200926448 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種發光元件,特別係一種固態發光元件。 【先前技術】 目前,發光二極體(Light Emitting Diode,LED)作為一 種固態發光元件,其具有光質佳(亦即光源輸出之光譜)及發 光效率高等特性而逐漸取代冷陰極螢光燈(Cold Cathode200926448 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element, and more particularly to a solid-state light-emitting element. [Prior Art] At present, a Light Emitting Diode (LED) is a solid-state light-emitting element that has a good light quality (that is, a spectrum of a light source output) and a high luminous efficiency, and gradually replaces a cold cathode fluorescent lamp ( Cold cathode
Fluorescent Lamp,CCFL)作為照明裝置之發光元件,具體可 ❹參見 Michael S. Shur 等人於文獻 Proceedings of the IEEE,Fluorescent Lamp (CCFL) is used as a illuminating component for lighting devices. For details, see Michael S. Shur et al., Proceedings of the IEEE.
Vol. 93,No. 10 (2005 年 10 月)中發表之 “Solid-StateVol. 93, No. 10 (October 2005), "Solid-State"
Lighting: Toward Superior Illumination” 一文。 一般的發光二極體(Light Emitting Diode,LED)包括發 光結構及正負電極,該發光結構包括:一 N型束缚層 (Cladding layer),一 P型束缚層及一設置於該N型束缚層 與P型束縛層之間的未摻雜之活性層(Active layer),該正電 極設置於該P型束缚層上,該負電極設置於該N型束缚層 龜 上。該發光二極體一般可發出特定波長的光,例如可見光, 惟發光二極體所接收能量的大約80~90%被轉換為熱量,其 餘的能量才被真正轉換為光能。當發光二極體之溫度達到 70度以上時,發光二極體中之量子效率會明顯的降低,故 發光二極體之散熱效率係保證其正常運作的重要因素。有 鑑於此,提供一種散熱效率較高的固態發光元件實為必要。 【發明内容】 下面將以實施例說明一種散熱效率較高的固態發光元 200926448 .件0 一種固態發光元件,其包括一透明導電基板,一設置 於該透明導電基板上之第一型束缚層,一設置於該第:型 束縛層上之發光活性層,一設置於該發光活性層上之第二 型束缚層,一言更置於該第二型束缚層上之電極,該透料 電基板所用材料為氫化碳化矽。 相對於先前技術,該固態發光元件中之透明導電基板 所用材料為氫化碳化矽,利用氩化碳化矽之高熱傳導^可 將該固態發光元件發光時所產生的熱及時有效地傳導出 ^,從而使得該固態發光元件保持較高的量子效率。利用 氫化碳化矽之高電導率可使該透明導電基板直接作為一電 極使用,使得由該發光活性層發出之光子可直接經由該透 明導電基板於沒有賴物之情況下射出,從而提高了光 出效率。 【實施方式】 下面結合附圖對本發明固態發光元件作進一步的 說明。 、…為了便於理解,以下將以本發明實施例提供之固態發 光元件為發光二極體為例進行說明。請參見圖i,一發光二 極體ίο包括·一透明導電基板u,一設置於該透明導電基 板11上之N型束缚層12,一設置於該\型束缚層12上= 發光活性層13 ’ 一設置於該發光活性層13上之p型束縛層 14,—没置於該P型束缚層14上之電極15。該N型束缚 θ U,發光活性層13及p型束缚層14組成一發光結構。 6 200926448 該透明導電基板li所用材料為氫化碳化矽(Sic:H),由 於該氫化碳化矽係一種電導率及熱傳導率均較高的材料, 故於該發光二極Μ 10發光時所產生的熱能夠及時有效地締 <由該透㈣電基板η傳導出知從而使得該發光二極體^ '保持較高的量子效率,並且該透明導電基板11可作為另一 電極與該電極15與-外部電源電性連接以向該發光結構提 供電能。於本實施例中,由該發光結構發出之光子可直接 經由該透明導電基板U於沒有遮擋物之情況下射出,從而 提高了光取出效率。不用於透明導電基板u上形成電極亦 可使該發光二極體10之製程簡化、成本降低。 該N型束缚層12為含有奈米粒子16之N型半導體 層。該N型半導體層所用材料可選自N型氮化録(吟^ GaN)、N 型磷化銦(n_type Inp)、N 型磷化銦鎵(n type 及N型磷化鋁鎵銦(n_type A1Ga][np)中之一。於本實施例 中,該N型束缚層12係由矽摻雜之氮化鎵組成。 ❿ 該奈米粒子16之材料為矽氧化物、矽氮化物、鋁氧化 物、鎵氧化物或硼氮化物。於本實施例中,該奈米粒子16 為二氧化矽奈米粒子,其粒徑範圍為2〇〜2〇〇奈米。 該發光活性層13所用材料為氮化銦鎵(InGaN)、砷化 鋁鎵(AlGaAs)等,其中具有單個量子阱結構(singie Quantum Wei!)或多量子阱結構(施此〇咖_ WeU)。 該P型束缚層14為含有奈米粒子16之P型半導體層。 該P型半導體層所用材料可選自P型氮化鋁鎵(p-type AlGaN)、P型砷化鋁鎵(p_type A1GaAs)等。於此,可藉由於 200926448 氮化銘鎵中摻雜鎂或氫來得到P型半導體層。 該P型半導體層中摻雜之奈米粒子16所用材料同樣可 選自矽氧化物、矽氮化物、鋁氧化物、鎵氧化物或硼氮化 ,物。可理解之是’該奈米粒子16於該N型束缚層12及該 .P型束缚層14中之濃度分佈可根據實際需要進行設定。 該電極15所用材料為鎳(Ni),金(Au),鎳金合金 (Ni/Au) ’ 鈦(Ti) ’ 銘(A1),鈦銘合金(Ti/Al),銅(Cu),銀(Ag), 铭銅合金(Al/Cu) ’或銀銅合金(Ag/Cu)等金屬材料。 > 於本實施例中’可利用金屬有機化學氣相沈積法(MetalLighting: Toward Superior Illumination. A general light emitting diode (LED) includes a light emitting structure and positive and negative electrodes, and the light emitting structure includes: an N-type Cladding layer, a P-type binding layer and a An undoped active layer disposed between the N-type tie layer and the P-type tie layer, the positive electrode being disposed on the P-type tie layer, the negative electrode being disposed on the N-type tie layer turtle The light-emitting diode generally emits light of a specific wavelength, such as visible light, but about 80-90% of the energy received by the light-emitting diode is converted into heat, and the remaining energy is actually converted into light energy. When the temperature of the polar body reaches 70 degrees or more, the quantum efficiency in the light-emitting diode is significantly reduced, so the heat dissipation efficiency of the light-emitting diode is an important factor for ensuring its normal operation. In view of this, a heat dissipation efficiency is provided. The solid-state light-emitting element is required to be described as an embodiment. A solid-state light-emitting element with high heat dissipation efficiency is disclosed in the following. a transparent conductive substrate, a first type of binding layer disposed on the transparent conductive substrate, a light emitting active layer disposed on the first type of binding layer, and a second type of binding layer disposed on the light emitting active layer In one case, the electrode is placed on the second type of binding layer, and the material used for the dielectric substrate is hydrogenated ruthenium carbide. Compared with the prior art, the material used for the transparent conductive substrate in the solid state light-emitting element is hydrogenated tantalum carbide. The high thermal conductivity of the argonized niobium carbide can conduct the heat generated by the solid-state light-emitting element in time and effectively, so that the solid-state light-emitting element maintains a high quantum efficiency. The high conductivity of the niobium carbide can be used. The transparent conductive substrate is directly used as an electrode, so that photons emitted from the luminescent active layer can be directly emitted through the transparent conductive substrate without being used, thereby improving light extraction efficiency. The solid-state light-emitting device of the present invention is further described. For ease of understanding, the solid-state hair provided by the embodiment of the present invention will be hereinafter described. The light component is an example of a light-emitting diode. Referring to FIG. 1 , a light-emitting diode ίο includes a transparent conductive substrate u, and an N-type binding layer 12 disposed on the transparent conductive substrate 11 is disposed on The type-binding layer 12 is provided with a light-emitting active layer 13', a p-type binding layer 14 disposed on the light-emitting active layer 13, and an electrode 15 not disposed on the P-type binding layer 14. The N-type binding θ U The luminescent active layer 13 and the p-type binding layer 14 constitute a light-emitting structure. 6 200926448 The material of the transparent conductive substrate li is hydrogenated lanthanum carbide (Sic: H), and the hydrogenated lanthanum carbide has a high electrical conductivity and thermal conductivity. The material, so that the heat generated when the light-emitting diode 10 emits light can be connected in time and efficiently; the light is transmitted from the through-four (4) electrical substrate, so that the light-emitting diode maintains a high quantum efficiency. And the transparent conductive substrate 11 can be electrically connected to the electrode 15 and the external power source as another electrode to supply electrical energy to the light emitting structure. In this embodiment, photons emitted by the light-emitting structure can be directly emitted through the transparent conductive substrate U without obstructing, thereby improving light extraction efficiency. The electrode is not formed on the transparent conductive substrate u, and the process of the light-emitting diode 10 can be simplified and the cost can be reduced. The N-type tie layer 12 is an N-type semiconductor layer containing the nanoparticles 16 . The material for the N-type semiconductor layer may be selected from the group consisting of N-type nitride (GaN), N-type indium phosphide (n-type Inp), and N-type indium gallium phosphide (n type and N-type aluminum gallium indium arsenide (n_type). In the present embodiment, the N-type binding layer 12 is composed of yttrium-doped gallium nitride. ❿ The nanoparticle 16 is made of lanthanum oxide, hafnium nitride, aluminum. Oxide, gallium oxide or boron nitride. In the present embodiment, the nanoparticle 16 is a cerium oxide nanoparticle having a particle size ranging from 2 Å to 2 nanometers. The material is indium gallium nitride (InGaN), aluminum gallium arsenide (AlGaAs), etc., and has a single quantum well structure (singie Quantum Wei!) or a multiple quantum well structure (such as 〇 _ _ WeU). 14 is a P-type semiconductor layer containing nano particles 16. The material of the P-type semiconductor layer may be selected from P-type AlGaN, P-type AlGaAs, or the like. The P-type semiconductor layer can be obtained by doping magnesium or hydrogen in the nitride film of 200926448. The material used for the doped nanoparticle 16 in the P-type semiconductor layer can also be used. It is selected from the group consisting of niobium oxide, niobium nitride, aluminum oxide, gallium oxide or boron nitride. It is understood that the nanoparticle 16 is in the N-type binding layer 12 and the P-type binding layer 14 The concentration distribution can be set according to actual needs. The material used for the electrode 15 is nickel (Ni), gold (Au), nickel gold alloy (Ni/Au) 'titanium (Ti) ' Ming (A1), titanium alloy (Ti /Al), copper (Cu), silver (Ag), Ming copper alloy (Al/Cu) ' or silver-copper alloy (Ag / Cu) and other metal materials. > In this embodiment 'available metal organic chemical gas Phase deposition method
Organic Chemical Vapor Deposition,MOCVD)或電漿增強化 學氣相沈積法(PlaSma Enhanced Chemical VaporOrganic Chemical Vapor Deposition (MOCVD) or plasma enhanced chemical vapor deposition (PlaSma Enhanced Chemical Vapor)
Deposition ’ PECVD)將該n型束缚層12及該P型束缚層 14分別形成於該透明導電基板η及該發光活性層13上, 利用磁控濺射法將該電極15沈積於該Ρ型束缚層14上。 由於該Ν型束缚層12為含有奈米粒子16之Ν型半導 _體層’該Ρ型束缚層14為含有奈米粒子16之Ρ型半導體 層,該Ν型半導體層及該ρ型半導體層中含有奈米粒子, 從而可阻止該Ν型束缚層12與該發光活性層13之間、該 Ρ型束缚層14與該發光活性層13之間所形成之位錯移動 (Dislocation Motion),以增進發光活性層13之晶體性質, 進而提高了該發光結構之量子效率,即該發光活性層13中 之光子轉換效率更高。另,該N型束缚層12與P型束缚層 14中之奈米粒子可改變其所於之N型半導體層或P型半導 體層之晶格常數(Lattice Constant),減少了 N型束缚層12 200926448 /、P ^•束’身層14自身之晶格畸變(Lattice strain),從而有 利於減小該N型束缚層12與該發光活性層13之間,以及 該P型束缚層14與該發光活性層13之間的應力,有利於 &尚該發光二極體内部之量子效率。Deposition 'PECVD> The n-type tie layer 12 and the P-type tie layer 14 are respectively formed on the transparent conductive substrate η and the luminescent active layer 13, and the electrode 15 is deposited on the 束-type bond by magnetron sputtering. On layer 14. Since the 束-type binding layer 12 is a 半-type semiconductor layer containing nano particles 16 , the 束-type binding layer 14 is a 半导体-type semiconductor layer containing nano particles 16 , the Ν-type semiconductor layer and the p-type semiconductor layer Containing nanoparticles, thereby preventing dislocation motion between the 束-type tie layer 12 and the luminescent active layer 13 and between the 束-type binding layer 14 and the luminescent active layer 13 The crystal properties of the luminescent active layer 13 are enhanced, thereby improving the quantum efficiency of the luminescent structure, that is, the photon conversion efficiency in the luminescent active layer 13 is higher. In addition, the nanoparticles in the N-type tie layer 12 and the P-type tie layer 14 can change the lattice constant of the N-type semiconductor layer or the P-type semiconductor layer, and the N-type tie layer 12 is reduced. 200926448 /, P ^• bundle 'body layer 14 itself Lattice strain, thereby facilitating the reduction between the N-type tie layer 12 and the luminescent active layer 13, and the P-type tie layer 14 and The stress between the luminescent active layers 13 is advantageous for & quantum efficiency inside the luminescent diode.
此外’該本發明實施例提供之發光二極體10中之發光 結構具有杈咼量子效率之同時,於該發光結構中並不需要 量子點(Quantum Dot),從而使得該發光二極體1〇與傳統發 光一極體相比更適於量產。 练上所述,本發明確已符合發明專利之要件,遂依法 提出專利中μ。惟,以上所述者僅為本發明之較佳實施方 式’自不能以此限制本案之申請專利範圍。例如:所述ρ 型束缚層14生長於所料明導電基板u上,所述發光活 性層13磊晶生長於所述P型束缚層14上,而所述N型束 缚層12射長於所述發光活性層13上,此時所述發光活 性層13同樣爽設於含有奈米粒子的p型半導體層*含有夺 ^子的N料導體層之間,故同樣可錢本發明實施例 ’、之卷光一極體具有較好的量子效率。故,這些變化或 提:結構原理與所述發光二極體基本相同的其他固態發光 疋牛,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 m 係本發明實施例提供之發光二極體之剖面圖 【主要元件符號說明 發光二極體 透明導電基板 10 11 200926448 N型束缚層 12 發光活性層 13 P型束缚層 14 、 電極 15 奈米粒子 16 ❹ ❹ 10In addition, the light-emitting structure in the light-emitting diode 10 provided by the embodiment of the present invention has a quantum efficiency, and quantum dots are not required in the light-emitting structure, so that the light-emitting diode 1〇 It is more suitable for mass production than traditional light-emitting ones. As described above, the present invention has indeed met the requirements of the invention patent, and the patent is filed according to law. However, the above description is only a preferred embodiment of the present invention, which is not intended to limit the scope of the patent application of the present invention. For example, the p-type tie layer 14 is grown on a conductive substrate u, the luminescent active layer 13 is epitaxially grown on the P-type tie layer 14, and the N-type tie layer 12 is longer than the On the light-emitting active layer 13, at this time, the light-emitting active layer 13 is also provided between the p-type semiconductor layer containing the nano particles and the N-conductor layer containing the electrons, so that the embodiment of the invention can be similarly The volume of the coil has a good quantum efficiency. Therefore, these changes or mentions: other solid-state light-emitting yak whose structural principle is substantially the same as that of the light-emitting diode should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a light-emitting diode according to an embodiment of the present invention. [Main component symbol illustrates a light-emitting diode transparent conductive substrate 10 11 200926448 N-type binding layer 12 Light-emitting active layer 13 P-type binding layer 14 , electrode 15 nano particles 16 ❹ ❹ 10