the second doped type. -4-200947762 A third contact element can be disposed on the second semiconductor layer stack to make electrical contact with the active layer of the second semiconductor layer stack. The third connector can be in contact with the first doped layer. In another embodiment, the optoelectronic component can include a first connector disposed on the second semiconductor layer stack; and a second contact element disposed on the second semiconductor layer stack" the first contact element and the second component The electrical contact region optoelectronic component providing the active layer of the second semiconductor layer stack may have at least one other contact element disposed on the first half-layer stack and electrically connected to the active layer of the first semiconductor layer stack The different semiconductor layer stacks of the above described optoelectronic components, particularly the layers used to emit radiation, can be separately controlled. In particular, the different semiconductor layer stacks of the above-mentioned optical components, in particular the respective radiating layers, can be electrically controlled separately. The optoelectronic component described above can be illuminated by a combination of radiation emitted by separate stacks of semiconductor layers. The above optoelectronic component may additionally include a conversion substance to wavelength convert the radiation 〇 portion. The conversion substance can be disposed on the major surface of the second semiconductor stack. The optoelectronic component emits radiation by a combination of radiation emitted by different bulk layers and radiation of the conversion material. A method of fabricating an optoelectronic component includes: providing a first substrate, creating a first semiconductor layer stack on a substrate, having an active layer for emitting, and stripping the substrate from the semiconductor layer stack. A second substrate is prepared, and a second semiconductor layer stack is produced on the second substrate having an active layer for emitting radiation. The second substrate is contacted by the first contact element. This conductor is unique. Other electric groups shoot it, and the resulting stack of semi-conductors is produced in the first radiating stack, and the second half is 200947762. The above manufacturing method further includes: applying an isolation layer on the at least one semiconductor layer stack to form a semi-transparent mirror surface, and applying a second semiconductor layer stack on the first semiconductor layer stack, the isolation layer being disposed in the first and the Two semiconductor layers are stacked between the layers. A first auxiliary carrier is applied on the other main surface of the second semiconductor layer stack facing the main surface of the second semiconductor layer stack. A second auxiliary carrier can be applied to the main surface of the second semiconductor layer stack. The first auxiliary carrier and the second φ auxiliary carrier can be stripped. Another auxiliary carrier may be applied to the main surface of the first semiconductor layer stack and stripped again. The above manufacturing method may additionally include forming at least two contact elements on the active layer of the first semiconductor layer stack. At least one further contact element is formed on the active layer of the second semiconductor layer stack. In another embodiment, the above manufacturing method may include forming at least two contact elements on the active layer of the second semiconductor layer stack. At least one further contact element is formed on the active layer of the first semiconducting layer stack. The generation of the semiconductor layer stack may include: epitaxial deposition of at least two differently doped semiconductor layers; and structuring the doped semiconductor layer into electrical contact regions. At least one recess is formed in the first semiconductor layer stack, which reaches at least one of the second conductivity type via the first doped layer and the active layer. At least one recess is formed in the second semiconductor layer stack, which reaches at least one of the second conductivity type via the first doped layer and the active layer. The spacer layer can be formed from at least two layers, wherein the at least two layers have at least two different indices of refraction. The spacer layer can have a structure. 200947762 The spacer layer can be formed by at least one recess, and the recess is made of a conductive material. A conversion substance may be applied to the main surface of the second semiconductor layer stack to convert the wavelength of a portion of the emitted radiation. Further features, advantages and forms of the invention are described in the examples shown in Figures 1 to 5. [Embodiment] FIG. 1 shows a photovoltaic module 100 having a first semiconductor layer stack © 101 and a second semiconductor layer stack 102. Figure 1 additionally shows an isolation layer 103 having a recess 104; an active layer 110; a first major surface 111; a first contact element 112; another main surface 113; another contact element 114; The main surface 115; the second active layer 120; one of the main faces of the second semiconductor layer stack 121; and another contact element 122. The semiconductor layer stack 101 has three layers in the first figure. The first layer 116 has a first conductivity type (eg, P-doping) and a major surface 113. The active layer 110 is adjacent to the first layer and faces the one side 113. Another semiconductor layer (117) is adjacent to the active layer and is η-doped. The active layer has a pn-junction which produces radiation which is formed by the p-doped layer and the η-doped layer and is adjacent to the active layer. The isolation layer 103 can be disposed on the main surface 111. The spacer may surround the recess 104. A second semiconductor layer stack can be arranged on the isolation layer, which can likewise have three layers. The layer (123) adjacent to the spacer layer is, for example, an n-doped layer having an active layer and a p-doped layer (124) thereon. This active layer additionally has a pn-junction which produces radiation. The first and second semiconductor layer stacks may also have more than three layers of 200947762, for example, may additionally have a buffer layer. The layers adjacent to the spacer layer via the first and second semiconductor layer stacks may have the same doping type. The isolation layer can be formed from a plurality of layers. The spacer layer has at least two layers whose materials or layer thicknesses may be different from each other. The layers of the spacer layer may each have a different refractive index. The refractive index of each layer is repeated, for example, at a regular distance. The spacer layer is, for example, a dielectric which may be formed of ruthenium oxide, zinc oxide or indium tin oxide, but it may also have other materials. The spacer layer 〇 may comprise a structure, such as a microstructure, in particular a nanostructure, in particular comprising at least one photonic crystal formed on the first, second or two semiconductor layer stacks. The contact element 112 can be disposed on the major face 113 of the p-doped layer of the first semiconductor layer stack. The contact element can be formed by a contact surface, but can also be formed by a plurality of contact faces. In the present embodiment, the main surface 121 is farthest from the main surface 113. The distance between the main surface 111 and the main surface 121 is greater than the distance from the main surface 113. The distance between the main surface 115 and the main surface 111 is greater than the distance from the main surface 113. The semiconductor layer stack 101 can have a recess to contact the n-doped layer via the erbium-doped region and the active layer. The n-doped layer has, for example, a major face 115 to which a second contact element 114 is applied. The semiconductor layer stack can have one such recess, but can also have a plurality of recesses. Each contact element is formed, for example, of a conductive material. When the optoelectronic component is mounted on the corresponding carrier component, a voltage can be supplied to the semiconductor layer stack via each contact component. The radiation emitted by the semiconductor layer stack (especially the active layer 110) when the voltage is applied is mainly caused by This face 111 is emitted. 200947762 To apply a voltage to the second semiconductor layer stack 121, the contact element 122 is applied. The contact element can be formed, but can also be formed by a plurality of contact faces. The P-doped layer is connected to the P-doped layer. The semiconducting n-doped layer can be contacted via the contact element 114 or a conductive material in the recess 104 of the isolation layer. For example, it is electrically connected to the semiconductor layer stack 102 via the respective contact elements. Each contact element can have, for example, indium oxide. 〇 Each contact element may be connected by the direction of the face 121. The recess may be formed by the layers 124 and 120. At least 124, layer 120, layer 123 and the isolation layer are formed. Layer 124, layer 120, layer 123, isolation layer, layer 117 are formed. At least another notch may be formed by other layers. At least one contact element. The semiconductor layer stack emits radiation 101 of different wavelength ranges, for example, emitted at a wavelength longer than the semiconductor layer stack ©. For example, the first semiconductor layer stack 101 emits red ray radiation, and the semiconductor layer stack 102 emits blue nanoparticles. The spacer layer is as transparent as possible through the wavelength range of the semiconductor layer stack. The spacer layer is such that the radiation emitted by the semiconductor is not transmitted as much as possible and the radiation is emitted as much as possible. The amount of radiation of the semiconductor layer stack 102 absorbed in the semiconductor layer can thus be greatly reduced. The radiation of the semiconductor layer and the epitaxial layer 102 emitted by the semiconductor layer stack 102 may be contacted by the contact surface of the contact layer 122 on the surface or by the 114 and 122 of the bulk layer stack 102. Its active layer. At least one notch may be delaminated from the layer by at least one notch and the active layer 110. The wavelength of the semiconductor layer stack 102 is also in the range of 625 to 740 L (the composition of the bulk layer stack 102 emitted by the 400 to 500 stacks of 101 is reversed by the actual stacking of 101 in the stack 101. The 200947762 face 121 is emitted. The spectral ranges of the radiation emitted by each are added to form a total spectrum. By applying different voltages to the respective semiconductor layer stacks, different wavelength ranges can be added to the total spectrum with different intensities. Thus, the desired color position can be adjusted during operation of the optoelectronic component. Figure 2 shows another form of optoelectronic component 200 having a semiconductor layer stack 201 and another semiconductor layer stack 20 2 . Figure 2 additionally shows An isolation layer 203, a conversion substance 204, a first active layer 210, a main surface 211, a first contact element 212, a second main surface 213, a second contact element 214, and another main surface 215, An active layer 220, another main surface 221, and a contact element 222. The semiconductor layer stack 201 has at least three layers, for example, a p-doped layer, an active layer, and an n-doped layer. Further, it may have a plurality of notches which may, for example, reach the n-doped layer. The isolation layer is disposed on a main surface 213 facing the n-doped layer, and the main surface 213 is disposed, for example, in the On the doped layer, the isolation layer has electrical conductivity in this embodiment. © On the isolation layer, for example, a second semiconductor layer stack 202 is disposed, which also has three layers. The η-difficult layer is disposed in phase with the isolation layer. Adjacent. The active layer is disposed adjacent to the η-doped layer, and the p-doped layer is disposed adjacent to the active layer. The ρ-difficult layer has a main surface 221. On the main surface 221 The conversion substance can be configured to emit radiation in another wavelength range when excited by electromagnetic radiation of a specific wavelength range. Here, the conversion substance contains at least one luminescent material. The luminescent material may contain an inorganic substance. - or organic luminescent material. -10- 200947762 The range of wavelengths excited and the long range emitted by the conversion substance can be different. The conversion substance can convert the total radiation incident on it, but it can also be a transition of incident radiation and the rest of the pass In the recess of the semiconductor layer sequence 201, the contact element 214 can be arranged in a main configuration. On the main surface 213, another ί 212 can be arranged. The contact element supplies the semiconductor layer sequence with germanium and thus emits radiation. This radiation is transmitted through the isolation layer 203. This is in the second semiconductor layer sequence 202. The configuration of the contact elements can be freely selected. The semiconductor sequence can be flanked by its front side. The Ρ-side contact region and the η-side contact region are formed by forming a rear lateral Ρ-side and an η-side contact region, formed by a front side ρ thereof and a rear side η-side contact region thereof, and a front side thereof It is formed toward η and from its rear side toward the Ρ-side contact region, and is formed by the front side and the η_ side and/or the ρ· side contact region. The semiconductor element sequence 202 can be supplied from the contact element 214 and thus also via the isolation layer 203 via a contact element, for example, which is arranged on the main surface 221. The spacer layer includes a conductive wood spacer layer that is electrically insulating, and includes at least one recess in which a conductive material is inserted, as shown in Fig. 1. When a voltage is applied to the semiconductor layer sequence 202, the semiconductors 202 can emit radiation. Such radiation in the wavelength range emanating from the sequence of semiconductor layers 202 can be reflected as well as possible by the spacer. The portion of the radiation of the radiated wave is applied to the wavelength plane 215 of the contact element. A voltage is coupled to the column, formed by the side contact region side contact region from the rear side 222, and the voltage is applied. . If the notch, this is the bulk layer sequence, the active layer is separated from the layer 203 -11 - 200947762 by the first semiconductor layer sequence of radiation emitted by the wavelength range of the semiconductor layer sequence of radiation emitted by the semiconductor layer sequence. A portion of the radiation in the wavelength range of the second semiconductor layer sequence. The conversion material transmits radiation that is located in the sequence of the first semiconductor layer. The total radiation emitted by the semiconductor component consists of at least three different wavelength ranges. Figures 3A and 3B show a major face 301, a contact element 4 major face 303, another contact member 304, another major face 305, and a member 306. Fig. 3A shows the face of the lower side G of the photovoltaic module in Fig. 1, for example, the surface of the P-doped semiconductor layer. The contact element applied to the face is formed in the present embodiment by a plurality of separate regions of a connected component. The optoelectronic component can be, for example, in a recess that passes through, for example, the P-doped layer and an active layer to the n-doped layer. Such an η·doped layer has a main surface 303. This main face - contact element 304. Contact elements 302 and 304 are used to connect the © semiconductor component. The doping pattern of each layer may also differ from the actual one. For example, the erbium-doped layer may become an η-doped layer and the underside of the electrical component may have other elements, such as a metal plate. Figure 3 shows a photovoltaic group corresponding to Figure 3 having a major face 305 on which the contact element 306 is applied. This ί is applied directly to the contact element 305, for example. By the contact element 306 being directly disposed on the contact element, the optoelectronic component as a whole may have a circumference that does not emit radiation different from the first conversion substance, and the part is converted into a wavelength range, such as a cow 302, another another Contact Yuan Xie. Face 310 is the contact element 302. However, it is also possible that the center has one, for example, one of which can be applied to the voltage supply to the application. The surface of the optical layer or carrier-based L-piece, the contact element 306, is as small as possible on the -12-200947762 area. However, the contact element 306 can also be disposed at another location on the major face 305, for example, in an edge region. Multiple contact elements can also be configured. In particular, the number of contact elements 305 and 306 may be different. A transparent conductive material may also be applied between the contact element and the main surface to improve the contact. 4A and 4B show a main surface 401, a first contact element 402, a main surface 403, and a first surface. Two contact elements 404, another main face 405, and another contact element 406. © Fig. 4A shows that four structures shown in Fig. 3A are formed on an optoelectronic component. The contact element 402 can be applied to the major face 401. This contact element can be formed from a plurality of single parts. The notches which can make contact with the face 403 can be arbitrarily repeated. The plurality of notches having a plurality of contact elements 404 in this embodiment are symmetrically arranged, but the notches may be arranged in other ways. Figure 4B shows a corresponding top view of an optoelectronic component. Each contact element 406 can be disposed on a major face 405 above the contact element 404. Each contact element 406 can have the same number of single portions as the contact element 404, but can have more or fewer single portions. Share. The individual portions of the contact element 406 can be disposed directly above the contact element 404 as shown, but can be arbitrarily disposed at different locations on the contact surface 405. 5A shows a portion of a substrate wafer 500 and a semiconductor layer stack 501 comprising a doped layer 502, an active layer 503, and another doped layer 504. The substrate wafer is formed, for example, of gallium arsenide. The semiconductor layer stack may contain other layers. The substrate wafer can also be formed from other suitable materials -13-200947762. In the method, a plurality of semiconductor layer stacks can be formed on a substrate wafer, which is divided in a later step. In one step, layers of the semiconductor layer stack 501 are grown on the substrate. The semiconductor layer stack begins to grow on the substrate, for example, with an n-doped layer. Then, for example, the active layer and a ruthenium-doped layer are grown. Next, the substrate is removed from the semiconductor layer stack. An auxiliary carrier may be applied to the semiconductor layer stack before the substrate is removed. Fig. 5 is a view showing a stack of semiconductor layers when the substrate wafer is absent in Fig. 5 . An isolation layer 505 is applied over the layer 502. This spacer layer is formed, for example, of a plurality of layers. This spacer layer forms a mirror which is a translucent mirror. This spacer layer, for example, is as transparent as possible to a specific wavelength range and reflects other wavelength ranges. FIG. 5C shows another substrate 510 and another semiconductor layer stack 511 having a first doped layer 512, an active layer 513, and another doped layer 514. This layer stack is grown on, for example, a substrate wafer comprising sapphire and may include more than three layers. For example, the semiconductor layer stack begins to grow with an n-doped germanium layer. A plurality of semiconductor layer stacks may be formed on the substrate wafer 510, which are divided in a later step. The spacer layer 505 can also be applied to the semiconductor layer stack 511. The spacer layer 505 may also be applied to one of the plurality of semiconductor layer stacks, but may be applied to the two semiconductor layer stacks. Figure 5D shows the steps of an embodiment in which an auxiliary carrier 515, in particular applied to the layer 514, is applied to the second semiconductor layer stack. As shown in Fig. 5, a second auxiliary carrier 516 is applied over the semiconductor layer stack 511, particularly to the layer 512, and the substrate 510 is stripped from the stack of conductor layers 1-4. Fig. 5F shows the situation after the stripping step of the first auxiliary carrier 515 has been performed. The components shown in Figures 5 and 5F can be combined. Figure 5G shows the element applied to the layer 514 of Figure 5, with the isolation layer 505 disposed between the two semiconductor layer stacks. Figure 5 shows the second auxiliary carrier 516 after being stripped by the layer 512. The semiconductor layers are stacked. The illustrated semiconductor layer stack now substantially corresponds to the semiconductor layer stack of the optoelectronic component shown in Figure 1. 〇 The method may include other steps, for example, applying a conversion substance to the layer 512 or forming a plurality of contact elements on the semiconductor layer. The method may additionally include forming a recess of the spacer layer and injecting a conductive material into the spacer layer. In particular, the method does not have to include all of the above steps. For example, a first semiconductor layer stack can be applied to the second semiconductor layer stack prior to substrate removal. The fabrication of the semiconductor layer stack may not include the auxiliary carrier, but may also include one or two auxiliary carriers. [Simple description of the diagram] ® Figure 1 is an illustration of one of the implementations of the optoelectronic component. Figure 2 shows another form of optoelectronic component. A top view of one embodiment of a photovoltaic module of Figure 3. Diagram of the underside of the optoelectronic component of Figure 3. A top view of another embodiment of the photovoltaic module of Figure 4. Figure 4 shows the underside of the optoelectronic component. A cross-sectional view of the stack of semiconductor layers during the different steps of Figures 5 to 5. -15- 200947762 [Main component symbol description]
100 光電組件 101 半導體層堆疊 I 102 半導體層堆疊 II 103 隔離層 104 凹口 110 活性層I 111 主面I 112 接觸元件I 113 主面II 114 接觸元件II 115 主面III 116 摻雜層I 117 摻雜層II 120 活性層II 121 主面IV 122 接觸元件III 123 摻雜層III 124 摻雜層IV 200 光電組件 201 半導體層堆疊 I 202 半導體層堆疊 II 203 隔離層 204 轉換物質 210 活性層I -16- 200947762100 Optoelectronic component 101 Semiconductor layer stack I 102 Semiconductor layer stack II 103 Isolation layer 104 Notch 110 Active layer I 111 Main surface I 112 Contact element I 113 Main surface II 114 Contact element II 115 Main surface III 116 Doped layer I 117 Hybrid Layer II 120 Active Layer II 121 Main Surface IV 122 Contact Element III 123 Doped Layer III 124 Doped Layer IV 200 Photovoltaic Module 201 Semiconductor Layer Stack I 202 Semiconductor Layer Stack II 203 Isolation Layer 204 Conversion Substance 210 Active Layer I -16 - 200947762
21 1 主 面 I 212 接 觸 元件 I 213 主 面 II 214 接 觸 元件 II 215 主 面 III 220 活 性 層II 221 主 面 IV 222 接 觸 元件 III 301 主 面 I 302 接 觸 元件 I 303 主 面 II 304 接 Mm 觸 元件 II 305 主 面 III 306 接 觸 元件 III 401 主 面 I 402 接 觸 元件 I 403 主 面 II 404 接 觸 元件 II 405 主 面 III 406 接 觸 元件 III 500 基 板 晶圓 I 501 層 堆 疊I 502 摻 雜 層I 503 活 性 層I 504 摻 雜 層II 20094776221 1 Main surface I 212 Contact element I 213 Main surface II 214 Contact element II 215 Main surface III 220 Active layer II 221 Main surface IV 222 Contact element III 301 Main surface I 302 Contact element I 303 Main surface II 304 Connection Mm contact element II 305 Main surface III 306 Contact element III 401 Main surface I 402 Contact element I 403 Main surface II 404 Contact element II 405 Main surface III 406 Contact element III 500 Substrate wafer I 501 Layer stack I 502 Doped layer I 503 Active layer I 504 doped layer II 200947762
505 隔 離 層 5 10 基 板 晶 圓II 511 層 堆 疊 II 512 摻 雜 層 III 513 活 性 層 II 514 摻 雜 層 IV 5 15 輔 助 載 體I 516 輔 助 載 體II ❹ 〇505 isolation layer 5 10 base plate crystal circle II 511 layer stack II 512 doped layer III 513 active layer II 514 doped layer IV 5 15 auxiliary carrier I 516 auxiliary carrier II ❹ 〇