[go: up one dir, main page]

TW200915717A - Methods and apparatus for calibration of automatic gain control in broadcast tuners - Google Patents

Methods and apparatus for calibration of automatic gain control in broadcast tuners Download PDF

Info

Publication number
TW200915717A
TW200915717A TW097130005A TW97130005A TW200915717A TW 200915717 A TW200915717 A TW 200915717A TW 097130005 A TW097130005 A TW 097130005A TW 97130005 A TW97130005 A TW 97130005A TW 200915717 A TW200915717 A TW 200915717A
Authority
TW
Taiwan
Prior art keywords
signal
integrated circuit
gain
power level
agc
Prior art date
Application number
TW097130005A
Other languages
Chinese (zh)
Other versions
TWI459718B (en
Inventor
Prabir C Maulik
Steven Rose
Donald Paterson
Bahy Hassan L
Nazmy Abaskharoun
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of TW200915717A publication Critical patent/TW200915717A/en
Application granted granted Critical
Publication of TWI459718B publication Critical patent/TWI459718B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals

Landscapes

  • Circuits Of Receivers In General (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

In one aspect, a calibration component configured to calibrate an automatic gain controller (AGC) for use in a tuner configured to isolate a selected channel from a multi-channel broadcast signal, the tuner implemented substantially on two chips, a first chip comprising a radio frequency (RF) integrated circuit adapted for RF processing and a second chip comprising a digital integrated circuit adapted for digital processing is provided. The calibration component comprises a calibration signal generator implemented on the RF integrated circuit, the calibration signal generator adapted to generate a generally known calibration signal, a power detector implemented on the RF integrated circuit and configured to detect, during calibration, at least one power characteristic of the calibration signal and to provide a power level signal indicative of the at least one detected power characteristic, a gain controller implemented on the digital integrated circuit, the gain controller adapted to generate at least one error signal based, at least in part, on a comparison between the power level signal provided by the power detector and a first reference signal, an offset signal generator implemented on the RF integrated circuit and configured to generate an offset signal based, at least in part, on the at least one error signal and a summing element implemented on the RF integrated circuit and adapted to combine the offset signal with the power level signal provided by the power detector to provide an adjusted power level signal.

Description

200915717 九、發明說明: 【發明所屬之技術領域】 本發明係關於調諧器,更明確地說,係關於一電視調 諸器中一前置放大階段中的自動增益控制。 【先前技術】 負訊訊號’尤其是電視訊號’經常會透過_被連接至 一機上盒(set-top box)的纜線或是透過被一天線或衛星小耳 ! 朵(satellite dish)所接收到的陸地廣播來傳送。於任一種情 況中’ s亥專§孔號通常係由在指定頻率通道中被傳送的數個 不同的資訊成分所構成。本文中將此一多通道訊號稱為「廣 播訊號」。就此來說’廣播訊號中的資訊可能會經過一調 諧器的處理,用以從該廣播訊號中抽出一或多個所希的通 道。舉例來說,該廣播訊號可能包含遍佈電視訊號頻譜中 的訊號,其包含特高頻(VHF)波段(也就是,54至2i6MHz 的電視載波頻率)以及超高頻(UHF)波段(也就是,47〇至 、890MHz的包視載波頻率該廣播訊號可能還包含該些頻 率波段外面的其它通道頻率(舉例來說,除了 vhf波段和 W波段之外,纜線廣播訊號可能還包含其它指定的訊號 載波頻率波段)。 一般來說,該等各種頻率波段均包括數個不同的通道。 舉例來說,VHF波段會被分割成η個通道(通道2至13), 而UHF波段則會被分割成7〇個通道(通道至μ)。每一 個通道均會依據藉以傳送該廣播訊號的標準,在該廣播頻 200915717 譜中被指派一特定的頻寬。舉例來說,美國標準便為每一 個波段指派一 6MHz頻寬並且規定該訊號的視頻與音頻資 訊成分應該在該通道中被調變用以進行傳送。一調諧器可 讓一使用者從該廣播訊號中的該等通道中選擇要與該訊號 隔離並且提供給例如一電視機以進行觀賞的任一通道。 凋為益可能包含一前置放大器,用以控制提供至該 调邊器之各個處理組件的廣播訊號之增益。舉例來說,一 自動增益控制器(AGC)可能會被排列在該調諧器的前端, 用以提供一可調整增益給該廣播訊號,以便盡力將由該前 置放大器所提供的訊號保持在一實質恆定的位準處。明磘 地說’該AGC會運作用以將訊號功率保持在該調諧器下 游組件可接受的動態範圍内並且用以最大化訊號強度,同 時維持很低的訊號失真程度。 【發明内容】 本發明的某些實施例包含一種使用在一調諧器中的自 動增益控制器(AGC),該調諧器會被配置成用以將一選定 頻道和一多頻道廣播訊號產生隔離。該調諧器實質上係被 她行在兩個晶片之上:一第一晶片,其包括一被調適成用 以進行射頻(RF)處理的RF積體電路;以及一第二晶片, 其包括一被調適成用以進行數位處理的數位積體電路。該 自動增益控制器包括:一可變增益放大器(VGA),其係被 施行在該RF積體電路之上,該VGA會被調適成用以接收 該廣播訊號並且用以至少部分依據一增益訊號來將一可變 200915717 增益套用至該廣播訊號,用以提供一經放大的廣播訊號; 功率偵測器,其係被施行在該RF積體電路之上並且會 被配置成用以偵測該經放大廣播訊號的至少一功率特徵並 且用以提供一表示該至少一已偵測功率特徵的功率位準訊 號;以及一增益控制器,其係被施行在該數位積體電路之 上,該增益控制器會被調適成用以至少部分依據介於該功 率偵測器所提供之功率位準訊號和一參考訊號之間的比較 值來產生至少一誤差訊號,其中,該增益訊號至少部分係 依據該增益控制器所產生的該至少一誤差訊號。 某些實施例包含一種使用在一調諧器中的自動增益控 制益(AGC),該調諧器會被調適成用以將一選定頻道和一 多頻道廣播訊號產生隔離,該AGC會被配置成用以運作 在一被調適成用以校正該AGC的校正模式之中以及用以 運作在一被調適成用以將一可變增益套用至一廣播訊號的 作業杈式之中。該AGC包括一第一控制迴路,其包括: 一校正訊號產生器,其會被調適成用以產生一校正訊號; 一功率偵測器,其會被配置成用以偵測一已接收輸入訊號 的至少一功率特徵並且用以提供一表示該已偵測之至少一 功率特徵的功率位準訊號;一相加元件,用以結合該功率 位準訊號和一偏移訊號,用以提供一經調整的功率位準訊 5虎;一增益控制器,其包含一參考訊號,該增益控制器會 破調適成用以產生至少—誤差訊號,用以表示介於該參考 讯號和該經調整功率位準訊號之間的差異;以及一偏移訊 唬產生器,其會被調適成用以提供該偏移訊號給該相加元 200915717 件,該偏移訊號產生器會被配置成用以至少部分依據該至 少T誤差訊號來調整該偏移訊號。該AGC還進一步包括 一第一控制迴路,其包括:一可變增益放大器(VGA),其 係被凋適成用以接收該廣播訊號並且用以依據一增益訊號 來將一可變增益套用至該廣播訊號,用4供一經放大的 廣播訊號;該功率㈣器;該相加元#;以及該增益控制 益,其中,在該校正模式中,該第一控制迴路會處於運作 中且达往該功率偵測器的該已接收輸入訊號為校正訊號, 該第一控制迴路會運作用以修正該偏移訊號,俾使其會反 映該AGC的-偏移誤差,且其中’在作業模式中,該第 二控制迴路會處於運作中且送往該功率偵測器的該已接收 輸入訊號為該經放大的廣播訊號,該第二控制迴路會運作 用以將該經放大的廣播訊號的功率位準維持在一所希的範 圍内。 某些實施例包含一種操作使用在一調諧器中的一自動 增益控制器(AGC)的方法,該調諧器會被配置成用以將一 選定頻道和一多頻道廣播訊號產生隔離,該調諧器實質上 係被施行在兩個晶片之上:一第一晶片,其包括一被調適 成用以進行射頻(RF)處理的RF積體電路;以及一第一曰 片,其包括一被調適成用以進行數位處理的數位積體電 路,該方法包括:在該RF積體電路之上,至少部分依據 一增益訊號來將一可變增盈套用至該廣播訊號,用以提供 一經放大的廣播訊號;在該RF積體電路之上,偵測該經 放大廣播訊號的至少一功率特徵·,在該RF積體電路之上, 10 200915717 : 表丁。亥至少—功率特徵的第一功率位準訊號;在該 2積體電路之上’接收該第—功率位準訊號;在該數位 二電路之上,至少部分依據介於該第一功率位準訊號和 一,考訊號之間的比較值來產生一誤差訊號;以及在該灯 積體電路之卜,SI、A„、 t 至^ e y刀依據該誤差訊號來提供該增益訊 號。 【實施方式】 &如上面的討論,一電視調諸器係一器件,其用以從一 :覽 '或,地廣播源處接收一電視訊號並且輪出一感興趣頻 上會排斥所有其它頻道)。舉例來說,該電視調譜 ;σ «接收廣播汛號,該廣播訊號具有在多個個別頻 率波段中被傳送的複數個頻道,而且該電視調㈣可能會 捃據使用者的頻道選擇來隔離該些頻道中其中一者用以 使其被解調變且被處理以供觀賞。資訊在指定的頻率波段 内如何被排列和調變的細節以及該頻率波段本身的指定和 組成可能會與地理位置有關。舉例來說,日本的電視訊號 廣播所支持的標準便不同於美國的電視訊號廣播。此外, 資訊可能會被數位調變、類比調變、s戈兩者兼具。不過, 人將所希頻道和一廣播訊號產生隔離有_的許多一般性 概念則與任何特殊地理位置處所使用的廣播標準無關。 圖1所示的係一習知電視接收裝置中之調諧器的方塊 圖汛號源n 0會提供一廣播訊號115給調諧器i 20〇舉 例來說’訊號源、110可能係一被連接至一機上盒的纜線或 200915717 I广—天線所接收到的陸地廣播源,並且可提供數位調 ::類比調變訊號115。廣播㈣115可能係由複數個頻 ^〜組,,每一個頻道均會佔有該廣播訊號的頻譜内某一 、:疋頻見。舉例來說,廣播訊號115可能係由數個電視頻 =所組成’在任何給定的時%,該等電視頻道中可能僅有 令人感到興趣。如上面的討論,#一個頻道内的 &疋頻見和資訊組成通常會依據用來傳送該訊號的廣播標 準。 、 周咕器120可旎係一使用者可調整的組件,其能夠被 設定成用以從該廣播訊號中選擇一所希的頻道並且實質上 排斥出現在该廣播訊號中的每一個其它頻道。調諧器 UOC或是該調諧器下游的一分離組件)可能會進一步處理該 單一頻道訊號並且解調變來自該載波之訊號中的資訊。該 解調變可能係多種解調變器中其中一者或任何組合。舉例 來说,解調變可能會支援一或多種數位調變技術、一或多 種類比調變技術、或是兩者。接著便可能會對所生成的解 調變訊號進行後置處理,用以創造一可被顯示以供觀賞的 訊號125。舉例來說,顯示器130可能係_電漿顯示器、 液晶顯示器、數位光投影顯示器、陰極射線管顯示器、或 是能夠表現該訊號以供觀賞的任何其它類型的顯示器。 圖2所示的係圖1中所示之調諧器12〇的兩種替代施 行方式的更洋細圖式。調谐器1 2 0可能係由一前置放大哭 級230以及頻道選擇處理方塊240所組成。該前置放大哭 級230可能包含一可變增益放大器(ν〇Α)250以及一自動 12 200915717 增益控制器(AGC)260。廣播訊號115可能係接收自一雙線 或陸地廣播源並且會根據以可調整的方式受控於增益I% 255的VGA增益被VGA 250放大。增益訊號255的數值 可能係取決於AGC 260,如下面的進一步詳細說明。在頻 道選擇處理方塊240中’該廣播訊號中的_頻道可能會被 選擇,並且可能會被解調變,並且被後置處理。200915717 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to tuners, and more particularly to automatic gain control in a preamplifier stage in a television conditioner. [Prior Art] The negative signal 'especially the TV signal' is often received by a cable connected to a set-top box or by an antenna or a satellite dish! The land broadcast to be transmitted. In either case, the s-hole number is usually composed of several different information components transmitted in a specified frequency channel. This multi-channel signal is referred to herein as a "broadcast signal." In this regard, the information in the broadcast signal may be processed by a tuner to extract one or more of the channels from the broadcast signal. For example, the broadcast signal may include signals throughout the spectrum of the television signal, including the high frequency (VHF) band (ie, the 54 to 2i6 MHz TV carrier frequency) and the ultra high frequency (UHF) band (ie, 47〇 to, 890MHz frame-view carrier frequency The broadcast signal may also include other channel frequencies outside the frequency band (for example, in addition to the vhf band and the W band, the cable broadcast signal may also contain other specified signals Carrier frequency band. In general, these various frequency bands include several different channels. For example, the VHF band is divided into n channels (channels 2 to 13), and the UHF band is divided into 7 channels (channel to μ). Each channel is assigned a specific bandwidth in the broadcast frequency 200915717 according to the standard by which the broadcast signal is transmitted. For example, the US standard is for each band. Assigning a 6MHz bandwidth and specifying that the video and audio information components of the signal should be modulated in the channel for transmission. A tuner allows a user to One of the channels in the broadcast signal is selected to be isolated from the signal and provided to, for example, a television for viewing. The benefit may include a preamplifier to control the various components provided to the edge adjuster. Processing the gain of the broadcast signal of the component. For example, an automatic gain controller (AGC) may be arranged at the front end of the tuner to provide an adjustable gain to the broadcast signal in order to try to be used by the preamplifier The signal provided is maintained at a substantially constant level. It is clear that the AGC will operate to maintain signal power within the dynamic range acceptable to the downstream components of the tuner and to maximize signal strength while Maintaining a very low degree of signal distortion. [Invention] Certain embodiments of the present invention include an automatic gain controller (AGC) that is used in a tuner that is configured to use a selected channel and A multi-channel broadcast signal is isolated. The tuner is essentially carried by two wafers: a first wafer, including one adapted to be used a radio frequency (RF) processed RF integrated circuit; and a second chip including a digital integrated circuit adapted for digital processing. The automatic gain controller includes: a variable gain amplifier (VGA) And being implemented on the RF integrated circuit, the VGA is adapted to receive the broadcast signal and to apply a variable 200915717 gain to the broadcast signal based at least in part on a gain signal. Providing an amplified broadcast signal; a power detector configured to be implemented on the RF integrated circuit and configured to detect at least one power characteristic of the amplified broadcast signal and to provide a representation At least one power level signal having detected a power characteristic; and a gain controller implemented on the digital integrated circuit, the gain controller being adapted to be at least partially dependent on the power detection ???a comparison value between the power level signal and a reference signal provided by the detector to generate at least one error signal, wherein the gain signal is based at least in part on the gain controller The at least one error signal generated. Some embodiments include an automatic gain control benefit (AGC) that is used in a tuner that is adapted to isolate a selected channel from a multi-channel broadcast signal, the AGC being configured to use The operation is performed in a calibration mode adapted to correct the AGC and to operate in an operation mode adapted to apply a variable gain to a broadcast signal. The AGC includes a first control loop, including: a correction signal generator that is adapted to generate a correction signal; a power detector configured to detect an received input signal At least one power feature is used to provide a power level signal indicating the detected at least one power feature; an adding component for combining the power level signal and an offset signal to provide an adjusted The power level controller is a tiger; a gain controller includes a reference signal, and the gain controller is adapted to generate at least an error signal for indicating the reference signal and the adjusted power bit. a difference between the quasi-signals; and an offset signal generator that is adapted to provide the offset signal to the adder 200915717, the offset signal generator being configured to be at least partially The offset signal is adjusted according to the at least T error signal. The AGC further includes a first control loop including: a variable gain amplifier (VGA) adapted to receive the broadcast signal and to apply a variable gain to the gain signal according to a gain signal The broadcast signal uses 4 for the amplified broadcast signal; the power (four) device; the phase adder#; and the gain control benefit, wherein in the calibration mode, the first control loop is in operation and reaches The received input signal of the power detector is a correction signal, and the first control loop is operative to correct the offset signal so that it reflects the offset error of the AGC, and wherein 'in the operation mode The second control loop is in operation and the received input signal to the power detector is the amplified broadcast signal, and the second control loop operates to power the amplified broadcast signal. The level is maintained within a range of expectations. Some embodiments include a method of operating an automatic gain controller (AGC) in a tuner configured to isolate a selected channel from a multi-channel broadcast signal, the tuner Essentially being performed on two wafers: a first wafer comprising an RF integrated circuit adapted for radio frequency (RF) processing; and a first wafer comprising an adapted a digital integrated circuit for performing digital processing, the method comprising: applying a variable gain to the broadcast signal based on a gain signal on the RF integrated circuit to provide an amplified broadcast a signal; on the RF integrated circuit, detecting at least one power characteristic of the amplified broadcast signal, above the RF integrated circuit, 10 200915717: At least a first power level signal of the power characteristic; receiving the first power level signal on the two integrated circuit; above the digital circuit, at least partially according to the first power level The comparison value between the signal and the test signal generates an error signal; and in the lamp integrated circuit, the SI, A„, t to ^ey knife provides the gain signal according to the error signal. & As discussed above, a television tuner is a device for receiving a television signal from a broadcast or a broadcast source and rotating an interest frequency to reject all other channels. For example, the television tone spectrum; σ «receives a broadcast nickname, the broadcast signal has a plurality of channels transmitted in a plurality of individual frequency bands, and the television tone (4) may be isolated according to the user's channel selection One of the channels is used to cause it to be demodulated and processed for viewing. The details of how the information is aligned and modulated within a specified frequency band and the designation and composition of the frequency band itself may be For example, the standards supported by Japanese TV broadcasts are different from those of American TV broadcasts. In addition, information may be modulated by digital, analog, and sig. Many general concepts of isolating the channel and the broadcast signal are independent of the broadcast standard used at any particular geographic location. Figure 1 is a block diagram of a tuner in a conventional television receiver. The source n 0 will provide a broadcast signal 115 to the tuner i 20 〇 for example, 'the signal source, 110 may be a cable connected to a set-top box or a land broadcast source received by the 200915717 I-antenna-antenna And can provide digital tone:: analog modulation signal 115. Broadcast (four) 115 may be composed of a plurality of frequency groups, each channel will occupy one of the spectrum of the broadcast signal, see: frequency. For example The broadcast signal 115 may be composed of several electrical videos = 'at any given time. These television channels may only be of interest. As discussed above, # within a channel & The summation and information components are typically based on the broadcast standard used to transmit the signal. The peripheral device 120 can be a user-adjustable component that can be configured to select a channel from the broadcast signal. And substantially rejecting each of the other channels present in the broadcast signal. The tuner UOC or a separate component downstream of the tuner may further process the single channel signal and demodulate the information in the signal from the carrier. The demodulation may be one or any combination of a plurality of demodulation transformers. For example, the demodulation may support one or more digital modulation techniques, one or more analog modulation techniques, or two Then, the generated demodulation signal may be post-processed to create a signal 125 that can be displayed for viewing. For example, display 130 may be a plasma display, a liquid crystal display, a digital light projection display, a cathode ray tube display, or any other type of display capable of representing the signal for viewing. Figure 2 shows a more detailed view of the two alternative modes of operation of the tuner 12A shown in Figure 1. The tuner 120 may consist of a preamplifier crying stage 230 and a channel selection processing block 240. The preamplifier crying stage 230 may include a variable gain amplifier (ν〇Α) 250 and an automatic 12 200915717 gain controller (AGC) 260. The broadcast signal 115 may be received from a dual line or terrestrial broadcast source and amplified by the VGA 250 in accordance with a VGA gain that is controlled in a controlled manner by a gain of 1% 255. The value of gain signal 255 may depend on AGC 260, as described in further detail below. The channel in the broadcast signal may be selected in the channel selection processing block 240 and may be demodulated and post-processed.

舉例來說,頻道選擇處理方塊240可能包含美國專禾 公開案第2006/0166633號(‘633號公開案)中所示的任何f 路與組件’本文以引用的方式將其完整併入,或是包含朝 調適成用以從一廣播訊號中選擇一所希頻道的任何其它名 種種類與排列的組件。應該明白的係,一調諧器亦可能包 含圖2中未顯示的其它組件。被調適成用以接收與處理不 同類型電視訊號的其它調諧器(例如在美國專利案第 7,〇91,792號(‘792號專利案)中所述的調諧器,本文以引用 的方式將其完整併入)同樣可適用於本發明的態樣。 廣播訊號115可能會在各式各樣的狀況中於前置放大 器230處被接收,該等狀況可能與下面因素有關:被傳送 讯號的類型、傳送媒介的類型、該調譜器本身的調變技術 及/或地理位置。舉例來說,廣播訊號115可能會透過一纜 線傳达至調諧1 120,或者’廣播訊號i 15可能會從—陸 地源透過無線電磁輻射被廣播並且從一天線、衛星小耳 朵、或是類似的器件被提供至調諧器12〇。當透過—纜線 來傳延,相較於接收自一陸地廣播源(舉例來說,—基地 台)的廣播訊號’廣播訊號115可能會具有比較低的雜訊以 13 200915717 及比較高的訊號強度。此外,相較於#近該廣播源或是鱼 该廣播源之間實質上沒有受到阻隔的調⑼i2Q,位於遠 離該廣播源的區域中或是與該廣播源 摩之間有党到阻隔的調 諧器則可能會接收到相對低訊號功率 7千次相對尚雜訊的訊號 11 5 〇 為幫助處理具有變動品質屬性(舉例來說,不同的雜訊 和訊號強度特徵)的訊號’調諧器12〇可能包括VGA 25〇, 其會從AGC 260處接收可變增益控制訊號255,用以表示 要被套用至廣播訊m 115之增益的位準。前置放大級23〇 的用途係要確保該調諧器的前端組件(舉例來說,頻道選擇 處理方塊240及/或該電視接收裝置的其它下游級)所接收 到的廣播訊號具有夠高的訊噪比(SNR)以及具有非常低的 失真並且落在非常有限的動態範圍内。舉例來說該電視 調諧器可能會接收-範圍從約·85ζ1Βηι i邊爪的輸入訊 諕。若沒有前置放大和自動增益控制的話,該調諧器的下 游處理方塊便需要處置此非常大的動態範圍。該前置放大 、及可藉由將该訊號位準維持在一小範圍内而被用來降低該 11周禮器的動態範圍需求。For example, channel selection processing block 240 may include any of the ways and components shown in US Patent Publication No. 2006/0166633 (the '633 publication), which is hereby incorporated by reference in its entirety, or It is a component that includes any other name and arrangement that is adapted to select a Greek channel from a broadcast signal. It should be understood that a tuner may also include other components not shown in FIG. Other tuners that are adapted to receive and process different types of television signals (for example, the tuners described in U.S. Patent No. 7, s. 91,792 (the '792 patent), which is incorporated herein by reference. Its full incorporation) is equally applicable to aspects of the invention. The broadcast signal 115 may be received at the preamplifier 230 in a wide variety of conditions, which may be related to the type of signal being transmitted, the type of transmission medium, and the modulation of the spectrometer itself. Change technology and / or geographic location. For example, the broadcast signal 115 may be transmitted to the tuning 1 120 via a cable, or the 'broadcast signal i 15 may be broadcasted from the terrestrial source via wireless electromagnetic radiation and from an antenna, satellite ear, or the like. The device is provided to the tuner 12A. When transmitting through a cable, the broadcast signal 'broadcast signal 115' received from a terrestrial broadcast source (for example, a base station) may have a lower noise to 13 200915717 and a higher signal. strength. In addition, compared to the near-the broadcast source or the fish, the broadcast source is substantially unblocked (9) i2Q, located in a region away from the broadcast source or has a party-to-blocking tuning between the broadcast source and the broadcast source. The device may receive a relatively low signal power of 7,000 relative noise signals. 11 5 〇 To help process the signal 'tuners' with varying quality attributes (for example, different noise and signal strength characteristics) It may include a VGA 25A that will receive a variable gain control signal 255 from the AGC 260 to indicate the level of gain to be applied to the broadcast m 115. The purpose of the preamplifier stage 23 is to ensure that the broadcast component received by the front end component of the tuner (for example, channel selection processing block 240 and/or other downstream stages of the television receiving device) is sufficiently high. Noise ratio (SNR) and has very low distortion and falls within a very limited dynamic range. For example, the TV tuner may receive an input signal ranging from about 85 ζ 1 Β i i. If there is no preamplifier and automatic gain control, the tuner's downstream processing block will need to handle this very large dynamic range. The preamplification, and can be used to reduce the dynamic range requirement of the 11-week ritual by maintaining the signal level within a small range.

圖2a所示的係一種調諧器施行方式,其中,該agC 的運作方式係處理該頻道選擇處理方塊後面的訊號丨2 5。 也就是,AGC 260會在頻道選擇處理方塊24〇後面依據該 °周省盗所選擇的單一頻道來產生增益控制訊號255。如‘633 號公開案中的理解,偵測該單一頻道訊號的特徵通常會有 讓该調諧器的靈敏性鈍化的非所希效應。明確地說,該AGC 14 200915717 迴路的伯測機制可能會看不見大部份存在於該選定頻道以 外的頻道中的訊號特徵。據此,因為此agc趣路心上 無法看見特定的廣播訊號狀況,所以,該迴路便無法=該 選定頻道受到負面影響之前改變偏增益以進行補償。〜 圖2b所示的係源自‘633號公開案的調諸器的一㈣ 行方式,其中,該AGC的運作古々在占抑 町建彳乍方式係處理該經放大的廣 播訊號。藉由將該AGC迴路的偵測機制拉回到該廣播訊 號,該訊號中會負面影響調諧器效能的各項特徵(例:干擾 源)便可以被谓測到並且被合宜地解決。AGC 26〇會(透過 增益訊號255)控制VGA 250上的增益位準,用以提供廣播 訊號U5 一合宜的放大作用。所生成的已放大廣播訊號接 著便可被提供至頻道選擇處理方塊24〇。不過,其並非如 圖2a中所示般地藉由分析該單—頻道訊號(也就是,訊號 125)的特性來形成該AGC控制迴路,取而代之的係, 260係依據該已放大廣播訊號的特性來產生增益控制訊號 255。 ~ 在圖2b中,AGC 260係直接從可變增益放大器25〇 處接收該已放大廣播訊號。不過,該調諧器於此方面並未 受到限制。某些濾波或是其它處理可能發生在放大之後及 §玄AGC分流該廣播訊號之前。舉例來說,該廣播訊號可 能會在放大之前或之後經過低通濾波用以移除該廣播頻譜 外面的甚咼頻雜訊,從而讓該廣播訊號實質上完整無缺。 或者’該廣播訊號内的一或多個頻道可能會被排斥,而不 耑要彳之6玄廣播§孔说處移除重要的資訊或是大量的頻道。較 15 200915717 佳的係,其可能會在放大之後立刻分析該廣播訊號,用以 確保任何波段中可能會破壞調諧器效能的訊號特性會在乾 端處理濾波器消除有問題頻率之前會被偵測到。 發明申請人已經發現’調諧器效能通常可藉由採用— 雙晶片調諧器設計而被最佳化。明確地說,發明申靖人瞭 解到各種調諧器處理可利用一特殊的晶片設計而發^最佳 功能。舉例來說,因為雙極電晶體的可利用性的關係,= 頻(RF)處理(舉例來說,前置放大、頻道選擇的部分、 以及在RF訊號上被實施的其它功能)可能比較適用於雙極 互補金屬氧化物半導體(BiCMOS)製法;而數位處理(ς例 來說,頻道選擇的各數位部分、解調變、後置處理、.等) 則可能比較適用於精密CMOS製法。再者,發明申靖人已 經發現’習知的調諧器設計可能很容易受到該調^的各 組件之間的干擾的影響。舉例來說,倘若被施行在一共用 基板之上的話’ RF處理可能會干擾類比至數位轉換,而數 位處理則可能會干擾RF功能。Figure 2a shows a tuner implementation in which the agC operates in response to a signal 丨25 following the channel selection processing block. That is, the AGC 260 will generate the gain control signal 255 after the channel selection processing block 24 is followed by the single channel selected by the pirate. As understood in the '633 publication, detecting the characteristics of the single channel signal typically has a non-stimulus effect that inactivates the sensitivity of the tuner. Specifically, the beta function of the AGC 14 200915717 loop may not be able to see most of the signal characteristics present in channels other than the selected channel. Accordingly, because this agc can't see a particular broadcast signal condition, the loop cannot = change the offset gain to compensate for the selected channel before it is negatively affected. ~ Figure 2b is derived from the one (four) line of the 633's modifier, in which the operation of the AGC is processed in the Occupy Ownership System to process the amplified broadcast signal. By pulling the detection mechanism of the AGC loop back to the broadcast signal, the characteristics of the signal that adversely affect the performance of the tuner (eg, the interference source) can be measured and properly resolved. The AGC 26〇 (via gain signal 255) controls the gain level on the VGA 250 to provide a convenient amplification of the broadcast signal U5. The generated amplified broadcast signal can then be provided to the channel selection processing block 24A. However, instead of analyzing the characteristics of the single-channel signal (ie, signal 125) as shown in FIG. 2a, the AGC control loop is formed. Instead, the system 260 is based on the characteristics of the amplified broadcast signal. To generate a gain control signal 255. ~ In Figure 2b, the AGC 260 receives the amplified broadcast signal directly from the variable gain amplifier 25A. However, the tuner is not limited in this respect. Some filtering or other processing may occur after amplification and before the singular AGC offloads the broadcast signal. For example, the broadcast signal may be low-pass filtered before or after amplification to remove any frequency noise outside the broadcast spectrum, thereby making the broadcast signal substantially intact. Or one or more channels in the broadcast signal may be excluded, and the important information or a large number of channels may be removed. Compared with the 15 200915717 best, it may analyze the broadcast signal immediately after amplification to ensure that the signal characteristics in any band that may damage the tuner performance will be detected before the dry processing filter removes the problem frequency. To. Applicants have found that 'tuner performance is typically optimized by employing a dual chip tuner design. Specifically, the Shenjing people invented that various tuner processing can be optimized using a special wafer design. For example, because of the availability of bipolar transistors, = frequency (RF) processing (for example, preamplification, channel selection, and other functions implemented on RF signals) may be appropriate. In the bipolar complementary metal oxide semiconductor (BiCMOS) method; and digital processing (for example, the digital portion of the channel selection, demodulation, post processing, etc.) may be more suitable for precision CMOS methods. Furthermore, the Shenjing people have discovered that the conventional tuner design may be susceptible to interference between the components of the modulation. For example, RF processing may interfere with analog to digital conversion if implemented on a common substrate, while digital processing may interfere with RF functionality.

同樣地 發明申請人已經發現 一 AGC的特定部分可 能比較適合被施行在其中一晶片 上而不適合被施行在另 一晶片之上;而且發明申請人已經 二 w况 錯由正確地分割 該AGC ,該Agc便可以最佳的方式 。 乃式破施仃在一雙晶片設 什之中,用以利用該等雙晶片的該 ,^Λ寻不冋功能及/或用以降 低不同處理之間的干擾。根據某些實施例,一調譜器實質 上係破施行在兩個晶片之上,—第_ 弟 日日片中大部分係併入 該調諧器的該等RF處理組件,而—曰 弟一晶片中大部分則 16 200915717 係併入該調諧器的類比至數位處理組件和數位至類比處理 組件,如下面的進一步詳細說明。據此,該等agc組件 貫質上可能會根據RF/數位處理分隔距離而被分散在該等 兩個晶片之上。 舉例來說,一調諧器前置放大級的AGC通常可能會被 分類成具有下面兩個主組件(其可能係由多個較小組件之组 合所構成⑴一功率她,用以決定該廣播訊號中的 力率位準’以及⑺_控制組件,其會被調適成用以將該經 f ㈣到的功率轉換成一可變增益放大器的控制訊號。於某 些貫施例中,言亥功率伯測器可能會被施行在—第_晶片之 (牛例來犮,作為一 RF處理),而該等控制組件則會被施 行在一第二晶片之上(舉例來說,作為一數位處理)。將該 AGC控制迴路分散在兩個晶片 <上可以降低或消除該 和數位處理之間的干擾,並且可在該雙晶片架構中提高最 佳化效果。舉例來說’ RF組件可能會被整合在一經過最佳 化RF 4理的晶片之上’而數位組件則可能會被整 合在-經過最佳化以進行數位處理的晶片之上。據此,兩 種處理均可運作在最佳的環境中’而不會相互干擾。 ★圖3所示的係根據本發明某些實施例被施行在兩個分 離積體電路之上的一調諧器。該調諧器的某些組件會被分 2 ’俾使它們部分會被施行在[積體電路之上而部 :曰破她打在第二積體電路3 1〇之上。舉例來說,該頻道 選擇處理方塊可能會被分成施行在該第-積體電路300之 上的RF頻道選擇處理方塊34〇a以及施行在該第二積體電 17 200915717 路310之上的數位頻道選擇處理方塊34〇b。agc 同樣 可被施行在該等兩個日日日片之上。舉例來說,構成該AGC 的組件可被廣義地分類成-功率偵側器組件廳以及一增 益控制器組件麵’其中,該功率谓側器她會被施行 在該第—積體電路綱之上,而該增益控制器繼則會 被施行在該第二積體電路3 1〇之上。 /於某些貫施例中,該第一積體電路會被調適成用以進 仃RF處理的RF積體電路,而該第二積體電路則會被調適 成用以進行數位處理的數位積體電路。本文中的「rf積體 電路」Θ係&主要包含RF組件及/或處理的積體電路 及/或依此方式來製造用以幫助進行RF處理的積體電路。 同樣地,本文中的「數位積體電路」—詞係指一主要包含 數位組件及/或處理的積體電路及/或依此方式來製造用以 幫助進行數位處理的積體電路。 舉例來說' 一大體上R F pfe· I® a 刀成* RF處理與數位處理的雙晶 片設計可能包含兩個以雷同方式所製成的晶片,其上會分 別施行以RF A主的處理以及以數位為主的處理,用二防 止你及/或該等兩個晶片可能係以不同的方式來製作, 用以大體上幫助及/或最佳化個別的處理環境。應該明白的 係,一 RF積體電路可能包含特定的數位處理(或是其它非 RF類比處理),❿-數位積體電路可能包含特定的處理 及/或是其它# R"貞比處理,因為本發明的態樣於此方面 並未受到限制。同樣地,使用「RF」以及「數位」等詞达 來修正調諧器組件(舉例來說,RF頻道選擇處理方塊)係代 18 200915717 表該組件被施行的積體電路。因此,一被標示為RF或數 位的組件可能包含RF、數位、或類比態樣,因為該等詞語 通常係表明其上設置著該組件的晶片。 f 針對圖3中所示的調諧器來說,該廣播訊號1 15可能 會被該第一積體電路300收到,其中,前置放大級330會 運作用以調整該廣播訊號的增益,用以將該訊號的功率位 準保持在一所希的範圍内。在該第一積體電路300之上, 該廣播訊號115可能會先被VGA 350依據增益控制器36〇b 所產生的—增益控制訊號355的數值來放大。該經放大的 廣播机號接著可能會被提供至一功率偵測器3 60a。該功率 债測器360a可能會偵測該經放大的廣播訊號的一或多項功 率特徵並且產生一用以表示該(等)已偵測到之功率特徵的 已偵測功率位準訊冑325。「功率特徵」一詞係指用以表 示巩號之功率位準之該訊號的數值、特性、或屬性之組 合:的任一者。舉例來說,一功率特徵可能係一直接功率 測量值,例如該訊號的方均根(RMS)值;或者可能與該功 率為統計相關,例如該訊號的波封。其它的功率特徵包含, ^ ^值Ή波封比(PER)、尖峰平均比 著可!:功率偵測器所產生的已偵測功率位準訊號325接 者可此a破提供至該第二積體電路 进丨vJ 10,用以作進一步處 決疋要如何改變該VGA的增兴, 的功率位準徂抹 卜 |从便將該廣播訊號 ^力丰位準保持在一容許的範圍 P 360b可处a 舉例來說’增益控制 了月b會至少部分依據該已價 1貝測功率位準325來決 19 200915717 一 '差《 345 ’其會試圖將該經放大的廣播訊號保持 在-所希的位準處,用以降低下游處理組件的動態範圍需 求任何各式各樣的控制機制均可用來形成增益控制器 360b,其包含,但是並不限於各種傳統的控制方法,例如: 比例式控制、積分式控制、比例_積#式控制、微分式控制、 比例-微分式控制、積分.微分式控制、比例_積分·微分式控 制、…等’因為本發明的態樣於此方面並未受到限制。 增益控制器36〇b可能會提供誤差訊號345給該第一積 ί 體電路300,明確地說,係提供給增益映射器39〇。增益 映射3 90可將该誤差訊號345轉換成增益控制訊號gw, 其傾向於降低該誤差的強度。舉例來說,增益映射器39〇 γ能包含-或多個對照表,用以將誤差數值轉換成對應增 亞訊號;或者可能包含一比例增益函數,用以適當地縮放 調整該等誤差數值;或是可能包含適合用來將誤差數值映 射成用以套用至VGA 350之適當增益變化的任何其它機 f 制。於某些實施例中,增益映射器390可能會被施行在積 v 體電路31〇之上而非300,因為本發明的態樣於此方面並 未受到限制。於其它實施例中,誤差訊號345會直接被套 用至VGA 3 50,而不需要一中間的增益映射器。 VGA 350會接收該增益控制訊號355並且據以放大該 廣播號。如上面的討論’ AGC控制迴路330包括VGA 350、功率偵測器360a、以及增益控制器36〇b,它們會被 配置成用以將經放大的廣播訊號305維持在該頻道選擇處 理方塊的合宜振幅處。該經放大的廣播訊號3〇5可能會被 20 200915717 提供至該第—積體電路300之上的RF頻道選擇處理方塊 3 40a & 頻道選擇處理方塊340a可能包含被配置成用 以將選疋頻道與該廣播訊號產生隔離的各種RF處理組 件’其可會在該第二積體電路310之上由數位頻道選擇處 理方塊340b作進—步處理。數位頻道選擇處理方塊34〇b 可鹿包含被配置成用以將接收自該第一積體電路300的訊 ί虎轉換成可呈現給使用者的一視頻訊號及/或音頻訊號的各 種數位處理組件,如下面的進一步詳細討論。 圖4所不的係根據本發明某些實施例的一雙晶片調諧 為的頻逼選擇組件’它們大體上會被分成RF處理組件以 及數位處理組件。舉例來說’ RF頻道選擇處理方塊 圖解的係圖3中所示之RF頻道選擇處理方塊340a的其中 種不範性施行方式。同樣地,數位頻道選擇處理方塊44〇b =解的則係圖3中所示之數位頻道選擇處理方塊3杨的 :中:種示範性施行方式。RF頻道選擇處理方塊44〇a可 (月匕係破施订在—大體上經過最佳化以進行RF處理的RF積 體电路400之上,而數位頻道選擇處理方塊440b則可能 係,施行在一大體上經過最佳化以進行數位處理的第二積 體电路410之上。該經放大的廣播訊號4〇5係對應於圖3 中所示之VGA 350所提供之經放大的廣播訊號。 RF頻道選擇處理方塊44〇a可能會被施行為_ 混合級,其包含:-第-混合器 f :皮器427a; 一第二混合器,振蘯輯4i7b;j^及選配的 弟一帶通濾波器427b。該等雙轉換混合級會運作用以向 21 200915717 上轉換該廣播訊號的頻率,俾使該選定頻道實質上會以一 所希的第一令間頻率為中心;對來自該訊號之所希數量的 頻道進行遽波;向下轉換剩餘頻道的頻率,俾使該選定頻 運實質上會以一第二中間頻率為中心;以及視情況進一步 濾除位於該選定頻道附近的頻道。 舉例來說’該經放大的廣播訊號405可能會被輸入至 第一混合器/振盪器對417a。該振盪器的頻率可能會被頻 率選擇器470改變,其可能係受控於來自一選擇要觀賞之 頻道的使用者的輸入,或者可能係從該數位處理部分及/或 一外部連接線處來存取。該第一混合器/振盪器對4i7a會 將該經放大的廣播訊號4〇5與由運作在一選定頻率處的局 部振盪器所提供的訊號進行外差處理,用以移動該廣播訊 號的頻率,使得該選定頻道實質上會以一所希的第一中間 頻率為中心。舉例來說,第一混合器/振盪器對Ο。可能 會移動該等頻帛,使得該第一中間頻率廣播訊號的頻率成 分位於該經放大的廣播訊號中的頻率範圍之上,用以避免 與影像頻率產生衝突並且避免出現諧振。 該第一中間頻率訊號接著可能會被提供至具有以該第 -中間頻率為中心之預設導通帶的帶通濾波器d用以 允許一所希頻率範圍中的訊號通過,同時實質上會排斥所 有其它頻率。舉例來說,帶通濾波器4仏可能具有實質上 適合讓該廣播訊號中的一單一頻道通過的導通帶。或者, 舉例來說,藉由將該廣播訊號窄化至二或多個頻/,帶通 慮波器仙㈣通帶便可允許—個以上的頻道通過。於某 22 200915717 些實施例t ’帶通濾波器427a會被施行成一 哭, 舉例來說,一外部SAW滹波薄,直呈古、由 … 愿皮盗其具有被配置成用以將 該訊號窄化至一或多個頻道同時排斥其它頻率的導通帶。 不過’ H皮器亦可為任何類型的帶通滤》皮胃,因為本發 明的恶樣於此方面並未受到限制。 帑逋濾波器 ---不一此甘态 振盪器對417b。混合器/振盈器對41 7b可能會根據該局部 振盪所提供之訊號的頻率來轉換該輸入訊號的頻率,俾 ,該選定頻道實質上會以一第二中間頻率為中心。於某些 貫施例中’該第二混合器/振盪器# 4m會向下轉換該等 頻率,使得該選定頻道會以該調諧器的基頻頻率為中^ 而於其它實施例中,該第二混合器/振盪器對41几會向下 轉換該等頻率,使得該選定頻道會以一所希的中間頻率為 中心。 ’、’、 该弟二混合器/振盈器對417b的輪出可能會依據帶通 f波器427a究竟係被排列成用以讓來自該廣播訊號中的一 單一頻道或多個頻道通過以進一步被濾波。舉例來說,該 第二混合器/振盈器肖417b的輸出可能會被提供至帶㈣ 波器427b,用以排斥位於該選定頻道附近的頻道。由rf 頻道選擇處理方塊440a所提供的訊號43 5基本上可能僅包 含該廣播訊號中以該電視接收裝置的基頻頻率或是特定= 它所希中間頻率為中心的選定頻道,或者可能包含該 頻道以及一或多個鄰近頻道或鄰近頻道的一部分。 該RF頻道選擇處理方塊44〇a會提供訊號435給數位 23 200915717 積體電路410之上的數位頻道選擇處理方塊44〇b。數位頻 道選擇處理方塊440b可能包含一回授迴路,其包括:一 vga 430; —類比至數位轉換器445;以及一數位中頻(if)處理 方塊480。該數位頻道選擇處理方塊44〇b的輸出可能係一 視頻訊號及/或音頻訊號125,其可被顯示及/或提供給一揚 聲益組件,用以呈現給使用者。數位頻道選擇處理方塊 的其中一實施例的運作方式可能如下。 被提供給數位頻道選擇處理方塊4401?的訊號435可能 會被VGA 430放大。該VGA的增益係取決於增益控制訊 號455。該經放大的訊號接著可能會被一類比至數位轉換 器445轉換成一數位訊號,以便可以數位的方式來處置該 增益控制處理的其餘部分。倘若訊號435係位於非基頻頻 率的中間頻率訊號處的話,那麼,數位IF處理48〇便可能 會將该訊號的頻率向下降至基頻並且解調變該選定頻道。 數位IF處理480可能還包括後置處理,其可能包含眾多處 理組件中的任一者,用以施行可能依據訊號435之類型和 成分的技術。 後置處理可能包含任何以下及/或它們的組合之數量的 處理··濾波、解調變、視頻與音頻處理、解碼與編碼、解 壓縮、…等’該等處理被認為係要透過一音頻及/或視頻表 現來準備要呈現給使用者的訊號的必要處理。數位IF處理 48〇可能還會輸出一會被輸入至VGA 430的增益控制訊號 45 5 °任何各式各樣的控制機制,其包含本文所述者,均 可用來產生增益控制訊號455。數位IF處理480可能還會 24 200915717 與頻率選擇器 擇。 470 進行通訊, 用以控制哪一 個頻道要被選 應該明白的係,-被調適成用以隔離一選定 諧器的該等頻道選擇組件可能包含各種其它組件,或者可 以其它方式來選擇-所希的頻道。舉例來說,I以施行單 轉換方法取代圖"所示的雙轉換類型前端1 4中:: 的組件僅為構成-大體上被分成RF 4理與數位處理且= 實質雙晶片設計的方式被分散在個別RF冑體電路和數位 積體電路之上的頻道選擇處理的組件的某些實施例之範 例。就此來說,本發明的態樣並不受限於配合任何特殊配 置的頻道選擇組件來使用,並且可以使用被調適成用以接 收且處理不同類型電視訊號的其它調諧器配置。舉例來 說’在‘792號專利案中所述之各種雙晶片設計中的任—者 均可能適合於本發明的態樣。 如上面的討論,發明申請人已經發現’將該AGC大體 上分成RF處理組件及數位處理組件可能優於並且會強化 -實質雙晶片調諧器設計,其某些實施例已經配合圖曰3作 過說明。圖5所示的係根據本發明某些實施例實質上被施 行在兩個晶片之上的一 AGC控制迴路的其中一種施行方 式如本文的对淪,該雙晶片設計可能會因將功率偵測器 560a施仃在RF積體晶片500之上並且將增益控制器56〇b 施行在數位積體晶片51〇之上而獲得好處。圖5所示的係 可能適用於本發明態樣的一增益控制器的示範性組件。 如上面的討論,一 VGA 550可能係被施行在該RF積 25 200915717 體電路500之上,用以接收一廣播訊號並且調整增益,用 以將該訊號中的功率保持在一容許的範圍内。一功率偵測 器560a可能會被施行在該RF積體電路之上,用以偵測該 經放大的廣播訊號的一或多項功率特徵並且提供一用以表 示該等一或多項已偵測到之功率特徵的已偵測功率位準訊 號525。該已偵測功率位準訊號525接著可能會被提供至 增盈控制器56Gb ’用以將該已制功率轉換成該vga的 一增益調整值。增益控制器560b的運作方式可能如下。 接收自功率偵測器560a的已偵測功率位準訊號525可 能會被轉換成一電壓訊號,舉例來說,其係使用一〗至v 轉阻放大S 561來進行。應該明白的係,倘若該已债測功 率位準訊號525原本就係一電壓訊號的話,那麼便可能不 需要用到I至v放大器561或是其它轉換元件。於用到ς 至V轉換的某些實施例中,該轉換元件(舉例來說,轉阻 放大器561)可能係被施行在該RF積體電路5〇〇 該數位積體電路510之上,因為本發 未受到限制。 因為本發明的態樣於此方面並Similarly, the Applicant has found that a particular portion of an AGC may be more suitable to be applied to one of the wafers and not suitable for execution on another wafer; and the applicant of the invention has correctly misdivided the AGC, which Agc is the best way. The method is used in a dual chip design to take advantage of the dual chip functions and/or to reduce interference between different processes. According to some embodiments, a spectrometer is substantially broken on two wafers, most of which are incorporated into the RF processing components of the tuner, and Most of the wafers 16 200915717 are incorporated into the tuner analog to digital processing components and digital to analog processing components, as described in further detail below. Accordingly, the agc components may be dispersed over the two wafers in accordance with the RF/digital processing separation distance. For example, an AGC of a tuner preamplifier stage may be classified as having the following two main components (which may be composed of a combination of a plurality of smaller components (1) a power to determine the broadcast signal The force rate level 'and the (7)_ control component, which is adapted to convert the power of f (four) to a control signal of a variable gain amplifier. In some embodiments, The detector may be implemented on the -th chip, as an RF process, and the control components are executed on a second chip (for example, as a digital bit) Dispersing the AGC control loop on both wafers can reduce or eliminate interference between the digital processing and can improve the optimization in the dual-chip architecture. For example, 'RF components may be Integrated on an optimized RF 4 wafer and digital components may be integrated on a wafer optimized for digital processing. 'in the environment' and not Interference with each other. Figure 3 shows a tuner that is implemented on two separate integrated circuits in accordance with some embodiments of the present invention. Some components of the tuner are divided into 2 '俾Executed on the [integrated circuit: part: smashed her on the second integrated circuit 3 1 。. For example, the channel selection processing block may be divided into the first integrated circuit 300 The above RF channel selection processing block 34a and the digital channel selection processing block 34b on the second integrated circuit 17 200915717 way 310. agc can also be performed on the two day and day films For example, the components constituting the AGC can be broadly classified into a power detector component hall and a gain controller component surface, wherein the power edge device is implemented in the first integrated body Above the circuit, the gain controller is then executed on the second integrated circuit 3 1 。. / In some embodiments, the first integrated circuit is adapted to仃RF processed RF integrated circuit, and the second integrated circuit will be adapted A digital integrated circuit for digital processing. The "rf integrated circuit" herein mainly includes an RF component and/or a processed integrated circuit and/or is fabricated in this manner to facilitate RF processing. Similarly, the term "digital integrated circuit" as used herein refers to an integrated circuit that mainly includes digital components and/or processing and/or an integrated body that is fabricated in this manner to facilitate digital processing. For example, 'a general RF pfe· I® a knife* RF processing and digital processing bi-wafer design may contain two wafers made in the same way, which will be implemented with RF A master Processing and digital-based processing, using two to prevent you and/or the two wafers from being produced in different ways to substantially assist and/or optimize individual processing environments. It should be understood that an RF integrated circuit may contain specific digital processing (or other non-RF analog processing), and the ❿-digital integrated circuit may contain specific processing and/or other # R" Aspects of the invention are not limited in this respect. Similarly, the words "RF" and "digit" are used to modify the tuner component (for example, the RF channel selection processing block) to represent the integrated circuit in which the component is implemented. Thus, a component labeled as RF or digital may contain an RF, digital, or analog aspect, as such terms are typically used to indicate a wafer on which the component is disposed. f For the tuner shown in FIG. 3, the broadcast signal 1 15 may be received by the first integrated circuit 300, wherein the preamplifier stage 330 operates to adjust the gain of the broadcast signal, The power level of the signal is maintained within a range of the imaginary range. Above the first integrated circuit 300, the broadcast signal 115 may be first amplified by the VGA 350 according to the value of the gain control signal 355 generated by the gain controller 36〇b. The amplified broadcaster number may then be provided to a power detector 3 60a. The power detector 360a may detect one or more power characteristics of the amplified broadcast signal and generate a detected power level signal 325 for indicating the detected power feature. The term "power characteristics" refers to any of the combinations of values, characteristics, or attributes of the signal used to indicate the power level of the chime. For example, a power feature may be a direct power measurement, such as a root mean square (RMS) value of the signal; or may be statistically related to the power, such as a wave seal of the signal. Other power characteristics include ^ ^ value Ή wave seal ratio (PER), peak average ratio! The detected power level signal 325 generated by the power detector can be provided to the second integrated circuit 丨vJ 10 for further execution, how to change the VGA's promotion, The power level is 徂 | | 从 从 从 从 从 从 将该 将该 将该 将该 将该 将该 将该 将该 将该 将该 将该 从 从 从 从 从 从 | | | | | | | | 举例 举例 举例 举例 举例 举例 举例 举例 举例 举例 举例 举例 举例Level 325 is determined by 19 200915717 A 'difference 345' will attempt to keep the amplified broadcast signal at the desired level to reduce the dynamic range of downstream processing components. Any variety of controls The mechanism can be used to form the gain controller 360b, which includes, but is not limited to, various conventional control methods, such as: proportional control, integral control, proportional_product# control, differential control, proportional-differential control, Integral. Differential control, proportional_integral, differential control, etc. 'Because the aspect of the invention is not limited in this respect. The gain controller 36〇b may provide an error signal 345 to the first integrated circuit 300, specifically to the gain mapper 39〇. The gain map 3 90 converts the error signal 345 into a gain control signal gw which tends to reduce the strength of the error. For example, the gain mapper 39 〇 γ can include - or a plurality of look-up tables for converting the error values into corresponding augmented signals; or a proportional gain function for appropriately scaling and adjusting the error values; Or it may contain any other machine f suitable for mapping the error value to the appropriate gain variation applied to the VGA 350. In some embodiments, gain mapper 390 may be implemented above product block circuit 31 instead of 300, as aspects of the present invention are not limited in this respect. In other embodiments, the error signal 345 is applied directly to the VGA 3 50 without the need for an intermediate gain mapper. The VGA 350 receives the gain control signal 355 and amplifies the broadcast number accordingly. As discussed above, the AGC control loop 330 includes a VGA 350, a power detector 360a, and a gain controller 36〇b that are configured to maintain the amplified broadcast signal 305 in the channel selection processing block. At the amplitude. The amplified broadcast signal 3〇5 may be provided by the 20 200915717 to the RF channel selection processing block 3 40a on the first integrated circuit 300. The channel selection processing block 340a may include a channel configured to be selected. The various RF processing components that are isolated from the broadcast signal by the channel may be processed by the digital channel selection processing block 340b over the second integrated circuit 310. The digital channel selection processing block 34B can include various digital processing configured to convert the received signal from the first integrated circuit 300 into a video signal and/or audio signal that can be presented to the user. Components are discussed in further detail below. 4 is a dual-wafer tuned frequency selective selection component according to some embodiments of the present invention. They are generally divided into an RF processing component and a digital processing component. For example, the RF channel selection processing block diagram illustrates one of the non-standard implementations of the RF channel selection processing block 340a shown in FIG. Similarly, the digital channel selection processing block 44 〇 b = the solution is shown in the digital channel selection processing block 3 shown in FIG. 3 : an exemplary implementation manner. The RF channel selection processing block 44A may be applied to the RF integrated circuit 400 that is generally optimized for RF processing, and the digital channel selection processing block 440b may be implemented. A second integrated circuit 410 is generally optimized for digital processing. The amplified broadcast signal 4〇5 corresponds to the amplified broadcast signal provided by the VGA 350 shown in FIG. The RF channel selection processing block 44A may be subjected to a behavioral_mixing stage comprising: - a first mixer f: a skin 427a; a second mixer, a vibrating 4i7b; j^ and an optional brother Passing filter 427b. The double conversion mixing stage operates to upconvert the frequency of the broadcast signal to 21 200915717, such that the selected channel is substantially centered on a first inter-order frequency; The number of channels of the signal is chopped; the frequency of the remaining channels is down-converted such that the selected frequency is substantially centered at a second intermediate frequency; and the channel located near the selected channel is further filtered as appropriate For example, 'the classics The large broadcast signal 405 may be input to the first mixer/oscillator pair 417a. The frequency of the oscillator may be changed by the frequency selector 470, which may be controlled by a user from a channel selected for viewing. The input may be accessed from the digital processing portion and/or an external connection. The first mixer/oscillator pair 4i7a will operate the amplified broadcast signal 4〇5 with a selected operation. The signal provided by the local oscillator at the frequency is heterodyned to shift the frequency of the broadcast signal such that the selected channel is substantially centered on a first intermediate frequency. For example, the first mixture The oscillator/oscillator pair may move the frequency such that the frequency component of the first intermediate frequency broadcast signal is above the frequency range of the amplified broadcast signal to avoid collision with the image frequency and avoid Resonance occurs. The first intermediate frequency signal may then be provided to a bandpass filter d having a predetermined conduction band centered at the first intermediate frequency to allow a peak frequency The signals in the range pass while substantially rejecting all other frequencies. For example, the band pass filter 4仏 may have a conduction band that is substantially suitable for passing a single channel in the broadcast signal. Or, for example, By narrowing the broadcast signal to two or more frequencies, the bandpass filter (4) passband allows more than one channel to pass. In some 22 200915717 some embodiments t 'bandpass filter 427a will Being cried, for example, an external SAW is so thin that it is straightforward, and it is intended to have a conduction band that is configured to narrow the signal to one or more channels while rejecting other frequencies. However, the 'H-skin can also be any type of band-pass filter' skin, because the evil of the present invention is not limited in this respect.帑逋 Filter --- Not the same as the oscillating oscillator pair 417b. The mixer/vibrator pair 41 7b may convert the frequency of the input signal based on the frequency of the signal provided by the local oscillation. 选定, the selected channel is substantially centered at a second intermediate frequency. In some embodiments, the second mixer/oscillator #4m will down-convert the frequencies such that the selected channel will be at the fundamental frequency of the tuner, and in other embodiments, The second mixer/oscillator pair 41 will downconvert the frequencies such that the selected channel is centered at a center frequency. ', ', the second mixer/vibrator pair 417b may be arranged according to the bandpass f wave 427a to allow a single channel or channels from the broadcast signal to pass Further filtered. For example, the output of the second mixer/invigorator 417b may be provided to a band (4) wave 427b to reject channels located near the selected channel. The signal 43 5 provided by the rf channel selection processing block 440a may basically only include the selected channel in the broadcast signal centered on the fundamental frequency of the television receiving device or the specific intermediate frequency thereof, or may include the A channel and one or more adjacent channels or a portion of a nearby channel. The RF channel selection processing block 44a will provide a signal 435 to the digital channel selection processing block 44b on the digital 23 200915717 integrated circuit 410. Digital channel selection processing block 440b may include a feedback loop that includes: a vga 430; an analog to digital converter 445; and a digital intermediate frequency (if) processing block 480. The output of the digital channel selection processing block 44b may be a video signal and/or audio signal 125 that may be displayed and/or provided to a promotional component for presentation to the user. One embodiment of the digital channel selection processing block may operate as follows. The signal 435 supplied to the digital channel selection processing block 4401 may be amplified by the VGA 430. The gain of the VGA is dependent on the gain control signal 455. The amplified signal may then be converted by a analog to digital converter 445 into a digital signal so that the remainder of the gain control process can be handled digitally. If the signal 435 is located at an intermediate frequency signal other than the fundamental frequency, then the digital IF processing 48 may down the frequency of the signal down to the base frequency and demodulate the selected channel. Digital IF processing 480 may also include post processing, which may include any of a number of processing components for performing techniques that may be based on the type and composition of signal 435. Post processing may include any number of processing and/or filtering, demodulation, video and audio processing, decoding and encoding, decompression, etc. of the following and/or combinations thereof. These processes are considered to be through an audio. And/or video presentation to prepare for the necessary processing of the signal to be presented to the user. Digital IF Processing 48〇 may also output a gain control signal that is input to the VGA 430. 45 5 ° Any of a variety of control mechanisms, including those described herein, can be used to generate the gain control signal 455. Digital IF processing 480 may also be 24 200915717 with the frequency selector. 470 communication, to control which channel is selected to be understood, - the channel selection component adapted to isolate a selected harmonic may contain various other components, or may be selected in other ways - Channel. For example, I replaces the double-conversion type front-end shown in Figure 1 with a single-conversion method. The components of the front-end: 4 are only constituents - generally divided into RF 4 and digital processing and = substantial bi-chip design. An example of some embodiments of components of a channel selection process that are dispersed over individual RF bust circuits and digital integrated circuits. In this regard, aspects of the present invention are not limited to use with any specially configured channel selection component, and other tuner configurations adapted to receive and process different types of television signals can be used. For example, any of the various bimorph designs described in the '792 patent may be suitable for the aspects of the present invention. As discussed above, the Applicant has found that 'the division of the AGC into RF processing components and digital processing components may be superior and will enhance the -substantial dual-wafer tuner design, some of which have been implemented in conjunction with Figure 3. Description. Figure 5 illustrates one of the implementations of an AGC control loop that is substantially implemented on two wafers, as described herein, in accordance with certain embodiments of the present invention. The dual-chip design may be due to power detection. The 560a is applied over the RF integrated body wafer 500 and the gain controller 56A is applied over the digital integrated wafer 51A to obtain benefits. The system shown in Figure 5 may be suitable for use in an exemplary assembly of a gain controller in accordance with aspects of the present invention. As discussed above, a VGA 550 may be implemented on the RF product 25 200915717 body circuit 500 for receiving a broadcast signal and adjusting the gain to maintain the power in the signal within an acceptable range. A power detector 560a may be implemented on the RF integrated circuit for detecting one or more power characteristics of the amplified broadcast signal and providing a signal indicating that the one or more detected The detected power level signal 525 of the power feature. The detected power level signal 525 may then be provided to the gain controller 56Gb' to convert the developed power to a gain adjustment value for the vga. The manner in which the gain controller 560b operates may be as follows. The detected power level signal 525 received from the power detector 560a may be converted into a voltage signal, for example, using a Δ to v RC amplification S 561. It should be understood that if the debt measurement power level signal 525 is originally a voltage signal, then the I to v amplifier 561 or other conversion elements may not be needed. In some embodiments in which ς to V conversion is used, the conversion element (for example, transimpedance amplifier 561) may be implemented on the digital integrated circuit 5 〇〇 the digital integrated circuit 510 because This issue is not restricted. Because the aspect of the invention is in this respect

進打濾波,用以移除該已偵測功率位準中的高頻變異,以 便改善該訊號增益的預估值。於某些實施例中,可能會包 含一下降取樣方塊。該數位已偵測功率訊號525,接= 能會與一用以表示該廣播訊號中一所希功率位準的參考訊 ,很轉換成—數位訊 5 63來對該數位訊號 號。接著便可能會利用一低通濾波器 26 200915717 號5 6 5作比較。 月確地5兒,一參考訊號(例如參考電壓νπ〇565可能 係被k擇用以表不一功率位準,其係該agc試圖要儘可 能保持的該經放大的廣播訊號中的功率位準。該參考電壓 可能係依據下游處理組件(例如頻道選擇處理方塊)的效能 規格所選定的,或者可能係依據該調譜器的其它設計考量 所選疋的。所以’該數位功率位準訊號可能會透過相加元 件567從該參考《 565中被扣除(或者反之),用以產生 -誤差訊號568。誤差訊號568的運作方式係當作一種用 以估計該廣播訊號的已偵測功率特徵偏離所希數值有多遠 ‘X AGC控制迴路會被配置成用以將誤差訊号虎⑽驅策 至零以便將5亥經放大的廣播訊號的功率特徵維持在該參 考訊號565所示的位準處。誤差訊號鳩接著可能會透過 相乘元件566被-可程式化的增益參數k所縮放,用以修 正該封閉迴路系統之控制該VGA 55()對於該廣播訊號⑴ 之功率位準中之變化的反應速度的時間常數。該經縮放的 誤差訊號接著可能會被提供至積分器州,其會積分介於 该已偵測功率位準訊號和該參考訊號之間的誤差。 於某些實施例中’該控制器會被配置成當該廣播訊號 Π:的增益太高時(舉例來說’當該已備測功率位準訊號大 於該參考訊號時),該誤差訊號將會為正值而該積分器州 :輸^將會提高;@當該廣播訊號的增益太低時(舉例來 說’當該已偵測功率位準訊號小於該參考訊號時),該誤差 27 200915717 訊號將會為負值而該積分器569的輸出將會下降。於其它 實施例中,該控制器會被配置成當該廣播訊號115的增益 太高時,該誤差訊號將會為負值而該積分器569的輸 會下降;而當該廣播訊號的增益太低時,該誤差訊號將會 為正值而該積分器569的輪出將會提高。應該明白的係, 藉由切換提供至該相加元件之訊號的記號便可以施行任— 實施例。 積分器569會提供一經積分的誤差訊號545給增益映 射器590。如上面的討論,增益映射器59〇可能會被配置 成用以將該經積分的誤差訊號545的數值映射至由增益控 制Λ號5 5 5所代表的增益數值。接著,增益控制訊號5 5 5 可能會被提供至VGA 55〇,用以在傾向於降低誤差訊號 之絕對數值的方向中來調整該增益。據此,該AGc控制 码路會運作用以維持該經放大的廣播訊號的功率位準,使 /、佐可此地接近遠參考訊號。如上面的討論,增益映射器 59〇可被施行在任—晶片之上;或者,於某些實施例中I 可此70王不需要用到。此外,該AGC控制迴路可能還包 含一數位至類比轉換器(DAC),用以在來自該增益控制器 的讯號被提供至該VGA之前將其從一數位訊號轉換成一 類比訊號。該DAC可被施行在 <壬__晶片之上並且可能會 &據5亥增盈映射器(若有提供的話)被施行的位置。 應。亥月白的係,一 AGC的上面施行方式僅為一示範 例’其匕的施行方式亦可能適用。明確地說,上面所述之 %仃方式闡明-種—AGc大體上可如何被分散在兩個晶 28 200915717 ^之上的耗例’用以將主要的功能分別分離成心組件和 數位組件。不過,且 _ ,、匕的施仃方式亦同樣可適用於本發明 的態樣。明確地說,γ 仁疋並不限於,可以使用大體上與一 :曰曰5又计相符的其它施行方式,因為本發明的態樣於此 方面並未受到限制。 AGC(尤其是—鞭控制迴路的各種組件)可能很容易 定誤差的影響。其中—個常見的誤差在本文中被稱 "移誤差」。偏移誤差可能會因環境條件(例如溫度和 濕度)改變的關係而出現,而更值得注意的係,會因為構成 該就和相關聯控制迴路的電子組件的規格變異而出現。 一偏移以大體上所指的係介於—控制迴路要收傲的實際 數值以及該控制迴路意圖收斂的所希數值之間的差異。於 AGC之中’ $可能會導致該控制迴路收斂至—太大或 太小的功率位準處’從而讓下游處理組件曝露在非最佳的 功率位準中。 在習知技術中係使用各種校正技術在製造時便解決掉 偏移誤差’該等校正技術通常涉及測試和微調肖AG。的 組件。不過’此等習知的校正技術卻非常地昂貴。舉例來 說’偏移誤差可能會在製造之後但是在銷售之前被估算出 來’而該AGC控制迴路的組件則會經過微調以補償該 的實際收歛數值和所希收歛數值的差異。此等微調法會需 要用到非常大量的資源並且可能會實質上提高製造的成 本。 發明申請人已經發現,在開機時運作的自動校正標準 29 200915717 %序可以省部在製造時進行測試與微調的必要性。根據某 些實施例,—調諧器包含—校正處理,其會校正該AGC 用以補償偏移誤差。該校正可於開機時被自動實施或者可 以手動啟動,用以在此方面降低進行後製造測試與微調的 需求(且因而可減輕費用)。於某些實施例中,該校正處理 會運用和該AGC相同的如:生,丨、n ,. 扪控制迴路以提高該校正的精確性, 如下面的進一步詳細說明。 圖6所示的係根據本發明某些實施例一具有用於校正 —AGC以補償偏移誤差之校正處理的職器。調諧器 可能和圖3中所示的調諧器雷同。明確地說,圖6中的調 。白杰只貝上可此係一雙晶片設計’其大體上會分成位於個 別積體電路之上的RF處理組件和數位處理組件。不過, 調諧器6〇還包含-被配置成用以在AGC 630上實施一校 正:乍業的校正處理的組件,用以在此方面降低實施後製造 測試與微調的需求。 月確地說’调諧器60包含—校正訊號產生器⑺,一 :移訊號產生器671 ’以及一相加放大器677。圖6中的 业線係表不僅有在進行校正處理期間才有作用並且在完成 父正之後便不會有作用且直到該校正處理被重新啟動(舉例 ^兒’開機時)為止的聯接線。該校正作業至少部分係透過 =定-偏移訊號來完成,該偏移訊號會將功率制器_ =供的已谓測功率位準訊號調整一既定的數額,用以補 仏在該校正作業期間所預測之該搬的偏移誤差,如下 面的進一步詳細說明。 30 200915717 為校正該AGC,可能會藉由以位於RF積體電路6〇〇 之上為宜的校正訊號產生器674來產生一具有大體上已知 功率的校正訊號。該校正訊號的功率可能會對應於在作業 期間被輸入至該頻道選擇處理方塊的廣播訊號的所希功率 位準,並且從而可能會等於該增益控制器所使用的參考訊 就(舉例來說,該校正訊號的功率可能會等於圖$中所示的Filtering is used to remove high frequency variations in the detected power level to improve the estimate of the signal gain. In some embodiments, a downsampling block may be included. The digital detected power signal 525 can be converted to a digital signal by a reference signal for indicating a power level in the broadcast signal. A low pass filter 26 200915717 5 5 5 may then be used for comparison. 5th, a reference signal (for example, the reference voltage νπ〇565 may be selected to represent a different power level, which is the power bit in the amplified broadcast signal that the agc tries to maintain as much as possible) The reference voltage may be selected according to the performance specifications of the downstream processing component (such as the channel selection processing block), or may be selected according to other design considerations of the spectrometer. Therefore, the digital power level signal is selected. It may be subtracted from the reference "565" by the summing element 567 (or vice versa) to generate an error signal 568. The error signal 568 operates as a detected power characteristic for estimating the broadcast signal. How far away from the value of the 'X AGC control loop is configured to drive the error signal tiger (10) to zero to maintain the power characteristics of the 5 Hz amplified broadcast signal at the level indicated by the reference signal 565 The error signal 鸠 may then be scaled by the multiply element 566 by the programmable variable parameter k to modify the closed loop system to control the VGA 55() for the broadcast. (1) A time constant of the reaction rate of the change in the power level. The scaled error signal may then be provided to the integrator state, which may be between the detected power level signal and the reference signal. In some embodiments, the controller will be configured such that when the gain of the broadcast signal is too high (for example, 'when the prepared power level signal is greater than the reference signal), The error signal will be positive and the integrator state: the input will increase; @ when the gain of the broadcast signal is too low (for example, 'When the detected power level signal is less than the reference signal), The error 27 200915717 signal will be negative and the output of the integrator 569 will drop. In other embodiments, the controller will be configured such that when the gain of the broadcast signal 115 is too high, the error signal will If the gain of the broadcast signal is too low, the error signal will be positive and the turn of the integrator 569 will increase. It should be understood that Provided by the switch to the adder element The signal symbol can be implemented as an embodiment. The integrator 569 provides an integrated error signal 545 to the gain mapper 590. As discussed above, the gain mapper 59 can be configured to integrate the The value of the error signal 545 is mapped to the gain value represented by the gain control nickname 5 5 5. Then, the gain control signal 5 5 5 may be supplied to the VGA 55 〇 for decreasing the absolute value of the error signal. The gain is adjusted in the direction. Accordingly, the AGc control code is operative to maintain the power level of the amplified broadcast signal, so that the near reference signal is approached. As discussed above, the gain map The device 59 can be implemented on any of the wafers; or, in some embodiments, the 70 can be used without the need. In addition, the AGC control loop may also include a digital to analog converter (DAC) for converting a signal from the gain controller from a digital signal to an analog signal before being supplied to the VGA. The DAC can be implemented on the <壬__ wafer and may be & according to the location where the 5 liters mapper (if provided) is implemented. should. In the case of Haiyuebai, the above-mentioned implementation of an AGC is only an example. The implementation of the method may also apply. Specifically, the % 仃 method described above clarifies how the AGc can be dispersed over two crystals in order to separate the main functions into a core component and a digital component. However, the manner of applying _, 匕, is equally applicable to the aspect of the present invention. In particular, γ 仁 疋 is not limited, and other modes of operation generally in accordance with one: 曰曰5 can be used, since the aspect of the invention is not limited in this respect. The AGC (especially the various components of the whip control loop) can easily determine the effects of errors. One of the common errors is called "shift error" in this paper. Offset errors can occur due to changes in environmental conditions (such as temperature and humidity), and more notably, due to variations in the specifications of the electronic components that make up the associated control loop. An offset is generally referred to as the difference between the actual value that the control loop is to be proud of and the desired value that the control loop intends to converge. In the AGC '$ may cause the control loop to converge to - too large or too small a power level' to expose downstream processing components to non-optimal power levels. In the prior art, various correction techniques are used to resolve the offset error at the time of manufacture. These correction techniques typically involve testing and fine tuning the Xiao AG. s component. However, such conventional correction techniques are very expensive. For example, the 'offset error may be estimated after manufacture but before sale' and the components of the AGC control loop are fine-tuned to compensate for the difference between the actual convergence value and the convergence value. These fine-tuning methods require a very large amount of resources and can substantially increase the cost of manufacturing. The applicant of the present invention has found that the automatic calibration standard that operates at the time of power-on can be used by the provincial department for testing and fine-tuning at the time of manufacture. According to some embodiments, the tuner includes a correction process that corrects the AGC to compensate for the offset error. This correction can be implemented automatically at startup or manually, to reduce the need for post-manufacturing testing and fine-tuning (and thus reduce the cost) in this regard. In some embodiments, the calibration process utilizes the same control, such as: raw, 丨, n, . 扪 control loops to improve the accuracy of the correction, as described in further detail below. Figure 6 illustrates a server having a correction process for correcting - AGC to compensate for offset errors, in accordance with some embodiments of the present invention. The tuner may be identical to the tuner shown in Figure 3. Specifically, the adjustment in Figure 6. The white chip can be a dual-chip design that is generally divided into RF processing components and digital processing components located on separate integrated circuits. However, the tuner 6 包含 also includes a component that is configured to perform a correction on the AGC 630: a calibration process for the industry to reduce the need for post-implementation manufacturing testing and fine-tuning in this regard. It is said that the tuner 60 includes a correction signal generator (7), a motion signal generator 671', and an addition amplifier 677. The line system table in Fig. 6 has not only the link that is active during the correction process but also does not function after the completion of the parent and until the correction process is restarted (for example, when the machine is turned on). The calibration operation is performed at least in part by a = fixed-offset signal, and the offset signal adjusts the measured power level signal supplied by the power controller _ = a predetermined amount to supplement the calibration operation. The offset error of the shift predicted during the period is as described in further detail below. 30 200915717 To correct the AGC, a correction signal having substantially known power may be generated by a correction signal generator 674 preferably located above the RF integrated circuit 6A. The power of the correction signal may correspond to the power level of the broadcast signal input to the channel selection processing block during the operation, and thus may be equal to the reference signal used by the gain controller (for example, The power of the correction signal may be equal to that shown in Figure $

Vref 565的功率)。就此來說,若不存在偏移誤差的話,那 麼▲介於該功率偵測器的輸出和該參考訊號之間的差異(舉例 '、圖中所示的誤差讯號568)理論上便應該等於零。 不過,即使該廣播訊號的實際功率特徵等於該參考訊號, 該AGC㈣迴路中(舉例來言兒,在該功率制器之中及/或 該增益控制器的元件之中)的偏移誤差仍可能會導致實際的 誤差訊號成為非零(舉例來說,該已制的功率 能合 偏離其真實數值)。 曰 ; J間°亥杈正控制迴路會運作用以調整該偏移 訊號,俾使該誤差訊號相對於已產生的校正訊號的= 收傲至零或接近於零。一旦該誤差訊號收敛至零或接近於 ,之後上’该偏移訊號便會反映該偏移誤差,該偏移誤差接 著會在該調I皆器的運作 、 作期間從該功率偵測器的輸出訊號處 口示口下面的進一步詳細說明。於一實施例中,★亥校 正訊號包含—由—環振蓋器所產生的正弦波。使用—環振 以利用一比較廉價的組件來產生一致且已知的電壓 二生:二:熟知的環_器均可被施行成該校正訊 就產生器 因為本發明ώ/ΐ於β , 的d樣於此方面並未受到限制。此 31 200915717 外,亦可以使用其它類型的校正訊號與校正訊號產生器, 因為本發明的態樣並未限制配合任何特殊類型或排列的訊 號與訊號產生器來使用。 。亥杬正處理可迠始於該調諧器啟動或開機時,或者始 於重新啟動時,或者可在某一所希時間處以手動方式來啟 動。當該校正處理被啟動時,校正訊號產生器674會提供 一校正訊號675給多工器673,該多工器、會在校正期間選 擇該校正訊號675並且在正常作業期間選擇經放大的廣播 Λ號605該夕工器的輸出會被提供至功率偵測器66〇a, 該^率偵測器會備測該已接收訊號的一或多項功率特徵並 且提供-已侦測功率位準訊號625。若有偏移誤差存在的 話’該已偵測功率位準訊號625可能至少部分會因包括該 功率偵測器在内的組件的操作特徵變異的關係而不正確。 據此’該偏移誤差的某—部分可能係因功㈣測器66〇a所 造成的。 相加元件677會結合該已偵測功率位準訊號⑵和該 偏移訊號672,該偏移訊號會在校正期間被調整,用以補 2該偏移誤差,並且可於一開始被設為一内定數值,該内 定數值可能為零或任何其它所希的數值用以啟動該校正處 里由相加元件677所提供的經調整的功率位準訊號625 , 接著可能會被提供至位於數位積體電& 61〇之上的增益控 制Θ 660b。該經調整的功率位準訊號可能會被轉換成一數 很诹配。圖5中所述之各種方法或是(多個)任 何其它合宜的控制方法被處理。 32 200915717 ,二=增益控制器_可能會藉由計算介於該經 2= 二(或是該經調整的功率位準訊號的等效 =:=::匹配該校正訊號中之功率位準的參考 合心誤差訊號。該誤差訊號接著可能 ㈣理,用=Γ該增益控制器來套用任何其它控 考訊號門m 表整的功率位準訊號和該參 考。號間之差異的誤差訊號。該增益控制 :差訊號轉換成-增益訊號或使用在該控制迴路:的1; 較::係,控制…在:二 …制。。二 使用的控制元件相同。 曰的輸出接著可能會 生器,用以決定如何調整該偏務1缺七、至偏移讯谠產 的大小。 錢移訊遽以便降低該誤差訊號Power of Vref 565). In this regard, if there is no offset error, then ▲ the difference between the output of the power detector and the reference signal (for example, the error signal 568 shown in the figure) should theoretically be equal to zero. . However, even if the actual power characteristic of the broadcast signal is equal to the reference signal, the offset error in the AGC (four) loop (for example, in the power controller and/or the components of the gain controller) may still be This will cause the actual error signal to become non-zero (for example, the fabricated power can deviate from its true value). J ; J ° 杈 杈 positive control loop will operate to adjust the offset signal, so that the error signal is arrogant to zero or close to zero with respect to the generated correction signal =. Once the error signal converges to zero or is close to, the offset signal will reflect the offset error, and the offset error will then be from the power detector during operation of the modulating device. The output signal is further detailed below the port. In one embodiment, the ★hai school positive signal includes a sine wave generated by the ring vibrator. Using a ring oscillator to utilize a relatively inexpensive component to produce a consistent and known voltage lifetime: two: a well-known looper can be implemented as the correction signal generator because the present invention is ώ/ΐβ d is not limited in this respect. In addition to the 31 200915717, other types of correction signals and correction signal generators can be used, as the aspect of the invention is not limited to use with any particular type or arrangement of signal and signal generators. . The processing can start when the tuner is started or turned on, or when it is restarted, or can be started manually at a certain time. When the correction process is initiated, the correction signal generator 674 provides a correction signal 675 to the multiplexer 673, which will select the correction signal 675 during calibration and select the amplified broadcast during normal operation. The output of the 605 will be provided to the power detector 66A, which will prepare one or more power characteristics of the received signal and provide a detected power level signal 625. . If the offset error is present, the detected power level signal 625 may be at least partially incorrect due to the variation of the operational characteristics of the components including the power detector. According to this, some part of the offset error may be caused by the power (four) detector 66〇a. The summing component 677 combines the detected power level signal (2) with the offset signal 672, and the offset signal is adjusted during the correction to compensate for the offset error, and can be set at the beginning. An internal value that may be zero or any other desired value used to initiate the adjusted power level signal 625 provided by the summing element 677 in the correction, which may then be provided to the digit product Gain control Θ 660b above the body power & 61〇. The adjusted power level signal may be converted to a number. The various methods described in Figure 5 or any other suitable control method(s) are processed. 32 200915717, two = gain controller _ may be calculated by the 2 = 2 (or the equivalent of the adjusted power level signal =: =:: match the power level in the correction signal) Referring to the coincidence error signal, the error signal may then be used to apply the error signal of the difference between the power level signal of any other control signal gate m and the reference number. Gain control: The difference signal is converted into a -gain signal or used in the control loop: 1; comparison:: system, control... in: two... system. The second control element is the same. The output of the 接着 may then be a generator, It is used to decide how to adjust the size of the offset 1 to the offset signal. The money is moved to reduce the error signal.

•應該明白的係’圖6中的校正控制迴路和AG :’貝上係相同的。也就是,兩個控制迴路包含相:的^ 率她以及相同的增益控制器控制元 二'的功 的控制泡败,兮p τ & 日田刀予相同 同的組件來運作(並且因而會「看見::相同或實質相 從而担一 看見」相同的偏移誤差), 校::精確性。應該明白的係,亦可,其 ,路。不過,不論施行哪-個控制迴路 、 成正爷作業期間所使用& AGC控制迴路以 :構 ;用的校正控制迴路的組件出現大量重疊均二生二所 免,不過,這並未限制本發明的態樣。 好 圖7所示的係和圖6中所示之校正處理雷同的—具有 33 200915717 整合校正處理的調諧器。不過,該校正控制迴路包含一狀 態機771a和數位至類比轉換器(DAC)771b,用以圖解根據 本發明某些實施例的一偏移訊號產生器的其中一種可能施 行方式。DAC 771b可能會接收一 DAC碼71並且將DAC 碼71轉換成偏移訊號772。該DAC碼可能係被偏移產生 器771所儲存的一數位數值,該DAC會將該數位數值轉 換成其類比等效數值,用以結合該功率偵測器的輸出。該 DAC碼一開始可能會被設為一内定數值,該内定數值可能 為零(舉例來說,啟動該校正並假設該偏移誤差為零)或該 DAC碼能夠代表的一數值範圍中任何其它所希的數值。 狀態機771a可能會被調適成用以至少部分依據增益控 亲J 7 6 0 b所&供的机號7 5 5 (舉例來說,經積分的誤差訊 號)在傾向於會導致該控制迴路收斂的方向(也就是,傾向 於將該增益控制器的誤差訊號驅策至零)中來調整該dac 碼。應該明白的係,狀態機771a可以各種方式來施行,並 且可以使用被調適成用以調整該偏移訊號以降低該誤差訊 \的其匕控制器來取代,因為本發明的態樣於此方面並未 受到限制。 圖8所示的係根據本發明某些實施例用以調整一 dAc 馬來近似一偏移誤差的狀態機。圖8的狀態機會在規律的 間问處監視該增益控制器所提供的訊號(舉例來說,該經積 分的誤差訊號)並且保留三個最近的數值。最近的數值會以 vl來表示,第二近的數值會以v2來表示,而第三近的數 值則會以v3來表示。在步驟8〇〇中,會比較vi與v2的 34 200915717 數值’用以判斷它們的數值是否相等。倘若vl與v2的數 值不相等的話,那麼便可能會實施步驟8〇5。在步驟805 中’其會判斷該增益究竟正在提高(vl>v2)或降低(vl<v2)。 倘右該增显正在提高的話,那麼便會假設該DAC碼太小, 並且會在步驟8丨〇中將該DAC碼遞增一個單位。 倘右该增益正在降低的話’那麼便會假設該Dac碼太 大,並且會在步驟8丨5中將該DAC碼遞減一個單位。在 f 步驟820中,其會判斷該DAC碼的目前數值是否等於最 s 大值或最小值。倘若該DAC碼等於最大值或最小值的話, 那麼該校正便已經完成,而該狀態機則會前進至步驟87〇 將該校正控制迴路視為收斂。也就是,倘若該DAC碼已 經遞增至一預設最大值的話,或是已經遞減至一預設最小 值的話,便會在作業期間使用個別的最大值或最小值作為 該DAC碼用以近似一偏移誤差。 倘若該DAC碼不等於最大值或最小值的話,那麼,該 " 狀態機便會在步驟825中等待來自該增益控制器的下一個 U 數值,用以繼續調整該DAC碼。在接收到下一個增益控 制數值之後,其會在步驟83〇中判斷該增益控制訊號的數 值是否已經改變方向。方向的改變表示出現過零跨越,而 該零跨越的DAC碼則會以符合要求的方式來反映該偏移 誤差。倘若vl>v2及v2<v3,或者倘若vl<v2及v2>v3, 該等數值便係已經改變方向。倘若該等數值已經改變方向 的店,那麼该杈正便已經完成,而該狀態機則會前進至步 驟870,使用目刖的DAC碼來近似該偏移誤差。倘若該等 35 200915717 數值並未改變方向的話(舉例來說,v1<v2<v3或是 vl>v2>v3),那麼’該狀態機便會前進至步驟8〇5,用以繼 續調整該DAC碼,試圖收斂該校正控制迴路(舉例來說, 試圖抵達步驟870)。 倘若在步驟800處,與V2的數值相等的話,那麼, 其便會在步驟835與840中判斷vi是否等於該增益控制 器所提供之訊號的最大或最小可能數值。倘若v丨不等於 最小值或最大值的話,那麼該校正便已經完成,而該狀態 機則可前進至步驟870。倘若vl等於最大值的話,那麼, 便會在步驟845中將該DAC碼遞增一個單位;而倘若vl 等於最小值的話,那麼,便會在步驟850中將該DAC碼 遞減一個單位。在遞增或遞減該DAC碼之後,便會在步 驟855中判斷該DAC碼的目前數值是否等於最大值或最 小值。倘若該DAC碼等於最大值或最小值的話,那麼, 該校正便已經完成,而該狀態機則會前進至步驟87〇。倘 若该DAC碼不等於最大值或最小值的話,那麼,該狀雜 機便會在步驟860中等待下一個增益控制數值。在接收到 下一個增益控制數值之後,其會在步驟865中判斷該等增 盈控制數值是否已經改變(也就是,vl是否不等於倘 若該等增益控制數值已經改變的話,那麼,該校正便已經 完成’而該狀態機則會前進至步驟870。倘若該等增益控 制數值並未改變的話,那麼,該狀態機便會前進至步驟 835。 應s亥明白的係,上面所述之狀態機僅為適合用來決定 36 200915717 DAC碼以補償—偏移誤差的—狀態機的其中—種範例。 f匕的狀態機設計亦可適用且本發明的態樣於此方面並未 =到限制此外’—偏移訊號產生器未必需要使用一狀態 機來^丁月b夠產生與修正一偏移訊號以近似一偏移誤差 的任何硬體或軟體組件均可以使用,因為本發明的態樣於 此方面並未受到限制。 本發明的上述實施例可以眾多方式中任何一種來施 行。舉例來說,可以利用硬體、軟體、或兩者組合來施行。 I 應該明白的儀,用 一 f 用以貫細*上面所述功能的任何組件或組件 之△集合均可以上位概念將其視為係用以控制上面所討論之 的或夕個控制器。該等一或多個控制器可以眾多方 式來施行,例如利用專屬硬體、電路系統來施行,或是以 使用微碼或軟體來實施上面所提及之功能而被程式化的一 般用途硬體(舉例來說,—或多個處理⑸來_。 ^本發明的各種態樣可以單獨使用、組合使用、或是以 r前文所述之實施例中未明確討論到的各式各樣排列方式來 使用所以’本發明的應用並不受限於前面說明中所提或 圖式甲所圖解之組件的細節或排列。本發明可能有其它實 施例並且可以各種方式來實行或實現。 申請專利範圍中使用序數詞「第一」、「第二」、「第 三」、...等來潤飾一專利申請元件的本身並未含有一專利 I請=件的權限、優先序、順序高於另―元件之意,亦不 含有-方法之動作被實施的時間順序之意,而僅係被用來 當作標記,用以區分具有特定名稱的—專利申請元件以及 37 200915717 具有相同名稱的另一亓生 件(而非當作序數詞使用), 分該等專利申請元件。 乂便£ 同樣地,本文中戶斥m 使用的措辭和術語僅係為達說 目的而不應被視為具有限制之立“…逹。兒明的 「— 1氏制之思。本文中「包含」、广包 括 具有• It should be understood that the correction control circuit in Figure 6 is the same as the AG:' That is, the two control loops contain the phase: the rate and the same gain controller control element 2's control bubble, 兮p τ & Hita knife works on the same component (and thus " See:: the same or the actual phase and thus see the same offset error), School:: Accuracy. It should be understood that the system can also be, its way. However, no matter which control loop is implemented, the & AGC control loop used during the operation of the master is used; the components of the correction control loop used are exempted from a large amount of overlap, but this does not limit the present invention. The way. The system shown in Fig. 7 is identical to the calibration process shown in Fig. 6 - a tuner having 33 200915717 integrated correction processing. However, the correction control loop includes a state machine 771a and a digital to analog converter (DAC) 771b for illustrating one of the possible implementations of an offset signal generator in accordance with some embodiments of the present invention. The DAC 771b may receive a DAC code 71 and convert the DAC code 71 to an offset signal 772. The DAC code may be a digit value stored by the offset generator 771, which converts the digit value to its analog equivalent value for combining the output of the power detector. The DAC code may initially be set to a default value, which may be zero (for example, to initiate the correction and assume that the offset error is zero) or any other range of values that the DAC code can represent. The value of the choice. The state machine 771a may be adapted to at least partially rely on the gain control pro 7 7 0 b & the machine number 7 5 5 (for example, the integrated error signal) tends to cause the control loop The direction of convergence (i.e., tending to drive the error signal of the gain controller to zero) adjusts the dac code. It should be understood that the state machine 771a can be implemented in a variety of ways and can be replaced with a controller that is adapted to adjust the offset signal to reduce the error signal, as aspects of the present invention are aspects of this aspect. Not limited. Figure 8 illustrates a state machine for adjusting a dAc Malay approximation to an offset error in accordance with some embodiments of the present invention. The state opportunity of Figure 8 monitors the signal provided by the gain controller (e.g., the integrated error signal) at regular intervals and retains the three most recent values. The most recent value will be represented by vl, the second nearest value will be represented by v2, and the third nearest value will be represented by v3. In step 8〇〇, the values of vi and v2 34 200915717 are compared to determine if their values are equal. If the values of vl and v2 are not equal, then step 8〇5 may be implemented. In step 805, it will determine whether the gain is increasing (vl > v2) or decreasing (vl < v2). If the right increase is increasing, then the DAC code is assumed to be too small and the DAC code is incremented by one unit in step 8. If the gain is decreasing on the right then the Dac code is assumed to be too large and the DAC code is decremented by one unit in step 8丨5. In f step 820, it is determined if the current value of the DAC code is equal to the most s large or minimum value. If the DAC code is equal to the maximum or minimum, then the correction is complete and the state machine proceeds to step 87. The correction control loop is considered to converge. That is, if the DAC code has been incremented to a preset maximum value, or has been decremented to a predetermined minimum value, an individual maximum or minimum value is used as the DAC code to approximate one during the job. Offset error. If the DAC code is not equal to the maximum or minimum value, then the " state machine will wait for the next U value from the gain controller in step 825 to continue adjusting the DAC code. After receiving the next gain control value, it will determine in step 83 that the value of the gain control signal has changed direction. A change in direction indicates a zero crossing, and the zero-crossing DAC code reflects the offset error in a satisfactory manner. If vl > v2 and v2 < v3, or if vl < v2 and v2 > v3, the values have changed direction. If the value has changed direction of the store, then the defect has been completed and the state machine proceeds to step 870 to approximate the offset error using the witnessed DAC code. If the 35 200915717 value does not change direction (for example, v1<v2<v3 or vl>v2>v3), then the state machine will proceed to step 8〇5 to continue adjusting the DAC. The code attempts to converge the correction control loop (for example, attempting to reach step 870). If, at step 800, the value of V2 is equal, then it is determined in steps 835 and 840 whether vi is equal to the maximum or minimum possible value of the signal provided by the gain controller. If v丨 is not equal to the minimum or maximum value, then the correction is complete and the state machine proceeds to step 870. If vl is equal to the maximum value, then the DAC code is incremented by one unit in step 845; and if vl is equal to the minimum value, then the DAC code is decremented by one unit in step 850. After incrementing or decrementing the DAC code, it is determined in step 855 whether the current value of the DAC code is equal to the maximum or minimum value. If the DAC code is equal to the maximum or minimum value, then the correction is complete and the state machine proceeds to step 87. If the DAC code is not equal to the maximum or minimum value, then the hopper will wait for the next gain control value in step 860. After receiving the next gain control value, it will determine in step 865 whether the gain control values have changed (i.e., whether vl is not equal to if the gain control values have changed), then the correction is already Completion 'and the state machine proceeds to step 870. If the gain control values have not changed, then the state machine proceeds to step 835. The system described above, the state machine described above only It is an example of a state machine suitable for determining the 36 200915717 DAC code to compensate for the offset error. The state machine design of f匕 is also applicable and the aspect of the invention is not limited to this aspect. The offset signal generator does not necessarily need to use a state machine to generate any hardware or software components that are capable of generating an offset signal with an offset error to approximate an offset error, since the aspect of the present invention is The above embodiments of the present invention are not limited. The above embodiments of the present invention can be implemented in any of a number of ways. For example, hardware, software, or a combination of both can be utilized. I. I understand that the △ set of any component or component that uses a f to be used for the functions described above can be considered to be used to control the controller or the controller discussed above. The one or more controllers can be implemented in a variety of ways, such as by using proprietary hardware, circuitry, or by general purpose hard programming using microcode or software to implement the functions mentioned above. Body (for example, - or a plurality of processes (5) to _. ^ Various aspects of the invention may be used alone, in combination, or in a variety of arrangements not explicitly discussed in the foregoing examples of r The application of the present invention is not limited to the details or arrangements of the components illustrated in the foregoing description or the drawings. The invention may have other embodiments and may be implemented or implemented in various ways. The use of the ordinal words "first", "second", "third", ..., etc. in the scope to retouch a patent application component does not contain a patent I request = the authority, priority, order is higher than The meaning of the element does not contain the chronological meaning that the action of the method is implemented, but is only used as a mark to distinguish between a patent application component with a specific name and 37 200915717 another with the same name Twins (rather than used as ordinals) are divided into such patent application components. 乂 £ £ Similarly, the wording and terminology used in this document is used only for the purpose of the statement and should not be considered as limiting. The establishment of "... 逹. 儿明" - 1 thinking of the system. In this article "including", including

J 含有J contains

J 广 涉及」、及其變化語的用 法有涵蓋其後所列之 的 音。 員目及其等效項目以及額外項目之 【,圖式簡單說明】 圖1所示的係-習知電視接收裝置中的調譜器; μ圖# 2b所不的係根據本發明某些實施例用於 :白器的自動增益控制器(AGC),該AGc係運作在一^ 讯唬以及一經放大的廣播訊號之上; ,、 圖3所示的係根據本發明某些實施例包含—自動^ ^器的職器的―部分,其係被施行在兩個積體電^ 體^ 4所示的係根據本發明某些實施例被施行在兩個積 之上的一頻道選擇處理的示範性組件; 圖5所示的係根據本發明某些實施例被施行在兩個積 a電路之上的一 AGC的示範性組件丨 、 圖6所示的係根據本發明某些實施例用於 個積體電路之上的-AGC的校正處理; 付兩 圖7所示的係根據本發明某些實施例用於一校正處理 的—偏移訊號產生器的示範性組件;以及 处 38 200915717 圖8所示的係根據本發明某些實施例用於一偏移訊號 產生器的一狀態機。 【主要元件符號說明】 110 訊號源 115 廣播訊號 120 調諧器 125 顯示訊號 130 顯示器 230 前置放大器級 240 頻道選擇處理方塊 250 可變增益放大器 255 增益控制訊號 260 自動增益控制器 300 積體電路 305 經放大的廣播訊號 3 10 積體電路 325 已偵測功率位準訊號 330 前置放大級 335 訊號 340a RF頻道選擇處理方塊 340b 數位頻道選擇處理方塊 345 誤差訊號 350 可變增益放大器 39 200915717 355 增益控制訊號 360a 功率彳貞側器 360b 增益控制器 390 增益映射器 400 RF積體電路 405 經放大的廣播訊號 410 數位積體電路 417a 混合器/振盪器對 417b 混合器/振盪器對 427a 帶通濾波器 427b 帶通濾波器 430 可變增益放大器 435 訊號 440a 440b 445 l 455 465 470 480 500 510 525 5255 RF頻道選擇處理方塊 數位頻道選擇處理方塊 類比至數位轉換器 增益控制訊號 訊號 頻率選擇器 數位中頻處理方塊 RF積體電路 數位積體電路 已偵測功率位準訊號 數位已偵測功率訊號 40 200915717 545 經積分的誤差訊號 550 可變增益放大器 555 增益控制訊號 5 60a 功率1貞側器 560b 增益控制器 561 I至V轉阻放大器 562 類比至數位轉換器 563 低通濾波器 565 參考訊號 566 相乘元件 5 67 相加元件 568 誤差訊號 569 積分器 590 增益映射器 60 調講器 600 RF積體電路 605 經放大的廣播訊號 610 數位積體電路 625 已偵測功率位準訊號 625 ’ 經調整的功率位準訊號 630 自動增益控制迴路 635 訊號 640a RF頻道選擇處理方塊 640b 數位頻道選擇處理方塊 41 200915717 650 可變增益放大器 655 訊號 660a 功率偵測器 660b 增益控制器 671 偏移訊號產生器 672 偏移訊號 673 多工器 674 校正訊號產生器 675 校正訊號 677 相加元件 700 RF積體電路 705 訊號 710 數位積體電路 725 ’ 經調整的功率位準訊號 730 自動增益控制迴路 735 訊號 740a RF頻道選擇處理方塊 740b 數位頻道選擇處理方塊 750 可變增益放大器 755 訊號 760a 功率偵測器 760b 增益控制器 771 偏移產生器 771a 狀態機 42 200915717 771b 71 772 773 774 777 數位至類比轉換器 D A C碼 偏移訊號 多工器 校正訊號產生器 相加元件 43The use of J Guang, and its variants, covers the sounds listed later. A brief description of the personnel and its equivalents and additional items [, a simple description of the schema] The tuner in the conventional television receiver shown in FIG. 1; the μ diagram # 2b is not in accordance with some embodiments of the present invention. For example: an automatic gain controller (AGC) for white devices, the AGc is operated on a signal and an amplified broadcast signal; and, as shown in FIG. 3, according to some embodiments of the present invention - A portion of the server of the automatic device that is implemented in the two integrated circuits 4 is subjected to a channel selection process performed on two products according to some embodiments of the present invention. Exemplary Components; Figure 5 is an exemplary component of an AGC that is implemented over two A circuits in accordance with some embodiments of the present invention, and Figure 6 is used in accordance with some embodiments of the present invention. -AGC correction processing on top of an integrated circuit; an exemplary component of an offset signal generator for a correction process according to some embodiments of the present invention; and at 38 200915717 Figure 8 illustrates an offset signal generation in accordance with some embodiments of the present invention. A state machine. [Main component symbol description] 110 Signal source 115 Broadcast signal 120 Tuner 125 Display signal 130 Display 230 Preamplifier stage 240 Channel selection processing block 250 Variable gain amplifier 255 Gain control signal 260 Automatic gain controller 300 Integrated circuit 305 Amplified broadcast signal 3 10 Integrated circuit 325 Detected power level signal 330 Preamplifier stage 335 Signal 340a RF channel selection processing block 340b Digital channel selection processing block 345 Error signal 350 Variable gain amplifier 39 200915717 355 Gain control signal 360a power edger 360b gain controller 390 gain mapper 400 RF integrated circuit 405 amplified broadcast signal 410 digital integrated circuit 417a mixer/oscillator pair 417b mixer/oscillator pair 427a bandpass filter 427b Bandpass Filter 430 Variable Gain Amplifier 435 Signal 440a 440b 445 l 455 465 470 480 500 510 525 5255 RF Channel Selection Processing Block Digital Channel Selection Processing Block Analog to Digital Converter Gain Control Signal Signal Frequency Selector Digital IF Processing Block RF integrated circuit digital Body circuit detected power level signal digital detected power signal 40 200915717 545 integrated error signal 550 variable gain amplifier 555 gain control signal 5 60a power 1 side 560b gain controller 561 I to V transimpedance amplifier 562 Analog to Digital Converter 563 Low Pass Filter 565 Reference Signal 566 Multiplying Element 5 67 Adding Element 568 Error Signal 569 Integrator 590 Gain Mapper 60 Talker 600 RF Integrated Circuit 605 Amplified Broadcast Signal 610 Digital The integrated circuit 625 has detected the power level signal 625 'the adjusted power level signal 630 automatic gain control loop 635 signal 640a RF channel selection processing block 640b the digital channel selection processing block 41 200915717 650 variable gain amplifier 655 signal 660a power 660b gain controller 671 offset signal generator 672 offset signal 673 multiplexer 674 correction signal generator 675 correction signal 677 adding component 700 RF integrated circuit 705 signal 710 digital integrated circuit 725 'adjusted Power level signal 730 automatic gain control loop 735 signal 740a RF channel selection Select Processing Block 740b Digital Channel Selection Processing Block 750 Variable Gain Amplifier 755 Signal 760a Power Detector 760b Gain Controller 771 Offset Generator 771a State Machine 42 200915717 771b 71 772 773 774 777 Digital to Analog Converter DAC Code Offset Signal multiplexer correction signal generator adding element 43

Claims (1)

200915717 十、申請專利範圍: 1. 一種校正組件,配置成用以校正使用在一調諧器中 的自動增益控制器(AGC),該調諧器會配置成用以將一選 定頻道和一多頻道廣播訊號產生隔離,該調諧器實質上係 被施行在兩個晶片之上··一第一晶片,包括一被調適成用 以進行射頻(RF)處理的RF積體電路;以及一第-曰y 不一日日乃 , 包括一被調適成用以進行數位處理的數位積體電路,該校 正組件包括: 一校正訊號產生器,其係施行在該RF積體電路之上, 該校正A號產生器會被調適成用以產生一大體上已知的校 正訊號; 一功率偵測器’其係施行在該RF積體電路之上並且 會被配置成用以於校正期間偵測該校正訊號的至少一功率 知·被亚且用以提供一表示該至少一已偵測功率特徵的功率 位準訊號; 一增益控制器’其係施行在該數位積體電路之上,該 增益控制器會被調適成用以至少部份依據介於該功率偵測 ™所提供的功率位準訊號和一第一參考訊號之間的比較值 來產生至少一誤差訊號; —偏移訊號產生器,其係施行在該RF積體電路之上 亚且會被配置成用以至少部分依據該至少_誤差訊號來產 生一偏移訊號;以及 相加元件,其係施行在該RF積體電路之上並且會 破凋適成用以結合該偏移訊號以及該功率偵測器所提供的 44 200915717 該功率位準訊號,用以提供—經 2. 如申請專利範圍第!項之校;位準訊號 訊號產生M j nn ^ ,、、’其中,該校正 其中,該校正 3. 如申請專利範㈣2項之校正組件 訊號產生器包含一環振盪器。 其中,該校正 4·如申請專利範圍帛!項之校正組# ^ 組件中的組件會構成一控制迴路’該控制迴路會被::成 用以將該至少一誤差訊號驅策至零或實質為零,當該控制 迴路已經實質收斂時,該校正組件便會完成作業。 5.如申請專利範圍第4項之校正組件,其中,該偏移 心虎產生器包含—數位至類比轉換器(dac),&會被配置 成用以至少部分依據該至少一誤差訊號從用以代表會在校 正期間被修正之數位數值的DAC碼中產生該偏移訊號。 ,.如申請專利範圍第5項之校正組件,其中,該偏移 «產生II包含-儲存元件’該錯存元❹以儲存一最終 DAC碼’㈣在該控制迴路已經收㈣來產生該偏移訊 號。 7_如申請專利範圍第6項之校正組件,其[該偏移 訊號產生器包含一有限狀態機(FSM),其會被調適成用以 至少部分依據該至少-誤差訊號來修正該DAC碼。 8.如申請專利範圍帛"貝之校正組件,其進一步包括 颏比至數位轉換器(ADC),其會被排列在該功率偵測器 與忒增i控制器之間’肖以將該功率位準訊號轉換成一數 位功率位準訊號,用以讓該增益控制器進行數位處理。 45 200915717 9·如中請專利範圍第8項之校正組件,其中,該ADC 係施行在該數位積體電路之上。 :〇.如中請專利範圍第8項之校正組件,其中,該ADc 係施行在該RF積體電路之上。 .如申請專利範圍第8項之校正組件,其中,該增益 1 3相加元件,用以依據介於該參考訊號與該數 位功率位準訊號之間的差異來產生一第一誤差訊號。 ,12·如申請專利範圍第u工員之校正組件,其中,該増 ϋ控制益包含一籍八盟 r〇 fM 、刀·™,用以積分該第一誤差訊號以提供 一經積分的誤差訊號。 13.—種由申請專利範圍帛6項之校正組件和該AGC 所產生的組合,該AGC包括: 可I增皿放大器(VGA),其會施行在該RF積體電路 之;該VGA會被調適成用以接收該廣播訊號並且用以 α 刀依據增益訊號來將一可變增益套用至該廣播訊 號,用以提供一經放大的廣播訊號; 該功率偵測器,其會被配置成用以在校正之後侦測該 經放大廣播訊號的至少一功率特徵並且用以提供一表示該 至少一已偵測功率特徵的功率位準訊號丨 ^ /相加兀件’其會被配置成用以組合從該最終D从碼 。中所產生的該偏移訊號,用以提供該經調整的功率位準訊 5虎,以及 該增益控制器,其會被調適成用以至少部分依據介於 該功率_器所提供之該經調整的功率位準訊號和一第二 46 200915717 參考訊號之間的比較值來產生至少一誤差訊號,其中 1 增益訊號至少部分係依據該增益控制器所產生的該至+ 一 誤差訊號。 14 ·如申§青專利範圍第13項之組合,其進_步勺括 增益映射器’其會被配置成用以將該經積分的誤差訊號映 射至該增益訊號。 15_如申請專利範圍第14項之組合,其中,該增益映 射器係施行在該RF積體電路之上。 16_如申請專利範圍第14項之组合,其中,該增益映 射器係施行在該數位積體電路之上。 1 7 ·如申s青專利範圍第1 6項之組合,其中,該第一來 考訊號與該第二參考訊號係相同的。 18.—種自動增益控制器(AGC),用以使用在—調譜器 中,該調諧器會被調適成用以將一選定頻道和一多頻道廣 播訊號產生隔離,該AGC會被配置成用以運作在—校正 模式和一作業模式之中’該校正模式被調適成用以校正該 AGC,該作業模式被調適成用以將一可變增益套用至一廣 播訊號,該AGC包括: 一第一控制迴路,其包括: 一校正訊號產生器,其會被調適成用以產生一校正訊 號; 一功率偵測器’其會被配置成用以偵測一已接收輪入 訊號的至少一功率特徵並且用以提供一表示該至少一已伯 測之功率特徵的功率位準訊號; 47 200915717 一相加7C件’用以結合該功率位準訊號和一偏移訊號, 用以提供一經調整的功率位準訊號; -增血控制器’其包含—參考訊號,該增益控制器會 被調適成用以產生至少—誤差訊號,用以表示介於該來考 訊號和該經調整功率位準訊號之間的差異;以及 ^ -偏移Λ號產生器’其會被調適成用以提供該偏移訊 號給該相加元件’該偏移訊號產生器會被配置成用以至少 口Ρ刀依據D亥至v誤差訊號在該校正模式期間來調整該偏 移訊號;以及 一第二控制迴路,其包括: 可變增&放大器(VGA),其係被調適成用以接收該 廣播汛號並且用以依據—增益訊號來將一可變增益套用至 該廣播訊號,用以提供—經放大的廣播訊號; 該功率偵測器; 該相加元件;以及 該增益控制器, \.+ 其中’在該校正模式中,該第一控制迴路會處於運作 中且送往該功率價測器的該已接收輸入訊號為校正訊號, 該第-控制迴路會運作用以修正該偏移訊號,俾使其會反 映該AGC的-偏移誤差,^其中,在該作業模式中,該 第二控制迴路會處於運作中且送往該功㈣測器的該已接 收輸入訊號為該經放大的廣播訊號,㈣二控制迴路會運 作用以將該㈣大的廣播訊號之功率位準維持在 範圍内。 48 200915717 19.如申請專利範圍第18項之AGC,其中,該 會被調適成用以配合一調諧器來使用,該調諧器實質上係 施行在兩個晶片之上:一 H __ ay , 弟日日片,其包括一被調適成用 以進行射頻(RF)處理的RF積體電路;以及一第二晶片, 其包括一被調適成用以進行數位處理的數位積體電路,且 其中,言亥VGA、該校正訊號產生器、該功率谓測器、以及 。亥偏移5孔號產生器係施行在該RF積體電路之上,且其中, 6亥增碰控制器係被施行在該數位積體電路之上。 20. 如申請專利範圍第18項之AGC,其中,該偏移訊 號產生器包括: 一狀態機,其會被配置成用以將該誤差訊號映射成一 用以表示s玄偏移訊號之數值的數位至類比轉換器(dac) 碼,以及 一 DAC,其會被配置成用以將該DA(:碼轉換成該偏 移訊號。 21. 如申請專利範圍第18項之AGC,其進一步包括一 多工器,該多工器會被排列成用以接收該校正訊號與該經 放大的廣播訊號,該多工器會被調適成用以在處於該校正 模式中時將該校正訊號提供給該功率偵測器,並且用以在 處於該作業模式中時將該經放大的廣播訊號提供給該功率 偵測器。 22. 如申請專利範圍第21項之AGC,其中,當該AGC 開機時,該AGC會自動地設成該校正模式。 23. 如申請專利範圍第22項之AGC,其中,當完成校 49 200915717 正處理之後’言亥AGC便會處於該作業模式之中。 ,.如申請專利範圍第21項之AGC,其中,該增益控 制為包含一積分器,用以積分該第-誤差訊號,以便提供 一經積分的誤差訊號。 25·如申請專利範圍第24項之AGC,其進一步包括一 增益映射器,苴备祜邴署士、田,、,μ # ,、θ破配置成用以將該經積分的誤差訊號映 射至該增益訊號。 如申請專利範圍第25項之AGC,其中,該增益映 射器係施行在該RF積體電路之上。 /7.如申請專利範圍第25項之AGC,其中,該增益映 射器係施行在該數位積體電路之上。 —28.-種方法’用以校正一使用在—調譜器中的自動增 益控制器(AGC) ’該調譜器會配置成用以將—選定頻道和 一多頻道廣播訊號產生隔離,該㈣器實質上係被施行在 兩個晶片之上:-第-晶片,包括—被調適成用以進行射 頻(RF)處理的RF積體電路;以及一第二晶片,包括一被 調適成用以進行數位處理的數位積體電路,該方法包括: 在該RF積體電路之上產生一大體上已知的校正訊號; 在該RF積體電路之上偵測該校正訊號的至少一功率 特徵; 在该RF積體電路之上提供一表示該校正訊號的該至 少一功率特徵的第一功率位準訊號; 在該數位積體電路之上接收該第一功率位準訊號; 在該數位積體電路之上至少部分依據介於該第一功率 50 200915717 位準訊號和一第一參考訊號之間的比較值來產生一第一誤 差訊號;以及 至少部分依據該第-誤差訊號來產生—偏移訊號;以 及 結合該偏移訊號與由該功率偵測器所提供的該第一功 率位準訊號’用以提供一經調整的第一功率位準訊號。 29·如申請專利範圍第28項之方法,其中,產生該校 正訊號包含使用―振盈器來產生該大體上已知的校正訊 號。 3〇·如申請專利範圍第29項之方法,其中,產生該校 正訊號包含使用一環振盪器來產生該大體上已知的校正訊 號。 3丨.如申請專利範圍第28項之方法,其中,該校正方 法中的動作會重覆地施行在該經調整的第一功率位準訊號 j,直到該第一誤差訊號為零或實質上為零或被判定為非 #小為止’從而表示該校正已經完成。 …3:·如申請專利範圍帛31項之方法,其中,在該校正 凡成ΤΓ所產生的該偏移訊號代表符會被儲存,用以在兮 AGC的作業期間用來補償至少一偏移誤差。 ^ > /3.如申請專利範圍第“項之方法,其進一步包括 :亥經調整的第-功率位準訊號轉換至-第-數位功率位準 。孔就,用以在該數位積體電路之上進行數位處理。 ’ 一 34·如申請專利範圍第33項之方法,其中,轉換該第 功率位準訊號係在該數位積體電路之上來實施。 51 200915717 35如申請專利範圍第33項之方法其中,轉換該第 一功率位準訊號係在該RF積體電路之上來實施。 36. 如申請專利範圍第33項之方法,其中,產生該第 一疾差讯號包含決定—介於該參考訊號與該第一數位功率 位準訊號之間的差異。 37. 如申請專利範圍第28項之方法,其進一步包括在 完成校正之後來操作該AGC,操作該AGC包括: 在5亥RF積體電路之上至少部分依據一增益訊號來將 可欠增ϋ套用至該廣播訊號,用以提供一經放大的廣播 訊號; 在該RF積體電路之上偵測該經放大廣播訊號的至少 一功率特徵; 在遠RF積體電路之上提供一表示該至少一功率特徵 的第二功率位準訊號; 根據該已儲存的偏移訊號來調整該第二功率位準訊 说’用以提供一經調整的第二功率位準訊號; 在该數位積體電路之上接收該經調整的第二功率位準 訊號; 在該數位積體電路之上至少部分依據介於該經調整的 第二功率位準訊號和一參考訊號之間的比較值來產生—第 二誤差訊號;以及 在§亥RF積體電路之上至少部分依據該第二誤差訊號 來提供該增益訊號。 52200915717 X. Patent Application Range: 1. A calibration component configured to correct an automatic gain controller (AGC) used in a tuner configured to broadcast a selected channel and a multi-channel The signal is isolated, the tuner is essentially implemented on two wafers, a first wafer, including an RF integrated circuit adapted for radio frequency (RF) processing; and a first-曰y In a day, including a digital integrated circuit adapted for digital processing, the correction component includes: a correction signal generator that is implemented on the RF integrated circuit, the correction A number is generated The device is adapted to generate a substantially known correction signal; a power detector is implemented on the RF integrated circuit and is configured to detect the correction signal during correction At least one power source is used to provide a power level signal indicating the at least one detected power characteristic; a gain controller is implemented on the digital integrated circuit, the gain control The device is adapted to generate at least one error signal based at least in part on a comparison value between the power level signal provided by the power detection TM and a first reference signal; - an offset signal generator, Executing on the RF integrated circuit and configured to generate an offset signal based at least in part on the at least _ error signal; and adding an element to be implemented on the RF integrated circuit And it is suitable for combining the offset signal and the power level signal provided by the power detector 44 200915717 for providing - by 2. as claimed in the patent scope! The school's calibration signal generates M j nn ^ , , , , where the correction is 3. The correction component 3. The calibration component of the application model (4) 2 includes a ring oscillator. Among them, the correction 4 · such as the scope of patent application 帛! Correction group #^ The components in the component will constitute a control loop. The control loop will be: used to drive the at least one error signal to zero or substantially zero. When the control loop has substantially converged, the The calibration component will complete the job. 5. The calibration component of claim 4, wherein the offset heart generator comprises a digital to analog converter (dac), and the & is configured to at least partially depend on the at least one error signal The offset signal is generated in a DAC code representing a digital value that will be corrected during the correction. The calibration component of claim 5, wherein the offset «generates the inclusion of - the storage component' to store a final DAC code (4) in the control loop has been received (four) to generate the bias The mobile number. 7_ The calibration component of claim 6 wherein the offset signal generator comprises a finite state machine (FSM) adapted to correct the DAC code based at least in part on the at least error signal . 8. The patent application scope "Beizhi correction component further includes a turns ratio to digital converter (ADC) which will be arranged between the power detector and the boost controller i The power level signal is converted into a digital power level signal for the gain controller to perform digital processing. 45 200915717 9. The calibration component of claim 8 of the patent, wherein the ADC is implemented on the digital integrated circuit. The aligning component of the eighth aspect of the patent, wherein the ADc is implemented on the RF integrated circuit. The calibration component of claim 8 , wherein the gain 1 3 adding component is configured to generate a first error signal according to a difference between the reference signal and the digital power level signal. 12. The correcting component of the u-worker of the patent application scope, wherein the control benefit includes a quarantine r〇 fM, a knife TM, for integrating the first error signal to provide an integrated error signal. 13. A combination of the calibration component of the patent application scope 6 and the AGC, the AGC comprising: an I-amplifier amplifier (VGA) that will be implemented in the RF integrated circuit; the VGA will be Adapted to receive the broadcast signal and used by the alpha knife to apply a variable gain to the broadcast signal according to the gain signal for providing an amplified broadcast signal; the power detector configured to be used to Detecting at least one power characteristic of the amplified broadcast signal after the correction and providing a power level signal 相^/additive element indicating the at least one detected power feature, which is configured to be combined From the final D from the code. The offset signal generated in the method for providing the adjusted power level signal, and the gain controller, which is adapted to be at least partially dependent on the The comparison between the adjusted power level signal and a second 46 200915717 reference signal generates at least one error signal, wherein the 1 gain signal is based at least in part on the + to error signal generated by the gain controller. 14 • A combination of claim 13 of the § § Scope of the patent, wherein the gain mapper is configured to map the integrated error signal to the gain signal. 15_ The combination of claim 14 wherein the gain map is implemented on the RF integrated circuit. 16_ The combination of claim 14 wherein the gain map is implemented on the digital integrated circuit. 1 7 · The combination of claim 16 of the patent application scope, wherein the first reference signal is the same as the second reference signal. 18. An automatic gain controller (AGC) for use in a -meter, the tuner is adapted to isolate a selected channel from a multi-channel broadcast signal, the AGC being configured to The operation mode is adapted to correct the AGC, and the operation mode is adapted to apply a variable gain to a broadcast signal, the AGC comprising: a first control loop comprising: a correction signal generator adapted to generate a correction signal; a power detector 'which is configured to detect at least one of the received round signals a power characteristic and for providing a power level signal indicating the at least one tested power characteristic; 47 200915717 a summing 7C piece for combining the power level signal and an offset signal for providing an adjustment a power level signal; a blood-increasing controller that includes a reference signal, the gain controller being adapted to generate at least an error signal for indicating between the reference signal and the adjusted signal a difference between the power level signals; and a ^-offset horn generator 'which is adapted to provide the offset signal to the adding component'. The offset signal generator is configured to be used at least The boring tool adjusts the offset signal during the correction mode according to the D-Hour v error signal; and a second control loop comprising: a variable-amplifier amplifier (VGA) adapted to receive The broadcast nickname is used to apply a variable gain to the broadcast signal according to the gain signal to provide an amplified broadcast signal; the power detector; the adding component; and the gain controller, \.+ where 'in the calibration mode, the first control loop is in operation and the received input signal sent to the power detector is a correction signal, and the first control loop operates to correct the bias Transmitting signal, such that it reflects the offset error of the AGC, wherein, in the operating mode, the second control loop is in operation and the received input signal sent to the power (four) detector is Widened The broadcast signal, (4) two control loops are used to maintain the power level of the (four) large broadcast signal within the range. 48 200915717 19. The AGC of claim 18, wherein the association is adapted to be used in conjunction with a tuner that is essentially implemented on two wafers: an H__ ay, brother a solar wafer comprising: an RF integrated circuit adapted for radio frequency (RF) processing; and a second wafer comprising a digital integrated circuit adapted for digital processing, and wherein亥 VGA, the correction signal generator, the power predator, and. The Hai offset 5 hole number generator is implemented on the RF integrated circuit, and wherein the 6 Haisheng touch controller is implemented on the digital integrated circuit. 20. The AGC of claim 18, wherein the offset signal generator comprises: a state machine configured to map the error signal to a value indicative of a s-think signal a digital to analog converter (dac) code, and a DAC, which is configured to convert the DA (: code into the offset signal. 21. The AGC of claim 18, further comprising a a multiplexer, the multiplexer being arranged to receive the correction signal and the amplified broadcast signal, the multiplexer being adapted to provide the correction signal to the calibration signal when in the calibration mode a power detector, and configured to provide the amplified broadcast signal to the power detector when in the operating mode. 22. The AGC of claim 21, wherein when the AGC is powered on, The AGC will automatically set the calibration mode. 23. For the AGC of the 22nd scope of the patent application, after the completion of the school 49 200915717, the “Yinghai AGC will be in the operation mode. Patent scope 21 The AGC of the item, wherein the gain control comprises an integrator for integrating the first error signal to provide an integrated error signal. 25. The AGC of claim 24, further comprising a gain map The device is configured to map the integrated error signal to the gain signal, such as the AGC of claim 25, wherein the gain is The mapper is implemented on the RF integrated circuit. /7. The AGC of claim 25, wherein the gain mapper is implemented on the digital integrated circuit. - 28. - Method For correcting an automatic gain controller (AGC) used in the -spectrum 'the spectrometer is configured to isolate the selected channel from a multi-channel broadcast signal, the (four) device being substantially implemented On top of two wafers: - a first wafer, including - an RF integrated circuit adapted for radio frequency (RF) processing; and a second wafer including a digital product adapted for digital processing Body circuit The method includes: generating a substantially known correction signal on the RF integrated circuit; detecting at least one power characteristic of the correction signal on the RF integrated circuit; providing a signal on the RF integrated circuit a first power level signal indicating the at least one power characteristic of the correction signal; receiving the first power level signal on the digital integrated circuit; and at least partially resting on the digital integrated circuit a comparison value between a power 50 200915717 bit signal and a first reference signal to generate a first error signal; and generating an offset signal based at least in part on the first error signal; and combining the offset signal with The first power level signal ' provided by the power detector is used to provide an adjusted first power level signal. 29. The method of claim 28, wherein generating the correction signal comprises using a "vibrator" to generate the substantially known correction signal. 3. The method of claim 29, wherein generating the correction signal comprises using a ring oscillator to generate the substantially known correction signal. 3. The method of claim 28, wherein the action in the calibration method is repeatedly performed on the adjusted first power level signal j until the first error signal is zero or substantially Zero or is judged to be non-# small so that the correction has been completed. ...3: The method of claim 31, wherein the offset signal representative generated during the calibration is stored for compensating for at least one offset during the operation of the AGC error. ^ > /3. The method of claim ", further comprising: converting the first-power level signal adjusted by the Haby to the --bit power level. The hole is used to integrate the digit The method of claim 33. The method of claim 33, wherein converting the power level signal is performed on the digital integrated circuit. 51 200915717 35 as claimed in claim 33 The method of claim 1, wherein converting the first power level signal is performed on the RF integrated circuit. 36. The method of claim 33, wherein the generating the first disease signal comprises determining The difference between the reference signal and the first digital power level signal. 37. The method of claim 28, further comprising operating the AGC after the calibration is completed, the operating the AGC comprising: The RF integrated circuit applies at least part of the gain signal to the broadcast signal to provide an amplified broadcast signal; and the amplified broadcast is detected on the RF integrated circuit. At least one power characteristic of the signal; providing a second power level signal indicating the at least one power feature on the far RF integrated circuit; adjusting the second power level according to the stored offset signal Providing an adjusted second power level signal; receiving the adjusted second power level signal on the digital integrated circuit; and at least partially adjusting the adjusted on the digital integrated circuit The comparison value between the second power level signal and a reference signal generates a second error signal; and the gain signal is provided based on the second error signal at least partially on the CMOS integrated circuit.
TW097130005A 2007-08-08 2008-08-07 Methods and apparatus for calibration of automatic gain control in broadcast tuners TWI459718B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/890,858 US7853229B2 (en) 2007-08-08 2007-08-08 Methods and apparatus for calibration of automatic gain control in broadcast tuners

Publications (2)

Publication Number Publication Date
TW200915717A true TW200915717A (en) 2009-04-01
TWI459718B TWI459718B (en) 2014-11-01

Family

ID=39933898

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097130005A TWI459718B (en) 2007-08-08 2008-08-07 Methods and apparatus for calibration of automatic gain control in broadcast tuners

Country Status (3)

Country Link
US (1) US7853229B2 (en)
TW (1) TWI459718B (en)
WO (1) WO2009020622A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886901B (en) * 2003-12-01 2013-12-18 松下电器产业株式会社 Receiving device and semiconductor integrated circuit
US8619639B2 (en) * 2007-07-06 2013-12-31 Lantiq Deutschland Gmbh Power detector radio frequency multiplexer
US20090067351A1 (en) * 2007-09-07 2009-03-12 Andreas Wiesbauer Power Detector Radio Frequency Multiplexer
US8581810B2 (en) * 2008-03-11 2013-11-12 Atmel Corporation Methods and circuits for self-calibrating controller
US8401129B2 (en) * 2009-11-19 2013-03-19 Techwell Llc Digital automatic gain control
US8634766B2 (en) 2010-02-16 2014-01-21 Andrew Llc Gain measurement and monitoring for wireless communication systems
US8571497B1 (en) * 2010-11-19 2013-10-29 Marvell International Ltd. Closed-loop power control in conjunction with adaptive power amplifier linearization
EP3244405B1 (en) 2011-03-04 2019-06-19 Telefonaktiebolaget LM Ericsson (publ) Audio decoder with post-quantization gain correction
US8730930B2 (en) * 2011-05-31 2014-05-20 Broadcom Corporation Polling using B-ACK for occasional back-channel traffic in VoWIFI applications
US9154240B2 (en) 2011-08-18 2015-10-06 Qualcomm Incorporated Precision power/peak detector using on-chip reference power source
US8768277B1 (en) * 2012-12-19 2014-07-01 Em Microelectronics-Marin S.A. Automatic gain control of a receiver circuit
US9602119B1 (en) 2016-02-09 2017-03-21 Applied Micro Circuits Corporation Gain calibration by applying a portion of an input voltage to voltage associated with a capacitor array
KR102468807B1 (en) * 2016-03-21 2022-11-18 삼성전자 주식회사 Broadcast receiver and control method thereof
US11474231B2 (en) 2018-08-16 2022-10-18 Movano Inc. Calibration, classification and localization using channel templates
US11448774B2 (en) 2018-08-16 2022-09-20 Movano Inc. Bayesian geolocation and parameter estimation by retaining channel and state information
TWI729887B (en) 2020-07-21 2021-06-01 華邦電子股份有限公司 Voltage regulator
CN114280524B (en) * 2021-11-10 2024-09-13 中国船舶重工集团公司第七0九研究所 Integrated circuit test system calibration method and device based on fuzzy control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498927B2 (en) * 2001-03-28 2002-12-24 Gct Semiconductor, Inc. Automatic gain control method for highly integrated communication receiver
US6721547B2 (en) * 2001-05-04 2004-04-13 Atheros Communications, Inc. In-band and out-of-band signal detection for automatic gain calibration systems
US7091792B2 (en) * 2004-05-20 2006-08-15 Analog Devices, Inc. Methods and apparatus for amplification in a tuner
US7577414B2 (en) * 2005-01-27 2009-08-18 Analog Devices, Inc. Methods and apparatus for automatic gain control in broadband tuners
US7447490B2 (en) 2005-05-18 2008-11-04 Nvidia Corporation In-situ gain calibration of radio frequency devices using thermal noise

Also Published As

Publication number Publication date
US20090042526A1 (en) 2009-02-12
WO2009020622A1 (en) 2009-02-12
TWI459718B (en) 2014-11-01
US7853229B2 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
TW200915717A (en) Methods and apparatus for calibration of automatic gain control in broadcast tuners
US20080186409A1 (en) Silicon tuner and a method of processing signal thereof
US8467755B2 (en) Direct conversion tuner
RU2204186C2 (en) Antenna positioning device and method
US7342614B2 (en) Methods and apparatus for tuning signals
US20060281432A1 (en) Radio frequency tuner
US20060078069A1 (en) Hybrid receiver architecture using upconversion followed by direct downconversion
US8306103B2 (en) Systems and methods providing in-phase and quadrature equalization
CN1409481A (en) Receiver
CN1684397A (en) Receiver
EP1737219A2 (en) Broadcast channel detection apparatus and method
US8586461B2 (en) Systems and methods providing spur avoidance in a direct conversion tuner architecture
US8874060B2 (en) Radio frequency (RF) receiver with frequency planning and method therefor
US20090040393A1 (en) Quadrature correction method for analog television reception using direct-conversion tuners
US6995808B2 (en) Television tuner
US7091792B2 (en) Methods and apparatus for amplification in a tuner
JP2001177779A (en) Video intermediate frequency processor
TW202209870A (en) Signal level indicators and antenna assemblies including the same
US8351887B2 (en) Systems and methods providing multi-path low noise amplifiers with seamless switching
US20040088725A1 (en) Apparatus and method for receiving television and radio broadcasting signals using a single tuner
JP2009503979A (en) Amplitude modulated signal receiver
JP4067489B2 (en) Stereo decoder
JP2010136137A (en) Receiving device and method, and program
JP3809703B2 (en) Television signal receiving circuit
TWI382673B (en) Center frequency adjustment device and related method for a communication receiver