[go: up one dir, main page]

TW200921769A - Plating apparatus for metallization on semiconductor workpiece - Google Patents

Plating apparatus for metallization on semiconductor workpiece Download PDF

Info

Publication number
TW200921769A
TW200921769A TW096141722A TW96141722A TW200921769A TW 200921769 A TW200921769 A TW 200921769A TW 096141722 A TW096141722 A TW 096141722A TW 96141722 A TW96141722 A TW 96141722A TW 200921769 A TW200921769 A TW 200921769A
Authority
TW
Taiwan
Prior art keywords
bubble
electrolyte
channel
substrate
anode
Prior art date
Application number
TW096141722A
Other languages
Chinese (zh)
Other versions
TWI355686B (en
Inventor
Yue Ma
Shi Wang
Jen-Shiu Pang
Yun-Wen Huang
Chi N Na
Huei Wang
Original Assignee
Acm Research Shanghai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acm Research Shanghai Inc filed Critical Acm Research Shanghai Inc
Priority to TW096141722A priority Critical patent/TWI355686B/en
Publication of TW200921769A publication Critical patent/TW200921769A/en
Application granted granted Critical
Publication of TWI355686B publication Critical patent/TWI355686B/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a plating apparatus with multiple anode zones and cathode zones. The electrolyte flow within each zone is controlled individually with independent flow control devices. A gas bubble collector whose surface is made into pleated channels is implemented for gas removal by collecting small bubbles. coalescing them, and releasing the residual gas. A buffer zone built within the gas bubble collector further allows unstable microscopic bubbles to dissolve.

Description

200921769 九、發明說明: 【發明所屬之技術領域】 本發明-般而言關於電鍍裝置,更具體地說,關於用 於以電化學方式在薄的阻性基材上形成一金屬層的裝 置、疋在晶片上製造超大規模積體(ulsi 構的一部分。 & $ ^ 【先前技術】 在ULSI中形成互連結構的 ,^ 娜α %中,在溥的阻性基材 (種晶層)上以電化學方彳 干方式沈積金屬層,通常是銅層,一 般是由一電鍍裝置來達成。該 电殿衣置包括下列元件:陽 極、電源、導電的晶Η 15]垃壯$ 、… 3Θ片固持裝置、以及電解液單元,該電 解液單元中包含由酸、金屬越知甘& I屬鹽和其他添加劑組成的混合溶 液。 在傳統的電艘過程中,餐個接g 甲I個種晶層範圍内的電流密度 是不均勻的。由於“邊续埒庙,,认士 透緣效應的存在,使得基材周邊的 電流密度較高。該電流密唐的 A ,丨L在度的不均勻性使得晶片的邊緣具 有較高的電鍍速率而晶片的φ 曰日β的中〜具有較低的電鍍速率。 由於晶片邊緣和中心部位的f+ T “ Η位的電鍍速率差異而導致電 鍍膜的不均勻性,使得奘罟的益 仔裝置的工藝流程中後續的平坦化步 驟變得困難。一具有獨立電湃批制&也 电愿&制的%極系統可被應用於 電鍍裝置,以克服上述的不灼勺 k扪小勺勾電鍍速率的缺陷,美國專 利US 6, 391,166介紹了一種上述的系統。 當使用惰性陽極或者多個惰性陽極進行電锻時,會在 200921769 電錢的過程中產生 統,或者對該電妒Λ;氣泡也有可能是由電解液補給系 中引入的。干預操作或者曰常維護的過程 膜中形成孔穴的Γ表面相接觸時,會在電鑛 使侍裝置的良品率降低。力m 中,當在電解液中产 -取嚴重的情況 甲產生大f的氣泡時,電 並且電鍍裝置电%會發生改變, 嚴重地降低。 s田π机動路徑被阻塞而 Γ 基於汙力和自然對流原理的去 現代的電鍍裝置φ / θ 衣直吊吊破用在 用。…:中。但是這些裝置通常對於小氣泡不起作 ^ φ 個表面上蚪,它們报難被浮力、附 者力和電鍍裝置中血 了 /、i /瓜k産生的拉力作用下的合力移 除。傳統技術中的去芎 的去虱泡裝置包括多孔層,該多孔層具有 干坦的表面並且呈任丨雜你技Ύ i κ 變产…φ隹]錐“了消除大量的小氣泡而不改 I机體%和電場,堂 而要引入一種使得小氣泡能夠變成大氣 的::包,並機制,並增大去氣泡的膜表面積。 U 4 #冑尺寸逐漸變小’需要在電鑛溶液中添加 里的有機添加劑以達成無孔填充。這些有機成分在電鍍 、k私中曰刀解。分解的産物聚集在電鍍液中並且降低了 真充的丨生牝。如果這些産物作爲雜質結合到電鍍膜中,它 們會成爲孔穴的犯4六4六 勺也核核〜’導致器件的可靠性失效。 、,在更加先進的電鍍工藝技術中,以提高電鍍液排出和 補’。速率來保證化學試劑新鮮程度通常需要更高的成本。 。在電鍍裝置中流體場不是專門設計的情況下,電鍍過 矛王中新鮮的活性有機物成分和分解後的副産物在接近晶 200921769 片表面區域的電解液中丄 的)將是不均勻的。::?速率(該速率是質傳控制 電鐘液排出和補個問題不能簡單地藉由提高 山,^甩狯迷年來解決。 【發明内容] 本發明的實施例是_ 壯 ^ 極的陽朽^ ^ 鍍衣置,包括谷納至少兩個陽 徑们陽極腔、容柄$小;加a ',内至夕兩個流體 陽極循環體系、至少兩個至夕兩個 主^兩個陰極循環體系、一緩衝區、一 由迫使氣泡聚並的)名、為,t 1猎 u 虱泡收集器、一電源子系統、一能夠 有效移除電鍍副産物的雷+ 个、 物的電解液流體場控制子系統、—電解 液分配子系統、 玉解 二 以及—晶片固持裝置。 该氣泡收隼哭奘罢6 > % 、°°裝置包括至少一個多孔膜,其表面形成 褶狀通道以收隼与治、, 成 木虱/包亚迫使氣泡在其中聚並。褶狀通道的 ,. 次者倒V形,引導聚並後的氣泡沿著該通 或者凹槽向上移叙 ^ ^ 冑亚排出。並且該褶狀通道增A 了氣泡收 ,因此增加了總的電解液流通面積,使得電解 液在小氣泡阻突洛.由#200921769 IX. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to electroplating apparatus, and more particularly to apparatus for electrochemically forming a metal layer on a thin resistive substrate,制造 Manufacture of ultra-large-scale integrated bodies on the wafer (part of the ulsi structure. & $ ^ [Prior Art] In the ULSI, an interconnect structure is formed, in the αα%, in the resistive substrate of the tantalum (the seed layer) The metal layer is deposited by electrochemical method, usually a copper layer, which is generally achieved by a plating apparatus. The electric house includes the following components: an anode, a power source, and a conductive crystal crucible 15] 3 固 holding device, and an electrolyte unit, the electrolyte unit comprising a mixed solution composed of an acid, a metal, a genus & I salt and other additives. In the traditional electric boat process, the meal is connected to a The current density in the range of the seed layer is not uniform. Because of the existence of the transparent effect, the current density around the substrate is higher. The A, 丨L of the current is dense. Non-uniformity makes the wafer The edge has a higher plating rate and the wafer has a lower plating rate of φ 曰 day β. The unevenness of the plating film due to the difference in the plating rate of the f+ T “clamping position at the edge of the wafer and the center portion, The subsequent planarization step in the process flow of the 益 益 仔 device becomes difficult. A % pole system with independent electric 湃 & & 电 电 可 amp can be applied to the plating device to overcome the above A system for the above-mentioned system is described in US Pat. No. 6,391,166. When using an inert anode or a plurality of inert anodes for electrical forging, it will be in the process of electricity during the 200921769 Produce the system, or the electric raft; the air bubbles may also be introduced by the electrolyte supply system. When the intervention operation or the process of the maintenance process is in contact with the surface of the ruthenium forming the hole in the process, the device will be in the electric mine. The yield rate is reduced. In the force m, when a large amount of bubbles are generated in the electrolyte, a large amount of bubbles are generated, and the electricity and electroplating device % are changed and severely lowered. The diameter is blocked and the modern electroplating device based on the principle of pollution and natural convection φ / θ is used for hanging and hanging....: but these devices usually do not work on small surfaces. They are difficult to be removed by the buoyancy, the attachment force and the resultant force of the blood//i/jaw generated by the electroplating device. The conventional defoaming defoaming device comprises a porous layer, the porous layer It has a dry tan surface and is a noisy technique. i κ variable production... φ隹] cone "has eliminated a large number of small bubbles without changing the body % and electric field, but to introduce a kind of small bubbles that can become atmospheric :: Pack, and mechanism, and increase the membrane surface area to remove bubbles. The U 4 #胄 size gradually becomes smaller. It is necessary to add the organic additive in the electromineral solution to achieve non-porous filling. These organic components are solved in electroplating and k-private. The decomposed product accumulates in the plating bath and reduces the abundance of the true charge. If these products are incorporated as impurities into the plating film, they will become a hole for 4,466, and a core nucleus~' causing the reliability of the device to fail. In the more advanced electroplating process technology, to improve the discharge and replenishment of the plating solution. The rate to ensure the freshness of the chemical usually requires higher costs. . In the case where the fluid field is not specifically designed in the electroplating apparatus, the fresh active organic constituents and the decomposed by-products in the electroplated spears will be uneven in the electrolyte close to the surface of the crystal surface of 200921769. ::? Rate (this rate is the quality control of the discharge of the electric clock and the problem of replenishment cannot be solved simply by raising the mountain.) The invention is an embodiment of the invention. The coating set includes at least two anodes of the anode and the anode of the valley, and the handle is small; plus a ', two fluid anode circulation systems in the inner and the evening, at least two cathodes and two cathode circulation systems, a buffer zone, a name that forces the bubbles to coalesce, a t 1 hunting u bubble collector, a power subsystem, a thunder + device capable of effectively removing plating by-products, and an electrolyte fluid field controller System, electrolyte distribution subsystem, jade solution 2, and wafer holding device. The bubble 隼 奘 & & & & & & & & & & & & & % & & & & 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置 装置In the pleated channel, the second person is inverted V-shaped, and the bubble after the convergence is guided to move upward along the passage or the groove. And the pleated channel increases the bubble collection, thus increasing the total electrolyte flow area, so that the electrolyte is blocked in the small bubble.

土虱泡收集器的部分孔的時候仍然可以漭 動0 ”L 。=毛月的實施例還在膜之間提供額外的緩衝區域,該 ,2、品/中电解液循環的速率明顯低於陰極腔。緩衝區域 使得通過底部膜納 " 膜的破型氣泡在抵達頂部膜之前有—段 間可以溶解。 f 本發明包拓—猫—^ 括 種错由控制接近晶月表面的電解The partial pores of the earthworm bubble collector can still be tilted 0"L. The embodiment of the hairy month also provides an additional buffer zone between the membranes, which 2, the product / medium electrolyte cycle rate is significantly lower than Cathode chamber. The buffer area allows the broken bubbles of the film to pass through the bottom film to be dissolved before reaching the top film. f The present invention includes a package-to-cat-type error by controlling the electrolysis close to the surface of the crystal moon.

體場而向電鍍美姑矣 ;,L 又丞材表面有效供應有機添加劑並從電鑛基 7 200921769 材表面有效移除副産物的方法。電解液流體場控制藉由對 陰極腔中流體區域的流體速率和起始-截止時間的聯人# 制而達成。電解液流體場控制子系統獨立控制每—個流= 區域中的流體速率和起始-截止時間。有機添加劑的有效 供應改善了對於基材上通孔、溝槽和雙大馬士革結構的金 屬填充,而電鍍副産物的有效移除減小了電鍍金屬膜的不 純度。 【實施方式】 圖la、lb和1〇示出了根據本發明的一實施例的電鍍 裝置。該電鍵裝置包括:下部腔u,用於容納陽極並包 括多個陽極區域110 ;上部腔12,包括多個具有獨立的陰 極電解液入口 m的陰極區域12〇。陽極區域11〇和陰極 區域120都被多個縱向設置的隔離牆1〇2分隔。下部腔 U和上部腔12藉由橫向設置的氣泡收集器ι〇5互相連接。In the field of electroplating, the method of effectively supplying organic additives from the surface of the coffin and effectively removing by-products from the surface of the electric ore base. Electrolyte fluid field control is achieved by a combination of fluid velocity and on-off time for the fluid region in the cathode chamber. The electrolyte fluid field control subsystem independently controls the fluid velocity and start-stop time in each flow = zone. The efficient supply of organic additives improves the metal filling of the vias, trenches and dual damascene structures on the substrate, while the effective removal of plating by-products reduces the imperfections of the plated metal film. [Embodiment] Figs. 1a, 1b, and 1B show an electroplating apparatus according to an embodiment of the present invention. The keying device includes a lower chamber u for accommodating the anode and including a plurality of anode regions 110, and an upper chamber 12 including a plurality of cathode regions 12A having independent cathode electrolyte inlets m. Both the anode region 11A and the cathode region 120 are separated by a plurality of longitudinally disposed partition walls 1〇2. The lower chamber U and the upper chamber 12 are connected to each other by a bubble collector ι 5 disposed laterally.

U 在下邛胺11的每一個陽極區域"〇巾,一環形的陽 ° 〇 1由⑲基座1 〇 7支撐並與獨立控制的電源通道i7 相連接。腔…。7具有多個鍵入式…用於固定陽 和-亥支柱包覆有不導電的材料。該裝置的底部是可拆卸 的’以便於更換陽極。位於陽極上方的硬質框架ιΐ6提供 對於氣泡收集器和該_罢 、的上部結構的機械支援。每一個 環形是單片或者是由相連接的多片組成。該電 鑛裝置的電源包括多個雷% 夕们冤源通道丨丨7。根據一實施例,下 部腔包括至少兩個陽極區域11〇。隔離膽⑽圍繞每一個 200921769 衣开v陽極1 0 1並分隔電場及限制電解液流體場。隔離牆 1 0 2的材貝疋远自不導電的、抗化學腐蝕的塑膠。根據— 貫施例,隔離牆1 02上具有數個小孔,這些小孔位於靠近 氣泡收集H 1〇5的位置’用作氣泡的通道。根據另一個實 施例,該隔離冑1〇2上面沒有小孔,以完全地隔離相鄰陽 極區域中的電解液。 電鍍電流或者電壓由電源通道i丨7獨立地施加到每 :個環形陽極上。電源的每個獨纟通道可根據預設的時間 施加電壓和波形到每一個環形陽極。電源可以是直流或者 脈衝電源。 一陽極流體分配子系統由每一個陽極區域中連接到 電解液流量控制裝置的獨立的陽極電解液入口 103和獨 立的陽極電解液出口 119組成。該陽極流體分配子系統用 於向每一個陽極區域供應電解液並從每一個陽極區域中 排出舊的電解液、分解産物和粒子。每一個陽極區域中獨 立的陽極電解液循環體系使得不同的陽極區域中陽極電 解液流之間的混合最小化。 氣泡收集器1 0 5由一個或多個可透性膜附於硬質開 孔或網狀的框架上而形成,其中該框架是錐形的或者倒錐 形的。位於該氣泡收集器框架周邊的四槽丨丨5收集氣泡並 引導匕們至一氣體出口 1 〇 6。凹槽1 1 5可以是傾斜的,相 對於水平面形成一個角度。一氣體出口 106與該凹槽相連 接以排出收集的氣體。 一個或多個附著的可透性膜302(參考圖3a)可爲達 200921769 成不同的功能而設計。下層膜作爲氣泡 徑大於數微米至數十 〇阻擋層,阻擋直 '^未的氣泡。該腺 中產生的分解產物、隹 /馭问時防止在下部腔 供對於上;膜^+ e %夜中,該膜同時還提 ^ ^ ^ 、 例,氣泡收集器的 膜由選自了列組中的多孔含氟塑 (OVT? \ 5,, 果成氣乙細 (PVF)、聚偏氟乙烯(pVDF)、 .w ; 軋乙烯(PTFE)、全氟烷 氧基樹脂(PFA),其膜上的孔的平U is in each anode region of the lower guanamine 11 " wipe, a ring-shaped yang 1 is supported by 19 pedestal 1 〇 7 and is connected to an independently controlled power channel i7. Cavity... 7 has a number of typed... for fixing the yang and - hai pillars coated with a non-conductive material. The bottom of the device is detachable' to facilitate replacement of the anode. A hard frame ι 6 located above the anode provides mechanical support for the bubble collector and the superstructure of the dam. Each ring is a single piece or consists of a plurality of connected pieces. The power supply of the ore device includes a plurality of lightning sources 丨丨7. According to an embodiment, the lower chamber includes at least two anode regions 11A. Isolation bile (10) surrounds each of the 200921769 open v anodes 1 0 1 and separates the electric field and limits the electrolyte fluid field. The wall of the 1 0 2 is far from the non-conductive, chemically resistant plastic. According to the embodiment, the partition wall 102 has a plurality of small holes which are located at a position close to the bubble collecting H 1 〇 5 as a passage for the bubble. According to another embodiment, the spacer 胄1〇2 has no apertures thereon to completely isolate the electrolyte in adjacent anode regions. The plating current or voltage is independently applied to each of the annular anodes by the power supply channel i丨7. Each individual channel of the power supply can apply voltage and waveform to each of the ring anodes according to a preset time. The power supply can be a DC or pulsed power supply. An anode fluid distribution subsystem consists of a separate anolyte inlet 103 and a separate anolyte outlet 119 connected to the electrolyte flow control device in each anode region. The anode fluid distribution subsystem is used to supply electrolyte to each anode region and to discharge old electrolyte, decomposition products and particles from each anode region. The separate anolyte circulation system in each anode region minimizes mixing between the anode electrolyte streams in different anode regions. Bubble collector 105 is formed by attaching one or more permeable membranes to a rigid open or meshed frame wherein the frame is tapered or inverted cone shaped. The four tanks 5 located around the bubble collector frame collect bubbles and direct them to a gas outlet 1 〇 6. The grooves 1 15 may be inclined to form an angle with respect to the horizontal plane. A gas outlet 106 is connected to the recess to discharge the collected gas. One or more attached permeable membranes 302 (see Figure 3a) can be designed for different functions up to 200921769. The underlying film acts as a bubble with a bubble diameter greater than a few micrometers to tens of tens of ruthenium, blocking straight bubbles. The decomposition product produced in the gland, the 隹/驭 is prevented from being supplied to the lower chamber; the membrane is at the same time, the membrane is also raised at the same time, for example, the membrane of the bubble collector is selected from the group of columns. Porous fluoroplastic (OVT?, 5, sulphuric acid (PVF), polyvinylidene fluoride (pVDF), .w; rolled ethylene (PTFE), perfluoroalkoxy resin (PFA), Flatness of the hole in the membrane

Rn ^ 卞叼直徑爲2// m到 以m。在另一個實施例中,上層膜 斜别… ⑯用作直徑小於2"m的 i C泡的阻擋層。該膜允許特定的離子通過,但是阻止 I大分子通過。根據一實施例,上層膜由所述組中具有特 定功能團的含氟塑料製成,上層膜的孔的平均直徑爲2題 到 150nm。 ’Rn ^ 卞叼 diameter is 2 / / m to m. In another embodiment, the upper film is slanted ... 16 as a barrier to i C bubbles having a diameter less than 2 " m. This membrane allows specific ions to pass but prevents the passage of I macromolecules. According to an embodiment, the upper film is made of a fluorine-containing plastic having a specific functional group in the group, and the pores of the upper film have an average diameter of from 2 to 150 nm. ’

J 該可透性膜的表面上具有糟狀通道,以提高氣泡收集 的效果’並增加該可透性膜的總面積。該褶狀通道具有v 形或者倒V形的橫截面。這種構造能在引導殘餘氣體沿著 通道向上排出之前迫使氣泡首先在通道内聚並。根據一實 施例’褶狀通道可以授向排布、螺旋排布或者環狀排布, 且褶狀通道中兩個相鄰的側壁之間的夹角是i 〇。到 120。。每一個褶狀通道的最大高度在2mm到30_之間。 在靜止的電解液滲液中施加在一個氣泡上的體積力 的總和(忽略重力)由公式(1 )給出,並且和氣泡的半 徑密切4相關: TVgpr1 - βπηνΓ ( 1 ) 其中F是體積力的合力’ r是氣泡的半徑,v是氣泡 10 200921769 的速度,?7是該電解液溶液的粘度係數。 一 /、有j、的半杈的氣泡難以在電解液溶液中移動’因 其丈的體積合力復小。爲了將它們有效地從電解液溶液中 移除,需要使它們聚並成大的氣泡。獨狀通道迫使氣 移動路徑在通道的底部匯合’從而使氣泡在該處聚並* 當氣泡的尺寸變大後,更大的體積合力將推動它們: 著通道向上移動並排出。 Γ 此外,減小褶狀通道的兩個相鄰的側壁之間的夾角 由於氣泡與側壁接觸而産生的對於浮力效應的阻 小,使得氣泡更加容易移動到褶狀通道的底部。 另—方面,褶狀通道還增加了膜的表面積,使得 面總的電解液流通面積增加。在小氣泡出現並附著在膜上又 部分地阻塞孔的情況下’大的表面積允許保持充分的電解 液流通。大的表面積還增加了特定離子過遽的效果。 在圖1 a和1 b中’根據-實施例,上部腔1 2包括叙 個陰極區域12〇,其橫截面是環形(中間的一個陰極 除外,其橫截^圓形)。上部腔12中的每—個陰極= 1 2〇 ^有至^個連接到電解液流量控制裝置的獨立供給 電解液入口 U卜多餘的電解液從上部腔體周邊溢出並 出口 U8流出。電解液入口⑴的管路穿過氣泡收集器框 架和隔離牆1〇2以抵達每一個獨立的陰極區域12〇。陰極 區域的電解液流量控制裝置可設置不同的流速和開關0士 間,以使得流體場的流線能夠在特定的工藝步驟中被整體 地控制或者局部地控制^ 200921769 需要局部流體場控制來 電解液混合物的新鮮度,特近電鐘一 ,又得別疋維持混合物中 的浪度。有機添加劑的濃度影響到電料率、埴充t 以及鍵模上的缺陷。還需要局部流體從 區域中有效地移除副产铷^ j木攸电鍍反應 秒丨示剎產物,防止它們結合到正 屬膜中。藉由將副產物從正在反庳 生長的孟 和溝槽構造中的電铲埴充 附近移除,通孔 人m 鍍填充缺陷可以最小化,並且使最㈣J The permeable membrane has a bad passage on the surface to enhance the effect of bubble collection' and increase the total area of the permeable membrane. The pleated channel has a v-shaped or inverted V-shaped cross section. This configuration forces the bubbles to first accumulate in the channels before directing the residual gas to exit upwardly along the channels. According to an embodiment, the pleated channel can be oriented, spirally arranged or annularly arranged, and the angle between two adjacent side walls of the pleated channel is i 〇. To 120. . The maximum height of each pleated channel is between 2mm and 30_. The sum of the volume forces exerted on a bubble in a static electrolyte solution (ignoring gravity) is given by equation (1) and is closely related to the radius of the bubble: 4 TVgpr1 - βπηνΓ ( 1 ) where F is the volume force The resultant force 'r is the radius of the bubble, and v is the speed of the bubble 10 200921769? 7 is the viscosity coefficient of the electrolytic solution. A /, a bubble with a semi-twisted j, is difficult to move in the electrolyte solution' due to the volumetric force of the same. In order to effectively remove them from the electrolyte solution, they need to be aggregated into large bubbles. The monolithic channel forces the gas moving path to converge at the bottom of the channel so that the bubbles converge there and* as the size of the bubbles becomes larger, a larger volume of force will push them: the channel moves up and exits. Γ Furthermore, reducing the angle between the two adjacent side walls of the pleated channel results in a smaller resistance to the buoyancy effect due to the contact of the bubble with the side wall, making it easier for the bubble to move to the bottom of the pleated channel. On the other hand, the pleated channels also increase the surface area of the membrane, resulting in an increase in the total electrolyte flow area of the surface. The large surface area allows sufficient electrolyte to circulate in the presence of small bubbles that adhere to the film and partially block the pores. The large surface area also increases the effect of specific ions passing through. In Figures 1 a and 1 b, according to the embodiment, the upper chamber 12 includes a cathode region 12 〇 having a circular cross section (except for one cathode in the middle, which is circular in cross section). Each cathode in the upper chamber 12 = 1 2 〇 ^ has a separate supply electrolyte connection to the electrolyte flow control device. U The excess electrolyte overflows from the periphery of the upper chamber and exits at the outlet U8. The line of electrolyte inlet (1) passes through the bubble collector frame and the barrier 1〇2 to reach each of the individual cathode regions 12〇. The electrolyte flow control device in the cathode region can be set with different flow rates and switches to enable the flow line of the fluid field to be integrally controlled or locally controlled in a specific process step. 200921769 Localized field control is required for electrolysis The freshness of the liquid mixture, especially the electric clock, has to be maintained in the mixture. The concentration of the organic additive affects the electrical material rate, the charge, and the defects on the bond mold. It is also desirable for the local fluid to effectively remove the by-products from the zone to detect the brake products and prevent them from binding into the positive membrane. By removing by-products from the vicinity of the shovel charge in the Meng and grooved structures that are growing in the ruthenium, the through-hole m-plating fill defect can be minimized and the most (four)

1屬線和觸點的可靠性得丨一 ''ς f置以”… 調整電解液流量控制 衣置以後仔在整個雷链其士 基材祀圍内均勻的流體場,以確保 在丹i電鍍基材的中心部 ^ 1〒遭緣。卩位的區域具有相簟 的新鮮有機添加劑和反應副産物 、 卜 彳7 j 乂換迷率。在整個電鍍 圍内相等的新鮮有機添加劑和反應副產物的交換 速率確保了最終得到的電㈣的成分均m,換句話說, 提高了在基材的不同位置上製造的器件最終的電阻^均 勻性和抗電遷移性能均勻性。The reliability of the 1 line and the contacts is ' ς 置 置 置 置 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整 调整The center part of the electroplated substrate is edged. The niobium area has opposite fresh organic additives and reaction by-products, and the exchange rate of the dip is the same. Fresh organic additives and reaction by-products are equal in the entire electroplating area. The exchange rate ensures that the resulting composition of electricity (4) is m, in other words, improves the ultimate resistance and uniformity of electromigration resistance of the devices fabricated at different locations on the substrate.

綜上所述,藉由局部地控制流體場,可以獲得如下的 效果:控制整個基材上的電鍵膜厚度的均句性;控制整個 基材上的電鍍膜成分的均勻性;控制整個基材上的電鍍膜 電阻率的均勻性,控㈣整個基材上的冑鑛膜抗冑遷移性能 的均勻性。 上部腔12的上端還具有流體分散裝置112,該流體 刀政裝置攻置在接近基材的位置,以使得在每一個陰極區 域的頂部産生微觀的均勻流體場。根據一實施例,流體分 月欠淡置11 2由下列之—的材料製成:多孔陶瓷、抗化學腐 12 200921769 蝕的塑膠材料。 位於上部腔1 2上方的基材固持裝置1 2〗固持基材1 2 2 並向其傳導電流。有關基材固持裝置的詳細描述,可參考 US 6’ 248’ 22 2、US 6, 72 6, 8 23 和 US 6, 749, 728 ,上述的 專利都已轉讓給本申請的申請人並引用結合與此。 來自陽極電解液槽240的電解液溶液以一組流速分 別提供給每一個陽極區域。在到達每一個陽極區域之前, 該電解液溶液通過泵233、過濾器232,以及流量控制裝 置2 04。每一個陽極區域的電解液藉由位於下部腔底部的 出口 219返回到陽極電解液槽24〇。返回的電解液溶液由 流置控制裝置238進行控制。在下部腔中所收集的氣體從 氣體出口 2 0 6被排出到陽極電解液槽2 4 〇,然後從陽極電 解液槽240送到排氣裝置241。一壓力泄漏閥2以位於過 濾盗2 3 2和陽極電解液槽2 4 〇之間。陰極電解液槽2 5 〇中 的電解液溶液被以一組流速分別提供給每一個陰極區 域。在到達陰極區域之前,該電解液溶液通過泵236、過 濾、器235、以及流量控制裝置2〇8。每一個陰極區域的電 解液經由位於上部腔側壁上的出口 2丨8返回到陰極電解 液槽250。一壓力泄漏閥237位於過濾器235和陰極電解 液槽250之間。壓力泄漏閥234和237在流量控制裝置 2 0 4和2 0 8關閉時打開。 圖3a、3b和3c示出了氣泡收集器的第一實施例,其 中圖3a是該氣泡收集器的立體圖,圖3b是其橫截面,而 圖3c是該氣泡收集器與隔離牆一起裝配時的詳細結構。 13 200921769 即固仏* 3b戶斤示,數個徑 錐形或者是倒錐形的框架3〇〇上 ^通道如位於-的糟狀通道3〇1具有v形的橫截面。^面=斤述的,該徑向 3°°上的數個開孔m進入到上部腔:解液溶液經由框架 聚並後的氣泡沿著徑向的褶狀:向 離牆m上的小孔308,如圖 向上私動,通過隔 框架的-實施例,向上移動7""。根據使用倒錐形 I J工矛夕勤的氣泡逐 的凹槽3 1 5收隼。凹;1 ζ /包收集器週邊 叹木凹槽3 1 5連接到供妆隹 體出口 306。在後面的圖中,圖以體排出的氣 氣體出口以簡化說明。 施例忽略了凹槽和 X據使用錐形框架的一實祐仓丨户 泡在錐形氣泡收集器的尖端被收集 於稍微低於尖端最高點的位置,氣體出口 道位 極電解液槽中。 ,乳體V出到陽 圖4a、4b和4c示+ 7友, t s 4 ., 出了氣泡收集器的第二實施例,复 丫圔 4a疋έ玄氣泡收鱼55 7^ ’、 孔危收集盗的立體圖, 面,而圖4c是該氣泡收 /、 P刀榼戴 結構。 收集益、與隔離牆連接的部分的詳細 如圖4a和4b所:^ 螺旋形的褶狀通道401位於一 錐开^或者倒錐形的框牟4 的褶……:圖4““b所示的螺旋形 形的褶狀通道4〇1可以呈女t t甶忒螺方疋 /、有與上述的徑向的褶狀通道相 同的橫截面形狀。數個n 汗L 405用於供電解液溶液通過。 聚並後的氣泡沿著螺㈣的褶狀通道 隔離牆407上的小孔4〇 通過 8 ’如圖4c所不。向上移動的氣 14 200921769 體以和第__庵& 貫知例類似的方式被收集並導出。 圖5a/ 5b和5c示出了氣泡收集器的第三實施例,其 中圖5a是該氣泡收集器的立體圖,圖5匕是其部分橫截 面,而圖、 尺μ氣/包收集器與隔離踏連接的部分的詳細 結構。 , ,如圖5a和5b所示,數個環形的褶狀通道5〇1位於一 ::或者倒錐形的框架,上’圖5“σ 5b所示的環形的In summary, by locally controlling the fluid field, the following effects can be obtained: controlling the uniformity of the thickness of the electro-bond film on the entire substrate; controlling the uniformity of the composition of the plating film on the entire substrate; controlling the entire substrate The uniformity of the resistivity of the plating film on the upper layer controls the uniformity of the anti-caries migration property of the antimony film on the entire substrate. The upper end of the upper chamber 12 also has a fluid dispersing device 112 that is positioned close to the substrate such that a microscopic uniform fluid field is created at the top of each cathode region. According to one embodiment, the fluid sub-difference is made of the following materials: porous ceramic, chemically resistant 12 200921769 etched plastic material. The substrate holding device 1 2 located above the upper chamber 1 2 holds the substrate 1 2 2 and conducts current thereto. For a detailed description of the substrate holding device, reference is made to US 6 '248' 22 2, US 6, 72 6, 8 23 and US 6, 749, 728, each of which is assigned to the applicant of the present application With this. The electrolyte solution from the anolyte tank 240 is supplied to each of the anode regions at a set of flow rates. The electrolyte solution passes through pump 233, filter 232, and flow control device 204 before reaching each anode region. The electrolyte in each anode region is returned to the anolyte tank 24 by an outlet 219 located at the bottom of the lower chamber. The returned electrolyte solution is controlled by the flow control device 238. The gas collected in the lower chamber is discharged from the gas outlet 206 to the anolyte tank 24, and then sent from the anode electrolyte tank 240 to the exhaust unit 241. A pressure leak valve 2 is located between the filter thief 2 32 and the anolyte tank 24 〇. The electrolyte solution in the catholyte tank 2 5 〇 is supplied to each of the cathode regions at a set of flow rates. The electrolyte solution passes through pump 236, filter 235, and flow control device 2〇8 before reaching the cathode region. The electrolyte solution of each cathode region is returned to the cathode electrolytic bath 250 via the outlet 2?8 on the side wall of the upper chamber. A pressure leak valve 237 is located between the filter 235 and the cathode electrolyte bath 250. The pressure leak valves 234 and 237 are opened when the flow control devices 2 0 4 and 2 0 8 are closed. Figures 3a, 3b and 3c show a first embodiment of a bubble trap, wherein Figure 3a is a perspective view of the bubble collector, Figure 3b is a cross section thereof, and Figure 3c is a view of the bubble collector assembled with the wall Detailed structure. 13 200921769 ie 仏 仏 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 , , 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ^ face = jin, the radial opening 3 ° a number of openings m into the upper cavity: the solution of the solution solution through the frame after the bubble along the radial pleats: small to the wall m The aperture 308, as shown in the figure, is moved upwards, through the embodiment of the spacer frame, moving up 7"". According to the groove 3 1 5 of the bubble of the inverted cone I J. Concave; 1 ζ / bag collector periphery Sing wood groove 3 1 5 is connected to the makeup outlet 306. In the following figures, the figure is a gas outlet for the body discharge to simplify the description. The embodiment ignores the groove and the X. According to the use of a tapered frame, a solid shoal of the shoal is collected at the tip of the cone bubble collector at a position slightly lower than the highest point of the tip. . , the milk V out to the positive 4a, 4b and 4c shows + 7 friends, ts 4 ., the second embodiment of the bubble collector, the 丫圔 4a 疋έ 疋έ 气泡 收 55 55 55 55 55 55 、 、 、 、 The stereoscopic map of the stolen, the face is collected, and Fig. 4c is the bubble receiving/and the P-knife wearing structure. The details of the collection and connection to the wall are as shown in Figures 4a and 4b: ^ The spiral pleated channel 401 is located in a pleat of a cone or inverted cone ......4: Figure 4 "b The spiral-shaped pleated channel 4〇1 may be in the same cross-sectional shape as the radial pleated channel described above. Several n sweat L 405 are used to pass the electrolyte solution. The bubble after the merging passes along the pleated channel of the screw (four). The small hole 4 上 on the partition wall 407 passes through 8' as shown in Fig. 4c. Moving upwards 14 200921769 The body is collected and exported in a similar manner to the __庵& Figures 5a / 5b and 5c show a third embodiment of a bubble trap, wherein Figure 5a is a perspective view of the bubble collector, Figure 5 is a partial cross-section thereof, and Figure 5 is a gas/pack collector and isolation The detailed structure of the part that is connected. , as shown in Figures 5a and 5b, a plurality of annular pleated channels 5〇1 are located in a :: or inverted tapered frame, on the upper side of Figure 5 "σ 5b"

—丸,道被設置在不同的垂直位置上。根據一實施例,每 另個:形褶狀通道的相鄰側壁之間具有相同的夾角。根據 另貫施例,不同的環形褶狀通道的侧壁之間具有不同的 失角。 、、對於每一個環形褶狀通道’其具有與上述的徑向褶狀 通道相同的橫截面形狀。數個開1 5G5用於供電解液溶液 通過。 /下部的通道中聚並後的氣泡經由連接相鄰通道的路 徑509和隔離牆507上的小孔5〇8移動到上部的通道,如 圖5c所不。向上移動的氣體以和第—實施例類似的方式 被收集並導出。 圖6a、6b、6c和6d示出了氣泡收集器的第四實施例, 其中圖6a是該氣泡收集器的立體圖,圖6b是其部分橫截 面,圖6c和6d是該氣泡收集器以兩種方式與隔離牆連接 從而將收集的氣泡排出通道的詳細結構。 §玄第四貫施例與第三實施例類似,除了環形褶狀通道 被5又置在平面框架600上相同的垂直位置。 15 200921769 根據1施例,每—個陽 開的,隔離_卜^古π y 兑疋由隔離牆完全分隔 ' 離&上久有供氣體通過的 液與相鄰陽極防止陽極電解 芴極&域中的電解液發生交又。 包括-獨立的氣體出 ’-個知極區域 個Ψ方⑼士 肘收木的氧體排出該裝置。在— 個““列中’聚並後 在 隼,夕尨π丄 十叹置的稽狀通道中被收 -,之後經由連接每個獨- Pills, the roads are set in different vertical positions. According to an embodiment, each of the other: the adjacent side walls of the pleated channel have the same angle. According to a further embodiment, the different annular pleated channels have different angles of loss between the side walls. For each annular pleated channel' it has the same cross-sectional shape as the radial pleated channel described above. Several open 1 5G5 are used to pass the electrolyte solution. The bubbles that have merged in the lower channel are moved to the upper channel via the path 509 connecting the adjacent channels and the small holes 5〇8 on the partition wall 507, as shown in Fig. 5c. The upwardly moving gas is collected and exported in a similar manner to the first embodiment. Figures 6a, 6b, 6c and 6d show a fourth embodiment of a bubble trap, wherein Figure 6a is a perspective view of the bubble collector, Figure 6b is a partial cross-section thereof, and Figures 6c and 6d are two of the bubble collectors. This is the way to connect the wall to remove the collected bubbles from the detailed structure of the channel. The fourth embodiment is similar to the third embodiment except that the annular pleated channel is placed 5 in the same vertical position on the plane frame 600. 15 200921769 According to the first example, each of the positive open, the isolation _ 卜 ^ ancient π y 疋 疋 is completely separated by the separation wall 'from the & a long time for the gas to pass through the liquid and the adjacent anode to prevent the anode anodic electrode The electrolyte in the domain is in turn. Including - independent gas out ‘------------------------------------------------- After being gathered in the "column", it is received in the 通道, 尨 尨 丄 丄 丄 丄 丄 - - - - - , , ,

的悬古郫八r /、有V形^截面的通道 路^輸送。被收集的氣體經由連接到 "乳官道60 6排出’並經由隔離牆60 7回到陽 =:槽中,如圖6。所示。在另-個實施例中,在禪 乙、收集的聚亚後的氣泡被電解液流形成的液壓壓 入到=下方十分接近具有V形橫截面通道的最高部分 的出乳官4 61。中’並返回到陽極電解液槽中,如圖6dThe hanging ancient 郫8 r /, V-shaped ^ section of the channel ^ transport. The collected gas is discharged via the connection to the "Military Road 60' and returned to the positive =: tank via the barrier 60 7 as shown in Figure 6. Shown. In another embodiment, the bubble formed by the flow of the electrolyte after the collection of the polythene is pressed under the = very close to the highest portion of the outlet having the V-shaped cross-section channel. Medium' and return to the anolyte tank, as shown in Figure 6d

厂、在另個實細例中,在兩個隔離牆之間的通道僅具 有半個V形的橫截面。一隔離牆在具有v形橫截面的通道 的最低部分將該通道截斷,而後一個隔離牆在具有v形橫 裁面的通道的最高部分將該通道截斷。在該具體的設置 中’兩個相鄰的隔離牆之間的表面不再需要褶狀通道,該 氣泡收集器適用於不需要徹底移除所有微型氣泡的情 況。在圖6a及6b中,其中605為框架600的開孔。 圖7示出了具有徑向褶狀通道的膜的總面積和沒有 褶狀通道的膜的總面積之比。計算中所使用的變數在表1 中給出。基於第一實施例的具有徑向褶狀通道的膜的總面 積可經由公式(2 )計算得到。該比例隨著通道數量的增 加以及通道最大高度的增加而增大。該比例越高,說明用 16 200921769 於電解液流通的面積越大。如圖所示,在有200個最大高 度爲1 0mm的徑向賴狀通道的情況下,膜的總面積是沒有 褶狀通道的膜的總面積的3倍。 表1 錐形基座半徑 R 錐形而度 Η 錐形母線長度 L 褶狀通道的最大高度 h 稽狀通道的數量 η 面積 h. L2 -i?2 sin2 (-) Η -Ϋ + H2 ){s- h2L2 Η2 Η1 R2 π ,π、 + --(R cos(—)- V η η hAL1 -i?2sin2(-) ΗIn another example, the channel between the two walls has only a half V-shaped cross section. A wall cuts the channel at the lowest portion of the channel having a v-shaped cross section, and the latter wall intercepts the channel at the highest portion of the channel having the v-shaped cross section. In this particular arrangement, the surface between the two adjacent barriers no longer requires a pleated channel, and the bubble collector is suitable for situations where it is not necessary to completely remove all of the microbubbles. In Figures 6a and 6b, where 605 is the opening of the frame 600. Figure 7 shows the ratio of the total area of the film having the radially pleated channels to the total area of the film without the pleated channels. The variables used in the calculation are given in Table 1. The total area of the film having the radially pleated channels based on the first embodiment can be calculated via the formula (2). This ratio increases as the number of channels increases and the maximum height of the channel increases. The higher the ratio, the larger the area in which the electrolyte flows through 16 200921769. As shown, in the case of 200 radially-oriented channels having a maximum height of 10 mm, the total area of the membrane is three times the total area of the membrane without the pleated channels. Table 1 Radius of the tapered base R Cone and degree 锥形 Length of the tapered busbar L Maximum height of the pleated channel h Number of the tracked channel η Area h. L2 -i?2 sin2 (-) Η -Ϋ + H2 ){ S- h2L2 Η2 Η1 R2 π , π, + --(R cos(—)- V η η hAL1 -i?2sin2(-) Η

(2) 其中 7Γ Ά2 -及2 sin2(—) [7172 7Γ~(2) where 7Γ Ά2 - and 2 sin2(-) [7172 7Γ~

|(7?cos(-) - [y + Η2 + + R2 sin2(ξ)(1 — + L S =---—----i 2 圖8示出了氣泡收集器的第五實施例的橫截面,其具 有徑向的褶狀通道以及膜之間的緩衝區。 17 很躁圖S所示的實|(7?cos(-) - [y + Η2 + + R2 sin2(ξ)(1 - + LS =--------i 2 Figure 8 shows the fifth embodiment of the bubble collector A cross section with a radial pleated channel and a buffer between the membranes.

200921769 如圖8所示,氣泡收集器具有至少兩個可透性膜 802、803,一緩衝區域804位於這些可透性膜之間,一框 架8 0 0用於支撐這些可透性膜。數個作爲電解液入口的開 孔以與第一實施例相同的方式被提供,聚並後的氣泡以和 第一實鉍例類似的方式向上移動並被排出。在圖8中,其 中807為隔離牆’ 806為氣體出口,815為凹槽。 ^ 〜1工职 0 U乙彳口上層 可透性膜8G3之間存在間隙以形成—缓衝區域。在緩衝區 域804内的電解液流速足夠慢,爲通過下 搜氣泡因其不穩定而在該區域内溶解提供了足 間展需要詞的是,在本中請中,“微型氣泡”是指小於 下的孔㈣氣泡。緩衝區域中的電解液是由-附加的 電解液循壞體系獨立控制的’以提供比上部 歷。該壓力差確保了電解更低的液 U广"IL勁,以防止因抖开与 在該膜上暫時性附著而阻礙離子通過上層膜。…> 该緩衝區域可被應用 施例中。 任仃上述的乳泡收集器的實 【圖式簡單說明】 圖la示出了根據本發 . + 4明的—實施例的 面圖, 圖lb示出了圖la所 id. sa m ui m 、的電链裝置的分解 材和其固持裝置沒有示出; 刀鮮 圖 lc示出了同 電鍍裴置的 截 圖’其中基 個電鍍裝置的 俯視圖,其中流體分 18 200921769 散裝置、基材和其固持裝置沒有示出; 圖2示出了電鍍裝置中的電解循環的示意圖; 圖3a示出了第一實施例的氣泡收集器的立體圖; 圖3b示出了圖3a所示的氣泡收集器的橫截面; 圖3c示出了該氣泡收集器與隔離牆相連接的部分的 詳細視圖; 圖4a示出了第二實施例的氣泡收集器的立體圖; 圖4b示出了圖4a所示的氣泡收集器的部分橫截面; 圖4c示出了該氣泡收集器與隔離牆相連接的部分的 詳細視圖; 圖5a示出了第三實施例的氣泡收集器的立體圖; 圖5b示出了圖5a所示的氣泡收集器的部分橫截面; 圖5c示出了該氣泡收集器與隔離牆相連接的部分的 詳細視圖; 圖6a示出了第四實施例的氣泡收集器的立體圖; 圖6b示出了圖6a所示的氣泡收集器的部分橫截面; 圖6c示出了根據一實施例該氣泡收集器與隔離牆相 連接的部分的詳細視圖; 圖6d示出了根據另一實施例該氣泡收集器與隔離牆 相連接的部分的詳細視圖; 圖7示出了面積之比作爲具有不同最大通道高度的 徑向排布的褶狀通道的數量的函數; 圖8示出了根據第五實施例的氣泡收集器的橫截面。 19 200921769 【主要元件符號說明 11.下部腔 I 0 1.陽極 103.陽極電解液入口 106.氣體出口 II 0.陽極區域 112.流體分散裝置 11 6.框架 11 8 .出口 1 2 0.陰極區域 122.基材 206.氣體出口 218.出口 232.過濾器 236.泵 235.過濾器 23 8.流量控制裝置 241.排氣裝置 3 00.框架 3 02.可透性膜 306.氣體出口 3 0 8.小孔 400.框架 405.開孔 12.上部腔 102.隔離牆 105.氣泡收集器 107.腔基座 111.陰極電解液入口 I 15.凹槽 II 7.電源通道 119.陽極電解液出口 121.基材固持裝置 204.流量控制裝置 208.流量控制裝置 219‘出口 233. 泵 234. 壓力泄漏閥 237.壓力泄漏閥 240.陽極電解液槽 250.陰極電解液槽 3 0 1.褶狀通道 3 05.開孔 307.隔離牆 315.凹槽 401.褶狀通道 407.隔離牆 20 200921769 4 0 8 .,J、 500.框架 501.褶狀通道 505.開孔 . 507.隔離牆 5 0 8 .小子L . 5 09.路徑 600.框架 . 601.褶狀通道 605.開孔 606.管道 607.隔離牆 609.路徑 610.出氣管道 802.下層可透性膜 803.上層可透性膜 804.缓衝區域 806.氣體出口 807.隔離牆 815.四槽 \ 21As shown in Fig. 8, the bubble collector has at least two permeable membranes 802, 803 with a buffer zone 804 between the permeable membranes and a frame 800 for supporting these permeable membranes. A plurality of openings as electrolyte inlets are provided in the same manner as in the first embodiment, and the pooled bubbles are moved upward and discharged in a manner similar to the first embodiment. In Fig. 8, 807 is a partition wall '806 is a gas outlet, and 815 is a groove. ^ 〜1 Occupation 0 U U 彳 upper layer There is a gap between the permeable membrane 8G3 to form a buffer zone. The flow rate of the electrolyte in the buffer region 804 is sufficiently slow to provide a sufficient intervening word for the dissolution of the bubble in the region due to its instability. In the present application, the "microbubble" means less than Under the hole (four) bubble. The electrolyte in the buffer zone is independently controlled by an additional electrolyte fouling system to provide a higher ratio than the upper calendar. This pressure differential ensures that the lower electrolysis of the liquid U- "IL is strong to prevent the ions from passing through the upper film due to the temporary attachment of the shake and the film. ...> This buffer area can be applied in the application.任 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃 仃The decomposing material of the electric chain device and its holding device are not shown; the knife drawing lc shows a screenshot of the same electroplating device, in which a top view of the electroplating device, wherein the fluid is 18 200921769, the device and the substrate The holding device is not shown; FIG. 2 shows a schematic view of the electrolysis cycle in the electroplating device; FIG. 3a shows a perspective view of the bubble collector of the first embodiment; FIG. 3b shows the bubble collector of FIG. 3a. Figure 3c shows a detailed view of the portion of the bubble collector connected to the partition wall; Figure 4a shows a perspective view of the bubble collector of the second embodiment; Figure 4b shows the bubble shown in Figure 4a Figure 4c shows a detailed view of the portion of the bubble collector connected to the partition wall; Figure 5a shows a perspective view of the bubble collector of the third embodiment; Figure 5b shows Figure 5a Partial cross section of the bubble collector shown Figure 5c shows a detailed view of the portion of the bubble collector connected to the partition wall; Figure 6a shows a perspective view of the bubble collector of the fourth embodiment; Figure 6b shows the bubble collector of Figure 6a Partial cross section; Fig. 6c shows a detailed view of a portion of the bubble collector connected to the partition wall according to an embodiment; Fig. 6d shows a portion of the bubble collector connected to the partition wall according to another embodiment Detailed view; Figure 7 shows the area ratio as a function of the number of radially arranged pleated channels having different maximum channel heights; Figure 8 shows a cross section of a bubble collector according to a fifth embodiment. 19 200921769 [Main component symbol description 11. Lower cavity I 0 1. Anode 103. Anolyte inlet 106. Gas outlet II 0. Anode region 112. Fluid dispersion device 11 6. Frame 11 8. Outlet 1 2 0. Cathode region 122. Substrate 206. Gas outlet 218. Outlet 232. Filter 236. Pump 235. Filter 23 8. Flow control device 241. Exhaust device 3 00. Frame 3 02. Permeable membrane 306. Gas outlet 3 0 8. Small hole 400. Frame 405. Opening 12. Upper chamber 102. Wall 105. Bubble collector 107. Cavity base 111. Catholyte inlet I 15. Groove II 7. Power channel 119. Anode electrolyte Outlet 121. Substrate holding device 204. Flow control device 208. Flow control device 219 'outlet 233. Pump 234. Pressure leak valve 237. Pressure leak valve 240. Anolyte tank 250. Catholyte tank 3 0 1. Pleated Shaped channel 3 05. Opening 307. Wall 315. Groove 401. Pleated channel 407. Wall 20 200921769 4 0 8 ., J, 500. Frame 501. Pleated channel 505. Opening. 507. 5 0 8 . Kid L. 5 09. Path 600. Frame. 601. Pleated channel 605. Opening 606. Pipe 607. Wall 609. Path 610. Outlet duct 802. Lower layer permeable membrane 803. Upper layer permeable membrane 804. Buffer area 806. Gas outlet 807. Wall 815. Four slots \ 21

Claims (1)

200921769 、申請專利範圍: L 種電鍍裝置,包括: 中每::腔極::數個由數個隔離牆分隔& 區域形成一陽極電解液 上部腔,4 1丄 盾衣組 匕括數個由所述數個隔離踏 域,、中母個降Γ* T極&域中的陰極電解液循与 制; 乳泡收集器,設置在下部腔和上部腔之 泡收集器收集氣泡,迫使氣泡聚並,並引導 移出所述裝置; 流體分散裝置’設置在上部腔的頂部; 基材固持裝置,位於所述流體分散裝置 固持所述基材並向所述基材傳導電流; 具有多個獨立控制的通道的電源; 電解液流量控制裝置,用於控制所述腔 的電解液; 數個流體分配子系統,用於分配電解液 2 ·如申請專利範圍第1項所述的裝置, 所述氣泡收集器包括: 一個或多個框架’支援一個或多個可透 一路徑,供聚並後的氣泡向上移動至— 其中,所述最接近下部腔的可透性膜具 V形橫截面的稽狀通道’氣泡在所述褶狀通 陽極區域,其 分隔的陰極區 體系被獨立控 間,其中該氣 聚並後的氣泡 的上方,用於 中的各個區域 至所述腔中。 其特徵在於, 性膜; 氣體出口; 有V形或者倒 道中被收集並 22 200921769 被強迫聚並;以及 所述最接近上部腔的玎透性膜收集穿過所述最接近下 部腔的可透性膜的微型氣泡。 3.如申請專利範圍第2項所述的裝置,其特徵在於, 所述最接近下部腔的可透性膜是由下列材料之一製 成:聚氟乙烯(PVF)、聚偏氟乙烯(PVDF)、聚四敦乙稀 (PTFE)、全氟烷氧基樹脂(PFA)’其上的孔徑爲至 50 # in之間’該最接近下部腔的可透性膜將在下部腔中產 生的分解産物和其上方的電解液分離。 4·如申請專利範圍第2項所述的裝置,其特徵在於, 所述最接近上部腔的可透性膜是由下列材料之一製 成.聚氟乙烯(PVF)、聚偏氟乙烯(pVDF)、聚四氟乙烯 園)、全氟燒氧基樹脂侧,其上的孔徑二至200921769, the scope of application for patents: L kinds of electroplating devices, including: each:: cavity pole:: several are separated by several partition walls & the area forms an upper cavity of anolyte, 4 1 丄 shield group includes several The catholyte is circulated by the plurality of isolated stepping domains, the middle mother and the lowering *T pole & the bubble collector, and the bubble collectors disposed in the lower chamber and the upper chamber collect bubbles, forcing Bubbles are coalesced and directed out of the apparatus; a fluid dispersion device 'disposed on top of the upper chamber; a substrate holding device in which the fluid dispersion device holds the substrate and conducts current to the substrate; Independently controlled channel power supply; electrolyte flow control device for controlling the electrolyte of the chamber; and several fluid distribution subsystems for dispensing the electrolyte 2; as described in claim 1 of the scope of the patent application, The bubble collector comprises: one or more frames 'supporting one or more permeable paths, and the bubbles after the aggregation are moved upwards to - wherein the permeable membrane closest to the lower cavity has a V shape Shaped channel section JI 'pleated bubble in said anode region through which the cathode region separated by separate control systems, wherein the above gas bubble coalescence after, for use in the respective regions to the cavity. Characterized by: a film; a gas outlet; a V-shaped or inverted channel is collected and 22 200921769 is forced to gather; and the permeable membrane closest to the upper chamber is permeable through the closest lower chamber Microbubbles of the membrane. 3. The device of claim 2, wherein the permeable membrane closest to the lower chamber is made of one of the following materials: polyvinyl fluoride (PVF), polyvinylidene fluoride ( PVDF), polytetracycline (PTFE), perfluoroalkoxy resin (PFA)' with a pore size of between 50 # in between' the permeable membrane closest to the lower chamber will be produced in the lower chamber The decomposition product is separated from the electrolyte above it. 4. The device of claim 2, wherein the permeable membrane closest to the upper chamber is made of one of the following materials: polyvinyl fluoride (PVF), polyvinylidene fluoride ( pVDF), polytetrafluoroethylene garden), perfluoro alkoxy resin side, on the pore diameter two to 15—之間’該最接近上部腔的可透性膜過濾 特定離子。 的裝置,其特徵在於, 之間的夾角爲1〇。至 5_如申請專利範圍第2項所述 所述權狀通道的兩個相鄰側壁 120°之間。 其特徵在於, 的央角降低了 6.如申請專利範圍第2項所述的裝置 減小所述褶狀通道的兩個相鄰側壁之間 23 200921769 氣泡與所述側壁 應的阻力,使得 聚並。 氣泡r飭接觸而產生的對於浮力效 乳和動到所述 福狀通道中並在那裏 7·如申請專利筋 、 j耗圍第2項所述的裝 增加具有於中E? t 、、°疋取大咼度的褶狀通道 氣泡收集器的有效表 、的數里增加了所述 置,其特徵在 於 面積。 上 8.如申請專利範圍第2項所述的 所述褶狀通道彳a向排右 ,,、特徵在於, 、化向排布在一錐形或者 倒錐形的框架 上 9.如申請專利範圍第2項所述的裝 所述褶狀通道螺旋狀排布在4徵在於’ , v次者倒錐形的框架 上 10·如申請專利範圍第2項所述的裝置,复 所述褶狀通道環狀排布在一錐^ ,其特徵在於, , $或者倒錐形的框架 11.如申請專利範圍第2項所述的袭置, 所述褶狀通道環狀排布在一平面框加 ’、 置。 木上相同的垂直位 特徵在於 12.如申請專利範圍第2項所述 的裝置,其特徵在 於 24 200921769 置 所述褶狀通道環狀排 布在一平面框架上不同的垂直位 13二如申請專利範圍帛1項戶斤述的冑置,其特徵在於, 在每個陽極區域中,一陽極被-個所述隔離牆所包 圍所2C陽極連接到電源系統的一個獨立控制的通道。 14申明專利範圍第1項所述的裝置,其特徵在於, 所述氣泡收集器包括一個以上可透性膜; 在所述膜之間提供_間隙形成_緩衝_; 所述緩衝區域中的電解液是獨立控制的。 15·如中請專利範圍第!項所述的裝置,其特徵在於, 在每一個陰極區域中,提供至少-個獨立控制的電解 液入口以控制其局部流體場。 於 16.如申請專利範圍第15項所述的製置,其 特徵在 所述多個陰極區域内的局部流體場用於控制所述基材 的反應表面附近反應物和副産物的物質傳輸和交換。 於 17.如申請專利範圍第15 項所述的裝置,其特徵在 個基材 所述多個陰極區域内的局部流體場用於控制整 25 200921769 範圍内電鍍膜的成分均勻性 1 8 ·如申凊專利祀圍第丨5項所述的裝置,其特徵在 於 所述多個陰極區域内的局部流體場用於控制整個基材 範圍内的填充性能。 19.如申請專利範圍第15項所述的裝置,其特徵在 於, 所达多個陰極區域内的R部4|曰 所 局邛纟瓜體場用於控制整個基材 範園内電鍍膜的電阻率均勻性。 特徵在 20.如申請專利範圍第15項所述的裝置,其 於, 所述多個陰極區域内的局部流 "丨L體场用於控制整個其 範園内電鍍膜的抗電遷移性能均勻性。 土 21· 一種電鍍裝置,包括: 下部腔,包括數個由數個隔離牆—八八一 威,其中每個陽極區域包括獨的陽極區 矣少〆個獨立I氣^ σ ; $解液循環體系和 上部腔’包括數個由所述數 七,其中每個陰極區$中的牆分隔的陰極區 威其 成中的陰極電解液循環體系被獨立控 制, 26 200921769 氣泡收集器,設置在下部腔和上部腔之間; 流體分散裝置’設置在上部腔的頂部, 基材固持裝置,位於所述流體分散裝置的上方,用於 固持所述基材並向所述基材傳導電流; 具有多個獨立控制的通道的電源; 電解液流量控制裝置,用於控制所述腔中的各個區域 的電解液; 數個流體分配子系統,用於分配電解液至所述腔中。 22.如申請專利範圍第21項所述的裝置,其特徵在 於,所述氣泡收集器包括: 一個或多個框架’支援一個或多個可透性膜; 所述氣泡收集器的表面在每一個陽極區域中是傾斜 的’與水平面成10。至6〇。的角度。 23.如申請專利範圍第22項所述的裝置,其特徵在 於, 所述最接近下部腔的可透性膜是由下列材料之一製 成:聚氟乙烯(PVF)、聚偏氟乙烯(PVDF)、聚四氟乙烯 (PTFE)、全氟烷氧基樹脂(PFA),其上的孔徑爲2以爪至 50 /z m之間,該最接近下部腔的可透性膜將在下部腔中産 生的分解産物和其上方的電解液分離。 其特徵在 24.如申請專利範圍第22項所述的裝置 27 200921769 於, 所述最接近上部腔的可透性膜是由下列材料之一製 成:聚氟乙烯(PVF)、聚偏氟乙烯(PVDF)、聚四氟乙烯 (PTFE)、全氟烷氧基樹脂(PFA),其上的孔徑爲2龍至 15〇nm之間,該最接近上部腔的可透性膜過濾電解液= 特定離子。. 25·如申請專利範圍第22項所述的裝置,其特徵 於’ 〆、’玉仕 每個陽極區域中的氣體首先在所述氣泡收集 位置被收集,之後被分別導出所述裝置。 门 Μ·如中請專利範圍第22項所述的裝置,其特徵在於, 所述氣泡收集器包括_個以上可透性膜; 、 在所述膜之間提供一間隙形成一緩衝區域; 所込、'友衝區域中的電解液是獨立控制的。 於,27·"請專利範圍第21項所述的裝置,其特徵在 八s,:、個陽極區域中,一陽極被一個所述隔離牆完全 5 迟陽極連接到電源系統的一個獨立控制的通道。 於,28."請專利範圍第21項所述的裝置,其特徵在 28 200921769 控制的電解 在每一個陰極區域中’提供至少—個獨立 液入口以控制其局部流體場。 於 2 9 ·如申請專利範圍第2 8 項所述的裝置,其特徵在 所述多個陰極區域内的局部流i曰 μ g js主二 體琢用於控制所述基材 的反應表面附近反應物和副產物的物質傳輪和交換。 於 30·如申請專利範圍第28項所述 的裝置’其特徵在 個基材 所述多個陰極區域内的局部流 # m 體每用於控制整 批圍内電鑛膜的成分均勻性。 31•如申請專利範圍第28項 於, 的裝置,其特徵在 所述多個陰極區域内的局部 範圍内的填充性能。 "用於控制整個基材 於 範 32·如申請專利範圍第28 , 所述多個陰極區域内的局部 圍内電鍍膜的電阻率均勻性。 項所述的裝置’其特徵在 流體場用於控制整個基材 33. 如申請專利範圍第 28項所述的裝置 其特徵在 29 200921769 於, 所述多個陰極區域内的局部流體場用於控制整個基材 範圍内電鍍膜的抗電遷移性能均勻性。 30Between 15 and 15 the permeable membrane closest to the upper chamber filters specific ions. The device is characterized in that the angle between them is 1 〇. Up to 5_ between two adjacent side walls of the weight passage as described in claim 2 of the patent application. It is characterized in that the central angle is lowered by 6. The device according to claim 2 reduces the resistance between the two adjacent side walls of the pleated channel 23 200921769 bubble and the side wall, so that and. The buoyant effect produced by the bubble r饬 contact is added to the buoyant channel and is there to increase the loading described in item 2, as claimed in claim 2, and in the middle E?t, ° The arrangement is increased by the number of effective tables of the pleated channel bubble collector of the large entanglement, which is characterized by the area. 8. The pleated channel 彳a according to claim 2 is arranged to the right, and is characterized in that the directional direction is arranged on a tapered or inverted tapered frame. 9. Patent application The pleated channel according to the second item is arranged in a spiral arrangement on the frame of the inverted cone of the v-th member, and the device is as described in claim 2, The annular passage is arranged in a circle, and is characterized by, or an inverted tapered frame. 11. The pleated passage is arranged in a plane in a plane as described in claim 2 Add ', set. The same vertical position on the wood is characterized by 12. The device according to claim 2, characterized in that 24 200921769 is arranged in a circular arrangement of the pleated channels in different vertical positions on a plane frame. The scope of the patent application is characterized in that, in each anode region, an anode is surrounded by one of the walls and the 2C anode is connected to an independently controlled channel of the power supply system. The device of claim 1, wherein the bubble collector comprises one or more permeable membranes; providing a gap between the membranes to form a buffer _; The liquid is independently controlled. 15. Please ask for the scope of patents! The apparatus of the invention is characterized in that in each of the cathode regions, at least one independently controlled electrolyte inlet is provided to control its local fluid field. The apparatus of claim 15 wherein the localized fluid field within the plurality of cathode regions is used to control the transport and exchange of reactants and by-products near the reaction surface of the substrate. . The apparatus of claim 15, wherein the partial fluid field in the plurality of cathode regions of the substrate is used to control the composition uniformity of the plating film in the range of 200921769. The device of claim 5, characterized in that the local fluid field in the plurality of cathode regions is used to control the filling properties over the entire substrate. 19. The device according to claim 15, wherein the R portion of the plurality of cathode regions is used to control the resistance of the plating film in the entire substrate. Rate uniformity. The device of claim 15, wherein the partial flow "丨L body field in the plurality of cathode regions is used to control uniform electromigration resistance of the plating film in the entire ceramic field Sex. Soil 21 · A plating apparatus comprising: a lower chamber comprising a plurality of partition walls - 885, wherein each anode region comprises a separate anode region, less than one independent I gas ^ σ; The system and the upper chamber 'includes a plurality of cathodic cycle systems separated by a number of seven, each of which is separated by a wall in the cathode area. The catholyte circulation system is independently controlled, 26 200921769 bubble collector, set in the lower part Between the cavity and the upper chamber; a fluid dispersing device 'disposed on top of the upper chamber, a substrate holding device above the fluid dispersing device for holding the substrate and conducting current to the substrate; An independently controlled channel of power; an electrolyte flow control device for controlling the electrolyte in various regions of the chamber; and a plurality of fluid distribution subsystems for dispensing electrolyte into the chamber. 22. The device of claim 21, wherein the bubble collector comprises: one or more frames 'supporting one or more permeable membranes; the surface of the bubble collector is An anode region is inclined '10' from the horizontal. To 6 〇. Angle. 23. The device of claim 22, wherein the permeable membrane closest to the lower chamber is made of one of the following materials: polyvinyl fluoride (PVF), polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), having a pore size of 2 between claws and 50 /zm, the permeable membrane closest to the lower chamber will be in the lower chamber The decomposition product produced in the separation is separated from the electrolyte above it. The device according to claim 22, wherein the permeable membrane closest to the upper chamber is made of one of the following materials: polyvinyl fluoride (PVF), polyvinylidene fluoride. Ethylene (PVDF), polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), having a pore diameter of between 2 and 15 〇nm, the permeable membrane filtration electrolyte closest to the upper chamber = specific ion. 25. The apparatus of claim 22, wherein the gas in each of the anode regions of the ' 〆, 玉仕 is first collected at the bubble collection location and thereafter separately derived. The device of claim 22, wherein the bubble collector comprises more than one permeable membrane; and a gap is provided between the membranes to form a buffer region; The electrolyte in the 友, '友冲区 area is independently controlled. The apparatus described in claim 27, wherein the device is characterized in eight s,:, an anode region, an anode is completely connected to the power supply system by a single anode of the partition wall. Channel. 28. The apparatus of claim 21, wherein the electrolysis controlled at 28 200921769 provides at least one independent liquid inlet in each cathode region to control its local fluid field. The device of claim 28, wherein the local flow in the plurality of cathode regions is used to control the vicinity of the reaction surface of the substrate. Material transfer and exchange of reactants and by-products. 30. The apparatus of claim 28, wherein the local flow #m body in the plurality of cathode regions of the substrate is used to control the compositional uniformity of the entire batch of electric ore film. 31. The device of claim 28, wherein the device is characterized by a filling property in a localized range within the plurality of cathode regions. " for controlling the entire substrate. According to the application of the patent application, the resistivity uniformity of the partial inner plating film in the plurality of cathode regions. The device described in the item is characterized in that the fluid field is used to control the entire substrate 33. The device according to claim 28 is characterized in that the partial fluid field in the plurality of cathode regions is used in 29 200921769 Controls the electromigration resistance uniformity of the plated film over the entire substrate. 30
TW096141722A 2007-11-05 2007-11-05 Plating apparatus for metallization on semiconduct TWI355686B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096141722A TWI355686B (en) 2007-11-05 2007-11-05 Plating apparatus for metallization on semiconduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096141722A TWI355686B (en) 2007-11-05 2007-11-05 Plating apparatus for metallization on semiconduct

Publications (2)

Publication Number Publication Date
TW200921769A true TW200921769A (en) 2009-05-16
TWI355686B TWI355686B (en) 2012-01-01

Family

ID=44727982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096141722A TWI355686B (en) 2007-11-05 2007-11-05 Plating apparatus for metallization on semiconduct

Country Status (1)

Country Link
TW (1) TWI355686B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908698B2 (en) 2018-01-25 2024-02-20 Semsysco Gmbh Method and device for plating a recess in a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908698B2 (en) 2018-01-25 2024-02-20 Semsysco Gmbh Method and device for plating a recess in a substrate

Also Published As

Publication number Publication date
TWI355686B (en) 2012-01-01

Similar Documents

Publication Publication Date Title
KR101424623B1 (en) Plating apparatus for metallization on semiconductor workpiece
CN101457379B (en) Electroplating apparatus for electric plating metal on semi-conductor wok piece
US8540857B1 (en) Plating method and apparatus with multiple internally irrigated chambers
US7854828B2 (en) Method and apparatus for electroplating including remotely positioned second cathode
US20040016636A1 (en) Electrochemical processing cell
US20030038035A1 (en) Methods and systems for controlling current in electrochemical processing of microelectronic workpieces
TWI361509B (en) Chambers, systems, and methods for electrochemically processing microfeature workpieces
TWI504786B (en) Control of electrolyte hydrodynamics for efficient mass transfer during electroplating
KR101765346B1 (en) Method and apparatus for electroplating
US20070238265A1 (en) Plating apparatus and plating method
KR102583188B1 (en) Method for uniform flow behavior in an electroplating cell
US8313631B2 (en) Apparatus and methods for electrochemical processing of microfeature wafers
KR102619843B1 (en) Plating device and plating method
TWI292001B (en) Electroplating head and method for operating the same
US7273535B2 (en) Insoluble anode with an auxiliary electrode
KR20170132672A (en) Dynamic modulation of cross flow manifold during elecroplating
US20040065543A1 (en) Insoluble electrode for electrochemical operations on substrates
US20040118694A1 (en) Multi-chemistry electrochemical processing system
CN111149198A (en) Electro-oxidative metal removal in through-mask interconnect fabrication
WO2004013381A2 (en) Insoluble anode loop in copper electrodeposition cell for interconnect formation
US20060124468A1 (en) Contact plating apparatus
US20040163963A1 (en) Method of supplying solution for electrochemical processes from double-cavity electrode housing
TW200921769A (en) Plating apparatus for metallization on semiconductor workpiece
KR101426373B1 (en) Apparatus to Plate Substrate
US20050284751A1 (en) Electrochemical plating cell with a counter electrode in an isolated anolyte compartment