TW200919476A - Non-volatile storage with source bias all bit line sensing and the related method therefor - Google Patents
Non-volatile storage with source bias all bit line sensing and the related method therefor Download PDFInfo
- Publication number
- TW200919476A TW200919476A TW97124365A TW97124365A TW200919476A TW 200919476 A TW200919476 A TW 200919476A TW 97124365 A TW97124365 A TW 97124365A TW 97124365 A TW97124365 A TW 97124365A TW 200919476 A TW200919476 A TW 200919476A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- bit line
- sensing
- storage element
- volatile storage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 82
- 238000010168 coupling process Methods 0.000 claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 claims abstract description 20
- 230000008878 coupling Effects 0.000 claims abstract description 19
- 230000015654 memory Effects 0.000 claims description 80
- 238000012360 testing method Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 44
- 238000007667 floating Methods 0.000 description 34
- 230000008569 process Effects 0.000 description 32
- 238000012795 verification Methods 0.000 description 23
- 230000008859 change Effects 0.000 description 14
- 230000001419 dependent effect Effects 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100239944 Aspergillus nanangensis nanD gene Proteins 0.000 description 1
- 244000108452 Litchi chinensis Species 0.000 description 1
- 235000015742 Nephelium litchi Nutrition 0.000 description 1
- 244000146510 Pereskia bleo Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000020057 cognac Nutrition 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000003580 polydactyly Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/3454—Arrangements for verifying correct programming or for detecting overprogrammed cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/564—Miscellaneous aspects
- G11C2211/565—Multilevel memory comprising elements in triple well structure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
200919476 九、發明說明: 【發明所屬之技術領域】 本發明係關於非揮發性記憶體。 本申請案係關於以下同在申請中之共同讓渡之美國專利 申請案: 標題為"Method for Sensing Negative Threshold Voltages In Non-Volatile Storage Using Current Sensing"之美國專利 申請案第_號(檔案號SAND-1233USl/SDD-1123), 標題為"Non-Volatile Storage With Current Sensing of200919476 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to non-volatile memory. This application is related to the commonly assigned U.S. Patent Application Serial No.: "Method for Sensing Negative Threshold Voltages In Non-Volatile Storage Using Current Sensing" SAND-1233USl/SDD-1123), titled "Non-Volatile Storage With Current Sensing of
Negative Threshold Voltages"之美國專利申請案第_號 (檔案號 SAND-1233US2/SDD-1123), 標題為"Method for Current Sensing With Biasing Of Source And P-Well In Non-Volatile Storage”之美國專利申 請案第_號(檔案號 SAND-1241US1/SDD-1126), 標題為"Non-Volatile Storage using Current Sensing WithUS Patent Application No. _ (File No. SAND-1233US2/SDD-1123), titled "Method for Current Sensing With Biasing Of Source And P-Well In Non-Volatile Storage, US Patent Application No. 5, Negative Threshold Voltages " Case No. (File No. SAND-1241US1/SDD-1126), titled "Non-Volatile Storage using Current Sensing With
Biasing Of Source And P-Well”之美國專利申請案第_號 (檔案號 SAND-1241US2/SDD-1126), 標題為"Method for Source Bias All Bit Line Sensing inBiasing Of Source And P-Well, US Patent Application No. _ (File No. SAND-1241US2/SDD-1126), entitled "Method for Source Bias All Bit Line Sensing in
Non-Volatile Storage”之美國專利申請案第_號(檔案 號 SAND-1242US0/SDD-1127), 標題為"Non-Volatile Storage with Source Bias All BitNon-Volatile Storage, US Patent Application No. (File No. SAND-1242US0/SDD-1127), entitled "Non-Volatile Storage with Source Bias All Bit
Line Sensing”之美國專利申請案第_號(檔案號SAND- 1242US1/SDD-1127), 標題為"Method For Temperature Compensating Bit Line 132483.doc 200919476Line Sensing, US Patent Application No. _ (File No. SAND-1242US1/SDD-1127), entitled "Method For Temperature Compensating Bit Line 132483.doc 200919476
During Sense Operations In Non-Volatile Storage"之美國專 利申請案第__號(檔案號SAND-1243US1/SDD-1128),及 標題為"Non-Volatile Storage With Temperature Compensation For Bit Line During Sense Operations”之美國專利申請案 第_號(檔案號 SAND-1243US2/SDD-1128), 該等專利申請案中之每一者與本案一同申請,且該等專 利申請案中之每一者以引用方式併入本文。 【先前技術】During Sense Operations In Non-Volatile Storage" US Patent Application No. __ (File No. SAND-1243US1/SDD-1128), and titled "Non-Volatile Storage With Temperature Compensation For Bit Line During Sense Operations" US Patent Application No. _ (File No. SAND-1243US2/SDD-1128), each of which is filed with the present application, and each of which is incorporated by reference. This article. [Prior Art]
半導體3己憶體已日益風行地用於各種電子裝置中。舉例 而言,非揮發性半導體記憶體用於蜂巢式電話、數位相 機、個人數位助理、行動計算裝置、非行動計算裝置及其 他裝置中。電可擦可程式化唯讀記憶體(EEpR〇M)及快閃 記憶體為最風行之非揮發性半導體記憶體。在快閃記憶體 (亦為-類型之EEPROM)的情況下,與傳統之具有全部特 徵的EEPROM對比,可在-個步驟中擦除整個記憶體陣列 或記憶體之一部分之内容。 傳統EEPROM及快閃記憶體皆利用定位於半導體基板中 之通道區域上方且與其絕緣之浮動閘I浮動閘㈣位於 源極區域與㈣區域之間。控制閘極提供於浮動閘極上且 與其絕緣。如此形成之電晶體之臨 丨艮電壓(Vth)由保留於 泮動閘極上之電荷量控制。亦即, 接通電晶體以允許電 晶體之源極與汲極之間的傳導之前 y頁施加至控制閘極之 電壓的最小量由浮動閘極上之電荷位準控制。 -些EEPROM及快閃記,隱體| ’用於儲存兩個電荷 132483.doc 200919476 車圍的年動閘極,且因此,記憶 如,捭除舳1 / ,va體兀件可在兩個狀態(例 為备一 ~播μ - 心)之間加以程式化/擦除。因 °己憶體元件可儲存一資料彳ίτ-ΐ f ;# 拄 1 U β 、斗位70,所以此快閃記憶體 裝置有時被稱為二進位快閃記憶體裝置 稱為多位準)快閃記憶體裳置係藉由識別多個 / 許/有效程式化臨限電壓範圍而實施。每一相異 L限電壓範圍對應於記侉體穿 Α 隐體裝置中經編碼之資料位元集合Semiconductor 3 memories have become increasingly popular in a variety of electronic devices. For example, non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, inactive computing devices, and other devices. Electrically erasable and programmable read-only memory (EEpR〇M) and flash memory are the most popular non-volatile semiconductor memory. In the case of flash memory (also type-type EEPROM), the contents of the entire memory array or a portion of the memory can be erased in one step in contrast to conventional EEPROMs having all features. Both the conventional EEPROM and the flash memory utilize a floating gate I floating gate (4) positioned above and insulated from the channel region in the semiconductor substrate between the source region and the (four) region. The control gate is provided on and insulated from the floating gate. The voltage (Vth) of the thus formed transistor is controlled by the amount of charge remaining on the flip gate. That is, the minimum amount of voltage applied to the control gate before the transistor is turned on to allow conduction between the source and the drain of the transistor is controlled by the charge level on the floating gate. - some EEPROM and flash, hidden | 'used to store two charges 132483.doc 200919476 car's annual gate, and therefore, memory, such as 舳 1 / , va body parts can be in two states (Example: Prepare one ~ broadcast μ - heart) between stylized / erased. Because the memory component can store a data 彳ίτ-ΐ f ;# 拄1 U β , bucket position 70, so this flash memory device is sometimes called a binary flash memory device called multi-level Flash memory is implemented by recognizing multiple/effective/programmed threshold voltage ranges. Each distinct L-limit voltage range corresponds to a set of encoded data bits in the 穿 body 隐 hidden device
的預疋值。舉例而言,當每一 母°己隐體兀*件可置於對應於四 個相異臨限電壓範圍的四個離散電荷帶中之一者中時,該 元件可儲存兩個資料位元。 通常’在程式化操作期間施加至控制閘極之程式化電壓 vPGM#作為量值隨時間而增加之—系列脈衝而施加。在一 可能方法中,脈衝之量值隨著每一連續脈衝增加一預定步 長例士 〇·2-0.4 v。VpGM可施加至快閃記憶體元件之控 制閘極。在程式化脈衝之間的時期中,進行驗證操作。亦 即,在連續程式化脈衝之間讀取被並行地程式化的一群元 件中之每元件之程式化位準,以判定該程式化位準是等 於還是大於元件被程式化至的驗證位準◎對於多狀態快閃 記憶體元件陣列而言’可針對元件之每—狀態執行驗證步 驟,以判定元件是否已達到其與資料相關聯之驗證位準。 舉例而言,能夠以四個狀態儲存資料之多狀態記憶體元件 可能需要針對三個比較點執行驗證操作。 此外,當程式化EEPROM或快閃記憶體裝置(諸如, NAND串中之NAND快閃記憶體裝置)時,通常將VpGM施加 132483.doc 200919476 至控制問極且將位元線接地,從而使來自單元或記憶體元 件(例如’儲存元件)之通道的電子注入至浮動閘極中。當 電子累積於洋動閘極中時,浮動閘極變得帶負電荷且記憶 體元件之6a限電壓升鬲’使得記憶體元件被認為處於經程 式化狀態。可在標題為"s〇urce Side Self B〇〇stingPre-existing value. For example, when each parent can be placed in one of four discrete charge bands corresponding to four distinct threshold voltage ranges, the component can store two data bits. . Usually, the stylized voltage vPGM# applied to the control gate during the stylization operation is applied as a series of pulses whose magnitude increases with time. In one possible method, the magnitude of the pulse is increased by a predetermined step with each successive pulse of 例·2-0.4 v. VpGM can be applied to the control gate of the flash memory component. During the period between the stylized pulses, a verification operation is performed. That is, the programmed level of each of a group of components that are programmed in parallel is read between successive stylized pulses to determine whether the programmed level is equal to or greater than the verify level to which the component is programmed. ◎ For multi-state flash memory device arrays, a verification step can be performed for each state of the component to determine if the component has reached its verification level associated with the data. For example, a multi-state memory element capable of storing data in four states may need to perform a verify operation for three comparison points. In addition, when programming an EEPROM or flash memory device (such as a NAND flash memory device in a NAND string), VpGM is typically applied to the control terminal and the bit line is grounded, thereby Electrons of the channels of the cells or memory components (eg, 'storage components') are injected into the floating gates. When electrons accumulate in the oceanic gate, the floating gate becomes negatively charged and the 6a voltage limit of the memory element rises so that the memory element is considered to be in a programmed state. Available under the heading "s〇urce Side Self B〇〇sting
Technique For Non-Volatile Memory”之美國專利6,859,397 及2005年2月3日公開的標題為"DetectingTechnique For Non-Volatile Memory, US Patent 6,859,397 and February 3, 2005, titled "Detecting
Memory"之美國專利申請公開案2〇〇5/〇〇24939中找到關於 此程式化的更多資訊;該兩案之全文以引用方式併入本文 中。 【發明内容】 本發明提供一種非揮發性儲存裝置,其具有用於使用全 位7L線感測來感測非揮發性儲存元件之程式化條件之能 力。Further information on this stylization can be found in U.S. Patent Application Publication No. 2/5/24,939, the disclosure of which is incorporated herein in its entirety by reference. SUMMARY OF THE INVENTION The present invention provides a non-volatile storage device having the ability to sense stylized conditions of a non-volatile storage element using full-scale 7L line sensing.
在一實施例中,一非揮發性儲存系統包括配置成\八^^0 串的非揮發性儲存元件之-集合,其中該等NAND串中之 每一者與一各別位元線、一各別感測組件及一各別放電路 徑相關聯。-或多個㈣電路與織合之非揮發性儲存元 件通信。該或該等控制電路:⑴在一第一時間段期間: (a)施加一源極電壓至該等NAND串中之每一者之—源極, (b)防止每一各別位元線耦接至該各別感測組件且(〇)耦 接母一位tl線至該各別放電路徑;且(2)在繼該第—時間段 之後的第一時間段期間’(a)繼續施加該源極電壓至該等 NAND 串中之备— _ 者之源極,允許母一各別位元線耦接至 132483.doc 200919476 該各別感測組件。In one embodiment, a non-volatile storage system includes a set of non-volatile storage elements configured as a string of octaves, wherein each of the NAND strings is associated with a respective bit line, The individual sensing components are associated with a respective discharge path. - or multiple (four) circuits communicate with the woven non-volatile storage elements. The or the control circuit: (1) during a first time period: (a) applying a source voltage to each of the NAND strings - source, (b) preventing each individual bit line Coupled to the respective sensing components and (〇) coupled to the parent bit tl line to the respective discharge path; and (2) during the first time period following the first time period '(a) continues Applying the source voltage to the source of the NAND string allows the parent-specific bit line to be coupled to the respective sensing component of 132483.doc 200919476.
在另一實施例中’一非揮發性儲存系統包括配置成 NANDt的非揮發性儲存元件之—集合,其中料NAND 串中之每一者與一各別位元線、一各別感測組件及一各別 放電路徑相關聯一或多個控制電路與該集合之非揮發性 儲存元件通信。該或該等控制電路:⑷施加一源極電壓至 :亥等NAND串中之每一者之一源極’⑻耦接每—位元線至 该各別放電路徑,且(c)在該耦接之後,根據每—各別位元 線之-電位確定該等财_串中之每—者中的—選定非揮 發性儲存元件之一程式化條件。 在另-實施例中’-非揮發性儲存系統包括:與一第 位元線及一各別放電路徑相關聯之非揮發性儲存元件之一 第集合,與一第二位元線及一各別放電路徑相關聯 揮發性儲存元件之一第二集合;及與該第一集合及該第二 集合之非揮發性儲存元件通信的一或多個控制電路。該或 忒等控制電路:(a)施加—源極電壓至該第一集合的儲存元 件之源極’⑻純該第κ線至該各別放電路徑以使一 在施加該源極電壓時自該第—集合之儲存元件電容性地轉 合至該第二集合之儲存元件的電位至少部分地放電,且(c) 在使該電位至少部分地放電之後,確定該第二集合 元件中之一選定非揮發性儲存元件之一程式化條件。 【實施方式】 其具有用於使用全 一程式化條件之能 本發明提供一種非揮發性儲存裝置, 位元線感測來感測非揮發性儲存元件之 132483.doc -11 - 200919476 力。 適用於實施本發明之記憶體系統之一實例使用NAND快 閃記憶體結構,其包括在兩個選擇閘之間串聯地配置多個 電晶體。該等串聯之電晶體及該等選擇閘被稱為NAND 串。圖1為展示一個NAND串之俯視圖。圖2為該NAND串 之等效電路。圖1及圖2中所描繪之NAND串包括串聯且夹 在第一選擇閘120與第二選擇閘122之間的四個電晶體 100、102、104及106。選擇閘120閘控NAND串至位元線 126之連接。選擇閘122閘控NAND串至源極線128之連接。 藉由施加適當電壓至控制閘極丨20CG來控制選擇閘丨2〇。 藉由施加適當電壓至控制閘極122CG來控制選擇閘122。 電晶體100、102、104及106中之每一者具有一控制閘極及 一浮動閘極。電晶體100具有控制閘極1〇〇CG及浮動閘極 100FG。電晶體1〇2包括控制閘極1〇2CC}及浮動閘極 102FG。電晶體1〇4包括控制閘極1〇4CG及浮動閘極 104FG。電晶體1〇6包括控制閘極1〇6C(}及浮動閘極 106FG。控制閘極i〇OCG連接至字元線WL3,控制閘極 102CG連接至字元線WL2,控制閘極1〇4CG連接至字元線 WL1,且控制閘極106CG連接至字元線WL〇。該等控制閘 極亦可作為字it線之部分而提供。在__實施例中,電晶體 1〇〇、102、104及106各為儲存元件(亦被稱為記憶體單 凡)。在其他實施例中,儲存元件可包括多個電晶體或可 此不同於圖1及圖2中所描繪之儲存元件。選擇間12〇連接 至選擇線SGD(汲極選擇閘)。選擇閘122連接至選擇線 132483.doc •12- 200919476 SGS(源極選擇閘)。 圖3為描繪三個NAND串之電路圖。使用NAND結構之快 閃記憶體系統之一典型架構將包括若干NAND串。舉例而 言,在一具有更多NAND串之記憶體陣列中展示三個 . NAND串320、340及3 60。該等NAND串中之每一者包括兩 個選擇閘及四個儲存元件。雖然為了簡單起見而說明四個 儲存元件,但現代NAND串可具有多達(例如)32或64個儲 存元件。 1 : 舉例而言,NAND串320包括選擇閘322及327以及儲存元 件323-3 26,NAND串340包括選擇閘342及347以及儲存元 件343-3 46,NAND串360包括選擇閘362及367以及儲存元 件363-366。每一 NAND串藉由其選擇閘(例如,選擇閘 3 27、3 47或3 67)而連接至源極線。選擇線SGS用於控制源 極側選擇閘。各種NAND串320、340及360藉由選擇閘 3 22、3 42及3 62等中之選擇電晶體而連接至各別位元線 , 321、341及361。此等選擇電晶體由汲極選擇線SGD來控 u 制。在其他實施例中,未必需要在NAND串間共同使用選 擇線;亦即,可為不同NAND串提供不同選擇線。字元線 WL3連接至儲存元件323、343及363之控制閘極。字元線 * WL2連接至儲存元件324、344及364之控制閘極。字元線 泰 WL1連接至儲存元件325、345及365之控制閘極。字元線 WL0連接至儲存元件326、346及366之控制閘極。如可 見,每一位元線及各別NAND串包含儲存元件之陣列或集 合之行。字元線(WL3、WL2、WL1及WL0)包含陣列或集 132483.doc -13 - 200919476 。之列。每—字元線連接一 極。或’控制閘極可由牢-、母一儲存元件之控制閘 線WL2提供儲存 几線本身提供。舉例而言,字元 上::元線上可存在數千個:=之控制開極。實務 數位資料: = 料。⑽言,當儲存一位元的 成兩個範圍,其被指 能臨限電麼(Vth)之範圍分 閃記憶體之—實例令,v ^料Μ”及”〇”。在N卿型快 被定義為邏輯””。程二TH在擦除儲存元件之後為負,且 邏輯”〇”。者v _作之後的Vth為正且被定義為 田印為負且試圖進行讀取時,儲存元件將接、雨 以指示邏輯” ”正被儲存 ㈣…牛將接通 時,储存元件將不接通,^ 式圖進行讀取操作 位準,例如,多個數位資料位元。在 言,若儲存四個資訊位準,:將;:㈣之數目。舉例而 指派給資料值||-、,、”二=^ U1及00 。在NANE^記憶體 實例中擦除操作之後的%為負且被定義為”11”。 正的VTH值用於狀態"1〇"、” 〇1"及"〇〇”。被程式化至儲存元 件中之資料與元件之臨限電壓範圍之間的特定關係取決於 士儲存元件所採用之資料編碼機制。舉例而言,美國專利 第6,222,762號及美國專利中請公開案細搬5测(該兩 者之全文以引用方式併入本文中)描述用於多狀態快閃儲 存元件之各種資料編碼機制。 美國專利第 5,386,422號、第 5,522,580號、第 5,570,315 132483.doc • 14 - 200919476 號、第 5,774,397 號、第 M46,935 號、第 M56,528 及第 6,522,580號中提供NAND型快閃記憶體之相關實例及其操 作,該等專利中之每一者以引用方式併入本文中。 當程式化快閃儲存元件時,將程式化電壓施加至儲存元 件之控制閘極且將與儲存元件相關聯之位元線接地。來自 通道之電子被注人至浮動閘極中。當電子累積於浮動問極 中時,浮動閘極變得帶負電荷且儲存元件之Vth升高。為 了將程式化電壓施加至正被程式化的儲存元件之控制閘 極,將彼程式化電壓施加於適當字元線上。如以上所論 述,NAND串中之每一者中的一個儲存元件共用同一字元 線。舉例而言,當程式化圖3之儲存元件324時,亦將程式 化電壓施加至儲存元件344及364之控制閘極。 圖4描繪形成於基板上之NAND串之橫截面圖。該視圖經 簡化且不按比例。NAND串400包括形成於基板490上的源 極側選擇閘406、汲極側選擇閘424及八個儲存元件4〇8、 410、412、414、416、418、420 及 422。許多源極/汲極區 域(其中之一實例為源極/汲極區域430)被提供於每一儲存 元件及選擇閘406及424之任一側上。在一方法中,基板 490採用三重井技術,其包括在η井區域494内之p井區域 492,η井區域494又在ρ型基板區域496内。NAND串及其非 揮發性儲存元件可至少部分地形成於p井區域上。除了具 電位V B L之位元線4 2 6之外,提供具電位VsouRCE之源極供 應線404。在一可能方法中,電壓可經由端子402而施加至 P井區域492。電壓亦可經由端子403而施加至η井區域 132483.doc -15- 200919476 494。 在讀取或驗證操作(包括擦除_驗證操作)期間(儲存元件 之條件(諸如,其臨限電壓)係在此期間確定),在與選定之 儲存元件相關聯之選定字元線上提供Vcgr。另外,'可回想 到儲存元件之控制閘極可作為字元線之一部分而提供。舉 例而言,WL0、WL1、WL2、WL3、WL4、机5、机6及 WL7可分別經由儲存元件4〇8、41〇 ' 412、4l4、4i6、 418、420及422之控制閘極而延伸。在一可能升壓機制 中,可將讀取通過電壓Vread施加至與NAND串4〇〇相關聯 之未選擇字元線。其他升壓機制將¥^心施加至一些字元 線且將較低電壓施加至其他字元線。分別將Vsgs及VsGD施 加至選擇閘406及424。 圖5a至圖5d描繪非揮發性儲存元件之程式化。在一可能 的程式化技術中,分別在於圖5a、圖5b及圊5c所描繪的三 個步驟中程式化下部頁面、中間頁面及上部頁面。當在擦 除操作之後程式化資料之下部頁面時,提供兩個Vth分布 510及512。最小分布510表示擦除狀態且具有負的Vth。接 下來,自圖5a之第一 γΤΗ分布51〇分別獲得圖5b之第一 Vth 刀布520及第二γΤΗ分布522,且自圖5a之第二VTH分布512 分別獲得圖5b之第三vTH分布524及第四VTH分布526。自圖 5b之第一 Vth分布52〇獲得分別表示最終擦除狀態e及第一 經程式化狀態A的圖5c之第一 VTH分布及第二Vth分布。自 圖5b之第二Vth分布522獲得分別表示第二經程式化狀態b 及第二經程式化狀態C的圖5c之第三VTH分布及第四Vth分 132483.doc -16· 200919476 布。自圖5b之第三Vth分布524獲得分別表示第四經程式化 狀態D及第五經程式化狀態E的圖5c之第五乂抑分布及第六 VTH分布。自圖5b之第四Vth分布526獲得分別表示第六經 程式化狀態F及第七經程式化狀態G的圖5c之第七γη分布 及第八vTH分布。另外,碼字1U、011、〇〇1、1〇1、1〇〇、 〇〇〇、〇1〇及no可分別與狀態E 相關聯。 狀態E及A為負臨限電壓狀態之實例。視實施而定,一 或多個狀態可為負臨限電壓狀態。 圖5c亦描繪用於獲得所指示之分布的驗證電壓。具體言 之,驗證電壓 vVE、VvA、VvB、Vvc、Vvd、Vv二”及 VVG分別與分布E、A、B、c、D、E、相關聯。在程 2期間比較待程式化至給定分布的儲存元件之臨限電 壓與相關聯之驗證電壓。儲存元件經由關聯之字元線接收 程式化脈衝,直至該等元件之臨限電壓經驗證為已超出關 聯之驗證電麗。 圖5d描繪用於讀取儲存元件之經程式化狀態的讀取電 壓。在儲存元件已被程式化後,其可使用讀取電壓I、 RB VRC、Vrd、Vre、VRF及Vrg來隨後讀取。比較通常 與共同子几線相關聯之一或多個儲存元件與每一讀取電 ,以本I!中 ** /丄 70件之臨限電壓是否超出讀取電壓。可接著藉 由所超出的最高讀取電壓來判定儲存元件之狀態。在相鄰 狀態之間提供該等讀取電壓。 所私緣之程式化過程為一可能實例,因為其他方 132483.doc 200919476 法係可能的。 負臨限電展之電流感測 2揮發性儲存裝置(包括使用勵D記 發性儲存裝置)中, Μ平 说 ^ .、、、用來將電流感測用於在讀取或驗 ::立期間感測非揮發性儲存元件之負臨限電壓狀態的令 〜、之方法。已使用電壓感測,但已發現,丨完成需要 : 1另外,歸因於位元線至位元線電容耦合及其他 效應’電麼感測還不適合於同時對鄰近儲存元件群組執行 感:則:全位元線感測。-可能解決方法包括:當使用電流 感測時’在感測期間將源極電壓及ρ井壓調節至某一固定 的正DC位準,及經由所感測之儲存元件之關聯字元線將 該儲存元件之控制閘極連接至一比源極及ρ井電壓低的電 位。元件電壓及ρ井電壓亦可能不同。藉由此將源極及口井 之偏壓組合至某一固定電位之方法,可能使用電流感測感 測—或多個負臨限電壓狀態。另夕卜’因為電流感測避免電 ί) 壓感測之許多缺點,所以其相容於全位元線感測。 圖6a描繪NAND串及用於感測之組件之一組態。在一簡 化實例中’ NAND串612包括四個儲存元件,其分別與字元 線WL0、WL1、WL2及WL3通信。實務上’可使用額外儲 存元件及字元線。另外,額外NAND串在非揮發性儲存元 件之區塊或其他集合中通常係相互鄰近地配置(參見例如 圖14)。儲存元件被耦接至基板之ρ井區域。除了感測組件 600之外,描繪一具有電壓vBL之位元線610。詳言之,將 BLS(位元線感測)電晶體606搞接至位元線610 〇 BLS電晶 132483.doc -18· 200919476 體606為高電壓電晶體,且在感測操作期間回應於控制 (control) 608而打開。BLC(位元線控制)電晶體6〇4為低電 壓電晶體,其回應於控制608而打開以允許位元線與電流 感測模組602通信。在一感測操作(諸如讀取或驗證操作)期 間’發生預充電操作’電流感測模組6〇2中之一電容器在 該操作中充電。可將BLC電晶體604打開以允許預充電。 又’在感測操作期間’對於具有負臨限電壓狀態之儲存元 件而言,將一正電壓施加至該操作中所涉及的一或多個儲 存元件之字元線。因為不需要負電荷泵來提供負的字元線 電壓,所以在感測負臨限電壓之感測操作中將正電壓用於 選定字元線係有利的。將負電荷泵併入許多非揮發性儲存 系統中可能要求大量的過程研究及修改。 舉例而言’假設選定字元線為WL1。將WL1上之電壓作 為控制閘極讀取電壓VCGR而耦接至該字元線上的儲存元件 之控制閘極。另外,可將一正電壓VS0URCE施加至NAND串 630之源極側’且可將一正電壓Vp_WELL施加至p井。在一實 施中 ’ VS0URCE 及 VP-WELL 大於 VCGR。VS0URCE 與 Vp_WELL 可相 互不同’或其可耦接至同一 DC電壓VDC。另外, VDC>VCGR。作為一實例,VDC可在約〇·4至1.5 V之範圍内 例如’ 0·8 V。較高之VDC使得感測更負的臨限電壓狀態。 舉例而言,可分別使用VDC= 1.5 V及VDC= 1.0 V來感測第一負 臨限電壓狀態vTH1=-i.o v及第二負臨限電壓狀態Vth2=_0 5 V。可將Vdc设定為'一位準’以使得V"dc_Vth>〇 V。通常, 為了感測負臨限電壓,字元線及源極電壓經設定以使得閘 132483.doc -19- 200919476 極至源極電壓小於零,亦即,VGS<〇 V。若閘極至源極電 壓大於儲存元件之臨限電壓(亦即,VGS>VTH),則選定之 儲存70件傳導。為了感測正臨限電壓,可將源極及P井保 持為相同電壓,同時調整選定字元線電壓。In another embodiment, a non-volatile storage system includes a collection of non-volatile storage elements configured as NANDt, wherein each of the NAND strings and a respective bit line, a respective sensing component And a respective one or more control circuits associated with the respective discharge paths are in communication with the set of non-volatile storage elements. Or the control circuit: (4) applying a source voltage to one of each of the NAND strings such as hai, '(8) coupling each bit line to the respective discharge path, and (c) After coupling, a stylized condition of one of the selected non-volatile storage elements is determined based on the potential of each of the respective bit lines. In another embodiment, the non-volatile storage system includes: a first set of non-volatile storage elements associated with a bit line and a respective discharge path, and a second bit line and a a second set of one of the volatile storage elements associated with the discharge path; and one or more control circuits in communication with the first set and the second set of non-volatile storage elements. The control circuit or the like: (a) applying a source voltage to a source of the first set of storage elements '8) purely the κ line to the respective discharge paths such that a voltage is applied when the source voltage is applied The first set of storage elements are capacitively coupled to the potential of the second set of storage elements to be at least partially discharged, and (c) after the potential is at least partially discharged, one of the second set of elements is determined A stylized condition for one of the non-volatile storage elements is selected. [Embodiment] It has the ability to use all-synthesis conditions. The present invention provides a non-volatile storage device for bit line sensing to sense non-volatile storage elements. One example of a memory system suitable for use in practicing the present invention uses a NAND flash memory structure that includes a plurality of transistors arranged in series between two select gates. The series connected transistors and the select gates are referred to as NAND strings. Figure 1 is a top plan view showing a NAND string. Figure 2 shows the equivalent circuit of the NAND string. The NAND string depicted in Figures 1 and 2 includes four transistors 100, 102, 104, and 106 that are connected in series and sandwiched between a first select gate 120 and a second select gate 122. The gate 120 gate NAND string is connected to the bit line 126. The connection of the gate 122 gated NAND string to the source line 128 is selected. The selection gate 2 is controlled by applying an appropriate voltage to the control gate 丨 20CG. The selection gate 122 is controlled by applying an appropriate voltage to the control gate 122CG. Each of the transistors 100, 102, 104, and 106 has a control gate and a floating gate. The transistor 100 has a control gate 1 CG and a floating gate 100FG. The transistor 1〇2 includes a control gate 1〇2CC} and a floating gate 102FG. The transistor 1〇4 includes a control gate 1〇4CG and a floating gate 104FG. The transistor 1〇6 includes a control gate 1〇6C(} and a floating gate 106FG. The control gate i〇OCG is connected to the word line WL3, the control gate 102CG is connected to the word line WL2, and the control gate 1〇4CG Connected to word line WL1, and control gate 106CG is coupled to word line WL. These control gates may also be provided as part of the word it line. In the embodiment, transistor 1〇〇, 102 Each of 104, 106 and 106 is a storage element (also referred to as a memory unit). In other embodiments, the storage element may comprise a plurality of transistors or may be different from the storage elements depicted in Figures 1 and 2. The selection interval 12 is connected to the selection line SGD (drain selection gate). The selection gate 122 is connected to the selection line 132483.doc • 12-200919476 SGS (source selection gate). Figure 3 is a circuit diagram depicting three NAND strings. A typical architecture of a NAND-structured flash memory system would include several NAND strings. For example, three NAND strings 320, 340, and 3 60 are shown in a memory array with more NAND strings. Each of the strings includes two selection gates and four storage elements. Although for the sake of simplicity Four storage elements are illustrated, but modern NAND strings can have up to, for example, 32 or 64 storage elements. 1 : For example, NAND string 320 includes select gates 322 and 327 and storage elements 323-3 26, NAND string 340 Including select gates 342 and 347 and storage elements 343-3 46, NAND string 360 includes select gates 362 and 367 and storage elements 363-366. Each NAND string is selected by its gate (eg, select gates 3 27, 3 47 or 3 67) is connected to the source line. The selection line SGS is used to control the source side selection gate. The various NAND strings 320, 340 and 360 are connected by selecting the selection transistor in the gates 3 22, 3 42 and 3 62 Up to the respective bit lines, 321 , 341 and 361. The selected transistors are controlled by the drain select line SGD. In other embodiments, it is not necessary to use the select lines in common between the NAND strings; that is, Different NAND strings provide different select lines. Word line WL3 is connected to the control gates of storage elements 323, 343 and 363. Word line * WL2 is connected to the control gates of storage elements 324, 344 and 364. Word line WL1 Connected to the control gates of storage elements 325, 345, and 365. Word line WL0 is connected to The control gates of elements 326, 346, and 366 are stored. As can be seen, each bit line and each NAND string includes an array or set of rows of storage elements. The word lines (WL3, WL2, WL1, and WL0) comprise an array or Set 132483.doc -13 - 200919476. The list. Each word line is connected to one pole. Or the 'control gate' can be provided by the hold-by-make, the control gate WL2 of the parent-storage component. For example, there can be thousands of words on the :: meta line: = control open. Practice Digital data: = material. (10) Words, when storing one element in two ranges, it is said to be able to limit the power (Vth) to the flash memory - instance order, v ^ material Μ" and "〇". It is defined as logic "". The second TH is negative after erasing the storage element, and the logic is "〇". When the Vth after the v_ is positive and defined as the negative of the field and the reading is attempted, The storage component will be connected and rained to indicate that the logic "" is being stored (4)... When the cow will be turned on, the storage component will not be turned on, and the pattern will be read, for example, multiple digit data bits. If four information levels are stored, the number of :: (4) is assigned to the data value ||-,,," two =^ U1 and 00. The % after the erase operation in the NANE^ memory instance is negative and is defined as "11". Positive VTH values are used for status "1〇", 〇1" and "〇〇. The specific relationship between the data that is programmed into the storage element and the threshold voltage range of the component depends on the data encoding mechanism used by the storage component. For example, U.S. Patent No. 6,222,762 and U.S. Patent No. 5, the entire disclosure of which is incorporated herein by reference. Examples of NAND-type flash memory are provided in U.S. Patent Nos. 5,386,422, 5,522,580, 5,570,315, the disclosure of which are incorporated herein by reference. And its operation, each of which is incorporated herein by reference. When the flash storage component is programmed, a programmed voltage is applied to the control gate of the storage element and the bit line associated with the storage component is grounded. The electrons from the channel are injected into the floating gate. When electrons accumulate in the floating pole, the floating gate becomes negatively charged and the Vth of the storage element rises. To apply a programmed voltage to the control gate of the memory element being programmed, the stylized voltage is applied to the appropriate word line. As discussed above, one of the storage elements in each of the NAND strings shares the same word line. For example, when the storage element 324 of Figure 3 is programmed, a programmed voltage is also applied to the control gates of storage elements 344 and 364. 4 depicts a cross-sectional view of a NAND string formed on a substrate. This view is simplified and not to scale. The NAND string 400 includes a source side select gate 406, a drain side select gate 424, and eight storage elements 4A, 410, 412, 414, 416, 418, 420, and 422 formed on the substrate 490. A number of source/drain regions (one of which is source/drain region 430) are provided on either side of each of the storage elements and select gates 406 and 424. In one method, substrate 490 employs triple well technology that includes p-well region 492 within n-well region 494, which in turn is within p-type substrate region 496. The NAND string and its non-volatile storage elements can be formed at least partially on the p-well region. A source supply line 404 having a potential VsouRCE is provided in addition to the bit line 4 26 having a potential V B L . In one possible approach, a voltage can be applied to P well region 492 via terminal 402. The voltage can also be applied to the n-well region via the terminal 403 132483.doc -15- 200919476 494. During a read or verify operation (including an erase_verify operation) (the condition of the storage element, such as its threshold voltage) is determined during this period, Vcgr is provided on the selected word line associated with the selected storage element. . In addition, it can be recalled that the control gate of the storage element can be provided as part of the word line. For example, WL0, WL1, WL2, WL3, WL4, machine 5, machine 6 and WL7 may extend via control gates of storage elements 4〇8, 41〇' 412, 4l4, 4i6, 418, 420 and 422, respectively. . In a possible boosting mechanism, the read pass voltage Vread can be applied to the unselected word lines associated with the NAND string 4A. Other boosting mechanisms apply the ¥^ heart to some of the word lines and apply a lower voltage to the other word lines. Vsgs and VsGD are applied to select gates 406 and 424, respectively. Figures 5a through 5d depict the stylization of non-volatile storage elements. In one possible stylization technique, the lower, middle, and upper pages are stylized in the three steps depicted in Figures 5a, 5b, and 5c, respectively. Two Vth distributions 510 and 512 are provided when the lower page of the data is programmed after the erase operation. The minimum distribution 510 represents an erased state and has a negative Vth. Next, the first Vth knife cloth 520 and the second γΤΗ distribution 522 of FIG. 5b are respectively obtained from the first γΤΗ distribution 51〇 of FIG. 5a, and the third VTH distribution of FIG. 5b is obtained from the second VTH distribution 512 of FIG. 5a, respectively. 524 and fourth VTH distribution 526. From the first Vth distribution 52 of Figure 5b, the first VTH distribution and the second Vth distribution of Figure 5c representing the final erased state e and the first programmed state A, respectively, are obtained. From the second Vth distribution 522 of Figure 5b, the third VTH distribution of Figure 5c and the fourth Vth distribution 132483.doc -16.200919476, respectively, representing the second programmed state b and the second programmed state C are obtained. From the third Vth distribution 524 of Figure 5b, the fifth detonation distribution and the sixth VTH distribution of Figure 5c representing the fourth programmed state D and the fifth programmed state E, respectively, are obtained. From the fourth Vth distribution 526 of Fig. 5b, the seventh γη distribution and the eighth vTH distribution of Fig. 5c representing the sixth programmed state F and the seventh programmed state G, respectively, are obtained. In addition, the code words 1U, 011, 〇〇1, 1〇1, 1〇〇, 〇〇〇, 〇1〇, and no may be associated with the state E, respectively. States E and A are examples of negative threshold voltage states. Depending on the implementation, one or more states may be a negative threshold voltage state. Figure 5c also depicts a verify voltage for obtaining the indicated distribution. Specifically, the verification voltages vVE, VvA, VvB, Vvc, Vvd, Vv, and VVG are associated with the distributions E, A, B, c, D, and E, respectively, and are compared to a given period during the process 2 The threshold voltage of the distributed storage element and the associated verification voltage. The storage element receives the stylized pulses via the associated word line until the threshold voltage of the elements is verified to have exceeded the associated verification battery. Figure 5d depicts A read voltage for reading the programmed state of the storage element. After the storage element has been programmed, it can be read using the read voltages I, RB VRC, Vrd, Vre, VRF, and Vrg. One or more storage elements associated with the common sub-line and each read power, whether the threshold voltage of ** / 丄 70 of this I! exceeds the read voltage, and can be followed by the highest The voltage is read to determine the state of the storage element. The read voltages are provided between adjacent states. The stylized process of privacy is a possible example, as other parties are possible in the law of 1264.doc 200919476. Current sensing of the electric show 2 volatile storage In the setting (including the use of the excitation D semaphore storage device), Μ平 says ^., ,, is used to sense the negative threshold of the non-volatile storage element during the reading or inspection: The voltage state of the ~, the method has been used for voltage sensing, but it has been found that the need to complete: 1 In addition, due to bit line to bit line capacitance coupling and other effects 'electrical sensing is not suitable for simultaneous Sense of execution of adjacent storage element groups: then: full bit line sensing. - Possible solutions include: when using current sensing 'adjust the source voltage and ρ well pressure to a fixed positive during sensing The DC level, and the associated gate of the storage element is connected to a potential lower than the source and the pu well voltage via the associated word line of the sensed storage element. The component voltage and the ρ well voltage may also be different. This method of combining the source and the well's bias voltage to a fixed potential may use current sensing sensing—or multiple negative threshold voltage states. In addition, 'because current sensing avoids electricity ί.” Measuring many shortcomings, so it is compatible with the full bit line sense Figure 6a depicts one configuration of a NAND string and components for sensing. In a simplified example, 'NAND string 612 includes four storage elements that communicate with word lines WL0, WL1, WL2, and WL3, respectively. 'Additional storage elements and word lines can be used. Additionally, additional NAND strings are typically placed adjacent to each other in blocks or other sets of non-volatile storage elements (see, for example, Figure 14). The storage elements are coupled to the substrate. ρ well region. In addition to the sensing component 600, a bit line 610 having a voltage vBL is depicted. In detail, the BLS (bit line sensing) transistor 606 is bonded to the bit line 610 〇 BLS transistor 132483.doc -18· 200919476 Body 606 is a high voltage transistor and is turned on in response to control 608 during a sensing operation. The BLC (bit line control) transistor 6〇4 is a low electrical piezoelectric crystal that is turned on in response to control 608 to allow the bit line to communicate with the current sensing module 602. A capacitor in the current sensing module 6〇2 during a sensing operation (such as a reading or verifying operation) is charged in the operation. The BLC transistor 604 can be turned on to allow for pre-charging. Also during the sensing operation, for a storage element having a negative threshold voltage state, a positive voltage is applied to the word line of one or more of the storage elements involved in the operation. Since a negative charge pump is not required to provide a negative word line voltage, it is advantageous to use a positive voltage for the selected word line in sensing operations that sense negative threshold voltages. Incorporating a negative charge pump into many non-volatile storage systems may require extensive process research and modification. For example, 'assuming the selected word line is WL1. The voltage on WL1 is coupled to the control gate of the storage element on the word line as a control gate read voltage VCGR. Alternatively, a positive voltage VS0URCE can be applied to the source side of the NAND string 630 and a positive voltage Vp_WELL can be applied to the p-well. In an implementation, VS0URCE and VP-WELL are larger than VCGR. VS0URCE and Vp_WELL may be different from each other' or they may be coupled to the same DC voltage VDC. In addition, VDC>VCGR. As an example, the VDC can be in the range of about 〇·4 to 1.5 V, for example, '0·8 V. A higher VDC causes a more negative threshold voltage state to be sensed. For example, the first negative threshold voltage state vTH1 = -i.o v and the second negative threshold voltage state Vth2 = _0 5 V can be sensed using VDC = 1.5 V and VDC = 1.0 V, respectively. Vdc can be set to 'one bit' to make V"dc_Vth> 〇 V. Typically, to sense the negative threshold voltage, the word line and source voltages are set such that the gate-to-source voltage of the gate 132483.doc -19-200919476 is less than zero, that is, VGS<〇 V. If the gate-to-source voltage is greater than the threshold voltage of the storage element (i.e., VGS > VTH), then 70 of the selected stores are conducted. To sense the positive threshold voltage, the source and P wells can be held at the same voltage while the selected word line voltage is adjusted.
在NAND串630之汲極側,接通BLS電晶體610,例如, 使其傳導或打開。另外,將電壓VBLC施加至BLC電晶體 604以使其傳導。電流感測模組6〇2中之預充電電容器經由 位兀線放電至源極中’使得源極充當電流槽。可將nand 串之汲極處的預充電電容器預充電至一超出源極之電位的 電位,使得當選定之儲存元件處於傳導狀態時,電流流經 選疋的非揮發性儲存元件且沉入源極中。 詳言之,若選定之儲存元件歸因於VCGR之施加而處於傳 導狀心則一相對較高之電流將流動。若選定之儲存元件 處於非傳導狀態,則無電流或相對較小之電流將流動。電 流感測模組602可感測單元/儲存元件電流。在一可能 方法中,電流感測模組確定一電壓降,其藉由關係 △ V 1 t/C而與—固定電流相聯繫,其中為電壓降,1為 固定電流’t為預定之故電時間段且。為電流感測模組中之 預充電電之電谷。亦參見圖6d,其描緣不同固定電流 線的隨時間之電壓降。較高電壓降表示較高電流。在給定 放電週期的最後,因為如係W的,所以可確定給定電 流之Δν。在一方法Φ,妝 _ τ 將P-mos電晶體用於確定AV相對於 定界值之位準。在另一可能方法中,單元電流鑑別器藉由 判定傳導電流是高於還是低於料定界電流而充當電流位 132483.doc •20- 200919476 準之鑑別器或比較器。 與之相比,電壓感測不包括感測與固定電流相聯繫之電 壓降。替代地,電壓感測包括判定電壓感測模組中之電容 器與位元線之電容之間是否發生電荷共用。在感測期間, 電流並不固定或恆定。當選定之儲存元件傳導時,很少或 不發生電荷共用,在此狀況下,電壓感測模組中之電容器 之電壓不顯著下降。當選定之儲存元件不傳導時,發生電 荷共用,在此狀況下,電壓感測模組中之電容器之電壓顯 著下降。 電"il感測模組602因此可藉由電流之位準來判定選定之 儲存元件是處於傳導還是非傳導狀態。通常,當選定之儲 存元件處於傳導狀態時,較高電流將流動,且當選定之儲 存元件儲存於非傳導狀態時,較低電流將流動。當選定之 儲存元件處於非傳導狀態或傳導狀態時,其臨限電壓分別 高於或低於一比較位準(諸如,驗證位準(參見圖5c)或讀取 位準(參見圖5d))。 圖6b描繪與圖6a相關聯之波形。波形620描繪vS0URCE及 VP.WELL、VBL及VBLC。在感測操作期間在tl將vS0URCE及 VP-WELL設定為一升高位準。在一方法中’諸如當感測操 作包括負^^限電塵時,VsOURCE及Vp -WELL 超出 VCGr。然 而’例如,當感測操作包括一正臨限電壓時,vS0URCE及 VP-WELL不必超出VCGR。vBL在tl與t2之間隨VSOURCE而增 加。在t2 ’預充電電容器放電,進而使vBL增加。因此, 與選定之非揮發性儲存元件相關聯之汲極電位(例如, 132483.doc -21 - 200919476 V B L)高於與選定之非揮發性儲存元件相關聯之源極電位 (例如’ VS0URCE)。vBLC追蹤vBL,但歸因於BLC電晶體之 臨限電壓而稍微較高。實務上,在上升之後,若電流在 NAND串中流動,則Vbl將稍微下降(未圖示)。舉例而言, 當VBLC=2 V且BLC電晶體之臨限電壓為} v時,Vbl可上升 至1 v。當感測時,若電流流動,則Vbl可自丨V降至(例 如)0·9 V。波开> 622描缯一施加至BLS電晶體之電壓,其指 示電sa體在t0與t5之間傳導。波形624描繪一感測信號,其 為扣示電谷器開始在電流感測模組中放電之後的時間t 之控制信號。 波形626及628描繪選定位元線之感測電壓,其與一固定 電流相聯繫。可在t3進行關於該電壓是否超出一定界位準 之判定。可得出如下結論:當電壓降至定界位準以下時 (例如,線628),選定之儲存元件傳導。若電壓未降至定界 位準以下時(例如,線626),選定之儲存元件不傳導。 圖6c描繪與圖6a及圖6b相關聯之感測過程。提供感測過 程之概述。在此及其他流程圖中,所描繪之步驟未必作為 離散步驟及/或以所描述之順序發生。在步驟64〇開始諸如 讀取或驗證操作之感測操作。步驟642包括打開BLS電晶 體及BLC電晶體以使位元線預充電。步驟644包括設定字 兀線電壓。步驟646包括設定Vs〇URCE&VpwELL。步驟648 包括使用電流感測判定儲存元件是傳導還是非傳導的。若 在決策步驟650,要執行另一感測操作,則控制流在步驟 64〇繼續。否則,該過程在步驟652結束。 132483.doc -22- 200919476 可連續執行多個感測操作 ^ 乍例如,針對每一驗證或讀取 位旱執仃一操作。在一方法φ .. π ^ , ,在每一感測操作中施加相 问的源極電壓及Ρ井電壓,但 A _ m , '疋之予元線電麼會改變。 因此,在一第—感測操作中, 之儲存元件之控制閘極/字元:將:第,施加至選定 線’將源極電壓施加至源 .P井電壓Μ加至p井。接著在施加第—電壓及源極 =Γ:,使用電流感測進行關於儲存元件是處於傳導 I還疋非傳導狀態之料。—第二感測操作包括在施加 相同的源極電塵及ρ井電愿的同日夺,施加一第二電壓至控 ^閘^。接著進行關於儲存元件是處於傳導狀態還是非傳 狀心之判定。虽使用相同的源極電壓及P井電壓時連 續的感測操作可類似較變選定之字元線電壓。 ϋ 另外T對與共同字①線及源極相關聯之多個儲存元件 同寺執行感測。多個儲存元件可處於鄰近或非鄰近的 串中先4所淪述之全位元線感測包括對鄰近 AND串中之儲存凡件之同時感測。在此狀況下,感測包 括使用電机感測在同時感測操作中判定非揮發性儲存元件 中之每-者是處於傳導狀態還是非傳導狀態。 具源極及Ρ井之偏壓之電流感測 在非揮發性儲存裝置(包括使用NAND記憶體設計之非揮 發1·生儲存裝置)中’電流感測可用於在讀取或驗證操作期 間感測非揮發性儲存元件之臨限電壓狀態。然而,此電流 感測已導致源極電壓之變化或"彈跳",尤其在接地電壓 下。彈跳之程度視通過儲存元件之電流的位準而定。此 132483.doc •23· 200919476 外,彈跳可導致感測誤差。一控制感測期間之單元源極彈 跳之方法為使用至少兩個選通進行感測。此可最小化單元 源極彈跳之效應。舉例而言,在電流感測之情況下’可於 來自控制之# 一選通處感測選定之儲存元件之NAND串中 的電流。相對較高或另外不準確的彈跳電流可在第一選通 處出現,而較低電流在第二選通時㈣,其中較低電流更 準確地表示儲存元件之❹n然而,使用額外選通以 等待電流安定之需要消耗了額外的電流及感測時間。參見 圖7a,其描繪歸因於感測操作期間之地電位彈跳的電流及 電壓隨時間的變化。 另一技術為將源極耦接至儲存元件之閘極及汲極。然 而,此技術係負雜的、需要額外電路且對記憶體晶片之晶 粒大小及功率消耗有一定影響。此外,此技術可歸因於自 源極至儲存it件之閘極的Rc延遲而不能良好地工作。 上:大體避免此等缺點之方法為在感測期間將源極及p井 調節至某-固定的正DC位準,而非接地。藉由使源極及p 井保持在固定DC位準,避免源極電壓中之彈跳,因此吾 亡可使用僅—個選通來感測資料。結果,感測時間及功率 消耗減v。另夕卜,不需要大量的額外電路,因此晶粒尺寸 未受不利影響。亦可能在將源極電壓調節為固定的正DC 位準的同時將P井接地。將源極電壓調節至固定的正Dc位 準可比將源極電壓調節至接地更容易達成,因為調節電路 僅需要感測正電壓。電麼調節器通常藉由基於(例如,源 極)之監視位準與内部參考電壓之比較來調整其輪出而工 132483.doc -24- 200919476 =。右監視位準降至内部參考電壓以下,則電壓調節器可 增加其輪出。類似地,若監視位準增加至内部參考電壓以 上則電壓調節器可降低其輸出。舉例而言,電壓調節器 可使用運算放大器。然而’若參考電壓為接地,則在監視 位準變得大於G V之情況下’ f壓調節器通常不能將其輸 出降低至〇 v以下。此外’電壓調節器可能不能區分〇 v以 下之監視位準。因此,將源極電壓調節至固定的正DC位 準避免地電位彈跳且可減小電流消耗及感測時間。參見圖 7b,其描繪在感測操作期間當源極電壓被調節至固定的正 DC位準時的電流及電壓之減小變化。 圖7c描繪NAND串及用於感測之組件之另一組態。除了 描繪電壓調節器720外,該組態對應於圖6a中所提供之組 態。如所提及,可在感測操作期間將源極電壓及p井電壓 調節至固定的正DC位準。 在儲存元件之感測操作(諸如,讀取或驗證操作)期間, 將一電壓施加至該操作中所涉及的一或多個儲存元件之字 元線。舉例而言,假設選定字元線為WL丨。將此電壓作為 控制閘極讀取電壓VCGR而耦合至該字元線上的儲存元件之 控制閘極。另外,可將一固定的DC電壓分別作為源極電 壓VS0URCE&p井電壓VP-WELL而施加串612之源極側 以及p井。在一實施中,當臨限電壓為負時,Vcgr可為 正,且vS0URCE及vP-WELL可大於Vcgr。在一實施中,當臨 限電壓為正時,vCGR可大於VsoURCE及Vp WELL。Vs〇urce與 Vp-WELL 可相互不同’或其可耦接至同一 DC電壓VDC。作為 132483.doc -25- 200919476 一實例,V λ-t- 欣 DC可藉由電壓調節器720而調節至在約0.4至1.2 々圍内(例如’ 〇.8 V)。如先前所論述,歸因於源極及p 卜互定電壓’可藉由使用^堇-個選通達成精確的感 測。另外,I抽/ J執灯全位元線感測(在其中感測與所有位元 '關聯之儲存兀件)(參見圖⑷。詳言之,電壓調節器 一可接收一參考電壓Vref,s〇urCE(其用於將VS0URCE調節至 大於0 V之位準)及—參考電壓Vref’p.well(其用於將p井 電壓調節至一大於或等於〇v之位準)。 圖d也繪與圖7a至圖7c相關聯之感測過程。在步驟700 開始諸如4取或驗證操作之感測操作^步驟包括打開 BLS電晶體及BLC電晶體及使位元線預充電。步㈣4包括 設定字元線電壓。步驟7〇6包括將V —及VP· —調節至 正DC位準。步驟7〇8包括使用電流感測判定選定之儲存元 件是傳導還是非傳導的。在決策步驟71()中,若存在另一 感測操作,則控制流在步驟7〇〇繼續。否則,該過程在步 驟712結束。 另外,如先刚所論述,可對與共同字元線及源極相關聯 之多個儲存元件同時執行感浪j。多冑儲存元件可處於鄰近 或非鄰近的NAND串中。在此狀況下,感㈣包括使用電流 感測在同時感測操作中判定非揮發性儲存元件中之每一者 是處於傳導狀態還是非傳導狀態。對於每一感測操作,如 所論述地調節電壓。 源極偏磨全位元線感測 全位元線感測包括對鄰近NAND串中之儲存元件執行感 132483.doc •26· 200919476 測操作(參見圖14)。一電位感測方法使用DC健存元件電流 來使感测模組中之固定電容上之電荷在-固定時間段中: 電,以將儲存元件之臨限電壓值轉換成數位資料格式。然 而,此要求一相對較大之電流沉入NAND串之源極側中。 另外,如先前所論述,為了感測負臨限電壓值,可將偏壓 施加至使用類比電壓位準之源極及P井兩者,以避免對負 子疋線電壓及負電荷系之需要。然而,因為全位元線感測 對源極偏壓4立準非常敏感,戶斤以保持類比電壓位準需要— 相對較大之電壓調節器及源極電壓至陣列中之均勻分布。 此可增加所需的裝置面積。 如先前所論述,全位元線感測之另一方法使用電壓感 測。因為不存在至源極側之DC電流,所以此方法不需要 ,的電壓調節器。然而,歸因於位元線至位元線耦合雜 訊,此方法尚不能同時成功地感測每一位元線。替代地, 在給定時間(例如,在奇偶感測中(參見圖14)),僅感測每 隔一位元線。因此,從感測時間看,效能還不是最佳的。 砰言之,歸目於鄰近··串非常接近,全位元感測有問 題。可發生電容耦合,尤其是自其中的選定儲存元件傳導 之NAND串至其中的選定儲存元件不傳導之nand串的耦 合。其中的選定儲存元件不傳導之NAND串之位元線電壓 藉此增加,進而干擾感測操作。此電容辆合藉由一至相鄰 位π線之電容813來描繪。相鄰位元線/NAND串可為直接 鄰近或非鄰近的。來自鄰近位元線/NAND串之電容耦合為 最強的,但亦可發生某一來自非鄰近位元線/NAND串之電 132483.doc •27· 200919476 谷性搞合。亦描續·一至接地端之電容8 11。 為了克服此等問題,可使用如圖8a中所描繪之機制執行 感測。圖8a描繪NAND串及組件之組態,包括電流放電Z 徑。在-簡化實例中,NAND串812包括四個儲存元件其 分別與字元線WL0、WL1、WL2及WL3通信。實務上,β 使用額外的儲存元件及字元線。另外’額外㈣侧串^ 非揮發性儲存元件之區塊或其他集合中通常被相互鄰近地 配置。將儲存it件㈣至基板之ρ井區域。除了感測組件 800之外,描繪具有電壓VBL之位元線81〇。詳言之,最初 打開或傳導之BLS(位元線感測)電晶體8〇6係經由感測節點 814耦接至位元線81〇。BLS電晶體8〇6為高電壓電晶體, 且在感測操作期間回應於控制808而變得傳導。最初非傳 導之BLC(位元線控制)電晶體8〇4為低電壓電晶體,其回應 於控制裝置808而打開以允許位元線與電壓感測模組/電路 8〇2通彳5 ^在一感測操作(諸如讀取或驗證操作)期間,發生 預充電操作’電壓感測模組8G2巾之—電容器在該操作中 充電。可將BLC電晶體804打開以允許預充電。 /另外,介紹一相對較弱之電流下拉裝置。詳言之,將路 ㈣6(其為_〇串812之電流放電路徑之部分)麵接至感 測節點814(其又被_至位元線810)。提供—處於傳導狀 態的電晶體(其被稱為GRS電晶體818),使得路後816被耗 接至亦為電流放電路徑之部分的路# 82()。平行於路徑 816、820提供—提供電流i隱之電流源825(例如,電泣 鏡)’以將該等路徑上之電流―下拉至接地。在一實2 132483.doc -28- 200919476 中,提供一具有約150 nA之iREF的相對較弱下拉。然而, 電流源825之強度可根據特定實施而改變。 在一可能組態中,電流源825為多個位元線&NAND串所 共有。在此狀況下,電晶體824將電流源825耦接至不同的 NAND串。路徑822載運一用於GRS電晶體818之控制信 號,其對特定位元線及NAND串而言係區域的,同時路徑 826為多個位元線之共同接地路徑。 在感測期間,位元線將充電至一基於選定儲存元件之臨限 電壓及體效應之位準。在負Vti之情況下,即使Vgcr=〇 V, 儲存元件仍將傳導。可將Vp_WELL設定至〇 V。 使電晶體8 1 8及824作成傳導以形成用來使任何電荷放電 之電流放電路徑及下拉裝置,電荷歸因於至相鄰位元線之 電容813而自一或多個相鄰NAND串耦合至NANE^ 812。 因此,藉由相鄰位元線之耦合雜訊而產生之任何額外電荷 最終將消失。在某一時間量之後,所有位元線達到其DC 位準,且BLC電晶體804接通以允許電壓感測模組8〇2與感 測節點814之間的電荷共用,使得對選定之儲存元件之臨 限電壓之電壓感測可發生。舉例而言,電壓感測模組8〇2 可將電壓感測作為讀取或驗證操作之部分來執行。 圖8b描繪當電壓感測發生時的圖8&之naNd串及組件之 組態。此處,BLC電晶體804打開,使得除了自NAND串 8 12放出的電流之外,電流自電壓感測模組8〇2流向放電路 徑。因此,GRS電晶體保持於傳導狀態下,使得放電在電 壓感測期間繼續。 132483.doc •29- 200919476On the drain side of NAND string 630, BLS transistor 610 is turned on, for example, to conduct or turn it on. Additionally, a voltage VBLC is applied to the BLC transistor 604 for conduction. The pre-charge capacitor in current sensing module 6〇2 is discharged into the source via a bit line such that the source acts as a current sink. The precharge capacitor at the drain of the nand string can be precharged to a potential that exceeds the potential of the source such that when the selected storage element is in a conducting state, current flows through the selected non-volatile storage element and sinks into the source in. In particular, a relatively high current will flow if the selected storage element is at the conduction center due to the application of VCGR. If the selected storage element is in a non-conducting state, no current or relatively small current will flow. The electrical influenza module 602 can sense the unit/storage component current. In one possible method, the current sensing module determines a voltage drop that is related to the - fixed current by the relationship Δ V 1 t/C, where is the voltage drop, and 1 is the fixed current 't is predetermined. Time period and. It is the electric valley of pre-charging electricity in the current sensing module. See also Figure 6d, which depicts the voltage drop over time for different fixed current lines. A higher voltage drop indicates a higher current. At the end of a given discharge cycle, because of the W, the Δν of a given current can be determined. In one method Φ, makeup _ τ uses a P-mos transistor to determine the level of AV relative to the demarcation value. In another possible method, the cell current discriminator acts as a current bit by determining whether the conduction current is above or below the delimited current. 13243.doc • 20- 200919476 The discriminator or comparator. In contrast, voltage sensing does not include sensing the voltage drop associated with a fixed current. Alternatively, voltage sensing includes determining whether charge sharing occurs between the capacitors in the voltage sensing module and the capacitance of the bit lines. The current is not fixed or constant during sensing. When the selected storage element conducts, little or no charge sharing occurs, in which case the voltage of the capacitor in the voltage sensing module does not decrease significantly. When the selected storage element is not conducting, charge sharing occurs. Under this condition, the voltage of the capacitor in the voltage sensing module drops significantly. The electric "il sensing module 602 can therefore determine the selected storage element in a conducting or non-conducting state by the level of current. Typically, a higher current will flow when the selected storage element is in a conducting state, and a lower current will flow when the selected storage element is stored in a non-conducting state. When the selected storage element is in a non-conducting or conducting state, its threshold voltage is above or below a comparison level (such as verifying the level (see Figure 5c) or reading the level (see Figure 5d)). Figure 6b depicts the waveform associated with Figure 6a. Waveform 620 depicts vS0URCE and VP.WELL, VBL, and VBLC. The vS0URCE and VP-WELL are set to an elevated level at t1 during the sensing operation. In a method, such as when the sensing operation includes negatively controlling the electric dust, VsOURCE and Vp-WELL exceed VCGr. However, for example, when the sensing operation includes a positive threshold voltage, vS0URCE and VP-WELL do not have to exceed VCGR. vBL increases with VSOURCE between tl and t2. The pre-charge capacitor is discharged at t2', which in turn increases vBL. Thus, the drain potential associated with the selected non-volatile storage element (e.g., 132483.doc -21 - 200919476 V B L) is higher than the source potential associated with the selected non-volatile storage element (e.g., 'VS0URCE). The vBLC tracks the vBL, but is slightly higher due to the threshold voltage of the BLC transistor. In practice, after the rise, if the current flows in the NAND string, Vbl will drop slightly (not shown). For example, when VBLC = 2 V and the threshold voltage of the BLC transistor is } v, Vbl can rise to 1 v. When sensing, if current flows, Vbl can drop from 丨V to (e.g., 0·9 V). Wave Open > 622 depicts a voltage applied to the BLS transistor, which indicates that the electrical sa body is conducting between t0 and t5. Waveform 624 depicts a sense signal that is a control signal that indicates the time t after the electric grid begins to discharge in the current sensing module. Waveforms 626 and 628 depict the sense voltage of the selected bit line, which is associated with a fixed current. A determination can be made at t3 as to whether the voltage exceeds a certain level. It can be concluded that when the voltage drops below the delimiter level (e.g., line 628), the selected storage element conducts. If the voltage does not fall below the delimiter level (eg, line 626), the selected storage element is not conducting. Figure 6c depicts the sensing process associated with Figures 6a and 6b. Provide an overview of the sensing process. In this and other flow charts, the steps depicted are not necessarily taken as discrete steps and/or in the order described. At step 64, a sensing operation such as a read or verify operation is initiated. Step 642 includes opening the BLS transistor and the BLC transistor to precharge the bit line. Step 644 includes setting the word line voltage. Step 646 includes setting Vs 〇 URCE & VpwELL. Step 648 includes using current sensing to determine whether the storage element is conductive or non-conductive. If, at decision step 650, another sensing operation is to be performed, then control flow continues at step 64. Otherwise, the process ends at step 652. 132483.doc -22- 200919476 Multiple sensing operations can be performed continuously ^ 乍 For example, for each verification or reading operation. In a method φ .. π ^ , , the applied source voltage and the well voltage are applied in each sensing operation, but A _ m , ' 疋 予 予 。 。 。 。 。 。 。 。 。 。 。 Thus, in a first sensing operation, the control gate/character of the storage element: will, for example, be applied to the selected line' to apply the source voltage to the source. The P well voltage is applied to the p-well. Then, at the application of the first voltage and the source = Γ:, current sensing is used to determine whether the storage element is in conduction I or not. - The second sensing operation comprises applying a second source voltage to the control gate while applying the same source dust and the same day. A determination is then made as to whether the storage element is in a conducting state or a non-transducing heart. Although the same source voltage and P-well voltage are used, the continuous sensing operation can be similar to the selected word line voltage. ϋ In addition, T performs sensing on the same storage device as the plurality of storage elements associated with the common word 1 line and source. The plurality of storage elements can be in adjacent or non-adjacent strings. The full bit line sensing described in the first 4 includes simultaneous sensing of the stored items in the adjacent AND string. In this case, sensing includes determining whether each of the non-volatile storage elements is in a conductive state or a non-conducting state in a simultaneous sensing operation using motor sensing. Current sensing with source and sink bias voltages in non-volatile storage devices (including non-volatile storage devices using NAND memory design) 'current sensing can be used during read or verify operations The threshold voltage state of the non-volatile storage element is measured. However, this current sensing has caused a change in the source voltage or "jump", especially at ground voltage. The degree of bounce depends on the level of current through the storage element. This 132483.doc •23· 200919476, bounce can cause sensing errors. A method of controlling the source of the cell during the sensing period is to sense using at least two gates. This minimizes the effect of cell source bounce. For example, in the case of current sensing, the current in the NAND string of the selected storage element can be sensed at the # strobe from control. A relatively high or otherwise inaccurate bounce current may occur at the first gating, while a lower current is at the second gating (four), wherein the lower current more accurately represents the storage element 然而n, however, using additional gating Waiting for current stability requires additional current and sensing time. Referring to Figure 7a, the current and voltage as a function of time due to ground bounce during sensing operation are depicted. Another technique is to couple the source to the gate and drain of the storage element. However, this technique is cumbersome, requires additional circuitry, and has an impact on the grain size and power consumption of the memory chip. Moreover, this technique can not work well due to the Rc delay from the source to the gate of the storage member. Upper: The general approach to avoiding these shortcomings is to adjust the source and p wells to a certain fixed positive DC level during sensing, rather than ground. By keeping the source and p wells at a fixed DC level and avoiding bouncing in the source voltage, we can use only one strobe to sense the data. As a result, the sensing time and power consumption are reduced by v. In addition, a large amount of additional circuitry is not required, so the grain size is not adversely affected. It is also possible to ground the P well while adjusting the source voltage to a fixed positive DC level. Adjusting the source voltage to a fixed positive Dc level is easier than adjusting the source voltage to ground because the regulation circuit only needs to sense a positive voltage. The regulator is usually adjusted by the comparison of the monitoring level based on (for example, the source) with the internal reference voltage. 132483.doc -24- 200919476 =. When the right monitor level falls below the internal reference voltage, the voltage regulator can increase its turn-out. Similarly, if the monitor level is increased above the internal reference voltage, the voltage regulator can reduce its output. For example, an op amp can be used with a voltage regulator. However, if the reference voltage is grounded, the 'f voltage regulator typically cannot reduce its output below 〇v if the monitor level becomes greater than G V . In addition, the voltage regulator may not be able to distinguish the monitoring level below 〇 v. Therefore, adjusting the source voltage to a fixed positive DC level avoids ground bounce and reduces current consumption and sensing time. Referring to Figure 7b, there is depicted a decrease in current and voltage as the source voltage is adjusted to a fixed positive DC level during the sensing operation. Figure 7c depicts another configuration of a NAND string and components for sensing. This configuration corresponds to the configuration provided in Figure 6a, except that the voltage regulator 720 is depicted. As mentioned, the source voltage and the p-well voltage can be adjusted to a fixed positive DC level during the sensing operation. During a sensing operation of the storage element, such as a read or verify operation, a voltage is applied to the word line of one or more storage elements involved in the operation. For example, suppose the selected word line is WL丨. This voltage is coupled to the control gate of the storage element on the word line as a control gate read voltage VCGR. Alternatively, a fixed DC voltage can be applied as the source voltage VS0URCE & p well voltage VP-WELL to the source side of the string 612 and the p-well. In one implementation, when the threshold voltage is negative, Vcgr may be positive, and vS0URCE and vP-WELL may be greater than Vcgr. In one implementation, the vCGR may be greater than VsoURCE and Vp WELL when the threshold voltage is positive. Vs〇urce and Vp-WELL may be different from each other' or they may be coupled to the same DC voltage VDC. As an example of 132483.doc -25-200919476, V λ-t- 欣 DC can be adjusted by voltage regulator 720 to within about 0.4 to 1.2 ( (e.g., 〇.8 V). As discussed previously, accurate sensing can be achieved by using the gates due to the source and the voltage. In addition, I pump / J lamp full bit line sensing (in which the storage element associated with all bits is sensed) (see Figure (4). In detail, the voltage regulator can receive a reference voltage Vref, s〇urCE (which is used to adjust VS0URCE to a level greater than 0 V) and — reference voltage Vref'p.well (which is used to adjust the p-well voltage to a level greater than or equal to 〇v). The sensing process associated with Figures 7a through 7c is also depicted. The sensing operation, such as a 4-take or verify operation, begins at step 700. The steps include opening the BLS transistor and the BLC transistor and pre-charging the bit line. Step (4) 4 Including setting the word line voltage. Steps 7〇6 include adjusting V—and VP·− to a positive DC level. Step 7〇8 includes using current sensing to determine whether the selected storage element is conductive or non-conducting. In 71(), if there is another sensing operation, the control flow continues in step 7. Otherwise, the process ends in step 712. Additionally, as discussed earlier, the common word line and source can be paired with The associated plurality of storage elements simultaneously perform a sensation j. The multiple storage elements may be adjacent or In the adjacent NAND string, in this case, the sense (4) includes using current sensing to determine whether each of the non-volatile storage elements is in a conductive state or a non-conducting state in a simultaneous sensing operation. For each sensing operation The voltage is adjusted as discussed. Source Polarity Full Bit Line Sense Full Bit Line Sensing includes performing a sense of the stored elements in the adjacent NAND strings 1234.doc • 26 · 2009 19476 (see Figure 14). A potential sensing method uses DC snubber current to cause the charge on the fixed capacitance in the sensing module to be in a fixed period of time: to convert the threshold voltage value of the storage element into a digital data format. This requires a relatively large current sinking into the source side of the NAND string. Additionally, as previously discussed, to sense the negative threshold voltage value, a bias voltage can be applied to the source using the analog voltage level and P. Both wells avoid the need for a negative sub-wire voltage and a negative charge system. However, since full-bit line sensing is very sensitive to source bias 4, it is necessary to maintain analog voltage levels - relative Larger voltage The device and source voltages are evenly distributed into the array. This can increase the required device area. As discussed previously, another method of full bit line sensing uses voltage sensing because there is no DC to the source side. Current, so this method does not require a voltage regulator. However, due to the bit line-to-bit line coupling noise, this method cannot simultaneously successfully sense each bit line. Alternatively, given Time (for example, in parity sensing (see Figure 14)), only every other bit line is sensed. Therefore, from the sensing time, the performance is not optimal. In other words, depending on the proximity • Strings are very close and all-bit sensing is problematic. Capacitive coupling can occur, especially from the NAND string in which the selected storage element conducts to the coupling of the nand string in which the selected storage element is not conducting. The bit line voltage of the NAND string in which the selected storage element is not conducted is thereby increased, thereby interfering with the sensing operation. This capacitance is depicted by a capacitance 813 from a neighboring π line. Adjacent bit lines/NAND strings can be directly adjacent or non-contiguous. The capacitive coupling from adjacent bit lines/NAND strings is the strongest, but some electricity from non-adjacent bit lines/NAND strings can also occur. 132483.doc •27· 200919476 Also described is a capacitor 8 11 to ground. To overcome these problems, sensing can be performed using the mechanism as depicted in Figure 8a. Figure 8a depicts the configuration of the NAND string and components, including the current discharge Z-path. In a simplified example, NAND string 812 includes four storage elements that are in communication with word lines WL0, WL1, WL2, and WL3, respectively. In practice, β uses additional storage elements and word lines. In addition, the extra (four) side strings ^ blocks or other sets of non-volatile storage elements are usually arranged adjacent to each other. The it piece (4) will be stored to the ρ well area of the substrate. In addition to the sensing component 800, a bit line 81A having a voltage VBL is depicted. In particular, the initially opened or conductive BLS (Bit Line Sense) transistor 8〇6 is coupled to bit line 81A via sense node 814. The BLS transistor 8〇6 is a high voltage transistor and becomes conductive in response to control 808 during sensing operations. The initially non-conducting BLC (bit line control) transistor 8〇4 is a low voltage transistor that is turned on in response to control device 808 to allow bit line and voltage sensing module/circuit 8〇2 to pass through 5^ During a sensing operation, such as a read or verify operation, a pre-charge operation occurs in the 'voltage sensing module 8G2', in which the capacitor is charged. The BLC transistor 804 can be turned on to allow for pre-charging. / In addition, a relatively weak current pull-down device is introduced. In detail, way (4) 6 (which is part of the current discharge path of _ 〇 string 812) is interfaced to sense node 814 (which is in turn _ to bit line 810). A transistor in a conducting state (referred to as a GRS transistor 818) is provided such that the rear 816 is drained to the way #82() which is also part of the current discharge path. Parallel to paths 816, 820 provides - a current source 825 (e.g., an electric mirror) that provides current i to pull down the current on the paths to ground. In a real 2 132483.doc -28-200919476, a relatively weak pulldown with an iREF of about 150 nA is provided. However, the strength of current source 825 can vary depending on the particular implementation. In a possible configuration, current source 825 is common to multiple bit lines & NAND strings. In this case, transistor 824 couples current source 825 to a different NAND string. Path 822 carries a control signal for GRS transistor 818 that is local to a particular bit line and NAND string, while path 826 is a common ground path for a plurality of bit lines. During sensing, the bit line will be charged to a level based on the threshold voltage and body effect of the selected storage element. In the case of negative Vti, even if Vgcr = 〇 V, the storage element will still conduct. Vp_WELL can be set to 〇 V. The transistors 8 18 and 824 are made conductive to form a current discharge path and pull-down means for discharging any charge, the charge being coupled to one or more adjacent NAND strings due to capacitance 813 to adjacent bit lines To NANE^ 812. Therefore, any extra charge generated by the coupling noise of adjacent bit lines will eventually disappear. After a certain amount of time, all of the bit lines reach their DC level, and BLC transistor 804 is turned "on" to allow charge sharing between voltage sensing module 8〇2 and sense node 814, so that the selected memory is stored. Voltage sensing of the threshold voltage of the component can occur. For example, voltage sensing module 8〇2 can perform voltage sensing as part of a read or verify operation. Figure 8b depicts the configuration of the naNd string and components of Figure 8 & when voltage sensing occurs. Here, the BLC transistor 804 is turned on such that current flows from the voltage sensing module 8〇2 to the discharge path in addition to the current discharged from the NAND string 8 12 . Therefore, the GRS transistor remains in the conduction state, so that the discharge continues during the voltage sensing. 132483.doc •29- 200919476
圖8c描繪與圖8a及圖8b相關聯之波形。在波形830處描 繪Vsource ’且且分別在波形832、834及836處描繪三個鄰 近位元線BL0、BL1及BL2上之電壓。在波形838處描緣 BLS電晶體上之電壓VBLS,且在波形840處描繪BLC電晶體 上之電壓VBLC ’且在波形842處描繪GRS電晶體上之電壓 Vgrs。在波形844處描螬· BL0及BL2上之所感測電壓。在波 升> 846處描繚當BL1上之選定儲存元件傳導時的BL1上之所 感測電壓’且在波形848處描纟會當BL1上之選定儲存元件不 傳導時的BL1上之所感測電壓。如所提及,在電壓感測期 間,當選定之儲存元件不傳導時,發生電壓感測模組與位 το線之間的電荷共用。此電荷共用降低電壓感測模組處之 所感測電壓。當選定之儲存元件傳導時,很少或不發生電 壓感測模組與位元線之間的電荷共用,使得電壓感測模組 處之所感測電壓保持為高。由於感測未發生,故未描繪其 他時間的所感測電壓。 在,VBLS增加,使得BLS電晶體傳導。在u,施加 VS0URCE作為NAND串之一集合之共同源極電壓。在此實例 中,吾人假設:當與BL0及BL2相關聯之選定儲存元件傳 導時,與BL1相關聯之選定儲#元件不傳導。⑽在一側 鄰近於BU,且BL2在另—側鄰近於Bu(參見圖14)。合 vs〇URCEtuf加時,Vbl。及%將分別如波形832及咖二 描繪地上升,從而導致至BL1之電容耦合,如中之瞬 時增加所描繪。到t2時,此麵合將實f上消失。如所於 述’机1之GRS電晶體在tl#t5„保持傳導以允許位元: 132483.doc -30- 200919476 使經麵合電荷放電。 在t3,藉由使vBLC如波形840所描繪地增加而打開61^電 晶體,藉此允許對於BL1上之選定儲存元件的感測發生。 注意,可類似地控制與BL0、BL2及其他位元線相關聯之 對應組件,以允許在彼等其他位元線上同時發生感測。對 於BL1,若選定之儲存元件不傳導,則電壓感測模組處之 經感測電壓將如波形846所描繪地下降。另一方面,若選 定之儲存元件傳導,則感測電壓將如波形844所描繪地大 體保持為高。該等電壓感測組件可在規定的感測時間14使 用電壓斷點來判定選定之儲存元件是傳導還是非傳導的。 如所提及,若經感測電壓超出斷點,則此指示儲存元件打 開,而若經感測電壓降至斷點以下,則此指示儲存元件不 傳導。VsojjRCE 在t5降低且BLS電晶體在t6不傳導,進而指 示感測操作結束。在一可能方法中,可在感測期間將 VP-WELL設定為〇 V。根據特定感測機制,選定字元線接收 VCGR,同時未選擇字元線可接收讀取通過電壓。 因此,在於tl施加源極電壓之後,設定一預定的持續時 間為t3_tl的延遲,以允許自相鄰位元線之電容耦合有足夠 時間充分或至少部分地放電。可基於理論及/或實驗測 試,如特定實施所需地設定適當延遲。在延遲之後,發生 電壓感測。在規定的時間t4 ’進行關於儲存元件是處於傳 導狀態還是非傳導狀態且因此具有一分別高於驗證或讀取 比較位準之臨限電壓之判定。 圖8d描繪與圖8a至圖8C相關聯之感測過程。在步驟 132483.doc 200919476 850 ’開始感測操作。在步驟852,打開BLS電晶體,同時 BLC電晶體保持非傳導,且使位元線預充電。在步驟854,Figure 8c depicts the waveforms associated with Figures 8a and 8b. Vsource ' is depicted at waveform 830 and the voltages on three adjacent bit lines BL0, BL1, and BL2 are depicted at waveforms 832, 834, and 836, respectively. The voltage VBLS on the BLS transistor is traced at waveform 838, and the voltage VBLC' on the BLC transistor is depicted at waveform 840 and the voltage Vgrs on the GRS transistor is depicted at waveform 842. The sensed voltages on BL0 and BL2 are depicted at waveform 844. The sensed voltage on BL1 when the selected storage element on BL1 is conducting is depicted at Waves & 846 and is sensed at waveform 848 when BL1 is selected when the selected storage element on BL1 is not conducting Voltage. As mentioned, during voltage sensing, when the selected storage element is not conducting, charge sharing between the voltage sensing module and the bit το line occurs. This charge sharing reduces the sensed voltage at the voltage sensing module. When the selected storage element conducts, little or no charge sharing between the voltage sensing module and the bit line occurs, so that the sensed voltage at the voltage sensing module remains high. Since the sensing did not occur, the sensed voltage for the other time was not depicted. At the same time, the VBLS is increased, causing the BLS transistor to conduct. At u, VS0URCE is applied as the common source voltage for one of the NAND strings. In this example, we assume that the selected bank # element associated with BL1 is not conducting when the selected storage element associated with BL0 and BL2 is being transmitted. (10) is adjacent to BU on one side, and BL2 is adjacent to Bu on the other side (see Fig. 14). Combined vs〇URCEtuf plus time, Vbl. And % will rise as depicted by waveforms 832 and 2, respectively, resulting in capacitive coupling to BL1, as depicted by the momentary increase. When it reaches t2, this face will disappear on the real f. The GRS transistor of the machine 1 is kept conducting at tl#t5 „ to allow the bit to be discharged: 132483.doc -30- 200919476 to discharge the surface-charged charge. At t3, by making the vBLC as depicted by waveform 840 Adding 61^ transistors, thereby allowing sensing of selected storage elements on BL1 to occur. Note that corresponding components associated with BL0, BL2, and other bit lines can be similarly controlled to allow for other Sensing occurs simultaneously on the bit line. For BL1, if the selected storage element is not conducting, the sensed voltage at the voltage sensing module will drop as depicted by waveform 846. On the other hand, if the selected storage element conducts The sense voltage will remain substantially high as depicted by waveform 844. The voltage sense components can use voltage breakpoints at a specified sense time 14 to determine whether the selected storage element is conductive or non-conductive. It is mentioned that if the sensed voltage exceeds the breakpoint, the indication storage element is turned on, and if the sensed voltage falls below the breakpoint, then the indication storage element is not conducting. VsojjRCE is lowered at t5 and the BLS transistor is not at t6 Conduction, And indicating the end of the sensing operation. In a possible method, the VP-WELL can be set to 〇V during the sensing. According to a specific sensing mechanism, the selected word line receives the VCGR, and the unselected word line can receive the reading. Passing voltage. Therefore, after applying the source voltage to t1, a predetermined delay of t3_tl is set to allow sufficient time or at least partial discharge of capacitive coupling from adjacent bit lines. Based on theory and / Or experimental testing, setting the appropriate delay as required for a particular implementation. After the delay, voltage sensing occurs. At the specified time t4', whether the storage element is in a conductive or non-conducting state and therefore has a higher than verification or The determination of the threshold voltage of the comparison level is read. Figure 8d depicts the sensing process associated with Figures 8a through 8C. The sensing operation begins at step 132483.doc 200919476 850 '. At step 852, the BLS transistor is turned on, At the same time, the BLC transistor remains non-conducting and pre-charges the bit line. At step 854,
*又疋子疋線電壓。在步驟856,設定vs〇urce及vP_WELL (Vp*WELL = 〇 V)。在步驟858,位元線放電。在步驟86〇,使 BLC電晶體傳導以允許感測發生。在步驟862,使用電壓 感測進行關於選定之儲存元件是傳導還是非傳導之判定。 在朿v驟864中,若存在另一感測操作,則控制流在步 驟850繼續。否則,該過程在步驟868結束。 另外’如先前所論述’可對與共同字元線及源極相關聯 之夕個儲存元件同時執行感測。多個儲存元件可處於鄰近 或非鄰近的NAND串中。在此狀況下,感測包括使用電流 感測在同時感測操作中判定非揮發性儲存元件中之每一者 疋處於傳導狀態還是非傳導狀態。可針對每一 NAND串設 定BLC電晶體打開之前的延遲,使得NAND串可在感測發 生之前按需要放電。 感測操作期間的溫度補償位元線 在本發明之非揮發性儲存裝置(諸如NAND快閃記憶體裝 置)中,溫度變化在讀取及寫入資料過程中造成各種問 題。記憶體裝置基於其所處的環境而經受變化之溫度。舉 例而言,一些電流記憶體裝置被額定為在_4〇(5(::與+85它之 間使用。工業、軍事及甚至消費應用中之裝置可經歷顯著 的溫度變化。溫度影響許多電晶體參數,其中最重要的是 臨限電壓。詳言之,溫度變化可導致讀取誤差且使非揮發 性儲存元件之不同狀態的臨限電壓分布變寬。下文將論述 132483.doc •32· 200919476 一用於解決非揮發性儲存裝置中之溫度效應之改良技術。 圖9a描繪NAND串及用於溫度補償感測之組件。相同編 號之組件對應於圖8a中所提供之組件。此處未描繪圖8&之 電流放電路徑。然而,圖8a之組態可能與圖9a或本文中所 提供之其他圖式中之一些圖的組態組合。另外,提供一溫 度相依電路900作為控制8〇8之部分,以提供溫度補償電壓 至BLC電晶體804。BLC電晶體8〇4具有一個耦接至電壓感 測模組802之節點,及耗接至與nanD串8 12或非揮發性儲 存7L件之其他集合相關聯之汲極或位元線的另一節點。 在一感測操作期間,將一電壓Vblc施加至Blc電晶體 804,該電晶體將NAND串8丨2之位元線或汲極側耦接至電 壓感測模組802。根據本文中之方法,基於溫度設定Vblc 以抵銷或補償VBL隨溫度之變化。具體言之, vBLC=vBL+vTH(獨立於溫度)+Δν,其中Δν為歸因於溫度之 電壓變化。歸因於溫度,Vbl亦改變Δν ^因此,可控制 vBLC,使得其根據Vbl之變化而隨溫度改變。詳言之,藉 由使用溫度相依電路900可使位元線上之Δν匹配VBLC之 △V。電流1CELL在NAND串812中流動。虛線指示電荷共 用。 圖外說明隨溫度之臨限電壓變化,例如,ΔντΗ/t:。通 书非揮發性儲存元件之臨p艮電壓隨溫度增加而減小。電 C相對於度變化之變化可用通常為約mV/^之溫度係 數來表不。/现度係數視記憶體裝置之各種特性而定,諸如 摻雜、布局等。此外,希望溫度係數之量值隨記憶體尺寸 132483.doc -33- 200919476 減小而增加。 通常’用於提供溫度補償信號之各種技術係已知的。舉 例而σ叮將此專技術中之一或多個用於溫度相依電路 900中。此等技術之大部分不依靠獲得實際溫度量測雖 • 然此方法亦為可能的。舉例而言,以引用方式併入本文中 的標題為"Voltage Generation Circuitry Having Temperature Compensation”之美國專利第6,8〇1,454號描述一電壓產生 € 電路,其基於溫度係數輸出讀取電壓至非揮發性記憶體。 該電路使用包括一溫度無關部分及一隨溫度增加而增加的 溫度相依部分之帶隙電流。以引用方式併入本文中的標題 為” Non-Volatile Memory with Temperature_c〇mpensated* Also 疋 疋 line voltage. At step 856, vsvurce and vP_WELL (Vp*WELL = 〇 V) are set. At step 858, the bit line is discharged. At step 86, the BLC transistor is conducted to allow sensing to occur. At step 862, voltage sensing is used to make a determination as to whether the selected storage element is conductive or non-conductive. In 朿v 864, if there is another sensing operation, then control flow continues at step 850. Otherwise, the process ends at step 868. Further 'as previously discussed' may perform sensing simultaneously on the evening storage elements associated with the common word line and source. Multiple storage elements can be in adjacent or non-adjacent NAND strings. In this case, sensing includes determining whether each of the non-volatile storage elements is in a conductive state or a non-conducting state in a simultaneous sensing operation using current sensing. The delay before the BLC transistor is turned on can be set for each NAND string so that the NAND string can be discharged as needed before sensing occurs. Temperature Compensation Bit Line During Sensing Operation In the non-volatile storage device of the present invention, such as a NAND flash memory device, temperature changes cause various problems in reading and writing data. The memory device is subject to varying temperatures based on the environment in which it is located. For example, some current memory devices are rated for use between _4 〇 (5 (:: and +85). Devices in industrial, military, and even consumer applications can experience significant temperature changes. Temperature affects many electricity. Crystal parameters, the most important of which is the threshold voltage. In particular, temperature changes can cause read errors and widen the threshold voltage distribution of different states of the non-volatile storage element. The following will discuss 132483.doc • 32· 200919476 An improved technique for addressing temperature effects in non-volatile storage devices. Figure 9a depicts a NAND string and components for temperature compensated sensing. The same numbered components correspond to the components provided in Figure 8a. The current discharge path of Figure 8 & is depicted. However, the configuration of Figure 8a may be combined with the configuration of some of Figure 9a or other figures provided herein. Additionally, a temperature dependent circuit 900 is provided as control 8〇 Part 8 to provide a temperature compensated voltage to the BLC transistor 804. The BLC transistor 8〇4 has a node coupled to the voltage sensing module 802 and is consuming to the nanD string 8 12 or non-volatile Another node of the drain or bit line associated with the other set of 7L pieces. During a sensing operation, a voltage Vblc is applied to the Blc transistor 804, which will place the bits of the NAND string 8丨2 The line or drain side is coupled to the voltage sensing module 802. According to the method herein, Vblc is set based on the temperature to offset or compensate for the change of the VBL with temperature. Specifically, vBLC=vBL+vTH (independent of temperature) + Δν, where Δν is the voltage change due to temperature. Vbl also changes Δν due to temperature ^ Therefore, vBLC can be controlled such that it changes with temperature according to the change of Vbl. In detail, by using temperature dependent Circuit 900 can match Δν on the bit line to ΔV of VBLC. Current 1CELL flows in NAND string 812. The dashed line indicates charge sharing. The external voltage variation with temperature is illustrated, for example, ΔντΗ/t: The voltage of the volatile storage element decreases with increasing temperature. The change of the electrical C with respect to the degree of change can be expressed by a temperature coefficient of usually about mV / ^. / The presentity coefficient depends on various characteristics of the memory device. Set, such as doping, layout, and the like. In addition, it is desirable that the magnitude of the temperature coefficient increases as the memory size 132483.doc -33- 200919476 decreases. Often, various techniques for providing temperature compensated signals are known. For example, σ叮One or more are used in the temperature dependent circuit 900. Most of these techniques do not rely on obtaining actual temperature measurements. However, this method is also possible. For example, the title incorporated herein by reference is " A voltage generating circuit that outputs a read voltage to a non-volatile memory based on a temperature coefficient is described in US Pat. No. 6,8,1,454. The circuit uses a bandgap current comprising a temperature independent portion and a temperature dependent portion that increases with increasing temperature. The title of this article is incorporated by reference. " Non-Volatile Memory with Temperature_c〇mpensated
Data Read"之美國專利第號使用一偏壓產生器電 路,其使一施加至資料儲存元件之源極或汲極之電壓偏 壓。以引用方式併入本文中的標題為"Multi_State eepromU.S. Patent No. 5, the disclosure of which is incorporated herein by reference. The title of this article, incorporated by reference, is "Multi_State eeprom
Read and Write Circuits and Techniques"之美國專利第 (j 5,172,338號描繪一溫度補償技術,其使用以與資料儲存單 元相同之方式形成且形成於同一積體電路晶片上之參考儲 存單元。該等參考儲存單元提供參考位準,比較選定單元 之量測電流或電壓與該等參考位準。因為參考位準以與自 資料儲存單元讀取之值相同的方式受溫度影響,所以提供 溫度補償。此等技術中之任一者以及任何其他已知技術可 用於提供溫度補償電壓至位元線控制線,如本文中所描 述。 如所論述’ Vblc為控制信號之電壓或提供至BLC電晶體 132483.doc •34- 200919476 804的電壓’其允許感測組件感測正經受擦除-驗證或其他 感測操作之選定儲存元件之Vth。感測經由選定儲存:件 所位於的NAND串之位元線而發生。在_實例實施中,U.S. Patent No. 5,172,338, the disclosure of which is incorporated herein by reference to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all The unit provides a reference level that compares the measured current or voltage of the selected unit to the reference levels. Since the reference level is affected by temperature in the same manner as the value read from the data storage unit, temperature compensation is provided. Any of the techniques, as well as any other known techniques, can be used to provide a temperature compensated voltage to the bit line control line, as described herein. As discussed, 'Vblc is the voltage of the control signal or is provided to the BLC transistor 132483.doc • 34- 200919476 804's voltage' which allows the sensing component to sense the Vth of the selected storage element being subjected to an erase-verify or other sensing operation. Sensing via the selected storage: the bit line of the NAND string in which the piece is located Occurs. In the _ instance implementation,
VbLC=Vbl+Vth(BLC電晶體)。因此,該控制經組態以使 Vblc隨增加之溫度而增加以追蹤Vbl之增加。 件之給定vTH,vBL將隨溫度增加。 ’;:VbLC = Vbl + Vth (BLC transistor). Therefore, the control is configured to increase Vblc with increasing temperature to track the increase in Vbl. Given a vTH, vBL will increase with temperature. ';:
圖9c說明VBLC及Vbl隨溫度之變化。圖式描會V似如何 隨溫度而增加以追蹤VBL之增加。可基於理論及實驗結 果’根據特定實施將提供VBLe對溫度之特定變化之控制曲 線程式化至控制8〇8中。通常,當儲存元件之%隨較高溫 度減小時,位元線電壓增加。此意謂著應較高以使電 壓感測模組802感測較高之Vbl。注意,儲存元件之Vth支 配vBL。然而,變化的Vblc改變電壓感測模組感測之電 壓,使得電壓經溫度補償。另外,注意、,可藉由在溫度相 依電路900中提供一類似於BLC電晶體8〇4的隨溫度變化之 電晶體來抵銷BLC電晶體804之VTH之變化。 圖9d描繪與圖9&至圖9c相關聯之波形。波形91〇描繪 VS0URCE及Vp_WELL,其在感測操作期間設定為一升高 位準。波形9U及914描繪歸因於乂扣⑽⑶及力則匕之施加 的VBL之增加。與波形914相比,波形912描繪較高溫度下 的VBL之較高位準。實務上,在上升之後,當電流在 NAND串中流動時,Vbl可稍微下降(未圖示)^波形916描 繪施加至電晶體BLS之電壓,其指示電晶體在t〇接通。波 形91 8及920分別描繪在較高及較低溫度下施加至電晶體 132483.doc -35· 200919476 BLC之電壓。注咅, •以所提供之波形係針對與圖8a至圖8d之 機制組合的溫度補償機制,其中延遲ΒΙχ電晶體之打開以 允許:電在感測之前發生。然而,不要求以此方式使用溫 度補償機制’且其可用於不涉及放電路徑及/或感測中的 延遲的其他實施中。 波形922描繪當選定儲存元件打開時選定位元線的電壓 感測模組中之所感測電壓,而波形924描繪當選定儲存元 件不傳導時的所感測電壓。在t2進行關於所感測電壓是否 超出斷點之判定。可得出如下結論:當所感測電壓超出斷 點時選疋之儲存元件傳導,而當感測電壓降至斷點以下 時,選定之儲存元件不傳導。 圖9e描繪與圖9a至圖9d相關聯之感測過程。在步驟93〇 開始感測操作,諸如讀取或驗證操作。步驟包括使 BLS電晶體及咖電晶體傳導、使位元線預充^設定溫 度相依VBLC。步驟934包括設定字元線電壓,其視情況為 溫度相依性的。在一方法中,僅選定字元線電壓為溫度相 依性的’而在其他方法中,字元線電壓之一些或全部為溫 度相依性的。該等字元線電壓可根據vTH之減小(參見圖9b) 隨溫度增加而減小。步驟936包括設定VS0URCE及Vp_WELL。步 驟938包括使用電壓感測判定選定儲存元件是傳導還是非 傳導的。若在決策步驟940判定將執行另一感測操作,則 控制流在步驟930繼續。否則,該過程在步驟942結束。 注意’因為選定儲存元件之汲極側上的健存元件歸因於 關聯字元線上之足夠高電壓而處於傳導狀態,所以nand 132483.doc -36 - 200919476 串之沒極或位元線盘搜a & ,、選疋儲存元件之汲極連通。類似地, 因為選定儲存元件之调托也,, 原極側上的儲存元件歸因於關聯字元 線上之足夠阿電壓而處於傳導狀態,所以财仙串之源極 與k疋儲存το件之源極連通。因此,nand串之沒極或位 兀線之電壓基本上亦為選定儲存元件之汲極之電壓,且 NAND串之源極之電-基本上亦為選定儲存元件之源極之 電壓又由於本文中所描述之技術可用於單一儲存元 件故被感測之儲存元件未必在nand串或儲存元件之其 他集合中。 另外,如先前所論述,可對與共同字元線及源極相關聯 之多個儲存元件同時執行感測。 此外,自控制808方面看,感測過程包括自溫度相依電 路900接收資訊,及回應於該資訊提供溫度補償電壓至 BLC電晶體之控制閘極,BLC電晶體將nand串或非揮發 性儲存元件之其他集合耦接至感測電路。控制亦可設定字 元線、源極及p井電壓,以及自電壓感測模組8〇2接收有關 選定儲存元件之經感測程式化條件之資訊。 圖9f描繪擦除-驗證過程。步驟95〇包括擦除儲存元件之 一集合。步驟952包括開始將該等儲存元件中之一或多個 軟程式化至(例如)一所要擦除狀態。軟程式化通常包括將 電壓脈衝施加至選定字元線以使選定字元線上的儲存元件 中之一或多者之臨限電壓升高。電壓脈衝可為軟程式化脈 衝,其在振幅上小於用於程式化至較高狀態的脈衝(步驟 954)。例如,當儲存元件經受深擦除以確保其臨限電壓全 I32483.doc -37- 200919476 部在所要擦除狀態之臨限電堡以下時,可使用此類型之程 式化。步驟956包括(例如,相對於所要擦除狀態)驗證儲存 兀件之程式化條件。舉例而言,此驗證可包括執行如上文 所論述的圖9e之步驟932_938。在決策步驟958,若軟程式 化要繼續(例如’當儲存元件未達到所要擦除狀態時),則 控制流在步驟954繼續。否則,該過程在步驟96〇结束。 另外,可對與共同字元線及源極相關聯之多個儲存元件 同時執行擦除-驗證操作。 圖l〇a說明VSOURCdi|溫度之變化。在另一方法中, VS0URCE經溫度補償,例如,使得其隨著溫度增加。通 常,vwl=vsource+Vth(選定儲存元件),其中Vwl為施加至 選定字元線之電壓。如所論述,Vth隨溫度減小。因此, 在vWL固定的情況下’可wVsgurce設定為隨溫度增加以避 免感測期間的溫度偏壓。另外’在一可能實施中,可設置 約束’使得vS0URCE僅增加至正值。舉例而言,若在基線 溫度下vs〇URCE=0 V,且溫度增加,則Vs〇urce保持為〇 V。 若溫度降低,則vS0URCE根據溫度係數而增加。另一方 面’若在基線溫度下VSOURCE>〇 V,且溫度增加,則 Vsource可減小至一大於或等於0 V之值(亦即,非負值)。 若溫度降低’則VS0URCE根據溫度係數而増加。 圖10b描繪包括NAND串之不同集合的儲存元件陣列之實 例。沿記憶體陣列1 〇〇〇之每一行’位元線丨006輕接至 NAND串1050之汲極選擇閘之汲極端子1026。沿nane^ 之每一列,源極線1004可連接NAND串之源極選擇閘之所 132483.doc -38 - 200919476 有源極端子贈。在美國專利第5,別,3i5號、第 號及第ό,046,935號中找到作為 ,,7Figure 9c illustrates the variation of VBLC and Vbl with temperature. How does the pattern V appear to increase with temperature to track the increase in VBL. Control songs that provide a specific change in temperature for VBLe may be threaded into control 8〇8 based on theoretical and experimental results' depending on the particular implementation. Typically, the bit line voltage increases as the % of the storage element decreases with higher temperatures. This means that the voltage sensing module 802 should be higher to sense a higher Vbl. Note that the Vth of the storage component dominates the vBL. However, the varying Vblc changes the voltage sensed by the voltage sensing module such that the voltage is temperature compensated. Additionally, it is noted that the variation in VTH of the BLC transistor 804 can be counteracted by providing a temperature dependent transistor similar to the BLC transistor 8〇4 in the temperature dependent circuit 900. Figure 9d depicts the waveforms associated with Figures 9 & to Figure 9c. Waveform 91 〇 depicts VS0URCE and Vp_WELL, which are set to an elevated level during the sensing operation. Waveforms 9U and 914 depict the increase in VBL due to the application of snaps (10) (3) and force. Waveform 912 depicts a higher level of VBL at a higher temperature than waveform 914. In practice, after the rise, when current flows in the NAND string, Vbl may drop slightly (not shown). Waveform 916 depicts the voltage applied to transistor BLS, which indicates that the transistor is turned "on". The waveforms 91 8 and 920 respectively depict the voltage applied to the transistor 132483.doc -35· 200919476 BLC at higher and lower temperatures. Note: • The waveforms provided are for a temperature compensation mechanism combined with the mechanisms of Figures 8a through 8d, where the opening of the germanium transistor is delayed to allow: electricity to occur prior to sensing. However, it is not required to use the temperature compensation mechanism' in this manner and it can be used in other implementations that do not involve delays in the discharge path and/or sensing. Waveform 922 depicts the sensed voltage in the voltage sensing module of the selected meta-line when the selected storage element is open, and waveform 924 depicts the sensed voltage when the selected storage element is not conducting. A determination is made at t2 as to whether the sensed voltage exceeds a breakpoint. It can be concluded that the selected storage element conducts when the sensed voltage exceeds the breakpoint, and the selected storage element does not conduct when the sensed voltage drops below the breakpoint. Figure 9e depicts the sensing process associated with Figures 9a through 9d. At step 93, a sensing operation, such as a read or verify operation, is initiated. The steps include conducting the BLS transistor and the coffee crystal, and pre-charging the bit line to set the temperature dependent VBLC. Step 934 includes setting the word line voltage, which is temperature dependent as appropriate. In one method, only the word line voltage is selected to be temperature dependent' while in other methods, some or all of the word line voltage is temperature dependent. The word line voltage can be reduced as the temperature increases due to the decrease in vTH (see Figure 9b). Step 936 includes setting VS0URCE and Vp_WELL. Step 938 includes using voltage sensing to determine whether the selected storage element is conductive or non-conductive. If it is determined at decision step 940 that another sensing operation will be performed, then control flow continues at step 930. Otherwise, the process ends at step 942. Note that 'because the sitter element on the drain side of the selected storage element is in a conducting state due to a sufficiently high voltage on the associated word line, nand 132483.doc -36 - 200919476 string no pole or bit line search a & , selects the drain of the storage element. Similarly, because the selection of the storage element is also selected, the storage element on the primary side is in a conducting state due to a sufficient voltage on the associated word line, so the source of the sacred string is stored with the 疋The source is connected. Therefore, the voltage of the pole or bit line of the nand string is basically the voltage of the drain of the selected storage element, and the source of the source of the NAND string is basically the voltage of the source of the selected storage element. The techniques described herein can be used with a single storage element so that the sensed storage elements are not necessarily in the nand string or other collection of storage elements. Additionally, as previously discussed, sensing can be performed simultaneously on a plurality of storage elements associated with a common word line and source. Moreover, from the perspective of control 808, the sensing process includes receiving information from temperature dependent circuit 900 and providing a temperature compensated voltage to the control gate of the BLC transistor in response to the information, the BLC transistor will be a nand string or a non-volatile storage element The other sets are coupled to the sensing circuit. Control may also set the word line, source and p-well voltages, and receive information from the voltage sensing module 8〇2 regarding the sensed stylized conditions of the selected storage element. Figure 9f depicts an erase-verify process. Step 95 includes erasing a set of storage elements. Step 952 includes initiating the softening of one or more of the storage elements to, for example, an erased state. Soft programming typically involves applying a voltage pulse to the selected word line to raise the threshold voltage of one or more of the storage elements on the selected word line. The voltage pulse can be a soft stylized pulse that is less in amplitude than the pulse used to program to a higher state (step 954). This type of programming can be used, for example, when the storage element is subjected to deep erasure to ensure that its threshold voltage is below IBC. Step 956 includes verifying the stylized condition of the storage element (e.g., relative to the state to be erased). For example, this verification can include performing step 932_938 of Figure 9e as discussed above. At decision step 958, if the soft programming is to continue (e.g., when the storage element has not reached the desired erase state), then control flow continues at step 954. Otherwise, the process ends at step 96. Additionally, an erase-verify operation can be performed simultaneously on a plurality of storage elements associated with a common word line and source. Figure l〇a illustrates the change in temperature of VSOURCdi|. In another method, VS0URCE is temperature compensated, for example, such that it increases with temperature. Typically, vwl = vsource + Vth (selected storage element), where Vwl is the voltage applied to the selected word line. As discussed, Vth decreases with temperature. Therefore, in the case where the vWL is fixed, the wVsgurce can be set to increase with temperature to avoid the temperature bias during sensing. In addition, in a possible implementation, a constraint can be set such that vS0URCE is only increased to a positive value. For example, if vs URCE = 0 V at baseline temperature and the temperature increases, Vs 〇 urce remains at 〇 V. If the temperature is lowered, vS0URCE is increased according to the temperature coefficient. On the other hand, if VSOURCE > 〇 V at the baseline temperature and the temperature increases, Vsource can be reduced to a value greater than or equal to 0 V (i.e., non-negative). If the temperature is lowered, then VS0URCE is added according to the temperature coefficient. Figure 10b depicts an example of a storage element array including different sets of NAND strings. Each row 'bit line 丨 006 along the memory array 1 轻 is lightly connected to the 汲 terminal 1026 of the drain select gate of the NAND string 1050. Along the column of nane^, the source line 1004 can be connected to the source selection gate of the NAND string. 132483.doc -38 - 200919476 Active Extreme Gift. Found in U.S. Patent No. 5, No. 3i5, No. and No. 046,935, 7
架構陣列之實例及其操作#分的取ND 將儲存元㈣列分成大量㈣存元件區塊。如對於快閃 PROM系統而共同的,區塊為擦除之單元。 每一區塊含有被一起擦除之最小數目的儲存元件。通常將 母-區塊分成許多頁面。頁面為程式化之單元。 例中,可將個別頁面分成段,且該等段可含有隨基本= 化操作而被一次寫入之最少數目的儲存元件。-或多個ί 枓頁面通常儲存於一儲存元件列中。一頁面可儲存2 個區段。-區段包括使用者資料及附加項資料。附加項 =常包括已自區段之使用者資料計算出的錯誤校正碼 )。控制器之一部分(下文所述)在將資料程式化至陣 列令時計算ECC,且亦在自陣列讀取資料時檢查咖。或 者,:ECC及/或其他附加項資料儲存於不同於其所屬的使 用者資料之頁面或甚至不同區塊中。 :用者資料之-區段通常為512個位元組,此對應於磁 碟機中之一區段之大小。附加項資料通常為額外16-20個 位元組。大量頁面形成一區塊,自(例如)8個頁面直至”、 :、即固或更多頁面之間的任何數目。在一些實施例 中’一列NAND串組成一區塊。 在:實施例中,藉由在使源極線及位元線浮動的同時使 P井升南至擦除電Μ (例如,2G v)達足夠之時間段且將選定 區塊之字元線接地來擦除記憶體儲存元件。歸因於電容搞 132483.doc -39· 200919476 合,未選擇字元線、位元線、選擇線及共同源極(c-source) 亦升同至擦除電壓之顯著部分。因此將強電場施加至選定 儲存元件之隧道氧化物層,且選定之儲存元件之資料隨著 浮動閘極之電子發射至基板側而被擦除(通常藉由佛勒-諾 爾德哈姆(Fowler-Nordheim)穿隧機制)。隨著電子自浮動 閘極轉移至p井區域,選定之儲存元件之臨限電壓降低。 可對整個記憶體陣列、單獨區塊或儲存元件之另一單元執 行擦除。The instance of the architectural array and its operation take the ND to divide the storage element (four) column into a large number of (four) storage component blocks. As common to the flash PROM system, the block is the unit of erasure. Each block contains a minimum number of storage elements that are erased together. The parent-block is usually divided into many pages. The page is a stylized unit. In an example, individual pages may be divided into segments, and the segments may contain a minimum number of storage elements that are written once with the basic operation. - or multiple ί 枓 pages are usually stored in a storage element column. One page can store 2 sections. - The section includes user data and additional item information. Additional items = often include error correction codes that have been calculated from the user data for the segment). One part of the controller (described below) calculates the ECC when the data is programmed to the array order, and also checks the coffee when reading data from the array. Or: ECC and/or other additional items are stored on a different page than the user profile to which they belong or even in different blocks. The section of the user data is usually 512 bytes, which corresponds to the size of one of the sectors in the disk drive. The additional item data is usually an additional 16-20 bytes. A large number of pages form a block from, for example, 8 pages up to any number between ",", "solid" or more pages. In some embodiments, a column of NAND strings constitutes a block. In an embodiment: Erasing memory by causing P well to rise south to erase power (eg, 2G v) for a sufficient period of time while floating the source and bit lines and grounding the word lines of the selected block Body storage component. Due to the capacitance of 132483.doc -39· 200919476, the unselected word line, bit line, select line and common source (c-source) also rise to the significant part of the erase voltage. A strong electric field is thus applied to the tunnel oxide layer of the selected storage element, and the data of the selected storage element is erased as the electrons of the floating gate are emitted to the substrate side (usually by Fowler -Nordheim) tunneling mechanism. As the electron self-floating gate is transferred to the p-well region, the threshold voltage of the selected storage element is reduced. The entire memory array, individual block or another unit of the storage element can be wiped. except.
圖11為使用單列/行解碼器及讀取/寫入電路之非揮發性 己隐體系統之方塊圖。該圖說明根據本發明之一實施例之 «己It體裝置1196’其具有用於並行地讀取及程式化一頁面 的儲存凡件之讀取/寫入電路。記憶體裝置1丨96可包括一 或多個記憶體晶粒1198。記憶體晶粒龍包括二維儲存元 牛車歹j 1000、控制電路111〇及讀取/寫入電路。在一些 實施例中,储存①件陣列可為三維的。記憶體陣列1〇〇〇可 ’7‘由歹j解碼器丨13G而藉由字元線及經由行解瑪器而藉 由位元線定址。讀取/寫入電路1165包括多個感測區塊 1100=允許並行地讀取或程式化—儲存元件頁面。通常, 控制益115G包括於與該或該等記憶體晶粒1198相同的記憶 、96(例如,抽取式儲存卡)中。命令及資料經由線 :120而在主機與控制器115〇之間轉移,且經由線m8而在 該控制器與該或該等記憶體晶粒1198之間轉移。 ㈣tgUH)與讀取/寫人電路⑽協作以對記憶體陣 列1000執行記憶體操作。控制電路⑴G包括狀態機⑴2、 132483.doc 200919476 晶片上位址解碼器1114及功率控制模組1116。狀態 提供對記憶體操作之晶片級控制。晶片上位址解碼器1114 提供由主機或記憶體控制器使用之位址至由解碼器U观 U60使用之硬體位址之間的位址介面。功率控制模組川6 控制在記憶體操作期間供應至字元線及位元線之功率及電 壓。 在一些實施中,可組合圖n之某些組件。在各種設計 中’可將該等組件(儲存元件陣m_除外)#之一或多個 (單獨地或組合地)看作管理或控制電路。舉例而言,一或 多個管理或控制電路可包括控制電路111〇、狀態機⑴2、 解碼器im/1160、功率控制⑴6、感測區塊…。、讀取/ 寫入電路U65'控制器1150等中之任—者或其組合。 圖12為使用雙列/行解碼器及讀取/寫入電路之非揮發性 記憶體系統之方塊圖。此處,提供圖U中所示之記憶體裝 置⑽之另一配置。以對稱方式而在陣列之相反側上實施 藉由各種周邊電路對記憶體陣列1〇〇〇之存取,使得每一側 上之存取線及電路之密度減小一半。因此,列解碼器被分 為列解碼器U30A及1130B’且行解碼器被分為行解碼器 職及1160B。類似地,讀取/寫入電路被分為自陣列 咖之底部連接至位元線之讀取/寫入電路u65A,及自陣 列刪之頂部連接至位元線之讀取/寫入電路】刪。以此 方式’讀取/寫入模組之密度基本上減小一半。圖12之裝 置亦可包括如上文對於圖u之裝置所述之押制哭。 圖13為描购區塊之-實施例之方_。:個別感測 132483.doc 41 200919476 區塊1100分割成一核心部分(被稱為感測模組11 80)及一共 同部分1190。在一實施例中,將存在用於每一位元線之單 獨感測模組1180及一個用於多個感測模組1180之集合之共 同部分1190。在一實例中,感測區塊將包括一個共同部分 1190及八個感測模組1180。一群中之感測模組中之每一者 將經由資料匯流排11 72與關聯之共同部分通信。要獲得其 他細節,參考2006年6月29日公開的標題為"Non-VolatileFigure 11 is a block diagram of a non-volatile cryptosystem using a single column/row decoder and a read/write circuit. The figure illustrates a "self-device 1196" having a read/write circuit for storing and storing a page in parallel, in accordance with an embodiment of the present invention. Memory device 1 丨 96 can include one or more memory dies 1198. The memory die includes a two-dimensional storage element, a car, a control circuit 111, and a read/write circuit. In some embodiments, storing an array of 1 pieces can be three dimensional. The memory array 1 ’ '7 ' is addressed by the 解码j decoder 丨 13G by the word line and via the line decimator by the bit line. The read/write circuit 1165 includes a plurality of sensing blocks 1100 = allowing parallel reading or stylization - storage of component pages. Typically, control benefit 115G is included in the same memory, 96 (e.g., removable memory card) as the or the memory die 1198. Commands and data are transferred between the host and controller 115A via line 120 and transferred between the controller and the memory die 1198 via line m8. (d) tgUH) cooperates with the read/write circuit (10) to perform a memory operation on the memory array 1000. The control circuit (1) G includes a state machine (1) 2, a 132483.doc 200919476 on-chip address decoder 1114 and a power control module 1116. Status Provides wafer level control of memory operations. The on-wafer address decoder 1114 provides an address interface between the address used by the host or memory controller to the hardware address used by the decoder U. The power control module Kawasaki 6 controls the power and voltage supplied to the word lines and bit lines during memory operation. In some implementations, certain components of Figure n can be combined. One or more of these components (except storage element array m_) # may be considered as management or control circuitry in various designs. For example, one or more of the management or control circuits can include control circuit 111, state machine (1) 2, decoder im/1160, power control (1) 6, sense block. Read/write circuit U65' controller 1150 or the like, or a combination thereof. Figure 12 is a block diagram of a non-volatile memory system using a dual column/row decoder and a read/write circuit. Here, another configuration of the memory device (10) shown in Fig. U is provided. The access to the memory array 1 by various peripheral circuits is performed on the opposite side of the array in a symmetrical manner such that the density of the access lines and circuits on each side is reduced by half. Therefore, the column decoder is divided into column decoders U30A and 1130B' and the row decoder is divided into a row decoder unit and 1160B. Similarly, the read/write circuit is divided into a read/write circuit u65A connected from the bottom of the array to the bit line, and a read/write circuit connected from the top of the array to the bit line. delete. In this way, the density of the read/write modules is substantially reduced by half. The device of Figure 12 may also include a cheat as described above for the device of Figure u. Figure 13 is a side view of the embodiment of the depiction block. : Individual Sensing 132483.doc 41 200919476 Block 1100 is divided into a core portion (referred to as sensing module 810) and a common portion 1190. In one embodiment, there will be a single sensing module 1180 for each bit line and a common portion 1190 for a collection of multiple sensing modules 1180. In one example, the sensing block will include a common portion 1190 and eight sensing modules 1180. Each of the sensing modules in the group will communicate with the associated common portion via the data bus 117. For other details, refer to the title "Non-Volatile" published on June 29, 2006.
Memory and Method with Shared Processing for anMemory and Method with Shared Processing for an
Aggregate of Sense Amplifiers"之美國專利申請公開案第 2006/0140007號,且該案之全文以引用方式併入本文中。 感測模組11 80包含感測電路11 70,其判定所連接之位元 線中之傳導電流是高於還是低於一預定臨限位準。感測模 組1180亦包括位元線鎖存器1182,其用於設定所連接之位 元線上之電壓條件。舉例而言,鎖存於位元線鎖存器丨丨以 中之預枝態將導致所連接之位元線被拉至表示程式化抑 制之狀態(例如,vDD)。 共同部分U9G包含-處理器1192、f料鎖存器⑽之一 集合,及-耗接於資料鎖存器1194集合與資料匯流排mo 之間的輸入/輸出剛介面1196。處理器⑽執 其功能中之—者為判㈣存於所感測之儲存元 件中之 > 料及將所狀之資料儲存於資料鎖存以 貝科鎖存器U94之集合用於儲存 二 ,判定之資料位元。其亦用於儲存=由處理器 自資料匯流排⑽所匯入之資料位 二匕操作期間 所匯入之資料位元 132483.doc •42· 200919476 表不忍欲被程式化至記憶體中之寫入資料。1/〇介面I〗% 提供資料鎖存器1194與資料匯流排112〇之間的介面。 在讀取或感測期間,系統之操作受狀態機1112的控制, 狀態機1112控制不同控制閘極電麼至已定址儲存元件之供 應。隨著其步進通過對應於由記憶體支援的各種記憶體狀 態之各種預定義控制閉極電壓,感測模組118〇可在此等電 壓中之I處解扣,且輸出將經由匯流排ιΐ72自感測模組 1180提供至處理器1192。此時’處理器藉由考慮感測 模組之解扣事件及關於經由輸入線ιΐ93自狀態機所施加之 控,閉極電麼之資訊來判定所得記憶體狀態。處理器接著 „十异用於#憶體狀態之二進位編碼且將所得資料位元储存 ^資料财子器1194中。在核心部分之另-實施例中,位元 線鎖存器1182充當镂舌田、公 兄田雙重用途,既用作用於鎖存感測模組 8〇之輸出之鎖存器’又用作上文所述之位元線鎖存器。 一,實施可包括多個處理器1192。在一實施例中每一 之I _、2將包括一輸出線(未描繪),使得該等輸出線中 一匕者被-起硬連線地進行邏輯或運算㈣以·⑽)。在 ^二實施例中,輸出線在連接至硬連線邏輯或線之前被反 !!程^態使得能夠在程式化過程已完成時的程式化驗證 可判6 $仃&速判& ’因為接收硬連線邏輯或的狀態機 而言有位元何時已達到所要位準。舉例 將赫路、 兀達到其所要位準時,該位元之邏輯零 、 送至硬連線邏輯或線(或資^ _ 輪出資料G A - 貝卄1被反向)。當所有位兀 s °之資料1)時’狀態機就知道終止程式 132483.doc -43- 200919476 化過程。目為每一處j里器與八個《測模組通信,所以狀態 機需要將硬連線邏輯或線讀取八次,或將邏輯加至處理器 1192以累積關聯位元線之結果,使得狀態機僅需要將硬連 線邏輯或線讀取一次。類似地,藉由正確地選擇邏輯位 準,全域狀態機可偵測第一位元何時改變其狀態且相應地 改變演算法。 在程式化或驗證期間,待程式化之資料係自資料匯流排 1120儲存於資料鎖存器1194之集合中。受狀態機控制的程 式化操作包含施加至已定址儲存元件之控制閘極的一系列 釭式化電壓脈衝。每一程式化脈衝繼之以一回讀(驗證)以 判疋儲存7L件是否已被程式化至所要記憶體狀態。處理器 1192相對於所要記憶體狀態監視回讀記憶體狀態。當兩個 狀態一致時,處理器1192設定位元線鎖存器1182,以便使 位元線被拉至表示程式化抑制之狀態。即使程式化脈衝出 現在儲存元件之控制閘極上,此亦抑制耦接至位元線之儲 存元件進一步程式化。在其他實施例中,處理器最初载入 位7L線鎖存器1 i 82,且感測電路在驗證過程期間將其設定 至抑制值。 資料鎖存器堆疊1 194含有對應於感測模組之資料鎖存器 堆疊。在一實施例中,每個感測模組丨丨8〇存在三個資料鎖 存器在一些實施中(但並非所需的),將資料鎖存器實施 為移位暫存器,使得儲存於其中之並行資料被轉換為用於 資料匯机排1120之串行資料,且反之亦然。在較佳實施例 中,對應於m個儲存元件之讀取/寫入區塊之所有資料鎖存 132483.doc -44 - 200919476 裔可鏈接在一起以形成一區塊移位暫存器,使得可藉由串 行轉移來輸入或輸出一資料區塊。詳言之,採用r個讀取/ 寫入模組之組’使得其資料鎖存器集合中之每一資料鎖存 器按順序將資料移位至資料匯流排中或移出資料匯流排, 就如同該等資料鎖存器為用於整個讀取/寫入區塊之移位 暫存器之部分一樣。 可在以下文獻中找到關於非揮發性儲存裝置之各種實施 例之結構及/或操作的額外資訊:(丨)2007年3月27日頒予 的標題為"Non-Volatile Memory And Method With ReducedU.S. Patent Application Publication No. 2006/014, the entire disclosure of which is incorporated herein by reference. The sensing module 186 includes a sensing circuit 117 that determines whether the conduction current in the connected bit line is above or below a predetermined threshold level. Sensing module 1180 also includes a bit line latch 1182 for setting the voltage conditions on the connected bit line. For example, latching in the pre-branch state of the bit line latch will cause the connected bit line to be pulled to indicate a stylized suppression state (e.g., vDD). The common portion U9G includes a set of processors 1192, f-fatch (10), and - an input/output interface 1196 that is interposed between the data latch 1194 set and the data bus. The processor (10) performs its function of determining (4) the information stored in the sensed storage component and storing the shaped data in the data latch to store the data in the set of the Beca latch U94. The data bit. It is also used for storage = data bits imported by the processor from the data bus (10). The data bits transferred during the operation of the data bit 132483.doc • 42· 200919476 The table is not intended to be programmed into the memory. Enter the information. 1/〇 interface I 〗 % Provides the interface between the data latch 1194 and the data bus 112 。. During reading or sensing, the operation of the system is controlled by state machine 1112, which controls the supply of different control gates to the addressed storage elements. As it steps through various predefined threshold voltages corresponding to the various memory states supported by the memory, the sensing module 118 can be tripped at one of the voltages and the output will be via the bus The ι 72 self-sensing module 1180 is provided to the processor 1192. At this time, the processor determines the state of the obtained memory by considering the tripping event of the sensing module and the information about the control applied from the state machine via the input line ιΐ93. The processor then occupies the binary encoding for the #memory state and stores the resulting data bits in the data compensator 1194. In another embodiment of the core portion, the bit line latch 1182 acts as a 镂. The tongue field and the male brother field dual use, both as a latch for latching the output of the sensing module 8' and as a bit line latch as described above. Processor 1192. In an embodiment, each I_, 2 will include an output line (not depicted) such that one of the output lines is logically ORed (4) to (10) In the second embodiment, the output line is reversed before being connected to the hardwired logic or line! The programmatic verification enables the stylized verification when the stylization process is completed to determine 6$仃&& 'Because the state machine that receives the hardwired logical OR has a bit when it has reached the desired level. For example, when the path is reached to its desired level, the logic zero of the bit is sent to the hardwired logic. Or line (or _ ^ _ rounded out the information GA - Bessie 1 is reversed). When all the bits 兀 ° information 1) 'like The state machine knows to terminate the program 132483.doc -43- 200919476. The purpose is to communicate with each of the eight test modules, so the state machine needs to read the hardwired logic or line eight times, or The logic is added to the processor 1192 to accumulate the result of the associated bit line such that the state machine only needs to read the hardwired logic or line once. Similarly, the global state machine can detect by correctly selecting the logic level. When the first bit changes its state and changes the algorithm accordingly. During stylization or verification, the data to be programmed is stored in the set of data latches 1194 from the data bus 1120. The state machine controlled program The operation includes a series of clamped voltage pulses applied to the control gates of the addressed storage elements. Each stylized pulse is followed by a readback (verification) to determine if the stored 7L pieces have been programmed to the desired memory. The state of the processor 1192 monitors the readback memory state relative to the desired memory state. When the two states coincide, the processor 1192 sets the bit line latch 1182 to cause the bit line to be pulled to indicate the program. State of suppression. Even if a stylized pulse appears on the control gate of the storage element, this inhibits further storage of the storage element coupled to the bit line. In other embodiments, the processor initially loads the bit 7L line latch. The device 1 i 82, and the sensing circuit sets it to a suppression value during the verification process. The data latch stack 1 194 contains a data latch stack corresponding to the sensing module. In one embodiment, each sense There are three data latches in the test module 在 8 在 in some implementations (but not required), the data latch is implemented as a shift register, so that the parallel data stored therein is converted into The serial data of the data sink 1120, and vice versa. In the preferred embodiment, all data latches corresponding to the read/write blocks of the m storage elements are 132483.doc -44 - 200919476 The links can be linked together to form a block shift register so that a data block can be input or output by serial transfer. In particular, the group of r read/write modules is configured such that each data latch in its data latch set sequentially shifts data into or out of the data bus. As with the data latches being part of the shift register for the entire read/write block. Additional information regarding the structure and/or operation of various embodiments of non-volatile storage devices can be found in: (丨) March 27, 2007 entitled "Non-Volatile Memory And Method With Reduced"
Source Line Bias Errors”之美國專利第 7,196,931 號;⑺ 2006 年 4 月 4 日頒予的標題為"Non_volatile Mem〇ry And Method with Improved Sensing"之美國專利第 7,023,730 就’(3) 2006年5月16日頒予的標題為"Memory Sensing Circuit And Method For Low Voltage Operation"之美國專 利第7,046,568號;(4) 2006年10月5曰公開的標題為 Compensating for Coupling During Read Operations of Non-Volatile Memory"之美國專利申請公開案第 2006/0221692號;及(5) 2006年7月20日公開的標題為 "Reference Sense Amplifier For Non-Volatile Memory"之美 國專利申請公開案第2006/0158947號。所有五個上文列出 之專利文獻之全文以引用方式併入本文中。 圖14說明用於全位元線記憶體架構或用於奇偶記憶體架 構的將記憶體陣列組織為區塊之實例。描述記憶體陣列 1 400之例示性結構。作為一實例,描述一被分割成1,024 132483.doc -45· 200919476 個區塊之NAND快閃EEPROM。可同時擦除儲存於每一區 塊中之資料。在一實施例中,區塊為同時被擦除之儲存元 件之最小單元。在此實例中,在每一區塊中存在對應於位 元線BL〇、BL1、…、BL8511之8,川個行。在一被稱為全 位π線(ABL)架構(架構141〇)之實施例中,可在讀取及程 式化操作期間同時選擇一區塊之所有位元線。可同時程式 化沿共同字元線且連接至任一位元線之儲存元件。U.S. Patent No. 7,196,931 to Source Line Bias Errors; (7) U.S. Patent No. 7,023,730 entitled "Non_volatile Mem〇ry And Method with Improved Sensing", issued on April 4, 2006, on '(3) 2006 US Patent No. 7,046,568 entitled "Memory Sensing Circuit And Method For Low Voltage Operation", entitled "Compensating for Coupling During Read Operations of Non-", issued May 5, 2006. US Patent Application Publication No. 2006/0221692 to Volatile Memory " and (5) US Patent Application Publication No. 2006/0158947, entitled "Reference Sense Amplifier For Non-Volatile Memory", published on July 20, 2006. The entire disclosure of all of the above-identified patent documents is incorporated herein by reference. Figure 14 illustrates the organization of memory arrays as blocks for a full bit line memory architecture or for a parity memory architecture An example is described. An exemplary structure of a memory array 1 400 is described. As an example, the description is divided into 1,024 132483.doc -45· 2009 19476 blocks of NAND flash EEPROM. The data stored in each block can be erased simultaneously. In one embodiment, the block is the smallest unit of the simultaneously erased storage element. In this example, There are 8 rows corresponding to the bit lines BL〇, BL1, ..., BL8511 in each block. In an embodiment called the all-bit π line (ABL) architecture (architecture 141〇), Simultaneously select all of the bit lines of a block during read and program operations. The storage elements along the common word line and connected to either bit line can be programmed simultaneously.
在所提供之實例中,64個儲存元件及兩個虛設儲存元件 匕串聯連接以形成-NAND串。存在64個資料字元線及兩 個虛設字元線WL_d〇及WL 一 dl,其中每— NAND串包括64 個資料儲存元件及兩個虛㈣存元件。在其他實施例中, NAND串可具有多於或少於64個資料儲存元件及兩個虛設 儲存元件。資料記憶體單元可儲存使用者或系統資料。虛 設記憶體單it通常不用於儲存使用者資料或系統資料。 NAND串的-個端子經由汲極選擇閘(連接至選擇閑沒極 線SGD)而連接至龍位元線,|另—端子經由源極選擇 閘(連接至選擇閘源極線SGS)而連接至共同源極。 在-被稱為奇偶架構(架構i彻)之實施例中,將位元線 分成偶數位元線(BLe)及奇數位元線(BL。)。在此狀況下, 在-時間程式化沿共同字元線且連接至奇數位元線之儲存 元件,而在另—時間程式化沿共同字元線且連接至偶數位 元線之館存元件。可同時將資料程式化至不同區塊中及自 不同區塊讀取資料。在此實例中 > 广△丄丄 貝,在母一區塊中存在 8,5 12個行,其被分成偶數行及奇數行。 I32483.doc •46- 200919476 在頃取及程式化操作之一組態中,同時選擇4,2· 存元件。所選之儲存元件具有相同字元線及相同類別之位 元線(例如,偶數或奇數)。因此’可同時讀取或程式化形 成一邏輯頁面的532個資料位元組,且記憶體之一區塊可 儲存至少八個邏輯頁面(四個字元線,每-者具有奇數頁 面及偶數頁面)。對於多狀態儲存元件而言,當每一儲存 元件儲存兩個資料位元時(其中此等兩個位元中之每一者 健存於不同頁面中),一[^•祕姑十, 區塊儲存十六個邏輯頁面。亦可 使用其他大小之區塊及頁面。 厭對於狐或奇偶架構而言,可藉由使ρ井升高至擦除電 (例如’ 2G V)及將選^區塊之字元線接地來擦除储存元 件。源極線及位元線係浮動的。可對整個記憶體陣列、單 獨區塊或為記憶體裝置之一部分的儲存元件之另一單元執 ^擦除。電子自儲存元件之浮動閑極轉移“井區域,使 知儲存元件之VTH變為負。 圖15描繪臨限電麼分布之一實例集合。針對每一儲存元 ㈣存兩個資料位元之狀況提供儲存元件陣列之實例〜 分布。針對擦除儲存元件提供第_臨限電塵分布e。亦描 1針對經程式化儲存元件的三個臨限電壓分布A、B及^。 在一實施例中,£分布中之臨限電壓為負,且A、MC分 布中之臨限電壓為正。 、母-相異臨限電壓範圍對應於資料位元集合之預定值。 被程式化至儲存元件中之資料與儲存元件之臨限電壓位準 之間的特定關係取決於為料元件㈣之資料編碼機制。 132483.doc -47- 200919476 舉例而言,全文以引用方式併入本文甲之2〇〇4年12月16曰 公開的美國專利第6,222,762號及美國專利申請公開案第 2004/0255090號描述用於多狀態快閃儲存元件之各種資料 編碼機制。在一實施例中,使用格雷碼指派⑶心 assignment)將資料值指派給臨限電壓範圍,使得若浮動閘 極之臨限電壓錯誤地移位至其相鄰實體狀態,則僅一個位 兀將受影響。-實例將”i i "指派給臨限電壓範圍E(狀態 E),將"10"指派給臨限電a範圍A(狀態A),將"〇〇,,指派給 臨限電Μ範圍B(狀態B),且將”G1 ,,指派給臨限電壓範圍 C(狀態C)H在其他實施例中,^使用格雷碼。雖然 展,示四個狀態,但本發明亦可用於其他多狀態結構,包括 彼等包括多於或少於四個狀態之結構。 -亦提供三個讀取參考電壓Vra、Vrb及Vrc以用於自儲存 7L件4取貝料。藉由測試給定儲存元件之臨限電壓是高於 還是低於Vra' Vj^Vrc’系統可判定儲存元件所處的狀 態(例如’程式化條件)。 一另外,提供三個驗證參考電壓Vva、Vvb及Vvc。當儲存 元件儲存額外狀態時,可使用額外的讀取及參考值。當將 儲存元件程式化至狀態八時,系統將測試彼等儲存元^是 否具有大於或等於Vva之臨限電壓。當將儲存元件程式化 至狀態B時,系統將測試儲存元件是否具有大於或等於 限電壓。當將儲存元件程式化至狀態C時,系統 將判疋儲存兀件是否具有大於或等於he之臨限電壓。 在一被稱為全序列程式化之實施例中,儲存元件可自擦 132483.doc •48- 200919476 除狀態E直接程式化至經程式化狀態A、b或c中之任一 =。舉例而言’可首先擦除待程式化之儲存元件群體,使 得該群體中之所有儲存元件處於擦除狀態E。接著將諸如 由圖1 9之控制問極電壓序列所描繪的―系列程式化脈衝用In the example provided, 64 storage elements and two dummy storage elements are connected in series to form a -NAND string. There are 64 data word lines and two dummy word lines WL_d 〇 and WL dl, wherein each NAND string includes 64 data storage elements and two virtual (four) memory elements. In other embodiments, the NAND string can have more or less than 64 data storage elements and two dummy storage elements. The data memory unit stores user or system data. The dummy memory single is usually not used to store user data or system data. The terminals of the NAND string are connected to the dragon bit line via the drain select gate (connected to the selected idle pole line SGD), and the other terminal is connected via the source select gate (connected to the select gate source line SGS) To the common source. In an embodiment referred to as an odd-even architecture (Architecture i), the bit lines are divided into even bit lines (BLe) and odd bit lines (BL.). In this case, the storage elements along the common word line and connected to the odd bit lines are programmed at - time, while the other elements along the common word line and connected to the even bit lines are programmed at another time. The data can be programmed into different blocks and read from different blocks at the same time. In this example, > △ 丄丄, there are 8, 5 12 rows in the parent block, which are divided into even rows and odd rows. I32483.doc •46- 200919476 In the configuration of one of the acquisition and stylization operations, select 4,2· storage components at the same time. The selected storage elements have the same word line and the same type of bit line (e.g., even or odd). Therefore, 532 data bytes can be simultaneously read or programmed to form a logical page, and one block of memory can store at least eight logical pages (four word lines, each having odd pages and even numbers) page). For a multi-state storage element, when each storage element stores two data bits (where each of these two bits is stored in a different page), a [^•秘姑十,区The block stores sixteen logical pages. Blocks and pages of other sizes can also be used. For fox or parity architectures, the storage elements can be erased by raising the ρ well to erase power (e.g., ' 2G V) and grounding the word line of the selected block. The source line and the bit line are floating. The entire memory array, a single block, or another unit of a storage element that is part of a memory device can be erased. The floating idle pole of the electronic self-storage element transfers "the well region, making the VTH of the storage element become negative. Figure 15 depicts a set of instances of the threshold power distribution. The status of two data bits for each storage element (four) An example of distribution of storage element arrays is provided. The first-order electric dust distribution e is provided for the erased storage element. The three threshold voltage distributions A, B, and ^ for the programmed storage element are also described. The threshold voltage in the £ distribution is negative, and the threshold voltage in the A and MC distributions is positive. The mother-dissimilar threshold voltage range corresponds to a predetermined value of the data bit set. Stylized to the storage element The specific relationship between the data and the threshold voltage level of the storage element depends on the data encoding mechanism of the material element (4). 132483.doc -47- 200919476 For example, the full text is incorporated herein by reference. Various data encoding mechanisms for multi-state flash storage elements are described in U.S. Patent No. 6,222,762, issued toK.S. Pat. Assignment assigns a data value to a threshold voltage range such that if the threshold voltage of the floating gate is erroneously shifted to its neighboring entity state, only one bit will be affected. - The instance will be assigned "ii " To the threshold voltage range E (state E), assign "10" to the threshold power a range A (state A), and assign "〇〇, to the threshold power range B (state B), and Assigning "G1," to the threshold voltage range C (state C) H. In other embodiments, the Gray code is used. Although four states are shown, the present invention can also be applied to other multi-state structures, including Structures that include more or less than four states. - Three read reference voltages Vra, Vrb, and Vrc are also provided for self-storing 7L pieces of material. By testing the threshold voltage of a given storage element is Above or below the Vra' Vj^Vrc' system determines the state of the storage element (eg 'stylized conditions'). In addition, three verification reference voltages Vva, Vvb and Vvc are provided. When the storage element stores additional status Additional reading and reference values can be used. When the storage component is programmed to At state eight, the system will test whether their storage elements have a threshold voltage greater than or equal to Vva. When the storage element is programmed to state B, the system will test whether the storage element has a voltage greater than or equal to the limit. When the component is programmed to state C, the system will determine if the storage component has a threshold voltage greater than or equal to he. In an embodiment referred to as full sequence stylization, the storage component can be self-wipe 132483.doc • 48 - 200919476 In addition to the state E directly stylized to any of the stylized states A, b or c =. For example, 'the group of storage elements to be programmed can be erased first, so that all storage elements in the group are rubbed Except state E. Next, a series of stylized pulses, such as those depicted by the control gate voltage sequence of Figure 19.
於將儲存元件直接程式化至狀態A、B或c。當一些儲存元 件正自狀態E程式化至狀態A時,其他儲存元件正一自狀態E 程式化至狀態B及/或正自狀態E程式化至狀態c。當在選定 字元線WLi上自狀態e程式化至狀態c時,因為與自狀態£ 程式化至狀態A或自狀態E程式化至狀態3時的電壓變化相 比,WLi下方之浮動閘極上的電荷量變化最大,所以至 WLi-Ι下方之鄰近浮動閉極之寄生耦合量被最大化。當自 狀態E程式化至狀態3時,至鄰近浮動閘極之耦合量減小, 但仍顯著。當自狀態E程式化至狀態A時,耦合量甚至進 一步減小。因此,為隨後讀取WLid之每一狀態所需之校 正量將視WLn上之鄰近儲存元件之狀態而改變。 圖1 6說明程式化多狀態儲存元件之二遍式(tw〇_pass)技 術的一實例,其儲存用於兩個不同頁面的資料:下部頁面 及上部頁面。描繪四個狀態:狀態E (1丨)、狀態Α (ι〇)、 狀態B (00)及狀態C (01)。對於狀態£而言,兩個頁面均儲 存”1”。對於狀態A而言,下部頁面儲存"〇”而上部頁面儲 存1 '。對於狀態B而言,兩個頁面均儲存”〇"。對於狀熊c 而言’下部頁面儲存” 1 ”而上部頁面儲存,,〇,,。注意,雖然 已將特定位元型樣指派給該等狀態中之每一者,但亦可才t 派不同位元型樣。 132483.doc •49- 200919476 在第一遍程式化φ . _ ^ ,根據待程式化至部邏輯+ 位元來設定儲存亓枝、科只囬甲之 存疋件之臨限電壓位準。若彼位元為邏輯 1 ,則不改變臨限電屢,因 ^ 因為其由於早先已被擦除而處 於適當狀態。然而,如 - 如由箭頭1600所示,若待程式化之位 7C為邏輯〇 ’’,則將性 』將健存7G件之臨限位準增加至狀態Α。此 結束第一遍程式化。 在第二遍程式化中,根據待程式化至上部邏輯頁面中之Directly program the storage element to state A, B or c. When some of the storage elements are being programmed from state E to state A, the other storage elements are programmed from state E to state B and/or from state E to state c. When staging from state e to state c on selected word line WLi, the floating gate below WLi is compared to the voltage change from staging to state A or staging from state E to state 3 The amount of charge changes the most, so the amount of parasitic coupling to the adjacent floating closed-pole below WLi-Ι is maximized. When staging from state E to state 3, the amount of coupling to the adjacent floating gate is reduced, but still significant. When staging from state E to state A, the amount of coupling is even further reduced. Therefore, the amount of correction required to subsequently read each state of WLid will vary depending on the state of the adjacent storage elements on WLn. Figure 16 illustrates an example of a two-pass (pass_pass) technique for a stylized multi-state storage element that stores data for two different pages: a lower page and an upper page. Describe four states: state E (1丨), state Α (ι〇), state B (00), and state C (01). For the state £, both pages store "1". For state A, the lower page stores "〇 and the upper page stores 1'. For state B, both pages store "〇". For the bear c, the 'lower page is stored 1' and the upper page is stored, 〇,,. Note that although a particular bit pattern has been assigned to each of these states, it is also possible to assign different bit patterns. 132483.doc •49- 200919476 In the first pass, stylize φ . _ ^ , according to the logic to be programmed to the logical + bit to set the threshold voltage level for storing the stored parts of the lychee and branch. If the bit is logic 1, it does not change the limit, because it is in the proper state because it has been erased earlier. However, if - as indicated by arrow 1600, if the bit 7C to be programmed is logical ’ ', then the property will increase the threshold level of the 7G component to the state Α. This ends the first stylization. In the second pass of the stylization, according to the program to be programmed into the upper logic page
位元來設定儲存元件之臨限電壓位準。若上部邏輯頁面位 元將儲存邏輯"1 ",目,丨丁饮丄,,, _ 丨不發生程式化,因為視下部頁面位 元之程式化而$,儲存元件處於狀態E或A中之一者,兩 個狀態皆載運上部頁面位开" ^ I只甶位兀1 。右上部頁面位元將為邏 輯"0",則使臨限電壓 电i移位。右第一遍導致儲存元件保持 處於擦除狀態E ’則如箭頭162{)所騎,在第二階段中程 式化儲存7L件’使得臨限電壓增加至在狀態c内。若儲存 元件由於第—遍程式化而已被程式化至狀態A,則如箭頭 所⑽’在第二遍申進—步程式化儲存元件,使得臨 限電壓增加至在狀態㈣。第二遍之結果為將儲存元件程 式化至所表示之狀態以儲存上部頁面之邏輯"〇",而不改 ’文下4頁面之資料。在圖15及圖16兩者中,鄰近字元線上 的至浮動閘極之耦合量取決於最終狀態。 在一實施例中,系統可經設置以在足夠資料經寫入以填 滿整個頁面時執行全序列寫入。若寫入的資料不足一個整 頁面,則程式化過程可程式化以所接收之資料而程式化之 下4頁面。當接收到後續資料時,系統將接著程式化上部 132483.doc •50· 200919476 頁面。在又一實施例中,系統可在程式化下部頁面之模式 中開始寫入,且若隨後接收到足以填滿整個字元線之儲^ 元件(或大部分)的資料,則系統可轉換至全序列程式化模 式。在2006年6月15日公開的標題為”pipelined ' 〇f Non-Volatlle Memories Using Early Data”之美國專利申 請公開案第2006/012639〇號中揭示此實施例之更多細節, 該案之全文以引用之方式併入本文中。 圖17a至圖17c揭示用於程式化非揮發性記憶體之另一過 帛,其藉由針對任何特定儲存元件而在寫人至先前頁面的 鄰近儲存元件之後關於一特定頁面而寫入至該特定儲存元 件來減少浮動閘極至浮動閘極之耦合效應。在一實例實施 中,非揮發性儲存元件使用四個資料狀態而在每個儲存元 件儲存兩個資料位元。舉例而言,假設狀態E為擦除狀態 且狀態A、B及C為經程式化狀態。狀態E儲存資料丨丨。狀 態A儲存資料01。狀態B儲存資料1〇。狀態㈣存資料〇〇。 〇 目為兩個位元在鄰近狀態A與B之間改變,所以此為非格 雷編碼之一實例。亦可使用資料至實體資料狀態之其他編 碼。每-儲存元件儲存兩個資料頁面。出於參考之目的, • 冑此等資料頁面稱作上部頁面及下部頁面;然而,該等頁 面可被給予其他標訪。H^ _ >考狀心A ’上部頁面儲存位元〇且 下部頁面儲存位元i。參考狀態B,上部頁面儲存位元以 下部頁面儲存位疋〇。參考狀態c,兩個頁面皆儲存位元資 料0。 程式化過%為兩步驟過程。在第一步驟中,程式化下部 132483.doc -51 - 200919476 頁面。若下部頁面保持資料1,則儲存元件狀態保持為狀 : 若=貝料被权式化至0,則儲存元件之電壓臨限值升 高:使得儲存元件被程式化至狀態B,。圖m因此展示儲 存疋件自狀態E至狀態B,之程式化。狀態B,為過渡狀態b ; , 因此,驗證點被描繪為Vvb,,其低於Vvb。 - 在—實施例中’在儲存元件被自狀態E程式化至狀離Βι 之後,將接著關於储存元件之下部頁面來程式化= f, NAND串中的相鄰储存元件(WLn+1)。舉例而言,返回參 看圖2 ’在程式化儲存元件1〇6之下部頁面之後,將程式化 儲存元件104之下部頁面。在程式化儲存元件HM之後,若 諸存元件1 04具有自狀態E升高至狀態b,之臨限電壓,則浮 動閘極至浮動閘極之輕合效應將使儲存元件⑽之表觀臨 限電壓升高。此將具有使狀態B,之臨限電壓分布加寬至被 描料圖17b之臨限電壓分布175〇之分布的效應。臨限電 壓刀布之此表觀加寬將在程式化上部頁面時被矯正。 ο 圖i7c描繪程式化上部頁面之過程。若儲存元件處於擦 除狀態E且上部頁面保持為1,則儲存元件將保持處於狀態 若儲存元件處於狀態E且其上部頁面資料將被程式化至 . ㈣存it件之臨限電壓將升高,使得儲存元件處於狀 =A。若儲存元件處於中間臨限電壓分布且上部頁面 資料將保持為1,則儲存元件將被程式化至最終狀態B。若 儲存元件處於中間臨限電壓分布175〇且上部頁面資料將變 為資料〇,則儲存元件之臨限電壓將升高,使得儲存元件 處於狀態C。圖i7a至圖17c所描繪之過程減少浮動閘極至 132483.doc •52· 200919476 浮動閘極之耦合效庫 m 式化將對給定儲存:為僅相鄰儲存元件之上部頁面程 編碼之—實例為<表觀臨限電塵有影響。替代狀態 至狀態c,且當上部虽¥上部頁面資料為1時,自分布1750移 ^^m]7 面資料為〇時,移至狀態B。 雖然圖17a至圖ι7 ^ ^ ^. 槌供關於四個資料狀態及兩個資料頁The bit is used to set the threshold voltage level of the storage element. If the upper logical page bit will store the logic "1 ", the order, 丨 丄,, _ 丨 does not be stylized, because the lower page bit is stylized and the storage element is in state E or A In one of the two states, both states carry the upper page bit open " ^ I only 甶1 。. The upper right page bit will be the logical "0", which will shift the threshold voltage. The first right pass causes the storage element to remain in the erased state E' then rides as arrow 162{), and in the second phase, the 7L piece is stored' so that the threshold voltage is increased to state c. If the storage element has been programmed to state A due to the first pass, then the arrow (10)' is programmed to store the component in the second pass, causing the threshold voltage to increase to state (4). The result of the second pass is to program the storage element to the state indicated to store the logic of the upper page "" without changing the information on the next four pages. In both Figures 15 and 16, the amount of coupling to the floating gate on the adjacent word line depends on the final state. In an embodiment, the system can be configured to perform a full sequence of writes when sufficient data is written to fill the entire page. If the data written is less than one full page, the stylization process can be programmed to program the next four pages with the received data. When subsequent data is received, the system will then program the upper 132483.doc •50· 200919476 page. In yet another embodiment, the system can begin writing in the mode of the programmed lower page, and if subsequently received enough data to fill the entire element line (or most), the system can switch to Full sequence stylized mode. Further details of this embodiment are disclosed in U.S. Patent Application Publication No. 2006/012639, the entire disclosure of which is incorporated herein to This is incorporated herein by reference. 17a-17c disclose another trick for staging non-volatile memory that is written to a particular page after writing to a neighboring storage element of a previous page for any particular storage element Specific storage elements to reduce the coupling effect of the floating gate to the floating gate. In an example implementation, the non-volatile storage element uses four data states to store two data bits per storage element. For example, assume that state E is an erased state and states A, B, and C are stylized. Status E stores data丨丨. State A stores data 01. State B stores data 1〇. Status (4) Storage information. The order is that two bits change between adjacent states A and B, so this is an example of non-Gray coding. You can also use the data to other codes of the entity data status. Each data element stores two data pages. For reference purposes, • These pages are referred to as the upper and lower pages; however, such pages may be given other petitions. H^ _ > test heart A ' The upper page stores the bit 〇 and the lower page stores the bit i. Referring to state B, the upper page storage bit is stored in the lower page. Referring to state c, both pages store bit information 0. Stylized % is a two-step process. In the first step, stylize the lower 132483.doc -51 - 200919476 page. If the lower page holds data 1, the state of the storage element remains as follows: If the = material is weighted to zero, the voltage threshold of the storage element is raised: the storage element is programmed to state B. Figure m thus shows the stylization of the storage element from state E to state B. State B, which is the transition state b; , therefore, the verification point is depicted as Vvb, which is lower than Vvb. - In the embodiment - after the storage element is programmed from state E to Βι, the adjacent storage element (WLn+1) in the NAND string will be programmed next to the page below the storage element. For example, returning to Figure 2, after the page below the stylized storage element 〇6, the page below the storage element 104 will be stylized. After the stylized storage element HM, if the storage element 104 has a threshold voltage from the state E to the state b, the floating gate-to-floating gate light combining effect will make the storage element (10) appear The voltage limit is increased. This will have the effect of widening the threshold voltage distribution of state B to the distribution of the threshold voltage distribution 175 被 of the trace of Figure 17b. This apparent widening of the threshold knife will be corrected when stylizing the upper page. ο Figure i7c depicts the process of stylizing the upper page. If the storage element is in the erased state E and the upper page remains at 1, the storage element will remain in the state if the storage element is in state E and its upper page data will be programmed to. (4) The threshold voltage of the storage device will rise. So that the storage element is in the shape = A. If the storage element is at the intermediate threshold voltage distribution and the upper page data will remain at 1, the storage element will be programmed to final state B. If the storage element is at the intermediate threshold voltage distribution 175 and the upper page data becomes data, the threshold voltage of the storage element will rise, causing the storage element to be in state C. The process depicted in Figures i7a through 17c reduces the floating gate to 132483.doc • 52· 200919476 The floating gate coupling library will be coded for a given storage: only the upper page of the adjacent storage element is coded - The example is <apparent threshold electric dust has an effect. Substitute state to state c, and when the upper page data of the upper part is 1, the self-distribution 1750 shifts ^^m] 7 surface data is 〇, and moves to state B. Although Figure 17a to Figure ι7 ^ ^ ^. 槌 for four data status and two data pages
面之實例,但所勒_ M 不概念可應用於具有多於或少於四個 狀悲及不同於兩個百品^# ^ 之其他實施。舉例而言,圖5a至圖 fAn example of the face, but the concept is applicable to other implementations with more or less than four sorrows and different from two hundred products ^#^. For example, Figure 5a to Figure f
5d_述具三個頁面: 施例。 U面、中間頁面及上部頁面之實 、為描述用於程式化非揮發性記憶體之方法之一實施 例的流程圖。在一杳说山 , 〇 貫施中,在程式化之前(以區塊或其他 單元)擦除儲存元件。在步驟18〇〇中,由控制器發布"資料 載15 7且由控制電路1110接收該命令。在步驟1805 中將表不頁面位址之位址資料自控制器或主機輸入至解 碼器1114。在步驟181〇中,將已定址頁面的一程式化資料 頁面輸入至一資料緩衝器以用於程式化。將該資料鎖存於 適當的鎖存器集合中。在步驟1815中,由控制器將"程式 化"命令發布至狀態機1112。5d_ describes three pages: Example. The U-face, the intermediate page, and the upper page are flowcharts describing one embodiment of a method for staging non-volatile memory. In a glimpse of the mountain, the storage element is erased before the stylization (in blocks or other units). In step 18, the "data load" is issued by the controller and is received by the control circuit 1110. In step 1805, the address data representing the page address is input from the controller or host to the decoder 1114. In step 181, a stylized data page of the addressed page is input to a data buffer for stylization. The data is latched into the appropriate set of latches. In step 1815, the "programmed" command is issued by the controller to state machine 1112.
藉由"程式化”命令而觸發,將使用施加至適當選定字元 線之圖19的脈衝串19〇〇之步進式程式化脈衝而將在步驟 1 8 10中鎖存之資料程式化至由狀態機1112控制的選定之儲 存元件中。在步驟丨82〇中,將程式化電壓VpGM初始化至起 始脈衝(例如,12 V或其他值)且將由狀態機1112維持的程 式化計數器(PC)初始化為0。在步驟1830中,將第一 VPQM 132483.doc -53· 200919476 脈衝施加至選定字元線以 之儲存元件。若邏輯”。"館存於指干匕對靡選…線相《 广特定資料鎖存器中,則將對應位=件應被程 面,若邏輯”儲存於指示對岸 Λ接也。另—方 資料狀態之特定鎖 "疋件應保持於其當前 抑制程式化。存"中’則將對應位元線連接至〜以 ^驟邮中,驗證選定 定儲存元件之目標臨限《已達到適測到選 電Μ尚未達二:广育料改變至邏輯,。若偵測到臨限 中之=相料位準,“改㈣存於制資料鎖存器 〒之貧枓。以此方式 對應資料針m 有儲存於位元線之 。‘、、、’存盗中之邏輯”1”的位元線。當所有資料銷广 器均儲存邏短,M "主 祠鎖存 或型機制)知、酋 (經由上文所述之硬連線邏輯 °、所有選定儲存元件已被程式 1840中,推;^ 认θ 牡少驟 仏未 仃關於疋否所有資料鎖存器皆儲存邏輯””的 二。若所有資料鎖存器皆儲存邏輯”卜則程式化過程 完成且成功,因為所有選定儲存元件皆被程式化且經驗 證。在步驟1845中報告”通過”狀態。 ”,若在步驟1840中判定並非所有資料鎖存器皆儲存邏輯 1,則繼續程式化ϋ程。在步驟刪t,制程式化極 限值PCmax來檢查程式化計數器pc>程式化極限值之一實 “為〇,然而,亦可使用其他數字。若程式化計數器pc不 小於PCmax,則程式化過程失敗且在步驟1855中報告,,失 敗狀態。若程式化計數器pC小於pCmax,則在步驟1 132483.doc -54· 200919476 中使VPGM增加步長且使程式化計數器PC遞增。該過程接 著返回至步驟1 830以施加下一 VpGM脈衝。 圖19描繪在程式化期間施加至非揮發性儲存元件之控制 閘極的實例脈衝串1900,及在脈衝串期間發生的升壓模式 之切換。脈衝串1900包括施加至經選擇以用於程式化之字 元線的一系列程式化脈衝1905、1910、1915、1920、 1925、1930、1935、1940、1945、1950 等。在一實施例 中’程式化脈衝具有電壓VpGM,其自12 V開始且針對每一 連續程式化脈衝而以增量(例如’ 〇 5 V)增加,直至達到2〇 V的最大值為止。在程式化脈衝之間的是驗證脈衝。舉例 而言,驗證脈衝集合1906包括三個驗證脈衝。在一些實施 例中,可存在用於資料被程式化至的每一狀態(例如,狀 態A、B及C)之一驗證脈衝。在其他實施例中,可存在更 多或更少的驗證脈衝。每一集合中之驗證脈衝可具有(例 如)Vva、Vvb及 Vvc(圖 16)或 Vvb,(圖 17a)之振幅。 如所提及,施加至字元線以實施升壓模式之電壓係在程 式化發生時(例如,在程式化脈衝之前及在程式化脈衝期 間)施加。實務上,可在每一程式化脈衝之前稍微起始升 壓模式之升壓電壓且在每一程式化脈衝之後加以移除。另 方面在(例如)在程式化脈衝之間發生的驗證過程期 間,不施加升麼電壓。替代地,將通常小於升壓電麼之讀 取電壓施加至未選擇字元線。當將目前被程式化的儲存元 件之臨限電壓與驗證位準進行比較時,讀取電壓具有一足 以使NAND串中之先前被程式化的儲存元件保持開啟之振 132483.doc -55- 200919476 幅。 為了說明及描述之目的,已呈現本發明之前述詳細描 述。其不欲為詳盡的或將本發明限於所揭示之精確形式。 鑒於以上教示,能夠進行許多修改及變化。選擇所描述之 實施例,以便最佳地解釋本發明之原理及其實踐應用,以 藉此使熟習此項技術者能夠在各種實施例中且以適於所預 期之特別用途的各種修改來最佳地利用本發明。意欲由此 處隨附之申請專利範圍來界定本發明之範疇。 【圖式簡單說明】 圖1為NAND串之俯視圖。 圖2為圖1之NAND串之等效電路圖。 圖3為NAND快閃儲存元件陣列之方塊圖。 圖4描緣形成於基板上之NAND串之橫截面圖。 圖5a至圖5d描繪非揮發性儲存元件之程式化。 圖6a描繪NAND串及用於感測之組件之一組態。 圖6b描繪與圖6a相關聯之波形。 圖6c描繪與圖6a及圖6b相關聯之感測過程。 圖6d描繪基於電壓變化之電流感測。 圖7a描繪歸因於感測操作期間之地電位彈跳的電流及電 壓隨時間的變化。 圖7b描繪在感測操作期間當源極電壓被調節至固定的正 DC位準時的電流及電壓之減小的變化。 圖7c描繪NAND串及用於感測之組件之另一組賤。 圖7d描繪與圖7a至圖7c相關聯之感測過程。 132483.doc -56- 200919476 圖8a描繪NAND串及組件之一組態,包括電流放電路 徑。 圖8b描繪電壓感測發生時的圖8a之NAND串及組件之組 態。 圖8c描繪與圖8a及圖8b相關聯之波形。 圖8d描繪與圖8a至圖8c相關聯之感測過程。 圖9a描繪NAND串及用於溫度補償感測之組件。 圖9b說明臨限電壓隨溫度之變化。Triggered by the "programming" command, the data latched in step 108 will be stylized using the stepped stylized pulses of burst 19 of Figure 19 applied to the appropriate selected word line. To the selected storage element controlled by state machine 1112. In step 〇82, the programmed voltage VpGM is initialized to a start pulse (eg, 12 V or other value) and the programmed counter maintained by state machine 1112 ( PC) is initialized to 0. In step 1830, a first VPQM 132483.doc -53.200919476 pulse is applied to the selected word line to store the component. "The museum is in the direction of the selection of the cognac...the line phase "in the specific data latch, the corresponding bit = the piece should be the surface, if the logic" is stored in the indication of the opposite shore. Also - the data status The specific lock " condition should be kept in its current suppression stylization. Save 'quote' to connect the corresponding bit line to ~ to the post, verify the target limit of the selected storage element "has reached the appropriate test The selection of electricity has not yet reached two: the wide-ranging material has changed to logic. If the level of the material in the threshold is detected, "change (4) is stored in the data latch. In this way, the corresponding data pin m is stored in the bit line. The bit line of the logic "1" in the ‘,,, ‘ 盗. When all data vendors store logic short, M " master latch or type mechanism) know, emirate (via the hardwired logic described above, all selected storage elements have been pushed by program 1840; ^ θ 牡 少 仃 仃 仃 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有 所有It is programmed and verified. In step 1845, the "pass" status is reported. "If, in step 1840, it is determined that not all of the data latches store logic 1, then continue the stylization process. In step t, program The limit value PCmax is checked to verify that the stylized counter pc> one of the stylized limit values is "yes, however, other numbers can be used. If the stylized counter pc is not less than PCmax, the stylization process fails and is reported in step 1855. , failure state. If the stylized counter pC is less than pCmax, then increase the step size of the VPGM and increment the stylized counter PC in step 1 132483.doc -54· 200919476. The process then returns to step 1. 830 to apply the next VpGM pulse. Figure 19 depicts an example pulse train 1900 applied to the control gate of the non-volatile storage element during stylization, and switching of the boost mode that occurs during the burst. Pulse train 1900 includes application A series of stylized pulses 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, etc. selected for use in the stylized word line. In one embodiment, the 'stylized pulse has a voltage VpGM, which starts at 12 V and increases in increments (eg, ' 〇 5 V) for each successive stylized pulse until it reaches a maximum of 2 〇 V. Between the stylized pulses is a verify pulse. In other words, the verification pulse set 1906 includes three verification pulses. In some embodiments, there may be one verification pulse for each state (eg, states A, B, and C) to which the material is programmed. In the example, there may be more or fewer verification pulses. The verification pulses in each set may have amplitudes of, for example, Vva, Vvb, and Vvc (Fig. 16) or Vvb, (Fig. 17a). As mentioned, Applied to word line The voltage that implements the boost mode is applied when stylization occurs (for example, before the stylized pulse and during the stylized pulse). In practice, the boost voltage of the boost mode can be slightly initiated before each stylized pulse. And removed after each stylized pulse. In addition, during the verification process that occurs, for example, between stylized pulses, no voltage is applied. Alternatively, it will typically be less than the boost voltage. Applied to the unselected word line. When comparing the threshold voltage of the currently programmed storage element to the verify level, the read voltage has a sufficient storage element to keep the previously programmed storage element in the NAND string open. Zhen 132483.doc -55- 200919476. The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Many modifications and variations are possible in light of the above teachings. The embodiments described are chosen to best explain the principles of the invention and the practice of the application in the The present invention is preferably utilized. It is intended that the scope of the invention be defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a NAND string. 2 is an equivalent circuit diagram of the NAND string of FIG. 1. 3 is a block diagram of an array of NAND flash memory elements. Figure 4 depicts a cross-sectional view of a NAND string formed on a substrate. Figures 5a through 5d depict the stylization of non-volatile storage elements. Figure 6a depicts a configuration of a NAND string and one of the components for sensing. Figure 6b depicts the waveform associated with Figure 6a. Figure 6c depicts the sensing process associated with Figures 6a and 6b. Figure 6d depicts current sensing based on voltage changes. Figure 7a depicts the current and voltage as a function of time due to ground bounce during a sensing operation. Figure 7b depicts the change in current and voltage as the source voltage is adjusted to a fixed positive DC level during the sensing operation. Figure 7c depicts another group of NAND strings and components for sensing. Figure 7d depicts the sensing process associated with Figures 7a-7c. 132483.doc -56- 200919476 Figure 8a depicts one of the NAND strings and components configuration, including the current sink circuit. Figure 8b depicts the configuration of the NAND strings and components of Figure 8a when voltage sensing occurs. Figure 8c depicts the waveforms associated with Figures 8a and 8b. Figure 8d depicts the sensing process associated with Figures 8a-8c. Figure 9a depicts a NAND string and components for temperature compensated sensing. Figure 9b illustrates the variation of the threshold voltage with temperature.
圖9c說明Vblc及Vbl隨溫度之變化。 圖9d描繪與圖9a至圖9c相關聯之波形 圖9e描繪與圖9a至圖9d相關聯之感測過程。 圖9f描繪擦除·驗證過程。 圖1 Oas兒明VS0URCdi|溫度之變化。 圖⑽描繪包#NAND串之不同集合的儲存元件陣列之實 圖U為使用單列解碼11 /行解碼器及讀取/寫人電路 揮發性記憶體系統的方塊圖。 圖12為使用雙列解碼器/ ^ ^ 及讀取/寫入電路之非 揮發性記憶體系統的方塊圖。 电塔之非 圖13為描繪感測區塊之-實施例的方塊圖。 圖14描繪用於奇偶及全位 列組織為區塊之實例。 u體木構的將記憶體陣 圖 圖 實例集合。 實例集合。 15描繪單遍程式化的 1 6描繪多遍程式化的 臨限電壓分布之一 臨限電壓分布之一 132483.doc •57· 200919476 圖17a至圖17c展示各種臨限電壓分布且描述用於程式化 非揮發性記憶體之過程。 圖18為描述用於程式化非揮發性記憶體之過程之一實施 例的流程圖。 圖1 9描繪在程式化期間施加至 閘極之實例脈衝串。 非揮發性儲存元件之控制 【主要元件符號說明】 100 電晶體Figure 9c illustrates the change in Vblc and Vbl with temperature. Figure 9d depicts the waveform associated with Figures 9a through 9c. Figure 9e depicts the sensing process associated with Figures 9a through 9d. Figure 9f depicts the erase & verify process. Figure 1 Oas children VS0URCdi|temperature changes. Figure (10) depicts a real array of storage elements for a different set of packets of the #NAND string. Figure U is a block diagram of a volatile memory system using a single column decoding 11/row decoder and a read/write circuit. Figure 12 is a block diagram of a non-volatile memory system using a dual column decoder / ^ ^ and a read/write circuit. Electrical Tower Figure 13 is a block diagram depicting an embodiment of a sensing block. Figure 14 depicts an example for parity and all-bit columns organized into blocks. The u-wood structure will be a collection of memory maps. A collection of instances. 15 depicts a single-pass stylized 1 6 depicting one of the multi-pass stylized threshold voltage distributions. One of the threshold voltage distributions is 132483.doc •57· 200919476 Figure 17a to Figure 17c show various threshold voltage distributions and are described for the program The process of non-volatile memory. Figure 18 is a flow chart depicting one embodiment of a process for programming non-volatile memory. Figure 19 depicts an example pulse train applied to the gate during stylization. Control of non-volatile storage components [Key component symbol description] 100 transistor
100CG 100FG102 102CG 102FG 104 104CG 104FG 106 106CG 106FG120 120CG122 122CG 126 控制閘極 浮動閘極 電晶體 控制閘極 浮動閘極 電晶體 控制閘極 浮動閘極 電晶體 控制閘極 浮動閘極 第一選擇閘 控制閘極 第二選擇閘 控制閘極 位元線 132483.doc -58- 200919476 128 源極線 320 NAND 串 321 位元線 322 選擇閘 323 儲存元件 324 儲存元件 ' 325 儲存元件 326 儲存元件 327 選擇閘 340 NAND 串 341 位元線 342 選擇閘 343 儲存元件 344 儲存元件 345 儲存元件 346 儲存元件 Cj 347 選擇閘 360 NAND 串 361 位元線 362 選擇閘 363 儲存元件 364 儲存元件 365 儲存元件 366 儲存元件 132483.doc -59- 200919476 367 選擇閘 400 NAND 串 402 端子 403 端子 404 源極供應線 406 源極側選擇閘 408 儲存元件 410 儲存元件 412 儲存元件 414 儲存元件 416 儲存元件 418 儲存元件 420 儲存元件 422 儲存元件 424 汲極側選擇閘 426 位元線 430 源極/>及極區域 490 基板 492 p井區域 494 η井區域 496 Ρ型基板區域 510 Vth分布 512 Vth分布 520 第一 VTH分布 132483.doc -60- 200919476 522 第二Vth分布 524 第三Vth分布 526 第四vTH分布 600 感測組件 602 電流感測模組 604 BLC(位元線控制)電晶體 606 BLS(位元線感測)電晶體 608 控制裝置 610 位元線 612 NAND 串 620 波形 622 波形 624 波形 626 波形 628 波形 720 電壓調節器 800 感測組件 802 電壓感測模組/電路 804 BLC(位元線控制)電晶體 806 BLS(位元線感測)電晶體 808 控制裝置 810 位元線 811 至接地之電容 812 NAND 串 132483.doc -61 - 200919476 813 至相鄰位元線之電容 814 感測節點 816 路徑 818 GRS電晶體 820 路徑 822 路徑 824 電晶體 825 電流源 826 路徑 830 波形 832 波形 834 波形 836 波形 838 波形 840 波形 842 波形 844 波形 846 波形 900 溫度相依電路 910 波形 912 波形 914 波形 916 波形 918 波形 132483.doc -62- 200919476 1 922 波形 924 波形 1000 記憶體陣列 1004 源極線 1006 位元線 1026 汲極端子 1028 源極端子 1050 NAND 串 1100 感測區塊 1110 控制電路 1112 狀態機 1114 晶片上位址解碼 1116 功率控制模組 1118 線 1120 線/資料匯流排 1130 列解碼器 1130Α 列解碼器 1130Β 列解碼器 1150 控制器 1160 行解碼器 1160Α 行解碼器 1160Β 行解碼器 1165 言買取/寫入電路 1165Α 言買取/寫入電路 132483.doc -63· 200919476 1165B 讀取/寫入電路 1170 感測電路 1172 資料匯流排 1180 感測模組 1182 位元線鎖存器 1190 共同部分 1192 處理器 1193 輸入線 1194 資料鎖存器 1196 記憶體裝置/1/0介面 1198 記憶體晶粒 1400 奇偶架構 1410 全位元線(ABL)架構 1750 臨限電壓分布 1900 脈衝串 1905 程式化脈衝 1910 程式化脈衝 1915 程式化脈衝 1920 程式化脈衝 1925 程式化脈衝 1930 程式化脈衝 1935 程式化脈衝 1940 程式化脈衝 1945 程式化脈衝 132483.doc -64- 200919476 1950 程式化脈衝 1906 驗證脈衝集合 BLO, BL1, BL2, BL3, BL4, BL5, BL8511 位元線 BLeO, BLe 1, BLe2, BLe4255 偶數位元線 BLoO, BLo 1, BLo2, BLo4255 奇數位元線 SGD 汲極選擇線 SGS 源極選擇線 Vra, Vrb, Vrc 讀取參考電壓 Vva, Vvb, Vvc 驗證參考電壓 WL_dO, WL_dl 虛设字元線 WLO 字元線 WL1 字元線 WL2 字元線 WL3 字元線 132483.doc 65-100CG 100FG102 102CG 102FG 104 104CG 104FG 106 106CG 106FG120 120CG122 122CG 126 Control gate floating gate transistor control gate floating gate transistor control gate floating gate transistor control gate floating gate first selection gate control gate Second select gate control gate bit line 132483.doc -58- 200919476 128 source line 320 NAND string 321 bit line 322 select gate 323 storage element 324 storage element '325 storage element 326 storage element 327 select gate 340 NAND string 341 bit line 342 select gate 343 storage element 344 storage element 345 storage element 346 storage element Cj 347 select gate 360 NAND string 361 bit line 362 select gate 363 storage element 364 storage element 365 storage element 366 storage element 132483.doc -59 - 200919476 367 Select Gate 400 NAND String 402 Terminal 403 Terminal 404 Source Supply Line 406 Source Side Select Gate 408 Storage Element 410 Storage Element 412 Storage Element 414 Storage Element 416 Storage Element 418 Storage Element 420 Storage Element 422 Storage Element 424 Side selection gate 426 bit line 430 source/> and polar region 490 substrate 492 p well region 494 η well region 496 Ρ type substrate region 510 Vth distribution 512 Vth distribution 520 first VTH distribution 132483.doc -60- 200919476 522 second Vth Distribution 524 third Vth distribution 526 fourth vTH distribution 600 sensing component 602 current sensing module 604 BLC (bit line control) transistor 606 BLS (bit line sensing) transistor 608 control device 610 bit line 612 NAND string 620 waveform 622 waveform 624 waveform 626 waveform 628 waveform 720 voltage regulator 800 sensing component 802 voltage sensing module / circuit 804 BLC (bit line control) transistor 806 BLS (bit line sensing) transistor 808 Control device 810 bit line 811 to grounded capacitor 812 NAND string 132483.doc -61 - 200919476 813 capacitance to adjacent bit line 814 sensing node 816 path 818 GRS transistor 820 path 822 path 824 transistor 825 current source 826 path 830 waveform 832 waveform 834 waveform 836 waveform 838 waveform 840 waveform 842 waveform 844 waveform 846 waveform 900 temperature dependent circuit 9 10 Waveform 912 Waveform 914 Waveform 916 Waveform 918 Waveform 132483.doc -62- 200919476 1 922 Waveform 924 Waveform 1000 Memory Array 1004 Source Line 1006 Bit Line 1026 汲 Extreme 1028 Source Terminal 1050 NAND String 1100 Sensing Block 1110 Control Circuit 1112 State Machine 1114 On-Chip Address Decoding 1116 Power Control Module 1118 Line 1120 Line/Data Bus 1130 Column Decoder 1130 Α Column Decoder 1130 Β Column Decoder 1150 Controller 1160 Line Decoder 1160 Α Row Decoder 1160 Β Decoding 1165 Buy/Write Circuit 1165ΑBuy/Write Circuit 132483.doc -63· 200919476 1165B Read/Write Circuit 1170 Sensing Circuit 1172 Data Bus 1180 Sensing Module 1182 Bit Line Latch 1190 Common Part 1192 Processor 1193 Input Line 1194 Data Latch 1196 Memory Device / 1/0 Interface 1198 Memory Die 1400 Parity Structure 1410 Full Bit Line (ABL) Architecture 1750 Threshold Voltage Distribution 1900 Burst 1905 Stylized Pulse 1910 stylized pulse 1915 stylized pulse 1920 stylized pulse 1925 Stylized Pulse 1930 Stylized Pulse 1935 Stylized Pulse 1940 Stylized Pulse 1945 Stylized Pulse 132483.doc -64- 200919476 1950 Stylized Pulse 1906 Verify Pulse Set BLO, BL1, BL2, BL3, BL4, BL5, BL8511 Bits Line BLeO, BLe 1, BLe2, BLe4255 Even bit line BLoO, BLo 1, BLo2, BLo4255 Odd bit line SGD Dip line selection line SGS Source selection line Vra, Vrb, Vrc Read reference voltage Vva, Vvb, Vvc Verification Reference voltage WL_dO, WL_dl dummy word line WLO word line WL1 word line WL2 word line WL3 word line 132483.doc 65-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/772,002 US7471567B1 (en) | 2007-06-29 | 2007-06-29 | Method for source bias all bit line sensing in non-volatile storage |
US11/772,009 US7545678B2 (en) | 2007-06-29 | 2007-06-29 | Non-volatile storage with source bias all bit line sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200919476A true TW200919476A (en) | 2009-05-01 |
TWI386942B TWI386942B (en) | 2013-02-21 |
Family
ID=40226481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97124365A TWI386942B (en) | 2007-06-29 | 2008-06-27 | Non-volatile storage with source bias all bit line sensing and the related method therefor |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101373795B1 (en) |
CN (1) | CN101796590B (en) |
TW (1) | TWI386942B (en) |
WO (1) | WO2009006275A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106251817A (en) * | 2016-08-31 | 2016-12-21 | 深圳市华星光电技术有限公司 | A kind of GOA drive circuit |
TWI696183B (en) * | 2019-01-23 | 2020-06-11 | 旺宏電子股份有限公司 | Boosted voltage driver for bit lines and other circuit nodes |
TWI867439B (en) * | 2022-08-01 | 2024-12-21 | 台灣積體電路製造股份有限公司 | Memory device and operation method thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8947939B2 (en) * | 2010-09-30 | 2015-02-03 | Macronix International Co., Ltd. | Low voltage programming in NAND flash |
DE102011056141A1 (en) | 2010-12-20 | 2012-06-21 | Samsung Electronics Co., Ltd. | A negative voltage generator, decoder, non-volatile memory device and memory system using a negative voltage |
US8526233B2 (en) * | 2011-05-23 | 2013-09-03 | Sandisk Technologies Inc. | Ramping pass voltage to enhance channel boost in memory device, with optional temperature compensation |
CN103106920B (en) * | 2011-11-15 | 2016-01-20 | 旺宏电子股份有限公司 | Memory access method and flash memory using the method |
US8730723B2 (en) * | 2012-03-12 | 2014-05-20 | Flashsilicon Incorporation | Structures and methods of high efficient bit conversion for multi-level cell non-volatile memories |
US9336872B2 (en) * | 2014-03-11 | 2016-05-10 | Everspin Technologies, Inc. | Nonvolatile logic and security circuits |
KR20150127419A (en) | 2014-05-07 | 2015-11-17 | 에스케이하이닉스 주식회사 | Semiconductor memory device and reading method thereof |
US9881676B1 (en) * | 2016-10-11 | 2018-01-30 | Sandisk Technologies Llc | Sense amplifier with program biasing and fast sensing |
KR102660729B1 (en) * | 2016-10-28 | 2024-04-26 | 삼성전자주식회사 | Nonvolatile memory device detecting power noise and operation method thereof |
CN106898377B (en) * | 2017-02-08 | 2020-06-09 | 上海华虹宏力半导体制造有限公司 | Adjustable control circuit applied to NVM high-voltage discharge path |
CN107170484B (en) * | 2017-03-17 | 2020-01-24 | 北京兆易创新科技股份有限公司 | NAND Flash voltage automatic compensation method and device |
CN107170481B (en) * | 2017-05-16 | 2020-03-31 | 中国科学院微电子研究所 | Adaptive operating device and method for three-dimensional memory |
CN110782937B (en) * | 2018-07-31 | 2024-07-30 | 三星电子株式会社 | Nonvolatile memory device and program method thereof |
US10818363B1 (en) * | 2019-05-17 | 2020-10-27 | Micron Technolgy, Inc. | Apparatus and methods for calibrating sensing of memory cell data states |
US11397561B2 (en) * | 2019-09-05 | 2022-07-26 | SK Hynix Inc. | Nonvolatile memory device performing a multiplicaiton and accumulation operation |
CN114464232B (en) * | 2020-11-09 | 2025-03-25 | 桑迪士克科技股份有限公司 | Full bit line sensing to determine word line to memory hole shorts |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW408332B (en) | 1997-07-29 | 2000-10-11 | Toshiba Corp | Semiconductor memory and method for controlling programming the same |
US6987693B2 (en) * | 2002-09-24 | 2006-01-17 | Sandisk Corporation | Non-volatile memory and method with reduced neighboring field errors |
US6859397B2 (en) * | 2003-03-05 | 2005-02-22 | Sandisk Corporation | Source side self boosting technique for non-volatile memory |
US7050346B2 (en) * | 2003-07-29 | 2006-05-23 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device and electric device with the same |
US7020026B2 (en) | 2004-05-05 | 2006-03-28 | Sandisk Corporation | Bitline governed approach for program control of non-volatile memory |
US7120051B2 (en) * | 2004-12-14 | 2006-10-10 | Sandisk Corporation | Pipelined programming of non-volatile memories using early data |
US7187585B2 (en) * | 2005-04-05 | 2007-03-06 | Sandisk Corporation | Read operation for non-volatile storage that includes compensation for coupling |
US7196928B2 (en) * | 2005-04-05 | 2007-03-27 | Sandisk Corporation | Compensating for coupling during read operations of non-volatile memory |
US7349264B2 (en) * | 2005-12-28 | 2008-03-25 | Sandisk Corporation | Alternate sensing techniques for non-volatile memories |
-
2008
- 2008-06-27 WO PCT/US2008/068525 patent/WO2009006275A1/en active Application Filing
- 2008-06-27 KR KR1020107002236A patent/KR101373795B1/en active Active
- 2008-06-27 CN CN200880105019.5A patent/CN101796590B/en active Active
- 2008-06-27 TW TW97124365A patent/TWI386942B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106251817A (en) * | 2016-08-31 | 2016-12-21 | 深圳市华星光电技术有限公司 | A kind of GOA drive circuit |
CN106251817B (en) * | 2016-08-31 | 2019-01-18 | 深圳市华星光电技术有限公司 | A kind of GOA driving circuit |
US10347190B2 (en) | 2016-08-31 | 2019-07-09 | Shenzhen China Star Optoelectronics Technology Co., Ltd | GOA driving circuit |
TWI696183B (en) * | 2019-01-23 | 2020-06-11 | 旺宏電子股份有限公司 | Boosted voltage driver for bit lines and other circuit nodes |
TWI867439B (en) * | 2022-08-01 | 2024-12-21 | 台灣積體電路製造股份有限公司 | Memory device and operation method thereof |
US12176022B2 (en) | 2022-08-01 | 2024-12-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Programming and reading circuit for dynamic random access memory |
Also Published As
Publication number | Publication date |
---|---|
WO2009006275A1 (en) | 2009-01-08 |
TWI386942B (en) | 2013-02-21 |
KR20100044802A (en) | 2010-04-30 |
KR101373795B1 (en) | 2014-03-13 |
CN101796590A (en) | 2010-08-04 |
CN101796590B (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200919476A (en) | Non-volatile storage with source bias all bit line sensing and the related method therefor | |
TWI407444B (en) | Sensing in non-volatile storage using pulldown to regulated source voltage to remove system noise | |
EP2332146B1 (en) | Data state-based temperature compensation during sensing in non-volatile memory | |
EP2446443B1 (en) | Forecasting program disturb in memory by detecting natural threshold voltage distribution | |
EP2345038B1 (en) | Multi-pass programming for memory using word line coupling | |
JP5470461B2 (en) | Medium speed and full speed program for non-volatile memory to float bit lines | |
TW201001436A (en) | Enhanced bit-line pre-charge scheme for increasing channel boosting in non-volatile storage | |
EP2078303B1 (en) | Reading of a nonvolatile memory cell by taking account of the stored state of a neighboring memory cell | |
WO2008083131A2 (en) | Method for programming with initial programming voltage based on trial | |
JP2012531003A (en) | Reduced programming pulse width to improve channel boost in non-volatile memory | |
TW201324512A (en) | Read compensation for partially programmed blocks of non-volatile storage | |
EP2022060B1 (en) | Verify operation for non-volatile storage using different voltages | |
EP2084710B1 (en) | Resistance sensing and compensation for non-volatile storage | |
TWI336081B (en) | System and method for operating non-volatile memory using temperature compensation of voltages of unselected word lines and select gates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |