200944731 九、發明說明: 【發明所屬之技術領域】 本發明關於一種太陽追蹤裝置,特別是一種以影像比 對方式追縱太知之太追縱裝置,以及利用此追縱裂置之 太陽能發電系統。 【先前技術】 習知追蹤太陽的裝置係利用光感知器來達成。由一個 或多個光感知器所得到的訊號來驅動動力系統,將太陽追 蹤裝置調整至朝向太陽之位置。如圖1及圖2所示,習知 太陽追蹤器1包含一不透光之殼體12,·殼體12上裝設有 一聚光官14,於设體12底端有一彳貞測區16,聚光管14 垂直投影至偵測區16。偵測區16之四周裝設有四個光感 知器18。 當太陽位於聚光管14正上方時,太陽光線ai穿過聚 光管14而投射至B區域時,此時太陽追蹤器i並不會移 動。待經一段時間後,太陽朝右偏移至聚光管14右方一 疋角度¥,照射之光線穿過聚光管14而投射至b區域 周圍之光感知器18上,光感知器18感知光線後,即驅動 動力系統(圖未顯示)微調太陽追縱器丨的位置,如此太陽 照射之光線又回至B區域中。系統不斷重複運作,使追蹤 器能永遠面向太陽,達到追蹤太陽之目的。 然而利用光感知器18感測太陽光以調整太陽追蹤器 1之方式,皆需在光感知器18感知後,才調整太陽追蹤器 200944731 1位置,故太陽追蹤器i實際對準太陽之準確度,會 調整完時㈣確(誤差最小㈣晴間㈣^逐漸降低,直 至下-刻光感知ϋ I8又再度感知時(誤差最大),再度調整 太陽追縱器1之位置’準確度才會又變的準確,如圖3所 示。 “而右用在太陽能發電上,太陽能電池之發電效率會隨 著太陽能電池朝向太陽之準確度愈高,發電量愈多,而準 鲁 確度愈低時,發電量亦愈少。故對照於圖3,習知太陽追 蹤器1運用於太陽能發電上時,其如圖4所示。在時間t=〇 時,太陽能追蹤器1與太陽之準確度誤差最小,故太陽能 發電量最大(Emax),而隨時間經過,至t=ti時,準確度誤 差達到最大,此時發電量最小(Emin)。而此時光感知器18 亦偵測到太陽光,故調整太陽追蹤器丨,太陽追蹤器又再 度對準太陽’從而發電量又達到最大。由圖4觀之,在t=〇 至的這段期間,太陽能發電量係由最大變至最小。明 Q 顯得知,實際發電效率並不高。故以此方式作動之太陽追 蹤器1用於太陽能發電上,效果並不佳。 再者,當太陽朝聚光管14兩側偏移時,且其投射光 線超過B區域而至A區域時,太陽追蹤器j會因為a區 域已無光感知器18存在,故無法再調整追縱太陽。此常 發生於天空有雲層出現時,遮住太陽一段時間,而此段時 間光感知器18無法感應太陽投射光線,而待雲層散去後, 追蹤器1容易迷失太陽位置而無法再追蹤太陽。 200944731 此外’以光感知器18感知太陽光’而作動太陽追縱 器1調整其位置面向太陽之方式,因為B區域面積仍大, 故太陽追蹤器1面向太陽容易不甚準確,此亦造成太陽追 蹤器1面向太陽準確度有限之問題。 故如何使太陽追蹤器實際面向太陽之準確度提升,且 於雲層散去後,仍可繼續追蹤到太陽;且使用此追蹤器於200944731 IX. Description of the Invention: [Technical Field] The present invention relates to a solar tracking device, and more particularly to a solar tracking system that utilizes the image-matching method to track the Taizhizhitai tracking device and utilizes the tracking and cracking. [Prior Art] It is conventional to use a light sensor to achieve a device for tracking the sun. Signals from one or more light sensors drive the power system to adjust the sun tracking device to the position facing the sun. As shown in FIG. 1 and FIG. 2, the conventional solar tracker 1 includes an opaque housing 12, and a housing concentrator 14 is mounted on the housing 12, and a measurement area 16 is disposed at the bottom end of the housing 12. The concentrating tube 14 is vertically projected to the detecting area 16. Four light sensing devices 18 are mounted around the detection zone 16. When the sun is located directly above the concentrating tube 14, the solar ray ai passes through the concentrating tube 14 and is projected to the B area, at which time the sun tracker i does not move. After a period of time, the sun is shifted to the right to an angle ¥ to the right of the concentrating tube 14, and the illuminating light passes through the concentrating tube 14 and is projected onto the light sensor 18 around the b region, and the light sensor 18 senses the light. After that, the driving power system (not shown) fine-tunes the position of the sun chaser, so that the light from the sun returns to the B area. The system is constantly repetitive, allowing the tracker to face the sun forever, to track the sun. However, by using the light sensor 18 to sense the sunlight to adjust the sun tracker 1, it is necessary to adjust the position of the sun tracker 200944731 after the light sensor 18 senses, so the accuracy of the sun tracker i actually aligns with the sun. , will be adjusted (four) indeed (the error is the smallest (four) sunny (four) ^ gradually reduced until the lower - engraved light perception ϋ I8 again sense (the error is the biggest), once again adjust the position of the sun tracker 1 'accuracy will change again Accurate, as shown in Figure 3. "When the right is used in solar power generation, the efficiency of solar cell power generation will be higher with the accuracy of the solar cell facing the sun, the more power generation, and the lower the accuracy, the lower the power generation. The amount is also less. Therefore, as shown in Fig. 3, when the conventional solar tracker 1 is applied to solar power generation, it is shown in Fig. 4. At time t=〇, the accuracy error between the solar tracker 1 and the sun is the smallest. Therefore, the solar power generation is the largest (Emax), and as time passes, the accuracy error reaches the maximum when t=ti, and the power generation is the smallest (Emin). At this time, the light sensor 18 also detects the sunlight, so the adjustment Sun tracker丨The sun tracker is again aligned with the sun', and the power generation reaches its maximum. As shown in Figure 4, during the period of t=〇, the solar power generation is changed from maximum to minimum. Ming Q appears to know that the actual power generation The efficiency is not high. Therefore, the solar tracker 1 activated in this way is not effective for solar power generation. Moreover, when the sun is offset toward both sides of the concentrating tube 14, and the projected light exceeds the B area, When going to the A area, the sun tracker j will have no light sensor 18 in the a area, so it is no longer possible to adjust the sun. This often occurs when the sky appears in the clouds, covering the sun for a while, and this time light The sensor 18 cannot sense the sun to project light, and after the cloud layer is dispersed, the tracker 1 easily loses the sun position and can no longer track the sun. 200944731 In addition, the 'light sensor 18 senses the sun' and activates the sun tracker 1 to adjust its The position is facing the sun, because the area of the B area is still large, so the sun tracker 1 is not easy to face the sun, which also causes the solar tracker 1 to face the problem of limited accuracy of the sun. Male tracker accuracy for the actual lifting of the sun, clouds, and after dispersed, can continue to track the sun; and using this to tracker
太陽能電池上時,可提高發電量,為本發明所欲解決之 題。 、 【發明内容】 由於習知太陽追蹤器追蹤太陽之準確度不佳,故相對 使太陽能電池發電量不高,且追蹤器於雲層 後’不易_追蹤鴻。故本發社目的在於提供一 ^以 影像比對方式以追蹤太陽之太陽追蹤裝置。其可利用影像 比對,使太陽追蹤裝置準確地對準太陽,且可預測太^下 一刻之位置,達到與太陽實質同步之功效。用於太陽能電 =時^亦可大符提高太電池發電4。有效解決先前 技術所存在的問題或缺點。 為達上述目的,本發明提供一種太陽追縱裝置,係搭 配-動力褒置而動作’太陽追蹤裝置包含: , ===太陽影像;:影像擷取單心係ϋ定時間 栌:i *二*一太陽影像;以及—影像處理單元’ 根據第-太㈣像與第二太陽影像比較而得到 資 料並儲存於δ己憶早兀;其中,太陽追縱農置係根據差異 200944731 資料以致動動力裝置 Φ 此外,本發明亦提供一種太陽能發電系統,包含:一 太陽能面板;-動力裝置,賴罐太·面板;以及-太陽追縱裝置1括:—記鮮元,料有—第一太陽影 像’ Ί擷取早(’係於—特定時間間隔操取太陽之一 第=太陽影像;以及—影像處理單元,根據第—太陽影像 與第=太陽影像比較㈣到—差異:賴,並儲存於記憶單 兀〜中’太陽追料置餘據差異轉以致動動力裝 置’俾能使得太陽能®板畅太陽以收集太陽能量。 1用上述本發明之技術特徵,可達到下列功效: 1.提高太陽追蹤裝置與太陽之對準度,且亦提高太陽能 電池之發電效率。 2·=大角度搜尋天空中任-處之太陽,於雲層遮住一段 時間後’也不會迷失太陽位置。 3. 藉由運算太陽影像之圓心,而比對前—刻太陽影像之 圓心位置,而使太陽追蹤裝置能精準對準太陽。 4. 以軟體運算可預知太陽下—刻位置,_ 同步,,的境界。 ” 貝 陽下一刻位 5. 透過太陽過去移動執跡之資料’可預測太陽下一 置。 6. 以軟體運算可以作系統設置之校正。 以下詳細敘述本發明之特徵以及優點,其内容足以使 任何熱習相關技fc*者了解本發明之技術内容並據以實 200944731 施,且根據本說明書所揭露之内容、申請專利範圍及圖 式’任何熟習相關技藝者可輕易地理解本發明相關之目的 及優點。 以上關於本發明内容之說明及以下實施方式之說明 係用以示範與解釋本發明之原理’並非用以限定本發 範疇。 罄 【實施方式】 為使對本發明的目的、構造、特徵、及其功能有進一 步的瞭解,兹配合實施例詳細說明如下·。 請參閱圖5,為本發明太陽能發電系統2第一實施例 之結構示意圖。本發明太陽能發電系統2包含一支撐柱 22、一太陽能面板24、一太陽追蹤裝置26及一動力事置 28。 < 支撐柱22為一直立柱狀物,用以支撐整個系統。太 陽能面板24,可吸收太陽光,進而將光能轉換為電能之裝 置,其具有一向光平面24a,此與習知太陽能面板相雷同。 其設立於支雜22上,可於支撐柱22上朝各方向轉動。 請一併參閱圖6,圖6為本發明太陽追蹤裝置%之方 塊圖。太陽追蹤裝置26設置於支撐柱22上,且與太陽能 面板24之向光平面24a朝同一方向設置,其包令;一光^ 元件26卜一影像擷取單元262及一影像處理單元2幻^ 200944731 一記憶單元264。 光學元件26卜為一聚焦鏡頭,用以聚焦太陽光於影 像撖取單元261上。光學元件261可為選擇性地設置,且 可實施為-透鏡或—廣角鏡頭等。#實施為透鏡時,可將 特定位置之太陽呈像於影像擷取單元262。當實施為廣角 鏡頭時’則太陽於天空中任一處皆可呈像於影像擷取單元 262。此外,亦可同時使用透鏡與廣角鏡頭。 景>像摘取單元262,為可記錄光線變化的半導體,其 上具有感光元件,透過光電效應,由感光元件表面感應來 源光線,從而轉換成電子訊號,儲存在偵測器上直到被讀 出:當影像擷取單元262接受到光線照射時,會將光線的 月bl轉換成電荷,光線越強、電荷也就越多,這些電荷就 成為判斷光線強弱大小的依據。因此,影像擷取單元262 能對某一物件以光學方式進行影像之擷取,其可實施為一 感光輕合元件(Charge Coupled Device,CCD)或互補式金 氧半導體(Complementary Metal-Oxide Semiconductor, CMOS)等。於本發明之實施例中,係利用cCD連續地擷 取太&影像。 影像處理單元263,設於影像擷取單元262之輸出 端’將影像擷取單元262之電荷信號,經由電腦重組,形 成一影像。且亦可以軟體運算計算資料。而於本發明之實 施例中’係將影像擷取單元262所擷取之太陽影像於影像 處理單元263處呈現,且以軟體運算所得之太陽影像,供 -11 - 200944731 調整系統及追蹤太陽之用。 記憶單元264,用以儲存各種資料,並提供其儲存之 資料於影像處理單元263。於本發明之實施例中,記憶單 元264係儲存由影像處理單元263比較後之資料及太陽歷 史移動軌跡之資料,亦提供其原先儲存之資料於影像處理 單元263。 ❹ 一動力裝置28,設置於支撐柱22上,例如馬達(圖未顯 示)’係提供動力帶動太陽能面板24於支樓柱22上轉動, 使太陽能面板24正向太陽’此動力裝置28之配置係與習 知太陽能發電系統相雷同。 本發明太陽能發電系統2之操作係利用影像比對之方 式,控制太陽能面板24使其能準確正向太陽發電。 首先利用光學元件261,例如聚焦透鏡,使太陽影像 P 藉由光學元件261聚焦後,使其焦點正好落於影像摘取單 元262上。而影像擷取單元262以光學方式進行太陽影像 搁^其於一特定時間間隔擷取太陽影像,此處所擷取的 太陽影像稱為第二太陽影像,其為實際太陽影像。而特定 時間間隔可設為1秒、2秒或30秒…等等。故影像擷取單 ,26^於一段時間中,可擷取許多第二太陽影像。舉例來 說,若特定時間間隔設定為!秒鐘,則影像擷取單元262 於一分鐘内,可擷取60個第二太陽影像。 -12- 200944731 日§己憶單元264,預先儲存有一第一太陽影像,此第一 太陽影像為一預設太陽影像,具有一第一太陽圓心。請參 閱圖7’為太陽追蹤裝置26之影像處理單元263影像比對 之示意圖。第一太陽影像2642於影像處理單元263中, 影像2642於晝面2632中之位置係固定不變。當影像擷取 單元262將其所擷取之第二太陽影像2622之訊號傳至影 像處理單元263呈像後’則在畫面2632某位置處,會呈 一太陽形狀之第二太陽影像2622,且具有一第二太陽圓心 ❹ 2624。而影像處理單元263則將記憶單元264記憶之第一 太陽影像2642之第一太陽圓心2644,與第二太陽影像 2622之第二太陽圓心2624做一比較,由於第二太陽圓心 2624於畫面2632上之位置與第一太陽圓心2644會有差 異,故可得一差異資料。如圖7所示,此差異資料係由微 小誤差χ(Δχ)及微小誤差y (Ay)所組成。此即表示此刻太 陽能面板24朝天空之方位與天空中實際太陽位置具有Δχ 及Ay之誤差距離。此時影像處理單元263會將此差異資 • 料儲存於記憶單元264中,以提供曰後用於預先致動動力 裝置28。同時亦根據此差異資料立即致動動力裝置28, 调整太能面板24 ’如此,下一秒鐘所操取之第二太陽影 像2622之第一太陽圓心2624係匹配於第一太陽影像2642 之第一太陽圓心2644’故此時太陽能發電系統2之太陽能 面板24係精準地對準太陽。而當天空中有雲層遮住部分 太陽時’影像處理單元263亦可以軟體運算出第二太陽影 像2622之第二太陽圓心2624,供比較之用。 值得注意的是,第一太陽影像2642係為預先設置, 200944731 以做為第二太陽影像2622比對的一個基準,故其於畫面 2632中呈像之位置為固定不變,而所擷取之第二太陽影像 2622之第二太陽圓心2624若匹配於第一太陽影像2642 之第一太陽圓心2644時,亦代表著太陽能面板24係正對 太陽。而影像擷取單元262於每一特定時間間隔,則會擷 取一第二太陽影像2622 ’並於影像處理單元263處呈像。 故每產生一第二太陽影像2622’則影像處理單元263即會 將其與第一太陽影像2642做一比較,而得一差異資料, ❹ 進而致動動力裝置28調整太陽能面板24正向太陽。故太 陽能面板24能時時正向太陽。且第一太陽影像2642與第 二太陽影像2622之比較’係利用二太陽圓心2624、2644 比較,而得到太陽圓心位置之位移量之差異資料,以調整 第二太陽影像2622之第二太陽圓心2624與第一太陽圓心 2644匹配。故太陽能面板24能精準地正向太陽,有效提 高準確度。 如圖8及圖9所示’由於本發明太陽能發電系統影像 擷取單元擷取第二太陽影像之特定賴間隔,可以設定的 很短(如-秒)’且湘二太陽圓讀位,故太陽能面板 24(參閱目5)正騎太陽之準確度會十分準確,如圖 示,準確度之誤差值皆相當低。亦因如此,太陽能發 統2之發電也1可制相當高的程度,有效提高發電量 ▲此外,於本發明另一實施例中,太陽追縱敦置%之 憶單f 亦可儲存記錄有太陽過去之移動執跡資 料’此§己錄資料可包合俞 ρ ,. 斗、. 、 貝丁叶J匕&削一日、去年、或四年前(因為每 -14- 200944731 四年潤年一次,故太陽運行軌跡會四年一個週期)之任一 種資料。記憶單元264可提供影像處理單元263這些資 料,=先致動動力裝置28。舉例來說,記憶單元264可提 供太陽四年前之移動轨跡資料於影像處理單元263,而影 像處理單元263以軟體運算後,動力裝置28可依此資料, 於太陽移動的下一秒鐘前(假設特定時間間隔設為一秒), 預先調整太陽能面板24至太陽下一秒鐘之位置,達到與 太陽實質”同步,,的境界。且利用此記錄資料,當太陽能發 _ 電系統2使用時,縱使有雲層遮住太陽一段時間後,太陽 能發電系統2亦可利用儲存於記憶單元264之太陽過去之 移動軌跡資料,提供給影像處理單元263以致動動力裝置 28,如此太陽能發電系統2於雲層遮住太陽一段時間後, 亦能於太陽再度出現時,準確尋找到太陽,且準確對位。 於本發明太陽能發電系統2之再另一實施例中,光學 元件261亦可使用廣角鏡頭,廣角鏡頭為一約呈180度之 这 鏡頭’可聚焦天空中任一處之太陽影像於影像擷取裝置 262。如此,太陽能發電系統2不論太陽處於天空中任一 處’影像擷取單元262皆可擷取到第二太陽影像,而不致 於尋找不到太陽。此外,亦可透鏡與廣角鏡頭同時使用, 先利用廣角鏡頭聚焦天空中任一處之太陽影像於影像擷 取單元262’大略調整太陽能面板24,使影像擷取單元262 擷取之第二太陽影像於接近第一太陽影像後,而再利用透 鏡掏取太陽影像,精確匹配第二太陽影像之第二太陽圓心 於第一太陽影像之第一太陽圓心’如此太陽能發電系統2 ~T更準確地對準太陽。 -15- 200944731 ^此外,於本發明另一實施例中,第一太陽影像亦可為 衫像擷取單元262擷取而得,並不限於預先設定。 a習知太陽追蹤器追蹤太陽之準確度不佳,故亦使太陽 能電池發電量不高,且追縱器於雲層遮住一段時間後,則 不易繼續追蹤太陽。本發明利用影像比對方式,使太陽追 蹤裝置準確地對準太陽,1可預測太陽下一刻之位置,達 ® ^與太陽實質同步之功效i於太陽能電池上時,亦可大 符提高太陽能電池發電量。 雖然本發明以前述之實施例揭露如上,然其並非用以 限定本發明。在不脫離本發明之精神和範圍内,所為之更 ,與潤飾’均屬本發明之專利保護範圍^於本發明所界 定之保護範圍請參考所附之申請專利範圍。 【圖式簡單說明】 圖1為習知技術太陽追蹤器之結構示意圖。 圖2為習知技術太陽追蹤器偵測區之結構示意圖。 圖3為習知技術太陽追蹤器實際對準太陽之^確度誤 差與時間之關係圖。 ^ 圖4為習知技術太陽追蹤器用於太陽能發電上發 量與時間之關係圖。 ^ ^ 圖5為本發明太陽能發電系統結構示意圖。 圖6為本發明太陽能發電系統之系統方塊圖。 圖7為本發明請太陽追蹤裴置之影像處理單元影像比 -16- 200944731 對之示意圖。 圖8為本發明太陽能發電系統之太陽能面板對準太陽 之準確度誤差與時間之關係圖。 圖9為本發明太陽能發電系統發電能量與時間之關係 圖。In the case of a solar cell, the amount of power generation can be increased, which is a problem to be solved by the present invention. According to the conventional solar tracker, the accuracy of tracking the sun is not good, so that the solar cell power generation amount is not high, and the tracker is not easy to track after the cloud layer. Therefore, the purpose of this publication is to provide a solar tracking device that tracks images of the sun in an image comparison manner. It can use the image comparison to make the sun tracking device accurately align with the sun, and can predict the position of the next moment to achieve synchronization with the sun. For solar power = time ^ can also increase the battery power generation 4. Effectively solve problems or shortcomings in previous technologies. In order to achieve the above object, the present invention provides a sun tracking device that operates in conjunction with a power device. The sun tracking device includes: , === sun image;: image capture single heart system set time: i * two * a solar image; and - the image processing unit 'according to the comparison between the first-to-four (four) image and the second solar image, and storing the data in the δ 忆 兀 兀 兀; wherein the sun 縱 縱 縱 根据 according to the difference 200944731 data to actuate the power In addition, the present invention also provides a solar power generation system, comprising: a solar panel; a power device, a solar panel; and a solar tracking device: - a fresh element, a material having a first solar image ' 取取早 ('Takes at - a specific time interval to take one of the sun = sun image; and - image processing unit, according to the first - sun image and the first = sun image comparison (four) to - difference: Lai, and stored in Memory single 兀 ~ 中 'Sun tracking material difference according to the difference to actuate the power unit '俾 enables the solar panel to smooth the sun to collect solar energy. 1 With the above technical features of the invention, up to The following effects: 1. Improve the alignment of the solar tracking device with the sun, and also improve the power generation efficiency of the solar cell. 2·=Search for the sun in the sky at a large angle, after covering the cloud for a period of time, 'will not Lose the position of the sun. 3. By calculating the center of the sun image and comparing the center position of the front and the engraved sun image, the sun tracking device can accurately align with the sun. 4. The software can predict the position of the sun. _ Synchronization, the realm of. "The next moment in Beiyang 5. The data of the past through the sun's movements can predict the next set of the sun. 6. The software can be used to make corrections for the system settings. The characteristics of the present invention are described in detail below. And an advantage, the content of which is sufficient for any person skilled in the art to understand the technical content of the present invention and to implement it according to the present invention, and according to the content disclosed in the specification, the scope of the patent application and the drawing 'any skilled person can The objects and advantages of the present invention are readily understood. The description of the present invention and the description of the following embodiments are used to demonstrate and explain the present invention. The present invention is not limited to the scope of the present invention. [Embodiment] In order to further understand the objects, structures, features, and functions of the present invention, the following detailed description will be given with reference to the embodiments. The schematic diagram of the first embodiment of the solar power generation system 2 of the present invention comprises a support column 22, a solar panel 24, a solar tracking device 26 and a power device 28. Pillars for supporting the entire system. The solar panel 24, which absorbs sunlight and converts light energy into electrical energy, has a direct light plane 24a, which is similar to the conventional solar panel. 22, it can be rotated in various directions on the support column 22. Please refer to Fig. 6, which is a block diagram of the sun tracking device of the present invention. The solar tracking device 26 is disposed on the support column 22 and disposed in the same direction as the light plane 24a of the solar panel 24, and is provided with an optical component 26 and an image capturing unit 262 and an image processing unit 2 200944731 A memory unit 264. The optical element 26 is a focusing lens for focusing sunlight onto the image capturing unit 261. The optical element 261 may be selectively provided and may be implemented as a lens or a wide-angle lens or the like. When the lens is implemented as a lens, the sun at a specific position can be imaged by the image capturing unit 262. When implemented as a wide-angle lens, the sun can appear in the image capturing unit 262 anywhere in the sky. In addition, lenses and wide-angle lenses can be used simultaneously. The image picking unit 262 is a semiconductor capable of recording light changes, and has a photosensitive element thereon, which transmits the light from the surface of the photosensitive element through the photoelectric effect, thereby being converted into an electronic signal and stored on the detector until it is read. Out: When the image capturing unit 262 receives the light, it converts the light bl into a charge. The stronger the light, the more the charge, and the charge becomes the basis for judging the intensity of the light. Therefore, the image capturing unit 262 can optically perform image capturing on an object, and can be implemented as a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor). CMOS) and so on. In an embodiment of the invention, the & images are continuously captured using cCD. The image processing unit 263 is disposed at the output end of the image capturing unit 262 to recombine the charge signal of the image capturing unit 262 via a computer to form an image. It is also possible to calculate data by software calculation. In the embodiment of the present invention, the solar image captured by the image capturing unit 262 is presented at the image processing unit 263, and the solar image obtained by the software operation is used for adjusting the system and tracking the sun. use. The memory unit 264 is configured to store various materials and provide the stored data to the image processing unit 263. In the embodiment of the present invention, the memory unit 264 stores the data of the data and the history track of the solar history, which are compared by the image processing unit 263, and also stores the originally stored data in the image processing unit 263. ❹ A power unit 28 is disposed on the support column 22, for example, a motor (not shown) provides power to rotate the solar panel 24 on the branch column 22, so that the solar panel 24 is forwarded to the sun. It is similar to the conventional solar power generation system. The operation of the solar power generation system 2 of the present invention controls the solar panel 24 to accurately power the solar power by means of image comparison. First, the optical element 261, such as a focus lens, is used to focus the solar image P by the optical element 261 so that its focus falls on the image pickup unit 262. The image capturing unit 262 optically performs the sun image to capture the sun image at a specific time interval. The sun image captured here is called the second sun image, which is the actual sun image. The specific time interval can be set to 1 second, 2 seconds or 30 seconds... and so on. Therefore, the image capture order, 26 ^ can capture a lot of second sun images over a period of time. For example, if the specific time interval is set to! In seconds, the image capturing unit 262 can capture 60 second solar images in one minute. -12- 200944731 § Recalling unit 264, a first sun image is pre-stored, and the first sun image is a preset sun image having a first sun center. Please refer to FIG. 7' for a schematic view of the image processing unit 263 of the solar tracking device 26. The first solar image 2642 is in the image processing unit 263, and the position of the image 2642 in the pupil plane 2632 is fixed. When the image capturing unit 262 transmits the signal of the captured second solar image 2622 to the image processing unit 263, then at a certain position on the screen 2632, a second solar image 2622 of a sun shape is formed, and Has a second sun center ❹ 2624. The image processing unit 263 compares the first solar center 2644 of the first solar image 2642 memorized by the memory unit 264 with the second solar center 2624 of the second solar image 2622, because the second solar center 2624 is on the picture 2632. The position is different from the first sun center 2644, so a difference data can be obtained. As shown in Fig. 7, this difference data is composed of a small error χ (Δχ) and a small error y (Ay). This means that the direction of the solar panel 24 toward the sky at this moment has an error distance of Δχ and Ay from the actual sun position in the sky. At this time, the image processing unit 263 stores the difference information in the memory unit 264 to provide a defect for pre-actuating the power unit 28. At the same time, according to the difference data, the power device 28 is immediately actuated, and the solar panel 24' is adjusted. Thus, the first solar center 2624 of the second solar image 2622 taken in the next second is matched with the first solar image 2642. At the same time, the solar panel 24 of the solar power generation system 2 is precisely aligned with the sun. When the sky has a cloud covering part of the sun, the image processing unit 263 can also calculate the second sun center 2624 of the second sun image 2622 for comparison. It is worth noting that the first solar image 2642 is pre-set, 200944731 is used as a reference for the second solar image 2622 alignment, so the position of the image in the picture 2632 is fixed, and the image is captured. If the second solar center 2624 of the second solar image 2622 matches the first solar center 2644 of the first solar image 2642, it also represents that the solar panel 24 is facing the sun. At each specific time interval, the image capturing unit 262 captures a second solar image 2622' and presents it at the image processing unit 263. Therefore, each time a second solar image 2622' is generated, the image processing unit 263 compares it with the first solar image 2642 to obtain a difference data, and then activates the power device 28 to adjust the solar panel 24 to the sun. Therefore, the solar panel 24 can always be positive to the sun. The comparison between the first solar image 2642 and the second solar image 2622 is compared with the two solar centers 2624 and 2644, and the difference information of the displacement of the sun center position is obtained to adjust the second solar center 2624 of the second solar image 2622. Matches the first sun center 2644. Therefore, the solar panel 24 can accurately advance to the sun, effectively improving accuracy. As shown in FIG. 8 and FIG. 9 , because the image capturing unit of the solar power generation system of the present invention captures the specific interval of the second solar image, it can be set to be very short (eg, -second) and the Xiangyang solar circle is read. The accuracy of the solar panel 24 (see item 5) riding the sun is very accurate. As shown, the accuracy error is quite low. In this way, the power generation of the solar energy system 2 can also be made to a relatively high degree, and the power generation amount can be effectively increased. ▲ In addition, in another embodiment of the present invention, the memory of the sun can be stored and recorded. The past movement of the sun has been recorded. 'This § recorded data can be included in Yu ρ,. 斗,., 贝丁叶J匕& cut one day, last year, or four years ago (because every-14-200944731 four years) Run once a year, so the sun will travel for four years and one cycle). The memory unit 264 can provide the image processing unit 263 with the information, = first actuating the power unit 28. For example, the memory unit 264 can provide the moving track data of the sun four years ago to the image processing unit 263, and after the image processing unit 263 is operated by the software, the power device 28 can use the data for the next second of the sun movement. Before (assuming a specific time interval is set to one second), the position of the solar panel 24 to the next second of the sun is adjusted in advance to reach the realm of "synchronization with the sun". And using this recorded data, when the solar energy is generated In use, even if the cloud layer covers the sun for a period of time, the solar power generation system 2 can also provide the image processing unit 263 to actuate the power device 28 by using the moving track data of the sun stored in the memory unit 264, such that the solar power generation system 2 After the sun is covered by the cloud for a period of time, the sun can be accurately found and accurately aligned when the sun reappears. In still another embodiment of the solar power generation system 2 of the present invention, the optical element 261 can also use a wide-angle lens. The wide-angle lens is a lens that is about 180 degrees. It can focus on any image of the sun in the sky. In this way, the solar power generation system 2 can capture the second solar image regardless of whether the sun is in any part of the sky, and the solar image can be captured without being able to find the sun. In addition, the lens can be used simultaneously with the wide-angle lens. Using the wide-angle lens to focus the sun image in any part of the sky, the image capturing unit 262' roughly adjusts the solar panel 24, so that the second solar image captured by the image capturing unit 262 is close to the first solar image, and then the lens is used. Taking the sun image to precisely match the second sun center of the second sun image to the first sun center of the first sun image 'The solar power system 2 ~ T is more accurately aligned with the sun. -15- 200944731 ^ In addition, in the present invention In another embodiment, the first solar image can also be obtained by the shirt image capturing unit 262, and is not limited to a preset. A conventional solar tracker tracks the sun with poor accuracy, so that the solar cell generates electricity. When the amount is not high, and the tracker is hidden in the cloud for a period of time, it is not easy to continue tracking the sun. The present invention uses the image comparison method to make the sun tracking device Exactly aligning with the sun, 1 can predict the position of the next moment of the sun, and the effect of the synchronization with the solar essence on the solar cell can also increase the amount of solar cell power generation. Although the invention is disclosed in the foregoing embodiments The above is not intended to limit the scope of the invention, and the scope of the invention is defined by the scope of the invention as defined in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1 is a schematic structural view of a conventional solar tracker. Fig. 2 is a schematic structural view of a conventional solar tracker detecting area. Fig. 3 is a schematic view of a conventional solar tracker. A comparison of the accuracy error of the sun and the time. ^ Figure 4 is a diagram showing the relationship between the amount of solar power generated by the conventional solar tracker and time. ^ ^ Figure 5 is a schematic structural view of a solar power generation system of the present invention. Figure 6 is a block diagram of a system of a solar power generation system of the present invention. FIG. 7 is a schematic diagram of an image processing unit image ratio of the solar tracking device according to the present invention. Fig. 8 is a graph showing the accuracy error of solar panel alignment with the sun of the solar power generation system of the present invention and time. Figure 9 is a graph showing the relationship between power generation and time of a solar power generation system according to the present invention.
【主要元件符號說明】 ai、a〗 太陽光線 t、ti ' t2、七3、七4 時間 Δχ ' Ay 差異資料 Ζ、Δζ 準確度之誤差 A A區域 Β B區域 Emax 最大發電能量 Emin 最小發電能量 1 太陽追蹤器 12 殼體 14 聚光管 16 偵測區 18 光感知器 2 太陽能發電糸統 22 支撐柱 24 太陽能面板 24a 向光平面 26 太陽追蹤裝置 261 光學元件 -17- 200944731 262 影像擷取單元 2622 第二太陽影像 2624 第二太陽圓心 263 影像處理單元 2632 畫面 264 記憶單元 2642 第一太陽影像 2644 第一太陽圓心 28 動力裝置 ❹ -18 -[Main component symbol description] ai, a〗 Solar ray t, ti 't2, 七3, 七4 Time Δχ ' Ay Difference data Ζ, Δζ Accuracy error AA area Β B area Emax Maximum power generation Emin Minimum power generation 1 Solar Tracker 12 Housing 14 Condenser 16 Detection Zone 18 Light Sensor 2 Solar Power System 22 Support Column 24 Solar Panel 24a Light Plane 26 Solar Tracking Device 261 Optical Components-17- 200944731 262 Image Capture Unit 2622 Second Sun Image 2624 Second Sun Center 263 Image Processing Unit 2632 Screen 264 Memory Unit 2642 First Sun Image 2644 First Sun Center 28 Power Unit ❹ -18 -