[go: up one dir, main page]

TW200939759A - Solid state image capturing apparatus and camera apparatus - Google Patents

Solid state image capturing apparatus and camera apparatus Download PDF

Info

Publication number
TW200939759A
TW200939759A TW098101936A TW98101936A TW200939759A TW 200939759 A TW200939759 A TW 200939759A TW 098101936 A TW098101936 A TW 098101936A TW 98101936 A TW98101936 A TW 98101936A TW 200939759 A TW200939759 A TW 200939759A
Authority
TW
Taiwan
Prior art keywords
clock
signal
section
pixel
conversion
Prior art date
Application number
TW098101936A
Other languages
Chinese (zh)
Other versions
TWI371966B (en
Inventor
Hiromi Nakano
Yasuaki Hisamatsu
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW200939759A publication Critical patent/TW200939759A/en
Application granted granted Critical
Publication of TWI371966B publication Critical patent/TWI371966B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

A solid state image capturing apparatus is disclosed. A pixel array section has unit pixels containing photoelectric conversion elements, the unit pixels being two-dimensionally arranged in a matrix, and column signal wires correspondingly to columns of the matrix of the unit pixels. A line scanning section selectively controls lines of the matrix of the unit pixels of the pixel array section. An analog-to-digital conversion section converts an analog signal outputted from unit pixels of a line of the matrix of the unit pixels selected by the line scanning section through a corresponding column signal line to a digital signal. A conversion clock supply section selectively generates a conversion clock having a first clock period or a second clock period. An addition section adds unit pixel digital signals converted in the analog-to-digital conversion section by the conversion clocks having the first clock period and the second clock period, respectively.

Description

200939759 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種固態影像捕獲裝置及具有固態影像捕 獲裝置之攝影裝置’且尤其關於將透過行信號導線從單位 像素輸出之類比信號轉換成數位信號並且讀取該等數位信 號者* 本發明包含於2008年2月29日向日本專利局申請之日本 專利申請案JP 2008-051365的相關標的,其全部内容係以 © 引用的方式併入本文内。 【先前技術】 近年來’已提出一種配備行並列ADC之CMOS影像感測 器。在此CMOS影像感測器中,類比數位轉換器(下文中縮 寫成ADC)係對應於單位像素之一矩陣之行加以佈置。 圖1係一方塊圖’其顯示先前技術之一配備行並列adc 之CMOS影像感測器1〇的一結構。在圖1中,一單位像素 101具有一光二極體及一像素内(in_pixel)放大器。該等 素101係以一矩陣形狀二維配置,並且構成一像素陣列區 段102。線控制導線103 (103-1、103-2等)及行信號導線 104 (104-1、104-2等)係各別地配置用於該像素陣列區段 102之矩陣形狀像素配置之個別線及個別行。該像素陣列 區段102之線位址及線掃描係由一線掃描電路1〇5透過該等 線控制導線1〇3-1、1〇3_2等加以控制。 對應於該等行信號導線104-1、104-2等之ADC 1 〇6係佈 置於各別行信號導線的一末端側,並且構成一行處理區段 135444.doc 200939759 (行並列ADC區塊)1 07。佈置用以產生該等ADC 1 06之一斜 坡波形參考電壓Vref的一數位至類比轉換器ι〇8(下文中將 此轉換器稱為DAC)。此外,佈置一計數器1 〇9,用於該等 ADC 106。該計數器1〇9與具有一預定週期的一時脈同 步計數’並且測量一比較器110的一時間,稍後將加以說 明,用以實行一比較操作。 該ADC 106具有該比較器11〇,其比較透過該行信號導 線1 04-1、1 04-2或其類似物從該矩陣之一選出線之一單位 像素101所獲得的一類比信號與DAC 108所產生的一斜坡 波形參考電壓Vref。此外,該ADC 106具有一記憶體lu, 其基於該比較器110之一比較輸出而儲存該計數器1〇9的一 計數值,以提供將供應自該等單位像素101之類比信號轉 換成一 N位元數位信號的一功能。 行處理區段107之ADC 106之行位址及行掃描係由一行 掃描電路112加以實行。換言之,由該等ADC 106進行數 位轉換之N位元數位信號係由該行掃描電路丨12按行掃描、 由具有一 2N位元寬度的一水平輸出導線113讀取,並且由 一水平輸出導線113傳送至一信號處理電路114。該信號處 理電路114係由對應於該2N位元寬水平輸出導線113之21<[ 感測電路、2N減法電路、2N輸出電路等所構成。 一時序控制電路115基於一主時脈MCK而產生時脈信號 及時序信號,該線掃描電路105、該等ADC 106、該DAC 1〇8、該計數器1〇9、該行掃描電路112等藉此進行操作。 5亥荨已產生之時脈信號及時序信號係供應至相關電路區 135444.doc 200939759 段。 其次,圖1中所示之CMOS影像感測器10之操作將參考圖 2 A至圖2C所示之時序圖加以概述。 圖2A顯示一水平同步信號(H同步)。圖2B顯示供應至該 DAC 108及該計數器1〇9的一時脈。圖2C顯示輸出自該 DAC 108的一斜坡波形參考電壓Vref。 當該時脈出現時,該斜坡波形之電壓改變。將該斜坡波 形之電壓與一單位像素之輸出比較。對應於藉由該比較所 獲得之單位像素之電壓之計數值係儲存在一記憶體i 1 i 中。儲存在該記憶體lu中之計數值變成該單位像素的一 數位值,並且輸出。 圖3A至圖3F係時序圖,其顯示該(:1^1〇8影像感測器1〇之 較詳細操作的一範例。 參考圖3A至圖3F,於已建立從一選出線之單位像素1〇1 至行信號導線104-1、104-2等之第一讀取操作後,將圖3A 中所示的一斜坡波形參考電壓Vref從該DAC 1〇8供應至該 比較器110。因此,該等比較器丨1〇比較該等行信號導線 104-1、1〇4·2等之信號電壓Vx與該參考電壓Vref。在此比 較操作中,當該參考Vx變成與該信號電壓¥乂相同時將 該比較器110之輸出之極性反轉。當將該比較器11〇之輸出 反轉時,該記憶體111儲存對應於該比較器110之一比較時 間之計數器109的一計數值N卜圖3C顯示產生一計數值的 一時脈。圖3D顯示該計數值N之改變。 在該第一讀取操作中,如圖3E中所示,讀取每一單位像 135444.doc 200939759 素10 1的重设成分Δν。該重設成分△含有隨單位像素i 01 而變化的一固定型樣雜訊,α當作一偏移、然而,該重設 成分之波動一般而言係很小,而且在所有像素中,重設位 準係共同。目此,在該第一讀取操作中,言亥等行信號導線 之每一者之信號電壓Vx係幾乎已知。結果,當在該第一讀 取操作中讀取該重設成分Δν時,藉由調整該斜坡波形參 考電壓Vref,可相對地縮短該比較器110之比較時間。 在該第二讀取操作中,除了該重設成分Δν外,對應於 該等單位像素101之每一者之入射光量的一信號成分係以 與該第一讀取操作相同之方式加以讀取。換言之,於已建 立從該選出線之單位像素101至該等行信號導線104-1、 1 04-2等之第一讀取操作後,將該斜坡波形參考電壓%^從 該DAC 108供應至該比較器11〇。因此,該等比較器u〇比 較該等行信號導線104-1、1〇4·2等之信號電壓¥乂與該參考 電壓Vref。 當將該參考電壓Vref供應至該等比較器n 〇時,該計數 器109實行一第二計數操作。在該第二計數操作中,當該 參考電壓Vref變成與該參考電壓vx相同時,將該比較器 110之輸出之極性反轉。當將該極性之輸出反轉時,如圖 3F中所示,該記憶體1U儲存對應於該比較器11〇之一比較 時間之計數器109的一計數值N2。此時,該第一計數值N1 及該第二計數值N2係儲存在該記憶體1之不同地點。 於已完成該等AD轉換操作之前述順序後,該行掃描電 路112掃描各別行。結果,儲存在該記憶體】u中之第一及 135444.doc 200939759 第二N位元數位信號係透過該2N寬水平輸出導線U3供應 至k號處理電路114。該信號處理電路114的一減法電路 (未顯示)實行(第二操作信號)_(第一操作信號)的一減法處 理°其後’將結果之信號輸出至該CMOS影像區域10之外 面。其後,對於每一線重複相同操作,並且藉此產生一二 維影像》 曰本未審查專利申請公開案第2005-278135號(下文中稱 為專利文件1)說明圖1中所示之一固態影像捕獲裝置的一 範例。 【發明内容】 為了依一高速捕獲一影像,可使用一種讀取像素資訊同 時實行進行少量化以改良圖框率之技術。使用此技術,在 讀取一圖框中之全部像素之信號之全部像素讀取系統中, 該圖框率可從30圖框/秒改良至6〇圖框/秒。換言之,若讀 取輸出之像素資訊,同時每隔一線加以減少,並且藉此減 半欲璜取之線數目’則可加倍該圖框率。 當该等像素被減少時,其例如同時使用一種於垂直方向 將其減少之技術及一種於該垂直方向將像素相加之技術, 則縮減於該垂直方向之解析度。 例如,假設如圖4中所示,具有一紅濾光片之像素R及具 有一綠濾光片之像素G係於該垂直方向交替地配置成該 CMOS影像感測器1〇之單位像素ι〇1的一垂直配置。此配置 係濾色片之一主要色彩Bayer配置的一範例。假設將於該 垂直方向之像素數目減少至原始數目之1/2,將二個相鄰 I35444.doc 200939759 像素R之信號簡單地相加,並且藉此產生一已相加像素信 號Rx。同樣地’將二個相鄰像素G之信號簡單地相加,並 且藉此產生一已相加像素信號Gx。該已相加像素信號Rx 或該已相加像素信號Gx之重力中心之空間位置係已相加之 二個像素R或二個像素G之中間位置β然而,如圖4中所 示’因為該等紅像素R及該等綠像素G係交替地配置,該 已相加像素信號Rx及該已相加像素信號Gx之重力中心之 空間位置變成不規則。 換s之,當從上方檢視圖4之右手側中所示之已相加像 素信號Rx及已相加像素信號Gx之重力中心之空間位置之 配置時,第一信號1^與(^之間隔係很短,而且該第—信 同樣地,該等間隔 號Gx與該第二信號1^之間隔係很長。 交替地變成短、長、短、長等。 若於該垂4方向將此二個像素簡單地相加,偽色彩可能 不利地出現在結果之已相加信號令 例將在下列的一具體實施例中說明 。偽色彩之出現的一範 。簡言之,可以説:蚩 ’可以說:當BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image capturing device and a photographic device having a solid-state image capturing device, and in particular to converting an analog signal outputted from a unit pixel through a line signal conductor into a digital position. The present invention contains the subject matter of the Japanese Patent Application No. JP 2008-051365, filed on Jan. 29, 2008, the entire entire content of . [Prior Art] In recent years, a CMOS image sensor equipped with a row parallel ADC has been proposed. In this CMOS image sensor, an analog-to-digital converter (hereinafter abbreviated as an ADC) is arranged corresponding to a row of a matrix of unit pixels. 1 is a block diagram showing a structure of a CMOS image sensor 1A equipped with a row parallel adc. In Fig. 1, a unit pixel 101 has a photodiode and an in-pixel (in_pixel) amplifier. The elements 101 are two-dimensionally arranged in a matrix shape and constitute a pixel array section 102. The line control wires 103 (103-1, 103-2, etc.) and the row signal wires 104 (104-1, 104-2, etc.) are individually configured with individual lines for the matrix shape pixel arrangement of the pixel array section 102. And individual lines. The line address and line scan of the pixel array section 102 are controlled by the line scanning circuit 1〇5 through the line control lines 1〇3-1, 1〇3_2 and the like. ADCs 1 〇 6 corresponding to the row signal conductors 104-1, 104-2, etc. are arranged on one end side of the respective row signal conductors, and constitute a row of processing sections 135444.doc 200939759 (row parallel ADC block) 1 07. A digit to analog converter ι 8 (hereinafter referred to as a DAC) for generating a ramp waveform reference voltage Vref of the ADC 106 is arranged. In addition, a counter 1 〇 9 is arranged for the ADCs 106. The counter 1 〇 9 is synchronized with a clock having a predetermined period ′ and a time of a comparator 110 is measured, which will be described later, for performing a comparison operation. The ADC 106 has the comparator 11A, which compares an analog signal and a DAC obtained by selecting one of the line unit pixels 101 from one of the matrices via the row signal conductors 104-1, 104-2 or the like. A ramp waveform reference voltage Vref generated by 108. In addition, the ADC 106 has a memory lu that stores a count value of the counter 1〇9 based on a comparison output of the comparator 110 to provide conversion of an analog signal supplied from the unit pixels 101 into an N-bit. A function of a digital bit signal. The row address and line scan of the ADC 106 of the row processing section 107 is performed by a row of scanning circuits 112. In other words, the N-bit digital signal digitally converted by the ADCs 106 is scanned by the row scanning circuit 12, read by a horizontal output conductor 113 having a 2N bit width, and is output by a horizontal output conductor. 113 is passed to a signal processing circuit 114. The signal processing circuit 114 is constituted by 21 < [sensing circuit, 2N subtracting circuit, 2N output circuit, etc. corresponding to the 2N-bit wide horizontal output wire 113. A timing control circuit 115 generates a clock signal and a timing signal based on a main clock MCK, and the line scan circuit 105, the ADC 106, the DAC 1〇8, the counter 1〇9, the line scanning circuit 112, and the like This operates. The clock signal and timing signal generated by 5 荨 are supplied to the relevant circuit area 135444.doc 200939759. Next, the operation of the CMOS image sensor 10 shown in Fig. 1 will be outlined with reference to the timing charts shown in Figs. 2A to 2C. Figure 2A shows a horizontal sync signal (H sync). Figure 2B shows a clock supplied to the DAC 108 and the counter 1〇9. Figure 2C shows a ramp waveform reference voltage Vref output from the DAC 108. When the clock occurs, the voltage of the ramp waveform changes. The voltage of the ramp waveform is compared to the output of one unit pixel. The count value corresponding to the voltage of the unit pixel obtained by the comparison is stored in a memory i 1 i. The count value stored in the memory lu becomes a digit value of the unit pixel, and is output. 3A to 3F are timing charts showing an example of a more detailed operation of the image sensor 1 。. Referring to FIG. 3A to FIG. 3F, a unit pixel from a selected line has been established. After the first read operation of the 1-to-1 row signal conductors 104-1, 104-2, etc., a ramp waveform reference voltage Vref shown in FIG. 3A is supplied from the DAC 1〇8 to the comparator 110. The comparators 丨1〇 compare the signal voltages Vx of the row signal conductors 104-1, 1〇4·2, etc. with the reference voltage Vref. In this comparison operation, when the reference Vx becomes the signal voltage Similarly, the polarity of the output of the comparator 110 is inverted. When the output of the comparator 11 is inverted, the memory 111 stores a count value of the counter 109 corresponding to the comparison time of one of the comparators 110. Figure 3C shows a clock that produces a count value. Figure 3D shows the change in count value N. In this first read operation, as shown in Figure 3E, each unit image is read 135444.doc 200939759 The reset component Δν of 10 1. The reset component Δ contains a fixed type of noise that varies with the unit pixel i 01 , α acts as an offset, however, the fluctuation of the reset component is generally small, and in all pixels, the reset level is common. Therefore, in the first read operation, Yan Hai The signal voltage Vx of each of the equal-line signal wires is almost known. As a result, when the reset component Δν is read in the first read operation, by adjusting the ramp waveform reference voltage Vref, it is relatively Shortening the comparison time of the comparator 110. In the second reading operation, in addition to the reset component Δν, a signal component corresponding to the amount of incident light of each of the unit pixels 101 is associated with the first The reading operation is read in the same manner. In other words, after the first reading operation from the unit pixel 101 of the selected line to the row signal lines 104-1, 104-2, etc. has been established, the ramp waveform is The reference voltage %^ is supplied from the DAC 108 to the comparator 11. The comparators u〇 compare the signal voltages of the row signal conductors 104-1, 1〇4·2, etc. with the reference voltage Vref. When the reference voltage Vref is supplied to the comparators n ,, The counter 109 performs a second counting operation. In the second counting operation, when the reference voltage Vref becomes the same as the reference voltage vx, the polarity of the output of the comparator 110 is inverted. When turning, as shown in FIG. 3F, the memory 1U stores a count value N2 of the counter 109 corresponding to one of the comparison times of the comparators 11. At this time, the first count value N1 and the second count value The N2 system is stored at different locations of the memory 1. After the foregoing sequence of the AD conversion operations has been completed, the row scanning circuit 112 scans the respective rows. As a result, the first and 135444.doc 200939759 second N-bit digital signals stored in the memory u are supplied to the k-th processing circuit 114 through the 2N wide horizontal output line U3. A subtraction circuit (not shown) of the signal processing circuit 114 performs a subtraction process of the (second operation signal)_(first operation signal) and thereafter outputs the resultant signal to the outside of the CMOS image area 10. Thereafter, the same operation is repeated for each line, and thereby a two-dimensional image is produced. The unexamined Patent Application Publication No. 2005-278135 (hereinafter referred to as Patent Document 1) describes one of the solid states shown in FIG. An example of an image capture device. SUMMARY OF THE INVENTION In order to capture an image at a high speed, a technique of reading pixel information while performing miniaturization to improve the frame rate can be used. Using this technique, the frame rate can be improved from 30 frames per second to 6 frames per second in a full pixel reading system that reads signals for all pixels in a frame. In other words, if the pixel information of the output is read and reduced every other line, and the number of lines to be subtracted is reduced by this, the frame rate can be doubled. When the pixels are reduced, for example, a technique of reducing them in the vertical direction and a technique of adding pixels in the vertical direction are simultaneously reduced, and the resolution in the vertical direction is reduced. For example, it is assumed that, as shown in FIG. 4, a pixel R having a red filter and a pixel G having a green filter are alternately arranged in the vertical direction as a unit pixel of the CMOS image sensor 1 A vertical configuration of 〇1. This configuration is an example of one of the main color Bayer configurations of color filters. Assuming that the number of pixels in the vertical direction is reduced to 1/2 of the original number, the signals of two adjacent I35444.doc 200939759 pixels R are simply added, and thereby an added pixel signal Rx is generated. Similarly, the signals of two adjacent pixels G are simply added, and thereby an added pixel signal Gx is generated. The spatial position of the center of gravity of the added pixel signal Rx or the added pixel signal Gx is added to the intermediate position β of the two pixels R or the two pixels G. However, as shown in FIG. 4 The equal red pixel R and the green pixels G are alternately arranged, and the spatial position of the center of gravity of the added pixel signal Rx and the added pixel signal Gx becomes irregular. In other words, when the spatial position of the added pixel signal Rx and the center of gravity of the added pixel signal Gx shown in the right hand side of the upper inspection view 4 are arranged, the first signal is separated from the (^) The system is very short, and the first letter is similarly long, and the interval between the interval Gx and the second signal 1 is long. Alternately becomes short, long, short, long, etc. If the direction is 4 in the vertical direction The two pixels are simply added together, and the pseudo-color may be disadvantageously present in the resulting added signal. The example will be explained in the following specific embodiment. A paradigm of the appearance of false colors. In short, it can be said: 'Can say: when

在色彩大幅地改變之像素信號中。In the pixel signal where the color is greatly changed.

之影像信號導致其影像品質之劣化。The image signal causes degradation of its image quality.

135444.doc 200939759 至數位轉換區段、一轉換時脈供應區段,及一加法區段。 該像素陣列區段具有含有光電轉換元件之單位像素,該等 單位像素係二維地配置於一矩陣申,而且行信號導線係對 應於該等單位像素之該矩陣之行加以配置。該線掃描區段 選擇性控制該像素陣列區段之單位像素之該矩陣之線。該 類比至數位轉換區段將一類比信號轉換至一數位信號,該 • 類比信號係輸出自該線掃描區段透過一對應行信號線所選 iH之該等單位像素之該矩陣之—線之單位像素。轉換時脈 供應區段選擇性產生供應至該類比至數位轉換區段之具有 一第一時脈週期的一轉換時脈或者具有一第二時脈週期的 一轉換時脈,並且將一已產生轉換時脈供應至該類比至數 位轉換區段。該加法區段各別地相加在該類比至數位轉換 區段中依具有該第一時脈週期及該第二時脈週期之轉換時 脈所轉換之單位像素數位信號,並且輸出一已相加像素信 號。 … φ 根據本發明的一具體實施例,其中提供一種攝影裝置, 其包含該固態影像捕獲裝置及一影像信號處理區段。該影 像信號處理區段處理輸出自該加法區段之數位信號,成為 具有一預定格式的一影像信號。 根據本發明之具體實施例,當該類比數位轉換區段數位 地轉換一單位像素信號時,#由以具有一第—時脈週期之 一時脈驅動之類比數位轉換區段所轉換的一像素信號及藉 由以具有一不同於該第一時脈週期之第二時脈週期之一時 脈驅動之類比數位轉換區段所轉換的一像素信號係以一選 I35444.doc -10- 200939759 擇次序交替地獲得。當改變該等時脈週期時,將已轉換數 位信號不同地加權。因此,當該加法區段將以具有該第一 時脈週期《時脈數位轉換的一信號與以具有該第二時脈週 期之時脈數位轉換的一信號相加時,將複數個不同地加權 之像素信號相加。結果,可將該已相加信號之重力中心之 位置從一簡單相加之信號之位置偏移。 ❹135444.doc 200939759 to digital conversion section, a conversion clock supply section, and an addition section. The pixel array section has unit pixels including photoelectric conversion elements which are two-dimensionally arranged in a matrix, and the row signal conductors are arranged corresponding to the matrix of the unit pixels. The line scan segment selectively controls the line of the matrix of unit pixels of the pixel array segment. The analog-to-digital conversion section converts an analog signal to a digital signal, and the analog signal is output from a line of the matrix of the unit pixels of the selected iH from the line scan section through a corresponding row signal line. Unit pixel. The conversion clock supply section selectively generates a conversion clock having a first clock period or a conversion clock having a second clock period supplied to the analog to digital conversion section, and one has been generated The conversion clock is supplied to the analog to digital conversion section. The addition sections are separately added to the unit pixel to digital signal converted by the conversion clock of the first clock period and the second clock period in the analog to digital conversion section, and output a phase Add a pixel signal. According to an embodiment of the invention, there is provided a photographic apparatus comprising the solid state image capture device and an image signal processing section. The image signal processing section processes the digital signal output from the addition section to become an image signal having a predetermined format. According to a specific embodiment of the present invention, when the analog-to-digital conversion block digitally converts a unit pixel signal, # is a pixel signal converted by an analog-to-digital conversion section driven by a clock having a first-clock period And alternately switching by a pixel signal system converted by an analog digital conversion section having a clock pulse different from the first clock period of the first clock period. Obtained. The converted digital signals are weighted differently when the clock cycles are changed. Therefore, when the addition section adds a signal having the first clock period "clock digital conversion" to a signal converted by the clock having the second clock period, the plurality of differently The weighted pixel signals are added. As a result, the position of the center of gravity of the added signal can be shifted from the position of a simple summed signal. ❹

根據本發明之具體實施例,當該加法區段將以具有該第 一時脈週期之時脈數位轉換的一信號與以具有該第二時脈 週期之時脈數位轉換的一信號相加時,將不同地加權之複 數個像素信號相加。結果,可將該已相加信號之重力中心 之位置從一簡單相加之信號之位置偏移。因此,單位像素 可經配置,使偽色彩得以防止。結果,一旦所要讀取之像 素數目減少並且藉此改良該圖框率時,本發明之具體實施 例便發揮改良影像品質的作用。 【實施方式】 其次,參考圖5至圖1〇,將說明本發明的一第一具體實 施例。在圖5至圖10中,與圖1至4類似之區段係藉由類似 元件符號加以表示,而且將省略其說明。 圖5係一示意圖,其顯示根據此具體實施例之一固態影 像捕獲裝置之結構的一範例。 如同根據圖1中所示之一先前技術之固態影像捕獲裝 置,根據此具體實施例之固態影像捕獲裝置係一配備行並 列ADC之CMOS影像感測器,其具有對應於單位像素之一 矩陣之行之類比數位轉換(ADC)區段。 135444.doc -11 - 200939759 配備該行並列ADC之CMOS影像感測器100具有單位像素 101,其每一者構成一像素。該等單位像素101之每一者具 有一光二極體及一像素内放大器。該等單位像素101係以 一矩陣形狀二維地配置,並且構成一像素陣列區段102。 對該像素陣列區段102之矩陣形狀像素配置提供線控制導 線103 (103-1、1 03-2等),其對應於該矩陣之個別線;及 行信號導線104 (104-1、104-2等),其對應於該矩陣之個 別行。該像素陣列區段102之線位址及線掃描係由該線掃 描電路105透過該等線控制導線103-1、103-2等加以控制。 將對應於該等行信號導線104-1、104-2等之ADC 120佈 置在各別信號導線的一側,並且構成一行處理區段(行並 列ADC區塊)107。佈置一數位類比轉換器(下文中稱為 DAC) 108,其針對該等ADC 120之每一者產生一斜坡波形 參考電壓Vref。該DAC 108之輸出所供應之對應於各別行 之ADC 120之每一者具有一比較器11〇,及一計數器κι, 其測量該比較器110的一時間以實行一比較操作。每一行 之比較器110比較供應自該DAC 108的一斜坡波形與該矩 陣之各別單位像素之信號。該計數器121與供應自一分頻 器116(當作一轉換時脈供應區段)(稍後將說明)的一時脈 同步實行一計數操作、測量該比較器11 〇的一時間以實行 一比較操作、鎖存該已測量時間之計數值N,而且輸出該 計數值N。 在此具體實施例中’該計數器121實行該計數操作及該 鎖存操作。取而代之’可將儲存該計數器之計數輸出的一 135444.doc -12- 200939759 鎖存電路或一記憶體電路與該計數器121分離地佈置。According to a specific embodiment of the present invention, when the addition section adds a signal having a clock digital conversion of the first clock period to a signal having a clock digital conversion of the second clock period , adding a plurality of pixel signals that are weighted differently. As a result, the position of the center of gravity of the added signal can be shifted from the position of a simple summed signal. Therefore, the unit pixels can be configured to prevent false colors from being prevented. As a result, the specific embodiment of the present invention exerts an effect of improving image quality once the number of pixels to be read is reduced and thereby the frame rate is improved. [Embodiment] Next, a first specific embodiment of the present invention will be described with reference to Figs. 5 to 1B. In Figs. 5 to 10, sections similar to those of Figs. 1 to 4 are denoted by like reference numerals, and the description thereof will be omitted. Fig. 5 is a schematic view showing an example of the structure of a solid-state image capturing device according to this embodiment. Like the solid-state image capturing device according to the prior art shown in FIG. 1, the solid-state image capturing device according to this embodiment is a CMOS image sensor equipped with a row-parallel ADC having a matrix corresponding to one of the unit pixels. Analog to digital conversion (ADC) section. 135444.doc -11 - 200939759 The CMOS image sensor 100 equipped with the row parallel ADC has unit pixels 101, each of which constitutes a pixel. Each of the unit pixels 101 has a photodiode and an in-pixel amplifier. The unit pixels 101 are two-dimensionally arranged in a matrix shape and constitute a pixel array section 102. The matrix shaped pixel arrangement of the pixel array section 102 provides line control conductors 103 (103-1, 103-2, etc.) corresponding to individual lines of the matrix; and row signal conductors 104 (104-1, 104-). 2, etc., which corresponds to individual rows of the matrix. The line address and line scan of the pixel array section 102 are controlled by the line scan circuit 105 through the line control lines 103-1, 103-2 and the like. The ADCs 120 corresponding to the row signal conductors 104-1, 104-2, and the like are disposed on one side of the respective signal conductors, and constitute a row of processing sections (row-by-parallel ADC blocks) 107. A digital analog converter (hereinafter referred to as DAC) 108 is arranged which generates a ramp waveform reference voltage Vref for each of the ADCs 120. Each of the ADCs 120 corresponding to the respective rows supplied by the output of the DAC 108 has a comparator 11A, and a counter κι, which measures the time of the comparator 110 to perform a comparison operation. Each row of comparators 110 compares a ramp waveform supplied from the DAC 108 with a signal of a respective unit pixel of the matrix. The counter 121 performs a counting operation in synchronism with a clock supplied from a frequency divider 116 (serving as a switching clock supply section) (to be described later), and measures the time of the comparator 11 以 to perform a comparison. The count value N of the measured time is operated, latched, and the count value N is output. In this embodiment, the counter 121 performs the counting operation and the latching operation. Instead, a 135444.doc -12-200939759 latch circuit or a memory circuit storing the counter output of the counter can be arranged separately from the counter 121.

在此具體實施例中’構成一數位轉換時脈供應區段的一 時序控制電路115透過一分頻器U 6將一時脈供應至該DAC 108及該計數器121。該分頻器116在該時序控制電路115之 控制下選擇性地分割該時脈頻率,以改變該時脈頻率。該 分頻器116將例如輸出自該時序控制電路^ 5之時脈信號之 頻率改變成具有該原始頻率之二之一乘冪之一倒數之一頻 率的一時脈信號。取而代之,可將該時脈之頻率改變至該 原始頻率之二之一乘冪之一倒數以外的一頻率。 該分頻器11 ό改變該時脈頻率之狀態或者未改變該時脈 頻率之狀態係在該時序控制電路11 5之控制下對於該等單 位像素10 1之母一璜取週期加以設定。然而,改變該時脈 頻率之處理係在於該垂直方向將該等單位像素信號減少時 加以執行。當未於該垂直方向將該等像素信號減少時,該 時脈係固定在一尚頻率。稍後將說明改變該時脈頻率之狀 態。 以此一方式所產生之時脈係當作一斜坡波形產生時脈而 供應至該DAC 108,及當作一計數操作時脈而供應至對應 於該等個別行之計數器121之每一者。 對應於該等個別行之ADC 120之每一者具有一比較器 110’其比較透過該行信號導線104-1、104_2或其類似物獲 自該矩陣之一選出線之單位像素101的一類比信號與該參 考電壓Vref。此外,該等ADC 120之每一者具有一計數器 121,其與供應自該分頻器116之時脈CK同步實行一計數 135444.doc •13· 200939759 操作。該計數器121測量該比較器110的一時間以實行該比 較操作、鎖存該已測量時間的一計數值N,而且輸出該計 數值N以便將供應自一單位像素101的一類比信號轉換成一 N位元數位信號。 該行處理區段107之ADC 120之行位址及行掃描係由一 行掃描電路112所控制。換言之,由該等adc 120之每一 • 者所轉換的一N位元數位信號係由該行掃描電路112讀取至 ❹ 一 2N位元寬水平輸出導線113中,並且透過該水平輸出導 線113傳送至一信號處理電路114(當作一加法區段)。該信 號處理電路114係由對應於該2N位元寬水平輸出導線113之 2N感測電路、2N減法電路、2N輸出電路等所構成。由該 信號處理電路〗丨4所處理的一影像信號係從一輸出區段1 輸出。 基於該主時脈MCK,該時序控制電路115產生用以操作 X線掃描電路1〇5、該等ADC 12〇、該行掃描電路〖Μ等所 ❹ 必需的一時脈信號及一時序信號,以及供應至該DAc 108 ^該等#數器121之時脈。該等已產生之時脈信號及時序 k號係供應至該等對應電路區段。 圖6係—示意圖,其顯示該CMOS影像感測器1〇〇之像素 ^〇1\之一陣列的一範例。圖6顯示該等像素1〇1之陣列的一 P刀圖6中所示之陣列係對於像素之數目加以重複。 圖中所示之濾色片陣列例舉獲自該主要色彩陣列 之個别像素之信號位準。圖6之正方形顯示單位像素之位 卜個別正方形中所示之尺、⑽代表滤色片之類型: 135444.doc -14- 200939759 紅、綠及藍《藉由R、G及B之每一者前導之二個數字值代 表該像素之位置《該左數字值代表計數自該陣列之最頂位 置之垂直像素位置,而且右數字值代表計數自該陣列之最 左位置之水平像素位置。例如,像素"R35"表示該濾光片 之色衫係紅色,而且該像素係在從該頂部起第三垂直位置 並從該左侧起第五水平位置。 • 在圖6所示之範例中,在R、G或B下方的一數字值代表 自該像素所接收之光之信號位準。該信號位準代表已由圖 5中所示之對應ADC 120數位轉換的一值。若該adc 12〇係 一 8位元轉換器,則每一單位像素之信號位準之範圍從"〇" 至"255"。在圖6中,存在信號位準係"〇"及"1〇〇,,之像素。 在圖6所示之狀態中,於該水平方向之最左第三與最左 第四像素間,該信號位準從"1〇〇"大幅地改變至"〇"。在信 號位準大幅地改變的-區中,像素信號係很難藉由減少^ 將其相加而精確地内插,而且如"發明内容"中所述,偽色 Q 彩傾向於出現。圖6例舉該等信號位準於該水平方向改變 之情況。偽色彩較常傾向於出現在該等信號位準於該垂直 方向改變之情況中。 在此具體實施例中,使用圖5中所示之結構,完成有效 地防止偽色彩出現的-處理。其次,將例舉防止偽色彩出 現之處理。 圖7A至圖7E係顯示圖5中所示之CM〇s*像感測器剛之 操作狀態之時序圖。圖7A至圖冗中所示之時序圖例舉於 該垂直方向將像素減少之情況中之像感測器之 135444.doc -15- 200939759 操作狀態。 圖7A顯示一水平同步信號(Η同步)。圖7B顯示供應至該 DAC 108及該等計數器1〇9的一時脈。圖7C顯示供應至該 DAC 108及該等計數器121之時脈之類型(dl或d2)。圖7D顯 示輸出自該DAC 108的一斜坡波形參考電壓Vref。 該斜坡波形之電壓與出現一時脈同步改變。將該斜坡波 形之電壓與一單位像素之輸出比較。在該比較中偵測對應In this embodiment, a timing control circuit 115, which constitutes a digital conversion clock supply section, supplies a clock to the DAC 108 and the counter 121 via a frequency divider U6. The frequency divider 116 selectively divides the clock frequency under the control of the timing control circuit 115 to change the clock frequency. The frequency divider 116 changes, for example, the frequency of the clock signal output from the timing control circuit 5 to a clock signal having a frequency which is one of the inverse of one of the original frequencies. Instead, the frequency of the clock can be changed to a frequency other than the reciprocal of one of the two of the original frequencies. The state in which the frequency divider 11 ό changes the state of the clock frequency or does not change the clock frequency is set under the control of the timing control circuit 115 for the mother-sampling period of the unit pixels 10 1 . However, the process of changing the clock frequency is performed when the vertical direction is reduced by the unit pixel signals. When the pixel signals are not reduced in the vertical direction, the clock system is fixed at a frequency. The state of changing the clock frequency will be explained later. The clock generated in this manner is supplied to the DAC 108 as a ramp waveform generating clock, and supplied as a count operation clock to each of the counters 121 corresponding to the individual lines. Each of the ADCs 120 corresponding to the individual rows has a comparator 110' that compares an analogy of the unit pixels 101 obtained from one of the selected lines of the matrix through the row signal conductors 104-1, 104_2 or the like. The signal is associated with the reference voltage Vref. In addition, each of the ADCs 120 has a counter 121 that performs a count 135444.doc • 13· 200939759 operation in synchronization with the clock CK supplied from the frequency divider 116. The counter 121 measures a time of the comparator 110 to perform the comparison operation, latches a count value N of the measured time, and outputs the count value N to convert an analog signal supplied from a unit pixel 101 into a N Bit digital signal. The row address and line scan of the ADC 120 of the row processing section 107 is controlled by a row of scanning circuits 112. In other words, an N-bit digital signal converted by each of the adcs 120 is read by the row scanning circuit 112 into a 2N-bit wide horizontal output conductor 113 and transmitted through the horizontal output conductor 113. It is transmitted to a signal processing circuit 114 (serving as an addition section). The signal processing circuit 114 is constituted by a 2N sensing circuit, a 2N subtracting circuit, a 2N output circuit, and the like corresponding to the 2N-bit wide horizontal output wire 113. An image signal processed by the signal processing circuit 丨4 is output from an output section 1. Based on the main clock MCK, the timing control circuit 115 generates a clock signal and a timing signal for operating the X-ray scanning circuit 1〇5, the ADC 12〇, the line scanning circuit, and the like, and Supply to the DAc 108 ^ the clock of the #121. The generated clock signals and timing k are supplied to the corresponding circuit segments. Figure 6 is a schematic diagram showing an example of an array of pixels ^ 〇 1 \ of the CMOS image sensor. Figure 6 shows a P-plate of the array of pixels 1 〇 1 and the array shown in Figure 6 is repeated for the number of pixels. The color filter array shown in the figures illustrates the signal levels obtained from individual pixels of the primary color array. The square of Figure 6 shows the position of the unit pixel, the scale shown in the individual squares, and (10) represents the type of the color filter: 135444.doc -14- 200939759 Red, Green and Blue "by each of R, G and B The two leading digital values represent the position of the pixel. The left digital value represents the vertical pixel position counted from the topmost position of the array, and the right digital value represents the horizontal pixel position counted from the leftmost position of the array. For example, the pixel "R35" indicates that the color shirt of the filter is red, and the pixel is in a third vertical position from the top and a fifth horizontal position from the left side. • In the example shown in Figure 6, a digital value below R, G, or B represents the signal level of light received from that pixel. This signal level represents a value that has been digitally converted by the corresponding ADC 120 shown in FIG. If the adc 12 is an 8-bit converter, the signal level of each unit pixel ranges from "〇" to "255". In Fig. 6, there are pixels of the signal level system "〇" and "1〇〇,. In the state shown in Fig. 6, the signal level is greatly changed from "1〇〇" to "〇" between the leftmost third and leftmost fourth pixels in the horizontal direction. In the region where the signal level is largely changed, the pixel signals are difficult to accurately interpolate by subtracting them, and as described in "Invention", pseudo color Q colors tend to appear. Figure 6 illustrates the case where the signal levels change in the horizontal direction. Pseudo-colors tend to appear more often in the case where the signal levels change in the vertical direction. In this embodiment, the structure shown in Fig. 5 is used to complete the processing for effectively preventing the occurrence of false colors. Next, a process for preventing the occurrence of pseudo colors will be exemplified. 7A to 7E are timing charts showing the operational state of the CM〇s* image sensor shown in Fig. 5. The timing chart shown in Fig. 7A to Fig. exemplifies the operational state of the image sensor 135444.doc -15-200939759 in the case where the pixel is reduced in the vertical direction. Fig. 7A shows a horizontal synchronizing signal (Η sync). Figure 7B shows a clock supplied to the DAC 108 and the counters 〇9. Figure 7C shows the type (dl or d2) of the clock supplied to the DAC 108 and the counters 121. Figure 7D shows a ramp waveform reference voltage Vref output from the DAC 108. The voltage of the ramp waveform changes synchronously with the occurrence of a clock. The voltage of the ramp waveform is compared to the output of one unit pixel. Detect corresponding in this comparison

於該單位像素之電壓的一計數值,並且由該計數器12丨儲 存。由該計數器121所儲存之計數值變成該單位像素的一 數位值,並且輸出。雖然圖7A至圖冗未顯示該計數器i2i 之計數值之改變,但可應用圖3A至圖3F中所示之改變該計 數值之處理。換言之,如圖3D中所示,在一重設成分㈣ 週期及一像素信號成分偵測週期之每一者中,該計數值係 向上計數。因此’在-水平同步週期中,可向上計數該計 數值二次。取而代之,該計數值可以另一方式向上計數, 如稍後將說明。 返回圖7A至圖7E之說明,如圖7C中所示,對於每一水 平週期,選擇具有一第一時脈週期的一時脈心或具有一第 二時脈週期的一時脈d2 ’以當作該分頻器ιΐ6的一輸出。 圖7C顯示以下情況的―範例:對於—水平同步週期,該分 頻器116選擇該第一時脈週期,而且對於下二個水平同步 週期’則選擇該第二時脈週期。 因此如圖7B中所不’存在二種供應至該DAC⑽及該 4計數器121之時脈之狀態高頻率狀態及-低頻率狀 135444.doc -16 · 200939759 態。同樣地,當改變該時脈頻率時,存在二種斜坡信號之 狀態:一高解析度狀態及一低解析度狀態。然而,對於每 一線’固定資料相位範圍’而且僅改變解析度。 以此一方式,將該斜坡波形供應至每一ADC 12〇之比較 器110 ’並且與該單位像素信號比較。將該比較輸出有所 . 改變之計數器之計數值加以儲存。因此,該已儲存值 變成根據該時脈週期所加權的一信號。將儲存在該計數器 m中之值輸出,以當作該單位像素的-數位值。該信號 纟理電路114將相同濾色片之相鄰像素之信號相加。該輸 出區段117輸出所得到之已相加信號。 在圖7A至圖7E所示之範例中,在最左側之第一水平同 步週期中’一特定行之ADC 120處理一紅(R)單位像素信 號。在下一水平同步週期中,該ADC 120處理一綠(G)單位 像素信號。在又下一水平同步週期中,該ADC 12〇處理— 紅(R)單位像素信號。在此情況中,如圖7E中所示,將隔 〇 開一水平同步週期之二個紅(R)單位像素信號相加。此 外將由一水平同步週期所隔開之二個綠(G)單位像素信 號相加。该二個已相加信號係已以不同解析度數位轉換之 信號。因此,已加權該等已相加信號。 當讀取該像素陣列區段1〇2之全部單位像素1〇1(亦即, 未將像素相加)時,圖7B中所示之時脈係固定在一高頻 率因此,在此情況中,該斜坡波形之解析度不改變。 圖8例舉此具體實施例的一垂直加法狀態。作為一垂直 仃中之CMOS影像感測器1〇〇之單位像素1〇1的一垂直陣 135444.doc ‘17- 200939759 列,假設替地配置一紅濾波像素尺及一綠濾波像素G。此 陣列係與圖4中所示相同β 若於該垂直方向將像素之數目減少至一半,將二個相鄰 像素R之信號相加’而且產生-已相加像素信號Ra。同樣 地’將二個相鄰像素G之信號相加,並且產生一已相加像 素信號Ga。A count value of the voltage of the unit pixel is stored by the counter 12 。. The count value stored by the counter 121 becomes a digit value of the unit pixel, and is output. Although the change of the count value of the counter i2i is not shown in Fig. 7A to Fig. 3, the processing for changing the count value shown in Figs. 3A to 3F can be applied. In other words, as shown in Fig. 3D, in each of the reset component (four) period and the one-pixel signal component detection period, the count value is counted up. Therefore, in the - horizontal synchronization period, the count value can be counted up twice. Instead, the count value can be counted up in another way, as will be explained later. Returning to the description of FIGS. 7A to 7E, as shown in FIG. 7C, for each horizontal period, a clock heart having a first clock cycle or a clock d2 having a second clock cycle is selected as An output of the frequency divider ιΐ6. Fig. 7C shows an "example" of the case where the frequency divider 116 selects the first clock period for the horizontal synchronization period and selects the second clock period for the next two horizontal synchronization periods. Therefore, there are two state high frequency states and a low frequency state 135444.doc -16 · 200939759 state which are supplied to the clocks of the DAC (10) and the counters 121 as shown in Fig. 7B. Similarly, when changing the clock frequency, there are two states of the ramp signal: a high resolution state and a low resolution state. However, for each line 'fixed data phase range' and only the resolution is changed. In this manner, the ramp waveform is supplied to the comparator 110' of each ADC 12'' and compared to the unit pixel signal. The comparison output has a counter value of the changed counter and is stored. Therefore, the stored value becomes a signal weighted according to the clock period. The value stored in the counter m is output as the - digit value of the unit pixel. The signal processing circuit 114 adds the signals of adjacent pixels of the same color filter. The output section 117 outputs the obtained added signal. In the example shown in Figs. 7A to 7E, the ADC 120 of a specific line processes a red (R) unit pixel signal in the first horizontal synchronization period on the leftmost side. In the next horizontal sync period, the ADC 120 processes a green (G) unit pixel signal. In the next horizontal sync cycle, the ADC 12〇 processes the red (R) unit pixel signal. In this case, as shown in Fig. 7E, two red (R) unit pixel signals separated by a horizontal synchronization period are added. In addition, the two green (G) unit pixel signals separated by a horizontal synchronization period are added. The two added signals are signals that have been digitally converted at different resolutions. Therefore, the already added signals have been weighted. When all the unit pixels 1〇1 of the pixel array section 1〇2 are read (that is, the pixels are not added), the clock system shown in FIG. 7B is fixed at a high frequency, and thus in this case The resolution of the ramp waveform does not change. Figure 8 illustrates a vertical addition state of this embodiment. As a vertical array 135444.doc ‘17- 200939759 column of the unit pixel 1〇1 of a CMOS image sensor in a vertical ,1, a red filter pixel scale and a green filter pixel G are assumed to be arranged. This array is the same as that shown in Fig. 4. If the number of pixels is reduced to half in the vertical direction, the signals of two adjacent pixels R are added 'and the generated-added pixel signal Ra is generated. Similarly, the signals of two adjacent pixels G are added, and an added pixel signal Ga is generated.

因為該二個像素信號於相加前已不同地加權,該已相加 像素信號Ra及該已相加像素信號(^之重力中心之空間位置 偏離圖4中所示之簡單相加信號之重力中心之位置。 在偏移該已相加像素信號Ra及該已相加像素信號以之 重力中心之空間位置之範例中,其顯示於圖8之右手側, 忒已相加像素信號Ra與該已相加像素信號之重力中心之 空間位置之間隔L係幾乎相等。 必需U田地選擇該分頻器116輸出之二個時脈之頻率, 使該等間隔L係幾牟;(a # AL 1 戍干相專。然而,若相較於該先前技術之 圖4中所不的一不相望P弓U3 ^ ,Since the two pixel signals are differently weighted before the addition, the added pixel signal Ra and the added pixel signal (the spatial position of the gravity center of the ^) deviate from the gravity of the simple addition signal shown in FIG. The position of the center. In the example of shifting the spatial position of the added pixel signal Ra and the center of gravity of the added pixel signal, it is displayed on the right hand side of FIG. 8, and the pixel signal Ra is added The interval L of the spatial positions of the center of gravity of the added pixel signals is almost equal. It is necessary for the U field to select the frequency of the two clocks output by the frequency divider 116 so that the intervals L are several turns; (a # AL 1戍干相相. However, if compared with the one of the prior art, Figure 4 does not look at the P-Bud U3 ^

个相等間隔,重力中心之空間位置之間隔L 係更接近於相等隔開之間隔,因此可防止偽色彩。因此, 重力中心之空間位置之相等間隔並非用於獲得此具體實施 例之效應的一條件。 因此’根據此具體實施例’將像素相加,使該等已相加 像素信號之重力中心之位置之間隔幾乎㈣,因而可有效 地防止偽色彩。結果,·^ Α ώ 了改良已捕獲信號之影像品質。在 此情況中,該CMOS影後#、, 〜象感測器1 〇〇可藉由將該分頻器丨i 6 提供至該先前技術的一勒 又何旳影像感測器,並且藉由移動一種控 135444.doc -18- 200939759 制該分頻HU6之頻分之機構以—相對較簡單結構達成。 在該前述具體實施例中,相加之單位像素之位置僅係一 範例。因此,本發明不限於此加法結構。再者,在該前述 具體實施例中,提供二類型之時脈週期(時脈頻率)進行選 擇。取而代之,可提供三或多個時脈週期,而且其可恰當 ·*選擇’使已相加影像之空間位置變成幾乎相等地隔開。 •此外,在相對於圖7A至7C之說明t,於該重設成分價 ❹ 測週期及該像素信號偵龍期之每-者中,該計數器121 之計數值係向上計數。取而代之,可選擇另一計數狀態。 例如,於該重設成分偵測週期及該像素信號偵測週期之 每一者中’該計數值可係向下計數。 另一選擇為,該計數值可係於該重設成分偵測週期中向 下計數’並且於該像素信號偵測週期中向上計數。 進一步,在複數個垂直同步週期中,該計數值可係連續 地向上計數或向下計數。 〇 在該前述說明中,該ADC 120之計數器121的一輸出係 由該信號處理電路114所讀取,而且該信號處理電路ιΐ4將 複數個單位像素信號相加。取而代之,複數個單位像素信 號可係在該ADC 120中(或於將其從該ADC 12〇輸出後立 即)相加《例如,該計數器121之鎖存區段可儲存複數個像 素信號’並且將該等單位像素信號相加。 其次,參考圖9 ’將說明具有本發明之第一具體實施例 之CMOS影像感測器i 〇〇之一攝影裝置之結構的一範例。 在此範例中,該CMOS影像感測器1〇〇基於透過例如—透 135444.doc 19 200939759 鏡之一光學系統201進入該CMOS影像感測器100之影像光 獲得一已捕獲影像信號。該已獲得捕獲影像信號係作為輸 出自該信號處理電路114的一信號供應至一下游影像信號 處理區段。 在此範例中,輸出自該信號處理電路114的一影像信號 係供應至一靜止影像信號處理區段202或一移動影像信號 處理區段203。該靜止影像信號處理區段2〇2及該移動影像 信號處理區段203實行影像信號處理,以便各別以預定靜 止影像及移動影像格式處理至其中之影像信號。由該等處 理區段202及203之一者所處理的一影像信號係儲存於一儲 存區段(記錄區段)204中。從該影像捕獲處理至該儲存處理 之處理係在一控制區段205之控制下執行。 圖10係一流程圖,其顯示圖9中所示之攝影裝置之控制 區段205根據捕獲模式控制該CMOS影像感測器100之操作 的一範例。 首先,當捕獲一影像時,該控制區段2〇5決定目前影像 捕獲模式係用於靜止影像捕獲的一低圖框率(例如,3〇 fps)模式,或者用於移動影像捕獲的一高圖框率(例如,6〇 fps)模式(於步驟SI ip 若該已決定結果表示,該目前模式係該低圖框率模式, 則該控制區段205固定供應至該DAC 1〇8及該等計數器i2i 之時脈之週期(於步驟812)、輸出所有單位像素信號,而 且獲得一影像信號(於步驟s 13)。 若該目前模式係該高圖框率模&lt;,則該控制區段2〇5改 135444.doc -20- 200939759 變供應至該DAC 108及該等計數器121之時脈之週期(於步 驟S14)、輸出由單位像素之加法所導致之少量化單位像素 仏號,而且獲得一影像信號(於步驟S15)。 因為該CMOS影像感測器100中之時脈之頻率係取決於該 攝影裝置中已設定之模式而改變,所以獲得可以每一模式 適當地捕獲一影像的一效應。 其-人,參考圖11,將說明本發明的一第二具體實施例。 在圖11中,對應於圖1及圖8之區段係藉由類似元件符號加 以表示。 在此具體實施例中,提供一種所謂頂部/底部讀取類型 影像感測器。 將一行處理區段1 〇7a佈置在一像素陣列區段i 〇2之上 側,而且將一行處理區段l〇7b佈置在該像素陣列區段102 之下側。 該上行處理區段l〇7a具有ADC 120a,其數位地轉換每隔 一垂直線之信號。該等ADC 120a之每一者具有一比較器 110a及一計數器i2ia,用於該數位轉換處理。 該下行處理區段107b具有ADC 120b,其數位地轉換未 供應至該上行處理區段l〇7a之每隔一垂直線之信號。ADC 120b之每一者具有一比較器110b及一計數器mb,用於該 數位轉換處理。 一 DAC 108將一斜坡波形供應至該上行處理區段丨0%之 比較器110a及該下行處理區段107b之比較器ii〇b。此外, 一分頻器116將一時脈供應至該上行處理區段107a之計數 135444.doc •21 · 200939759 态121 a及該下行處理區段1 〇7b之計數器丨2丨b。該時脈係透 過該分頻器11 6供應至該DAC 108及該等計數器丨21b。該 分頻器11 6係在與該第一具體實施例相同之條件中操作。 於此具體實施例中’將行掃描電路丨丨2&amp;及丨丨2b分別地佈置 在該CMOS影像感測器之頂部及底部。 將輸出自在該上行處理區段1 〇7a側之水平輸出導線丨丨3 a 的一信號及輸出自在該下行處理區段1〇7b側之水平輸出導 線113b的一信號供應至一信號處理電路114'(當作一加法區 段)’以形成一圖框的一影像信號。在該信號處理電路丨j 4, 中所處理之影像信號係從一輸出區段丨17輸出。 該第二具體實施例之其他結構係與圖5中所示之CMOS影 像感測器100相同。 在此一頂部/底部讀取類型CMOS影像感測器中,亦藉由 當將像素相加時改變該時脈頻率,獲得與該第一具體實施 例相同之效應,防止偽色彩之出現,而且改良影像品質。 圖11中所示之頂部/底部讀取結構僅係一範例。因此, 此具體實施例之結構不限於圖丨丨中所示。在圖丨i中,各別 行(垂直線)之單位像素係由該等上及下處理區段交替地讀 取。然而可應用已經提出或實際上已使用之各種類型之頂 部/底部讀取結構。 熟習此項技術者應瞭解,取決於設計需要及其他因素, 各種修改、組合、子組合及變更均可出現,只要其係在所 附申凊專利範圍或其等效範圍的範疇内。 【圖式簡單說明】 135444.doc •22- 200939759 從以下結合該等附圖所取得之詳細說明將較完全地瞭解 本發明’其中在所有若干圖式中,類似元件符號表示對應 元件,其中: 圖1係一示意圖,其顯示根據一先前技術之一固態影像 捕獲裝置之結構的一範例; 圖2A至圖2C係時序圖,其顯示圖丨中所示之固態影像捕 獲裝置之信號輸出操作的一範例; _ 圖3A至圖3F係時序圖,其較詳細顯示圖j中所示之固態 影像捕獲裝置之信號輸出操作的一範例; 圖4係一示意圖,其顯示根據一先前技術之一像素加法 的一範例; 圖5係一示意圖,其顯示根據本發明之一第一具體實施 例之一固態影像捕獲裝置之結構的一範例; 圖6係一描述示意圖,其顯示根據本發明之第一具體實 施例之固態影像捕獲裝置之一像素配置的一範例; &amp; 圖7八至圖7E係時序圖,其顯示根據本發明之第一具體 實施例之固態影像捕獲裝置之信號輸出操作的一範例^ 圖8係一描述示意圖,其顯示根據本發明之第一具體實 施例之一像素加法的一範例; 圖9係一示意圖,其顯示根據本發明之第一具體實施例 之一攝影裝置之結構的一範例; 圖1 0係一流程圖,其顯示根據本發明之第一具體實施例 之攝衫裝置之模式之處理的一範例;以及 圖11係一示意圖,其顯示根據本發明之一第二具體實施 135444.doc -23· 200939759 例之一固態捕獲裝置之結構的一範例。 【主要元件符號說明】At equal intervals, the spacing L of the spatial positions of the center of gravity is closer to the equally spaced intervals, thus preventing false colors. Therefore, the equal spacing of the spatial locations of the center of gravity is not a condition for obtaining the effects of this particular embodiment. Therefore, the pixels are added in accordance with this embodiment so that the positions of the centers of gravity of the added pixel signals are almost (four), and thus the pseudo color can be effectively prevented. As a result, the image quality of the captured signal is improved. In this case, the CMOS image can be provided to the prior art image sensor by using the frequency divider 丨i 6 by the sensor 1i 6 Moving a control 135444.doc -18- 200939759 The frequency division of the crossover HU6 is achieved with a relatively simple structure. In the foregoing specific embodiment, the positions of the added unit pixels are merely an example. Therefore, the present invention is not limited to this addition structure. Furthermore, in the foregoing specific embodiment, two types of clock cycles (clock frequencies) are provided for selection. Instead, three or more clock cycles may be provided, and it may be appropriate to *select 'to make the spatial positions of the added images nearly equally spaced. • In addition, in the description t with respect to Figs. 7A to 7C, the count value of the counter 121 is counted up in each of the reset component price measurement period and the pixel signal detection period. Instead, another count state can be selected. For example, in each of the reset component detection period and the pixel signal detection period, the count value may be counted down. Alternatively, the count value may be counted down in the reset component detection period and counted up in the pixel signal detection period. Further, in a plurality of vertical synchronization periods, the count value may be continuously counted up or down. In the foregoing description, an output of the counter 121 of the ADC 120 is read by the signal processing circuit 114, and the signal processing circuit ι4 adds a plurality of unit pixel signals. Alternatively, a plurality of unit pixel signals can be added to the ADC 120 (or immediately after outputting it from the ADC 12〇). For example, the latch section of the counter 121 can store a plurality of pixel signals and will These unit pixel signals are added. Next, an example of the structure of a photographing apparatus having a CMOS image sensor i of the first embodiment of the present invention will be described with reference to FIG. In this example, the CMOS image sensor 1 获得 obtains a captured image signal based on image light entering the CMOS image sensor 100 through an optical system 201 such as 135444.doc 19 200939759. The acquired captured image signal is supplied as a signal output from the signal processing circuit 114 to a downstream image signal processing section. In this example, an image signal output from the signal processing circuit 114 is supplied to a still image signal processing section 202 or a moving image signal processing section 203. The still image signal processing section 2〇2 and the moving image signal processing section 203 perform image signal processing to separately process image signals into the predetermined still image and moving image format. An image signal processed by one of the processing sections 202 and 203 is stored in a storage section (recording section) 204. The processing from the image capture processing to the storage processing is performed under the control of a control section 205. Figure 10 is a flow chart showing an example in which the control section 205 of the photographing apparatus shown in Figure 9 controls the operation of the CMOS image sensor 100 in accordance with the capture mode. First, when capturing an image, the control section 2〇5 determines that the current image capture mode is a low frame rate (eg, 3〇fps) mode for still image capture, or a high for moving image capture. a frame rate (for example, 6 〇 fps) mode (in step SI ip, if the determined result indicates that the current mode is the low frame rate mode, the control section 205 is fixedly supplied to the DAC 1 〇 8 and the Waiting for the period of the clock of the counter i2i (at step 812), outputting all the unit pixel signals, and obtaining an image signal (in step s 13). If the current mode is the high frame rate mode &lt;, the control area The segment 2〇5 changes 135444.doc -20- 200939759 to the period of the clock of the DAC 108 and the counters 121 (in step S14), and outputs a small number of unit pixel apostrophes caused by the addition of unit pixels, And obtaining an image signal (in step S15). Since the frequency of the clock in the CMOS image sensor 100 is changed depending on the mode set in the photographing device, it is obtained that an image can be appropriately captured in each mode. An effect. - A person, a second embodiment of the present invention will be described with reference to Fig. 11. In Fig. 11, the sections corresponding to Figs. 1 and 8 are denoted by like element symbols. In this embodiment, A so-called top/bottom read type image sensor is provided. One row of processing sections 1 〇 7a is arranged on the upper side of a pixel array section i 〇 2, and a row of processing sections 〇 7b is arranged in the pixel array area The lower processing section 107a has an ADC 120a that digitally converts signals of every other vertical line. Each of the ADCs 120a has a comparator 110a and a counter i2ia for The digital processing section 107b has an ADC 120b that digitally converts signals that are not supplied to every other vertical line of the upstream processing section 107a. Each of the ADCs 120b has a comparator 110b. And a counter mb for the digital bit conversion process. A DAC 108 supplies a ramp waveform to the comparator 110a of the upstream processing sector 丨0% and the comparator 〇 〇b of the downstream processing section 107b. Frequency divider 116 will supply a clock The counter 135444.doc • 21 · 200939759 state 121 a and the counter 丨 2 丨 b of the downlink processing section 1 〇 7b to the upstream processing section 107a. The clock is supplied to the DAC through the frequency divider 116 108 and the counters 21b. The frequency dividers 116 are operated under the same conditions as the first embodiment. In this embodiment, the row scanning circuits 丨丨2&amp; and 丨丨2b are respectively Arranged on the top and bottom of the CMOS image sensor. A signal output from the horizontal output conductor 丨丨3 a on the upstream processing section 1 〇 7a side and a signal output from the horizontal output conductor 113b on the downstream processing section 1 〇 7b side are supplied to a signal processing circuit 114. '(as an addition section)' to form an image signal of a frame. The image signal processed in the signal processing circuit 丨j 4 is output from an output section 丨17. The other structure of this second embodiment is the same as the CMOS image sensor 100 shown in FIG. In this top/bottom read type CMOS image sensor, the same effect as the first embodiment is obtained by changing the clock frequency when pixels are added, thereby preventing the occurrence of false colors, and Improve image quality. The top/bottom reading structure shown in Figure 11 is merely an example. Therefore, the structure of this embodiment is not limited to that shown in the drawings. In Fig. i, the unit pixels of the respective lines (vertical lines) are alternately read by the upper and lower processing sections. However, various types of top/bottom reading structures that have been proposed or actually used can be applied. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur, depending on the design requirements and other factors, as long as they are within the scope of the appended claims or their equivalents. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be more fully understood from the following detailed description of the appended claims <RTIgt; 1 is a schematic diagram showing an example of the structure of a solid-state image capturing device according to a prior art; FIG. 2A to FIG. 2C are timing charts showing the signal output operation of the solid-state image capturing device shown in FIG. FIG. 3A to FIG. 3F are timing diagrams showing an example of a signal output operation of the solid-state image capturing device shown in FIG. j in more detail; FIG. 4 is a schematic diagram showing a pixel according to a prior art. An example of addition; FIG. 5 is a schematic diagram showing an example of the structure of a solid-state image capturing device according to a first embodiment of the present invention; FIG. 6 is a schematic diagram showing the first embodiment according to the present invention. An example of a pixel configuration of a solid-state image capturing device of a specific embodiment; &amp; FIGS. 7-8 to 7E are timing charts showing the first device according to the present invention An example of a signal output operation of the solid-state image capturing device of the embodiment is shown in FIG. 8 as a schematic diagram showing an example of pixel addition according to the first embodiment of the present invention. FIG. 9 is a schematic diagram showing An example of the structure of a photographing apparatus of a first embodiment of the present invention; FIG. 10 is a flowchart showing an example of processing of a mode of a photographing apparatus according to the first embodiment of the present invention; Figure 11 is a schematic view showing an example of the structure of a solid state capture device according to a second embodiment of the present invention 135444.doc -23.200939759. [Main component symbol description]

10 CMOS影像感測器 100 CMOS影像感測器 101 單位像素 102 像素陣列區段 103-1, 103-2 線控制導線 104-1, 104-2 行信號導線 105 線掃描電路 106 類比至數位轉換器 107 行處理區段 107a, 107b 行處理區段 108 數位至類比轉換器 109 計數器 110 比較器 110a, 110b 比較器 111 記憶體 112 行掃描電路 112a, 112b 行掃描電路 113 水平輸出導線 113a, 113b 水平輸出導線 114 信號處理電路 114' 信號處理電路 115 時序控制電路 135444.doc -24- 200939759 116 分頻器 117 輸出區段 120 類比至數位轉換器 120a, 120b 類比至數位轉換器 121 計數器 121a, 121b 計數器 201 光學系統 202 靜止影像信號處理區段 203 移動影像信號處理區段 204 儲存區段 205 控制區段 參 135444.doc -25-10 CMOS image sensor 100 CMOS image sensor 101 unit pixel 102 pixel array section 103-1, 103-2 line control conductor 104-1, 104-2 row signal conductor 105 line scan circuit 106 analog to digital converter 107 line processing section 107a, 107b row processing section 108 digital to analog converter 109 counter 110 comparator 110a, 110b comparator 111 memory 112 row scanning circuit 112a, 112b row scanning circuit 113 horizontal output conductor 113a, 113b horizontal output Wire 114 Signal Processing Circuit 114' Signal Processing Circuit 115 Timing Control Circuit 135444.doc -24- 200939759 116 Frequency Divider 117 Output Section 120 Analog to Digital Converter 120a, 120b Analog to Digital Converter 121 Counter 121a, 121b Counter 201 Optical System 202 Still Image Signal Processing Section 203 Moving Image Signal Processing Section 204 Storage Section 205 Control Section Reference 135444.doc -25-

Claims (1)

200939759 七、申請專利範圍: 1. 一種固態影像捕獲裝置,其包括: 一像素陣列區段,其具有含有光電轉換元件之單位像 素,該等單位像素係二維地配置於一矩陣中,而且行信 號導線係對應於該等單位像素之該矩陣之行加以配置; 一線掃描區段,其係經組態以選擇性控制該像素陣列 區段之該等單位像素之該矩陣之線; 一類比至數位轉換區段,其係經組態而將一類比信號 • 轉換至一數位信號,類比信號係輸出自該線掃描區段透 過一對應行信號線所選出之該等單位像素之該矩陣之一 線之單位像素; 一轉換時脈供應區段,其係經組態以選擇性產生供靡 至該類比至數位轉換區段之具有—第—時脈週期的一轉 換時脈或者具有一第二時脈週期的一轉換時脈,並且將 一已產生轉換時脈供應至該類比至數位轉換區段;以及 象一加法區段,其係經組態以各別相加在該類比至數位 轉換區段中依具有肖第一時脈週期及該第r時脈週期之 轉換時脈所轉換之單位像素數位信號,並且輸出一已相 加像素信號。 2.如請求項1之固態影像捕獲裝置, 其中在該像素陣列區段令,對於各別單位像素以—預 定次序配置複數個色彩之濾色片,以及 其中各別地依具有該第一時脈週期及該第二時脈週期 之轉換時脈所轉換之該等單位像素數位信號係已配置相 135444.doc 200939759 同色彩之濾色片之該等單位像素之信號。 3. 如請求項2之固態影像捕獲裝置, 其中由該加法區段所相加之已配置一第一色彩之濾色 片之單位像素之已相加信號之空間虛擬位置,及由該加 法區段所相加之已配置一第二色彩之濾色片之單位像素 之已相加信號之空間位置,幾乎為相等隔開之間隔。 4. 如請求項3之固態影像捕獲裝置, 、其中該轉換時脈供應區段具有—分頻器,其係經組態 以便將具有該第-時脈週期之該轉換時脈轉換成具有該 第二時脈週期之該轉換時脈。 5. 一種攝影裝置,其包括: 一像素陣列區段,其具有含有光電轉換元件之單位像 素’該等單位像素係二維地配置於—矩陣中,而且行信 號導線係對應於該等單位像素之該矩陣之行加以配置; 一線掃描區段,其係經組態以選擇性控制該像素陣列 區之s亥等單位像素之該矩陣之線; 一類比至數位轉換區段,其係經組態而將類比信號轉 換至-數㈣號’該類比信號係輸出自由該線掃描區段 透過—對應行信號線所選出之該等單位像素之該矩陣之 一線之單位像素; 一轉換時脈供應區段,其係經組態以選擇性產生供應 至該類比至數位轉換區段之具有—第一時脈週期的一轉 換時脈或者具有—第二時脈週期的—轉換時脈,並且將 一已產生轉換時脈供應至該類比至數位轉換區段; 135444.doc 200939759 加法區段’其係經組態以各別地相加在該類比至數 位轉換區段中依具有該第—時脈及該第二時脈週期之轉 換時脈所轉換之—單位像素數位信號,並且輸出一已相 加像素信號;以及 影像#號處理區@,其係經組態以處理輸出自該加 法區段之數位信號,成為具有一預定格式的一影像信 號。 6·如請求項5之攝影裝置, 其中當該加法區段未將該等數位信號相加時,從該轉 換時脈供應區段供應至該類比至該數位轉換區段之轉換 夺。系固弋在該第一時脈週期,而且當該加法區段將數 S ° υ 4加時,該轉換時脈供應區段選擇性產生各別地 具有該第一時脈週期及該第二時脈週期之該等轉換時 脈0 135444.doc200939759 VII. Patent application scope: 1. A solid-state image capturing device, comprising: a pixel array segment having unit pixels including photoelectric conversion elements, wherein the unit pixels are two-dimensionally arranged in a matrix, and a signal conductor is configured corresponding to a row of the matrix of the unit pixels; a line scan segment configured to selectively control a line of the matrix of the unit pixels of the pixel array segment; a digital conversion section configured to convert an analog signal to a digital signal, the analog signal outputting a line of the matrix selected from the line scan section through the corresponding row signal line a unit pixel; a conversion clock supply section configured to selectively generate a transition clock having a -first clock period for the analog to digital conversion section or having a second time a transition clock of the pulse period, and supplying a generated conversion clock to the analog to digital conversion section; and, like an addition section, the system Conversion unit pixels during respective clock cycles by adding Shore having a first clock cycle and the first class than to the r-digital conversion section converts the pulse of the digital signal, and outputting a phase is added to the pixel signals. 2. The solid-state image capturing device of claim 1, wherein in the pixel array section, color filters of a plurality of colors are arranged in a predetermined order for respective unit pixels, and wherein the first color is separately included The unit pixel digital signals converted by the pulse period and the transition clock of the second clock period are configured to have the signals of the unit pixels of the color filter of the same color. 3. The solid-state image capturing device of claim 2, wherein a spatial virtual position of the added signal of the unit pixel of the color filter configured with the first color added by the addition section, and the addition area The spatial position of the added signal of the unit pixel of the color filter in which the second color filter has been added is almost equally spaced. 4. The solid-state image capture device of claim 3, wherein the conversion clock supply section has a frequency divider configured to convert the conversion clock having the first-clock period to have the The transition clock of the second clock cycle. 5. A photographing apparatus comprising: a pixel array section having a unit pixel containing a photoelectric conversion element; the unit pixel systems are two-dimensionally arranged in a matrix, and the row signal conductors correspond to the unit pixels The row of the matrix is configured; a line scan segment configured to selectively control a line of the matrix of unit pixels such as shai of the pixel array region; an analog to digital conversion segment Converting the analog signal to a -number (four)', the analog signal output is free from the line scan segment through which the unit pixel of the matrix of the unit pixels selected by the corresponding row signal line is selected; a section configured to selectively generate a transition clock having a first clock period or a transition clock having a second clock period supplied to the analog to digital conversion section, and A generated conversion clock is supplied to the analog to digital conversion section; 135444.doc 200939759 Addition section 'which is configured to be separately added in the analog to digital conversion zone The unit-pixel digital signal converted by the conversion clock of the first clock and the second clock period, and outputs an added pixel signal; and the image ## processing area@, which is configured The image signal outputted from the addition section is processed to become an image signal having a predetermined format. 6. The photographing apparatus of claim 5, wherein when the addition section does not add the digit signals, the conversion from the conversion clock supply section to the analogy to the digit conversion section is performed. Trusging in the first clock cycle, and when the summing section increases the number S ° υ 4, the switching clock supply section selectively generates the first clock cycle and the second respectively These transition clocks of the clock cycle 0 135444.doc
TW098101936A 2008-02-29 2009-01-19 Solid state image capturing apparatus and camera apparatus TWI371966B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051365A JP4442695B2 (en) 2008-02-29 2008-02-29 Solid-state imaging device and camera device

Publications (2)

Publication Number Publication Date
TW200939759A true TW200939759A (en) 2009-09-16
TWI371966B TWI371966B (en) 2012-09-01

Family

ID=41012895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098101936A TWI371966B (en) 2008-02-29 2009-01-19 Solid state image capturing apparatus and camera apparatus

Country Status (5)

Country Link
US (1) US8059179B2 (en)
JP (1) JP4442695B2 (en)
KR (1) KR20090093840A (en)
CN (1) CN101521756B (en)
TW (1) TWI371966B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107269B2 (en) * 2004-02-23 2008-06-25 ソニー株式会社 Solid-state imaging device
WO2008023709A1 (en) * 2006-08-22 2008-02-28 Panasonic Corporation Imaging device
JP5272634B2 (en) * 2008-06-20 2013-08-28 ソニー株式会社 Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
JP2010154372A (en) * 2008-12-25 2010-07-08 Panasonic Corp Solid-state imaging device, digital camera, and ad conversion method
JP5400507B2 (en) * 2009-07-13 2014-01-29 キヤノン株式会社 Imaging apparatus and radiation imaging system
JP5330520B2 (en) * 2009-09-11 2013-10-30 パナソニック株式会社 Analog / digital converter, image sensor system, camera device
JP5631050B2 (en) 2010-05-10 2014-11-26 キヤノン株式会社 Solid-state imaging device and camera
CN101924859B (en) * 2010-08-05 2012-07-18 杭州晟元芯片技术有限公司 Method for acquiring monochrome data of complementary metal-oxide-semiconductor (CMOS) image sensor
JP2012175600A (en) 2011-02-24 2012-09-10 Sony Corp Imaging apparatus, imaging apparatus control method, and program
WO2012144215A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Solid-state image pickup device
JP2012249134A (en) * 2011-05-30 2012-12-13 Sony Corp Solid state image sensor and driving method therefor, camera system
JP2012253624A (en) 2011-06-03 2012-12-20 Sony Corp Solid-state imaging device and camera system
JP5845140B2 (en) * 2011-06-29 2016-01-20 キヤノン株式会社 Imaging device and imaging apparatus
WO2013015016A1 (en) * 2011-07-27 2013-01-31 富士フイルム株式会社 Radiographic equipment
JP5862126B2 (en) * 2011-09-06 2016-02-16 ソニー株式会社 Imaging device and method, and imaging apparatus
JP6149369B2 (en) * 2012-09-27 2017-06-21 株式会社ニコン Image sensor
JP6037878B2 (en) 2013-02-13 2016-12-07 オリンパス株式会社 Imaging device
US10091447B2 (en) * 2015-04-17 2018-10-02 Light Labs Inc. Methods and apparatus for synchronizing readout of multiple image sensors
US10043844B2 (en) * 2015-07-18 2018-08-07 Cista System Corp. System, method, and apparatus for generating a ramp signal with a changing slope
JP6808350B2 (en) * 2016-05-12 2021-01-06 キヤノン株式会社 Imaging device and its control method, program, and storage medium
JP6889571B2 (en) * 2017-02-24 2021-06-18 キヤノン株式会社 Imaging device and imaging system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206730A (en) * 1989-11-10 1993-04-27 Konica Corporation Still video camera having one-shot and serial shot modes
US6870566B1 (en) * 1995-12-07 2005-03-22 Canon Kabushiki Kaisha Image sensing system for sensing an image and converting the image into image signals with a controlled operating rate
US6433822B1 (en) * 1998-03-31 2002-08-13 Intel Corporation Method and apparatus for self-calibration and fixed-pattern noise removal in imager integrated circuits
US7304676B2 (en) * 2002-09-20 2007-12-04 Eastman Kodak Company Timing generator for electronic image sensor with tables that control line and frame timing
JP4107269B2 (en) 2004-02-23 2008-06-25 ソニー株式会社 Solid-state imaging device

Also Published As

Publication number Publication date
CN101521756A (en) 2009-09-02
KR20090093840A (en) 2009-09-02
TWI371966B (en) 2012-09-01
CN101521756B (en) 2011-07-27
JP4442695B2 (en) 2010-03-31
US8059179B2 (en) 2011-11-15
JP2009212621A (en) 2009-09-17
US20090219428A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
TW200939759A (en) Solid state image capturing apparatus and camera apparatus
US9148590B2 (en) Imaging apparatus with reference signals having different rate of change first and second pixels having same color
JP4948090B2 (en) Imaging apparatus and drive control method
TW200541328A (en) Solid-state image pickup device and method for driving the same
US10771724B2 (en) Image capturing apparatus
US8063960B2 (en) Solid-state imaging device and apparatus with an increased speed of analog to digital conversion
JP4618349B2 (en) Solid-state imaging device, imaging method, and imaging apparatus
US8934037B2 (en) Imaging device employing rolling shutter system
US20150237282A1 (en) Image pickup device and image pickup apparatus
CN103370930A (en) Image capturing device, image capturing element, method for controlling image capturing, and program
EP2590413A1 (en) Solid-state image capture element and image capture device comprising said solid-state image capture element, and image capture control method and image capture control program
JP5784377B2 (en) AD conversion circuit and imaging apparatus
US20140204253A1 (en) Solid-state imaging device
JP2010004146A (en) Solid-state imaging element, and camera system
JP2012249134A (en) Solid state image sensor and driving method therefor, camera system
JP2014090325A (en) Solid-state imaging element
US20160205335A1 (en) Solid-state imaging device
US10129496B2 (en) Imaging device and imaging system
JP2015228544A (en) Solid-state imaging device
RU2491754C1 (en) Solid-state image capturing device and image capturing system
US20140320719A1 (en) Solid-state image device, method for driving same, and camera system
JP2010057019A (en) Imaging element, and imaging apparatus
JP7536541B2 (en) Imaging device and control method thereof
KR101578997B1 (en) Solid-state imaging device
US11212477B2 (en) Image processing device, image processing method, and image processing system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees