200919811 ' 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種鐘離;f々 用兮相μ工+ 離子電池負極及其製備方法以及肩 用該鋰離子電池負極的鋰離 " 米碳管的鋰離子電池負極及苴:’,尤”涉及一種基於奈 私池負極的鋰離子電池。 —丁 【先前技術】 鐘離子電池係—種新型 福電池、錄氫電池相比呈有化學電源,與傳統的錄 的優點。自19二: 南、壽命長、能量密度大 ,,—_ y 日本索尼公司推出第一代鋰離子電、、也 後,匕已經得到迅速發展並 ' 土乂以〜 展之用於各種可檇式設備。 先别的鐘離子電池通常包括正極 液四個部分。堂目从貝位丨网膜和電解 的活性化人物,^ 電池的正極材料通常選自含鐘 *池兩極二雷執、極材料則選自碳系材料。充電時,加在 分子排列呈片層結構的碳中 構的碳中“,重新和正極的化合料I片層結 要因見丄:極活性材料係決定鋰離子電池性能的重 能量高;充放電負極活性材料應具有以下特點:比 性好.比,=可1^性好,與電解液和枯結劑的相容 過:中小(<1〇都真密度高 氣中穩定、無毒副’價格低廉;在空 子恭、、也的畜托 乍用寺。目刖,奴材料被廣泛用作鋰離 电V、負極材料,這些材料的優點係比容量高(2〇〇 200919811 • mAh/g〜430 mAh/g ),循環效率高(>95% ),循環壽命長。 '目前採用的碳負極材料有石墨、乙炔黑、微珠碳、石油焦、 • 碳纖維、裂解聚合物和裂解碳等。 然而,碳材料的種類、製備方法和熱處理溫度不同時, 均會導致負極材料組成和結構上的差異,進而引起鋰離子 嵌入行為與性能的差異。先前技術中,通常使用天然石墨 作為鋰離子電池負極材料。純的天然石墨作為鋰離子電池 負極材料時具有比容量高(可達到 370 mAh/g~430 r mAh/g )、價格低廉、來源豐富的優點。然而,使用天然石 墨的鋰離子電池負極也存在首次充放電效率低,循環性能 差,對電解液選擇性高的缺點。這主要係由於石墨的表面 結構特點使得首次嵌鋰過程中所形成的鈍化膜(Solid Electrolyte Interface, SEI )具有不均勻性和脆性。這些 缺點限制了這種負極活性材料在鋰離子電池中的廣泛應 用。 奈米碳管(carbon nanotube,CNT)係近年來發現的一種 - 新型碳系材料,由單層或多層的石墨片狀結構捲曲而成。 奈米碳管的層間距為0.34奈米,略大於石墨的層間距,有 利於鋰離子的嵌入和脫出。奈米碳管作鋰離子電池負極材 料,鋰離子不僅可嵌入中空管内,而且可嵌入到層間的缝 隙之中,具有嵌入深度小、過程短,嵌入位置多等優點。 已有報導採用奈米碳管製作的鋰離子電池負極(請參見, Effects of synthesis condition of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery, Journal of power source, V97-98,P129-132 ( 2001 )) ° 8 200919811 目前採用奈米碳管製作的鋰離子電池負極,通 :糸^未碳管和純劑混合均句後塗覆於集電體上梦 二 =枯結劑的影響,不能充分的利用奈米碳管的表面 這限制了負極對鐘離子的吸附能力。而且,使 =負極㈣離子電池也存在首次充放電效率低,循環性 月匕差,且對電解液選擇性高的缺點。 好,一種具有較高充放電效率,猶環性能 對電解液選擇性不高的轉子電池負極及其 /以及應用該鋰離子電池負極的鋰離子電池實為必:。 【發明内容】 -種鐘離子電池負極,其包括—奈米碳管薄膜 的奈米碳管薄財包括相互纏繞的奈米碳管。、“ 過凡:=Γ⑽,相互纏繞的奈米破管之間通 '瓦爾力相互吸引、I燒,形成網絡狀結構。 此且官涛膜中’由於奈米碳管相互纏繞,因 It 性:可以彎曲折疊成任意形狀而不破裂。 徑小於100微米。 里的舰結構,微孔孔 所述的奈米碳管薄臈厚度為!微求至2毫米。 所述的鋰離子電池負極,進一 居二辨 板。 於亥市'體表面,所述的集電體為金屬基. 種鐘離子電池負極的製備方法, 提供—奈米碳管原料;將上述奈米碳管原料添加 200919811 、,進订I化處理獲得奈㈣管絮狀 絮狀結構從溶劑中分離,並對該岑:,二將上述奈米碳管 理以獲得奈米碳管薄膜。 "不只碳管絮狀結構定型處 所述的絮化處理的方法包括 攪拌。 耳夜刀放處理或高強度 所述的溶劑為水或有機溶劑。 驟: = = = =構的:法具體包括以下步 漏斗中;靜置乾燥一段時間從倒入放有濾紙的 結構。 ]攸而獲仵分離的奈米碳管絮狀 所述的定型處理具體包括以 絮狀結構置於—容哭中. 乂 r .將上述奈米碳管 狀攤Η . 一 ",將不未石反營絮狀結構按照預定形 及::二二口 —定壓力於攤開的奈米碳管絮狀結構薄膜; 所=4或等溶劑自然揮發後獲得奈米碳管薄膜。 所述的分離和定切虛 孔施-抽氣漏括以下步驟:提供-微 物… 述含有奈米碳管絮狀結構的溶 :: 慮膜倒入抽氣漏化抽濾並乾燥後獲得夺米 碳管薄膜。丁仪1又竹不木 =述^米碳管薄膜W具有—定的自支標性及 = 際應用時’可直接將該奈米碳管薄膜 子電池負極。 所,的鋰離子電池負極的製備方法,進一步包括以下 v驟提供-集電體;將該奈米碳管薄膜直接壓製於集電 體表面或採用導電膠將該奈米碳管薄膜粘結於集電體: 200919811 面’從而得到—經離子電池負極。 所述的鐘離子電池負極的製備方法,進—步包括,將 該奈米碳管_切割成預定的尺寸和形狀,形成預定尺寸 和形狀的鋰離子電池負極。 種鐘離子電池,其包括:—殼體及置於殼體内的正 極貞極,私解液和隔膜,其中,電解液置於殼體内’正 極與負極置於電解液中,隔臈置於正極與負極之間,並將 殼體内部空間分盍+ μ a ]刀為兩邛分,正極與隔膜及負極之間保持間 隔。該輯子電池巾,所述的負極包括-奈米碳管薄膜, 所述的奈米碳管薄財包括相互㈣的奈米碳管。、 所述的正極材料為鐘或含鐘的過渡金屬氧化物。 ,所述的電解液包括碳酸乙稀醋、二乙基石炭酸醋及六氣 填酸鐘,其中,山翁株放&、 八 /、軋拜&鐘溶於碳酸乙烯酯和二乙基碳酸 酯的混合溶劑中。 、所述的電解液中碳酸乙稀醋和二乙基石炭酸酷的體積比 所述的隔膜材料為聚烯烴。 —相較於先前技術,所述㈣離子電池負極包括奈米碳 官涛膜。該奈米碳管薄財含有大量的微孔結構和極大的 比^面積。故’該㈣子電池負極可有效增加輯子的嵌 入置’可改善首次嵌鐘過程中所形成的純化膜的穩定性, ^對電解液的選擇性不高。由於奈米碳管薄膜具有優良的 ¥電性能和-定的自支#性能,使得該奈米碳管薄膜可以 直接用作輯子電池貞極。該奈米碳管薄財不含有任何 200919811 钻結劑’這有利於充分的利用奈米碳管的表面微孔結構, Y更多㈣離子。而且,該奈米碳f薄膜中,由於奈米 碳管相互纏繞’使得該奈米碳管薄膜具有很好的㈣,可 以用來製作各種形狀的鋰離子電池負極。另外,該製備鋰 離子電池負極的方法工序簡單,易於實際應用。 【實施方式】 2下將結合附圖對本技術方案作進一步的詳細說明。 月多閱圖1本技術方案實施例提供一種链離子電池 負極10’該鋰離子電池負極10包括一集電體12和一由 集電體12支樓的奈米破管薄膜14。該集電體12可為_ 金屬基板,優選為銅片。該奈米碳管薄膜14設置於集電 體12表面。該奈米碳管薄膜14係直接壓制於集電體u 表面或採”電膠㈣於集電體的表面。該奈米碳管薄 膜14中曰’奈米碳管各向同性’均勻分佈,無規則排列, 形成大量的微孔結構,微孔孔徑小於100微米。該奈米 碳管薄膜14中包括相互纏繞的奈米碳管,奈米碳管:間 通過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構,使 得該奈米碳管薄膜14具有很好的勒性,可以用來製作各 種形狀的㈣子電池負極。可以理解,本實施例中經離 子電池負極10中的集電體12為可選擇的結構,即,本 實施例中的鋰離子電池負極10可僅包括奈米碳管薄膜 14。由於奈米碳管薄膜14本身已經具有一定的自支撐性 及穩定性,而且,奈米碳管本身具有優良的導電性能, 實際應用時,可直接將該奈米碳管薄膜14用於鋰離子 池負極10。 12 200919811 本實施例中’該奈米碳管薄膜14的寬度可為1厘米 40厘来’該奈米碳管薄膜14的厚度為1微米〜2毫米。 可以理解,本實施例中該奈米碳管薄膜14可根據實際應 用切割成預定的尺寸和形狀(如切割成8毫米χ8毫米), 以利於組裝成微型的鋰離子電池,擴大其應用範圍。 月多閱囷2本技術方案實施例還進一步提供一種鐘 離子電池負極的製備方法,其具體包括以下步驟: …步驟一,提供一奈米碳管原料。該奈米碳管原料的獲 得包括以下步驟: 首先,提供一奈米碳管陣列。 本κ鉍例中,奈米碳管陣列的製備方法採用化學氣相 沈積法’其具體步驟包括:(a)提供—平整基底,該基底 可選用P型或N型石夕基底,或選㈣成有氧化層的石夕基 底,本實施例優選為採用4英寸的石夕基底;⑴在基底 ^句勻形成催化劑層,該催化劑層材料可選用鐵 (Fe)、钻(Co)、録(Ni)或其任意組合的合金之一:⑷ 將上述形成有催化劑層的基底在7〇〇〜9〇〇它的空氣中退 φ勺〇刀1里〜9〇分▲里,(d )將處理過的基底置於反應爐 護氣體環境下加熱到〜74代,然後通入碳源 乱反應約5〜30分鐘,生長得到奈米碳管陣列,其高度 微米。該奈米碳管陣列為多個彼此平行且垂直 ^ 生長的奈米碳管形成的純奈米碳管陣列,由於生 成的奈米碳管長度較長,部分太 ^ 丨刀不木石反s會相互纏繞。通 =,二::生"!條件,該奈米碳管陣列中基本不含有雜 貝”,、疋型碳或殘留的催化劑金屬顆粒等。本實施例 13 200919811 中礙源氣可選用乙块等化學性質較活潑的碳ft化合物, 保護氣^可選用氮氣、氨氣或惰性氣體。可以理解,本 實靶例提供的奈米碳管陣列不限於上述製備方法。 “其:用刀片或其他工具將上述奈米碳管從基底刮 洛,獲付奈米碳管原料,其中奈米碳管一定程度上保持 相互纏繞的狀態。所述的奈米碳管原料中 度大於10微米。 τ反s長 —^步驟二,將上述奈米碳管原料添加到一溶劑中並進 行絮化處理獲得奈米碳管絮狀結構。 本實轭例中,洛劑可選用水、易揮發的有機溶劑等。 二化處理可通過採甩超聲波分散處理或高強度攪拌等方 法。優選地,本實施例採用超聲波分散1〇〜3〇分鐘。由 於奈米碳管具有極A的比表面積,相互纏繞的奈米石炭管 之間具有較大的凡德瓦爾力。上述絮化處理並不合 米碳管原料中的奈米碳管完全分散於溶劑中,夺;碳; 之間通過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構。 、,步驟三,將上述奈米碳管絮狀結構從溶劑中分離, 該奈米碳管絮狀結敎型處理以獲得-奈米碳管薄 本實施例中,分離奈米碳管絮狀結構的方法具體包括 右请1驟冑上述含有奈米碳官絮狀結構的溶劑倒入放 的漏斗中;靜置乾燥—段時間從而獲得分離的奈 狀結構。請參閱圖3,為置於濾紙上的奈米碳管 狀;可以看出’奈米碳管相互纏繞成不規則的絮 14 200919811 本κ轭例中,定型處理具體包括 米碳管絮狀結構置於一容$中.從太下/驟·將上述奈 -預定形狀攤η 將奈米碳管絮狀結構按 ::疋形狀攤開,鈀加一定壓力於攤開的奈米碳大 及’將奈米碳管絮狀結構中殘留的溶劑烘乾或等 溶劑自㈣發後獲得奈米碳管薄㈣14。可以理解,= 制奈米碳管絮狀結構攤片的面積來控制奈 “ S薄膜14的厚度和面密度。攤片的面積越大,則太 未石反官溥膜的厚度和面密度就越小。 ^ 14厚度為!微米〜2毫米,寬度i厘来〜1〇厘米;:: 圖4,為本實施例中獲得的奈米碳管薄膜14。 另外,上述分離與定型處理步驟也可直接通過抽減的 方式獲得奈米碳管薄膜14,具體包括以下步驟:提供一 微孔濾膜及-抽氣漏斗;將上述含有奈米碳管絮狀結構 的溶劑經過微孔濾膜倒入抽氣漏斗中;抽濾並乾燥後與 得奈米碳管薄膜14。該微孔濾膜為一表面光滑、孔徑^ 0.22微米的濾膜。由於抽濾方式本身將提供—較大二氣 壓作用于奈米碳管絮狀結構,該奈米碳管絮狀結構經過 抽濾會直接形成一均勻的奈米碳管薄膜14。且,由於微 孔瀘膜表面光滑,該奈米碳管薄膜14容易剝離。 本實施例製備的奈米碳管薄膜14中包括相互纏繞的 奈米碳管’奈米碳管之間通過凡德瓦爾力相互吸引、缠 繞,形成網絡狀結構’因此該奈米;e炭管薄膜14具有很好 的韌性。該奈米碳管薄膜14中,奈米碳管各向同性,均 勻分佈,無規則排列’形成大量的微孔結構,微孔孔和 小於100微米。奈米碳管薄膜14本身具有極大的比表面 15 200919811 2於:米碳管薄膜14中不含有任何枯結劑,這有 利於充刀的_奈米碳管的表 過程中輯子㈣人量。 # 已實施例中,由於奈米碳管㈣14本身 身且右#肖疋:自切性及穩定性,而且,奈米碳管本 身具有優良的導電性能,从 ^ ^ , 文,在員際應用時,可直接將 δ亥不未妷官溥膜14用於鋰離子電池負極。 声~本實她例中,該奈米碳管薄膜可根據實際 預疋的尺寸(如切割成8毫米χ8毫米)和形 狀,應一用牛於微型的鐘離子電池負極,擴大其應用範圍。 以下+驟%ϋ製備鐘離子電池負極的方法還可以包括 料電體 w 表採用導電膠將該奈米碳管薄膜14 電體12表面。,從而得到 該集電體12可為—金屬基板,優選為㈣。 本身本/有施二中^於本實施例中製備的奈米碳管薄膜14 較強㈣性,故通過塵制的方法可以將該奈米 反g / 、14直接粘附於集電體12表面。該夺米 U過凡德瓦爾力與集電體12緊密結合二起/, 大量的微孔結構,微孔孔徑二 身具有極大的比表面積,而且該奈米:Ϊ 面微孔結構’提高充放電過程中鐘離子 里 $鐘離子電池負極可以改善首次嵌叙過程中 200919811 .所形成的鈍化膜的穩定性。因此,可有效降低本實施例 中鐘離子電池對電解液的限制性。 . 請參見圖5,本技術方案實施例進一步提供一種應用 上述鋰離子電池負極的鋰離子電池5〇〇,其包括:一殼體 502及置於殼體5〇2内的正極5〇4,負極5〇6,電解液$⑽ 和隔膜510’其中,所述的負極5〇6為採用上述方法製備 的鋰離子電池負極。鋰離子電池500中,電解液5〇8置 於殼體502内,正極504與負極5〇6置於電解液5〇8中。 隔膜510置於正極5〇4與負極5〇6之間,並將殼體皿 内部空間分為兩部分。正極5〇4與負極5〇6分別置於隔 膜510兩側,正極5〇4與隔膜51〇及負極5〇6與隔膜51〇 之間保持間隔。正極504包括一正極集電體512與一層 2極材料514,負極包括一負極集電體518與一層奈 管薄膜516。正極接線端52〇與負極接線端522分別連接 於正極集電體512與負極集電體518頂端。 、'々例中’上述正極5〇4、隔膜510和電解液508 :、1限制。對本實施例製備的鐘離子電池500進行 能測試。其中’正極㈣514為 =㈣渡金屬氧化物如:LiNi〇2、LiaC〇〇2、LiaMn2屬戈 = 選為聚稀烴,電解液5〇8優選為溶於碳 ' mil] cTene Carb〇nate 5 EC) 中^DEC)(體積比為1:1)混合溶劑 1摩崎的六㈣㈣(LipF6)。本實 矛^池500在應用時,對應的正極材料514、隔膜510 和電解液508可選擇為其他材料。 丨⑺膜510 17 200919811 * 請參閱下表,為測量方便,本實施例以包括50微克 * 奈米碳管薄膜516的鋰離子電池負極506組裝成鋰離子 * 電池500後進行充放電測試,結果表明:本實施例鋰離 子電池500具有較高的充放電效率和比容量,且該鋰離 子電池500具有良好的循環充放電性能。其中,該鋰離 子電池500的首次充放電效率大於140%,為148.8%,首 次放電容量大於700 mAh/g,為764mAh/g。經過11次循 環後,該鋰離子電池500的充電循環容量保持率為91%。 表1裡離子電池500的充放電循環性能 循環 充電 放電 效率 次數 (mAh) (mAh) (%) 1 0 0.1094 0 2 0.0257 0.0382 148.8 3 0.0273 0.0321 117.5 4 0.0254 0.0293 115.2 5 0.0245 0.0277 113.1 6 0.0243 0.0271 111.3 7 0.0239 0.0264 110.6 8 0.0236 0.026 109.8 9 0.023 0.0259 109.3 10 0.0227 0.0257 108.1 11 0.0229 0.0259 108.6 12 0.0226 0.0274 107 13 0.0227 0 0 18 200919811 綜上所述,本發明確已符合發明 提出專利申請。惟,以上所述者僅為本^之要#逐依法 ώ 丁 1重為本發明之較佳實施例, 此限制本案之申請專利範圍。舉凡熟悉本案技窥 ^人純依本發明之精神所作之#效 、= 盍於以下申請專利範圍内。 支 白應涵 【圖式簡單說明】 圖1係本技術方案實施例鋰離 圖。 電池負極的結構示意 圖2係本技術方案實施例鋰離子 流程示意圖。 电池負極的製備方法 圖3係本技術方案實施例猂 照片。 獲侍的奈米碳管絮狀結構的 圖4係本技術方案實施例 薄膜的照片。 、、預定形狀的奈米碳管 圖 圖5係本技術方案實施例鐘離子 【主要元件符號說明】 I池的、、、Q構示意 10 12 14 500 502 504 506 508 鍾離子電池負極 集電體 奈米碳管薄膜 鍾離子電池 殼體 正極 負極 電解液 19 200919811 隔膜 510 正極集電體 512 正極材料 514 奈米碳管薄膜 516 負極集電體 518 正極接線端 520 負極接線端 522 20200919811 ' IX, invention description: [Technical field of the invention] The present invention relates to a clock separation; a 兮 phase 工 + + ion battery anode and a preparation method thereof, and a lithium ion away from the anode of the lithium ion battery The lithium ion battery negative electrode of the tube and the 苴: ', especially" relates to a lithium ion battery based on the negative electrode of the Nai private pool. - Ding [Prior Art] The clock ion battery system - a new type of Fu battery, the hydrogen recording battery has a chemical power source With the advantages of traditional recording. Since 19: South, long life, high energy density, -_ y Japan's Sony Corporation introduced the first generation of lithium-ion electricity, and after that, 匕 has been rapidly developed and '乂~ The exhibition is used for all kinds of portable equipment. The other clock ion batteries usually include four parts of the cathode liquid. The head of the battery is activated from the shell and the electrolysis of the person, ^ The cathode material of the battery is usually selected from the bell *Pool two poles and two Lei and the polar material are selected from carbon-based materials. When charging, they are added to the carbon in the carbon structure of the molecular structure. "Re- and the positive compound of the I layer are due to see: Extremely live The material determines the performance of the lithium ion battery with high energy; the charge and discharge anode active material should have the following characteristics: good specificity, ratio, = good 1^, compatibility with electrolyte and dry agent: small and medium ( <1〇 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 真 空 空 空 空 空 空 空 空 空 空 空 空 空 空The advantages are high specific capacity (2〇〇200919811 • mAh/g~430 mAh/g), high cycle efficiency (>95%), and long cycle life. 'The current carbon anode materials are graphite, acetylene black, micro Bead carbon, petroleum coke, • carbon fiber, cracked polymer and cracked carbon, etc. However, when the type of carbon material, preparation method and heat treatment temperature are different, the composition and structure of the negative electrode material will be different, which will cause lithium ion intercalation behavior. Differences from performance. In the prior art, natural graphite is generally used as a negative electrode material for lithium ion batteries. Pure natural graphite has a specific capacity (up to 370 mAh/g to 430 r mAh/g) as a negative electrode material for lithium ion batteries. price The advantages of low cost and abundant source. However, the negative electrode of lithium ion battery using natural graphite also has the disadvantages of low initial charge and discharge efficiency, poor cycle performance and high selectivity to electrolyte. This is mainly due to the surface structure of graphite. The passive electrolyte interface (SEI) formed in the lithium process has unevenness and brittleness. These disadvantages limit the wide application of this negative active material in lithium ion batteries. Carbon nanotube (CNT) A type of new carbon-based material discovered in recent years, which is made of a single-layer or multi-layered graphite sheet structure. The layer spacing of the carbon nanotubes is 0.34 nm, which is slightly larger than the layer spacing of graphite, which is beneficial to lithium ions. Embed and pull out. The carbon nanotube is used as the negative electrode material of the lithium ion battery. The lithium ion can be embedded not only in the hollow tube, but also embedded in the gap between the layers, and has the advantages of small embedding depth, short process, and multiple embedding positions. Synthesis of synthesis of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery, Journal of power source, V97-98, P129-132 (2001) ))) 8 200919811 At present, the negative electrode of lithium-ion battery fabricated by carbon nanotubes is used, and the effect of the combination of the carbon tube and the pure agent is applied to the current collector. The use of the surface of the carbon nanotubes limits the ability of the negative electrode to adsorb ions. Further, the negative electrode (tetra) ion battery also has the disadvantages of low initial charge and discharge efficiency, poor cycle turbulence, and high selectivity to the electrolyte. For example, a negative electrode of a rotor battery having a high charge-discharge efficiency, a helium ring performance, and a low selectivity to an electrolyte, and a lithium ion battery using the negative electrode of the lithium ion battery are indispensable. SUMMARY OF THE INVENTION A seed cell ion battery anode comprising a carbon nanotube thin film comprising intertwined carbon nanotubes. , "Extraordinary: = Γ (10), between the intertwined nano-tubes, the 'valley force attracts each other, I burn, forming a network-like structure. This is in the official film "because the carbon nanotubes are intertwined, because of its nature : It can be bent and folded into any shape without cracking. The diameter is less than 100 microns. The ship structure in the hole, the thickness of the carbon nanotubes described in the micropores is measurable to 2 mm. The lithium ion battery negative electrode, Into the first surface of the board. In the surface of the body of the city, the current collector is a metal base. The preparation method of the anode of the ion battery, providing the carbon nanotube raw material; adding the above carbon nanotube raw material to 200919811, The process of obtaining the neat (four) tube floc floc structure is separated from the solvent, and the above-mentioned nano carbon is managed to obtain a carbon nanotube film. " Not only the carbon tube floc structure is shaped The method of the flocculation treatment described includes agitation. The ear-night knife treatment or the high-strength solvent is water or an organic solvent. Step: = = = = configuration: the method specifically includes the following step funnel; For a period of time from pouring into the structure of the filter paper. The shaping treatment of the obtained carbon nanotubes in the form of flocculation is specifically carried out in a flocculent structure. The crucible structure is placed in the crying. 乂r. The above-mentioned nano carbon tube is spread out. One " The floc structure is in accordance with a predetermined shape and: two or two ports - a constant pressure on the expanded carbon nanotube floc structure film; = 4 or an equivalent solvent to obtain a carbon nanotube film after natural volatilization. The cut-off hole-exhaust gas leakage includes the following steps: providing - micro-objects... The solution containing the nano-carbon tube floc structure:: The membrane is poured into the air-suction leakage filter and dried to obtain a carbon nanotube film. Ding Yi 1 and bamboo not wood = said ^ m carbon tube film W has a certain self-supporting and = when applied - can directly the negative electrode of the carbon nanotube film sub-cell. The preparation method further includes the following step of providing a current collector; directly pressing the carbon nanotube film on the surface of the current collector or bonding the carbon nanotube film to the current collector by using a conductive paste: Obtaining - the negative electrode of the ion battery. The preparation method of the negative electrode of the ion battery, the step package The carbon nanotube is cut into a predetermined size and shape to form a lithium ion battery negative electrode of a predetermined size and shape. The plasma ion battery comprises: a casing and a positive electrode bungee disposed in the casing, private The liquid solution and the separator, wherein the electrolyte is placed in the casing. The positive electrode and the negative electrode are placed in the electrolyte, and the separator is placed between the positive electrode and the negative electrode, and the internal space of the casing is divided into + μ a. And a gap between the positive electrode and the separator and the negative electrode. The negative electrode battery comprises a carbon nanotube film, and the carbon nanotube comprises a carbon nanotube of mutual (four). The positive electrode material is a bell or a transition metal oxide containing a bell. The electrolyte includes ethylene carbonate vinegar, diethyl carbolic vinegar and a six gas filling acid clock, wherein the mountain stalk is placed & The rolling & bell is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate. The volume ratio of ethylene carbonate and diethyl carbolic acid in the electrolyte is a polyolefin. - Compared to the prior art, the (tetra) ion battery negative electrode comprises a nano carbon official film. The carbon nanotubes contain a large amount of microporous structure and a large specific area. Therefore, the negative electrode of the (four) sub-battery can effectively increase the embedding of the set to improve the stability of the purified film formed during the first chime, and the selectivity to the electrolyte is not high. Due to the excellent electrical properties and the self-supporting properties of the carbon nanotube film, the carbon nanotube film can be directly used as a battery bungee. The carbon nanotubes are not contained in any of the 200919811 cementing agents' which facilitates the full utilization of the surface microporous structure of the carbon nanotubes, Y more (tetra) ions. Further, in the nanocarbon f film, since the carbon nanotubes are entangled with each other, the carbon nanotube film has a good (four) and can be used for producing lithium ion battery negative electrodes of various shapes. In addition, the method for preparing a negative electrode of a lithium ion battery is simple in process and easy to apply in practice. [Embodiment] 2 The technical solution will be further described in detail with reference to the accompanying drawings. FIG. 1 shows a chain ion battery negative electrode 10'. The lithium ion battery negative electrode 10 includes a current collector 12 and a nano tube film 14 of a collector 12 building. The current collector 12 may be a metal substrate, preferably a copper plate. The carbon nanotube film 14 is provided on the surface of the current collector 12. The carbon nanotube film 14 is directly pressed on the surface of the current collector u or the electro-adhesive (4) is applied to the surface of the current collector. The carbon nanotube film 14 is uniformly distributed in the isotropic nature of the tantalum carbon nanotube film. Irregularly arranged, a large number of microporous structures are formed, and the pore diameter of the micropores is less than 100 μm. The carbon nanotube film 14 includes intertwined carbon nanotubes, and the carbon nanotubes are mutually attracted and entangled by van der Waals force. The network structure is formed so that the carbon nanotube film 14 has good linearity and can be used to fabricate (4) sub-cell negative electrodes of various shapes. It can be understood that the current collector in the ion battery negative electrode 10 in this embodiment 12 is an optional structure, that is, the lithium ion battery negative electrode 10 in this embodiment may include only the carbon nanotube film 14. Since the carbon nanotube film 14 itself has a certain self-supporting property and stability, The carbon nanotube itself has excellent electrical conductivity. In practical applications, the carbon nanotube film 14 can be directly used for the lithium ion pool negative electrode 10. 12 200919811 In the present embodiment, the width of the carbon nanotube film 14 can be 1 cm 40 cm The carbon nanotube film 14 has a thickness of 1 μm to 2 mm. It can be understood that the carbon nanotube film 14 can be cut into a predetermined size and shape according to the practical application in the embodiment (for example, cutting into 8 mm χ 8 mm). In order to facilitate assembly into a miniature lithium ion battery, the scope of application thereof is expanded. The embodiment of the present invention further provides a method for preparing a negative electrode of a plasma battery, which specifically includes the following steps: A carbon nanotube raw material. The obtaining of the carbon nanotube raw material comprises the following steps: First, providing a carbon nanotube array. In the κ 铋 example, the preparation method of the carbon nanotube array adopts chemical vapor deposition method The specific steps include: (a) providing a flat substrate, the substrate may be a P-type or N-type stone substrate, or (4) a stone-like substrate having an oxide layer, and the embodiment preferably uses a 4-inch stone substrate. (1) forming a catalyst layer on the substrate, the catalyst layer material may be selected from one of iron (Fe), drill (Co), Ni (Ni) or any combination thereof: (4) the above-mentioned catalyst layer is formed. In the air of 7〇〇~9〇〇, φ 〇 〇 1 里 〇 〇 ▲ ▲ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The carbon source is reacted for about 5 to 30 minutes to grow to obtain a carbon nanotube array having a height of micrometer. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes which are parallel to each other and vertically grown. Because the length of the generated carbon nanotubes is long, some of them are too 丨 不 不 不 不 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 , 疋 type carbon or residual catalyst metal particles, and the like. In the embodiment 13 200919811, a chemically active carbon ft compound such as a block B may be used as the source gas, and the shielding gas may be selected from nitrogen, ammonia or an inert gas. It will be understood that the carbon nanotube array provided by the actual target is not limited to the above preparation method. "It: scraping the above-mentioned carbon nanotubes from the substrate with a blade or other tools to obtain the carbon nanotube raw materials, wherein the carbon nanotubes are kept in a state of being entangled to some extent. The carbon nanotube raw materials are The degree is greater than 10 micrometers. τ inverse s long - ^ step two, the above carbon nanotube raw materials are added to a solvent and flocculated to obtain a nano carbon tube floc structure. In the actual yoke example, the agent is optional Water, volatile organic solvent, etc. The chemical treatment can be carried out by ultrasonic dispersion treatment or high-strength stirring, etc. Preferably, the present embodiment uses ultrasonic dispersion for 1 〇 to 3 〇 minutes. Since the carbon nanotube has a pole A The specific surface area and the intertwined nano-carbon tube have a large van der Waals force. The above flocculation treatment does not completely disperse the carbon nanotubes in the carbon nanotube raw material in the solvent; The van der Waals force attracts and entangles each other to form a network structure. In step 3, the above carbon nanotube floc structure is separated from the solvent, and the carbon nanotube flocculent type is processed to obtain - nanometer Carbon tube thin implementation The method for separating the floc structure of the carbon nanotubes specifically comprises: firstly, the above-mentioned solvent containing the nano carbon official floc structure is poured into the funnel; the drying is allowed to dry for a period of time to obtain the separated na[iota] structure. Please refer to Fig. 3, which is a nano-carbon tube placed on the filter paper; it can be seen that 'the carbon nanotubes are intertwined into irregular flocs 14 200919811. In the κ yoke example, the shaping treatment specifically includes the carbon tube floc structure. Placed in a volume of $. From the next to the next step, the above-mentioned nai-predetermined shape is spread η. The carbon nanotube floc structure is spread out in the shape of::疋, and palladium is added with a certain pressure to spread the nano carbon and 'The solvent remaining in the floc structure of the nano carbon tube is dried or the solvent is obtained from (4) to obtain the thin carbon nanotubes (4). 14. It can be understood that = the area of the floc structure of the carbon nanotubes is controlled to control the nai. The thickness and areal density of the S film 14. The larger the area of the tile, the smaller the thickness and areal density of the anti-burst film. ^ 14 thickness is! Micron ~ 2 mm, width i PCT ~ 1 〇 cm;:: Figure 4, the carbon nanotube film 14 obtained in the present example. In addition, the separation and sizing treatment step can also obtain the carbon nanotube film 14 directly by suctioning, and specifically includes the following steps: providing a microporous membrane and a pumping funnel; and the above-mentioned carbon nanotube containing flocculation The solvent of the structure is poured into a suction funnel through a microporous membrane; filtered and dried to form a film 14 with a carbon nanotube. The microporous membrane is a filter membrane having a smooth surface and a pore diameter of 0.22 μm. Since the suction filtration method itself will provide a large two gas pressure acting on the nano carbon tube floc structure, the carbon nanotube floc structure directly forms a uniform carbon nanotube film 14 by suction filtration. Further, since the surface of the microporous film is smooth, the carbon nanotube film 14 is easily peeled off. The carbon nanotube film 14 prepared in this embodiment comprises intertwined carbon nanotubes 'nanocarbon tubes which are mutually attracted and entangled by van der Waals force to form a network structure'. Therefore, the nanometer; The tube film 14 has good toughness. In the carbon nanotube film 14, the carbon nanotubes are isotropic, uniformly distributed, and randomly arranged to form a large number of microporous structures, and the micropores are less than 100 μm. The carbon nanotube film 14 itself has a very large specific surface 15 200919811 2 in: the carbon nanotube film 14 does not contain any deadting agent, which is beneficial to the surface of the filling process of the carbon nanotubes (four) . # 实施例, because the carbon nanotubes (four) 14 itself and right # 肖疋: self-cutting and stability, and, the carbon nanotube itself has excellent electrical conductivity, from ^ ^, text, in the inter-personal application At the time, the δHai can be directly used for the negative electrode of the lithium ion battery. In the case of the sound, the carbon nanotube film can be expanded according to the actual pre-twisted size (such as 8 mm χ 8 mm) and the shape of the cathode. The following method of preparing the negative electrode of the ion battery can further include the surface of the carbon nanotube film 14 of the carbon nanotube film 14 using a conductive paste. Thus, the current collector 12 can be a metal substrate, preferably (d). The carbon nanotube film 14 prepared in the present embodiment has a strong (four) property, so that the nano-anti-g / , 14 can be directly adhered to the current collector 12 by a dusting method. surface. The rice is U and the van der Waals force is closely combined with the current collector 12, and a large number of microporous structures have a large specific surface area, and the nanometer: the microporous structure of the surface is improved. During the discharge process, the negative electrode of the $ ion battery in the clock ion can improve the stability of the passivation film formed during the first inlaying process of 200919811. Therefore, the limitation of the electrolyte of the clock ion battery in the present embodiment can be effectively reduced. Referring to FIG. 5, an embodiment of the present technical solution further provides a lithium ion battery 5A using the lithium ion battery negative electrode, which includes: a casing 502 and a positive electrode 5〇4 disposed in the casing 5〇2, Negative electrode 5〇6, electrolyte $(10) and separator 510', wherein the negative electrode 5〇6 is a lithium ion battery negative electrode prepared by the above method. In the lithium ion battery 500, the electrolytic solution 5〇8 is placed in the casing 502, and the positive electrode 504 and the negative electrode 5〇6 are placed in the electrolytic solution 5〇8. The separator 510 is placed between the positive electrode 5〇4 and the negative electrode 5〇6, and divides the internal space of the housing into two parts. The positive electrode 5〇4 and the negative electrode 5〇6 are respectively placed on both sides of the separator 510, and the positive electrode 5〇4 and the separator 51〇 and the negative electrode 5〇6 and the separator 51〇 are spaced apart from each other. The positive electrode 504 includes a positive electrode current collector 512 and a second electrode material 514, and the negative electrode includes a negative electrode current collector 518 and a gas nanotube film 516. The positive electrode terminal 52A and the negative electrode terminal 522 are connected to the top of the positive electrode current collector 512 and the negative electrode current collector 518, respectively. In the 'in the example', the above positive electrode 5〇4, the separator 510, and the electrolyte 508:, 1 are limited. The clock ion battery 500 prepared in this example was tested for energy. Wherein 'positive electrode (four) 514 is = (tetra) crossed metal oxides such as: LiNi〇2, LiaC〇〇2, LiaMn2 belongs to Ge = selected as a dense hydrocarbon, and electrolyte 5〇8 is preferably dissolved in carbon 'mil] cTene Carb〇nate 5 EC) Medium ^DEC) (volume ratio 1:1) mixed solvent 1 Mosaki six (four) (four) (LipF6). When the actual spear pool 500 is applied, the corresponding positive electrode material 514, diaphragm 510 and electrolyte 508 may be selected as other materials.丨(7) Membrane 510 17 200919811 * Please refer to the following table. For the convenience of measurement, this embodiment is assembled with a lithium ion battery negative electrode 506 including a 50 μg* carbon nanotube film 516 into a lithium ion* battery 500, and then subjected to a charge and discharge test. It is shown that the lithium ion battery 500 of the present embodiment has high charge and discharge efficiency and specific capacity, and the lithium ion battery 500 has good cycle charge and discharge performance. Among them, the lithium ion battery 500 has a first charge and discharge efficiency of more than 140%, which is 148.8%, and the first discharge capacity is more than 700 mAh/g, which is 764 mAh/g. After 11 cycles, the charge cycle capacity retention rate of the lithium ion battery 500 was 91%. The charge and discharge cycle performance of the ion battery 500 in Table 1 The number of cycles of charge and discharge efficiency (mAh) (mAh) (%) 1 0 0.1094 0 2 0.0257 0.0382 148.8 3 0.0273 0.0321 117.5 4 0.0254 0.0293 115.2 5 0.0245 0.0277 113.1 6 0.0243 0.0271 111.3 7 0.0239 0.0264 110.6 8 0.0236 0.026 109.8 9 0.023 0.0259 109.3 10 0.0227 0.0257 108.1 11 0.0229 0.0259 108.6 12 0.0226 0.0274 107 13 0.0227 0 0 18 200919811 In summary, the present invention has indeed been filed in accordance with the invention. However, the above is only the preferred embodiment of the present invention, which limits the scope of patent application in this case. Anyone who is familiar with the case will be able to make the effect of the invention in accordance with the spirit of the present invention.支白应涵 [Simplified description of the drawings] Fig. 1 is a lithium ion diagram of the embodiment of the present technical solution. FIG. 2 is a schematic diagram of a lithium ion flow in an embodiment of the present invention. Method for preparing battery negative electrode Fig. 3 is a photograph of an embodiment of the present technical solution. Figure 4 of the obtained nanocarbon tube floc structure is a photograph of the film of the embodiment of the present invention. FIG. 5 is a carbon nanotube of a predetermined shape. FIG. 5 is a clock element of the embodiment of the present invention. [Main component symbol description] I-cell, Q, and Q configuration 10 12 14 500 502 504 506 508 ion battery negative electrode current collector Nano carbon tube film ion battery case positive electrode negative electrolyte 19 200919811 Diaphragm 510 Positive electrode current collector 512 Cathode material 514 Carbon nanotube film 516 Negative current collector 518 Positive terminal 520 Negative terminal 522 20