200912462 九、發明說明: 【發明所屬的技術領域】 本發明係有關一種立體影像顯示裝置(stereoscopic image display apparatus)及其製作方法,且特別是一種廣視 角(enlarged angle of field )立體影像顯示裝置及其製作方法。 【先前技術】 在習知技藝中,立體影像顯示裝置通常是以液晶顯示器 (liquid crystal display, LCD)結合延遲片(retarder)的方式 製成。如日本第H10-253824號專利中的立體影像顯示裝置 的延遲片即是透過黏著劑(adhesive or glue)貼附於位於液 晶顯示器的顯示侧的偏極化片(polarization plate )。 【發明内容】 相關申請案的交互參照(Cross-reference ) 本案主張2007年8月9日申請的第2007-208672號專 利、2〇07年10月11日申請的第2007-265907號專利以及2008 年2月13曰申請的第2008-031740號專利等曰本專利申請案 的優先權,以將其内容併入本案作為參考。 大尺寸液晶顯示器可能會因彎曲而難以維持液晶顯示器 與延遲片之間的平行度。而且,當延遲片貼附在液晶顯示器, 而多個遮光結構(light shield)分散地設置於延遲片朝向液 晶顯示器的表面時,遮光結構的凹陷(c〇ncave )與凸起 (convex )會破壞液晶顯示器與延遲片之間的平坦度。當液 200912462 晶顯示器與延遲片之間的相對平行度及平坦度被破壞時,會 使顯示晝面產生波狀紋路( moire ) 〇 根據本發明的第一形態’本發明提供一種立體影像顯示 裝置的製作方法’其中立體影像顯示裝置包括一影像顯示單 元(image display section)以及一延遲片。影像顯示單元包 括一影像生成單元(image generating section),其中影像生 成單元包括一用以產生右眼影像光(right eye image light ) 的右眼影像生成區域(right eye image generating region )以 及一用以產生左眼影像光(left eye image light)的左眼影像 生成區域(left eye image generating region )。影像顯示單元 發射出右眼影像光及左眼影像光,其中右眼影像光及左眼影 像光為偏光軸(polarization axes)互相平行的線性偏振光 (linearly polarized light rays )。延遲片配置於影像顯示單元 的一出光側(emission side),並包括一右眼偏光區域(right eye polarization region )、一 左眼偏光區域(left eye polarization region)以及一遮光結構,其中遮光結構配置於 右眼偏光區域與左眼偏光區域之間的一邊界中的延遲片的一 入光侧表面(incident-side surface)上,用以遮擋入射的右 眼影像光及左眼影像光。當右眼影像光入射至右眼偏光區域 且左眼影像光入射至左眼偏光區域時,延遲片發射出入射的 右眼影像光及入射的左眼影像光,其中入射的右眼影像光及 入射的左眼影像光為偏光軸互相垂直的線性偏振光,或是偏 光軸的旋轉方向互相相反的圓偏振光(circularly polarized light rays)。立體影像顯示裝置的製作方法包括:一塗佈步 驟、一疊合步驟以及一貼合步驟。塗佈步驟包括:在影像顯 示單元的右眼影像生成區域與左眼影像生成區域重疊於延遲 片的右眼偏光區域與左眼偏光區域的一區域塗佈一樹脂,其 中樹脂塗佈於影像顯示單元的出光側表面與延遲片的入光側 200912462 表面的至少其中之一上。疊合步驟包括:在塗佈步驟之後, 疊合影像顯示單元與延遲片,以使影像顯示單元的出光側表 面朝向延遲片的入光側表面。貼合步驟包括:硬化在疊合步 驟中疊合於影像顯示單元與延遲片之間的樹脂(resin),以貼 合影像顯示單元與延遲片。 一根據本發明的第二形態,本發明更提供一種立體影像顯 不裝置包括一影像顯示單元、一延遲片以及一黏著層 (adhesive layer)。影像顯示單元包括一影像生成單元,其中 影像生成單元包括一用以產生右眼影像光的右眼影像生成區 域以及用以產生左眼影像光的左眼影像生成區域。影像顯 示單元發❹右《彡像歧錢料光,其巾右眼影像光及 左眼影像光為偏光軸互相平行的祕偏振光。輯片配置於 影像顯示單元的―出光側’並包括—右眼偏光區域、一左眼 偏光區域以及-遮光結構。當右眼影像光人射至右眼偏光區 域且左眼影像光人射至左眼偏^區域時,延遲片發射出入射 的右眼影像光及人㈣左眼影像光,其巾人射的右眼影像光 及入射的左眼影像光為偏絲互相垂直的祕偏振光,或是 偏光ί的旋轉方向互她反的®偏振光。黏著層配置於影像 顯示單元的右《彡像生成區域與左眼影像生成區域重疊於延 遲片的右眼偏光區域與左眼偏光區域的—區域中,且黏著層 將影像顯示單元的—出光側表面貼附到延遲片的—入光側^ 面。遮光結構配置於右眼偏光區域魅眼偏光區域之間的一 邊界中的延遲片的人光側表面上,用以遮擔人射的右眼影像 光及左眼影㈣,且料層與遮光結構具有㈣的厚度。 根據本發明的第三形態,本發明再提供—種立體影像顯 =裝置的4作方法,其中立體影像顯示裝置包括—影像顯示 早凡以及-延遲片。影像顯示單元包括_影像生成單元,豆 中影像生成單元包括-用以產生右㈣像光的右眼影像生成 200912462 區域以及-用以產生左眼影像光的左眼影像生成區域。影像 顯示單元發射出右眼影像光及左眼影像光,其中右眼影像光 及左眼影像光為偏光軸互相平行的線性偏振光。延遲片配置 於影像顯示單元的一出光側’並包括一右眼偏光區域、一左 眼偏光區域以及-遮光結構,其中遮光結構配置於右眼偏= 區域與左眼偏光區域之間的—邊界的延遲片的—人光側表面 上,用以賴人射的右眼影像光及左眼影像光 ^入射至右眼偏光區域且左眼影像光人射至錢偏光= 2延遲片發射出人射的右眼影像光及人射的左眼影像光, ^中入射的右眼影像光及人射的左眼影像光為偏光軸互相垂 ’或是偏光軸的旋轉方向互相相反的圓偏振 ^。立體衫像顯示裝置的製作方法包括:—貼附步驟、一最 合步驟以及-貼合步驟。貼附步驟包括:: 右眼影像生成區域與左眼P ''' 、 偏光區域與左眼偏光區 遲片的入光側表面的至早=光側表面與延 佈步驟之後,疊合影像顯;:r $ σ步驟包括:在塗 元的出弁㈣…'早U遲片’以使影像顯示單 疋的出·表面朝向延遲片的人細表面 硬化在疊合步驟中疊合於 …、“步驟包括. 脂,以貼合該影像顯示單r與早;:與延遲片之間的樹 特徵=二 靖施例中的所有的必要 合所附圖式,作詳細說=。’下文特舉多個實施例,並配 200912462 【實施方式】 以下將透過多個實施例來闡述本發明的部分形態,但以 下的實施例僅用以舉例說明,並非用以限定本發明的範圍。 另外,以下實施例中所述的所有特徵及其組合並非實施本發 明的必要技術手段。 圖1為根據本發明一實施例的製作方法所製作出的一種 立體影像顯示裝置100的立體分解圖。如圖1所示,立體影 像顯示裝置100包括有依序排列(in the stated order )的:一 光源(light source) 120、一影像顯示單元130、一延遲片180 以及一抗反射層(antireflection layer) 200。影像顯示單元 130 包括一光源側偏光片(light-source polarization plate) 150、一影像生成單元160以及一發光側偏光片(emission-side polarization plate) 170。一觀看者500 (將於之後詳述)由圖 1中的抗反射層200的右側觀看立體影像顯示裝置100所顯 示的一立體影像。 對於觀看者500來說,光源120配置於立體影像顯示裝 置1〇〇的最後側。使用立體影像顯示裝置100時(以下簡稱 為“立體影像顯示裝置100在使用狀態下”),白色的無偏振 光(non-polarized light)入射至全部的光源側偏光片150的 表面。值得注意的是,此實施例使用一面光源作為光源120, 但亦可結合一點光源與一聚光透鏡(condensing lens)來使 用。聚光透鏡的一例為一菲淫爾透鏡片(Fresnel lens sheet)。 光源側偏光片150配置於影像生成單元160與光源120 之間’並具有一透射軸(transmission axis)以及一垂直於透 射軸的吸收轴(absorption axis )。當由光源120所發射出的 無偏振光入射至光源側偏光片150時,光源側偏光片150會 傳遞偏光軸平行透射軸的光線,並阻隔偏光軸平行吸收軸的 200912462 光線其中’偏光軸的方向為光線中的電場(electric field) 的史振動方向。如圖1中的箭頭所示,當觀看者500觀看立 U顯tf裝置⑽時’光源側偏光片1 %中的透射轴的方 向為水平方向朝向右上方旋轉45度的方向。 衫像生成單元160包括一個或多個右眼影像生成區域 1^2以及個或多個左眼影像生成區域丨64。如圖i所示,這 些右眼景=像生成區域162與這些左眼影像生成區域164為影 像生成單元16〇水平地被分割而成的多個單元,且其在垂直 方向上交替配置。 _立版衫像顯不裝置100在使用狀態下,分別於影像生成 單元160中的右眼影像生成區域162與左眼景彡像生成區域 164>生成一右眼影像與一左眼影像。當穿透光源側偏光片150 =光,入射至影像生成單元丄6〇的右眼影像生成區域162 牙透右眼影像生成區域162的光線會形成—右眼影像的 影像光(以下簡稱為“右眼影像光,,)。相同地,當穿透光源 側偏光片150的光線入射至影像生成單元16〇的左眼影像生 成區域164時,穿透左眼影像生成區域164的光線會形成_ 左眼影像的影像光(以下簡稱為“左眼影像光,,)。 .值得注意的是,穿透右眼影像生成區域162的右眼影像 光與穿透左目If彡像生成區域⑹的左眼影像光會分卿成具 有特定方向的偏光軸的線性偏振光。其中,這些特定方向的 偏光軸可在相同的方向上。如圖i所示的實施例中,上述兩 個偏光軸的方向與詳述於後的發光側偏光片17〇的透射軸的 方向接狀為相同方向。舉例來說,此種影像生成單元⑽ 為一液晶顯不器(liquid crystai display, LCD ),於其中有多 數個小分子在水平及垂直方向上呈二維排列,且液晶被密封 於配向膜(alignment film)之間的每個分子中。於此液晶顯 200912462 不益中,每個分子皆透過電力驅動,以在不改變被傳遞的光 線的偏光軸方向的狀態以及90度偏轉被傳遞的光線的偏光 軸方向的狀態之間作切換。 發光侧偏光片170配置於觀看者5〇〇與影像生成單元 160之間。當穿透右眼影像生成區域162的右眼影像光與穿 透左眼影像生成區域164的左眼影像光入射至發光側偏光片 170時,發光側偏光片17〇僅會傳遞偏光軸平行於透射軸的 光線,並阻隔偏光軸平行於吸收軸的光線。如圖丨中的箭頭 所示,當觀看者500觀看立體影像顯示裝置1〇〇時,發光側 偏光片170中的透射軸的方向為水平方向朝向左上方旋轉 度的方向。 、延遲片180包括一個或多個右眼偏光區域181以及一個 或多個^眼偏光區域182。延遲片18〇的這些右眼偏光區域 181與這些左眼偏光區域182的位置與大小對應於圖1中所 不的影像生成單元160的這些右眼影像生成區域162與這些 左眼影像生成區域164的位置與大小。基於上述,立體影像 顯示裝置削在使用狀態下,穿透這些右眼影像生成區域162 的右眼影像光會人射至這些右眼偏光區域181,而穿透這些 f眼影像生成區域164的左眼影像光會入射至這些左眼偏光 區域⑻。一個或多個遮光結構19〇配置在延遲片⑽朝向 影像顯示單元13G的—表面上,以使各遮光結構刚存在於 右眼偏光區域181與左眼偏光區域i 82之間的一邊界中。— 遮光結構19()吸收並阻隔朝向延遲片⑽的—右眼偏光區域 ⑻入射的影像光,其中此影像光來自於應人射至延遲片⑽ ^接於右眼偏光區域181的一左眼偏光區域182的左眼影像 :另外,一遮光結構190吸收並阻隔朝向延遲片180的一 3偏光區域182人射的影像光,其中此影像光來自於應入 、延遲片180鄰接於左眼偏光區域182❸一右眼偏光區域 200912462 181的右眼影像光。透過上述方法,在延遲片18〇上的邊界 中配置遮光結構19〇可避免由立體影像顯示裝置10〇所發射 出的右眼影像光與左眼影像光互相干擾。 右眼偏光區域181傳遞入射的右眼影像光,且不偏轉右 眼影像光的偏光軸。左眼偏光區域182將入射的左眼影像光 的偏光軸偏轉為垂直於入射至右眼偏光區域181的右眼影像 光的偏光軸的方向。基於上述,如圖1中的箭頭所示,穿透 右眼偏光區域181的右眼影像光的偏光軸會垂直於穿透左眼 偏光區域182的左眼影像光的偏光軸。在圖i中的延遲片ι8〇 中,各箭頭用以表示出穿透延遲片180的偏振光的一偏光 轴。右眼偏光區域181例如是使用透明玻璃或樹脂等材質所 製成’而左眼偏光區域182則例如是使用半波長延遲片所製 成,其中半波長延遲片具有一相對於入射的左眼影像光的偏 光軸的方向呈45度角的光軸。在圖1中的實施例中,左眼偏 光區域182的光軸的方向可為水平方向或垂直方向。其中, 光軸為光通過左眼偏光區域182時的進相軸(fast axis )或遲 相轴(slow axis )的其中之一。除了使用延遲片180之外, 右眼偏光區域181與左眼偏光區域182亦可分別使用半波長 延遲片所製成’以使其所發射出的右眼影像光與左眼影像光 成為分別具有互相垂直的偏光軸的線性偏振光。 圖2為立體影像顯示裝置1〇〇在使用狀態下的示意圖。 如圖2所示,使用立體影像顯示裝置1 〇〇來觀看立體影像時, 觀看者500可透過戴著偏光眼鏡(polarized glasses) 220觀 看立體影像顯示裝置100所投射出的右眼影像光與左眼影像 光。偏光眼鏡220配設有一右眼影像透射單元(Hght eye image transmission section ) 232以及一左眼影像透射單元 (left eye image transmission section) 234,其中當觀看者 5〇〇 戴著偏光眼鏡22〇時,右眼影像透射單元232的胃位置會對應 12 200912462 於觀看者5〇〇的右眼犯,且左眼影像透射單元 會對應於觀看者500的左眼514 ^右眼影像透_的位置 左眼影像透射單元234為彼此透射軸方向不:土32與 (polarized lens),其固設於偏光眼鏡22〇的框架鏡 右眼讀透射單7^ 232為—偏光片,其透射 右眼影像光穿透右眼偏光區域181的方向相同 方向與The present invention relates to a stereoscopic image display apparatus and a method of fabricating the same, and more particularly to an enlarged angle of field stereoscopic image display device and Its production method. [Prior Art] In the prior art, a stereoscopic image display device is usually manufactured by a liquid crystal display (LCD) in combination with a retarder. The retardation film of the stereoscopic image display device of Japanese Patent No. H10-253824 is attached to a polarization plate on the display side of the liquid crystal display by adhesive or glue. [CROSS-REFERENCE] The cross-reference of the related application claims the patent No. 2007-208672 filed on August 9, 2007, and the patent No. 2007-265907 filed on October 11, 2007, and 2008. The priority of the patent application No. 2008-031740, filed on Jan. 13 s. Large-size liquid crystal displays may be difficult to maintain the parallelism between the liquid crystal display and the retardation film due to bending. Moreover, when the retarder is attached to the liquid crystal display, and a plurality of light shields are dispersedly disposed on the surface of the retarder facing the liquid crystal display, the recesses (c〇ncave) and the convexity of the light-shielding structure may be broken. The flatness between the liquid crystal display and the retarder. When the relative parallelism and flatness between the liquid crystal display and the retardation film are broken, the display pupil surface is generated with a moire. According to the first aspect of the present invention, the present invention provides a stereoscopic image display device. The method for manufacturing a stereoscopic image display device includes an image display section and a delay sheet. The image display unit includes an image generating section, wherein the image generating unit includes a right eye image generating region for generating a right eye image light and a A left eye image generating region that produces a left eye image light. The image display unit emits right eye image light and left eye image light, wherein the right eye image light and the left eye image light are linearly polarized light rays that are parallel to each other. The retarder is disposed on an emission side of the image display unit, and includes a right eye polarization region, a left eye polarization region, and a light shielding structure, wherein the light shielding structure is configured The incident-side surface of the retarder in a boundary between the polarized area of the right eye and the polarized area of the left eye is used to block the incident right-eye image light and the left-eye image light. When the right-eye image light is incident on the right-eye polarized region and the left-eye image light is incident on the left-eye polarized region, the retarder emits the incident right-eye image light and the incident left-eye image light, wherein the incident right-eye image light and The incident left-eye image light is linearly polarized light whose polarization axes are perpendicular to each other, or circularly polarized light rays whose polarization axes are opposite to each other. The manufacturing method of the stereoscopic image display device comprises: a coating step, a laminating step, and a laminating step. The coating step includes: coating a resin in the right-eye image generation region and the left-eye image generation region of the image display unit over a region of the right-eye polarization region and the left-eye polarization region of the retardation film, wherein the resin is applied to the image display At least one of the light exiting side surface of the unit and the light incident side 200912462 surface of the retarder. The laminating step includes, after the coating step, superimposing the image display unit and the retarder such that the light-emitting side surface of the image display unit faces the light-incident side surface of the retardation sheet. The laminating step includes hardening a resin superposed between the image display unit and the retardation film in the laminating step to fit the image display unit and the retardation film. According to a second aspect of the present invention, a stereoscopic image display device includes an image display unit, a retarder, and an adhesive layer. The image display unit includes an image generating unit, wherein the image generating unit includes a right eye image generating area for generating right eye image light and a left eye image generating area for generating left eye image light. The image display unit sends out the right image of the image, and the right eye image light and the left eye image light are the polarized light whose polarization axes are parallel to each other. The album is disposed on the "light exit side" of the image display unit and includes a right-eye polarized area, a left-eye polarized area, and a light-shielding structure. When the right eye image light person hits the right eye polarized area and the left eye image light person hits the left eye bias area, the delay piece emits the incident right eye image light and the person (four) left eye image light, and the towel person shoots The right-eye image light and the incident left-eye image light are the polarized polarized light whose polarized wires are perpendicular to each other, or the polarized light whose polarization direction is opposite to each other. The adhesive layer is disposed on the right side of the image display unit, wherein the image generation area and the left eye image generation area are overlapped in the right-eye polarization area and the left-eye polarization area of the retardation film, and the adhesive layer is the light-emitting side of the image display unit. The surface is attached to the entrance side of the retarder. The light shielding structure is disposed on the human light side surface of the retarder in a boundary between the polarized areas of the right eye and the polarized area of the right eye, for shielding the right eye image light and the left eye shadow of the human shot (4), and the material layer and the light shielding structure Has a thickness of (4). According to a third aspect of the present invention, the present invention further provides a method for performing a stereoscopic image display device, wherein the stereoscopic image display device includes an image display and an early delay film. The image display unit includes an image generation unit, and the bean image generation unit includes a right eye image generation 200912462 region for generating right (four) image light and a left eye image generation region for generating left eye image light. The image display unit emits right-eye image light and left-eye image light, wherein the right-eye image light and the left-eye image light are linearly polarized lights whose polarization axes are parallel to each other. The retarder is disposed on a light exiting side of the image display unit and includes a right-eye polarizing region, a left-eye polarizing region, and a light-shielding structure, wherein the light-shielding structure is disposed at a boundary between the right-eye bias=region and the left-eye polarized region The retarder of the human-side light surface, the right-eye image light and the left-eye image light used to illuminate the human eye are incident on the right-eye polarized area and the left-eye image light is incident on the money polarized light = 2 retarder emission person The right eye image light and the left eye image light emitted by the person, the right eye image light incident in the middle and the left eye image light incident on the human body are circular polarization axes whose polarization axes are perpendicular to each other or the rotation directions of the polarization axes are opposite to each other^ . The manufacturing method of the stereoscopic image display device includes: a attaching step, a most optimal step, and a fitting step. The attaching steps include:: the right eye image generating area and the left eye P ''', the polarizing area, and the left side of the light incident side surface of the left side of the light side surface of the late light side surface and the stretching step, the image is superimposed ;:r $ σ step includes: at the exit of the coating element (4)... 'early U-late' to make the image show the surface of the single ·, the surface of the person facing the retarder, the surface hardening is superimposed on the stacking step, "Steps include: fat to fit the image to show a single r and early;: tree characteristics between the delay sheet = all the necessary combinations in the second instance, for details." The embodiments of the present invention are described in the following by way of examples, but the following examples are merely illustrative and are not intended to limit the scope of the invention. All the features and combinations thereof described in the following embodiments are not essential technical means for implementing the present invention. Fig. 1 is an exploded perspective view of a stereoscopic image display device 100 produced by a manufacturing method according to an embodiment of the present invention. 1 shows the stereoscopic image display The device 100 includes in a stated order: a light source 120, an image display unit 130, a retarder 180, and an antireflection layer 200. The image display unit 130 includes a A light-source polarization plate 150, an image generation unit 160, and an emission-side polarization plate 170. A viewer 500 (which will be described in detail later) is resisted by FIG. The right side of the reflective layer 200 views a stereoscopic image displayed by the stereoscopic image display device 100. For the viewer 500, the light source 120 is disposed on the rearmost side of the stereoscopic image display device 1A. When the stereoscopic image display device 100 is used (hereinafter referred to as In order to "the stereoscopic image display device 100 is in use"), white non-polarized light is incident on the surface of all of the light source side polarizers 150. It is worth noting that this embodiment uses one light source as a light source. 120, but it can also be combined with a light source and a condensing lens. An example of a concentrating lens is a Philippine A light source side polarizer 150 is disposed between the image generating unit 160 and the light source 120 and has a transmission axis and an absorption axis perpendicular to the transmission axis. When the non-polarized light emitted from the light source 120 is incident on the light source side polarizer 150, the light source side polarizer 150 transmits the light of the polarization axis parallel to the transmission axis, and blocks the polarization axis parallel absorption axis of the 200912462 light, wherein the direction of the polarization axis is The historical vibration direction of an electric field in light. As shown by the arrow in Fig. 1, when the viewer 500 views the vertical display device (10), the direction of the transmission axis in the light source side polarizer 1% is a direction in which the horizontal direction is rotated 45 degrees toward the upper right. The shirt image generating unit 160 includes one or more right eye image generating areas 1^2 and one or more left eye image generating areas 丨64. As shown in Fig. 1, these right eye scene = image generation area 162 and these left eye image generation areas 164 are a plurality of units which are horizontally divided by the image generation unit 16 and are alternately arranged in the vertical direction. The vertical shirt image display device 100 generates a right eye image and a left eye image in the right eye image generation region 162 and the left eye image generation region 164 in the image generation unit 160, respectively. When the light source side polarizer 150 = light is transmitted, the right eye image generation area 162 incident on the image generation unit 丄 6 the light of the right eye image generation area 162 is formed - the image light of the right eye image (hereinafter referred to as " The right eye image light, in the same manner, when the light that has passed through the light source side polarizer 150 is incident on the left eye image generation region 164 of the image generating unit 16A, the light that penetrates the left eye image generation region 164 is formed. The image light of the left eye image (hereinafter referred to as "left eye image light,"). It is to be noted that the right-eye image light penetrating the right-eye image generation region 162 and the left-eye image light penetrating the left-eye image generation region (6) are differentiated into linearly polarized light having a polarization axis of a specific direction. Among them, the polarization axes of these specific directions can be in the same direction. In the embodiment shown in Fig. i, the directions of the two polarization axes are in the same direction as the direction of the transmission axis of the subsequent light-emitting side polarizer 17A. For example, the image generating unit (10) is a liquid crystai display (LCD) in which a plurality of small molecules are arranged in two dimensions in the horizontal and vertical directions, and the liquid crystal is sealed on the alignment film ( Alignment film) between each molecule. In the liquid crystal display 200912462, each molecule is driven by electric power to switch between a state in which the direction of the polarization axis of the transmitted light is not changed and a state in the direction of the polarization axis of the light transmitted by the 90-degree deflection. The light-emitting side polarizer 170 is disposed between the viewer 5'' and the image generating unit 160. When the right-eye image light that penetrates the right-eye image generation region 162 and the left-eye image light that penetrates the left-eye image generation region 164 are incident on the light-emitting side polarizer 170, the light-emitting side polarizer 17 〇 transmits only the polarization axis parallel to The light of the transmission axis and the light whose polarization axis is parallel to the absorption axis. As shown by the arrow in Fig. ,, when the viewer 500 views the stereoscopic image display device 1 , the direction of the transmission axis in the light-emitting side polarizer 170 is the direction in which the horizontal direction is toward the upper left rotation. The retarder 180 includes one or more right-eye polarizing regions 181 and one or more polarizing regions 182. The position and size of the right-eye polarizing regions 181 and the left-eye polarizing regions 182 of the retardation film 18A correspond to the right-eye image generating regions 162 of the image generating unit 160 and the left-eye image generating regions 164 of FIG. The location and size. Based on the above, when the stereoscopic image display device is cut in use, the right-eye image light penetrating through the right-eye image generation region 162 is incident on the right-eye polarized region 181, and penetrates the left of the f-eye image generation region 164. The ocular image light is incident on these left-eye polarizing areas (8). One or more light shielding structures 19 are disposed on the surface of the retardation film (10) facing the image display unit 13G such that the respective light shielding structures are present in a boundary between the right-eye polarizing region 181 and the left-eye polarizing region i82. - the light-shielding structure 19() absorbs and blocks the image light incident on the right-eye polarizing region (8) of the retardation plate (10), wherein the image light is from a left eye that is incident on the retardation film (10) and is connected to the right-eye polarization region 181. The left-eye image of the polarizing region 182: In addition, a light-shielding structure 190 absorbs and blocks the image light that is incident on a 3-polarized region 182 of the retardation film 180, wherein the image light is from the entrance, and the retardation film 180 is adjacent to the left-eye polarized light. The right eye image light of the area 182 右 a right-eye polarized area 200912462 181. By the above method, the light shielding structure 19 is disposed in the boundary on the retardation film 18〇 to prevent the right eye image light and the left eye image light emitted by the stereoscopic image display device 10 from interfering with each other. The right-eye polarizing region 181 transmits the incident right-eye image light without deflecting the polarization axis of the right-eye image light. The left-eye polarizing region 182 deflects the polarization axis of the incident left-eye image light to a direction perpendicular to the polarization axis of the right-eye image light incident on the right-eye polarizing region 181. Based on the above, as indicated by the arrow in Fig. 1, the polarization axis of the right-eye image light penetrating the right-eye polarizing region 181 is perpendicular to the polarization axis of the left-eye image light penetrating the left-eye polarizing region 182. In the retardation film ι8 图 in Fig. i, each arrow is used to indicate a polarization axis of the polarized light penetrating the retardation plate 180. The right-eye polarizing region 181 is made of, for example, a material such as transparent glass or resin, and the left-eye polarizing region 182 is made, for example, using a half-wavelength retarder having a left-eye image with respect to incidence. The direction of the polarization axis of the light is at an optical axis of 45 degrees. In the embodiment of Fig. 1, the direction of the optical axis of the left-eye polarizing region 182 may be a horizontal direction or a vertical direction. The optical axis is one of a fast axis or a slow axis when light passes through the left-eye polarizing region 182. In addition to the use of the retardation film 180, the right-eye polarizing region 181 and the left-eye polarizing region 182 may also be formed using a half-wavelength retarder, respectively, so that the right-eye image light and the left-eye image light emitted therefrom have respectively Linearly polarized light of mutually perpendicular polarization axes. 2 is a schematic view of the stereoscopic image display device 1 in use. As shown in FIG. 2, when the stereoscopic image display device 1 is used to view the stereoscopic image, the viewer 500 can view the right-eye image light and the left image projected by the stereoscopic image display device 100 by wearing the polarized glasses 220. Eye image light. The polarized glasses 220 are provided with a right eye image transmission section 232 and a left eye image transmission section 234, wherein when the viewer 5 wears the polarized glasses 22, The stomach position of the right-eye image transmissive unit 232 corresponds to the right eye of the viewer 5〇〇12, 1212, and the left-eye image transmissive unit corresponds to the left eye 514 of the viewer 500. The image transmissive unit 234 is a polarizing lens that is fixed in the direction of the transmission axis and is not polarized: the polarized lens is fixed to the frame of the polarizing glasses 22, and the right eye is transmitted as a polarizer. The direction of the right-eye polarizing region 181 is the same direction and
於透射轴的方向。左眼影像透射單元23,4, 二相= =穿透左眼偏光A 來說,右眼影像遷射單元232 ::直:透射輛的方向。舉例 為-偏光透鏡,^ ㈣像透射單元234分別 成的-偏光膜貼附到性染料的薄膜經單袖向拉伸而 在穿透延遲片# + ^ 182右眼影像光與2 :偏光區域181與左眼偏光區域 裝置!。。來觀看立體:;===立體影像顯示 偏光眼鏡220觀看立㈣德齡觀看者500可透過戴著上述的 扣將僅可觀看到右眼;^H丨⑻。基於上述,右眼 眼影像光。因此,觀看 而左眼514則僅可觀看到左 辨識成一立體影像。 可將右眼影像光與左眼影像光 圖3為容納於箱體11〇 視示意圖。如圖3所_少的立組衫像顯示裝置100的剖 所支擇。再者,4: 顯示單元130是由一外框165 示單元130的出光側。反射層200被貼附於影像顯 元130。其中,延遲片Γ8:透二 單元則交佳的情形為黏;貼附於影像顯示 !9〇的厚度。在此 〇的厚度相同於遮光結構 3〇0的厚度不僅可以與遮光結的的是黏著層 1冉υϋ的厚度完全相同,黏著 13 200912462 層300的厚度更可以趨近於遮光結構190的厚度的1.5倍。 舉例來說,當遮光結構190的厚度為1〇μιη至15μιη時,黏 著層300的較佳厚度為ΙΟμιη至20μιη。另外,當遮光結構 190的厚度為2μηι至3μηι時,黏著層300的較佳厚度為2μιη 至5μιη。其中,黏著層300的厚度是由延遲片180的右眼偏 光區域181與左眼偏光區域182的入射面開始算起的厚度。 當遮光結構190的厚度較小時,塗佈黏著層300的步驟中可 避免氣泡進入。 以下將說明一種立體影像顯示裝置100的製作方法。此 實施例中的一種立體影像顯示裝置100的製作方法包括一塗 佈步驟(applying process )、一除氣步驟(degassing process )、 —疊合步驟(laminating process )以及一貼合步驟(attaching process),其中塗佈步驟包括將一樹脂塗佈於影像顯示單元 130,除氣步驟包括對樹脂除氣,疊合步驟包括疊合影像顯示 單元130與延遲片180,而貼合步驟則包括透過將樹脂硬化 以貼合影像顯示單元130與延遲片180。 圖4為一種進行塗佈步驟之前的影像顯示單元π〇的剖 視示意圖。圖4中的影像顯示單元130的影像生成單元160 包括光源側玻璃基板(light-source glass substrate) 142、一 發光側玻璃基板(emission-side glass substrate) 144 以及由 密封於入光側玻璃基板142與出光側玻璃基板144之間所形 成的右眼影像生成區域162與左眼影像生成區域164。一光 源侧偏光片150配置於入光側玻璃基板142與光源之間,以 及發光側偏光片170配置於出光側玻璃基板144的出光側。 圖5為用以說明塗佈步驟的剖視圖。在塗佈步驟中,一 樹脂被塗佈於影像顯示單元130中的發光側偏光片170的出 光側表面,以形成黏著層300。其中,樹脂至少被塗佈於影 14 200912462 像生成單元160的這些右眼影像生成區域162與這些左眼影 像生成區域164朝向延遲片18〇的這些右眼偏光區域ι81與 這些左眼偏光區域182的區域。除了上述處理方式之外,樹 脂亦可被塗佈於發光側偏光片17G的整個表面。塗佈樹脂的 方法包括鋼模塗佈(diec〇ater)及凹版塗佈(gravurec〇ater) 或其他方式。另外’影像顯示單元130可被置放於真空爐 (vacuum furnace)中,以在真空爐中的低壓狀態下塗佈樹 脂。基於上述’可對樹脂進行除氣以提高其透明度 (transparency)及黏著度(adhesiveness)。另外,亦可在塗 佈M J3a後透過對影像顯示單元13 0使用超音波(ultrasonic vibration)以對樹脂進行除氣。在塗佈步驟中,黏著層3〇〇 被硬化前的厚度可等於或小於遮光結構19〇的厚度,且其厚 度取決於這些遮光結構190之間的開口面積、遮光結構190 的厚度及其他條件來設計。 使用於塗佈步驟中的樹脂可以透過加熱或照射紫外光硬 化’且此樹脂可為一具有一官能基(functi〇nal gr〇Up)以及 一環氧基(epOXy group)的樹脂,其中環氧基的側鏈(side chain)包括—不飽和雙鍵(unsaturateddouble bond)。另外, 亦可使用包含熱硬化樹脂與紫外光硬化樹脂的混合樹脂。紫 外光硬化樹脂例如是聚氨醋丙婦酸醋(Urethane Acrylate, UA)或不飽和丙稀酸醋(unsaturated polyester acrylate)。熱 硬化樹脂例如是不飽和聚醋樹脂(unsaturated polyester resin, UPR)、本二酸二浠丙酯樹脂(diallyl phthalate resin, DAP) 或聚氨酯(urethane resin, PU)。在常溫(攝氏25°C )下,上 述樹脂的較佳黏度可介於5〇〇厘泊(centipoises, cps)至1000 厘泊之間。當黏度小於5〇〇厘泊時,所塗佈的樹脂可能會溢 出。相反地,當黏度大於1000厘泊時,所塗佈的樹脂會難以 流進這些遮光結構190之間,進而無法平整地塗佈樹脂。 15 200912462 圖6為用以說明置放步驟的剖視圖。在置放步驟中,配 置有這些遮光結構190的延遲片180的表面被置放並重疊於 配置有黏著層300的影像顯示單元130的表面上。樹脂是 透過將影像顯示單元130與被置放於影像顯示單元130上的 延遲片180置放於真空爐中,並透過減少真空爐的壓力來進 行除氣。在除氣步驟中,亦可透過對影像顯示單元130與延 遲片180使用超音波來對樹脂進行除氣。 值得注意的是,如圖6所示,延遲片180的右眼偏光區 域181與左眼偏光區域182是透過一玻璃基板183支撐。延 遲片180的玻璃基板183比影像顯示單元130的出光側玻璃 基板144更厚,且延遲片180的整個表面與影像顯示單元130 的整個表面彼此貼合,因此不僅可維持強度,且可降低出光 側玻璃基板144的厚度。基於上述,可縮短影像顯示單元130 的影像生成單元160及延遲片180的右眼偏光區域181與左 眼偏光區域182之間的距離,以增加視角。舉例來說,當玻 璃基板183的厚度為0.7mm時,出光側玻璃基板144的厚度 可小於或等於0.5mm。 圖7為用以說明疊合步驟的剖視圖。在疊合步驟中,進 行置放步驟後的影像顯示單元130與延遲片180以延遲片 180朝上的方向被置放於載板(placement plate ) 610上。接 著,透過滾動中的滾輪(roller) 600而對延遲片180的玻璃 基板183施壓,以將影像顯示單元130與延遲片180互相疊 合。透過此方法,可整平黏著層300的厚度,以增加影像顯 示單元130與延遲片180的平坦度與平行度。黏著層300在 疊合步驟後的較佳厚度為相同於這些遮光結構190的厚度。 在疊合步驟中,滾輪600可透過繞著對準於圖7中所示的這 些右眼影像生成區域162與這些左眼影像生成區域164的方 向轉動來進行疊合步驟。滾輪600亦可透過繞著垂直於圖7 16 200912462 中所示的這些右眼影像生成區域162與這些左眼影像生成區 域164的長軸方向(longitudinal direction)轉動來進行疊合 步驟。影像顯示單元130可在疊合步驟後對準延遲片180。 於此實施例中,透過在黏著層300中混入石夕膠填充物 (silica-type filler )作為間隙物(spacer)可更容易對準。值 得注意的是,塗佈步驟、置放步驟與疊合步驟可在真空爐中 的一低壓狀態下進行。基於上述,可更有效地進行除氣以提 高生產力。 圖8為用以說明貼合步驟的剖視圖。在貼合步驟中,紫 外光由延遲片180的上方照射疊合步驟後的黏著層3〇〇,以 硬化黏著層300中的樹脂。舉例來說,此實施例中的紫外光 的照度(illuminance )為180 mW/cm2,累積的光量 (accumulated light quantity)為 3000mJ/cm2,且其波長為 365nm。基於上述,紫外光會照射黏著層3〇〇中的樹脂,以 硬化位於這些遮光結構190與延遲片18〇之間的區域中的樹 脂。 另外,亦可使用加熱裝置(heater)或其他類似的裝置由 外部加熱黏著層300,以透過加熱來硬化整個黏著層3〇〇。基 於上述,在上述區域中未被紫外光照射到的樹脂亦會被硬 化,以進一步確保影像顯示單元丨3〇與延遲片丨的貼合。 值得注意的是,照射紫外光與透過一加熱裝置來加熱可同步 進行。 將上述已貼合的影像顯示單元13〇與延遲片18〇容納於 圖3中所示的箱體110中,即可完成立體影像顯示裝置1〇〇。 根據上述實施例,影像顯示單元13〇與延遲片18〇是透過塗 佈樹脂來互相貼合,其中樹脂至少被塗佈於影像生成單元 160的這些右眼影像生成區域162與這些左眼影像生成區域 17 200912462 164重疊於延遲片180的這些右眼偏光區域181與這些左眼 偏光區域182的的區域。基於上述,影像顯示單元130可與 延遲片180緊密地互相固定,藉以增加視角。 圖9為本發明一實施例的一種抗反射層200的示意圖。 上述的立體影像顯示裝置100包括一位於延遲片180與觀看 者500之間的抗反射層200。抗反射層200包括依序排列於 延遲片180的玻璃基板183上的一黏著層202、一基材(base material) 204、一石更化膜(hard coating) 206、一高折射率 (refractive index)樹脂208以及一低折射率樹脂210。黏著 層202的厚度例如是25μιη。另外,基材204例如是三醋酸纖 維素(tri-acetyl cellulose,TAC)膜,且其厚度為 80μιη。硬 化膜206的厚度例如是5μπι。高折射率樹脂208與低折射率 樹脂210的折射率分別為1.65與1.40,且其厚度皆為0.1 μηι。 圖10為根據本發明一實施例的製作方法所製作出的另 一種立體影像顯示裝置101的立體分解圖。圖10中的立體影 像顯示裝置101的結構與圖1中的立體影像顯示裝置100的 結構相同的部分以相同的標號來標示,且於此不再贅述。如 圖10所示,立體影像顯示裝置101包括一延遲片185,用以 取代立體影像顯示裝置100的延遲片180。此延遲片185包 括多個右眼偏光區域186以及多個左眼偏光區域187。其中, 這些右眼偏光區域186與這些左眼偏光區域187皆為1/4波 長延遲片,且其光軸互相垂直。在延遲片185中,這些右眼 偏光區域186與這些左眼偏光區域187的位置與大小對應於 這些右眼影像生成區域162與這些左眼影像生成區域164的 位置與大小(如同延遲片180的這些右眼偏光區域181與這 些左眼偏光區域182的位置與大小)。基於上述,立體影像顯 示裝置101在使用狀態下,穿透右眼影像生成區域162右眼 18 200912462 y像光會入射至這些右眼偏光區域186,而穿透左眼影像生 成區域164的左眼影像光會入射至這些左眼偏光區域187。 一多個遮光結構190被配置在延遲片185朝向影像顯示單 几130的一表面上,以使各遮光結構19〇存在於右眼偏光區 域186與左眼偏光區域187之間的一邊界中。一遮光結構190 吸收並阻隔朝向延遲片185的一右眼偏光區域186入射的影 像光j其中此影像光來自於應入射至延遲片185鄰接於右眼 偏光區域186❾一左眼偏光區域187的左眼影像光。另外, 遮光結構190«並阻隔朝向延遲片185的—左眼偏光區域 入射的心像光’其中此影像光來自於應入射至延遲片185 鄰接於左眼偏光區域187的—右眼絲 光。透過上述方法,在延遲片185上的邊界中配置遮::: 190可避免由立體影像顯示裝置1〇1戶斤發射出的右眼影像光 與左眼影像光互相干擾。 延遲片185所發射出的入射光為偏光軸的旋轉方向互相 相反的圓偏振光。舉例來說,這些右眼偏光區域186所發射 出的入射光為-順時針方向的圓偏振光,而這些左眼偏光區 域187所發射出的入射光為一逆時針方向的圓偏振光。值得 注意的是,® H)中的延遲片185的各箭顧以表示出已通過 延遲片185的偏振光的旋轉方向。舉例來說,這些右眼偏光 區域186可為光軸呈水平方向的1/4波長延遲片,而這些左 眼偏光區域187可為光軸呈垂直方向的1/4波長延遲片。 與立體影像顯示裝置100的實施例相同,在圖ι〇所示的 立體影像顯示裝置1〇1巾,黏著層3〇〇用以將延遲片185貼 附於影像生成單元⑽。基於上述,f彡像顯示單元13〇可與 延遲片185緊密地互相固定,藉以增加視角。 19 200912462 在觀看如圖ίο所示的具有延遲片 置101時,觀看者500戴著一偏光限185的立體影像顯示裝 於右眼512的位置及對應於左眼51|兄’其中偏光眼鏡對應 長延遲片以及一偏光透鏡。於上述偏、的位置皆具有—1/4波 的右眼512所設置的1/4波長延遲片t眼鏡中’為觀看者500 為觀看者500的左眼514所設置的具有—水平的光軸,而 鉛直的光軸。另外,就為觀看者5〇〇波長延遲片則具有一 光透鏡以及為觀看者500的左眼5 '右眼512所設置的偏 說’由觀看者500的方向來看,透纟所設置的偏光透鏡來 ^ 逐射軸的方向皆位於士》•七 45度的方向’而吸收軸方向皆垂直於透射轴的方向 方 二戴著偏光眼鏡觀看立體影像顯示 裝置的方式。對减看者500的右眼512來說,去偏井站 方向相對於觀看者為順時針方向的圓偏振光入:時,圓 偏振光會透過光軸位於水平方向上的1/4波長延遲片轉換成 右上方45度的線性偏振光,並穿透偏光透鏡而被觀看者駕 的右眼512看到。對觀看者500的左眼514來說,當偏光軸 方向相對於觀看者500為逆時針方向的圓偏振光入射時,圓 偏振光會透過光軸位於垂直方向上的1/4波長延遲片轉換成 右上方45度的線性偏振光,並穿透偏光透鏡而被觀看者5〇〇 的左眼514看到。根據上述方式,透過戴著上述的偏光眼鏡 說看立體影像顯示裝置101 ’右眼512只能看到右眼影像光, 而左眼514只能看到左眼影像光。因此,觀看者$〇〇可將右 眼影像光與左眼影像光辨識成一立禮影像。 根據上述實施例,影像顯示單元13〇與延遲片1(或 185 )是透過塗佈樹脂來互相貼合,其中樹腊至少被塗佈於影 像生成單元160的這些右眼影像生成區域丨62與這些左眼影 像生成區域164重疊於延遲片180 (或185)的這些右眼偏光 區域181 (或186)與這些左眼偏光區域182 (或187)的區 20 200912462 於上述’影像顯示單元130可與延遲片180 (或185) 緊岔地互相固定,驻、給 、X i85 ) 寬度以提高亮度。日⑽,或者可縮小遮光結構層的 與/乂下利用對照例1、實施例1與實施例2來計算出上过 實施例的視角增加量與亮度提高量。 ^出上迷 〈對照例1〉 祕例1的影像顯示單元13G中,出以貝彳玻璃基板144 = 具有表1中所述的厚度(單位為二 n”n ^⑽的這些遮光結構⑽的間隔(pitch)為 這些遮光結構19〇的厚度(即為這些遮光結構⑽ =遲片180的表面的法線方向上的長度)為g qi5_ 將各遮光結構刚的寬度(也就是遮光結構⑽沿著延遲片 ⑽的表面的長度)狀為如们中所示。除此之外,^ 層300的厚度為〇.〇15mm,其與這些遮光結構刚的厚度相 同。視角值計算於對照例1中。 其中,“視角,,代表一相對於延遲片180的法線方向的 角度範圍’在此範圍之内相鄰畫素不會互相干擾。於此實施 例中,視角以下列方式計算。 ' 圖11為一種延遲片180與影像顯示單元13〇的側視圖, 用以說明視角。觀看距離(vie wing distance) d (即為觀看者 53〇至影像顯示單元13G的出光側玻璃基板M4的朝向光源 的表面的距離)為7〇〇mme在延遲片18G卜右眼偏光區域 181及與其相鄰的左眼偏光區域182的位置與間隔分別由直 線(伽ight line)厂與l2所定義出來,其中^與12由觀看者 =0分別連接到與觀看者53G在水平方向上等高的影像顯示 單7G 130的右眼影像生成區域ί62以及與此右眼影像生成區 域162相鄰的各別左眼影像生成區域164之間的各別邊界。 21 200912462 直線丨6與水平線(horizontal line )k之間的角度為,其中 直線丨6連接於右眼影像生成區域162及其中一與其相鄰的左 眼影像生成區域164 (圖11中位於右眼影像生成區域162下 方的左眼影像生成區域164)之間的邊界以及遮光結構19〇 對應於此邊界的一端(圖U中的遮光結構19〇的下端)。值 得注意的是,圖11中亦繪示出觀看者54〇在角度0 i觀看右 眼影像生成區域162的位置。另外,直線u與水平線k之間 的角度為02,其中直線丨2連接於右眼影像生成區域及 其中一與其相鄰的此左眼影像生成區域164之間的邊界以及 對應的右眼偏光區域181及與其相鄰的左眼偏光區域^2之 間的邊界。視角則根據角度θ 1與角度Θ2的和所定義出來。 此外’開口率(aperturerati〇)則是由下列公式計算:(卜(遮 光結構190的寬度)/(延遲片18〇的間隔))χ1〇〇。值 =:在二述的朗與計算方式中,# —左眼影像生成區域: J看者530在水平方向上等高時’右眼影像生成區域162 影像生成區域164可互換,且右眼偏光區域181與左 眼偏光區域182亦可互換。 〈實施例1〉 的严ίΐΪ例1中’影像顯示單元130的出光側玻璃基板144 如表1中所示,且其他條件與對照例!相同。換句話 Γ中貫=例率與對_1㈣口率相同。在實施例 /、視角的計算方式與對照例J相同。 〈實施例2〉In the direction of the transmission axis. The left-eye image transmission unit 23, 4, the two-phase = = penetrating the left-eye polarized light A, the right-eye image migrating unit 232 :: straight: the direction of the transmitted vehicle. For example, a polarizing lens, ^ (4) a transmissive unit 234, respectively, is attached to a film of a polarizing film, and the film is stretched by a single sleeve and penetrates the retarder # + ^ 182 right eye image light and 2: polarized light region 181 and left-eye polarized area device!. . To view the stereo:; === stereoscopic image display Polarized glasses 220 to view the vertical (four) derby viewer 500 can only see the right eye by wearing the above buckle; ^ H 丨 (8). Based on the above, the right eye is imaged. Therefore, while viewing, the left eye 514 can only be viewed as a left stereo image. The right eye image light and the left eye image light can be arranged in a housing 11 for a schematic view. As shown in Fig. 3, the outline of the stand-up shirt image display device 100 is selected. Furthermore, 4: the display unit 130 is indicated by an outer frame 165 on the light exit side of the unit 130. The reflective layer 200 is attached to the image display element 130. Among them, the retardation film Γ8: the case where the two-unit unit is good is sticky; the image is attached to the image display thickness of !9〇. Here, the thickness of the crucible is the same as the thickness of the light-shielding structure 3〇0, which is not only the same as the thickness of the adhesion layer 1冉υϋ, and the thickness of the adhesion layer 13 200912462 layer 300 can be closer to the thickness of the light-shielding structure 190. 1.5 times. For example, when the thickness of the light shielding structure 190 is from 1 μm to 15 μm, the thickness of the adhesive layer 300 is preferably from ΙΟμηη to 20 μm. Further, when the thickness of the light shielding structure 190 is 2 μm to 3 μm, the adhesive layer 300 preferably has a thickness of 2 μm to 5 μm. Here, the thickness of the adhesive layer 300 is the thickness of the right-eye polarizing region 181 of the retardation film 180 and the incident surface of the left-eye polarizing region 182. When the thickness of the light shielding structure 190 is small, air bubbles can be prevented from entering in the step of applying the adhesive layer 300. A method of fabricating the stereoscopic image display device 100 will be described below. A manufacturing method of a stereoscopic image display device 100 in this embodiment includes an applying process, a degassing process, a laminating process, and an attaching process. The coating step includes applying a resin to the image display unit 130, the degassing step includes degassing the resin, the laminating step includes superimposing the image display unit 130 and the retardation film 180, and the bonding step includes transmissing the resin The image is displayed to be bonded to the image display unit 130 and the retardation film 180. Fig. 4 is a schematic cross-sectional view showing the image display unit π 之前 before the coating step. The image generating unit 160 of the image display unit 130 in FIG. 4 includes a light-source glass substrate 142, an emission-side glass substrate 144, and a glass substrate 142 sealed by the light-incident side. The right eye image generation area 162 and the left eye image generation area 164 formed between the light exit side glass substrate 144 and the light exit side glass substrate 144. The light source side polarizer 150 is disposed between the light incident side glass substrate 142 and the light source, and the light emitting side polarizer 170 is disposed on the light exit side of the light exit side glass substrate 144. Fig. 5 is a cross-sectional view for explaining a coating step. In the coating step, a resin is applied to the light-emitting side surface of the light-emitting side polarizer 170 in the image display unit 130 to form the adhesive layer 300. The resin is applied at least to the right eye image generation region 162 of the image generation unit 160 and the right eye polarization region ι 81 of the left eye image generation region 164 toward the retardation film 18A and the left eye polarization region 182. Area. In addition to the above treatment, the resin may be applied to the entire surface of the light-emitting side polarizer 17G. The method of coating the resin includes die coating and gravure coating or other means. Further, the image display unit 130 may be placed in a vacuum furnace to coat the resin in a low pressure state in the vacuum furnace. The resin can be degassed based on the above to improve its transparency and adhesiveness. Alternatively, the resin may be degassed by applying ultrasonic vibration to the image display unit 130 after coating M J3a. In the coating step, the thickness of the adhesive layer 3 before being hardened may be equal to or smaller than the thickness of the light shielding structure 19, and the thickness thereof depends on the opening area between the light shielding structures 190, the thickness of the light shielding structure 190, and other conditions. To design. The resin used in the coating step may be cured by heating or irradiation with ultraviolet light' and the resin may be a resin having a functional group (functi〇nal gr〇Up) and an epoxy group (epOXy group), wherein the epoxy The side chain of the base includes an unsaturated double bond. Further, a mixed resin containing a thermosetting resin and an ultraviolet curing resin can also be used. The ultraviolet light curing resin is, for example, Urethane Acrylate (UA) or unsaturated acrylate (unsaturated polyester acrylate). The thermosetting resin is, for example, an unsaturated polyester resin (UPR), a diallyl phthalate resin (DAP) or a urethane resin (PU). The preferred viscosity of the above resin may be between 5 centipoises (cps) and 1000 centipoise at room temperature (25 ° C). When the viscosity is less than 5 〇〇 centistoke, the applied resin may overflow. On the contrary, when the viscosity is more than 1000 cps, the applied resin may hardly flow between the light-shielding structures 190, so that the resin may not be applied uniformly. 15 200912462 Figure 6 is a cross-sectional view for explaining the placement step. In the placing step, the surface of the retardation plate 180 on which the light shielding structures 190 are disposed is placed and superposed on the surface of the image display unit 130 on which the adhesive layer 300 is disposed. The resin is placed in a vacuum furnace by placing the image display unit 130 and the retardation film 180 placed on the image display unit 130, and degassing by reducing the pressure of the vacuum furnace. In the degassing step, the resin can also be degassed by using ultrasonic waves on the image display unit 130 and the delay sheet 180. It is to be noted that, as shown in FIG. 6, the right-eye polarizing region 181 and the left-eye polarizing region 182 of the retardation film 180 are supported by a glass substrate 183. The glass substrate 183 of the retardation film 180 is thicker than the light-emitting side glass substrate 144 of the image display unit 130, and the entire surface of the retardation film 180 and the entire surface of the image display unit 130 are attached to each other, thereby not only maintaining strength but also reducing light emission. The thickness of the side glass substrate 144. Based on the above, the distance between the right-eye polarizing region 181 of the image generating unit 160 of the image display unit 130 and the right-eye polarizing region 181 of the retarder 180 and the left-eye polarizing region 182 can be shortened to increase the angle of view. For example, when the thickness of the glass substrate 183 is 0.7 mm, the thickness of the light-emitting side glass substrate 144 may be less than or equal to 0.5 mm. Figure 7 is a cross-sectional view for explaining the lamination step. In the superimposing step, the image display unit 130 and the retardation film 180 after the placing step are placed on the placement plate 610 in the upward direction of the retardation plate 180. Then, the glass substrate 183 of the retardation film 180 is pressed by the roller 600 in the scroll to superimpose the image display unit 130 and the retardation film 180 on each other. By this method, the thickness of the adhesive layer 300 can be leveled to increase the flatness and parallelism of the image display unit 130 and the retardation film 180. The preferred thickness of the adhesive layer 300 after the lamination step is the same as the thickness of the light shielding structures 190. In the superimposing step, the roller 600 can perform the superimposing step by rotating in the directions of the right eye image generating regions 162 and the left eye image generating regions 164 aligned in Fig. 7 . The scroll wheel 600 can also be superimposed by rotating in the longitudinal direction of the right eye image generation region 162 and the left eye image generation region 164 perpendicular to that shown in Figures 7 16 200912462. The image display unit 130 can align the retarder 180 after the folding step. In this embodiment, it is easier to align by incorporating a silica-type filler as a spacer in the adhesive layer 300. It is to be noted that the coating step, the placing step and the laminating step can be carried out in a low pressure state in the vacuum furnace. Based on the above, degassing can be performed more efficiently to increase productivity. Fig. 8 is a cross-sectional view for explaining a bonding step. In the bonding step, the ultraviolet light is irradiated from the upper side of the retardation film 180 to the adhesive layer 3A after the lamination step to harden the resin in the adhesive layer 300. For example, the ultraviolet light in this embodiment has an illuminance of 180 mW/cm2, an accumulated light quantity of 3000 mJ/cm2, and a wavelength of 365 nm. Based on the above, the ultraviolet light illuminates the resin in the adhesive layer 3 to harden the resin in the region between the light-shielding structure 190 and the retardation film 18A. Alternatively, the adhesive layer 300 may be externally heated using a heater or the like to harden the entire adhesive layer 3 by heat. Based on the above, the resin which is not irradiated with ultraviolet light in the above region is also hardened to further ensure the adhesion of the image display unit 丨3〇 to the retardation sheet. It is worth noting that the irradiation of ultraviolet light and the heating through a heating device can be performed simultaneously. The above-described image display unit 13A and the retardation film 18 are accommodated in the casing 110 shown in Fig. 3, whereby the stereoscopic image display device 1 can be completed. According to the above embodiment, the image display unit 13 and the retardation film 18 are bonded to each other through a coating resin, wherein the resin is applied to at least the right eye image generation region 162 of the image generation unit 160 and the left eye image generation. The region 17 200912462 164 is superimposed on the regions of the right-eye polarizing region 181 of the retardation film 180 and the left-eye polarizing regions 182. Based on the above, the image display unit 130 can be closely fixed to the retarder 180 to increase the angle of view. FIG. 9 is a schematic diagram of an anti-reflection layer 200 according to an embodiment of the invention. The above-described stereoscopic image display device 100 includes an anti-reflection layer 200 between the retardation film 180 and the viewer 500. The anti-reflective layer 200 includes an adhesive layer 202 sequentially arranged on the glass substrate 183 of the retarder 180, a base material 204, a hard coating 206, and a high refractive index. Resin 208 and a low refractive index resin 210. The thickness of the adhesive layer 202 is, for example, 25 μm. Further, the substrate 204 is, for example, a tri-acetyl cellulose (TAC) film and has a thickness of 80 μm. The thickness of the hardened film 206 is, for example, 5 μm. The high refractive index resin 208 and the low refractive index resin 210 have refractive indices of 1.65 and 1.40, respectively, and have a thickness of 0.1 μm. FIG. 10 is an exploded perspective view of another stereoscopic image display device 101 produced by a manufacturing method according to an embodiment of the invention. The same components of the configuration of the stereoscopic image display device 101 in FIG. 10 and those of the stereoscopic image display device 100 of FIG. 1 are denoted by the same reference numerals and will not be described again. As shown in FIG. 10, the stereoscopic image display device 101 includes a retardation film 185 for replacing the retardation film 180 of the stereoscopic image display device 100. This retarder 185 includes a plurality of right-eye polarizing regions 186 and a plurality of left-eye polarizing regions 187. The right-eye polarizing region 186 and the left-eye polarizing regions 187 are both 1/4-wavelength retarders, and their optical axes are perpendicular to each other. In the retardation film 185, the positions and sizes of the right-eye polarized regions 186 and the left-eye polarized regions 187 correspond to the positions and sizes of the right-eye image generating regions 162 and the left-eye image generating regions 164 (like the retarder 180). These right-eye polarizing regions 181 and the positions and sizes of these left-eye polarizing regions 182). Based on the above, the stereoscopic image display device 101 penetrates the right eye image generation region 162 in the use state, and the right eye 18 200912462 y image light is incident on the right eye polarization region 186 and penetrates the left eye of the left eye image generation region 164. Image light is incident on these left-eye polarizing regions 187. A plurality of light shielding structures 190 are disposed on a surface of the retardation film 185 facing the image display unit 130 such that the light shielding structures 19 are present in a boundary between the right-eye polarizing region 186 and the left-eye polarizing region 187. A light shielding structure 190 absorbs and blocks image light j incident toward a right-eye polarizing region 186 of the retardation plate 185, wherein the image light is incident from the left side of the left-eye polarizing region 187 adjacent to the right-eye polarizing region 186. Eye image light. Further, the light-shielding structure 190 « and blocks the cardiographic light incident toward the left-eye polarizing region of the retardation plate 185, wherein the image light is from the right-eye mercerizing light which should be incident on the retardation plate 185 adjacent to the left-eye polarizing region 187. By the above method, the mask::: 190 is disposed in the boundary on the retarder 185 to prevent the right-eye image light and the left-eye image light emitted by the stereoscopic image display device 1〇1 from interfering with each other. The incident light emitted from the retardation plate 185 is circularly polarized light whose opposite directions of rotation of the polarization axis are opposite to each other. For example, the incident light emitted by the right-eye polarizing region 186 is a circularly polarized light in a clockwise direction, and the incident light emitted by the left-eye polarizing region 187 is a counter-clockwise circularly polarized light. It is to be noted that each of the retarders 185 in the ® H) indicates the direction of rotation of the polarized light that has passed through the retardation plate 185. For example, the right-eye polarizing regions 186 may be 1/4-wavelength retarders whose optical axes are horizontal, and the left-eye polarizing regions 187 may be 1/4-wave retarders whose optical axes are perpendicular. As in the embodiment of the stereoscopic image display device 100, in the stereoscopic image display device 1A shown in Fig. 1A, the adhesive layer 3 is used to attach the retarder 185 to the image generating unit (10). Based on the above, the image display unit 13 can be closely fixed to the retarder 185 to increase the angle of view. 19 200912462 When viewing the delay chip set 101 as shown in FIG. 1, the stereoscopic image of the viewer 500 wearing a polarization limit 185 is displayed at the position of the right eye 512 and corresponds to the left eye 51|brother' Long retardation film and a polarizing lens. In the 1/4 wavelength retarder t glasses provided with the right eye 512 of the 1/4 wave in the above-mentioned partial positions, the 'horizontal light set for the left eye 514 of the viewer 500 for the viewer 500 The shaft, while the vertical optical axis. In addition, the viewer's 5 〇〇 wavelength retarder has a light lens and a bias angle set for the left eye 5 'right eye 512 of the viewer 500' is viewed from the direction of the viewer 500. The polarizing lens is used to view the stereoscopic image display device with polarized glasses in the direction of the "seven degrees 45 degrees" and the direction of the absorption axis is perpendicular to the direction of the transmission axis. For the right eye 512 of the viewer 500, when the direction of the depolarization station is clockwise circularly polarized light with respect to the viewer, the circularly polarized light is transmitted through the optical axis at a quarter wavelength delay in the horizontal direction. The sheet is converted to linearly polarized light at 45 degrees to the upper right and penetrates the polarizing lens to be seen by the right eye 512 of the viewer. For the left eye 514 of the viewer 500, when the direction of the polarization axis is incident on the polarized light in the counterclockwise direction with respect to the viewer 500, the circularly polarized light is transmitted through the 1/4 wavelength retarder in the vertical direction of the optical axis. It is a linearly polarized light of 45 degrees to the upper right and penetrates the polarizing lens and is seen by the left eye 514 of the viewer 5 inches. According to the above manner, by wearing the above-mentioned polarized glasses, it is said that the right-eye image display device 101' can only see the right-eye image light, and the left-eye 514 can only see the left-eye image light. Therefore, the viewer $〇〇 can recognize the right eye image light and the left eye image light as a litigation image. According to the above embodiment, the image display unit 13A and the retardation sheet 1 (or 185) are adhered to each other through a coating resin, wherein the tree wax is applied at least to the right eye image generation regions 62 of the image generation unit 160 and The left-eye image generating area 164 is overlapped with the right-eye polarizing area 181 (or 186) of the retarder 180 (or 185) and the area 20 200912462 of the left-eye polarizing area 182 (or 187). The width of the retarder 180 (or 185) is tightly fixed to each other, and the width of the station is given, X i85 ) to increase the brightness. Day (10), or the reduction and the underside of the light-shielding structure layer can be calculated by using Comparative Example 1, Example 1 and Example 2 to calculate the amount of increase in viewing angle and the amount of increase in brightness of the above-described embodiment. ^出迷迷 <Comparative Example 1> In the image display unit 13G of the secret example 1, the glass substrate 144 = the light-shielding structure (10) having the thickness (unit: two n" n ^ (10) described in Table 1 The pitch is the thickness of the light-shielding structures 19〇 (that is, the lengths of the light-shielding structures (10) = the normal direction of the surface of the late film 180) is g qi5_ the width of each light-shielding structure (that is, the light-shielding structure (10) along The length of the surface of the retardation film (10) is as shown in the figure. In addition, the thickness of the layer 300 is 〇.〇15 mm, which is the same as the thickness of these light-shielding structures. The viewing angle value is calculated in Comparative Example 1 Wherein, "angle of view, representing an angular range relative to the normal direction of the retarder 180" within this range, adjacent pixels do not interfere with each other. In this embodiment, the angle of view is calculated in the following manner. 11 is a side view of a retardation film 180 and an image display unit 13A for explaining a viewing angle. The vie wing distance d (ie, the orientation of the light-emitting side glass substrate M4 of the viewer 53A to the image display unit 13G). The distance of the surface of the light source is 7 The position and interval of the 〇〇mme in the retardation film 18G and the right-eye polarization region 181 and the adjacent left-eye polarization region 182 are respectively defined by a line (gaight line factory) and l2, wherein ^ and 12 are by the viewer = 0 is respectively connected between the right eye image generation area ί62 of the image display sheet 7G 130 which is equal in height in the horizontal direction of the viewer 53G, and the respective left eye image generation area 164 adjacent to the right eye image generation area 162. 21 200912462 The angle between the straight line 丨6 and the horizontal line k is that the straight line 丨6 is connected to the right eye image generating area 162 and one of its adjacent left eye image generating areas 164 (Fig. 11 The boundary between the left-eye image generation region 164) located below the right-eye image generation region 162 and the light-shielding structure 19〇 correspond to one end of the boundary (the lower end of the light-shielding structure 19A in FIG. U). 11 also shows the position of the viewer 54 观看 viewing the right eye image generation area 162 at the angle 0 i. In addition, the angle between the line u and the horizontal line k is 02, wherein the line 丨 2 is connected to the right eye image generation area. And a boundary between the left eye image generating region 164 adjacent thereto and the corresponding right eye polarizing region 181 and the left eye polarizing region ^2 adjacent thereto. The viewing angle is based on the angle θ 1 and the angle The sum of Θ2 is defined. In addition, the 'aperturerati〇' is calculated by the following formula: (b (width of the light-shielding structure 190) / (interval of the retardation film 18〇)) χ1〇〇. Value =: in two In the lang and calculation method, #—left eye image generation area: when the J viewer 530 is equal in the horizontal direction, the right eye image generation area 162 the image generation area 164 is interchangeable, and the right eye polarization area 181 and the left eye The polarized regions 182 are also interchangeable. <Example 1> In the first example, the light-emitting side glass substrate 144 of the image display unit 130 is as shown in Table 1, and other conditions and comparative examples! the same. In other words, the average rate is the same as the 1:1 (four) rate. The calculation method of the embodiment / and the viewing angle is the same as that of the comparative example J. <Example 2>
的厚度與影丄:單:象::二13:的出光側玻璃基板14 4 中所示,H 的各遮光結構190的寬度如表J 、丫木件與對照例!相同。其中,遮光結構19〇 22 200912462 的寬度被設定,以使實施例2的開口率與對照例1的開口率 相同。在實施例2中,開口率的計算方式與對關i相同。 〈表1〉 對照例1 — 實施例1 實施例2 出光側玻璃基板144 0.7 0.3 0.3 發光側偏光片170 0.18 0.18 0.18 遮光結構190的寬度 0.135 0.135 0.074 Θ1 (角度) 4.37 7.98 4.37 Θ2 (角度) 0.01 0.02 0.01 視角(角度) 4.38 8.00 4.38 開口率(%) 49.9 49.9 72.7 由表1可清楚侍知,貫施例1的視角約為對照例1的視 角的1.8倍(由8.01除以4_39求得)。另外,實施例2的開 口率約為對照例1的開口率的1.5倍(由72.7除以49 9求 得)。換句話說,實施例2的亮度約為實施例1的亮度的j 5 倍。 知;上所述,根據上述實施例,影像顯示單元1 3 〇與延遲 片180 (或185)是透過塗佈樹脂來互相貼合,其中透過樹脂 至少被塗佈於影像生成單元160的這些右眼影像生成區域 162與這些左眼影像生成區域164重疊於延遲片18〇(或185 ) 的這些右眼偏光區域181 (或186)與這些左眼偏光區域182 (或187)的區域。基於上述,影像顯示單元13〇可與延遲 片180 (或185)緊密地互相固定,藉以增加視角。再者,相 較於另一在影像顯示單元13〇與延遲片18〇 (或185)之間存 23 200912462 在有 空氣層(air iayer )的情形,内反射(internal reflection ) 可被限制於影像顯示單元130與延遲片180(或185)之間, 以藉此減少干涉。特別的是即使在一大尺寸的影像顯示單元 130脊折時,黏著層300與延遲片180 (或185)也可跟著彎 折’因此可避免影像顯示單元130與延遲片180 (或185)之 間產生波狀紋路。另外,樹脂在疊合步驟後會被硬化,因此 可以使黏著層300具有均勻的厚度,以增加影像顯示單元13〇 與延遲片180 (或185)的平坦度與平行度。此外,透過縮短 影像顯示單元13〇與延遲片18〇(或185)之間的距離,各遮 光結構190的寬度可被窄化,同時還能與縮短距離前維持相 同程度的視角。基於上述,這些遮光結構19〇之間的開口部 分(aperture portion)可被放大,以增加螢幕的亮度。 圖12為用以說明本發明另一實施例的製作方法中的貼 附步驟的剖視圖。此製作方法包括一貼附步驟,其可用以取 代圖1-11所示的製作方法中的塗佈步驟。此製作方法更包括 一加熱步驟。於此製作方法中,結構與操作方式相同於圖 所示的製作方法的部分以相同的標號來標示,且於此不再贅 述。 如圖12所示’貼附步驟包括在延遲片18〇的一入光側表 面貼附一黏著片700。其中,黏著片7〇〇包括一樹脂層 layer ) 720以及一用以支樓樹脂層72〇的離形薄膜(此师收 film) 71〇。樹脂層720為一紫外光硬化樹脂,且其例如是日 本三鍵株式會社所生產的Threebcmd (商標)163()等 丙烯酸酯樹脂。如圖12中所示的實施例中,黏著片7〇〇 a = 過使黏著片700的樹脂層720側貼附於延遲片i8〇配 光結構190的表面來貼附於延遲片18〇。值彳曰、、主立的β这 著片700可為整捲可依需求切割而成的黏著:’,:是予】先: 形的单片黏者片。其中’當這些遮光結構190的厚度為3_1〇帅 24 200912462 時,黏著片700的樹脂層720的較佳厚度為15-75μπι。基於 上述,樹脂會均勻地填平這些遮光結構190之間的凹陷部 (concave portion ),以使表面平坦。 圖13為用以接續說明圖12中的貼附步驟的剖視圖。如 圖13所示,貼附步驟更包括透過一加熱滾輪800對貼附於延 遲片180的入光側表面的黏著片700的離形薄膜710側施 壓,以將黏著片700疊合於延遲片180的步驟。如圖13中所 示的步驟中,貼附步驟是透過加熱滾輪800以0.3m/min的速 度沿著圖中所示的箭頭方向在黏著片700的樹脂層720上滚 動來進行,以預先將黏著片700貼附於延遲片180,其中室 内的溫度為80°C且壓力為O.IMPa。透過使用加熱滾輪800 來進行上述貼附步驟可使樹脂層720符合於這些遮光結構 190凹陷/&起(concave/convex)的外形,藉此可使樹脂層 720佈滿延遲片180的入光側的整個表面。 圖14為用以接續說明圖13中的貼附步驟的剖視圖。 如圖14所示,貼附步驟更包括一將黏著片700的離形薄膜 710由樹脂層720上取下的步驟。如此一來,樹脂層720 將會被保留於延遲片180上,並會被暴露出來。 圖15為用以說明置放延遲片180於影像顯示單元130 上的置放步驟的剖視圖,其包含於上述的疊合步驟之中,並 接續於上述的貼附步驟之後。如圖15所示,將圖14中的步 驟中所被暴露出的樹脂層720疊置於影像顯示單元130的發 光側偏光片170的表面。此時,應決定延遲片180與影像顯 示單元130之間的對位。在決定延遲片180與影像顯示單元 130之間的對位時,延遲片180可能會由影像顯示單元130 上被取下,再疊置於其上數次。然而,既然樹脂層720已與 延遲片180疊合,即使延遲片180被由影像顯示單元130上 25 200912462 取下後,樹脂層720仍會確實地保留於延遲片180側,因而 可使延遲>1 180易於由影像顯示單元130上取下。 在決定延遲片180與影像顯示單元130之間的對位後, 影像顯示單元130在真空狀態下與延遲片180疊合。在真空 疊合步驟中,互相重疊的影像顯示單元130與延遲片180被 放置於溫度為80°C且壓力為150pa的真空爐中。另外,使用 一呈氣球狀(balloon shape)的構件來對影像顯示單元130 與延遲片180的其中之一提供O.IMpa的壓力,並使上述狀 態維持3分鐘。如此一來,影像顯示單元130會受壓而與延 遲片180貼合,且樹脂層720中的氣泡(air bubble)亦會被 移除。 在上述疊合步驟後更包括一加熱步驟。於此加熱步驟 中,影像顯示單元130與延遲片180會在一高於一大氣壓力 的氣壓下被加熱。此加熱步驟中的較佳氣壓為高於疊合步驟 中的氣壓。此加熱步驟的其中一種實施例為將影像顯示單元 130與延遲片180放置於具有溫度為60°C且壓力為〇.6Mpa 條件的腔室下維持1小時。基於上述,影像顯示單元130與 延遲片180在真空狀態下進行疊合步驟時所產生的形變可望 在此加熱步驟中被消除。另外,在真空疊合步驟後,未被移 除而殘留於樹脂層720中的氣泡亦可在此加熱步驟中被破壞 或擠出。在此加熱步驟後,照射紫外光以貼合遮光結構190 與延遲片180,就如同圖8中所示的貼合步驟。 綜上所述,除了圖1-11中所示的實施例的效果以外,圖 12-15中所示的實施例還可達成以下功效。此實施例使用一 黏著片700來貼合影像顯示單元130與延遲片180,以在黏 著片700的樹脂層720硬化之前,延遲片180可較容易由影 像顯示單元130上取下。基於上述,延遲片180與影像顯示 26 200912462 單元130之間的對位會較為容易。於此實施例中,樹脂層720 透過加熱滾輪800或其他方式疊合於延遲片180側,因此將 延遲片180由影像顯示單元130上取下時,樹脂層720會較 確實地保留於延遲片180側,因而可使延遲片180易於由影 像顯示單元130上取下。另外,透過上述的疊合步驟預先將 樹脂層720疊合於延遲片180可使樹脂層720符合於這些遮 光結構190凹陷/凸起的外形,因此可使樹脂層720確實地佈 滿於延遲片180與影像顯示單元130之間。 另外,在疊合步驟與貼合步驟之間增加一壓合步驟 (pressing process)可消除影像顯示單元130與延遲片180 在疊合步驟中所產生的形變。除此之外,在真空疊合步驟後 未被移除而殘留於樹脂層720中的氣泡可在加熱步驟中被破 壞或擠出。 值得注意的是,在圖12-15中所示的實施例中,黏著片 700是在進行疊合步驟之前事先被貼附於延遲片180。然而, 黏著片700亦可在進行疊合步驟之前事先被貼附於影像顯示 單元130。 雖然本發明的部分形態已以實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者,在 不脫離本發明的精神和範圍内,當可作些許的更動與潤飾, 因此本發明的保護範圍當視後附的申請專利範圍所界定者為 準。 27 200912462 【圖式簡單說明】 圖1為根據本發明—實施例的製作方法所製作出的—種 立體影像顯示裝置100的立體分解圖。 圖2為立體影像顯示裝置1〇〇在使用狀態下的示意圖。 圖^為容納於箱體11〇中的立體影像顯示裝置1〇〇的 視示意圖。 Μ 視示意圖。 圖5為用以說明塗伟步驟的剖視圖。 圖6為用以說明置放步驟的剖視圖。 圖7為用以說明疊合步驟的剖視圖。 圖8為用以說明貼合步驟的剖視圖。 圖9為本發明一實施例的—種抗反射層200的示意圖。 圖二發明一實施例的製作方法所製作出的另 體衫像顯不裝置101的立體分解圖。 =二^遲片180與影像顯示單元-的側視圖, ::::明本發明另-實施例的製作樹的貼 圖圖2為用以接續說明圖U中的貼附步驟的剖視圖。 圖 ^占附步驟的剖視圖。 i5 4用以說明置放延遲片 上的置放步驟的剖視圓。 〜像顯示單元】30 28 200912462 【主要元件符號說明】 100、101 :立體影像顯示裝置 110 :箱體 120 :光源 130 :影像顯示單元 140 :立體影像顯示裝置 142 :入光側玻璃基板 144 :出光側玻璃基板 150 :光源側偏光片 160 :影像生成單元 162 :右眼影像生成區域 164 :左眼影像生成區域 165 :外框 170 :發光側偏光片 180、 185 :延遲片 181、 186 :右眼偏光區域 182、 187 :左眼偏光區域 183 :玻璃基板 190 :立體影像顯示裝置 200 :抗反射層 202 :黏著層 29 200912462 204 :基材 206 :硬化膜 208 :高折射率樹脂 210 :低折射率樹脂 220 :偏光眼鏡 232 :右眼影像透射單元 234 :左眼影像透射單元 300 :黏著層 500、530、540 :觀看者 512 :右眼 514 :左眼 600 :滾輪 610 :載板 700 :黏著片 710 :離形薄膜 720 :樹脂層 800 :加熱滾輪 d :觀看距離 h、12、15、U:直線 k :水平線 30Thickness and shadow: Single: Image: 2: 13: The light-emitting side glass substrate 14 4 shows that the width of each light-shielding structure 190 of H is as shown in Table J, eucalyptus and comparative examples! the same. Here, the width of the light-shielding structure 19 〇 22 200912462 was set so that the aperture ratio of Example 2 was the same as that of Comparative Example 1. In Embodiment 2, the aperture ratio is calculated in the same manner as the gate i. <Table 1> Comparative Example 1 - Example 1 Example 2 Light-emitting side glass substrate 144 0.7 0.3 0.3 Light-emitting side polarizer 170 0.18 0.18 0.18 Width of light-shielding structure 190 0.135 0.135 0.074 Θ1 (angle) 4.37 7.98 4.37 Θ2 (angle) 0.01 0.02 0.01 Viewing angle (angle) 4.38 8.00 4.38 Opening ratio (%) 49.9 49.9 72.7 It can be clearly seen from Table 1 that the viewing angle of the first embodiment is about 1.8 times that of the comparative example 1 (determined by dividing 8.01 by 4_39) . Further, the opening ratio of Example 2 was about 1.5 times the opening ratio of Comparative Example 1 (determined by dividing 72.7 by 49 9). In other words, the luminance of Embodiment 2 is about j 5 times the luminance of Embodiment 1. As described above, according to the above embodiment, the image display unit 13 and the retarder 180 (or 185) are bonded to each other through the coating resin, wherein the transmissive resin is applied to at least the right of the image generating unit 160. The eye image generation region 162 and the left eye image generation region 164 overlap the regions of the right eye polarization region 181 (or 186) of the retardation film 18 (or 185) and the left eye polarization region 182 (or 187). Based on the above, the image display unit 13 can be closely fixed to the retarder 180 (or 185) to increase the angle of view. Furthermore, compared with the other, between the image display unit 13A and the retardation film 18A (or 185), 23 200912462 in the case of an air iayer, internal reflection can be limited to the image. The display unit 130 is interposed between the retarder 180 (or 185) to thereby reduce interference. In particular, even when the large-size image display unit 130 is folded, the adhesive layer 300 and the retarder 180 (or 185) can be bent. Therefore, the image display unit 130 and the retarder 180 (or 185) can be avoided. A wavy line is created between them. Further, the resin is hardened after the laminating step, so that the adhesive layer 300 can have a uniform thickness to increase the flatness and parallelism of the image display unit 13A and the retardation plate 180 (or 185). Further, by shortening the distance between the image display unit 13A and the retardation film 18A (or 185), the width of each of the light shielding structures 190 can be narrowed while maintaining the same degree of viewing angle as before shortening the distance. Based on the above, an aperture portion between the light shielding structures 19A can be enlarged to increase the brightness of the screen. Figure 12 is a cross-sectional view for explaining an attaching step in a manufacturing method of another embodiment of the present invention. This fabrication method includes an attachment step that can be used to replace the coating step in the fabrication process illustrated in Figures 1-11. The manufacturing method further includes a heating step. In the manufacturing method, the parts of the manufacturing method which are the same as those of the manufacturing method shown in the figure are denoted by the same reference numerals and will not be described again. As shown in Fig. 12, the attaching step includes attaching an adhesive sheet 700 to a light incident side surface of the retardation film 18A. The adhesive sheet 7 〇〇 includes a resin layer 720 and a release film 71 用以 for the resin layer 72 支. The resin layer 720 is an ultraviolet curable resin, and is, for example, an acrylate resin such as Threebcmd (trademark) 163() produced by Nippon Sanken Co., Ltd. In the embodiment shown in Fig. 12, the adhesive sheet 7〇〇 a = the surface of the resin layer 720 of the adhesive sheet 700 is attached to the surface of the retardation sheet i8 〇 light distribution structure 190 to be attached to the retardation sheet 18A. The value of 彳曰, the main β of the film 700 can be the whole roll can be cut according to the demand of the adhesion: ',: Yes 】 First: Shape of the single piece of sticky tablets. Wherein the thickness of the resin layer 720 of the adhesive sheet 700 is 15 to 75 μm when the thickness of the light-shielding structure 190 is 3_1. Based on the above, the resin uniformly fills the concave portion between the light-shielding structures 190 to make the surface flat. Figure 13 is a cross-sectional view for explaining the attaching step of Figure 12 in succession. As shown in FIG. 13, the attaching step further includes pressing the side of the release film 710 of the adhesive sheet 700 attached to the light incident side surface of the retardation film 180 through a heating roller 800 to superimpose the adhesive sheet 700 on the delay. The steps of slice 180. In the step shown in FIG. 13, the attaching step is performed by rolling the heating roller 800 at a speed of 0.3 m/min along the arrow direction shown in the drawing on the resin layer 720 of the adhesive sheet 700 to advance The adhesive sheet 700 was attached to the retarder 180, wherein the temperature in the chamber was 80 ° C and the pressure was 0.1 MPa. By performing the above-described attaching step by using the heating roller 800, the resin layer 720 can conform to the concave/convex shape of the light-shielding structure 190, whereby the resin layer 720 can be filled with the light entering the retarder 180. The entire surface of the side. Figure 14 is a cross-sectional view for explaining the attaching step of Figure 13 in succession. As shown in Fig. 14, the attaching step further includes a step of removing the release film 710 of the adhesive sheet 700 from the resin layer 720. As a result, the resin layer 720 will remain on the retarder 180 and will be exposed. Fig. 15 is a cross-sectional view showing the placing step of placing the retardation film 180 on the image display unit 130, which is included in the above-described lamination step, and is continued after the above-described attaching step. As shown in Fig. 15, the resin layer 720 exposed in the step of Fig. 14 is superposed on the surface of the light-emitting side polarizer 170 of the image display unit 130. At this time, the alignment between the delay slice 180 and the image display unit 130 should be decided. When determining the alignment between the retardation film 180 and the image display unit 130, the retarder 180 may be removed from the image display unit 130 and stacked thereon several times. However, since the resin layer 720 has been overlapped with the retardation film 180, even if the retardation film 180 is removed from the image display unit 130 by 25 200912462, the resin layer 720 remains surely on the side of the retardation film 180, so that the retardation can be made. ; 1 180 is easily removed from the image display unit 130. After determining the alignment between the retardation film 180 and the image display unit 130, the image display unit 130 is superimposed on the retardation film 180 in a vacuum state. In the vacuum lamination step, the image display unit 130 and the retardation film 180 which are overlapped each other are placed in a vacuum furnace having a temperature of 80 ° C and a pressure of 150 Pa. Further, a balloon shape member is used to supply O.IMpa pressure to one of the image display unit 130 and the retardation film 180, and the above state is maintained for 3 minutes. As a result, the image display unit 130 is pressed to be attached to the delay sheet 180, and the air bubble in the resin layer 720 is also removed. A heating step is further included after the above lamination step. In this heating step, the image display unit 130 and the retarder 180 are heated at a pressure higher than one atmospheric pressure. The preferred gas pressure in this heating step is higher than the gas pressure in the lamination step. One of the embodiments of this heating step is to place the image display unit 130 and the retarder 180 under a chamber having a temperature of 60 ° C and a pressure of 〇.6 MPa for 1 hour. Based on the above, the deformation generated when the image display unit 130 and the retardation film 180 are subjected to the laminating step in a vacuum state is expected to be eliminated in this heating step. Further, after the vacuum lamination step, the bubbles remaining in the resin layer 720 which are not removed may be broken or extruded in this heating step. After this heating step, ultraviolet light is irradiated to conform to the light-shielding structure 190 and the retardation plate 180, just like the bonding step shown in FIG. In summary, in addition to the effects of the embodiment shown in Figures 1-11, the embodiment shown in Figures 12-15 can achieve the following effects. This embodiment uses an adhesive sheet 700 to conform the image display unit 130 and the retardation film 180 so that the retardation film 180 can be easily removed from the image display unit 130 before the resin layer 720 of the adhesive sheet 700 is hardened. Based on the above, it is easier to align the delay slice 180 with the image display 26 200912462 unit 130. In this embodiment, the resin layer 720 is superposed on the retarder 180 side through the heating roller 800 or the like. Therefore, when the retarder 180 is removed from the image display unit 130, the resin layer 720 is more reliably retained in the retarder. The 180 side allows the retarder 180 to be easily removed from the image display unit 130. In addition, by superposing the resin layer 720 on the retarder 180 in advance through the above-described laminating step, the resin layer 720 can conform to the concave/protruding shape of the light-shielding structures 190, so that the resin layer 720 can be surely covered with the retardation film. 180 is between the image display unit 130. In addition, the addition of a pressing process between the laminating step and the laminating step can eliminate the deformation of the image display unit 130 and the retarder 180 during the lamination step. In addition to this, the bubbles remaining in the resin layer 720 which are not removed after the vacuum lamination step may be broken or extruded in the heating step. It is noted that in the embodiment shown in Figures 12-15, the adhesive sheet 700 is previously attached to the retarder 180 prior to the step of laminating. However, the adhesive sheet 700 may be attached to the image display unit 130 in advance before the folding step. While a part of the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. 27 200912462 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a three-dimensional image display device 100 produced by a manufacturing method according to an embodiment of the present invention. 2 is a schematic view of the stereoscopic image display device 1 in use. Fig. 2 is a schematic view showing a stereoscopic image display device 1A housed in a casing 11''. Μ Vision. Figure 5 is a cross-sectional view for explaining the step of coating. Fig. 6 is a cross-sectional view for explaining a placing step. Figure 7 is a cross-sectional view for explaining the lamination step. Fig. 8 is a cross-sectional view for explaining a bonding step. FIG. 9 is a schematic diagram of an anti-reflection layer 200 according to an embodiment of the invention. Fig. 2 is an exploded perspective view showing the other body image display device 101 produced by the manufacturing method of the embodiment. Fig. 2 is a cross-sectional view for explaining the attaching step in Fig. U, which is a side view of the image display unit of the present invention. Figure ^ is a cross-sectional view of the occupation step. I5 4 is used to illustrate the cross-sectional circle of the placement step on the placement delay sheet. ~ Image display unit] 30 28 200912462 [Description of main component symbols] 100, 101: Stereoscopic image display device 110: Case 120: Light source 130: Image display unit 140: Stereoscopic image display device 142: Light-incident side glass substrate 144: Light-emitting Side glass substrate 150: light source side polarizer 160: image generating unit 162: right eye image generating area 164: left eye image generating area 165: outer frame 170: light emitting side polarizer 180, 185: retarder 181, 186: right eye Polarized region 182, 187: Left-eye polarizing region 183: Glass substrate 190: Stereoscopic image display device 200: Anti-reflection layer 202: Adhesive layer 29 200912462 204: Substrate 206: Cured film 208: High refractive index resin 210: Low refractive index Resin 220: polarized glasses 232: right eye image transmissive unit 234: left eye image transmissive unit 300: adhesive layer 500, 530, 540: viewer 512: right eye 514: left eye 600: roller 610: carrier 700: adhesive sheet 710: release film 720: resin layer 800: heating roller d: viewing distance h, 12, 15, U: straight line k: horizontal line 30