200908521 七、 指定代表圖: (一) 本案指定代表圖為:第(二)圖。 (二) 本代表圖之元件符號簡單說明: 210數位控制電路 220壓電陶瓷變壓器組 221金氧半場效電晶體 222壓電陶瓷變壓器 230發光/監測組200908521 VII. Designation of the representative representative: (1) The representative representative of the case is: (2). (2) Simple description of the symbol of the representative figure: 210 digital control circuit 220 piezoelectric ceramic transformer group 221 gold oxygen half field effect transistor 222 piezoelectric ceramic transformer 230 illumination / monitoring group
231 CCFL 232電壓/電流監測組件 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、 發明說明: 【發明所屬之技術領域】 本發明係有關一種數位控制電路,特別是有關一種壓 電陶瓷變壓器的數位控制電路。 【先前技術】 壓電陶曼變墨器 (piezoelectric ceramic transformer,PCT)是用壓電陶瓷材料製成的具有電壓變 換特性的器件,其基本原理是利用材料的壓電效應進行機 5 200908521 電能量的二次變換,在諧振頻率上獲得升(降)壓輸出。 此類變壓器與傳統電磁變壓器相比,具有體積小、重量輕、 結構簡單、不用銅鐵材料、不怕受潮、不會燃燒和擊穿、 不受電磁干擾等優點,因此逐漸使用於冷陰極螢光燈管背 光模組電壓增壓元件上,以增壓激發電子與水銀原子互相 碰撞而發出紫外光。 第一圖顯示了一種使用壓電陶瓷變壓器的冷陰極螢光 燈管換流器(inverter) 100,直流電源DC輸入換流器後, 由控制電路110產生一驅動信號輸入至電晶體開關 (transistor switch) 120,電晶體開關120接收此一信 號之後,即產生一高電壓、大電流的方波信號至壓電陶瓷 變壓器130,由壓電陶瓷變壓器130進一步升壓後提供給 冷陰極螢光燈管150使用。此外,電壓偵測器140與電流 偵測器160分別負責電壓與電流取樣,並將取樣的信號回 傳至控制電路110,控制電路110根據這些取樣信號,進 一步修正輸出的驅動信號。 習知的控制電路為類比式設計,需使用大量的電子元 件,而且一組控制電路僅能控制一組陶瓷變壓器以驅動冷 陰極螢光燈管,設計與使用上均非常不便;因此亟需提出 一種改良的設計,可以減少電子元件的使用以降低成本, 200908521 並且具備多通道驅動冷陰極螢光燈管的功能,以滿足一組 控制電路即可驅動多組冷陰極螢光燈管的需要。 【發明内容】 本發明目的之一在於提供一種壓電陶瓷變壓器數位控 制電路,包含一數位積體電路(Integrated Circuit,1C), 可以大量減少電子元件的使用。 本發明之另一目的在於提供一種數位控制電路,可以 控制多組壓電陶瓷變壓器而達到多通道的功能。 本發明之又一目的在於提供一種數位式多通道壓電陶 瓷換流器,可以同時驅動多組發光元件。 根據上述之目的,本發明提供一種數位控制電路,主 要包含數位積體電路(Integrated Circuit, 1C)與至少 一個變壓器組。此數位積體電路可同時控制多組壓電陶瓷 變壓器而達到多通道的效果,減少了電子元件的使用以降 低成本。而變壓器組可接收來自數位控制電路之驅動信 號,並根據驅動信號執行升/降電壓。此電路具備多通道功 能,可以同時控制多組壓電陶瓷變壓器以驅動多組發光元 件,減少了電子元件的使用,降低成本。 【實施方式】 7 200908521 本發明一些實施例的詳細描述如下,然而,除了該詳 細描述外,本發明還可以廣泛地在其他的實施例施行。亦 即,本發明的範圍不受已提出之實施例的限制,而應以本 發明提出之申請專利範圍為準。 再者,為提供更清楚的描述及更易理解本發明,圖示 内各部份並沒有依照其相對尺寸繪圖,某些尺寸與其他相 關尺度相比已經被誇張;不相關之細節部份也未完全繪 出,以求圖示之簡潔。 以下是本發明的詳細說明,首先請參閱第二圖。第二 圖顯示了本發明的較佳實施例的一種數位式多通道壓電陶 瓷換流器200,在不同實施例中,本實施例的數位式多通 道壓電陶瓷換流器200可以不同的材料所製成的數位式多 通道壓電換流器取代。數位式多通道壓電陶瓷換流器200 主要元件包含了數位控制電路210、壓電陶瓷變壓器組220 以及發光/監測組230。需注意的是,在本圖的發光/監測 組230中的發光元件雖然是以冷陰極螢光燈管來表示,但 實際上的應用不僅止於冷陰極螢光燈管,本發明的數位式 多通道壓電陶瓷換流器更可以應用在其它的發光元件上, 如外部電極螢光燈管(External Electrode Fluorescent Lamp, EEFL)、節能燈等。 8 200908521 依舊參閱第二圖,配合圖示,在下列敘述中作本發明 的電路工作流程說明。首先由數位控制電路210產生一個 特定頻率的驅動方波信號傳送至壓電陶瓷變壓器組220。 壓電陶瓷變壓器組220由一驅動元件及壓電陶瓷變壓器構 成,其中,驅動元件可為任何具有推動負載能力的電子開 關裝置,例如本圖的金氧半場效電晶體(M0SFET) 221。驅 動元件221接收此一驅動方波信號後,產生一個高電壓、 大電流的方波信號提供給壓電陶瓷變壓器222進一步執行 升/降電壓,並將這個經過升/降電壓的電源供給發光元件 (可以是、但不限定如本實施例的冷陰極螢光燈管)231 使用。同時,電壓/電流監測組件232將會針對電壓、電流 進行取樣偵測,並將取樣結果傳回數位控制電路210 ;數 位控制電路210則根據這個取樣結果,進一步調整驅動方 波信號,傳送至壓電陶瓷變壓器組220。此一監測機制將 使得發光元件的工作電壓/電流值維持在一特定的工作範 圍内。 如上所述,由於本實施例使用的控制電路是數位式 的,具有同時輸出多組驅動方波信號的能力,所以只需要 一組控制電路即可控制多組壓電陶瓷變壓器組而形成多通 道模式,大量地減少了電子元件的使用,不但縮減面積、 減低電子元件之間的電磁干擾降低成本,更大幅節省成 9 200908521 本。需注意的是,為求圖示之簡潔,僅繪出一組壓電陶瓷 變壓器組2 2 0及一組發光/監測組2 3 0做為示範 第三圖是本發明之另一實施例的電路方塊圖。在本圖 中,使用一個結合電位轉換器(level shifter)與橋式整 流器(H-bridge)的電路321做為壓電陶瓷變壓器組中的 驅動元件。需注意的是,在本圖的發光/監測組330中的發 光元件雖然是以冷陰極螢光燈管來表示,但實際上的應用 : 不僅止於冷陰極螢光燈管,本發明的數位式多通道壓電陶 瓷換流器更可以應用在其它的發光元件上,如外部電極螢 光燈管(External Electrode Fluorescent Lamp, EEFL)、 節能燈等。 請繼續參閱第三圖。與第二圖的工作原理類似,首先 由數位控制電路310產生一個特定頻率的驅動方波信號傳 送至壓電陶瓷變壓器組320。壓電陶瓷變壓器組320由一 i 驅動元件及壓電陶瓷變壓器構成,其中,驅動元件可為任 何具有推動負載能力的電子開關裝置,例如本圖的結合電 位轉換器(level shifter)與橋式整流器(H-bridge)的 電路321。驅動元件321接收此一驅動方波信號後,產生 一個高電壓、大電流的方波信號提供給壓電陶瓷變壓器322 進一步執行升/降電壓,並將這個經過升/降電壓的電源供 給發光元件(可以是、但不限定如本實施例的冷陰極螢光 10 200908521 燈管)331使用。同時,電壓/電流監測組件332將會針對 電壓、電流進行取樣彳貞測’並將取樣結果傳回數位控制電 路310 ;數位控制電路310則根據這個取樣結果,進一步 調整驅動方波信號,傳送至壓電陶瓷變壓器組320。此一 監測機制將使得發光元件的工作電壓/電流值維持在一特 定的工作範圍内。 同樣的,由於本實施例使用的控制電路是數位式的, 具有同時輸出多組驅動方波信號的能力,所以只需要一組 控制電路即可控制多組壓電陶瓷變壓器組而形成多通道模 式,大量地減少了電子元件的使用,不但縮減面積、減低 電子元件之間的電磁干擾降低成本,更大幅節省成本。需 注意的是,為求圖示之簡潔,僅繪出一組壓電陶瓷變壓器 組3 2 0及一組發光/監測組3 3 0做為示範。 第四圖顯示本發明之一實施例的壓電陶瓷變壓器數位 控制電路210。數位控制電路210中包含了數位積體電路 (Integrated Circuit, 1C) 211,多個數值控制震蘯器 (Numerical Control Osci 1 lator) 212.a 到 212.η,多工 器 213,類比數位轉換器(Analog to Digital Converter) 214。 依舊參閱第四圖,配合圖示,在下列敘述中作本發明 的電路工作流程說明。首先由數位積體電路211發出驅動 11 200908521 信號至數值控制震盪器212,而且,由於數位積體電路的 特性,使得數位積體電路211可以同時控制多組數值控制 震盪器212以形成多組通道。數值控制震盪器212根據這 個驅動信號震盪出一個特定頻率的驅動方波信號,再將這 個驅動方波信號輸出至壓電陶瓷變壓器組。之後,在發光 元件動作的同時,上述的電壓/電流取樣結果將經由多工器 213傳至類比數位轉換器214。類比數位轉換器214將此類 比偵測信號轉換為數位信號後,輸出至數位積體電路211。 數位積體電路211則根據這個數位偵測信號,進一步調整 驅動信號,經由數值控制震盪器212產生驅動方波後送至 壓電陶瓷變壓器組。此一監測機制將使得發光元件的工作 電壓/電流值維持在一特定的工作範圍内。 第五圖顯示本發明之一實施例的壓電陶瓷變壓器數位 控制電路310。數位控制電路310中包含了數位積體電路 311、除頻器(Frequency Divider) 312與類比數位轉換 器313。需注意的是,數位積體電路311具有控制多組除 頻器的能力,在數位積體電路311中可以包含多組除頻 器,為求圖示的簡潔,本圖僅繪出一組除頻器做為示範。 另外,如果有多組電壓/電流取樣信號傳回,更可以在類比 數位轉換器313之前增設多工器,如上述第四圖。 12 200908521 依舊參閱第五圖,配合圖示,在下列敘述中作本發明 的電路工作流程說明。首先由數位積體電路311發出驅動 信號至除頻器312,而且,由於數位積體電路的特性,使 得數位積體電路311可以同時控制多組除頻器312以形成 多組通道。除頻器312根據這個驅動信號產生出一個特定 頻率的驅動方波信號,再將這個驅動方波信號輸出至壓電 陶瓷變壓器組。之後,在發光元件動作的同時,上述的電 壓/電流取樣結果將傳回至類比數位轉換器313。類比數位 轉換器313將此類比偵測信號轉換為數位信號後,輸出至 數位積體電路311。數位積體電路311則根據這個數位偵 測信號,進一步調整驅動信號,經由除頻器312產生驅動 方波後送至壓電陶瓷變壓器組。此一監測機制將使得發光 元件的工作電壓/電流值維持在一特定的工作範圍内。 由上述第四圖與第五圖可以了解,數值控制震盪器與 除頻器在本發明中是擔任波形產生器的功能,接收來自數 位積體電路的驅動信號後,產生出一個特定頻率的驅動方 波信號,再將這個驅動方波信號輸出至壓電陶瓷變壓器組。 第六圖顯示本發明之另一實施例的壓電陶瓷變壓器數 位控制電路410。在本圖中,多工器414、類比數位轉換電 路415與波形產生電路413 (可以是、但不限定是上述的 數值控制震盪器與除頻器)均整合入數位積體電路411 13 200908521 中,增加設計與應用上的便利。需注意的是,主控電路412 具有控制多組波形產生電路的能力,但為求圖示的簡潔, 本圖僅繪出一組波形產生電路做為示範。 依舊參閱第六圖,配合圖示,在下列敘述中作本發明 的電路工作流程說明。首先由主控電路412發出驅動信號 至波形產生電路413,並且主控電路412可以同時控制多 組波形產生電路413以形成多組通道。波形產生電路413 根據這個驅動信號產生出一個特定頻率的驅動方波信號, 再將這個驅動方波信號輸出至壓電陶瓷變壓器組。之後, 在發光元件動作的同時,上述的電壓/電流取樣結果經由多 工器213傳至類比數位轉換器415。類比數位轉換器415 將此類比偵測信號轉換為數位信號後,輸出至主控電路 412。主控電路412則根據這個數位偵測信號,進一步調整 驅動信號,經由波形產生電路413產生驅動方波後送至壓 電陶瓷變壓器組。此一監測機制將使得發光元件的工作電 壓/電流值維持在一特定的工作範圍内。 由上述的說明可以知道,本發明的特點在於以數位式 控制電路取代傳統的類比式控制電路,使用一個1C即可以 驅動多組壓電陶瓷變壓器而達到多通道的效果,大量地減 少了電子元件的使用,不但縮減面積、減低電子元件之間 的電磁干擾,更大幅節省成本。 14 200908521 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之申請專 利範圍内。 【圖式簡單說明】 第一圖係為習知使用的壓電陶瓷變壓器的冷陰極螢光燈管 i 換流益架構的不意圖。 第二圖係為本發明一實施例之數位式多通道壓電陶瓷換流 器的示意圖。 第三圖係為本發明另一實施例之數位式多通道壓電陶瓷換 流器的示意圖。 第四圖係為本發明一實施例之壓電陶瓷變壓器數位式控制 電路的不意圖。 ' 第五圖係為本發明另一實施例之壓電陶瓷變壓器數位式控 制電路的示意圖。 第六圖係為本發明又一實施例的壓電陶瓷變壓器數位式控 制電路的示意圖。 【主要元件符號說明】 100 壓電陶瓷變壓器的冷陰極螢光燈管換流器 15 200908521 110 控制電路 120 電晶體開關 130 壓電陶瓷變壓器 140 電壓偵測器 150 冷陰極螢光燈管(CCFL) 160 電流偵測裔 200 數位式多通道壓電陶莞換流器 210 數位控制電路 211 數位積體電路(1C) 212 數值控制震盪器 213 多工器 214 類比數位轉換器 220 壓電陶瓷變壓器組 221 金氧半場效電晶體 222 壓電陶瓷變壓器 230 發光/監測組 231 冷陰極螢光燈管(CCFL) 232 電壓/電流監測組件 300 數位式多通道壓電陶瓷換流器 310 數位控制電路 311 數位積體電路(1C) 16 200908521 312 除頻器 313 類比數位轉換器 320 壓電陶瓷變壓器組 321 電位轉換器+橋式整流器 322 壓電陶瓷變壓器 330 發光監測組 331 冷陰極螢光燈管(CCFL) 332 電壓/電流監測組件 410 數位控制電路 411 數位積體電路(1C) 412 主控電路 413 波形產生電路 414 多工器 415 類比數位轉換電路 17231 CCFL 232 voltage / current monitoring component 8. In the case of the chemical formula, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The present invention relates to a digital control circuit, in particular A digital control circuit for a piezoelectric ceramic transformer. [Prior Art] Piezoelectric ceramic transformer (PCT) is a device with voltage conversion characteristics made of piezoelectric ceramic material. The basic principle is to use the piezoelectric effect of the material to carry out the machine 5 200908521 electric energy The secondary transformation produces a rising (lower) voltage output at the resonant frequency. Compared with the traditional electromagnetic transformer, this kind of transformer has the advantages of small size, light weight, simple structure, no copper-iron material, no fear of moisture, no combustion and breakdown, no electromagnetic interference, etc., so it is gradually used in cold cathode fluorescent On the voltage boosting element of the lamp backlight module, the supercharged excitation electrons collide with the mercury atoms to emit ultraviolet light. The first figure shows a cold cathode fluorescent tube inverter 100 using a piezoelectric ceramic transformer. After the DC power supply DC input inverter, a control signal is input from the control circuit 110 to the transistor switch (transistor). After receiving the signal, the transistor switch 120 generates a high-voltage, high-current square wave signal to the piezoelectric ceramic transformer 130, which is further boosted by the piezoelectric ceramic transformer 130 and then supplied to the cold cathode fluorescent lamp. Tube 150 is used. In addition, the voltage detector 140 and the current detector 160 are respectively responsible for voltage and current sampling, and the sampled signals are returned to the control circuit 110. The control circuit 110 further corrects the output driving signals according to the sampling signals. The conventional control circuit is analogous design, requires a large number of electronic components, and a set of control circuits can only control a group of ceramic transformers to drive the cold cathode fluorescent tube, which is very inconvenient in design and use; therefore, it is urgent to propose An improved design that reduces the use of electronic components to reduce cost, 200908521 and features multi-channel drive cold cathode fluorescent tubes to meet the needs of a group of control circuits to drive multiple sets of cold cathode fluorescent tubes. SUMMARY OF THE INVENTION One object of the present invention is to provide a piezoelectric ceramic transformer digital control circuit comprising a digital integrated circuit (1C), which can greatly reduce the use of electronic components. Another object of the present invention is to provide a digital control circuit that can control multiple sets of piezoelectric ceramic transformers to achieve multi-channel functions. It is still another object of the present invention to provide a digital multi-channel piezoelectric ceramic converter that can simultaneously drive a plurality of sets of light-emitting elements. In accordance with the above objects, the present invention provides a digital control circuit that primarily includes an integrated circuit (1C) and at least one transformer bank. The digital integrated circuit can simultaneously control multiple sets of piezoelectric ceramic transformers to achieve multi-channel effects, reducing the use of electronic components to reduce cost. The transformer group can receive the driving signal from the digital control circuit and perform the rising/lowering voltage according to the driving signal. This circuit has multi-channel function, which can simultaneously control multiple sets of piezoelectric ceramic transformers to drive multiple sets of illuminating elements, reducing the use of electronic components and reducing costs. [Embodiment] 7 200908521 A detailed description of some embodiments of the present invention is as follows, however, the present invention can be widely applied to other embodiments in addition to the detailed description. That is, the scope of the present invention is not limited by the embodiments which have been proposed, and the scope of the claims of the present invention shall prevail. Further, in order to provide a clearer description and a better understanding of the present invention, the various parts of the drawings are not drawn according to their relative dimensions, and some dimensions have been exaggerated compared to other related dimensions; the unrelated details are not Completely drawn, in order to simplify the illustration. The following is a detailed description of the present invention, first referring to the second figure. The second figure shows a digital multi-channel piezoelectric ceramic converter 200 in accordance with a preferred embodiment of the present invention. In various embodiments, the digital multi-channel piezoelectric ceramic inverter 200 of the present embodiment can be different. Replacement of digital multi-channel piezoelectric inverters made of materials. The main components of the digital multi-channel piezoelectric ceramic inverter 200 include a digital control circuit 210, a piezoelectric ceramic transformer group 220, and a luminescence/monitoring group 230. It should be noted that although the light-emitting elements in the illumination/monitoring group 230 of the present figure are represented by cold cathode fluorescent tubes, the practical application is not limited to the cold cathode fluorescent tubes, and the digital type of the present invention. Multi-channel piezoelectric ceramic inverters can be applied to other light-emitting components, such as External Electrode Fluorescent Lamps (EEFLs), energy-saving lamps, and the like. 8 200908521 Still referring to the second figure, with reference to the drawings, the circuit workflow description of the present invention is made in the following description. First, a driving square wave signal of a specific frequency is generated by the digital control circuit 210 to be transmitted to the piezoelectric ceramic transformer group 220. The piezoelectric ceramic transformer group 220 is composed of a driving element and a piezoelectric ceramic transformer, wherein the driving element can be any electronic switching device having a pushing load capability, such as a metal oxide half field effect transistor (M0SFET) 221 of the present figure. After receiving the driving square wave signal, the driving component 221 generates a high-voltage, high-current square wave signal to the piezoelectric ceramic transformer 222 to further perform the rising/lowering voltage, and supplies the power source that has passed the rising/lowering voltage to the light-emitting element. (may be, but not limited to, the cold cathode fluorescent lamp of the present embodiment) 231 is used. At the same time, the voltage/current monitoring component 232 will detect the voltage and current, and return the sampling result to the digital control circuit 210. The digital control circuit 210 further adjusts the driving square wave signal according to the sampling result, and transmits the voltage to the voltage. Electrical ceramic transformer set 220. This monitoring mechanism will maintain the operating voltage/current value of the illuminating element within a specific operating range. As described above, since the control circuit used in this embodiment is digital, and has the ability to simultaneously output multiple sets of driving square wave signals, only one control circuit is required to control multiple sets of piezoelectric ceramic transformer groups to form multiple channels. The mode greatly reduces the use of electronic components, not only reduces the area, reduces the electromagnetic interference between electronic components, reduces the cost, but also saves a lot of money. It should be noted that for the sake of simplicity of the illustration, only one set of piezoelectric ceramic transformer set 220 and a set of illumination/monitoring group 2 3 0 are taken as an example. The third figure is another embodiment of the present invention. Circuit block diagram. In this figure, a circuit 321 incorporating a level shifter and a bridge rectifier (H-bridge) is used as a driving element in the piezoelectric ceramic transformer group. It should be noted that the light-emitting elements in the illumination/monitoring group 330 of the present figure are represented by a cold cathode fluorescent tube, but the practical application is: not only the cold cathode fluorescent tube, but also the digital position of the present invention. Multi-channel piezoelectric ceramic inverters can be applied to other light-emitting components, such as External Electrode Fluorescent Lamps (EEFLs), energy-saving lamps, and the like. Please continue to see the third picture. Similar to the operation of the second figure, a driving square wave signal of a specific frequency is first transmitted from the digital control circuit 310 to the piezoelectric ceramic transformer group 320. The piezoelectric ceramic transformer group 320 is composed of an i-driving element and a piezoelectric ceramic transformer, wherein the driving element can be any electronic switching device with a driving load capability, such as a level shifter and a bridge rectifier of the present figure. Circuit 321 of (H-bridge). After receiving the driving square wave signal, the driving component 321 generates a high-voltage, high-current square wave signal to be supplied to the piezoelectric ceramic transformer 322 to further perform a rising/lowering voltage, and supplies the power source that has passed the rising/lowering voltage to the light-emitting element. (It may be, but is not limited to, the cold cathode fluorescent 10 200908521 lamp tube 331 of the present embodiment). At the same time, the voltage/current monitoring component 332 will sample and measure the voltage and current ' and pass the sampling result back to the digital control circuit 310; the digital control circuit 310 further adjusts the driving square wave signal according to the sampling result, and transmits the signal to the square wave. Piezoelectric ceramic transformer group 320. This monitoring mechanism will maintain the operating voltage/current value of the illuminating element within a specific operating range. Similarly, since the control circuit used in this embodiment is digital, and has the ability to simultaneously output multiple sets of driving square wave signals, only one control circuit is required to control multiple sets of piezoelectric ceramic transformer groups to form a multi-channel mode. The use of electronic components is greatly reduced, which not only reduces the area, reduces the electromagnetic interference between the electronic components, reduces the cost, and further saves the cost. It should be noted that for the sake of simplicity of illustration, only one set of piezoelectric ceramic transformer set 320 and a set of illumination/monitoring group 3 3 0 are shown as an example. The fourth figure shows a piezoelectric ceramic transformer digital control circuit 210 according to an embodiment of the present invention. The digital control circuit 210 includes a digital integrated circuit (1C) 211, a plurality of numerical control oscillators (Numerical Control Osci 1 lator) 212.a to 212.n, a multiplexer 213, an analog digital converter. (Analog to Digital Converter) 214. Still referring to the fourth figure, in conjunction with the drawings, the circuit workflow description of the present invention is made in the following description. First, the digital integrated circuit 211 issues a drive 11 200908521 signal to the numerically controlled oscillator 212. Moreover, due to the characteristics of the digital integrated circuit, the digital integrated circuit 211 can simultaneously control the plurality of sets of numerically controlled oscillators 212 to form a plurality of sets of channels. . The numerically controlled oscillator 212 oscillates a driving square wave signal of a specific frequency according to the driving signal, and outputs the driving square wave signal to the piezoelectric ceramic transformer group. Thereafter, the above voltage/current sampling result is transmitted to the analog-to-digital converter 214 via the multiplexer 213 while the light-emitting element is operating. The analog-to-digital converter 214 converts such a specific detection signal into a digital signal, and outputs it to the digital integrated circuit 211. The digital integrated circuit 211 further adjusts the driving signal according to the digital detection signal, generates a driving square wave via the numerically controlled oscillator 212, and sends it to the piezoelectric ceramic transformer group. This monitoring mechanism will maintain the operating voltage/current value of the illuminating element within a specific operating range. The fifth figure shows a piezoelectric ceramic transformer digital control circuit 310 according to an embodiment of the present invention. The digital control circuit 310 includes a digital integrated circuit 311, a frequency divider (Frequency Divider) 312, and an analog digital converter 313. It should be noted that the digital integrated circuit 311 has the ability to control multiple sets of frequency dividers, and the digital integrated circuit 311 can include multiple sets of frequency dividers. The frequency converter is used as a demonstration. In addition, if multiple sets of voltage/current sampling signals are transmitted back, it is also possible to add a multiplexer before the analog-to-digital converter 313, as shown in the fourth figure above. 12 200908521 Still referring to the fifth figure, in conjunction with the diagram, the circuit workflow description of the present invention is made in the following description. First, the driving signal is output from the digital integrated circuit 311 to the frequency divider 312, and, due to the characteristics of the digital integrated circuit, the digital integrated circuit 311 can simultaneously control the plurality of sets of frequency dividers 312 to form a plurality of sets of channels. The frequency divider 312 generates a driving square wave signal of a specific frequency based on the driving signal, and outputs the driving square wave signal to the piezoelectric ceramic transformer group. Thereafter, the above voltage/current sampling result is transmitted back to the analog digital converter 313 while the light emitting element is operating. The analog-to-digital converter 313 converts such a ratio detection signal into a digital signal, and outputs it to the digital integrated circuit 311. The digital integrated circuit 311 further adjusts the driving signal based on the digital detecting signal, generates a driving square wave via the frequency divider 312, and sends it to the piezoelectric ceramic transformer group. This monitoring mechanism will maintain the operating voltage/current value of the illuminating element within a specific operating range. It can be understood from the above fourth and fifth figures that the numerically controlled oscillator and the frequency divider function as a waveform generator in the present invention, and after receiving the driving signal from the digital integrated circuit, a drive of a specific frequency is generated. The square wave signal is then output to the piezoelectric ceramic transformer group. Fig. 6 shows a piezoelectric ceramic transformer digital control circuit 410 of another embodiment of the present invention. In the figure, the multiplexer 414, the analog-to-digital conversion circuit 415 and the waveform generation circuit 413 (which may be, but are not limited to, the above-described numerically controlled oscillator and frequency divider) are integrated into the digital integrated circuit 411 13 200908521 Increase design and application convenience. It should be noted that the main control circuit 412 has the ability to control multiple sets of waveform generating circuits, but for the sake of simplicity of the illustration, only one set of waveform generating circuits is illustrated as an example. Still referring to the sixth drawing, in conjunction with the drawings, the circuit workflow description of the present invention is made in the following description. First, a driving signal is sent from the main control circuit 412 to the waveform generating circuit 413, and the main control circuit 412 can simultaneously control the plurality of sets of waveform generating circuits 413 to form a plurality of sets of channels. The waveform generating circuit 413 generates a driving square wave signal of a specific frequency based on the driving signal, and outputs the driving square wave signal to the piezoelectric ceramic transformer group. Thereafter, the voltage/current sampling result is transmitted to the analog-to-digital converter 415 via the multiplexer 213 while the light-emitting element is operating. The analog digital converter 415 converts such a ratio detection signal into a digital signal and outputs it to the main control circuit 412. The main control circuit 412 further adjusts the driving signal according to the digital detection signal, generates a driving square wave via the waveform generating circuit 413, and sends it to the piezoelectric ceramic transformer group. This monitoring mechanism will maintain the operating voltage/current value of the illuminating element within a specific operating range. It can be known from the above description that the present invention is characterized in that a digital control circuit is used to replace the conventional analog control circuit, and a 1C can drive multiple sets of piezoelectric ceramic transformers to achieve multi-channel effects, and the electronic components are greatly reduced. The use of not only reduces the area, reduces electromagnetic interference between electronic components, but also saves a lot of money. The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the claims of the present invention; all other equivalent changes or modifications which are made without departing from the spirit of the invention should be included. Within the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of a cold cathode fluorescent tube of a piezoelectric ceramic transformer that is conventionally used. The second figure is a schematic diagram of a digital multi-channel piezoelectric ceramic inverter according to an embodiment of the present invention. The third figure is a schematic diagram of a digital multi-channel piezoelectric ceramic converter according to another embodiment of the present invention. The fourth figure is not intended to be a piezoelectric ceramic transformer digital control circuit according to an embodiment of the present invention. The fifth figure is a schematic diagram of a piezoelectric ceramic transformer digital control circuit according to another embodiment of the present invention. Figure 6 is a schematic view showing a piezoelectric ceramic transformer digital control circuit according to still another embodiment of the present invention. [Main component symbol description] 100 Piezoelectric ceramic transformer cold cathode fluorescent tube inverter 15 200908521 110 Control circuit 120 Transistor switch 130 Piezoelectric ceramic transformer 140 Voltage detector 150 Cold cathode fluorescent tube (CCFL) 160 Current Detector 200 Digital Multichannel Piezoelectric Inverter 210 Digital Control Circuit 211 Digital Integrated Circuit (1C) 212 Numerical Control Oscillator 213 Multiplexer 214 Analog Digital Converter 220 Piezoelectric Ceramic Transformer Group 221 Gold Oxygen Half field effect transistor 222 Piezoelectric ceramic transformer 230 Illumination/monitoring group 231 Cold cathode fluorescent tube (CCFL) 232 Voltage/current monitoring component 300 Digital multi-channel piezoelectric ceramic inverter 310 Digital control circuit 311 Digital integrated circuit (1C) 16 200908521 312 Frequency divider 313 Analog-to-digital converter 320 Piezoelectric ceramic transformer group 321 Potential converter + bridge rectifier 322 Piezoelectric ceramic transformer 330 Illumination monitoring group 331 Cold cathode fluorescent tube (CCFL) 332 Voltage / Current monitoring component 410 digital control circuit 411 digital integrated circuit (1C) 412 main control circuit 413 Waveform generator circuit 414 of the multiplexer 415 analog digital converting circuit 17