[go: up one dir, main page]

TW200921796A - Semiconductor device and method of manufacturing thereof - Google Patents

Semiconductor device and method of manufacturing thereof Download PDF

Info

Publication number
TW200921796A
TW200921796A TW96141989A TW96141989A TW200921796A TW 200921796 A TW200921796 A TW 200921796A TW 96141989 A TW96141989 A TW 96141989A TW 96141989 A TW96141989 A TW 96141989A TW 200921796 A TW200921796 A TW 200921796A
Authority
TW
Taiwan
Prior art keywords
semiconductor device
oxide
doped region
substrate
fabricating
Prior art date
Application number
TW96141989A
Other languages
Chinese (zh)
Other versions
TWI402920B (en
Inventor
Daniel Hwang
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW96141989A priority Critical patent/TWI402920B/en
Publication of TW200921796A publication Critical patent/TW200921796A/en
Application granted granted Critical
Publication of TWI402920B publication Critical patent/TWI402920B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method of fabricating a semiconductor device for improving gate-induced drain-leakage, comprising: providing a substrate; defining an active region in the substrate; forming a gate stack in the active region; conformally forming at least one offset spacer on a side and a surface of the gate stack and extending to a surface of the substrate for improving gate-induced drain-leakage; and carrying out an ion implant process with the offset spacer as a buffer layer to form doped regions in the substrate adjacent the offset spacers side of the gate stack and under the offset spacer.

Description

200921796 九、發明說明: 【發明所屬之技術領域】 裝置 本發明係有關於一種半導體裝置及其製造方、去 別係有關於能夠改善閘極引發的汲極漏電流的丰^ ’且斗寺 及其製造方法 【先前技術】 隨著積體電路的微縮化200921796 IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor device and a manufacturer thereof, and relates to a method for improving gate leakage current induced by a gate. Manufacturing method [prior art] With the miniaturization of integrated circuits

n 卞V 金氧+ /it (metal-oxide-semiconductor,MOS)變的愈加^支小,@ 金-氧-半場效應電晶體(MOSFET)的尺寸,其中包括^縮小 極長度以及閘極氧化層厚度等的方法,—亩县少Λ | 1問 1疋杈事相關領 域的發明人員所積極研究的方向。 _ 而在深次微米技術中,MOS元件隨著有效閉核 縮短,由於以下微縮化的影響,使得M〇s开件的二&度的 卞的馮電流增 加:⑴由於臨界電壓(threshold voltage)減小,造成臣令 界漏電流(threshold leakage)以指數關係增加(2)閘極邊緣 (gate edge)直接穿遂造成的漏電流(tunneling leakage)(3) 由於閘極氧化層厚度縮減,造成閘極引發的汲極漏電流 (Gate-Induced Drain-Leakage, GIDL)以指數關係增加(4)由 於淡摻雜汲極(lightly doped-drain,LDD)或口袋掺雜 (pocket-doping)的摻雜濃度增加,造成價電帶到傳導帶的穿 遂漏電流(band-to-band-tunneling leakage)以指數關係增 加。而在低功率動態記憶體元件的發展中,在沒有縮減供 應電壓的前提下,電晶體的物理尺寸微縮化意味著必須對 漏電流有更精確的控制。特別的是,已有報告指出,埋入n 卞V gold oxygen + /it (metal-oxide-semiconductor, MOS) becomes more and more small, @金-氧-half field effect transistor (MOSFET) size, including ^ reduction pole length and gate oxide layer The method of thickness, etc. - Mu County Shaohao | 1Q1 The direction in which the inventors of related fields are actively studying. _ In the deep submicron technology, the MOS component is shortened with effective closed core. Due to the following miniaturization, the von von current of the second & degree of the M〇s opening is increased: (1) due to the threshold voltage (threshold voltage) The decrease causes the threshold leakage to increase exponentially. (2) The tunneling leakage caused by the direct penetration of the gate edge (3) due to the thickness reduction of the gate oxide layer. The gate-induced drain leakage (Gate-Induced Drain-Leakage, GIDL) increases exponentially (4) due to lightly doped-drain (LDD) or pocket-doping (pocket-doping) The increase in doping concentration causes the band-to-band-tunneling leakage of the valence band to the conduction band to increase exponentially. In the development of low-power dynamic memory components, the physical size reduction of the transistor means that the leakage current must be more precisely controlled without reducing the supply voltage. In particular, it has been reported that embedding

Client's Docket No.:96-029 TT^ Docket No:0492-A41274-TW/fmal/hhchiang/ 200921796 式通道(buried-channel)PMOS 的單閘極(singie_gate)元件, 其漏電流的主要來源係閘極引發的汲極漏電流。故若要在 待命模式下得到低的漏電流’則閘極引發的汲極漏電流係 一需要被突破的瓶頸。 閘極引發的没極漏電流主要原因是由於在形成M〇S 元件的製程中,於閘極結構形成後,進行離子佈植製程以 形成淡掺雜源極及没極(lightly doped source/drain, LDD)區 域或袋區域(pocket region),而摻雜離子會擴散至閘極結構 下方,造成由閘極到汲極(gate-to-drain)間部份重疊區域所 形成的強電場所造成的。傳統製程中係利用調變離子佈才直 製程的參數,如植入離子種類、植入能量,或植入劑量以 避免閘極到没極(gate-to-drain)間重疊區域的形成。然隨著 元件的微縮化及對電性有更嚴苛的要求,傳統製程能夠提 供的改善空間有限,因此本發明的目的就是提供一種用於 形成金氧半元件的改良方法,以克服先前技藝之不足。 【發明内容】 為達上述、其它與本發明之目的,本發明提供一種半 導體裝置的製造方法,特別係一種能夠改善閘極引發没極 漏電流(gate induced drain leakage,簡稱 GIDL )之金屬氧 化物半導體(M0S)裝置的製造方法,包含:提供一基底; 於基底中定義一主動區;於該主動區表面形成一閘極堆疊 結構;形成至少一間隔層於該閘極堆疊結構之側壁及表面 上’並延伸至該基底之表面上;以及以該隔離層作為緩衝 層,實施一離子佈植製程,以在鄰接該閘極堆疊結構側壁Client's Docket No.: 96-029 TT^ Docket No:0492-A41274-TW/fmal/hhchiang/ 200921796 Buried-channel PMOS single-gate (singie_gate) component, the main source of leakage current is the gate The induced buckling leakage current. Therefore, if a low leakage current is required in the standby mode, the gate leakage current caused by the gate is a bottleneck that needs to be broken. The main cause of the gate leakage induced by the gate is that during the formation of the M〇S device, after the formation of the gate structure, the ion implantation process is performed to form a lightly doped source and a drain (lightly doped source/drain). , LDD) region or pocket region, and the doping ions will diffuse below the gate structure, causing a strong electric field formed by a partial overlap between the gate and the gate-to-drain. . Conventional processes use modulated ion cloths to straighten process parameters such as implanted ion species, implant energy, or implant dose to avoid the formation of overlapping regions between gate-to-drain. However, with the miniaturization of components and the more stringent requirements for electrical properties, the conventional process can provide limited space for improvement. It is therefore an object of the present invention to provide an improved method for forming a metal oxide half component to overcome the prior art. Insufficient. SUMMARY OF THE INVENTION The present invention provides a method of fabricating a semiconductor device, and more particularly to a metal oxide capable of improving gate induced drain leakage (GIDL). A manufacturing method of a semiconductor (M0S) device, comprising: providing a substrate; defining an active region in the substrate; forming a gate stack structure on the surface of the active region; forming at least one spacer layer on a sidewall and a surface of the gate stack structure Upper and extending onto the surface of the substrate; and using the isolation layer as a buffer layer, performing an ion implantation process to abut the sidewall of the gate stack structure

Client's Docket No.:96-029 TT5s Docket No:0492-A41274-TW/fmal/hhchiang/ 6 200921796 下方之該基底中形成一摻 之該間隔層旁,而位於該間隔層 雜區。 【實施方式】 本發明之實施例提供-種半導發裳置的製造方法,特 別係一種能夠改善閘極引發汲極漏電流之 、…曾 體I置的製造方法。有關各實施例之制、皮^_上" 又衣造方式和使用方式 係如下所詳述,並伴隨圖示加以說明。 .^ 其中’圖式和說明 曰中使用之相同的元件編號係表示相间十# 、 日丨j或頰似之元件。而 在圖式中,為清楚和方便說明起見,有 厚度或有不符實際之情形。而以下所描述者係特別針對本 發明之裝置的各項元件或其整合加以說明,然而,值得注 意的是’上述元件並不特別限定於所顯示 :曰 可以熟習此技藝之人士所得之的各種形式=者二 材料層是位於另一材料層或基底之上時,其可以是直接位 於其表面上或另外插入有其他中介層。 第1圖至第6圖為本發明較佳實施例之半導體裝置的 製程剖面圖,其顯示一 MOS的形成方式。請參考第1圖, 首先’提供一基底12。基底12可為矽基底。在本發明之 一貫施例中’基底12可為(100 )位向(orientati〇n ),且 旋轉45度角的P型石夕晶圓。在其他實施例中,可利用鍺化 石夕(SiGe)、塊狀半導體(bulk semiconductor)、應變半導體 (strained semiconductor)、化合物半導體(compound semiconductor)、絶緣層上覆石夕(silicon on insulator, SOI), 或其他常用之半導體基底作為基底12。接著於基底12中Client's Docket No.: 96-029 TT5s Docket No: 0492-A41274-TW/fmal/hhchiang/ 6 200921796 The underlying substrate is formed adjacent to the spacer layer and located in the spacer layer. [Embodiment] Embodiments of the present invention provide a method of manufacturing a semiconductor package, and in particular, a manufacturing method capable of improving the gate-induced drain leakage current of a gate. The system, the method of making and the manner of use of the respective embodiments are as follows, and are illustrated with reference to the drawings. .^ where 'graph and description 相同 The same component number used in 曰 denotes a phase-to-phase, day j or cheek-like component. In the drawings, for clarity and convenience of explanation, there is a thickness or an unrealistic situation. While the following description is particularly directed to the various elements of the device of the present invention, or the integration thereof, it is noted that the above-described elements are not particularly limited to the ones shown: those obtained by those skilled in the art. Form 2 If the material layer is located on another material layer or substrate, it may be directly on its surface or otherwise interposed with other intervening layers. 1 to 6 are cross-sectional views showing a process of a semiconductor device according to a preferred embodiment of the present invention, showing a manner of forming a MOS. Referring to Figure 1, first, a substrate 12 is provided. Substrate 12 can be a crucible substrate. In a consistent embodiment of the invention, the substrate 12 can be a (100) orientation (orientati〇n) and a P-type wafer wafer rotated at a 45 degree angle. In other embodiments, silicon germane (SiGe), bulk semiconductor, strained semiconductor, compound semiconductor, silicon on insulator (SOI) may be utilized. , or other commonly used semiconductor substrates as the substrate 12. Next in the substrate 12

Client's Docket No.:96-029 TTs Docket No:0492-A41274-TW/final/hhchiang/ 200921796 形成隔離結構l4以定義出主動 — 準淺溝槽隔離(STI)製程形成,=。隔離結構14可利用標 刻方法形成溝槽,接著以化學々L括下列步驟:利用银 於溝槽中,錢利用化學機^1相沉積製程填充介電材料 亦可使用其他隔離結構14,例如程進行平坦化。另外, 氧化法形成)定義主動區。在〜徐暴氧化物(即利用矽之局部 行摻雜製程以形成N或p型:知例中,可在主動區内進 區,以形成MOSFET元件的〜:雜區以作為主動電荷載子 請參考第2圖,在定義出^ 形成一閘極結構20。閘極結構 品使,接著在主動區内 進行一全面性的多層沉積製程〇可藉由習知技術,包括 等向性蝕刻步驟所形成。在—♦再進行光微影圖案化與非 為多層結構,包括位於閘極钟構氣例中,閘極結構20可為 電層22 ,以及形成於閘極介電層2〇之最底層位置的閘極介 在較佳實施例中,閘極結構θ·22上的閘極電極層24。 上的閘極頂部電極層26 Η;還包含仅於閘極電極層24 閣極介雷爲 如:二氧化矽、氮氧化矽或氮化石s 22之材料包括,例 上述之組合。閘極介電屑乃矽、高介電常數介電質或 成,包括,氧化纟siA1 ηθ 亦可為下列—或多個材料所組 3)、氧化給(邮2)、氮氧化給、 石夕酸铪(腦〇4)、氧化錯(⑽)、氮氧化錯(Zr〇N)、石夕祕 (ZrSi〇4)、氧化釔(γ2〇3)、氧化鑭(La2〇3)、氧化鈽(Ce〇2)、 氧化鈦(Τι〇2)、氧化鈕(丁&2〇5)及其連接。於本發明實施中, 閘極介電層22係利用熱氧化法於基底表面所生成之氧化 矽層所構成。閘極電極層24可由摻雜複晶矽或複晶矽鍺形Client's Docket No.: 96-029 TTs Docket No: 0492-A41274-TW/final/hhchiang/ 200921796 The isolation structure l4 is formed to define the active-quasi-shallow trench isolation (STI) process formation, =. The isolation structure 14 can be formed by a marking method, and then the following steps are performed in a chemical process: using silver in the trench, the dielectric material can be filled by a chemical deposition process, and other isolation structures 14 can be used, for example. The process is flattened. In addition, the oxidation process forms a defined active region. In the ~ Xu storm oxide (that is, using the local row doping process of yttrium to form N or p type: in the example, the region can be entered in the active region to form the ~: impurity region of the MOSFET component as the active charge carrier Referring to FIG. 2, a gate structure 20 is formed to define a gate structure, and then a comprehensive multilayer deposition process is performed in the active region, which can be performed by conventional techniques, including an isotropic etching step. Formed by - ♦ photolithographic patterning and non-multilayer structure, including in the gate structure, the gate structure 20 can be an electrical layer 22, and formed in the gate dielectric layer 2 The gate of the lowest level is in the preferred embodiment, the gate electrode layer 24 on the gate structure θ·22. The gate top electrode layer 26 上 on the gate electrode layer; For example, the material of cerium oxide, cerium oxynitride or nitriding stone s 22 includes, for example, the combination of the above. The gate dielectric swarf is a ytterbium, a high dielectric constant dielectric or a cerium, including cerium oxide siA1 ηθ For the following - or a plurality of materials, 3), oxidation (Post 2), nitrogen oxidation, and strontium sulfate (cerebral palsy 4), oxidative error ((10)), nitrogen oxidization (Zr〇N), shixi secret (ZrSi〇4), yttrium oxide (γ2〇3), yttrium oxide (La2〇3), cerium oxide (Ce 〇 2), titanium oxide (Τι〇2), oxidation button (Ding & 2〇5) and their connections. In the practice of the present invention, the gate dielectric layer 22 is formed by a thermal oxidation method of a ruthenium oxide layer formed on the surface of the substrate. The gate electrode layer 24 may be doped polysilicon or polycrystalline

Client’s Docket No.:96-029 TT s Docket No:0492-A41274-TW/fmal/hhchiang/ 8 200921796 成,在其他實施例中’該閘極電極層24可由一或多種金 屬、金屬矽化物、金屬氮化物或導電金屬氧化物形成。於 較佳實施例中,該閘極電極層24包括一複晶矽。上述之金 屬包括例如目(molybdenum)、鶴(tungSten)、鈦(titanium)、 鈕(tantalum)、鉑(platinum)以及铪(hafnium)可作為閘極頂 部電極層26部分。此外,上述金屬氮化物包括但不限於氮 化銦(molybdenum nitride)' 氮化鎢(tungSten nitride)、氮化 鈦(titanium nitride)以及氮化鈕(tantalumnitride)。另外,該 至屬石夕化物則包括但不限於石夕化鎳(nickel silicic)、石夕化始 (cobalt silicide)、矽化鎢(tungsten silidde)、矽化鈦(titanium silicide)、石夕化I旦(tantalum silicide)、石夕化鈾(platinum silicide) 以及矽化铒(erbium siHcide)。而導電金屬氧化物則包括但 不限於釕金屬氧化物(ruthenium 〇xide)以及銦錫金屬氧化 物(indium tin oxide)。於本發明較佳實施例中,閘極頂部電 極層26係由矽化鎢所構成。根據本發明之較佳實施例,在 形成多層結構的閘極結構20後,以n2為”載氣”(Carder Gas) ’帶著pock和〇2 (氧氣)一起進入高溫爐管對閘極結 構20中閘極介電層2〇6(氧化矽所構成)及閘極電極層 (複晶矽材料所構成)之侧壁進行摻雜製程,反鹿 雜磷的氧化層〔圖中未顯示)。 心 ^ 請參考第3圖,接著在包含閘極結構2〇及基底η表 面之主動區上,並延伸至隔離結構14上毯覆性的形成一間 隔層30。在本發明較佳實施例中,間隔層3〇係以包含四 乙氧基矽烷(tetra-ethyl-ortho-silicate,TEOS)為材料,並利Client's Docket No.: 96-029 TT s Docket No: 0492-A41274-TW/fmal/hhchiang/ 8 200921796 In other embodiments, the gate electrode layer 24 may be made of one or more metals, metal tellurides, metals A nitride or a conductive metal oxide is formed. In a preferred embodiment, the gate electrode layer 24 includes a polysilicon. The above-mentioned metals include, for example, molybdenum, tungSten, titanium, tantalum, platinum, and hafnium as part of the gate top electrode layer 26. Further, the above metal nitrides include, but are not limited to, molybdenum nitride 'tungSten nitride, titanium nitride, and tantalum nitride. In addition, the genus of the genus of the genus includes, but is not limited to, nickel silicic, cobalt silicide, tungsten silidde, titanium silicide, and shi yihua. (tantalum silicide), platinum silicide, and erbium siHcide. Conductive metal oxides include, but are not limited to, ruthenium 〇xide and indium tin oxide. In a preferred embodiment of the invention, the gate top electrode layer 26 is comprised of tungsten germanium. According to a preferred embodiment of the present invention, after forming the gate structure 20 of the multilayer structure, the n2 is referred to as "Carder Gas" and the pock and the 〇2 (oxygen) are brought together into the high temperature furnace tube to the gate structure. The doping process of the sidewall of the gate dielectric layer 2〇6 (constituted by yttrium oxide) and the gate electrode layer (composed of the polycrystalline germanium material), and the oxide layer of the anti-deer phosphorus (not shown) . Heart ^ Please refer to Fig. 3, and then on the active region including the gate structure 2 and the surface of the substrate n, and extend to the isolation structure 14 to form a spacer 30. In a preferred embodiment of the invention, the spacer layer 3 is made of tetra-ethyl-ortho-silicate (TEOS).

Client’s Docket N〇.:96-029 TT's Docket No:0492-A41274-TW/final/hhchiang/ 9 200921796 用低壓化學氣相沉積法(low pressure chemical vapor deposition, LPCVD)以溫度介於約700至750°C,壓力介於 1至10 torr的條件下所形成。在其他實施例中,間隔層30 可透過各種技術如包括化學氣相沉積法、電漿化學氣相沉 積法、物理氣相沉積法,以及未來所發展之沉積方法形成。 而間隔層30可以為以下材料構成,或是由以下材料的組合 而構成:氮氧化矽(SiON)、氮化矽(Si3N4)、氧化鈕(Ta205)、 氧化鋁(Al2〇3)、聚乙烯氧化物(PE0X)、四乙基矽酸鹽 1 (TEOS)為基材之氧化物、氮化氧化層(nitrided oxide)、含給 氧 4匕物(oxide comprising hafnium)、含 I旦氧 4匕物(oxide comprising tantalum)、含銘氧化物(oxide comprising aluminum)、含氮氧化物(oxide containing nitrogen)或其他 介電材料。特別需要注意的是,間隔層30的厚度可隨著元 件特性的要求而做改變,或是可以不同的沉積方式(包含 摻雜製程)所形成的多層結構形成,原理之後會詳加說明。 f 在本發明實施例中,間隔層30的厚度係介於約50 A (或5 nm)至250 A (或25 nm)的範圍之間。另外,本發明所 沉積形成的間隔層3 0並不需要再透過钱刻製程進行回|虫 刻步驟,因而能夠更輕易的控制晶圓内元件的均勻度 (within-wafer device uniformity)。 請參考第4圖,間隔層30形成之後,以閘極結構2〇 及其周圍之間隔層3 0作為佈植罩幕,進行離子佈植製程以 將摻雜離子植入閘極結構20周圍之間隔層3〇侧邊的基底 12中,在一實施例中,可於離子佈植製程後再進行退火製Client's Docket N〇.:96-029 TT's Docket No:0492-A41274-TW/final/hhchiang/ 9 200921796 Using low pressure chemical vapor deposition (LPCVD) at temperatures between about 700 and 750° C, formed under pressure of 1 to 10 torr. In other embodiments, the spacer layer 30 can be formed by various techniques such as chemical vapor deposition, plasma chemical vapor deposition, physical vapor deposition, and deposition methods developed in the future. The spacer layer 30 may be composed of the following materials or a combination of the following materials: cerium oxynitride (SiON), tantalum nitride (Si3N4), oxidation button (Ta205), aluminum oxide (Al2〇3), polyethylene. Oxide (PE0X), tetraethyl phthalate 1 (TEOS) is an oxide of a substrate, a nitrided oxide, an oxide containing hafnium, and an oxygen-containing oxide. Oxide comprising tantalum, oxide comprising aluminum, oxide containing nitrogen or other dielectric material. It is particularly important to note that the thickness of the spacer layer 30 can be varied as required by the characteristics of the device, or can be formed by a multilayer structure formed by different deposition methods (including doping processes), as will be explained in more detail later. f In an embodiment of the invention, the thickness of the spacer layer 30 is between about 50 A (or 5 nm) to 250 A (or 25 nm). In addition, the spacer layer 30 formed by the deposition of the present invention does not need to be subjected to the etching process by the engraving process, thereby making it easier to control the within-wafer device uniformity. Referring to FIG. 4, after the spacer layer 30 is formed, the gate structure 3 and the spacer layer 30 around it are used as an implantation mask to perform an ion implantation process to implant dopant ions around the gate structure 20. In the substrate 12 on the side of the spacer layer 3, in one embodiment, it can be annealed after the ion implantation process.

Clients Docket No.:96-029 TT's Docket No:0492-A41274-TW/final/hhchiang/ 10 200921796 程以使推雜離子擴政而开y成/炎穆雜源極及汲_極(lightly doped source/drain,LDD)區域 42。其中 ldd 區域 42 亦被 稱為源極/汲極延伸區域。在其他實施例中,亦可以一傾斜 角度進行佈植製程而比LDD區域42更延伸至閘極結構下 方形成袋區域(pocket region)(圖中未顯示)。而佈植製程 所使用的製程條件,如植入離子種類、植入能量及劑量, 或植入角度會隨著兀件特性要求而做調變。由於在閘極結 構20周圍减的間隔層30具有—適當之厚度,能夠讓為 形成LDD㈣42喊人的摻_子在植人製程或退火製 程中提供-緩衝區域U散’以避免摻雜離子擴散至問 極結構20下方的基底12淺表面的閘極到汲極 ㈣間的重疊區域’而增加元件中閘極引發的汲 極漏電流。而隨著元件特性不同的要求下,佈植製程所使 用條件的不同,間隔層30的厚度可隨著推雜離子可能的擴 散fe圍不同而做調變。也由於此具有適當厚度之間隔層3〇 作為元件製程的調變參數,於基底12表面上的間隔層3〇 亦能夠作為緩衝層,因此能夠使用較一般摻雜製程更高之 能量或劑量的離子植入條件形成LDD區域42,不至於使 摻雜區域過度遠離基底12表面而失去作用。在本發明實施 例中,間隔層30的厚度係介於約5〇 a (或5 nm )至25〇人 (或25 nm)的範圍之間。在—實施例中,係以約2〇 KeV 至40 KeV之能量進行摻雜製程,以形成LDD區域42。 請參考第5圖至第6圖.。接著於閘極結構2〇之兩侧的 間隔層30上形成如第5圖中所顯示之侧壁間隙壁32,例Clients Docket No.:96-029 TT's Docket No:0492-A41274-TW/final/hhchiang/ 10 200921796 Cheng to make the push-ion ion expansion and open y / _ _ _ _ _ _ _ _ _ _ _ _ _ /drain, LDD) area 42. The ldd region 42 is also referred to as the source/drain extension region. In other embodiments, the implant process may be performed at an oblique angle to extend beyond the LDD region 42 to form a pocket region (not shown) below the gate structure. The process conditions used in the implant process, such as the implanted ion species, implant energy and dose, or implant angle, are modulated as the characteristics of the device are required. Since the spacer layer 30, which is reduced around the gate structure 20, has a suitable thickness, it can be used to form an LDD (four) 42 erroneous doping in the implantation process or the annealing process to provide a buffer region U-distribution to avoid dopant ion diffusion. The gate-to-drain (4) overlap region of the shallow surface of the substrate 12 under the pole structure 20 is increased to increase the gate leakage current induced by the gate in the device. With the different characteristics of the components, the thickness of the spacer layer 30 can be modulated by the difference in the possible diffusion of the dopant ions, depending on the conditions used in the implantation process. Also because of the spacer layer 3 having an appropriate thickness as a modulation parameter of the device process, the spacer layer 3 on the surface of the substrate 12 can also serve as a buffer layer, so that it is possible to use a higher energy or dose than the general doping process. The ion implantation conditions form the LDD region 42 so as not to cause the doped region to be excessively distant from the surface of the substrate 12 to lose its effect. In an embodiment of the invention, the thickness of the spacer layer 30 is between about 5 〇 a (or 5 nm) to 25 〇 (or 25 nm). In an embodiment, the doping process is performed at an energy of about 2 〇 KeV to 40 KeV to form the LDD region 42. Please refer to Figure 5 to Figure 6. Then, sidewall spacers 32 as shown in FIG. 5 are formed on the spacer layer 30 on both sides of the gate structure 2A, for example.

Client^ Docket No.:96-029 TT5s Docket No:0492-A41274-TW/fmal/hhchiang/ 11 200921796 5已括至y為氣化矽(即Si〇2)、氮氧化矽(即或 士:矽(SlN)之材料’此也包括藉由利用習知技藝中之— :1又’儿積與回_製程以形成多層間隙壁的方法 '然後再以 側壁間隙壁32竹&说:$ @ ^ 作為佈植罩幕進行一自行對準之第二離子 布植衣私以如第6圖所顯示在側壁間隙壁32旁且於間隔Client^ Docket No.: 96-029 TT5s Docket No:0492-A41274-TW/fmal/hhchiang/ 11 200921796 5 Enclosed to y is gasification 矽 (ie Si〇2), bismuth oxynitride (ie or 矽:矽(SlN) material 'This also includes the method of forming a multi-layered spacer by utilizing the conventional technique: 1 and 'the product and the back process' and then the sidewall spacer 32. Bamboo & said: $ @ ^ As a deployment mask, a self-aligned second ion implant is privately placed next to the sidewall spacer 32 as shown in Fig. 6 and spaced apart

層3〇下之基底12内形成源極/汲極區44。藉此完成一 MOS 電晶體的製作。 本發明之實施例所揭露之形成半導體裝置的方法,係 於閘極結構周m及基底上沉積形成具有—適當之厚度的間 隔層’而未再透過蝕刻製程進行回蝕刻步驟,因而能夠輕 易的控制晶圓内^件的均勾度。其中形成於基底表面上的 間隔層能夠作為緩衝層,因此能夠使用較一般摻雜製程更 高之能量或劑量的離子植入條件形成LDD區域,不至於使 摻雜區域過度遠離基底表面而失去作用。而形成於閘極結 構周圍的隔離層能夠讓為形成LDD區域而植入的摻雜離 子在植入製程或退火製程中提供一緩衝區域進行擴散,以 避免摻雜離子擴散至閘極結構下方的基底淺表面的閘極到 汲極(gate-to-drain)間的重疊區域’進而改善元件中閘極引 發的沒極漏電流。上述形成半導體裝置的方法可適用於各 種M0S電晶體包含表面通道(surface_channei) NM0S電晶 體、埋入式通道(buried-channel)P]V[〇S電晶體,以及動態 隨機存取記憶體(dynamic random-access memory, DRAM) 元件的製作。 雖然本發明已以較佳實施例揭露如上,然其並非用以A source/drain region 44 is formed in the substrate 12 under layer 3. This completes the fabrication of a MOS transistor. The method for forming a semiconductor device disclosed in the embodiments of the present invention is to deposit a spacer layer having a suitable thickness on the periphery m of the gate structure and the substrate without performing an etchback process through the etching process, thereby being easily etched. Control the uniformity of the components in the wafer. The spacer layer formed on the surface of the substrate can serve as a buffer layer, so that the LDD region can be formed using ion implantation conditions with higher energy or dose than the general doping process, so that the doped region is not excessively far from the substrate surface and loses its effect. . The isolation layer formed around the gate structure enables the dopant ions implanted for forming the LDD region to provide a buffer region for diffusion during the implantation process or the annealing process to prevent the dopant ions from diffusing below the gate structure. The overlap between the gate and the gate-to-drain on the shallow surface of the substrate improves the immersed leakage current induced by the gate in the device. The above method of forming a semiconductor device can be applied to various MOS transistors including surface channel (surface_channei) NM0S transistors, buried-channel P]V [〇S transistors, and dynamic random access memory (dynamic Random-access memory, DRAM) Fabrication of components. Although the present invention has been disclosed above in the preferred embodiment, it is not intended to be used

Client's Docket No.:96-029 TT7s Docket No:0492-A41274-TW/final/hhchiang/ 200921796 何熟悉此項技藝者’在不脫離本發明之精 ^ ’當可做些許更動與潤飾’因此本發明之保護 圍虽視後附之巾請專利範圍所界定者為準。 【圖式簡單說明】 第1圖顯示於基底中形成隔離結構以定 製程剖面圖; 〜 第2圖顯示在主動區内形成一閑極結構的製程剖面 圖, 第3一圖顯示包含閘極結構及基底表面之主動區上,並 延伸至隔離結構上毯覆性的形成—間隔層的製程剖面圖; 第4圖顯示閘極結構及其周圍之間隔層作為佈植罩 幕,進行料健製糾在祕結翻圍·隔層邊緣的 基底㈣成淡摻輯極錢極輯的製程剖面圖; 第5圖顯示於閘極結構之兩側的間隔層上形成侧壁間 隙壁的製程剖面圖; 第6圖顯示在側壁間隙壁旁且於間隔層下之基底内形 成源極/汲極區的製程剖面圖。 【主要元件符號說明】 U基底; 丨4隔離結構; 20閘極結構; 22閘極介電層; 24閘極電極層; 26閘極頂部電極層; 30間隔層, 32側壁間隙壁; 42淡摻雜源極及汲極區域;44源極/汲極區。Client's Docket No.: 96-029 TT7s Docket No:0492-A41274-TW/final/hhchiang/ 200921796 How to be familiar with this artist's work without departing from the essence of the present invention. The protection perimeter is subject to the scope defined in the patent scope. [Simple description of the drawing] Figure 1 shows the isolation structure formed in the substrate to customize the cross-section of the process; ~ Figure 2 shows the process profile of forming a dummy structure in the active region, and Figure 3 shows the structure including the gate structure. And the active area on the surface of the substrate, and extending to the process of forming a blanket-separation layer on the isolation structure; Figure 4 shows the gate structure and the spacer layer around it as a coating mask for material curing The process section of the base (4) of the edge of the partition and the edge of the partition is formed into a lightly mixed series; the fifth figure shows the process profile of the sidewall spacer formed on the spacer layer on both sides of the gate structure. Figure 6 shows a cross-sectional view of the process of forming a source/drain region in the substrate under the spacer layer next to the sidewall spacer. [Main component symbol description] U substrate; 丨4 isolation structure; 20 gate structure; 22 gate dielectric layer; 24 gate electrode layer; 26 gate top electrode layer; 30 spacer layer, 32 sidewall spacer; Doped source and drain regions; 44 source/drain regions.

Client's Docket No.:96-029 XT's Docket No:0492-A41274-TW/final/hhchiang/ 13Client's Docket No.:96-029 XT's Docket No:0492-A41274-TW/final/hhchiang/ 13

Claims (1)

200921796 十、申請專利範圍: 1. 一種半導體裝置的製造方法,以改善閘極引發的汲 極漏電流,包括下列步驟: 提供一基底; 於基底中定義一主動區; 於該主動區表面形成一閘極堆疊結構; 形成至少一間隔層於該閘極堆疊結構之侧壁及表面 上,並延伸至該基底之表面上;以及 Γ: 實施一離子佈植製程,以在鄰接該閘極堆疊結構侧壁 之該間隔層旁,而位於該間隔層下方之該基底中形成一摻 雜區。 2. 如申請專利範圍第1項所述之半導體裝置的製造方 法,其中該間隔層材料包含四乙氧基矽烷。 3. 如申請專利範圍第1項所述之半導體裝置的製造 方法,其中該間隔層材料包含氮氧化矽、氮化矽、氧化鈕、 氧化鋁、聚乙烯氧化物、四乙基矽酸鹽為基材之氧化物、 氮化氧化層、含給氧化物、含钽氧化物、含銘氧化物、含 氮氧化物,或其組合所構成。 4. 如申請專利範圍第2項或第3項所述之半導體裝置 構的製造方法,其中該間隔層的厚度約為50 Α (或5 nm) 至 250 A (或 25 nm)。 5. 如申請專利範圍第4項所述之半導體裝置的製造方 法,其中該間隔層係以一低壓化學氣相沉積製程形成。 6. 如申請專利範圍第5項所述之半導體裝置的製造方 Client’s Docket No.:96-029 TT5s Docket No:0492-A41274-TW/fmal/hhchiang/ 14 200921796 :化==約至辦的條件下進行該低 法,轉利第5項所述之半導體裝置的製造方 學氣相沉=力介於約1…讀件下進行繼化 t如巾科觀圍第丨項所紅㈣妓置的製造方 法,/、中该摻雜區包括輕摻雜區及/或袋形換雜區200921796 X. Patent Application Range: 1. A method for fabricating a semiconductor device for improving gate-induced drain leakage current, comprising the steps of: providing a substrate; defining an active region in the substrate; forming a surface on the active region a gate stack structure; forming at least one spacer layer on sidewalls and surfaces of the gate stack structure and extending onto a surface of the substrate; and: performing an ion implantation process to adjacent the gate stack structure A doped region is formed in the substrate below the spacer layer. 2. The method of fabricating a semiconductor device according to claim 1, wherein the spacer material comprises tetraethoxydecane. 3. The method of fabricating a semiconductor device according to claim 1, wherein the spacer layer material comprises bismuth oxynitride, tantalum nitride, oxidized button, aluminum oxide, polyethylene oxide, and tetraethyl decanoate. The oxide of the substrate, the nitrided oxide layer, the oxide-containing oxide, the cerium-containing oxide, the cerium-containing oxide, the nitrogen-containing oxide, or a combination thereof. 4. The method of fabricating a semiconductor device according to claim 2, wherein the spacer layer has a thickness of about 50 Å (or 5 nm) to 250 A (or 25 nm). 5. The method of fabricating a semiconductor device according to claim 4, wherein the spacer layer is formed by a low pressure chemical vapor deposition process. 6. The manufacturer of the semiconductor device described in the fifth paragraph of the patent application is called Client's Docket No.: 96-029 TT5s Docket No: 0492-A41274-TW/fmal/hhchiang/ 14 200921796 :========== The low method is carried out, and the manufacturing method of the semiconductor device described in claim 5 is determined by the gas phase sinking force = the force is between about 1 and the reading device is carried out, and the red (four) device is set up. The manufacturing method, wherein the doped region comprises a lightly doped region and/or a pocket-shaped alternating region 去請專利範圍第8項所述之半導輯置的製造方 法,其中该裕雜區包括Ν型摻雜區。 方/•二申請專利範㈣8項所述之半導财置的製造 方法,其中該摻雜區包括ρ型摻雜區。 請專利範圍第2項所述之半導體裝置的製造 製程/約2G KeV至4Q Kev之能量進行該離子佈植 以改善閘極引發的 12. —種半導體裝置的製造方法 汲·極漏電流,包括下列步驟: 提供一基底; 於基底中定義一主動區; 於該主動區表面形成—閘極堆疊結構; 形成至少一間隔層於該閘極堆疊結構之側壁及 上,並延伸至該基底之表面上; 又 以該隔離層作為緩衝層,實施一第一離子佈植製程, 以在鄰接__#結構側壁之關隔料,且位於 隔層下方之该基底中形成—第一摻雜區; Client’s Docket No.:96-029 TT5s Docket N〇:〇492-A41274-TW/fmayiilichiang/ 15 200921796 於該閘極堆疊結構側壁之該隔離層旁形成一側壁間隙 壁;以及 實施一第二離子佈植製程,以在鄰接該閘極堆疊結構 侧壁之該側壁間隙壁旁,且位於該間隔層下方之該基底中 形成一第二摻雜區。 13. 如申請專利範圍第12項所述之半導體裝置的製造 方法,其中該間隔層材料包含四乙氧基矽烷。 14. 如申請專利範圍第12項所述之半導體裝置的製 造方法,其中該間隔層材料包含氮氧化矽、氮化矽、氧化 钽、氧化鋁、聚乙烯氧化物、四乙基矽酸鹽為基材之氧化 物、Ιι化氧化層、含給氧化物、含组氧化物、含銘氧化物、 含氮氧化物,或其組合所構成。 15. 如申請專利範圍第13項或第14項所述之半導體 裝置構的製造方法,其中該間隔層的厚度約為50人(或5 nm)至 250 A (或 25 nm)。 16. 如申請專利範圍第15項所述之半導體裝置的製造 方法,其中該間隔層係以一低壓化學氣相沉積製程形成。 17. 如申請專利範圍第16項所述之半導體裝置的製造 方法,其中係以溫度介於約700至750 °C的條件下進行該 低壓化學氣相沉積製程。 18. 如申請專利範圍第16項所述之半導體裝置的製造 方法,其中係以壓力介於約1至10 torr條件下進行該低壓 化學氣相沉積製程。 19. 如申請專利範圍第12項所述之半導體裝置的製造 Client’s Docket No.:96-029 TT^ Docket No:0492-A41274-TW/fmal/hhchiang/ 16 200921796 / ”中該第—摻雜區包括輕摻雜區及/或袋形摻雜區。 、.如申請專利範圍第19項所述之半導體裝置的製造 方法,其中該第一摻雜區包括N型摻雜區。 、 21. 如申請專利範圍帛19項所述之半導體裝置的製造 方法,其中該第一摻雜區包括p型摻雜區。 22. 如申請專利範圍第12項所述之半導體裝置的夢造 :製:中以約赠至4〇KeV之能量進行該第-離子 、、23·如申請專利範圍第12項所述之半導體裝置的製造 方法,其中該第二摻雜區包括源極區及/或汲極區。 、士申明專利範圍第23項所述之半導體裝置的製造 方法,其中第二摻雜區包括N型摻雜區。 女申。月專利範圍第23項所述之半導體裝置 方法’其中第二摻雜區包括P型摻雜區。衣、 26.—種半導體裝置,包括: 一基底;The manufacturing method of the semiconductor package described in claim 8 wherein the impurity region comprises a germanium-type doped region. The manufacturing method of the semiconductor package described in the above-mentioned patent application, wherein the doped region comprises a p-type doped region. The manufacturing process of the semiconductor device described in the second paragraph of the patent scope / the energy of about 2G KeV to 4Q Kev is performed to improve the gate-induced semiconductor device manufacturing method. The following steps: providing a substrate; defining an active region in the substrate; forming a gate stack structure on the surface of the active region; forming at least one spacer layer on the sidewall of the gate stack structure and extending to the surface of the substrate And using the isolation layer as a buffer layer, performing a first ion implantation process to form a first doped region in the substrate adjacent to the spacer of the __# structure sidewall; Client's Docket No.: 96-029 TT5s Docket N〇: 〇 492-A41274-TW/fmayiilichiang/ 15 200921796 Forming a sidewall spacer next to the isolation layer of the sidewall of the gate stack structure; and implementing a second ion implantation The process is such that a second doped region is formed in the substrate adjacent to the sidewall spacer adjacent to the sidewall of the gate stack structure and under the spacer layer. 13. The method of fabricating a semiconductor device according to claim 12, wherein the spacer material comprises tetraethoxydecane. 14. The method of fabricating a semiconductor device according to claim 12, wherein the spacer layer material comprises bismuth oxynitride, cerium nitride, cerium oxide, aluminum oxide, polyethylene oxide, tetraethyl cerate. The oxide of the substrate, the ruthenium oxide layer, the oxide-containing oxide, the group oxide, the oxide containing the oxide, the nitrogen oxide, or a combination thereof. 15. The method of fabricating a semiconductor device according to claim 13 or claim 14, wherein the spacer layer has a thickness of about 50 (or 5 nm) to 250 A (or 25 nm). 16. The method of fabricating a semiconductor device according to claim 15, wherein the spacer layer is formed by a low pressure chemical vapor deposition process. 17. The method of fabricating a semiconductor device according to claim 16, wherein the low pressure chemical vapor deposition process is carried out at a temperature of about 700 to 750 °C. 18. The method of fabricating a semiconductor device according to claim 16, wherein the low pressure chemical vapor deposition process is carried out at a pressure of between about 1 and 10 torr. 19. The manufacture of a semiconductor device as described in claim 12, Client's Docket No.: 96-029 TT^ Docket No: 0492-A41274-TW/fmal/hhchiang/16 200921796 / ” The method of fabricating a semiconductor device according to claim 19, wherein the first doped region comprises an N-type doped region. The method of fabricating a semiconductor device according to claim 19, wherein the first doped region comprises a p-type doped region. 22. The semiconductor device of claim 12, wherein: The method for fabricating a semiconductor device according to claim 12, wherein the second doped region comprises a source region and/or a drain The method of manufacturing a semiconductor device according to the invention of claim 23, wherein the second doped region comprises an N-type doped region. The semiconductor device method described in claim 23, wherein The two doped regions include a P-type doped region. Body apparatus, comprising: a substrate; 一閘極堆疊結構,位於該基底上方; 一間隔層,位於該閘極堆疊結構之侧壁及表面上,並 延伸至該基底之表面上; 一 一第-摻雜區,鄰接該閘極堆疊結構侧壁之該間隔層 旁’而位於該間隔層下方之該基底中; 側壁間隙壁,位於該閘極堆疊結構側壁之隔離 旁;以及 @ 一第二摻雜區,鄰接該閘極堆疊結構侧壁之該側壁間 Client's Docket N〇.:96-029 TT5s Docket No:0492-A41274-TW/fmayhhchiang/ 17 200921796 :童方,而位於該間隔層下方之該基底中。 β 27.如申請專利範圍第26項所述半 该間隔層材料包含四乙氧基我。衣置,其令 該間ϋΐ申請專利範圍第26項所述之半導體裝置,其t 聚乙二:包含氮氧化矽、氮化矽、氧化组、氧化鋁、 層、含^氧化物四八乙基石夕酸鹽為基材之氧化物、氮化氧化 或其组含㈣一氧化物、含氮氧化物, f置29=申請專利範圍第27項或第28項所述之半導體 間隔層的厚度約為5G A (或5 _ )至250 Λ ^ Μ請專利範圍第26項所述之半導體裝置,其中 人 4竑區包括輕摻雜區及/或袋形摻雜區。 节繁I1换如中請專利範圍第3 G項所述之半導體裝置,盆中 ^弟一摻雜區包括N型摻雜區。 /、 該當3一2申請專利範圍第3 〇項所述之半導體裝置,其中 Μ弟払雜區包括Ρ型摻雜區。 3一3、如申請專利範圍第26項所述之半導體裝置,其中 弟—摻雜區包括源極區及/或汲極區。 今繁3-4换t申請專利範圍第%項所述之半導體裝置,其中 。/弟—4雜區包括N型摻雜區。 35如申請專利範圍第33項所述之半導體袋置,其中 ^弟一备雜區包括P型摻雜區。 、 Client's Docket N〇.;96-029 TT'sD〇cketNo:0492-A41274-TW/fmayhhch1ang/ 18a gate stack structure over the substrate; a spacer layer on the sidewalls and surfaces of the gate stack structure and extending onto the surface of the substrate; a first doped region adjacent to the gate stack The spacer sidewall of the structure sidewall is located in the substrate below the spacer layer; the sidewall spacer is located adjacent to the isolation sidewall of the gate stack structure; and @ a second doped region adjacent to the gate stack structure Client's Docket N〇.: 96-029 TT5s Docket No: 0492-A41274-TW/fmayhhchiang/ 17 200921796: The child is located in the substrate below the spacer layer. β 27. As described in claim 26, the spacer layer material contains tetraethoxy I. The semiconductor device described in claim 26, wherein the semiconductor device comprises: bismuth oxynitride, tantalum nitride, oxidized group, aluminum oxide, layer, and oxide The base oxide is a substrate oxide, nitriding oxidation or a group thereof containing (tetra) monooxide, nitrogen oxide, f 29 = the thickness of the semiconductor spacer layer according to claim 27 or claim 28 The semiconductor device of claim 26, wherein the human germanium region comprises a lightly doped region and/or a pocket doped region. In the semiconductor device described in the third aspect of the patent, the doped region of the basin includes an N-type doped region. The semiconductor device according to the third aspect of the invention, wherein the Μ 払 doping region comprises a Ρ type doped region. The semiconductor device of claim 26, wherein the doped region comprises a source region and/or a drain region. This is the semiconductor device described in item 5% of the patent application, in which. / Brother - 4 hetero regions include N-doped regions. 35. The semiconductor package of claim 33, wherein the preparation region comprises a P-type doped region. , Client's Docket N〇.;96-029 TT'sD〇cketNo:0492-A41274-TW/fmayhhch1ang/ 18
TW96141989A 2007-11-07 2007-11-07 Semiconductor device and method of manufacturing thereof TWI402920B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96141989A TWI402920B (en) 2007-11-07 2007-11-07 Semiconductor device and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96141989A TWI402920B (en) 2007-11-07 2007-11-07 Semiconductor device and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
TW200921796A true TW200921796A (en) 2009-05-16
TWI402920B TWI402920B (en) 2013-07-21

Family

ID=44727988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141989A TWI402920B (en) 2007-11-07 2007-11-07 Semiconductor device and method of manufacturing thereof

Country Status (1)

Country Link
TW (1) TWI402920B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497609B (en) * 2013-04-10 2015-08-21 Inotera Memories Inc Semiconductor memory system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI226088B (en) * 2003-10-07 2005-01-01 United Microelectronics Corp Method of manufacturing metal-oxide-semiconductor transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497609B (en) * 2013-04-10 2015-08-21 Inotera Memories Inc Semiconductor memory system

Also Published As

Publication number Publication date
TWI402920B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
TWI315083B (en) Offset spacers for cmos transistors
US7615840B2 (en) Device performance improvement using flowfill as material for isolation structures
JP2012004473A (en) Semiconductor device and method for manufacturing semiconductor device
JP2005072405A (en) Thin film forming method and semiconductor device manufacturing method
JP2006278974A (en) Semiconductor device and manufacturing method thereof
JP2009060130A (en) Semiconductor device and manufacturing method thereof
JP2004158487A (en) Method for manufacturing semiconductor device
JP2008283182A (en) PMOS transistor manufacturing method and CMOS transistor manufacturing method
US20060138550A1 (en) Semiconductor device with multiple gate dielectric layers and method for fabricating the same
US6911705B2 (en) MISFET which constitutes a semiconductor integrated circuit improved in integration
KR100563398B1 (en) Method and device for reducing gate induction drain leakage current in thin gate oxide MOSFS
JP4524562B2 (en) Vertical MISFET manufacturing method, vertical MISFET, semiconductor memory device manufacturing method, and semiconductor memory device
JP2006278488A (en) Semiconductor device and manufacturing method thereof
JP2000022139A (en) Semiconductor device and its manufacture
JP4005055B2 (en) Semiconductor device and manufacturing method thereof
JP2008288364A (en) Semiconductor device and manufacturing method of semiconductor device
JP2005251801A (en) Semiconductor device
JP2005064032A (en) Semiconductor device and its manufacturing method
JP2004165470A (en) Semiconductor device and manufacturing method thereof
WO2012035684A1 (en) Semiconductor device and production method for same
JP4656854B2 (en) Manufacturing method of semiconductor device
TW200921796A (en) Semiconductor device and method of manufacturing thereof
JP5324849B2 (en) Semiconductor device and manufacturing method thereof
KR101082101B1 (en) Method for fabricating gate electrode in dual gate
JP4115769B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees