200940981 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種檢測結構及應用其之檢測裝 置,且特別是有關於一種用以檢測一流體的檢測結構及應 用其之檢測裝置。 【先前技術】 目前微流道系統的應用廣泛,例如是生醫領域或微機 © 電領域。就生醫領域來說,若細胞、血液、精液或微生物 等生物粒子欲作檢測或分類,則可藉由微流道系統之設計 來完成。 以保存生物粒子為例說明。一般而言,生物粒子需保 存於具有特定酸鹼值之環境中,以維持一定之特性及機 能。因此,當生物粒子於微流道系統中進行例如是檢測或 分類時,若微流道系統中之流體的酸鹼值無適當地控管, 則生物粒子可能會喪失機能甚或是損毀。 ® 雖然傳統中係可利用電極式之感測器來檢測微流道 系統中流體之性質或特性,例如酸鹼值,然而,電極式之 感測器往往昂貴且耗能。因此,如何設計出可有效地控制 微流道系統中之流體的特定性質,且同時符合經濟效益的 微流道系統乃為業界重要之課題之一。 【發明内容】 本發明係有關於一種檢測結構及應用其之檢測裝 200940981 置,其係用以檢測一流體之性質,且更用以根據需求調整 流體之對應地性質。如此,當本發明係應用於例如是生物 粒子之檢測或分類時,係可有效地控制檢測結構中之流體 的性質,例如是酸鹼值,使得生物粒子可維持一定之特性 及機能。 根據本發明,提出一種檢測結構,包括一基板、一指 示層及一個儲存槽驅動部。基板具有一主流道、一混合區 及一溶液儲存槽。混合區係連接於主流道。指示層用以檢 © 測主流道中之一流體,而指示層會對應地呈現檢測流體性 質之一第一反應。溶液儲存槽係用以容置一調整液,調整 液用以調整流體性質。根據第一反應決定是否驅動儲存槽 驅動部導引調整液流入流體。 根據本發明,再提出一種檢測裝置,包括一控制部及 一檢測結構。檢測結構包括一基板、一指示層及一個儲存 槽驅動部。基板具有一主流道、一混合區及一溶液儲存 槽。混合區係連接於主流道。指示層用以檢測主流道中之 ® 一流體,而指示層會對應地呈現檢測流體性質之一第一反 應。溶液儲存槽係用以容置一調整液,調整液用以調整流 體性質。控制部根據第一反應決定是否驅動儲存槽驅動部 導引調整液流入流體。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 6 200940981 本發明係提出一檢測結構及應用其之檢測裝置,其利 用一指示層來檢測一流體之性質,例如是酸驗值。如此, 不但可得知流體之酸鹼值,更可於指示層所呈現之反應不 符合一預設反應(例如是預設之一顏色)時,利用一調整液 調整流體之性質。以下係以第一實施例及第二實施例作本 發明之詳細說明,而實施例中之圖示係省略非本發明技術 特徵之不必要之元件,以利清楚顯示本發明之技術特點。 ❹第一實施例 請參照第1A圖,其繪示根據本發明第一實施例之檢 測裝置之分解圖。檢測裝置100包括一控制部200及一檢 測結構300。檢測結構300包括一基板310、一指示層330 及一個儲存槽驅動部342(繪示於第2A圖中)。 基板310具有一主流道311、一混合區313及一溶液 儲存槽315。混合區313係連接於主流道311。溶液儲存 槽315,例如是連接於主流道311,係用以容置一調整液。 ® 指示層330係用以檢測主流道311中之一流體,使得指示 層330對應地呈現檢測流體性質之一第一反應。此處係以 指示層330用以檢測流體之酸鹼值為例說明,但並不以此 為限。指示層330例如是用以檢測尿液、驗孕或糖尿病之 指示層。 控制部200根據第一反應決定是否驅動儲存槽驅動 部342導引調整液流入流體。當第一反應不符合一預設反 應時,控制部200驅動儲存槽驅動部342導引調整液流出 200940981 容液儲存槽315 ’且流入流體中,而流體及調整液可於混 口區313中混合。如此,流體之性質(例如是酸鹼值)可依 據需求調整。 將本實施例之檢測裝置1〇〇做進一步之說明如下。如 第1Α圖所示,指示層330可為一檢測層331,更可包括 一流體滲透層335。第一檢測層331對應於主流道311之 位置’例如是區域Α1處。流體滲透層335覆蓋於主流道 311 卜,q |:知姑·BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting structure and a detecting device using the same, and more particularly to a detecting structure for detecting a fluid and a detecting device using the same. [Prior Art] At present, the micro-channel system is widely used, for example, in the field of biomedicine or in the field of microcomputers. In the field of biomedicine, if biological particles such as cells, blood, semen or microorganisms are to be detected or classified, they can be completed by the design of a microchannel system. Take the preservation of biological particles as an example. In general, biological particles need to be preserved in an environment with a specific pH to maintain certain characteristics and functions. Therefore, when the biological particles are subjected to detection or classification in a microchannel system, for example, if the pH of the fluid in the microchannel system is not properly controlled, the biological particles may be lost or even destroyed. ® While traditionally, electrode-type sensors can be used to detect the properties or characteristics of fluids in microchannel systems, such as pH values, electrode-type sensors are often expensive and energy intensive. Therefore, how to design a micro-channel system that can effectively control the specific properties of fluids in a micro-channel system while at the same time being economical is one of the important topics in the industry. SUMMARY OF THE INVENTION The present invention is directed to a detection structure and a test apparatus for use thereof for detecting the properties of a fluid and for adjusting the corresponding properties of the fluid as needed. Thus, when the present invention is applied, for example, to the detection or classification of biological particles, it is effective to control the properties of the fluid in the detection structure, such as the pH value, so that the biological particles can maintain certain characteristics and functions. According to the present invention, a detection structure is proposed comprising a substrate, an indicator layer and a reservoir drive. The substrate has a main flow path, a mixing zone and a solution storage tank. The mixed zone is connected to the main channel. The indicator layer is used to detect one of the fluids in the main flow, and the indicator layer correspondingly presents a first reaction of detecting fluid properties. The solution storage tank is for accommodating an adjustment liquid for adjusting the fluid properties. Whether or not to drive the storage tank driving portion guides the adjustment fluid to flow into the fluid according to the first reaction. According to the present invention, there is further provided a detecting apparatus comprising a control unit and a detecting structure. The detecting structure includes a substrate, an indicating layer and a storage slot driving portion. The substrate has a main flow path, a mixing zone and a solution storage tank. The mixed zone is connected to the main channel. The indicator layer is used to detect the ® fluid in the main flow channel, and the indicator layer correspondingly presents a first reaction of the properties of the detection fluid. The solution storage tank is for accommodating a conditioning liquid for adjusting the fluid properties. The control unit determines whether or not to drive the storage tank drive unit to guide the adjustment fluid to flow into the fluid based on the first reaction. In order to make the above-mentioned contents of the present invention more comprehensible, the preferred embodiments are described below, and the detailed description is as follows: [Embodiment] 6 200940981 The present invention provides a detection structure and application thereof. A detection device that utilizes an indicator layer to detect the properties of a fluid, such as an acid test value. In this way, not only the pH value of the fluid can be known, but also the property of the fluid can be adjusted by an adjustment liquid when the reaction represented by the indicator layer does not conform to a predetermined reaction (for example, a predetermined color). In the following, the first embodiment and the second embodiment are described in detail, and the illustrations in the embodiments are omitted to omit unnecessary elements of the technical features of the present invention in order to clearly show the technical features of the present invention. ❹First Embodiment Referring to Fig. 1A, there is shown an exploded view of a detecting apparatus according to a first embodiment of the present invention. The detecting device 100 includes a control unit 200 and a detecting structure 300. The detecting structure 300 includes a substrate 310, an indicating layer 330 and a storage slot driving portion 342 (shown in FIG. 2A). The substrate 310 has a main flow path 311, a mixing zone 313, and a solution storage tank 315. The mixing zone 313 is connected to the main flow path 311. The solution storage tank 315 is, for example, connected to the main flow path 311 for accommodating a conditioning liquid. The indicator layer 330 is used to detect one of the fluids in the main flow channel 311 such that the indicator layer 330 correspondingly presents a first reaction that detects the properties of the fluid. Here, the indicator layer 330 is used to detect the pH value of the fluid, but is not limited thereto. The indicator layer 330 is, for example, an indicator layer for detecting urine, pregnancy, or diabetes. The control unit 200 determines whether or not to drive the storage tank driving unit 342 to guide the adjustment liquid inflowing fluid based on the first reaction. When the first reaction does not meet a predetermined reaction, the control unit 200 drives the storage tank driving unit 342 to guide the adjustment liquid out of the 200940981 liquid storage tank 315' and flows into the fluid, and the fluid and the adjustment liquid can be in the mixed area 313. mixing. As such, the nature of the fluid (e.g., pH) can be adjusted as needed. The detecting device 1 of the present embodiment will be further described as follows. As shown in FIG. 1, the indicator layer 330 can be a detection layer 331 and can further include a fluid permeation layer 335. The position where the first detecting layer 331 corresponds to the main flow path 311 is, for example, the area Α1. The fluid permeation layer 335 covers the main channel 311, q |: 知姑·
卜 1興第一檢測層331相互碰觸。於本實施例中, 第一檢測層331可設置於流體滲透層335上,但不以此為 限’第一檢測層331亦可嵌入流體滲透層335内。流體經 由流體渗透層335接觸第一檢測層331,以檢測流體之性 質。由於此處係以第一檢測層331用以檢測流體之酸鹼值 為例說明’因此,第一檢測層331係根據流體之酸鹼值對 應地改變顏色。第一檢測層331之材料例如是一酚酞、一 甲基紅或一甲基藍或一萬用試劑,但並不以此為限。第一 檢測層331之材料係可對應檢測流體之性質來選擇。 此外’檢測結構300更包括另一基板320。基板320 係設置於基板310之上方。於本實施例中,指示層330例 如是位於基板310及基板320之間,然而,指示層330之 位置並不以此為限。此技術領域中具有通常知識者應明 瞭,只要可接觸流體以檢測其酸鹼值之位置皆可設置指示 層330。舉例來說,指示層330亦可局部地嵌入基板310, 且僅露出一表面來與流體接觸。 基板320之材料例如是一玻璃材料或一塑膠材料基 8 200940981 板310之材料則例如係為一塑膠材料,以一般之光碟製程 來製造基板310。如此,製造端係無需另外設計製造基板 310之機台,以減少製造成本。另外,基板310之主流道 311、混合區313及溶液儲存槽315例如是以壓鑄、射出 成形或雷射雕刻之方式來形成。 本實施例之溶液儲存槽315具有一出口流道315a, 出口流道315a連接於主流道311。溶液儲存槽315之調整 液經由出口流道315a流入主流道311中,以與主流道311 ❹ 中之流體混合。出口流道315a之材料例是一疏水材料, 以避免溶液儲存槽315内之調整液任意地流入主流道311 内,或主流道311内之流體任意地流入溶液儲存槽315内。 另外,混合區除了如第1A圖所示之形式外,亦可為 其他形式。請參照第1B圖,其繪示檢測裝置之混合區包 括一混合槽之示意圖。檢測裝置100’之混合區313’包括一 混合槽313a’。流體與調整液係可於混合槽313a’中混合, 使得流體之性質,例如是酸鹼值,可符合實際之需求。 V 請參照第2Α圖,其繪示第1Α圖中各個驅動部之示 意圖。除了儲存槽驅動部342之外,檢測結構300之主流 道311包括數個主流道驅動部341、343及344。主流道驅 動部341設置於主流道311之入口,用以導引流體之流 向,使得流體流經指示層330(如第1A圖所示),並往混合 區313之方向流動。儲存槽驅動部342例如是設置於溶液 儲存槽315之出口流道315a處。當第一反應不符合預設 反應時,控制部200(如第1A圖所示)係驅動儲存槽驅動部 9 200940981 342導引調整液流出溶液儲存槽315,以流入流體中。此 外,為了確保流體之流向以及與調整液之混合情況,主流 道驅動部343設置於混合區313之入口前端,用以引導流 體流入混合區313。主流道驅動部344設置於主流道311 之末端,用以引導流體流出主流道311。 儲存槽驅動部342以及主流道驅動部341、343及344 之形式不限,只要能達到導引調整液或/與流體之功能即 可。舉例來說,儲存槽驅動部342以及主流道驅動部341、 ❿ 343及344例如係為氣泡式微幫浦,其利用具有相異之表 面粗糙度的基板來使得從流體中電解出來之氣泡承受不 同之壓力,進而有驅動流體流動之效果,但並不限於此。 以主流道驅動部341為一氣泡式微幫浦來說明。主流 道驅動部341於基板310具有一第一區域341R1與一第二 區域341R2。主流道驅動部341包括一氣泡產生單元 341B。氣泡產生單元341B係設置於基板310上,以於基 板310及基板320之間產生氣泡。 龜 氣泡產生單元341B包括至少一電極組,電極組係設 置於基板310上。電極組包括一第一電極341B1及一第二 電極341B2。第一電極341B1對應第一區域341R1設置, 第二電極341B2對應第二區域341R2設置。第二電極 341B2係與第一電極341B1之極性相反。第一電極341B1 與第二電極341B2係分別連接到一驅動電源(未繪示)之正 負極。當驅動電源開啟後,第一電極341B1與第二電極 341B2係電解流體以產生氣泡。控制部200(如第1A圖所 200940981 1 ” / /V* 丨 1 示)係電性連接於驅動電源,以藉由控制驅動電源來驅動主 流道驅動部341。 請參照第2B圖,其繪示第2A圖中之主流道驅動部 於基板320之一例之示意圖。基板320之一第一粗糙表面 341S1係對應於第一區域341R1(如第2A圖所示),第一粗 糙表面341S1具有一第一粗糙因子。基板320之一第二粗 糙表面341S2係對應於第二區域341R2(如第2A圖所示)’ 第二粗糙表面341S2具有一第二粗糙因子。第一粗糙因子 ❺係實質上大於第二粗糙因子。 基於發表在電氣與電子工程師學會(Institute of Electrical and Electronics Engineers,IEEE)之期子(pp. 694〜697,Jan. 30 ~ Feb. 3, 2005,Ashutosh Shastry,etc.)中 之「Engineering Surface Roughness to Manipulate Droplets in Micro_fluidic Systems」所提出的論點,一表面之粗糖因 子越大,氣泡之液面的接觸角越小。由於液面之接觸角係 大約與毛細作用力成反比。因此,第一電極341B1與第二 W 電極341B2電解流體產生的氣泡會於散失的同時推動流體 由第一區域341R1往第二區域341R2之方向流動,使得流 體通過指示層330與第一檢測層331接觸。 如第2B圖所示,本實施例分別以多個第一桎狀結構 341C1及多個第二柱狀結構341C2來使第一粗糙表面 341S1及第二粗糙表面341S2具有相異之粗糙因子,但本 發明並不以此為限。第一粗糙表面與第二粗糙表面之粗糙 因子的差異亦可由設置可調式薄膜來達成。也就是利用可 11 200940981 I VV 7 ίΛ 調式薄膜之形變量來使得第一粗糙表面及第二粗糙表面 具有相異之粗糙因子,如此,氣泡即可藉由與粗糙表面之 交互關係來推動流體流動。 請參照第3圖,其繪示各個驅動部驅動流體與調整液 於基板中流動時之上視圖。檢測裝置1〇〇係設置於一平台 上,且檢測裝置100例如係於主流道311之入口 311a處及 出口 311b處分別與容置槽710及720連接。容置槽710 係容置有欲進行檢測之流體。當流體於檢測裝置1〇〇中進 ® 行檢測之後係流入容置槽720中。 當驅動電源開啟後,主流道驅動部341之第一電極 341B1與第二電極341B2係電解流體以產生氣泡。由於第 一粗糙表面341S1之第一粗糙因子大於第二粗糙表面 341S2之第二粗糙因子,因此,氣泡之兩側的毛細作用力 相異。此時,氣泡係推動流體由第一區域341R1往第二區 域341R2之方向流動。 當流體被導引以流經第一檢測層331對應於主流道 311之位置(區域A1)時,流體接觸第一檢測層331呈現第 一反應,其中,流體係可經由流體滲透層335以接觸第一 檢測層331。第一檢測層331係呈現出對應流體之性質(例 如是酸鹼值)之第一反應(例如是檢測流體之酸鹼值之第一 檢測層331所呈現之顏色)。此時,當第一反應不符合預設 反應(也就是預設之一顏色)時,控制部200係驅動儲存槽 驅動部342,使得調整液流出溶液儲存槽315,以流入流 體中進行混合。第一反應是否符合預設之顏色的檢測及判 12 200940981 斷係可透過例如是一色度計(colorimeter)或一電子搞合元 件(Charge coupled device,CCD)配合一判斷單元來進行。 為了充分地混合流體及調整液,控制部200係更驅動 主流道驅動部343及344,以讓流體及調整液流入混合區 313中混合,並將混合之後之一混合流體往主流道311之 出口 311b的方向導引,使得混合流體流出主流道311並 流入至容置槽720。 ❹ 本實施例之檢測裝置100係可利用低耗能、低驅動電 壓及低操作溫度之氣泡式微幫浦來驅動流體或調整液’以 檢測流體之酸鹼值或更調整流體之性質’但並不以此為 限。只要能驅動調整液或/與流體之機構或可檢測流體之性 質之指示層皆可應用於此。由於本實施例之檢測結構100 之基板31〇之材質係可為一塑膠材質’因此,基板係 可透過一般之光碟製程來製造。換言之’製造端係無需另 外設計製造基板310之機台’使得檢測結構300之製造成 本係可有效地減少。 第二實施例 與第/實施例相較,本實施例係提出不同之指示層的 配置與數目及溶液儲存槽之配置方式°請參照第4圖,其 繪示根據本發明第二實施例之檢測裝置之分解圖。本實施 例之檢測裝置400中,檢測結構600的溶液儲存槽615係 連接於混合區613。指示層630包括一第一檢測層631、 一第二檢測層632,更可包括一流體滲透層635。 13 • 200940981 第一檢測層631及第二檢測層632係嵌入流體滲透層 635内,但並不以此為限。第一檢測層631及/或第二檢測 層632亦可設置於流體滲透層635上。第一檢測層631係 對應主流道611之前段設置,例如是區域A21處,亦即混 合前檢驗流體性質。第二檢測層632係對應主流道611之 後段設置,例如是區域A22處,亦即混合後檢驗流體性 質。本實施例係以檢測流體之酸鹼值為例,因此,第一檢 測層631及第二檢測層632之材料例如各為一酚酞、一曱 ® 基紅或一甲基藍或一萬用試劑。 流體經由流體滲透層635接觸第一檢測層631後,第 一檢測層631呈現檢測流體性質之一第一反應,也就是顯 示對應於流體之酸鹼值之顏色。當第一反應係不符合一預 設反應(也就是預設之一顏色)時,調整液可在儲存槽驅動 部被控制部500驅動時,被導引流出溶液儲存槽615,以 流入流體。如此,流體及調整液可於混合區613中再進一 步相互混合以形成一混合流體。 第二檢測層632係檢測混合流體之性質(例如是酸鹼 值),以呈現檢測流體性質之一第二反應,也就是顯示對應 於混合流體之顏色。當第二反應不符合預設反應時,控制 部500係再驅動儲存槽驅動部以導引調整液流出溶液儲存 槽615,以流入流體且更進一步的調整流體之酸鹼值。由 於第一反應及第二反應係以第一檢測層631及第二檢測層 632顯示之顏色為例說明,因此,第一反應與第二反應是 否符合預設顏色之檢測及判斷係可透過例如是一色度計 200940981 1 ττ j y y\ji γλ. 或一電子柄合元件配合一判斷單元來進行。 本發明上述實施例所揭露之檢測結構及應用其之檢 測裝置,其利用指示層來檢測流體,以於流體之性質不符 合需求時利用調整液調整流體之性質。如此,當檢測結構 例如是用以容置對酸鹼值有特定需求之粒子,例如是一生 物粒子時,檢測結構係可提供適合地環境,使得生物粒子 不會有機能或特性上的改變。另外,本實施例之檢測結構 ^ 亦具有低製造成本及低使用成本之優點。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 ❿ 15 200940981 t. »τ ^ y y\ii γλ. 【圖式簡單說明】 第1A圖繪示根據本發明第一實施例之檢測裝置之分 解圖; 第1Β圖繪示檢測裝置之混合區包括一混合槽之示意 圖; 第2Α圖繪示第1Α圖中各個驅動部之示意圖; 第2Β圖繪示第2Α圖中之主流道驅動部於基板之一 例之示意圖; ® 第3圖繪示各個驅動部驅動流體與調整液於基板中 流動時之上視圖;以及 第4圖繪示根據本發明第二實施例之檢測裝置之分 解圖。 【主要元件符號說明】 100、100’、400 :檢測裝置 200、500 :控制部 300、600 :檢測結構 310、 320 :基板 311、 611 :主流道 311a :入口 311b :出口 313、313’、613 :混合區 313a’ :混合槽 315、615 :溶液儲存槽 16 200940981The first detection layer 331 of the Buxing 1 touches each other. In the present embodiment, the first detecting layer 331 may be disposed on the fluid permeation layer 335, but not limited thereto. The first detecting layer 331 may also be embedded in the fluid permeation layer 335. The fluid contacts the first detection layer 331 via the fluid permeation layer 335 to detect the nature of the fluid. Here, the first detection layer 331 is used to detect the pH value of the fluid as an example. Therefore, the first detection layer 331 changes color depending on the pH value of the fluid. The material of the first detecting layer 331 is, for example, a phenolphthalein, a methyl red or a methyl blue or a 10,000-component reagent, but is not limited thereto. The material of the first detection layer 331 can be selected corresponding to the nature of the detection fluid. Further, the detecting structure 300 further includes another substrate 320. The substrate 320 is disposed above the substrate 310. In this embodiment, the indicator layer 330 is located between the substrate 310 and the substrate 320. However, the location of the indicator layer 330 is not limited thereto. It will be apparent to those of ordinary skill in the art that the indicator layer 330 can be provided as long as the fluid can be contacted to detect its pH value. For example, the indicator layer 330 can also be partially embedded in the substrate 310 and only expose a surface to contact the fluid. The material of the substrate 320 is, for example, a glass material or a plastic material base. The material of the board 310 is, for example, a plastic material, and the substrate 310 is manufactured by a general optical disk process. Thus, the manufacturing end does not require an additional design of the machine for manufacturing the substrate 310 to reduce the manufacturing cost. Further, the main channel 311 of the substrate 310, the mixing zone 313, and the solution storage tank 315 are formed, for example, by die casting, injection molding, or laser engraving. The solution storage tank 315 of this embodiment has an outlet flow path 315a, and the outlet flow path 315a is connected to the main flow path 311. The solution of the solution storage tank 315 flows into the main flow path 311 via the outlet flow path 315a to be mixed with the fluid in the main flow path 311. The material of the outlet flow path 315a is a hydrophobic material to prevent the adjustment liquid in the solution storage tank 315 from flowing arbitrarily into the main flow path 311, or the fluid in the main flow path 311 is arbitrarily flowed into the solution storage tank 315. Further, the mixing zone may have other forms besides the form as shown in Fig. 1A. Please refer to FIG. 1B, which shows a schematic diagram of a mixing zone of the detecting device including a mixing tank. The mixing zone 313' of the detecting device 100' includes a mixing tank 313a'. The fluid and conditioning fluid can be mixed in the mixing tank 313a' such that the properties of the fluid, such as pH, can meet actual needs. V Please refer to Fig. 2, which shows the schematic diagram of each drive unit in Fig. 1 . In addition to the storage tank driving portion 342, the main flow path 311 of the detecting structure 300 includes a plurality of main flow path driving portions 341, 343, and 344. The main flow path driving portion 341 is disposed at the entrance of the main flow path 311 for guiding the flow of the fluid so that the fluid flows through the indication layer 330 (as shown in Fig. 1A) and flows in the direction of the mixing zone 313. The storage tank driving portion 342 is provided, for example, at the outlet flow path 315a of the solution storage tank 315. When the first reaction does not conform to the preset reaction, the control unit 200 (shown in Fig. 1A) drives the storage tank drive unit 9 200940981 342 to guide the adjustment liquid out of the solution storage tank 315 to flow into the fluid. Further, in order to ensure the flow of the fluid and the mixing with the adjusting liquid, the main flow path driving portion 343 is provided at the inlet front end of the mixing portion 313 for guiding the fluid to flow into the mixing portion 313. The main flow path driving unit 344 is disposed at the end of the main flow path 311 for guiding the fluid out of the main flow path 311. The form of the storage tank drive unit 342 and the main flow path drive units 341, 343, and 344 is not limited as long as the function of guiding the adjustment liquid or/and the fluid can be achieved. For example, the storage tank driving portion 342 and the main flow path driving portions 341, 343 343, and 344 are, for example, bubble micro-pulls that utilize substrates having different surface roughness to cause different bubbles from the fluid to be electrolyzed. The pressure, in turn, has the effect of driving fluid flow, but is not limited thereto. The main channel driving unit 341 is described as a bubble type micro pump. The main channel driving unit 341 has a first region 341R1 and a second region 341R2 on the substrate 310. The main flow path driving portion 341 includes a bubble generating unit 341B. The bubble generating unit 341B is disposed on the substrate 310 to generate bubbles between the substrate 310 and the substrate 320. The turtle bubble generating unit 341B includes at least one electrode group which is disposed on the substrate 310. The electrode group includes a first electrode 341B1 and a second electrode 341B2. The first electrode 341B1 is disposed corresponding to the first region 341R1, and the second electrode 341B2 is disposed corresponding to the second region 341R2. The second electrode 341B2 is opposite in polarity to the first electrode 341B1. The first electrode 341B1 and the second electrode 341B2 are respectively connected to the positive and negative electrodes of a driving power source (not shown). When the driving power is turned on, the first electrode 341B1 and the second electrode 341B2 are electrolyzed to generate bubbles. The control unit 200 (shown as "200940981 1" / /V* 丨1 in Fig. 1A) is electrically connected to the drive power source to drive the main channel drive unit 341 by controlling the drive power. Referring to Fig. 2B, FIG. 2A is a schematic diagram showing an example of the main channel driving portion in the substrate 320. One of the first rough surfaces 341S1 of the substrate 320 corresponds to the first region 341R1 (as shown in FIG. 2A), and the first rough surface 341S1 has a a first roughness factor. The second rough surface 341S2 of the substrate 320 corresponds to the second region 341R2 (as shown in FIG. 2A). The second rough surface 341S2 has a second roughness factor. The first roughness factor is substantially Greater than the second roughness factor. Based on the publication of the Institute of Electrical and Electronics Engineers (IEEE) (pp. 694~697, Jan. 30 ~ Feb. 3, 2005, Ashutosh Shastry, etc.) In the "Engineering Surface Roughness to Manipulate Droplets in Micro_fluidic Systems" argument, the larger the coarse sugar factor of a surface, the smaller the contact angle of the liquid surface of the bubble. Since the contact angle of the liquid surface is approximately inversely proportional to the capillary force. Therefore, the bubbles generated by the electrolysis fluid of the first electrode 341B1 and the second W electrode 341B2 may push the fluid to flow from the first region 341R1 to the second region 341R2 while the fluid is lost, so that the fluid passes through the indication layer 330 and the first detection layer 331. contact. As shown in FIG. 2B, in the present embodiment, the first rough surface 341S1 and the second rough surface 341S2 have different rough factors by using the plurality of first domed structures 341C1 and the plurality of second columnar structures 341C2, respectively. The invention is not limited thereto. The difference in the roughness factor between the first rough surface and the second rough surface can also be achieved by providing a tunable film. That is, the shape variable of the temperable film can be used to make the first rough surface and the second rough surface have different roughness factors, so that the bubble can promote the fluid flow by the interaction with the rough surface. . Referring to Fig. 3, there is shown a top view of each of the driving portion driving fluid and the regulating liquid flowing in the substrate. The detecting device 1 is disposed on a platform, and the detecting device 100 is connected to the receiving slots 710 and 720, respectively, at the inlet 311a and the outlet 311b of the main channel 311. The accommodating groove 710 is configured to hold the fluid to be detected. When the fluid is detected in the detecting device 1 , it flows into the accommodating groove 720. When the driving power is turned on, the first electrode 341B1 and the second electrode 341B2 of the main channel driving portion 341 electrolyze fluid to generate bubbles. Since the first roughness factor of the first rough surface 341S1 is larger than the second roughness factor of the second rough surface 341S2, the capillary forces on both sides of the bubble are different. At this time, the bubble pushes the fluid from the first region 341R1 to the second region 341R2. When the fluid is guided to flow through the position of the first detection layer 331 corresponding to the main flow path 311 (area A1), the fluid contacting the first detection layer 331 exhibits a first reaction, wherein the flow system can be contacted via the fluid permeation layer 335 The first detection layer 331. The first detection layer 331 exhibits a first reaction corresponding to the properties of the fluid (e.g., pH) (e.g., the color exhibited by the first detection layer 331 which detects the pH of the fluid). At this time, when the first reaction does not conform to the preset reaction (i.e., preset one color), the control unit 200 drives the storage tank driving portion 342 so that the adjustment liquid flows out of the solution storage tank 315 to flow into the fluid for mixing. Whether the first reaction conforms to the detection and judgment of the preset color 12 200940981 The breaking system can be performed by, for example, a colorimeter or an electrically coupled device (CCD) in conjunction with a judging unit. In order to sufficiently mix the fluid and the adjustment liquid, the control unit 200 further drives the main flow path driving portions 343 and 344 to allow the fluid and the adjustment liquid to flow into the mixing zone 313 for mixing, and to mix one of the mixed fluids to the outlet of the main flow path 311. The direction of the 311b is guided such that the mixed fluid flows out of the main flow path 311 and flows into the accommodating groove 720.检测 The detecting device 100 of the embodiment can use a bubble micro-pump with low energy consumption, low driving voltage and low operating temperature to drive the fluid or the adjusting liquid 'to detect the pH value of the fluid or adjust the properties of the fluid'. Not limited to this. As long as the indicator layer capable of driving the adjustment fluid or/and the mechanism of the fluid or the nature of the detectable fluid can be applied thereto. Since the material of the substrate 31 of the detecting structure 100 of the embodiment can be a plastic material, the substrate can be manufactured through a general optical disk process. In other words, the manufacturing end requires no additional design of the machine table for manufacturing the substrate 310, so that the manufacturing cost of the detecting structure 300 can be effectively reduced. The second embodiment is compared with the first embodiment. The present embodiment provides different configurations and numbers of the indicator layers and the arrangement of the solution storage tanks. Please refer to FIG. 4, which illustrates a second embodiment according to the present invention. An exploded view of the detection device. In the detecting device 400 of the present embodiment, the solution storage tank 615 of the detecting structure 600 is connected to the mixing zone 613. The indicator layer 630 includes a first detection layer 631 and a second detection layer 632, and further includes a fluid permeation layer 635. 13 • 200940981 The first detection layer 631 and the second detection layer 632 are embedded in the fluid permeation layer 635, but are not limited thereto. The first detection layer 631 and/or the second detection layer 632 may also be disposed on the fluid permeation layer 635. The first detection layer 631 is disposed corresponding to the previous stage of the main flow path 611, for example, at the area A21, that is, the fluid property before mixing. The second detection layer 632 is disposed corresponding to the rear stage of the main flow path 611, for example, at the area A22, that is, the fluid property is checked after mixing. In this embodiment, the acid-base value of the detection fluid is taken as an example. Therefore, the materials of the first detection layer 631 and the second detection layer 632 are each, for example, a phenolphthalein, a fluorene-based red or a methyl blue or a 10,000-component reagent. . After the fluid contacts the first detection layer 631 via the fluid permeation layer 635, the first detection layer 631 exhibits a first reaction that detects the properties of the fluid, that is, a color corresponding to the pH value of the fluid. When the first reaction system does not conform to a predetermined reaction (i.e., a predetermined color), the adjustment liquid can be guided out of the solution storage tank 615 to flow into the fluid when the storage tank driving portion is driven by the control portion 500. Thus, the fluid and the conditioning fluid can be further mixed with each other in the mixing zone 613 to form a mixed fluid. The second detection layer 632 detects the nature of the mixed fluid (e.g., the pH value) to present a second reaction that detects the properties of the fluid, i.e., displays a color corresponding to the mixed fluid. When the second reaction does not conform to the preset reaction, the control unit 500 drives the storage tank driving portion to guide the adjustment liquid out of the solution storage tank 615 to flow into the fluid and further adjust the pH value of the fluid. Since the first reaction and the second reaction are exemplified by the colors displayed by the first detection layer 631 and the second detection layer 632, the detection and determination of whether the first reaction and the second reaction conform to the preset color are, for example, It is a colorimeter 200940981 1 ττ jyy\ji γλ. or an electronic handle unit is combined with a judgment unit. The detecting structure and the detecting device using the same according to the above embodiments of the present invention use the indicating layer to detect the fluid, so as to adjust the fluid property by using the adjusting liquid when the properties of the fluid do not meet the requirements. Thus, when the detection structure is, for example, to accommodate particles having a particular need for a pH value, such as a bioparticle, the detection structure can provide a suitable environment such that the biological particles do not have organic energy or property changes. In addition, the detection structure of the embodiment also has the advantages of low manufacturing cost and low use cost. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. ❿ 15 200940981 t. »τ ^ yy\ii γλ. [Simplified illustration of the drawing] FIG. 1A is an exploded view of the detecting device according to the first embodiment of the present invention; FIG. 1 is a view showing a mixing area of the detecting device including a Schematic diagram of the mixing tank; Fig. 2 is a schematic view showing each driving portion in Fig. 1; Fig. 2 is a schematic view showing an example of the main channel driving portion on the substrate in Fig. 2; An upper view of the driving fluid and the adjusting fluid flowing in the substrate; and FIG. 4 is an exploded view of the detecting device according to the second embodiment of the present invention. [Description of main component symbols] 100, 100', 400: Detection devices 200, 500: Control units 300, 600: Detection structures 310, 320: Substrates 311, 611: Main channel 311a: Entrance 311b: Exits 313, 313', 613 : Mixing zone 313a': mixing tank 315, 615: solution storage tank 16 200940981
Λ * » ^ V/* 1 V 315a :出口流道 330、 630 :指示層 331、 631 :第一檢測層 335、635 :流體滲透層 341、343、345 :主流道驅動部 341B :氣泡產生單元 341B1 :第一電極 341B2 :第二電極 ❿ 341C1 :第一柱狀結構 341C2 :第二柱狀結構 341R1 :第一區域 341R2 :第二區域 34151 :第一粗糙表面 34152 :第二粗糙表面 342 :儲存槽驅動部 632 :第二檢測層 w 710、720 :容置槽Λ * » ^ V/* 1 V 315a : outlet flow path 330, 630 : indicating layer 331 , 631 : first detecting layer 335 , 635 : fluid permeation layer 341 , 343 , 345 : main flow path driving portion 341B : bubble generating unit 341B1: first electrode 341B2: second electrode ❿ 341C1: first columnar structure 341C2: second columnar structure 341R1: first region 341R2: second region 34151: first rough surface 34152: second rough surface 342: storage Slot driving portion 632: second detecting layer w 710, 720: accommodating groove
Al、A21、A22 :區域 17Al, A21, A22: Area 17