200946785 九、發明說明: 【發明所屬之技術領域】 本發明係關於空氣污染控制,且具體而言係關於一種用 於對一氣室中之液體流進行重定向的裝置,且藉此改良空 氣污染控制,尤其是在選擇性觸媒ΝΟχ還原中。 【先前技術】 由於在管道作業t (尤其在轉彎處)之不穩定流,先前技 術系統無法達到完全效率。 【發明内容】 種用於對軋至中之液體流進行重定向的裝置,其藉 由使用相對於該進口(上游)液體流成角度而安裝之一平面 葉片陣歹J使得β亥等葉片相對於該流傾斜且相應地將該流 重定向於-期望之方向。亦被稱為「GSG」或「漸進嬌直 ,.用格」的裝置其應用廣&,且在大規模應用中在性能、結 構及經濟上表現出諸多優勢。作爲一特別而非限制性實 例,本文所教示之流體重定向裝置的一或數個實施例經配 置以用於選擇性觸媒反應器(SCR)中,諸如用於洗務工業 廢氣。 ” 在至少-個實施例中,一種用於將一氣室中之液體流自 -第:流向重定向至一第二流向之裝置,其包括一平面葉 2之橫向陣列,該等葉片係以—傾斜於該第—流向之角度 定位以將邊液體流自該第—流向重定向至該第二流向。 $此意義上,「橫向」表示該等葉片係縱向橫向於該待重 疋向之流體的方向。該斜角因而對於該進口 /上游流呈現 137136.doc 200946785 -傾斜、漸進的表面,使得在料列中之每個葉片的迎風 面將一部分的該流重定向於一期望之方向 在另一實施例中,一種用於將—々—丄 於將虱室中之液體流自—第 一流向重定向至一第二流向之一伞 千面葉片的橫向陣列之設 計方法’其包括將-橫向葉片長度^義為在該氣室内待安 裝該橫向陣列位置處之-内部截面積的一函數,並如 而調整葉片高度、葉片間距及葉片角度中之至少一者,以 ❹ 2該液體流達到一期望的流體品質。該方法可包含藉由調 至内之该橫向陣列之一計劃的安裝角度而調整該葉 片角度^ 在-或多個此類實施例中,如所需而調整一葉片高度、 葉片間距及葉片角度中的至少一者以使液體流達到期望的 ^时質ι括.在錢向陣列之—模擬模型中模擬液體 〜,對照-或數個品質要求評估—模型化流體品質, 整一模型化葉片高度、模型化葉片間距及模型化葉片角度 _之-或數項直到該模型化流體品質符合流體品質要求中 之一或數項。此類製程可爲部分自動化或全自動化,諸如 按照設計要求設定—模擬模型並指定較佳的設計異動⑼ 如葉片高度對間距調整範圍),且設定該模擬,以按昭、. 求《該陣列設計。該等設計要求可包括結構2 郎’包括尺寸^ 件、剛度等等。斗的陣列重置、結構扣件/支樓零 當然,熟悉該項技藝者閱讀下列詳盡描述及參閱該等 加圖示將認識到其他的特徵及優勢。 ^ 、 137136.doc 200946785 【實施方式】 ®m明—橫㈣列10 ’其㈣為、進矮直網格」或 簡稱為「陣列1〇」。從此圖解中’吾人可看出該陣列1〇包 括複數個間隔的平面葉片12。該陣列1〇經構形以固定地安 裝於-氣室u内,以將一液體流自—第—流向重定向於一 弟-流向。特別地,應瞭解的是用於重定向液體流之所說 明的新穎的配置可在該陣列10之下游無需補充之橋直葉片 的狀況下在該第二流向上提供高度的下游流場品質。 此圖解描繪了該陣列1G之—側視圖,且應瞭解的是觀測 者看到該等葉片12 $ 「@ i目® β » 方之端視圖」,且該等葉片12係垂直於 該第-流向而縱向定位。此外,如圖解中所示,該陣韻 之-示例性安裝是位於該氣室14之一轉角位置或接合處, 即一第-氣室區段16係定位於該第—流向且―第二氣室區 段⑽定位於該第二流向之處。因而,在此實例令之該陣 歹J 10係經構形以在第—及第二氣室區段16與18之間的轉角 接合處重定向該液體流。 吾人可見,用於將該陣列10相對於該第—流向安裝之一 示例性斜角即為在氣室區段16與18之間的該轉角接合處之 該「棱角」。吾人可看出,該等葉片12之上游葉片邊緣定 義-平面’且在至少—些設計應用中,較佳是沿著從該内 侧氣室轉角22延伸至該外側氣室轉角24之角對角線2〇對齊 該平面。 當然,應瞭解的是亦可採用其他對齊,且可相對於該轉 角中心線而升高或降低該陣列10,以作為一 Γ調整」泉 137136.doc 200946785 數,以期達到期望的流場品質、安裝便利性等。此外,該 陣列ίο相對於該第一流向之角度可增加或減小如同一性能 調整參數’且該斜角因而不需遵循内側對外側棱角。此 外,應瞭解的是該陣列10可經構形以用於除了 90度以外之 - °變例如在小於90度之轉角處·,且如流場品質及機 • 械考量所需可改變該等安裝角度及轉角定位。 參見圖2,吾人可見若干包括該陣列1〇之一給定實施例 φ @葉片12之一放大側視圖。特定而言,為便於參考而非限 彳〇人可見母個葉片丨2之橫向面可視爲一面對在該第一 流向流動之液體的迎風面3〇及一相對的背風面^。為進一 步參考,每個葉片12係視為具有一與該進口 /上游第一流 向相關之上游(&向)邊緣34及_與該出口 /下游第二流向相 關連之下游(橫向)邊緣36。此等上游及下游葉片邊緣取 36可/不可予以加工或形成一空氣動力輪廓。實際上,未 加工之直角邊緣,諸如那些與板鋼相關之邊緣大體上提供 ❹ I接受的性能。然而’—些具有較高流率、較厚葉片等之 安裝可得益於成形的葉片邊緣。 陣列配置總體而言,該陣列1G之—或多個實施例是基於 如m游葉片邊緣34至該下游葉片邊緣%所量測之一葉 片门度hj,其在約6英吋至約18英吋之範圍内,及在該 :車:“:中之,葉片12之間的間距%」,其在約3英叶至約 士央寸之範圍内。此外,該斜角(即陣列1〇相對於該第一 机向,女裳角度)可經選定以將該等葉片12以—葉片角度^ 置於6亥陣列10中,0是在從約負25。至約正25。之範圍内。 137136.doc 200946785 當然,無論該等參數是否設定於上述範圍内,應瞭解的 是可藉由調整一或多個此類參數以如給定之 而「調整」該陣列i。。這種調整可固定一或 數,且以一重覆方式改變一或多個其他參數以達到一產生 可接受之流場品質的設計方案,同時亦可滿足所有實際成 本及機械考量。 ” 在至少一實施例中,一較佳葉片高度「h」為12英吋或 約12英吋,且一較佳葉片間距「c」為6英吋或約6英吋, 且一較佳葉片角度0為19度或約19度。(吾人在圖2中可看 到所測量之葉片角度是介於從上游葉片邊緣34延伸至一下 游葉片邊緣36的線與平行於該第二流向之線之間的角 度)。因此,若該第二流向是垂直的,則該較佳葉片角度 是偏離此垂直線為19度或約19度。更廣義地說,該陣列1〇 之斜角係經選定以將每個葉片12以相對於該第二流向成 度至+25度(包括)之角度0放置於該陣列1〇中,其中如所解 釋的,該葉片角度Θ是使用一連接該上游及下游葉片邊緣 34及36之線相對於該第二流向而測得的。 一進一步關於陣列設計考量,在一實施例中,如從該上游 葉片邊緣34至該下游葉片邊緣36所測量之該葉片高度經配 置為約該陣列10之鄰接葉片12之間所測量之葉片間距的兩 倍。以數學表示,。在另一實施例中’此比例係設定 為2.5倍,即/;=2.5c。對於至少某些安裝,&之比例較佳, 但應瞭解的是該高度對間距之比例是一候選的調整參數且 可經處理為該陣列設計過程之一部分。例如,重量及/或 137136.doc 200946785 成本限制可能需要減少的葉片數量,味著,在給定的 陣列尺寸下葉片間隔需增大。在這些情形下,舉例而言可 改變所有陣列安裝角度及/或該葉片高度,以補償減少的 葉片數量。 參見圖3,吾人可見在一給定陣列1〇中之該等葉片12的 -簡化透視圖,其強調該等葉片12之長度方向上的橫向定 位,且進一步說明藉由從該第—流向至該第二流向之液體 流動的迎風葉面30之偏斜。雖然在圖3中該背風面32不可 見,在此所預期之一或多個實施例包含一結構加強件,其 整合或安裝於該葉片12之該等背風面32上。(該結構加強 件係顯示於下文,用於大尺度SCR應用)。 因著對,其他機械及機構方面考量,吾人應注意的是, 此名肩氣至」在本文中係被給予廣泛的解釋。例如,本 文㈣之定義包含但不限於在—結構中之—充液空間(例 如軋體、空氣等等),且尤其是—承載流動液體之導管或 Φ 他=乙此外,除非另有說明,此名詞不需意味一連續 ' 例如—第一閉合結構(例如,導管)可通往至一 第二閉合結構(例如一 scr堆疊體上方之空間)令,且該第 及第一尨構之全部或部分可視為該氣室Μ,而該陣列 係安裝於其中。 此外:應瞭解的是’該㈣1G之安裝特徵可如其所安裝 在之該軋至14的特點之所需而修改。例如,圖*描繪了一 疋陣列1G之—平面圖’其不僅說明該等葉片12之橫向定 位,亦顯示—周邊框架40,其作為該等葉片12之載體且可 137136.doc -11 · 200946785 用於將該陣駭於該氣室14中。因此,在—或多個實 施例中,該陣列1G包含至少―部分周邊框架4g,其用於: 結構上將該陣㈣固^於該氣室14中。同樣地應瞭解的 是’該陣列10可包括二或多個次陣列。例如,對於很大的 氣室内截面積,可使用若干較小的陣列1G以形成—橫跨所 需内部空間之-較大陣列。此處理可提供(例如)更佳的結 構完整性,且限制各個葉片長度為更大的實際值。 此外,應瞭解的是,在一或多個實施例中,該等葉片U 係均勻地間隔在該陣列10中。然而,在一或多個實施例 中,該等葉片12係不均勻地間隔在該陣列1〇中。在其他實 施例中,一部分的該等葉片12可為均勾地間隔,而其他^ 分可為不均勻地間隔。可採取這些改變以考慮到結構安 裝,以容納障礙物等等。 當然,所有設計參數可針對一給定安裝而如所需地經設 定及調整。實際上,本文之該等教示之—個態樣包括一設 計方法,藉此電腦模擬(及/或實驗比例模擬)及參數調整可 產生一陣列10,其經構形給定特別的安裝要求。這種模擬 可基於計算流體力學(CFD)模擬及實驗比例模擬,且可在 一具有體現程式指令之一電腦可讀媒體之—電腦系統(例 如一 PC)整體或其一部分中實施,以在一流體模擬環境中 實行該陣列調整方法。 圖5說明此方法之一實施例’其中方法是從輪入設計要 求(方塊100)「開始」的。此專要求可為在該第二方向上期 望之流場品質’其可由層流品質、奮流值等方面表示。此 137136.doc •12- 200946785 等要求一般將包含基本氣室尺寸、流體體積、速率等等。 以適當之基本設計要求,一設計該陣列10之方法包含:定 義一橫向葉片長度「[」為該氣室14中待安裝該陣列1〇之 位置處的一内部截面積的函數(方塊1〇2)。方法繼續為如所 需而調整葉片高度、葉片間距及葉片角度中之至少一者, 以達到液體埤之一期望的流場品質(方塊1〇4)。 此方法可為重複的且可使用或藉由指令碼或其他程式控200946785 IX. Description of the Invention: Technical Field of the Invention The present invention relates to air pollution control, and in particular to a device for redirecting a liquid flow in a gas chamber, and thereby improving air pollution control Especially in the selective catalyst reduction. [Prior Art] Prior art systems were unable to achieve full efficiency due to unstable flow in pipeline operations t (especially at corners). SUMMARY OF THE INVENTION An apparatus for reorienting a flow of liquid in a roll is installed by using a planar blade array J to make a relative angle of the liquid flow relative to the inlet (upstream) The flow is tilted and the flow is redirected in the desired direction accordingly. Also known as "GSG" or "gradually straightforward, use" devices are widely used and have many advantages in performance, structure and economy in large-scale applications. As a particular and non-limiting example, one or more embodiments of the fluid redirecting devices taught herein are configured for use in a selective catalytic reactor (SCR), such as for cleaning industrial exhaust gases. In at least one embodiment, a device for redirecting a liquid stream in a plenum from a flow direction to a second flow direction includes a lateral array of planar leaves 2, wherein the blades are An angle is inclined to the first flow direction to redirect the edge liquid flow from the first flow direction to the second flow direction. In this sense, "lateral" means that the blade lines are longitudinally transverse to the fluid to be redirected. The direction. The bevel thus presents 137136.doc 200946785 - a sloping, progressive surface for the inlet/upstream flow such that the windward side of each blade in the row redirects a portion of the flow to a desired direction in another implementation In an example, a method for designing a lateral array of a liquid flow from a first flow direction to a second flow direction of a parachute blade, which includes a lateral blade The length is a function of the internal cross-sectional area at the position of the lateral array to be mounted in the plenum, and at least one of the blade height, the blade pitch and the blade angle is adjusted to ❹ 2 the liquid flow reaches one The desired fluid quality. The method can include adjusting the blade angle by a planned mounting angle of one of the lateral arrays within the adjustment. - or a plurality of such embodiments, adjusting a blade height, blade pitch, and blade angle as desired At least one of them is such that the liquid flow reaches the desired temperature. In the money-to-array-simulation model, the liquid is simulated, the control- or several quality requirements are evaluated, the fluid quality is modeled, and the entire modeled blade is Height, modeled blade spacing, and modeled blade angles - or several until the modeled fluid quality meets one or more of the fluid quality requirements. Such a process may be partially automated or fully automated, such as setting according to design requirements - simulating the model and specifying a preferred design change (9) such as blade height versus pitch adjustment range, and setting the simulation to "see the array." design. Such design requirements may include structure 2 lang including dimensions, stiffness, and the like. Array resetting of the bucket, structural fasteners/buildings zero. Of course, those skilled in the art will appreciate the following detailed description and reference to the drawings. Other features and advantages will be recognized. ^, 137136.doc 200946785 [Embodiment] ® m------ (4)-column 10' (4) is a short grid, or simply "array 1". From this illustration, it can be seen that the array 1 includes a plurality of spaced planar blades 12. The array 1 is configured to be fixedly mounted in the - plenum u to redirect a liquid stream from the first to the flow direction. In particular, it will be appreciated that the novel configuration for redirecting liquid flow provides a high degree of downstream flow field quality in the second flow direction without the need for additional bridge fins downstream of the array 10. This diagram depicts a side view of the array 1G, and it should be understood that the observer sees the end view of the blades 12 $ "@ i目® β », and the blades 12 are perpendicular to the first - Flow direction and longitudinal positioning. Moreover, as shown in the illustrated embodiment, the exemplary installation of the array is located at a corner position or joint of the plenum 14 , i.e., a first plenum section 16 is positioned in the first flow direction and - second The plenum section (10) is positioned at the second direction of flow. Thus, in this example, the array J 10 is configured to redirect the liquid flow at the corner joint between the first and second plenum sections 16 and 18. As can be seen, an exemplary bevel for mounting the array 10 relative to the first flow direction is the "angular" of the corner joint between the plenum sections 16 and 18. It can be seen that the upstream blade edges of the blades 12 define a plane - and in at least some design applications, preferably along the diagonal from the inner plenum 22 to the outer plenum 24 Line 2〇 aligns to this plane. Of course, it should be understood that other alignments may be employed, and the array 10 may be raised or lowered relative to the centerline of the corner to serve as a Γ137137.doc 200946785 number in order to achieve the desired flow field quality, Installation convenience, etc. Moreover, the angle of the array ίο relative to the first flow direction can be increased or decreased as the same performance adjustment parameter' and the bevel angle thus does not need to follow the medial to outer edge. In addition, it should be appreciated that the array 10 can be configured for use in addition to 90 degrees, such as at corners less than 90 degrees, and can be varied as required for flow field quality and mechanical considerations. Installation angle and corner positioning. Referring to Figure 2, we can see an enlarged side view of one of a given embodiment φ @blade 12 including one of the arrays. In particular, the lateral plane of the parent blade 2 can be seen as a reference to the surface of the first flow direction and a relative windward surface. For further reference, each blade 12 is considered to have an upstream (&) edge 34 associated with the inlet/upstream first flow direction and a downstream (lateral) edge 36 associated with the outlet/downstream second flow direction. . These upstream and downstream blade edges are 36/cannot be machined or form an aerodynamic profile. In fact, unprocessed right-angled edges, such as those associated with sheet steel, generally provide the performance acceptable. However, installations with higher flow rates, thicker blades, etc. can benefit from the shaped blade edges. Array Configuration In general, the array 1G - or multiple embodiments are based on one of the blade door degrees hj measured from the m-blade edge 34 to the downstream blade edge %, which is between about 6 inches and about 18 inches. Within the scope of the ,, and in the: car: ": the spacing between the blades 12%", which is in the range of about 3 inches to about 士. Moreover, the bevel angle (i.e., the array 1 〇 relative to the first machine direction, the female skirt angle) can be selected to place the blades 12 in the 6-well array 10 with a blade angle ^, 0 being at about negative 25. It is approximately 25th. Within the scope. 137136.doc 200946785 Of course, regardless of whether the parameters are set within the above range, it should be understood that one or more such parameters can be adjusted to "adjust" the array i as given. . This adjustment can be fixed by one or several and one or more other parameters can be changed in a repeated manner to achieve a design that produces an acceptable flow field quality while also meeting all practical cost and mechanical considerations. In at least one embodiment, a preferred blade height "h" is 12 inches or about 12 inches, and a preferred blade pitch "c" is 6 inches or about 6 inches, and a preferred blade Angle 0 is 19 degrees or about 19 degrees. (We can see in Figure 2 that the measured blade angle is between the line extending from the upstream blade edge 34 to the downstream blade edge 36 and the line parallel to the second flow direction). Thus, if the second flow direction is vertical, the preferred blade angle is 19 degrees or about 19 degrees from the vertical. More broadly, the bevel of the array is selected to place each of the vanes 12 in the array 1 at an angle 0 to +25 degrees (inclusive) relative to the second flow direction, wherein As explained, the blade angle 测 is measured relative to the second flow direction using a line connecting the upstream and downstream blade edges 34 and 36. Further to the array design considerations, in one embodiment, the blade height as measured from the upstream blade edge 34 to the downstream blade edge 36 is configured to be about the blade pitch measured between adjacent blades 12 of the array 10. Twice. Expressed in mathematics. In another embodiment, the ratio is set to 2.5 times, i.e., /; = 2.5c. For at least some installations, the ratio of & is preferred, but it should be understood that the ratio of height to pitch is a candidate adjustment parameter and can be processed as part of the array design process. For example, weight and / or 137136.doc 200946785 cost limits may require a reduced number of blades, savouring that the blade spacing needs to be increased for a given array size. In these situations, for example, all array mounting angles and/or the blade height can be varied to compensate for the reduced number of blades. Referring to Figure 3, we can see a simplified perspective view of the blades 12 in a given array 1〇, which emphasizes the lateral positioning of the blades 12 in the longitudinal direction, and further illustrates the flow from the first to the The second flow is deflected toward the windward surface 30 of the liquid flowing. Although the leeward surface 32 is not visible in Figure 3, one or more embodiments are contemplated herein to include a structural reinforcement that is integrated or mounted to the leeward faces 32 of the blade 12. (The structural reinforcement is shown below for large scale SCR applications). Due to the right, other mechanical and institutional considerations, we should note that this name is given in this article is widely explained. For example, the definition of (4) herein includes, but is not limited to, in the structure—the filling space (eg, rolling stock, air, etc.), and especially the conduit carrying the flowing liquid or Φ he=B, unless otherwise stated, The term does not need to mean a continuous 'for example, a first closed structure (eg, a conduit) can lead to a second closed structure (eg, a space above a scr stack), and the entire first and second structures Or partially visible as the plenum, and the array is mounted therein. In addition: it should be understood that the mounting characteristics of the (4) 1G can be modified as required by the characteristics of the rolled to 14 installed. For example, Figure * depicts a plan view of an array 1G which not only illustrates the lateral positioning of the blades 12, but also shows a perimeter frame 40 that serves as a carrier for the blades 12 and can be used by 137136.doc -11 · 200946785 The array is enclosed in the plenum 14. Thus, in one or more embodiments, the array 1G includes at least a portion of the perimeter frame 4g for: structurally securing the array (4) in the plenum 14. It should also be understood that the array 10 can include two or more sub-arrays. For example, for a large gas chamber cross-sectional area, several smaller arrays 1G can be used to form - a larger array across the desired interior space. This process can provide, for example, better structural integrity and limit individual blade lengths to larger actual values. Moreover, it should be understood that in one or more embodiments, the blades U are evenly spaced within the array 10. However, in one or more embodiments, the blades 12 are unevenly spaced in the array. In other embodiments, a portion of the vanes 12 may be evenly spaced, while other portions may be unevenly spaced. These changes can be taken to take into account structural installations to accommodate obstacles and the like. Of course, all design parameters can be set and adjusted as needed for a given installation. In fact, one of the teachings herein includes a design method whereby computer simulations (and/or experimental scale simulations) and parameter adjustments can produce an array 10 that is configured to give particular installation requirements. Such simulations may be based on computational fluid dynamics (CFD) simulations and experimental scale simulations, and may be implemented in a computer system (eg, a PC) or a portion thereof having a computer readable medium embodying program instructions, in one The array adjustment method is implemented in a fluid simulation environment. Figure 5 illustrates an embodiment of the method 'where the method is "started" from the wheeling design requirement (block 100). This special requirement may be the quality of the flow field expected in the second direction, which may be expressed in terms of laminar flow quality, striking value, and the like. This 137136.doc •12- 200946785 requirements will generally include basic chamber size, fluid volume, velocity, and so on. With appropriate basic design requirements, a method of designing the array 10 includes defining a transverse blade length "[" as a function of an internal cross-sectional area at the location of the array in the plenum 14 to be mounted (block 1 〇 2). The method continues to adjust at least one of the blade height, the blade pitch, and the blade angle as desired to achieve a desired flow field quality of the liquid helium (block 1〇4). This method can be repeated and can be used or controlled by script or other program
制器而驅動,其等對於陣列調整參數(例如葉片高度、間 距、角度、整體葉片數量等等)之任一者或多者單步調試 一設計參數選擇之範圍,直到符合該等設計要求。再次, 此方法可在一流體模擬環境或在實驗比例模擬中透過電腦 模擬實行。 圖6說明—重複陣列調整.之一實施例。此方法可表示圖5 中之方塊104的細節。此陣列設計可使㈣設或額定陣列 參數(諸如預設葉片高度、間距及角度)予以初始化(方塊 11〇)方法繼續進行到基於已知之替換值(諸如—規定的葉 片間距)㉟整任-或多個參數(方塊ιΐ2)。方法繼續進行到 執行/評估該對應的模擬模型(方塊i 14)。 评估包括(例如)將該等模擬的流場品質與設計要求進行 比較。若符合設計標準(在 ^ 干1牡燹化之一些可接收範圍内)(方塊 1 ,則方法「結束 .、 果」右未符合設計標準,且未超過一 迭代限制或其他方法限制 去限制條件(方塊118) ’則方法繼續進行 到調整一或多個陣列參數 擬模型(方塊m)。以反2订再㈣此再調整之模 Q種反複調整係如所需而繼續進行,或 137136.doc 200946785 直到超過一迭代限制。 在一或多個實施例中,調整該陣列10包括藉由調整該氣 室14内之該陣列10之一計晝的安裝角度來調整該葉片角 度。S亥調整可替換地或額外地包括如所需而調節葉片高 度、葉片間距及葉片角度中之至少一者,以達到液體流之 期望的流場品質。再次,這種調整可包括:在該陣列10之 一模擬模型中模擬液體流;對照一或多個品質要求評估一 模擬的流場品質;及調整一模擬的葉片高度、模擬的葉片 間距及模擬的葉片角度中之一或多者,直到該模擬的流場 品質符合一或多個流場品質要求。同樣地,如上所述,如 所需而調整葉片高度、葉片間距及葉片角度中之至少一者 以達到液體流之一期望的流場品質可包括使用一預設的葉 片高度、一預設的葉片間距及一預設的葉片角度初始化一 橫向陣列設計’且之後調整該等預設值中之一或多者。 此等預設值可基於根據一葉片高度對葉片間距之比例約 為2 : 1設定此預設葉片高度及此預設葉片間距。此外,一 或多個調整變數之調整範圍可限於先前提及之葉片高度、 間距及角度。 以此設計靈活性作為前提,圖7、圖8及圖9說明該陣列 10經配置以用於各種SCR應用中的應用實例。特別地,圖 7凸顯了该等葉片12上之背風側結構加強件,且說明機械 女裝特徵。在這些圖解中之該氣室14包括一選擇性觸媒反 應器(SCR)50之一上游元件,且該陣列1〇經構形以將—氣 流重定向於該SCR50中。 137136.doc -14· 200946785 然而,該陣列1〇不限於這些所說明之實例。更普遍而 言,應瞭解的是上文之描述及該等附加圖示代表本文所教 示之方法、线及個別裝置之非限定性實例。因而,本發 明不被前述描述及附加圖示所限制。反之,本發明僅由以 下請求項及其合法均等物所限制。 【圖式簡單說明】 圖1是在一氣室内用於流體重定向之橫向陣列的一實施 例之一簡化側視圖。Driven by the controller, it orients one or more of the array adjustment parameters (e.g., blade height, spacing, angle, total number of blades, etc.) to a range of design parameters until the design requirements are met. Again, this method can be implemented by computer simulation in a fluid simulation environment or in an experimental scale simulation. Figure 6 illustrates one embodiment of repeating array adjustment. This method can represent the details of block 104 in FIG. This array design allows the (iv) or nominal array parameters (such as preset blade height, spacing, and angle) to be initialized (block 11). The method proceeds to a full-scale based on known replacement values (such as - specified blade spacing). Or multiple parameters (square ιΐ2). The method proceeds to execute/evaluate the corresponding simulation model (block i 14). The evaluation includes, for example, comparing the simulated flow field quality to design requirements. If the design criteria are met (in some acceptable ranges of oysters) (block 1 , the method "end., fruit" does not meet the design criteria, and does not exceed an iteration limit or other method limits. (block 118) 'The method proceeds to adjust one or more array parameter pseudo-models (block m). To reverse the second (4) the re-adjustment mode Q repeated adjustments continue as needed, or 137136. Doc 200946785 Until an iteration limit is exceeded. In one or more embodiments, adjusting the array 10 includes adjusting the blade angle by adjusting the mounting angle of one of the arrays 10 within the plenum 14. Alternatively or additionally, at least one of adjusting the blade height, the blade pitch, and the blade angle as needed to achieve a desired flow field quality of the liquid flow. Again, the adjustment may include: at the array 10 Simulating a liquid flow in a simulation model; evaluating a simulated flow field quality against one or more quality requirements; and adjusting one of the simulated blade height, the simulated blade spacing, and the simulated blade angle Or more, until the simulated flow field quality meets one or more flow field quality requirements. Similarly, as described above, at least one of the blade height, the blade pitch, and the blade angle is adjusted as needed to achieve liquid flow. One of the desired flow field qualities may include initializing a lateral array design using a predetermined blade height, a predetermined blade pitch, and a predetermined blade angle and then adjusting one or more of the preset values The preset values may be based on the ratio of the blade height to the blade pitch of about 2: 1 to set the preset blade height and the preset blade pitch. In addition, the adjustment range of one or more adjustment variables may be limited to the previously mentioned Blade height, spacing and angle. With this design flexibility in mind, Figures 7, 8 and 9 illustrate an application example in which the array 10 is configured for use in various SCR applications. In particular, Figure 7 highlights this The leeward side structural reinforcement on the blade 12, and illustrating the mechanical wear feature. The plenum 14 in these illustrations includes an upstream component of a selective catalyst reactor (SCR) 50, and the array is 1 〇 The configuration is to redirect the airflow to the SCR 50. 137136.doc -14· 200946785 However, the array is not limited to the illustrated examples. More generally, it should be understood that the above description and such The appended drawings represent non-limiting examples of the methods, lines, and individual devices disclosed herein. Therefore, the invention is not limited by the foregoing description and the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified side elevational view of one embodiment of a lateral array for fluid reorientation in a gas chamber.
圖2是圖1中所示之該陣列之一或數個實施例的葉片零件 之一簡化側視圖。 圖3是一橫向陣列之一實施例的一簡化透視圖,尤其說 明用於流體重定向之該等平面葉片。 圖4是一橫向陣列之一實施例的一簡化平面視圖。 圖5及6為邏輯流程圖,其說明對於一種設計一用於流體 重疋向之橫向陣列的方法之一或多個實施例中諸如可實施 於一電腦系統上之處理邏輯。 圖7至圖9為安裝說明’其等顯示安裝於選擇性觸媒反應 器(SCR)中之氣室内的橫向陣列之各種實施例。 【主要元件符號說明】 10 橫向陣列 12 平面葉片 14 氣室 16 第一氣室區段 18 第二氣室區段 137136.doc 對角線 内側氣室轉角 外側氣室轉角 迎風面 背風面 上游(葉片)邊緣 下游(葉片)邊緣 周邊框架 選擇性觸媒反應器(SCR) 葉片間距 葉片南度 葉片角度 -16-Figure 2 is a simplified side elevational view of one or more of the blade parts of the array shown in Figure 1. Figure 3 is a simplified perspective view of one embodiment of a lateral array, particularly the planar blades for fluid redirection. 4 is a simplified plan view of one embodiment of a lateral array. 5 and 6 are logic flow diagrams illustrating processing logic, such as may be implemented on a computer system, in one or more embodiments of a method for designing a lateral array of fluid redirects. Figures 7 through 9 are various embodiments of mounting instructions that show a lateral array of chambers installed in a selective catalytic reactor (SCR). [Main component symbol description] 10 Horizontal array 12 Plane blade 14 Air chamber 16 First air chamber section 18 Second air chamber section 137136.doc Diagonal inner air chamber corner outer air chamber corner Upwind side leeward surface upstream (blade Edge downstream (blade) edge perimeter frame selective catalyst reactor (SCR) blade spacing blade south blade angle-16-