200919098 九、發明說明: 【發明所屬之技術領域】 本案是關於一種磁力壓印的系統及方法,特別是關 於應用於奈米壓印的一種磁力壓印的系統及方法。 【先前技術】 奈米壓印微影技術(Nanoimprint lithography)不受光 學微影的物理限制,可以用低的成本且在大尺寸矽晶圓 上很快地製作奈米圖案,是一項相當受到嗎目的奈米製 造技術。奈米壓印微影技術目前主要可分為四種方式: 熱壓型、光硬化型、軟微影型與雷射輔助直接壓印型。 熱壓型首先是在基板上塗佈熱塑性高分子樹脂材料 (如 PMMA,P〇ly(methyl methacrylate)) ’ 之後再將金屬或 矽晶圓製成的奈米模仁、基板、樹脂一起昇溫至樹脂的 破璃轉換溫度 Tg (Glass transition temperature)以上,趁著 樹月曰軟化的狀態,將印模施壓,使得熱塑性高分子材料 隨著模仁表面結構圖案成形,並保持此加壓狀態,待冷 部至玻璃轉換溫度以下,等樹脂固化後將印模分離,並 以乾蝕刻方式清除殘餘的薄光阻層,因而將模仁上之圖 案轉印至基板上。 /光硬化型奈米壓印微影技術又稱為「步進快閃式壓 卩微〜(Step and Flash Imprint Lithography,SFIL)」,其與 熱塵型奈米壓印微影技術之最大不同處在於:光硬化型 $中塗佈於基材的料材料為低黏度、具有光聚合性 、鬲刀子材料,在透光母模壓入高分子材料時,照射紫 200919098 外光,使受照射部分的高分子產生聚合反應而固化;在 脫膜之後,再齡所得的_部分作為細播罩, 進行後續蝕刻,以達到圖形轉移的目的。 由於光硬化型技鼓以料光騎_化高分子材 料’痛去錢印的加熱及降溫過程,適祕大量快速生 產,且可避免加熱與冷卻過程因熱傳不均勻所造成的壓 印均勻性不高的問題,使麼印結果的解析度增加。另外, 由於使用低黏度、具流動性的高分子材料,壓印過程中 ° 不必施加太高的壓力’故可節省製程時間與避免模呈及 機台的耗損。 八 軟微影型奈米壓印技術又稱為軟微影蝕刻,其仿照 沾墨蓋章的原理,首先利用軟性的聚二甲基矽氧烷 (PDMS)製作微結構模具,然後將PDMS模具沾附一種有 機高分子硫醇(Thiol),接著將PDMS模具與鍍上金箔的 矽基板接觸並微壓(小於1〇〇牛頓),由於硫醇很容易與金 產生化學鍵結而形成自組裝單層(Sdf_assembiy 〇 monolayer) ’因此硫醇可以由下而上(Bottom-up)在金荡表 面慢慢形成薄膜,由於此自我組裝單分子膜可以抵抗化 學腐蝕,最後對矽基板進行蝕刻即可得到所需的奈米圖 案。 軟微影技術最大的優點是製程簡單(室溫、低壓)且便 宜,而且PDMS模具有可撓性,其可在非平面的基板上 形成轉印圖案。此外’軟微影形成的自組裝單層薄膜的 分子呈高度緊密排列,故穩定性好,而且自紐裝單層具 有選擇性,適合用來做生物測定(Bioassay)和化學檢測。 200919098 ==缺點是職模具—影 準分:=:==;r:LT波長的 預先加載於材料表面的模具, ^面,成不米騎舆奈米特徵圖形的轉移;彻 佈點省去其他奈米壓印技術所需要_刻光阻塗 可以二二以及乾式或濕式的蝕刻製程。目前已經知道 了7由雷射輔助奈米壓印技術產生奈米結構的材料有 1 u'SiC’㈣相關業者縣繼仙發其它適合的 =材料。雷射輔助奈米壓印技術具有:不需要綱阻礙 層、不需要侧製程且可以直接加场基材料的特色。 古Μ雷t辅助直接壓印㈣印結果與材料及環境參數等 材料的部分包括了:脈衝雷射與材料的作用 ’’出現溫度_升高、融解的時間以及局部壓力下的 材料變化,微流體的流動與熱 材料特質變化等等。此外在參數的部分則有 小、雷射波長、雷魏量、_長度、能量密度、光的 熔解的溫度、熱傳導係數、奈米結構的幾何 壓印技術時,基本上需要制不同的模具 工* 2礙層,、而模具的部分必須先用聚焦離子束或電 、的方式,製作出模具上奈米等級的幾何圖案與 結構。 不米壓印技術可以應用在半導體元件的製程、光 200919098 學、機械以及生化的領域等。例如,在顯示器技術方面, 利用奈米壓印技術與使用液晶做為壓印塗料來 配向膜’除了可以獲得與-般塗料相同的表面條狀溝紋 之外,還可以讓壓印模内達到分子自排的效果。 Ο Ο 在生物方面’利用奈米壓印技術來製作培養膜··在 具有奈米左右的直彳!、高度為直錄1G倍的奈米柱上, 進行細胞的培養’因為奈米柱的結構比細胞本身還小, =以並不會造朗培養細胞_的_,钱也就不再 需要加入會造成細胞活性下降的蛋白質分解酶。 在光學方面,可利用奈米壓印技術來製 或:=:::有=無法承受剪應力的物質 ,有機溶劑中,如此製備的定地分 又到磁場或重力場的作用而凝 會 磁性流體置於磁場中,在磁場的作用$體刀々^若此種 顆粒即往強磁埸下, 合液中的磁性 動。R強磁衫向移動’同時亦帶動溶媒分子—起移 利用熱壓柄彡或奈米i印技 的因素十分重要。,作絲品時,壓力 的成品產生皺摺、“或時’常常使得麼印出 的施壓技術在即時顯?月广。再者,傳統機械式 叫顯不成4印過程與即時控制的方 200919098 面,還無法滿足需求 發明控==前述的問題,本案 本案之『磁力二二nr捨的精神,終創作出 【發明内容】 本案之-目的為提出一種磁力 利用-磁化源與—磁性流體控制壓印:系 本窣之笛-姐寺顯不壓印結果與即時控制的功效。 成形-;塑體一種磁力壓印的系統,用以 形單元具有-第二成形面,其中可 納於第一成形=第二成形面之間成形。磁性流體容 且其所產峰沾—中’磁化源設置於第二成形單元中, 磁力、八#、—主磁場分佈與磁性流體之間形成一作用 磁力刀佈,以對可塑體成形。 成形出一種磁力塵印的方法,用以 早元的一第—成形面與-第二成形單元的-第 盥第間’及,利用第一成形單元中的一磁性流體 成带二,第—構想為提出—種磁力壓印的系統,用以 成开,可塑體,該系統包括一第—成形單元、—第二成 200919098 形單元、一磁性t合物層及一磁化源。第一成形單元具 有一第一成形面與一耦接機構;第二成形單元具有一第 二成形面,其中可_在第-成形面與第二成形面之間 成形。磁性聚合物層藉由輕接機構麵合於第一成形單 元;磁化源設置於第二成形單元中,且其所產生的一主 磁場分佈與磁性聚合物層之間形成一作用磁力分佈,以 對可塑體成形。 【實施方式】 為了敘述清楚本案所提的系統及方法,下面列舉數 個較佳實施例加以說明: 请參閱第-® ’其為本案第一實施例所提磁力壓印 的系統的構造示意圖。如圖所示,磁力壓印的系統3〇包 括-第-成形單幻卜-第二成形單元32、—磁性流體 33及一磁化源34,且系統3〇用以成形一可塑體35。 。第一成形單元31具有一第一成形面311 ;第二成形 單元32具有一第二成形面321,其中可塑體35在第一成 形面311與第二成形面321之間成形。第一成形面311 可利用夕種方法製備,包括,例如,X光深刻電鎢模造 技術(LIGA技術)、準分子雷射電鑄麟技術、灰階光罩 微影電鑄模造技術或電子束直_寫技術等等。 磁性流體33容納於第-成形單元31中;磁化源34 設,於第二成形單元32中,且磁化源34所產生的一主 磁场刀佈MG1與磁性流體33之間形成〆作用磁力分稀 乂對了塑體35成形。磁性流體幻可以由一群導漆 10 200919098 性粉體顆粒331所組成,或可將一有機溶劑332與奈米 級的一群導磁性粉體顆粒331混合而製備;而所述的該 群導磁性粉體顆粒331的材質可為一軟磁材料或一永磁 材料。200919098 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a system and method for magnetic imprinting, and more particularly to a system and method for magnetic imprinting applied to nanoimprinting. [Prior Art] Nanoimprint lithography is not limited by the physical limitations of optical lithography, and can be used to make nano patterns quickly on large-sized enamel wafers at a low cost. The purpose of nano manufacturing technology. Nano imprint lithography technology can be mainly divided into four ways: hot press type, light hardening type, soft lithography type and laser assisted direct imprint type. The hot pressing type firstly applies a thermoplastic polymer resin material (such as PMMA, P 〇 ly (methyl methacrylate)) on the substrate, and then heats the nano mold core, the substrate, and the resin made of the metal or the ruthenium wafer to the temperature. The resin has a glass transition temperature Tg (Glass transition temperature) or higher, and the stamp is pressed in a state in which the tree is softened, so that the thermoplastic polymer material is formed along the surface structure pattern of the mold and maintains the pressurized state. After the cold portion is below the glass transition temperature, the stamp is separated after the resin is cured, and the residual thin photoresist layer is removed by dry etching, thereby transferring the pattern on the mold to the substrate. /Photohardenable nanoimprint lithography is also known as "Step and Flash Imprint Lithography (SFIL)", which is the biggest difference from hot-dip nanoimprint lithography. The photo-hardening type of material coated on the substrate is a low-viscosity, photopolymerizable, enamel knife material. When the light-transparent master mold is pressed into the polymer material, the external light of the purple 200919098 is irradiated to make the irradiated portion. The polymer is polymerized and solidified; after the film is removed, the resulting portion of the aging portion is used as a fine hood for subsequent etching to achieve the purpose of pattern transfer. Because the light-hardening type technology drum is used for the heating and cooling process of the material-light riding _ chemical polymer material, it is suitable for a large number of rapid production, and can avoid uniform embossing caused by uneven heat transfer during heating and cooling. The problem of low sexuality has increased the resolution of the results. In addition, due to the use of low-viscosity, fluid polymer materials, it is not necessary to apply too high pressure during the imprinting process, which saves process time and avoids wear of the mold and the machine. Eight soft lithography nano imprint technology, also known as soft lithography etching, is based on the principle of ink stamping, first using soft polydimethyl siloxane (PDMS) to make microstructured molds, then PDMS mold Adhere to an organic polymer thiol (Thiol), then contact the PDMS mold with the gold foil-plated ruthenium substrate and micro-pressure (less than 1 Newton), because the thiol is easily chemically bonded to gold to form a self-assembled single Layer (Sdf_assembiy 〇monolayer) 'Therefore, the thiol can form a thin film on the surface of the gold from the Bottom-up. Since the self-assembled monomolecular film can resist chemical corrosion, the etched substrate can be obtained. The desired nano pattern. The biggest advantage of soft lithography is that it is simple (room temperature, low pressure) and inexpensive, and the PDMS mold is flexible, which can form a transfer pattern on a non-planar substrate. In addition, the self-assembled monolayer films formed by soft lithography are highly closely packed, so the stability is good, and the self-assembled single layer is selective, and is suitable for bioassay and chemical detection. 200919098 == Disadvantages is the job mold - shadow score: =: = =; r: LT wavelength pre-loaded on the surface of the material of the mold, ^ surface, into the transfer of the characteristics of the rice 舆 舆 ; ; ;; The need for nanoimprinting technology _ etch resist can be used in two or two dry or wet etching processes. It is known that 7 materials produced by laser-assisted nanoimprinting technology have 1 u'SiC' (4) related industries, and other suitable materials. Laser-assisted nanoimprint technology has the features of no need for a barrier layer, no side-side processing, and the ability to directly add field-based materials. Gu Yulei's auxiliary direct embossing (4) printing results and materials and environmental parameters and other materials include: the role of pulsed laser and material ''temperature _ rise, melting time and material changes under local pressure, micro Fluid flow and changes in thermal material properties, etc. In addition, in the part of the parameters, there are small, laser wavelength, Ray Wei amount, _ length, energy density, temperature of light melting, heat transfer coefficient, geometric imprinting technology of nanostructure, basically need to make different molders * 2 layers, and the part of the mold must first use the focused ion beam or electricity to make the geometric pattern and structure of the nanometer on the mold. The non-meter imprint technology can be applied to the process of semiconductor components, light, 200919098, mechanical and biochemical fields. For example, in the display technology, the use of nanoimprint technology and the use of liquid crystal as an imprinting coating to align the film 'in addition to the same surface strip groove as the general coating, can also be achieved in the imprinting mold The effect of molecular self-discharge. Ο Ο In the biological aspect, we use the nano-imprint technology to make a culture film. The height is 1G times on the nano column, and the cell culture is carried out. 'Because the structure of the nano column is smaller than the cell itself, the cell does not need to be cultivated. A proteolytic enzyme that causes a decrease in cellular activity. In terms of optics, nanoimprint technology can be used to make or: =::: There are substances that cannot withstand shear stress. In organic solvents, the ground fraction thus prepared is concentrated to the magnetic field or the gravitational field to condense the magnetic properties. The fluid is placed in a magnetic field, and the effect of the magnetic field is $ 々 々 ^ If the granule is under strong magnetic enthalpy, the magnetic movement in the hydration. The R-strong magnetic shirt moves toward the 'while also drives the solvent molecules'. It is important to use the factors of hot pressing or nano-printing. When making silk products, the finished product of the pressure produces wrinkles, and the "time-of-time" often makes the pressure-applied technology printed on the instant. In addition, the traditional mechanical type is not a four-print process and an instant control. 200919098 Face, can not meet the demand for invention control == The aforementioned problem, the case of the case of the magnetic force of the second two nr She, the final creation of the [invention] This case - the purpose is to propose a magnetic utilization - magnetization source and - magnetic fluid Control embossing: It is the function of 窣 - 姐 姐 姐 显 显 显 显 姐 姐 姐 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; The first forming=the second forming surface is formed. The magnetic fluid is filled and the peak-medium magnetization source is disposed in the second forming unit, and the magnetic force, the eighth magnetic field distribution, and the magnetic field are formed between the magnetic fluid and the magnetic fluid. Applying a magnetic knife cloth to shape the plastic body. Forming a method of magnetic dust printing for a first forming surface of the early element and a second forming unit of the second forming unit and using the first forming unit a magnetic current In the second, the first is to propose a magnetic imprinting system for forming an open, plastic body, the system comprising a first forming unit, a second forming 200919098 shaped unit, a magnetic t compound layer and a a magnetization source. The first forming unit has a first forming surface and a coupling mechanism; and the second forming unit has a second forming surface in which a magnetic polymer can be formed between the first forming surface and the second forming surface. The layer is surface-bonded to the first forming unit by a light-bonding mechanism; the magnetization source is disposed in the second forming unit, and a main magnetic field distribution generated between the layer and the magnetic polymer layer forms an active magnetic force distribution to the plastic body [Formulation] In order to clarify the system and method proposed in the present invention, several preferred embodiments are described below: Please refer to Section -® 'The construction of the magnetic imprinting system of the first embodiment of the present invention Schematically, as shown, the magnetic imprinting system 3 includes a - first forming single illusion - a second forming unit 32, a magnetic fluid 33 and a magnetizing source 34, and the system 3 is used to form a plastic body 35. . .the first The shaped unit 31 has a first forming surface 311; the second forming unit 32 has a second forming surface 321 in which the plastic body 35 is formed between the first forming surface 311 and the second forming surface 321 . The first forming surface 311 can be It is prepared by the method of the evening, including, for example, X-ray deep electric tungsten molding technology (LIGA technology), excimer laser electroforming technology, gray-scale lithography electro-optical molding technology or electron beam direct writing technology. The magnetic fluid 33 is housed in the first forming unit 31; the magnetizing source 34 is disposed in the second forming unit 32, and a magnetic field of the main magnetic field knife MG1 and the magnetic fluid 33 generated by the magnetizing source 34 forms a magnetic force. The plastic body 35 is formed. The magnetic fluid may be composed of a group of conductive paint 10 200919098 powder particles 331, or an organic solvent 332 may be prepared by mixing a group of magnetic conductive particles 331 with a nanometer; The material of the group of magnetic conductive powder particles 331 may be a soft magnetic material or a permanent magnet material.
磁化源34包括至少一電磁鐵341,電磁鐵341產生 作用於磁性流體33的主磁場分佈MG1,且電磁鐵341 的線圈所流過的電流可獨立調整;因此,磁化源34調整 主磁場分佈MG1,且磁性流體33感應主磁場分佈MG1 的改變而相應調整其位置分佈;而主磁場分佈MG1的改 變與磁性流體MG1位置分佈的改變皆會影響作用磁力 分佈FA1的大小和方向。故知,磁化源34調整主磁場分 佈MG1,可以同時調整磁性流體33的位置分佈與控制 作用磁力分佈FA1的大小和方向。 本實施例之磁力壓印的系統3〇可適用於熱壓型、光 硬化型、軟微f彡型與雷射獅直接壓印㈣奈米壓印技 術。在熱壓型磁力壓印的系統中,可塑體35的材質可為 -熱塑性材料或-熱硬性材料,第—成形料31的第一 成形面311的表面層材質可為,例如’鎳金屬、聚合物、 石夕或一氧化料;再者,利用作用磁力分佈FA1使第-成形面311與第二成形面321之間具有壓力而使可塑體 在光硬化型磁力壓印料統中 -光固化材料;第一成形單 篮浦買為 风办早兀31的第一成形面311的表 ^ - 央材枓,且經由控制磁性流體 /早7C31中的區域分佈,可使第一成形單元 200919098 31具有至少一透光部位,因此 外光穿過透光雜_達可㈣隨35的一紫 力分佈FA1 _鍾崎可_ 35 =者,則作用磁 在軟微影磁力壓印的系統中,耱° 位於第二成形單元32表面上的一金』的= =-甲成形面311的表面層材質為,例如,軟性 ,-甲基魏烧(PDMS),且第The magnetization source 34 includes at least one electromagnet 341 which generates a main magnetic field distribution MG1 acting on the magnetic fluid 33, and the current flowing through the coil of the electromagnet 341 can be independently adjusted; therefore, the magnetization source 34 adjusts the main magnetic field distribution MG1 And the magnetic fluid 33 senses the change of the main magnetic field distribution MG1 and adjusts its position distribution accordingly; and the change of the main magnetic field distribution MG1 and the change of the position distribution of the magnetic fluid MG1 affect the magnitude and direction of the magnetic force distribution FA1. Therefore, it is known that the magnetization source 34 adjusts the main magnetic field distribution MG1, and can simultaneously adjust the position distribution of the magnetic fluid 33 and the magnitude and direction of the control magnetic force distribution FA1. The magnetic imprinting system 3 of the present embodiment can be applied to a hot press type, a photo hardening type, a soft micro f type, and a laser lion direct imprint (four) nano imprint technique. In the hot-press type magnetic imprinting system, the material of the plastic body 35 may be - a thermoplastic material or a thermosetting material, and the surface layer material of the first forming surface 311 of the first forming material 31 may be, for example, 'nickel metal, a polymer, a stone or a oxidized material; further, a pressure between the first forming surface 311 and the second forming surface 321 is applied by the working magnetic force distribution FA1 to cause the plastic body to be in the photohardening type magnetic imprinting system-light The first forming unit 200919098 can be made by controlling the magnetic fluid/area distribution in the early 7C31, and the first forming single basket is purchased as the first forming surface 311 of the windproof early 31. 31 has at least one light-transmissive portion, so that the external light passes through the light-transmitting hybrid _ _ (4) with a purple force distribution FA1 _ _ _ _ 35 =, then the magnetic field in the soft lithography magnetic embossing system , 耱° is located on the surface of the second forming unit 32, and the surface layer material of the ==-form forming surface 311 is, for example, soft, -methyl Wei burning (PDMS), and
=醇陶),且利用作用磁力分佈以:= 在雷射輔助直接愿印型磁力壓印的系統中,可塑體 35的材質為’例如,位於第二成形單元32表面上的矽 ⑻、銅(Cu)或碳化石夕(Sic)等;第一成形單幻i的第一 成形面311的表面層材質為,例如,石英材料,且經由 控制磁性流體33在第-成形單元31中的區域分佈,可 使第一成形單元31具有至少一透光部位,因此,使軟化 可塑體35的-準分子雷射光穿過透光部位而到達可塑體 35,再者,利用作用磁力分佈FA1直接壓印而使可塑體 35成形。 请參閱弟二圖’其為本案第二實施例所提磁力壓印 的系統的構造示意圖。第二圖磁力壓印的系統4〇為第一 圖磁力壓印的系統30的變形,且包括一第一成形單元 31、一第一成形單元32、一磁性流體33及一磁化源34, 且糸統40用以成形一可塑體35。 第一成形單元31包括一模仁312與一容器313。模 仁312具有成形可塑體35的第一成形面311 ;容器313 12 200919098 312 ’且容納磁性流體33,其中,磁性流體 H源%之間具有—作用磁力分佈_,且樹 ”合盗313在受作用磁力分佈謝的作用下可以連 之材質具有一第一揚氏係數,且容器之材 質H一揚氏係數。對於模仁312與容器313313的 硬度需求方面’其中一種安排方式為模仁312的第-揚 氏係數不小於容器313的第二揚氏係數。= alcohol base), and using the magnetic force distribution to: = In the laser-assisted direct-printing type magnetic imprinting system, the material of the plastic body 35 is 'for example, 矽 (8), copper on the surface of the second forming unit 32 (Cu) or carbon carbide (Sic) or the like; the surface layer of the first forming surface 311 of the first forming single illusion i is made of, for example, a quartz material, and is controlled by the magnetic fluid 33 in the region of the first forming unit 31. The distribution allows the first forming unit 31 to have at least one light transmitting portion. Therefore, the excimer laser light of the softening plastic body 35 is passed through the light transmitting portion to reach the plastic body 35, and further, the direct magnetic force is applied by the working magnetic force distribution FA1. The plastic body 35 is formed by printing. Please refer to the second diagram of the second embodiment of the present invention for the magnetic imprinting system. The second embodiment of the magnetic imprinting system 4 is a modification of the magnetic imprinting system 30 of the first figure, and includes a first forming unit 31, a first forming unit 32, a magnetic fluid 33 and a magnetizing source 34, and The cymbal 40 is used to form a plastic body 35. The first forming unit 31 includes a mold core 312 and a container 313. The mold core 312 has a first forming surface 311 that shapes the plastic body 35; the container 313 12 200919098 312 'and accommodates the magnetic fluid 33, wherein the magnetic fluid H source % has an active magnetic force distribution _, and the tree" Under the action of the magnetic force distribution, the material can have a first Young's coefficient, and the material of the container is H-Yan's coefficient. For the hardness requirement of the mold core 312 and the container 313313, one of the arrangements is the mold core 312. The first-Yan's coefficient is not less than the second Young's modulus of the container 313.
第二成形單元32具有-第二成形面321 ’且在結構 上圍繞第-成形單元31 ’其中可塑體35在第一成形面 311與第二成形面321之間成形。 磁化源34設置於第二成形單元32中’且其所產生 的一主磁場分佈MG1與磁性流體33之間形成作用磁力 分佈FA1 ’以對可塑體35成形。磁化源34包括一子磁 化源342與一子磁化源343。在本實施例中,子磁化源 342位於可塑體35的下方,且子磁化源342位於第一成 形單元31的上方,但在實際應用上,第二成形單元32 的左右或四周也可以有其他的子磁化源。 子磁化源342包括至少一電磁鐵3421且子磁化源 343包括至少一電磁鐵3431,而每個電磁鐵(例如3421) 的線圈所流過的電流可獨立調整;因此,磁化源Μ調整 主磁場分佈MG1、調整磁性流體的位置分佈與控制 作用磁力分佈FA1的大小和方向。在作用磁力分佈faI 的方向上’作用磁力分佈FA1可作為施壓可塑體35的壓 力,其亦可使第一成形單元31與第二成形單元32之間 分開,以使可塑體35脫模。 200919098 請參閱第三圖,其為本案第三實施例所提磁力壓印 的系統的構造示意圖。第三圖磁力壓印的系統5〇為第一 圖磁力壓印的系統30的變形,而系統5〇的特徵如下: 第一成形單元31的上方具有一容器314,容器314由離 散的至少一子容器3141所組成,每個子容器3141的上 方為開放的;磁性流體53分為至少一子磁性流體531, 且每個子磁性流體531容納於一子容器3141中。第二成 形單元32中的磁化源34與磁性流體53之間的作用磁力 Ο 分佈FA1使可塑體35成形。 °月參閱第四圖,其為本案第四實施例所提磁力壓印 的系統的構造示意圖。如圖所示,磁力壓印的系統6〇包 括一第一成形單元31、一第二成形單元32、一磁性聚合 物層36及一磁化源34,且系統60用以成形一可塑體35。 第-成形單元31具有-第-成形面311與一輕接機構 316;第二成形單元32具有一第二成形面321,其中可塑 體35在第一成形面311與第二成形面321之間成形。 ◎ 磁性聚合物層36藉由耦接機構316耦合於第一成形 單元31,本實施例中的耦接機構316為,例如,磁性^ 合物層36疊合於第-成形單元31之上或磁性聚合物層 36黏合於第一成形單元31之上;磁化源%設置於第二 成形單元32中,且其所產生的一主磁場分佈Mgi'與二 性聚合物層36之間形成一作用磁力分佈FA1,以對可塑 體35成形。磁化源34包括至少一電磁鐵341,且調整主 磁場分佈MG1 ’以調整作用磁力分佈FA1的大小和方向。 磁性聚合物層36包括一群磁體361與—聚合物結合 14 200919098 材362,其中該群磁體361平均分佈於聚合物結合材362 中。聚合物結合材362的材質可為韌性軟的材料或可為 韌性硬的材料。對於聚合物結合材362與第一成妒單元 31的硬度需求方面,其中一種安排方式為聚合物結 362之材質的一第一楊氏係數不大於第一成形單元%之 材質的一第二揚氏係數。當該該群磁體361的顆粒較粗 時,該群磁體361包括一群磁條;當該該群磁體36i的 顆粒較細時,該群磁體361包括一群導磁性粉研猫& f、 其中該群磁體361的材質為一軟磁材料與一永磁材料的 其中之一。 本實施例之磁力壓印的系統60可適用於熱壓型、光 硬化型、軟微影型與雷射輔助直接壓印型的奈米壓印技 術,配合所使用的奈米壓印技術,第一成形單元31的材 質為一 PDMS材料、一聚合物材料與一金屬材料的其中 之一。 八 /請參閱第五圖,其為本案第五實施例所提磁力壓印 〇 的系統的構造示意圖。第五圖磁力壓印的系統70為第四 圖磁力壓印的系統60的變形,且包括一第一成形單元 31、一第二成形單元32、一磁性聚合物層%及—磁化源 34,且系統70用以成形一可塑體%。 抑磁性聚合物層36藉由耦接機構317耦合於第一成形 單元31,本實施例中的耦接機構317為,例如,磁性聚 合物層36夾躲第-成形單元31之接合孔助中。 磁化源34設置於第二成形單元Μ巾,且其所產生 的-主磁場分佈MG1與磁性聚合物層%之間形成作用 200919098 磁力分佈FAl,以對可塑體35成形。磁化源%包括一 子磁化源342與-子磁化源343。在本實_巾,子磁化 源34=位於可塑體35的下方,且子磁化源地位於第一 成形單元31的上方’但在實際應用上,第二成形單元μ 的左右或四周也可以有其他的子魏源。在仙磁力分 佈FA1的方向上,作用磁力分佈FA1可作為施壓可塑體 35的壓力,其亦可使第—成形單元31與第二成形單元 32之間分開,以使可塑體35脫模。 ΟThe second forming unit 32 has a second forming surface 321 ' and structurally surrounds the first forming unit 31 ' wherein the plastic body 35 is formed between the first forming surface 311 and the second forming surface 321 . The magnetization source 34 is disposed in the second forming unit 32' and a magnetic field distribution FA1' is formed between a main magnetic field distribution MG1 and the magnetic fluid 33 generated to form the plastic body 35. Magnetization source 34 includes a sub-magnetization source 342 and a sub-magnetization source 343. In the present embodiment, the sub-magnetization source 342 is located below the moldable body 35, and the sub-magnetization source 342 is located above the first forming unit 31. However, in practical applications, the left and right sides of the second forming unit 32 may have other Child magnetization source. The sub-magnetization source 342 includes at least one electromagnet 3421 and the sub-magnetization source 343 includes at least one electromagnet 3431, and the current flowing through the coil of each electromagnet (for example, 3421) can be independently adjusted; therefore, the magnetization source Μ adjusts the main magnetic field The distribution MG1 adjusts the position distribution of the magnetic fluid and controls the magnitude and direction of the magnetic force distribution FA1. The action magnetic force distribution FA1 acts as a pressure for pressing the plastic body 35 in the direction of the magnetic force distribution faI, which also separates the first forming unit 31 from the second forming unit 32 to demold the moldable body 35. 200919098 Please refer to the third figure, which is a schematic structural view of a magnetic imprinting system according to a third embodiment of the present invention. The third embodiment of the magnetic imprinting system 5 is a deformation of the magnetic imprinting system 30 of the first figure, and the features of the system 5 are as follows: The first forming unit 31 has a container 314 above it, and the container 314 is separated by at least one The sub-tank 3141 is composed of an upper portion of each of the sub-containers 3141; the magnetic fluid 53 is divided into at least one sub-magnetic fluid 531, and each of the sub-magnetic fluids 531 is housed in a sub-tank 3141. The magnetic force FA distribution FA1 between the magnetization source 34 and the magnetic fluid 53 in the second forming unit 32 shapes the plastic body 35. Referring to the fourth figure, the structure of the magnetic imprinting system of the fourth embodiment of the present invention is shown. As shown, the magnetic imprinting system 6 includes a first forming unit 31, a second forming unit 32, a magnetic polymer layer 36, and a magnetizing source 34, and the system 60 is used to form a moldable body 35. The first forming unit 31 has a first forming surface 311 and a light joining mechanism 316; the second forming unit 32 has a second forming surface 321 in which the plastic body 35 is between the first forming surface 311 and the second forming surface 321 Forming. ◎ The magnetic polymer layer 36 is coupled to the first forming unit 31 by a coupling mechanism 316. The coupling mechanism 316 in this embodiment is, for example, a magnetic layer 36 superposed on the first forming unit 31 or The magnetic polymer layer 36 is adhered to the first forming unit 31; the magnetization source % is disposed in the second forming unit 32, and a main magnetic field distribution Mgi' and an amphoteric polymer layer 36 are formed to form an effect. The magnetic force is distributed to FA1 to shape the plastic body 35. The magnetization source 34 includes at least one electromagnet 341 and adjusts the main magnetic field distribution MG1' to adjust the magnitude and direction of the applied magnetic force distribution FA1. The magnetic polymer layer 36 includes a population of magnets 361 and a polymer bond 14 200919098 material 362 wherein the group of magnets 361 are evenly distributed in the polymer bond material 362. The material of the polymer bonding material 362 may be a tough soft material or a tough material. For the hardness requirement of the polymer bonding material 362 and the first enthalpy unit 31, one of the arrangements is that a first Young's modulus of the material of the polymer 362 is not greater than a second yang of the material of the first forming unit%. Coefficient. When the particles of the group magnet 361 are relatively thick, the group magnet 361 includes a group of magnetic strips; when the particles of the group magnet 36i are fine, the group magnet 361 includes a group of magnetic conductive powder grinding cats & f, wherein The group magnet 361 is made of one of a soft magnetic material and a permanent magnet material. The magnetic imprinting system 60 of the present embodiment can be applied to a nano-embossing technology of a hot press type, a photo hardening type, a soft lithography type and a laser assisted direct imprint type, in combination with the nano imprint technology used. The material of the first forming unit 31 is one of a PDMS material, a polymer material and a metal material. VIII / Please refer to the fifth figure, which is a schematic structural view of the system of the magnetic imprint 〇 according to the fifth embodiment of the present invention. The magnetic imprinting system 70 is a modification of the fourth embodiment of the magnetic imprinting system 60 and includes a first forming unit 31, a second forming unit 32, a magnetic polymer layer %, and a magnetization source 34. And system 70 is used to form a moldable body%. The magnetically-deposited polymer layer 36 is coupled to the first forming unit 31 by a coupling mechanism 317. The coupling mechanism 317 in this embodiment is, for example, the magnetic polymer layer 36 sandwiches the engaging hole of the first forming unit 31. . The magnetization source 34 is disposed in the second forming unit wipe, and the generated -main magnetic field distribution MG1 and the magnetic polymer layer % form a function 200919098 magnetic distribution FAl to shape the plastic body 35. The magnetization source % includes a sub-magnetization source 342 and a - sub-magnetization source 343. In the present embodiment, the sub-magnetization source 34 is located below the moldable body 35, and the sub-magnetization source is located above the first forming unit 31. However, in practical applications, the left and right sides of the second forming unit μ may also have Other children Wei Yuan. In the direction of the magnetic distribution of FA1, the acting magnetic force distribution FA1 serves as a pressure for pressing the plastic body 35, which also separates the first forming unit 31 from the second forming unit 32 to demold the plastic body 35. Ο
接著’以第-圖說明本案所提磁力壓印的方法 用以成形-可塑體35,而該方法包括下列步驟:放置可 塑體35於一第一成形單元31 #一第-成形面311與一 第二成形單元32的一第二成形面321之間;及,利用第 -成形單το 31中的-磁性流體33與第二成形單元对 的一磁化源34所產生的__拿2^+日人/^1^^ t 琢分佈贿,產生成形 可塑體35的一作用磁力分佈FA1。 綜上所述’本案之磁力壓印的系統及方法確實能達 構想所設定的功效。唯,以上所述者僅為本案之 紹土實施例,軌熟悉核技藝之人士,錢依本案精 =作之等效修飾或變化,皆應涵蓋於以下之專利 範圍内。 .本案得藉由下顧式之詳細制,俾得衫入之瞭 【圖式簡單說明】 ★圖本案第實把例所提磁力塵印的系統的構造示 16 200919098 意圖; 第二圖:本案第二實施例所提磁力壓印的系統的構造系 意圖; 第二圖:本案第三實施例所提磁力壓印的系統的構造系 意圖; 第四圖:本案第四實施例所提磁力壓印的系統的構造系 意圖;及 第五圖:本案第五實施例所提磁力壓印的系統的構造糸 意圖。 【主要元件符號說明】 30、40、50、60、70 :磁力壓印的系統 31:第一成形單元 311:第一成形面 Ο 33、53 :磁性流體 332 :有機溶劑 341、 3421、3431 :電磁鐵 342、 343 :子磁化源 36 :磁性聚合物層 3 62 ·聚合物結合材 MG1 .主磁場分佈 312 :模仁 314 :容器 316、317 :耦接機構 32 ·第二成形單元 313 :容器 3141 :子容器 3171 :接合孔 321 :第二成形面 331 :導磁性粉體顆粒 34 :磁化源 35 :可塑體 361 :磁體 531 :子磁性流體 FA1 :作用磁力分佈 17Next, the method of magnetic imprinting proposed in the present invention is used to form the plastic body 35, and the method comprises the following steps: placing the plastic body 35 on a first forming unit 31 #一第一-forming surface 311 and a Between the second forming surface 321 of the second forming unit 32; and the __2^+ generated by the magnetic source 33 of the first forming unit το 31 and the magnetizing source 34 of the second forming unit pair The Japanese/^1^^t 琢 distributes the bribe, producing a working magnetic force distribution FA1 of the shaped plastic body 35. In summary, the magnetic imprinting system and method of this case can indeed achieve the set effect. Only those mentioned above are only the examples of the soil in this case. Those who are familiar with the nuclear technology, the equivalent modifications or changes of the money in this case should be covered by the following patents. The case can be obtained by the detailed system of the following styles. [The simple description of the drawing] ★ The construction of the magnetic dust-printing system of the example is shown in the figure. 2009 20099898 Intention; Second: This case The structure of the magnetic imprinting system of the second embodiment is intended; the second figure: the structure of the magnetic imprinting system of the third embodiment of the present invention is intended; the fourth figure: the magnetic pressure of the fourth embodiment of the present invention The structure of the printed system is intended; and the fifth figure: the construction of the magnetic imprinting system of the fifth embodiment of the present invention. [Description of main component symbols] 30, 40, 50, 60, 70: magnetic imprinting system 31: first forming unit 311: first forming surface Ο 33, 53: magnetic fluid 332: organic solvent 341, 3421, 3431: Electromagnet 342, 343: sub-magnetization source 36: magnetic polymer layer 3 62 · polymer binder MG1. main magnetic field distribution 312: mold core 314: container 316, 317: coupling mechanism 32 · second forming unit 313: container 3141 : sub-tank 3171 : joint hole 321 : second forming surface 331 : magnetic conductive powder particles 34 : magnetization source 35 : plastic body 361 : magnet 531 : sub-magnetic fluid FA1 : magnetic force distribution 17