200904646 九、發明說明 【發明所屬之技術領域】 本發明關於列印領域,特別是關於一種用於高解析度 列印的噴墨列印頭。 【先前技術】 列印影像的品質絕大部分取決於印表機的解析度,因 此,不斷地努力改善印表機的列印解析度。列印解析度密 切地取決於液滴體積和印表機在媒介基材上可尋址( addressable )位置的間隔。噴墨頭上各噴嘴之間的間隔不 須像媒介基材上各可尋址位置之間的間隔一樣地小。在一 個可尋址位置處列印一點的噴嘴和在鄰近可尋址位置處列 印一點的噴嘴,可間隔任何距離。不管列印頭上各噴嘴之 間的間隔,列印頭相對於媒介的運動、或媒介相對於列印 頭的運動、或上述兩種運動,會允許列印頭噴射液滴在每 一可尋址位置。載極端的狀況,由於列印頭和媒介之間適 當的相對運動,相同的噴嘴可以列印相鄰的液滴。 媒介相對於列印頭的過量運動,會降低列印速率。在 頁寬列印頭的情況,掃描列印頭對一整包媒介的多次通過 、或媒介多次通過列印頭,會減少每分鐘列印頁數的列印 速率。 此外,各噴嘴可沿著媒介饋給路徑或在掃描方向被隔 開,所以媒介上各可尋址位置小於相鄰噴嘴的物理間隔。 可瞭解的是在紙路徑或掃描方向的一大段內間隔地設至多 -4- 200904646 個噴嘴’違反了袖珍設計。更重要的是,饋給紙時需要小 心地控制媒介位置,和精密地印表機控制噴嘴發射次數。 就頁寬列印頭而言’大噴嘴陣列的問題更大。在一大 段紙路徑中間隔地設至多個噴嘴,噴嘴陣列就需要具有相 對大的區域。藉由定義,噴嘴陣列必須在媒介寬度延伸, 但是噴嘴陣列在媒介饋給方向中的尺寸應該儘可能地小。 在媒介饋給方向中延伸相對長距離的陣列,需要複雜的列 印滾筒,該等滾筒維持整個陣列中噴嘴和媒介表面之間的 間隔。一些印表機設計在列印頭對面使用寬廣的真空滾筒 ,以得到媒介所需的控制。有鑑於此議題,有在列印頭上 增加噴嘴密度(亦即每單位面積的噴嘴數目)的強烈動機 ,以增加印表機的可尋址位置和解析度,同時保持陣列( 在媒介饋給方向)的小寬度。 【發明內容】 因此,本發明提供一種用於噴墨印表機的列印頭,該 列印頭包含: 配置在相鄰列中的一陣列噴嘴,每一噴嘴具有噴射孔 和用於將列印流體噴射經過該噴射孔的對應致動器,每一 致動器具有在該等列之橫方向彼此相隔開的電極;和 驅動電路,用於將電力傳輸至該等電極;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 -5- 200904646 藉由使在相鄰列之電極的極性相反,可將CMOS之電 力平面內的穿孔保持在相鄰列的外側邊緣。此將各穿孔之 間的一排狹窄阻抗性橋部,移動至電流不流過橋部的位置 。此從致動器驅動電路消除橋部的阻抗。藉由減少遠離列 印頭積體電路之電力供給側的致動器的阻抗性損失,可使 整個陣列所有噴嘴的液滴噴射特徵呈一致。 較佳地,在每一列中之該等電極從其相鄰的致動器往 該列之橫方向偏移,所以每個第二致動器的該等電極共線 。在另一較佳的形式中,該偏移小於40微米。在特別佳 的形式中,該偏移小於3 0微米。較佳地,該陣列噴嘴被 製造在長形晶圓基板上,該晶圓基板平行於該陣列的該等 列而延伸,且該驅動電路是在該晶圓基板之一表面上的 CMOS層,沿著該晶圓基板的長邊緣供給電力和資料給該 等CMOS層。在另一較佳的形式中,該CMOS層具有形 成電力平面的頂部金屬層,其帶有正電壓,所以具有負電 壓的該等電極連接至形成在該電力平面內之孔中的導孔。 在又一較佳的形式中,該CMOS層具有供底部金屬層內每 一致動器用的驅動場效電晶體(FET )。較佳地,該 CMOS層具有厚度小於0.3微米的金屬層。 在一些實施例中,該等致動器是加熱器元件,用於在 該列印流體內產生蒸汽泡泡,使得從該噴射孔噴射出該列 印流體的液滴。較佳地,該等加熱器元件是懸架在其個別 電極之間的樑,所以該等加熱器元件是浸没在該列印流體 內。較佳地,該等噴射孔是橢圓形,且噴射孔的長軸平行 -6- 200904646 於該樑的縱軸。在另一較佳形式中’該等列其中一列內之 該等噴射孔的該等長軸和相鄰列內之該等噴射孔的該等長 軸共線,所以該等列其中一列內的每一噴嘴和該相鄰列內 其中一噴嘴對齊。較佳地,相鄰噴射孔的長軸相隔開小於 50微米。在另一較佳形式中,相鄰噴射孔的長軸相隔開 小於2 5微米。在特別佳的形式中,相鄰噴射孔的長軸相 隔開小於1 6微米。 在特別的實施例中,在媒介饋給方向的橫方向中,該 列印頭具有每吋多於1 600個噴嘴(npi )的噴嘴節距。在 較佳實施例中,該噴嘴節距是大於3000 npi。在特別佳的 實施例中,該列印頭具有之每吋點數(dpi )的列印解析 度,等於該噴嘴節距。在特定實施例中,該列印頭是頁寬 列印頭,其被建構用於列印A4尺寸媒介。較佳地,該陣 列具有多於100000個噴嘴。 因此,本發明提供一種用於印表機的噴墨列印頭,其 能以不同的列印解析度列印在基材上,該噴墨列印頭包含 一陣列的噴嘴,每一噴嘴具有噴射孔和用於將列印流 ®噴射經過該噴射孔的對應致動器;和 一列印引擎控制器,用於將列印資料送至該陣列的噴 嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。 200904646 本發明認知到一些列印工作不需要列印頭的最好解析 度---較低的解析度完全適合於待列印文件的目的。此情 況在列印頭具有非常高解析度(例如大於1 200 dpi )時是 特別地真實。藉由選擇較低的解析度,列印引擎控制器( PEC )可將具有較少噴嘴之列印頭中二或更多個橫向相鄰 (但不需接觸)的噴嘴當作單一虛擬噴嘴。然後該等相鄰 噴嘴共享列印資料---虛擬噴嘴所要求的點(dots )被每一 實際的噴嘴輪流列印。此用於延長所有噴嘴的作業壽命。 較佳地,設置該二噴嘴在該陣列中的位置,使得該二 噴嘴在該列印頭相對於該基材之運動的橫方向中是最接近 的鄰居。較佳地,該列印引擎控制器平等地分享該列印資 料給該陣列中的該二噴嘴。在另一較佳形式中,該二噴嘴 中心相隔開小於2 0微米。在特別佳的形式中,該列印頭 是頁寬列印頭,且該二噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於1 6微米。在特定的實施例中’該二噴嘴 中心在該媒介饋給方向的橫方向中相隔開小於8微米。在 特殊實施例中,該列印頭在該媒介饋給方向的橫方向中, 具有的噴嘴節距是每吋多於1 600個噴嘴(npi )。在較佳 實施例中,該噴嘴節距是大於3 000 npi。在特別佳的實施 例中,該列印頭具有之每吋點數(dpi )的列印解析度, 等於該噴嘴節距。在特定實施例中’該列印頭被建構用於 列印A4尺寸媒介,且該列印頭具有多於1 00000個噴嘴BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the field of printing, and more particularly to an ink jet print head for high resolution printing. [Prior Art] The quality of printed images depends largely on the resolution of the printer, so efforts are constantly being made to improve the print resolution of the printer. The print resolution is closely dependent on the droplet volume and the spacing of the printer's addressable locations on the media substrate. The spacing between the nozzles on the ink jet head need not be as small as the spacing between the addressable locations on the media substrate. A nozzle that prints a point at an addressable location and a nozzle that prints a dot at an addressable location can be separated by any distance. Regardless of the spacing between the nozzles on the printhead, the movement of the printhead relative to the media, or the movement of the media relative to the printhead, or both, allows the printhead to eject droplets at each addressable position. At the extremes of the load, the same nozzle can print adjacent droplets due to the proper relative motion between the print head and the media. Excessive movement of the media relative to the print head reduces the print rate. In the case of a page-width printhead, scanning the printhead for multiple passes of a single packet of media, or by passing the media multiple times through the printhead, reduces the print rate per minute of printed pages. In addition, each nozzle can be spaced along the media feed path or in the scan direction so that each addressable location on the media is less than the physical spacing of adjacent nozzles. It can be understood that at most -4-200904646 nozzles are spaced apart in a large section of the paper path or scanning direction, which violates the pocket design. More importantly, the paper needs to be carefully controlled to feed the paper, and the precision printer controls the number of nozzle firings. The problem with large nozzle arrays is greater in terms of page width print heads. To a plurality of nozzles spaced apart in a large length of paper path, the nozzle array needs to have relatively large areas. By definition, the nozzle array must extend across the width of the media, but the size of the nozzle array in the media feed direction should be as small as possible. Extending a relatively long distance array in the media feed direction requires a complex print cylinder that maintains the spacing between the nozzle and the media surface throughout the array. Some printers are designed to use a wide vacuum drum across the printhead to get the control needed for the media. In view of this issue, there is a strong incentive to increase the nozzle density (ie the number of nozzles per unit area) on the print head to increase the addressable position and resolution of the printer while maintaining the array (in the medium feed direction) ) Small width. SUMMARY OF THE INVENTION Accordingly, the present invention provides a printhead for an inkjet printer comprising: an array of nozzles disposed in adjacent columns, each nozzle having an ejection orifice and for arranging columns Printing fluid is ejected through corresponding actuators of the ejection orifice, each actuator having electrodes spaced apart from each other in the lateral direction of the columns; and a drive circuit for transmitting electrical power to the electrodes; wherein adjacent columns are present The electrodes of the actuators have opposite polarities, so the actuators in adjacent columns have opposite current flow directions -5 - 200904646 by making the polarity of the electrodes in adjacent columns the opposite The perforations in the power plane of the CMOS can be maintained at the outer edge of the adjacent column. This moves a row of narrow, resistive bridges between the perforations to a position where current does not flow through the bridge. This eliminates the impedance of the bridge from the actuator drive circuit. By reducing the impedance loss of the actuator on the power supply side remote from the print head integrated circuit, the droplet ejection characteristics of all the nozzles of the entire array can be made uniform. Preferably, the electrodes in each column are offset from the adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In another preferred form, the offset is less than 40 microns. In a particularly preferred form, the offset is less than 30 microns. Preferably, the array nozzle is fabricated on an elongated wafer substrate, the wafer substrate extending parallel to the columns of the array, and the driving circuit is a CMOS layer on a surface of the wafer substrate, Power and data are supplied to the CMOS layers along the long edges of the wafer substrate. In another preferred form, the CMOS layer has a top metal layer forming a power plane with a positive voltage so that the electrodes having a negative voltage are connected to vias formed in the holes in the power plane. In yet another preferred form, the CMOS layer has a drive field effect transistor (FET) for each of the actuators in the bottom metal layer. Preferably, the CMOS layer has a metal layer having a thickness of less than 0.3 microns. In some embodiments, the actuators are heater elements for generating a vapor bubble within the printing fluid such that droplets of the printing fluid are ejected from the ejection orifice. Preferably, the heater elements are beams suspended between their individual electrodes so that the heater elements are submerged within the printing fluid. Preferably, the injection holes are elliptical, and the long axis of the injection holes is parallel to -6-200904646 on the longitudinal axis of the beam. In another preferred form, the major axes of the injection holes in one of the columns and the major axes of the injection holes in adjacent columns are collinear, such that in one of the columns Each nozzle is aligned with one of the nozzles in the adjacent column. Preferably, the major axes of adjacent orifices are separated by less than 50 microns. In another preferred form, the major axes of adjacent orifices are separated by less than 25 microns. In a particularly preferred form, the major axes of adjacent orifices are spaced apart by less than 16 microns. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the lateral direction of the media feed direction. In a preferred embodiment, the nozzle pitch is greater than 3000 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (dpi) equal to the nozzle pitch. In a particular embodiment, the printhead is a pagewidth printhead that is configured to print an A4-size medium. Preferably, the array has more than 100,000 nozzles. Accordingly, the present invention provides an ink jet printhead for a printer that can be printed on a substrate with different print resolutions, the ink jet printhead comprising an array of nozzles, each nozzle having a spray hole and a corresponding actuator for jetting the print stream® through the spray hole; and a print engine controller for feeding the print data to the nozzle of the array; wherein during use, by The print material is assigned to a single nozzle between at least two nozzles of the array, and the print engine controller can selectively reduce the print resolution. 200904646 The present invention recognizes that some printing jobs do not require the best resolution of the print head - lower resolution is well suited for the purpose of the document to be printed. This is especially true when the print head has a very high resolution (for example, greater than 1 200 dpi). By selecting a lower resolution, the print engine controller (PEC) can treat two or more laterally adjacent (but not touching) nozzles in a printhead with fewer nozzles as a single virtual nozzle. The adjacent nozzles then share the printed material - the dots required by the virtual nozzle are alternately printed by each actual nozzle. This is used to extend the working life of all nozzles. Preferably, the position of the two nozzles in the array is set such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the substrate. Preferably, the print engine controller shares the print data equally to the two nozzles in the array. In another preferred form, the two nozzle centers are separated by less than 20 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the centers of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the media feed direction. In a particular embodiment, the two nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the transverse direction of the media feed direction. In the preferred embodiment, the nozzle pitch is greater than 3 000 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (dpi) equal to the nozzle pitch. In a particular embodiment, the printhead is constructed for printing A4 size media and the printhead has more than 100,000 nozzles
Q 在一些實施例中當以較低的列印解析度列印時,該印 -8- 200904646 表機以較高的列印速率作業。較佳地,該較高的列印速率 是每分鐘多於6 0頁。在較佳的形式中,該列印引擎控制 器以高頻振動矩陣將該等相鄰噴嘴所列印的彩色平面半調 色(halftone ) ’該高頻振動矩陣被最佳化用於每一噴射 液滴的橫向移位。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,配置在相鄰的列中;每一噴嘴具有噴 射孔、用於容置列印流體的腔室、和對應的致動器;該致 動器用於將該列印流體噴射經過該噴射孔;每一腔室具有 個別的入口以再塡注列印流體,該列印流體被該致動器噴 射;和 列印流體供給通道,其平行該等相鄰列而延伸,以經 由該等個別入口供給列印流體至該陣列中每一噴嘴的致動 器;其中 建構在該等相鄰列其中一列內之該等噴嘴入口,使其 再塡注流率不同於經過該等相鄰列之另一列內之該等噴嘴 入口的再塡注流率。 本發明建構的噴嘴使得一側的墨水供給通道塡注數列 。因爲供給通道不只供給一側的一列噴嘴,所以上述建構 允許列印頭表面上的噴嘴密度較大。但是因爲每列之經過 入口的流率不同,所以離供給通道較遠的列不會有顯著較 長的再塡注時間。 較佳地,建構在該等相鄰列其中一列內之該等噴嘴入 口,使其再塡注流率不同於經過該等相鄰列之另一列內之 -9- 200904646 該等噴嘴入口的再塡注流率,所以陣列中所有噴嘴的腔室 再塡注時間大致均勻。在另一較佳形式中,最靠近供給通 道之列的入口,比遠離供給通道之列更狹窄。在一些實施 例中,在供給通道兩側的任一側上’有二相鄰列的噴嘴。 較佳地,入口具有流動阻尼構造。在特別佳的形式中 ,流動阻尼構造是柱’設計該柱的位置’使其產生流動障 礙。在一列之入口內的柱和在其他列之入口內的柱,產生 不同程度的障礙。較佳地’柱在柱的側面和入口側壁之間 產生泡泡陷阱或捕捉器。較佳地,柱擴散傳播列印流體內 的壓力脈衝,以降低噴嘴之間串擾。 在一些實施例中,該等致動器是加熱器元件,用於在 該列印流體內產生蒸汽泡泡’使得從該噴射孔噴射出該列 印流體的液滴。較佳地,該等加熱器元件是懸架在其個別 電極之間的樑,所以該等加熱器元件是浸没在該列印流體 內。較佳地,該等噴射孔是橢圓形,且噴射孔的長軸平行 於該樑的縱軸。較佳地,相鄰噴射孔的長軸相隔開小於 5 0微米。在另一較佳形式中’相鄰噴射孔的長軸相隔開 小於25微米。在特別佳的形式中,相鄰噴射孔的長軸相 隔開小於1 6微米。 在特別的實施例中,在媒介饋給方向的橫方向中,該 列印頭具有每吋多於1 600個噴嘴(npi )的噴嘴節距。在 較佳實施例中,該噴嘴節距是大於3000 npi。在特別佳的 實施例中,該列印頭具有之每吋點數(dpi )的列印解析 度,等於該噴嘴節距。在特定實施例中,該列印頭是頁寬 -10- 200904646 列印頭,其被建構用於列印A4尺寸媒介。較佳地’該陣 列具有多於100000個噴嘴。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,配置在一系列的列中;每一噴嘴具有 噴射孔、用於保持列印流體的腔室、和加熱器元件;該加 熱器元件用於在腔室所容置的該列印流體內產生蒸汽泡泡 ,以將該列印流體的液滴噴射經過該噴射孔;其中 該噴嘴、該加熱器元件、和該腔室全部是長形構造, 該等長形構造具有長的尺寸’該長的尺寸分別超越各長形 構造的其他尺寸;和 該噴嘴、該加熱器、和該腔室之個別長的尺寸是平行 的,且垂直於該列方向而延伸。 爲了增加列的噴嘴密度,每一噴嘴組件---腔室、噴 射孔、和加熱器元件都被建構成長形構造’該等長形構造 在列方向的橫方向全部對齊。此提昇了列的噴嘴節距或每 吋的噴嘴數(npi),同時允許保持足夠大之腔室容積和 液滴體積,以供合適的顏料密度之用。此亦避免在紙饋給 方向(在頁寬印表機的情況)或在掃描方向(在掃描列印 頭的情況)擴展大距離的需要。 較佳地,該陣列中的每一列相對於其相鄰列偏移,所 以一列中該等噴嘴的該等長的尺寸沒有一者,不和該相鄰 列中該等長的尺寸的任意者共線的。在另一較佳的形式中 ,該列印頭是頁寬列印頭,用於列印至在媒介饋給方向饋 給通過列印頭的媒介基材,所以該等噴嘴之該等長的尺寸 -11 - 200904646 ,平行於該媒介饋給方向。 較佳地,每個第二噴嘴之長的尺寸是在登錄中。在特 別佳的形式中’所有"該等噴嘴的該等噴射孔形成在平纟且的 頂部層中,該頂部層局部界定該腔室;胃了頁$ ®部 表面,該外部表面除了該等噴射孔以外’其餘是平坦的° 在特別佳的形式中’該陣列的噴嘴形成在下面之基板上’ 該基板平行於該頂部層而延伸,且藉由在該頂部層和該基 板之間延伸的側壁局部界定該腔室’設計該側壁的形狀’ 使得該側壁的內部表面至少局部呈橢圓形。較佳地’除了 供列印流體用的入口開口以外,該側壁呈橢圓形。在特別 佳的形式中,在該等列其中之一列內之該等噴嘴的短軸和 在該媒介饋給方向之該相鄰列中該等噴嘴的短軸局部重疊 。在另一較佳的形式中,該等噴射孔呈橢圓形。 較佳地,該等加熱器元件是懸架在其個別電極之間的 樑,所以在使用期間,該等加熱器元件是浸没在該列印流 體內。較佳地,該加熱器元件所產生之該蒸汽泡泡在平行 於該噴射孔的橫剖面呈橢圓形。 在一些實施例中,該列印頭更包含鄰接於該陣列的供 給通道,該陣列係平行該等列而延伸。在較佳的形式中, 該陣列的噴嘴是第一陣列的噴嘴,且第二陣列的噴嘴形成 在該供給通道的其他側;該第二陣列是該第一陣列的鏡射 影像,但相對於該第一陣列偏移,所以在該第一陣列中之 該等噴射孔的長軸沒有一者,不和該第二陣列之長軸其中 任意者共線的。較佳地,在該第一陣列中之該等噴射孔的 -12- 200904646 該等長軸,從該第二陣列中之該等噴射孔的該等長軸,往 該媒介饋給方向的橫方向偏移達小於20微米。在特別佳 的形式中,該偏移約爲8微米。在一些實施例中,該列印 頭在該媒介饋給方向的橫方向中,具有的噴嘴節距是每吋 多於1 600個噴嘴(npi )。在特別佳的形式中,該基板在 媒介饋給方向的寬度小於3毫米。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,用於當列印媒介在相對於該列印頭的 列印方向中運動時,將列印流體的液滴噴射至該列印媒介 上;其中 在該陣列中的該等噴嘴,在該列印方向的垂直方向中 ,彼此相隔開達小於1 〇微米。 由於噴嘴在該列印方向的垂直方向中相隔開小於1 0 微米,所以列印頭具有非常高的「真實」列印解析度—— 亦即藉由每吋的高噴嘴數達到每吋的高點數。 較佳地,在該列印方向的垂直方向中彼此相隔開達小 於1 0微米之該陣列中的該等噴嘴,在該列印方向中也彼 此相隔開達小於1 5 0微米。 在另一較佳形式中’該陣列每平方毫米具有超過700 個噴嘴。 較佳地,該陣列的噴嘴被支撐在複數單片晶圓基板上 ,每一單片晶圓基板支撐超過10000個該等噴嘴。在另一 較佳形式中,每一單片晶圓基板支撐超過12000個該等噴 嘴。在特別佳的形式中’該複數單片晶圓基板被端對端地 -13- 200904646 安裝,以形成供安裝在印表機內 表機以在媒介饋給方向饋給媒介 具有超過1 00000個該等噴嘴, 方向的橫方向中延伸200毫米至 中,該陣列具有超過140000個i 選擇性地,該列印頭更包含 嘴的每一者之用,該等致動器配 器具有在該等列的橫方向彼此相 個別驅動電晶體和一電源供應器 在相鄰列中之該等致動器的 ,所以在相鄰列中之該等致動器 。較佳地,在每一列中之該等電 列之橫方向偏移,所以每個第二 在特別佳的實施例中,該等小液 晶圓基板上,該長形晶圓基板平 而延伸,且沿著該晶圓基板的長 在一些實施例中,該列印頭 PEC ),用於將列印資料送至該P 在使用期間,藉由將列印資 噴嘴之間的單一噴嘴’該列印引 該列印解析度。較佳地,設置該 ,使得該二噴嘴在該列印頭相對 橫方向中是最接近的鄰居。在特 擎控制器平等地分享該列印資料 的頁寬列印頭,建構該印 通過該列印頭;該列印頭 且該列印頭在該媒介饋給 330毫米。在一些實施例 €等噴嘴。 複數致動器分別供該等噴 置在相鄰列內,每一致動 隔開的電極,用於連接至 :其中 該等電極具有相反的極性 具有相反的電流流動方向 極從其相鄰的致動器往該 致動器的該等電極共線。 滴噴射器被製造在一長形 行於該等致動器之該等列 邊緣供給電力和資料。 具有一列印引擎控制器( I列的噴嘴;其中 料分配給該陣列之至少二 擎控制器可選擇性地降低 —噴嘴在該陣列中的位置 於列印媒介基材之運動的 別佳的形式中,該列印引 該陣列中的該二噴嘴。 -14- 200904646 較佳地,該二噴嘴中心相隔開小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭’且 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向 向中相隔開小於8微米。較佳地,該列印頭在該媒介 方向的橫方向中,具有的噴嘴節距是每吋多於1600 嘴(npi )。在另一較佳的形式中,該噴嘴節距大於 npi 〇 因此,本發明提供一種用於噴墨列印頭的列印頭 電路,該列印頭積體電路包含: 一單片晶圓基板,其支撐一陣列的小液滴噴射器 於將列印流體的液滴噴射至列印媒介上,每一液滴噴 具有噴嘴和致動器,該致動器用於將列印流體的液滴 經過該噴嘴;其中 該陣列具有超過1 0000個該等小液滴噴射器。 由於大數目的小液滴噴射器製造在單一晶圓上’ 噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高 真實」列印解析度——亦即藉由每吋的高噴嘴數達到 的高點數。 較佳地,該陣列具有超過12000個該等小液滴噴 。在另一較佳的形式中,該列印媒介在相對於該列印 列印方向中運動;且在該陣列中的該等噴嘴’在該列 向的垂直方向中’彼此相隔開達小於1〇微米。在特 的形式中,在該列印方向的垂直方向中’彼此相隔開 該二 6微 橫方 饋給 個噴 3 000 積體 ,用 射器 噴射 所以 的「 每吋 射器 頭的 印方 別佳 達小 -15- 200904646 於ι〇微米之該陣列中的該等噴嘴,在該列印方向中也彼 此相隔開達小於1 5 0微米。 在較佳的實施例中,該陣列每平方毫米具有超過700 個該等小液滴噴射器。在特別佳的形式中,該等致動器配 置在相鄰列內,每一致動器具有在該等列的橫方向彼此相 隔開的電極,用於連接至個別驅動電晶體和一電源供應器 ;在相鄰列中之該等致動器的該等電極具有相反的極性, 所以在相鄰列中之該等致動器具有相反的電流流動方向。 在又一較佳的形式中,在每一列中之該等電極從其相鄰的 致動器往該列之橫方向偏移,所以每個第二致動器的該等 電極共線。 在特定的實施例中,該單片晶圓基板是長形的,且平 行於該等致動器之該等列而延伸,所以在使用時,沿著該 晶圓基板的長邊緣供給電力和資料。在一些形式中,該噴 墨列印頭包含複數列印頭積體電路,且另包含一列印引擎 控制器(PEC ),用於將列印資料送至該陣列的小液滴噴 射器;其中,在使用期間,藉由將列印資料分配給該陣列 之至少二小液滴噴射器之間的單一小液滴噴射器,該列印 引擎控制器可選擇性地降低該列印解析度。較佳地’設置 該二噴嘴在該陣列中的位置,使得該二噴嘴在該列印頭相 對於列印媒介基材之運動的橫方向中是最接近的鄰居。在 特別較佳的形式中,該列印引擎控制器平等地分享該列印 資料給該陣列中的該二噴嘴。選擇性地’該二噴嘴中心相 隔開小於40微米。在特別佳的實施例中’該列印頭是頁 -16- 200904646 寬列印頭,且該二噴嘴中心在該媒介饋給方向的橫方向中 相隔開小於1 6微米。在又一較佳的形式中’該等相鄰噴 嘴中心在該媒介饋給方向的橫方向中相隔開小於8微米。 在一些實施例中,該噴墨列印頭包含複數列印頭積體 電路,其被端對端地安裝’以形成供印表機用的頁寬列印 頭,建構該印表機以在媒介饋給方向饋給媒介通過該列印 頭;該列印頭具有超過1 0 0 0 0 0個該等噴嘴,且該列印頭 在該媒介饋給方向的橫方向中延伸200毫米至330毫米。 在另一較佳的形式中’該陣列具有超過140000個該等噴 嘴。 較佳地,該陣列的小液滴噴射器在該媒介饋給方向的 橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴(npi )。較佳地,該噴嘴節距大於3000 npi。 因此,本發明提供一種用於噴墨列印頭的列印頭積體 電路,該列印頭積體電路包含: 一平面陣列的小液滴噴射器,每一小液滴噴射器具有 資料分布電路、驅動電晶體、列印流體入口、致動器、腔 室和噴嘴;建構腔室用以將列印流體保持在鄰近該噴嘴’ 所以在使用期間,該驅動電晶體驅動該致動器,以將該列 印流體的小液滴噴射經過該噴嘴;其中 該陣列每平方毫米具有超過700個該等小液滴噴射器 〇 由於製造在晶圓基板上高密度的小液滴噴射器,所以 該噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高的 -17- 200904646 「真實」列印解析度---亦即藉由每吋的高噴嘴數達到每 吋的高點數。 較佳地,當該列印媒介在相對於該列印頭的列印方向 中運動時,該陣列將列印流體的的液滴噴射至列印媒介上 ;和在該陣列中的該等噴嘴,在該列印方向的垂直方向中 ’彼此相隔開達小於1 0微米。在另一較佳的形式中’在 該列印方向的垂直方向中,彼此相隔開達小於10微米的 該等噴嘴,在該列印方向中也彼此相隔開達小於1 50微米 0 在本發明的特定實施例中,噴墨列印頭內使用複數個 列印頭積體電路,每一列印頭積體電路具有超過1 〇〇〇〇個 該等小液滴噴射器,且較佳地,超過1 2000個該等噴嘴單 位晶胞。 在一些實施例中,列印頭積體電路是長形的,且被端 對端地安裝,所以該列印頭具有超過1 00000個該等小液 滴噴射器,且該列印頭在該媒介饋給方向的橫方向中延伸 200毫米至3 3 0毫米。在另一較佳的形式中,該列印頭具 有超過140000個該等小液滴噴射器。 在一些較佳的形式中,該等致動器配置在相鄰列內, 每一致動器具有在該等列的橫方向彼此相隔開的電極,用 於連接至對應的驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 -18- 200904646 較佳地,在這些實施例中,在每一列中之該等電極從 其相鄰的致動器往該列之橫方向偏移,所以每個第二致動 器的該等電極共線。在另一較佳的形式中,該長形晶圓基 板平行於該等致動器之該等列而延伸,且沿著該晶圓基板 的長邊緣供給電力和資料。 在特定的實施例中,列印頭包含列印引擎控制器( PEC ),其用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。 較佳地,設置該二噴嘴在該陣列中的位置,使得該二 噴嘴在該列印頭相對於列印媒介基材之運動的橫方向中是 最接近的鄰居。在另一較佳的形式中,該列印引擎控制器 平等地分享該列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相隔開小於4 0微米。在特別佳的形式中, 該列印頭是頁寬列印頭,且該二噴嘴中心在該媒介饋給方 向的橫方向中相隔開小於1 6微米。在又一較佳的形式中 ,該等相鄰噴嘴中心在該媒介饋給方向的橫方向中相隔開 小於8微米。 在一些形式中,該列印頭在該媒介饋給方向的橫方向 中,具有的噴嘴節距是每吋多於1 600個噴嘴(npi )。較 佳地,該噴嘴節距大於3 000 npi。 因此,本發明提供一種頁寬噴墨列印頭,包含: 一陣列的小液滴噴射器,用於將列印流體的液滴噴射 -19- 200904646 至列印媒介上,該列印媒介被饋給通過在媒介饋給方向中 的該列印頭;每一液滴噴射器具有噴嘴、和用於將列印流 體的液滴噴射經過該噴嘴的致動器;其中 該陣列具有超過1 00000個該等小液滴噴射器,且該 陣列在該媒介饋給方向的橫方向中延伸200毫米至3 3 0毫 米。 具有在媒介寬度延伸之大數目噴嘴的頁寬列印頭,提 供高噴嘴節距和非常高「真實」列印解析度亦即藉由 每吋高數目的噴嘴獲得每吋高數目的點° 較佳地,該陣列具有超過1 40000個該等小液滴噴射 器。在另一較佳形式中,該等噴嘴在該媒介饋給方向的垂 直方向中彼此相隔開達小於1 〇微米。在特別佳的形式中 ,在該媒介饋給方向的垂直方向中,彼此相隔開達小於 10微米的該等噴嘴,在該媒介饋給方向中也彼此相隔開 達小於1 5 0微米。 在特定的實施例中,該陣列小液滴噴射器被支撐在複 數單片晶圓基板上,每一單片晶圓基板支撐超過1 0000個 小液滴噴射器,且較佳是超過1 2000個小液滴噴射器。在 這些實施例中,希望該陣列每平方毫米具有超過700個小 液滴噴射器。 選擇性地,該等致動器配置在相鄰列內,每一致動器 具有在該等列的橫方向彼此相隔開的電極,用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 -20- 200904646 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中’該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圓基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器( PEC ),用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最相鄰。在特別佳的形式中,該列印引擎控制 器平等地分享列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相間隔小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於8微米。較佳地,該列印頭在該媒介饋給 方向的橫方向中,具有的噴嘴節距是每吋多於1600個噴 嘴(npi )。在另一較佳形式中,該噴嘴節距大於3 000 npi 0 因此,本發明提供一種用於噴墨印表機的列印頭積體 電路,該列印頭積體電路包含: -21 - 200904646 一單片晶圓基板,其支撐一陣列的小液滴噴射器’用 於將列印流體的液滴噴射至列印媒介上,每一液滴噴射器 具有噴嘴和致動器,該致動器用於將列印流體的液滴噴射 經過該噴嘴;藉由一連串的光微影蝕刻和沉積步驟,將該 陣列形成在該單片晶圓基板上;該等步驟涉及光成像裝置 ,其將曝光區域曝露於光,該光被聚焦以投射圖案至該單 片基板上;其中 該陣列具有超過1 0000個該等小液滴噴射器,建構該 等小液滴噴射器使其被該曝光區域所包圍。 本發明配置該噴嘴陣列,使得小液滴噴射器密度非常 高,且減少所需曝光步驟的數目。 較佳地,該曝光區域小於900 mm2。較佳地,該單片 晶圓基板被該曝光區域所包圍。在另一較佳的形式中,該 光成像裝置是步進機,其將整個罩幕同時曝光。選擇性地 ,該光成像裝置是掃描器,其將狹窄帶寬(band)的光掃 描經過該曝光區域,以將罩幕曝光。 較佳地,該單片晶圓基板支撐超過1 2 0 0 0個小液滴噴 射器。在這些實施例中,希望該陣列每平方毫米具有超過 700個小液滴噴射器。 在一些實施例中,列印頭積體電路被組裝至具有其他 類似列印頭積體電路的頁寬列印頭,用於將列印流體的液 滴噴射至列印媒介上,該列印媒介被饋給通過在媒介饋給 方向中的該列印頭;其中 該陣列具有超過1 00000個該等小液滴噴射器,且該 -22- 200904646 陣列在該媒介饋給方向的橫方向中延伸200毫米至3 3 0毫 米。在另一較佳的形式中’該等噴嘴在該媒介饋給方向的 垂直方向中彼此相隔開達小於1 〇微米。較佳地’該列印 頭具有超過1 4 0 0 0 〇個該等小液滴噴射器。在特別佳的形 式中,在該媒介饋給方向的垂直方向中彼此相隔開達小於 10微米的該等噴嘴’在該媒介饋給方向中也彼此相隔開 達小於150微米。 選擇性地,該等致動器配置在相鄰列內,每一致動器 具有在該等列的橫方向彼此相隔開的電極’用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圓基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器( PEC ),用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最接近的鄰居。在特別佳的形式中,該列印引 -23- 200904646 擎控制器平等地分享該列印資料給該陣列中的該二噴嘴。 較佳地,該二噴嘴中心相隔開小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於8微米。較佳地,該列印頭在該媒介饋給 方向的橫方向中,具有的噴嘴節距是每吋多於1600個噴 嘴(npi )。在另一較佳形式中,該噴嘴節距大於3000 npi 〇 【實施方式】 使用和2005年10月11曰申請之USSN 11/246687號 案(我們的檔案號MNN001US)所述相同的微影蝕刻和沉 積步驟,製造附圖所示的列印頭積體電路(1C )。茲將該 案的內容倂入做參考。一般的工作者會瞭解附圖所示的列 印頭積體電路具有腔室、噴嘴、和加熱器電極結構,其需 要使用和2005年10月11日申請之USSN 11 /246687號案 (我們的檔案號MNN00 1US)圖中所示者不同的曝光遮罩 。但是形成懸臂樑加熱器元件、腔室、和噴射孔的製程步 驟則維持相同。同樣地,以和2005年1 〇月1 1日申請之 USSN 1 1 /246687號案(我們的檔案號MNN001US)所討 論者相同的方式形成互補式金氧半導體(CMOS )層,除 了驅動場效電晶體(F E T )以外。因爲加熱器元件的較高 密度,所以驅動FET需要比較小。 -24- 200904646 連結列印頭積體電路 申請人已發展出一些列印頭裝置’其使用一系列的列 印頭積體電路,該等列印頭積體電路連結在一起以形成頁 寬列印頭。依此方式,列印頭積體電路可組合成列印頭’ 使用該等列印頭的應用範圍從寬格式列印至具有內建印表 機的相機和手機。各列印頭積體電路端對端地安裝在支撐 構件上,以形成頁寬列印頭。支撐構件將列印頭積體電路 安裝至印表機內,且將墨水分配至個別積體電路。 USSN 1 1 /293 820號案描述了此類型列印頭的例子,茲將 該案的說明倂入做交互參考。 應瞭解的是,本文所提及的用語「墨水」應解釋爲任 何的列印流體,除非內文清楚地表示其只是用於影像列印 媒介的著色劑。列印頭積體電路可同樣地噴射隱性( invisible )墨水、黏劑、藥劑、或其他功能化的流體。 圖1A顯示頁寬列印頭100的示意圖,其具有安裝至 支撐構件94的系列列印頭積體電路92。彎曲側96允許 其中一個列印頭積體電路92的噴嘴、和在紙饋給方向中 相鄰列印頭積體電路的噴嘴重疊。重疊每一列印頭積體電 路92的噴嘴,提供了橫越二個列印頭積體電路92之間接 合處的連續列印。此避免在列印結果中的「帶(banding )」。以此方式連結各列印頭積體電路,僅使用不同數目 的列印頭積體電路便可製作任何所欲長度的列印頭。 列印頭積體電路92之端對端的配置,需要供給電力 -25- 200904646 和資料至沿著每一列印頭積體電路92長側的結合墊。 2006年10月10日申請之11/544764號案(我們的檔案號 PUA001US )中詳細地描述此等連接、和具有列印引擎控 制器(PEC )之連結積體電路的控制。 3200 dpi列印頭槪要 圖1B顯示申請人最近硏發的3200 dpi (點/吋)列印 頭上噴嘴陣列的剖面。列印頭具有「真實(true )」3200 dpi解析度,因爲噴嘴節距是3200 dpi,而不是具有3200 dpi可尋址位置但是噴嘴節距小於200 dpi的印表機。圖 1 B所示的剖面顯示噴嘴陣列的八個單位晶胞,且移除頂 部層。爲了例示的目的,已顯示噴射孔2的輪廓。「單位 晶胞(unit cell )」是噴嘴陣列的最小重複單元,且具有 一個完整的液滴噴射器、和在該等完整噴射器兩側中任一 側上之四個「半液滴噴射器」。圖2顯示一個單位晶胞。 噴嘴列在媒介進給方向8的橫向延伸。中間四列的噴 嘴是一個顏料通道4。墨水供給供給通道6兩中的任一側 有一列延伸。來自晶圓相對側的墨水經由墨水饋給管1 4 流至墨水供給通道6。上和下墨水供給通道1 〇、丨2是分 離的顏料通道(雖然用於較大的顏料密度,但是其可列印 相同顏色的墨水---例如C C Μ Μ Y列印頭)。 供給通道6上方的列20、22在媒介饋給方向8係橫 向地偏置。供給通道6下方的列24、26沿著媒介的方向 做類似地偏置。再者,列20、22和列24、26相對於彼此 -26- 200904646 係相互偏置。因此,列20至26在媒介饋給方向之橫向的 組合噴嘴節距,是任何個別列之噴嘴節距的四分之一。沿 著每一列的噴嘴節距約爲32微米(公稱3 1 .75微米), 因此一個顏料通道之全部列的組合噴嘴節距約爲8微米( 公稱7.9375微米)。此等於3200 npi的噴嘴節距,因此 列印頭具有「真實(true )」3 200 dpi的解析度。 單位晶胞(unit cell) 圖2是噴嘴陣列的一個單位晶胞。每一單位晶胞具有 相當於四個液滴噴射器(二個完整的液滴噴射器和在該等 完整噴射器兩側的四個「半液滴噴射器」)。液滴噴射器 是噴嘴、腔室、驅動FET、和用於單一微機電(MEMS ) 流體噴射裝置驅動電路。一般的工作者會瞭解:爲了方便 ,液滴噴射器通常單純地指噴嘴;但是從使用的內容可瞭 解,此用語是否僅指噴射孔或整個MEMS裝置。 由墨水饋給管1 4經由上墨水供給通道1 〇饋給上二噴 嘴列18。下噴嘴列16是不同顏料通道,其由供給通道6 饋給。每一噴嘴具有結合的腔室2 8和在電極3 4和3 6之 間延伸的加熱器元件3 0。各腔室呈橢圓形且彼此偏置, 所以其短軸(minor axes )在媒介饋給方向的橫向重疊。 此結構允許腔室容積、噴嘴面積、和加熱器尺寸實質地相 同於上述2005年10月11日申請之USSN 11/246687號參 考案(我們的檔案MNN00 1US)所示的1 60 0 dpi列印頭 。同樣地’腔室壁32維持4微米厚,且接點34、36的面 -27- 200904646 積仍然是10微米Χίο微米。 圖3顯示組成噴嘴陣列的單位晶胞複製圖案。每一單 位晶胞3 8橫越晶圓平移達寬度X。相鄰列互呈鏡相且平 移達半個寬度:〇.5x = y 。如上所述,此提供用於一顏料 通道(20、22、24、26 )之列的組合噴嘴節距0.25x。在 所示的實施例中,x = 3 1.75且y = 7.93 75。此提供3 20 0 dpi 的解析度,而不會減少加熱器、腔室、或噴嘴的尺寸。因 此,當在3 2 0 0 dp i作業時,列印密度比2 0 0 5年1 〇月1 1 日申請之USSN 11 /2 46687號參考案(我們的檔案 MNN001US )之 1 600 dpi列印頭還高;或者列印頭可在 1 600 dpi作業,以延長噴嘴具有良好列印密度的壽命。下 文會進一步討論列印頭的此項特徵。 加熱器接點配置 加熱器元件3 0和個別接點3 4、3 6的尺寸’相同於 2005年10月11日申請之USSN 11/246687號參考案(我 們的檔案MNN00 1US)之1 600 dpi列印頭。然而’因爲 有二倍的接點數目,所以有二倍的FET接點(負接點) 數目,該等FET接點中斷「電力平面(帶正電壓的CMOS 金屬層)」。電力平面(power plane)中之孔的咼密度’ 在各孔之間的薄金屬片產生高阻抗。此阻抗有損列印頭的 整體效率,且會減少一些加熱器相對於其他加熱器的驅動 脈衝。 圖4是晶圓、CMOS驅動電路56、和加熱器的剖面示 -28- 200904646 意圖。每一列印頭積體電路的驅動電路5 6被製造在晶圓 基板48上呈數個金屬層40、42、44、45,介電材料41、 43、47將該等金屬層分離,導孔46穿過各層以建立所要 求的層間連接。驅動電路5 6具有供每一致動器3 0用的驅 動FET (場效電晶體)58,FET 58的源極54連接至電力 平面 4〇 (連接至電源供應器之位置電壓(position voltage)的金屬層),且汲極52連接至接地平面42(在 0電壓或接地的金屬層)。此外,電極34、36或各致動 器30的每一者連接至接地平面42和電力平面40。 電力平面40通常是最上面的金屬層,且接地平面42 是在電力平面下面的第一層(被介電層41分離)。致動 器30、墨水腔室28、噴嘴2被製造在電力平面金屬層40 的頂部。蝕刻穿過此層形成孔46,所以負電極34可連接 至接地平面,墨水流道14可從晶圓基板48的背部延伸至 墨水腔室28。因爲噴嘴密度增加,所以這些孔或穿過電 力平面之穿孔(punctuation)的密度也增加。因爲穿過電 力平面之穿孔的較大密度,所以穿孔之間的間隙變小了。 穿過這些間隙之金屬層薄橋,是相對高電阻的點。因爲電 力平面連接至沿著列印頭積體電路一側的供應器,所以流 至列印頭積體電路非供應器側上之致動器的電流,可能必 須通過一連串的這些阻抗間隙。至非供應器側致動器所增 加的寄生電阻,會影響其驅動電流和極度地影響這些噴嘴 的液滴噴射特性。 列印頭使用數種對策來解決此問題。首先’相鄰列的 -29- 200904646 致動器具有相反的電流流動方向,亦即,其中一列的電極 極性在相鄰列做改變。爲了列印頭此方面的目的,與供給 通道6相鄰的兩列噴嘴,應認爲是如圖5A所示單一列, 而不是如先前圖式所示地交錯。兩列A、B沿著列印頭積 體電路的長度縱向地延伸。全部的負電極34沿著二相鄰 列A、B的外側邊緣。從一側(稱爲邊緣6 2 )供給電力, 且電流在流經兩列中的加熱器元件3 0之前,電流只通過 一排薄的阻抗性金屬區段6 4。因此,在列A中的電流流 動方向和在列B中的電流流動方向相反。 對應的電路圖例示此組態的好處。因爲列A之各負 電極3 4間的薄區段的阻抗RA,所以電源供應器V +電壓 下降。然而,全部加熱器3 0的正電極3 6相對於接地係在 相同的電壓(Va = Vb)。電壓在橫越二列A、B的全部加 熱器3 0 (分別爲阻抗Rha、RHB )時下降。列A、B的電 路中刪除了列B之各負電極34間的薄橋部66的阻抗Rb 〇 圖5 B顯示如果二相鄰列之電極極性不是相反的情況 。在此情況中,列B的整排阻抗性區段6 6呈現在電路中 。供應器電壓V +經過阻抗Ra後下降至VA-…列A之正電 極3 6的電壓。從該處經過列A加熱器的阻抗RHA後’電 壓下降至接地。然而,電壓VA經過列B負電極34之間 薄區段66的阻抗Rb,在列B正電極36的電壓從Va降至 Vb。因此,經過列B加熱器3 0的電壓下降是小於列A的 電壓下降。此會改變驅動脈衝,且因此改變液滴噴射特性 -30- 200904646 用於維持電力平面之整合性的第二個對策是將每列中 的相鄰電極對(pair )相交錯。參考圖6,現在各負電極 3 4相交錯’所以每一第二電極橫向地位移至列。相鄰列 的加熱器接點3 4和3 6同樣地相錯開。此用於使貫穿電力 平面40之各孔間的間隙64、66更寬。較寬的間隙具有較 少的電阻抗’且遠離列印頭積體電路隻電源供應器側的加 熱器的電壓下降較小。圖7顯示電力平面40的較大區段 。在交錯列41、44中的電極34對應於供給通道6所饋給 之顏料通道。交錯列42、43關於兩側中任一側上之顏料 通道的一半噴嘴由供給通道1 〇所饋給的顏料和由供給 通道1 2所饋給顏料通道。應瞭解的是五顏料通道列印頭 積體電路具有九列負電極,其能誘發離電源供應器側最遠 之噴嘴中的加熱器的電阻。各負電極之間的間隙變寬,大 幅減少該等件系所產生的阻抗。此促進整個噴嘴陣列之液 滴噴射特性更均勻。 有效率的製造 上述的特性增加了晶圓上噴嘴的密度。每一個別積體 電路約22毫米長、小於3毫米寬、且能支撐超過1 0000 個噴嘴。此代表了申請人之1 600 dpi列印頭積體電路( 見2005年10月11日申請之USSN 11/246687號案(我們 的檔案MNN00 1 US )的例子)中噴嘴的數目大幅地增力口。 事實上,製造成如圖12所示尺寸之3 200 dpi列印頭噴嘴 -31 - 200904646 陣列,具有1 2 8 0 0個噴嘴。 因爲整個噴嘴陣列都位在用於將罩幕(光罩)曝光之 微影步進機(stepper)或掃描器的曝光範圍內,所以這麼 多(多於10000個)噴嘴的微影製造有效率。圖14示意 地顯示光微影步進機。光源1 02發射特殊波長的平行射線 104穿過罩幕106,該罩幕具有待傳輸至積體電路92的圖 案。圖案被聚焦穿過用於縮小特徵的透鏡108,並被投射 至承載積體電路(或所謂的「晶粒」)92的晶圓工作台 110上。被光104照射之晶圓工作台110的區域稱爲曝光 區1 1 2。不幸的是曝光區1 1 2的尺寸受到限制,以維持投 射圖案的準確度-…整個晶圓盤不能同時被曝光。絕大部 分的微影步進機具有小於30毫米X30毫米的曝光區。一 個主要的製造者(荷蘭的ASML )所製造的步進機具有22 毫米X22毫米的曝光區,其爲業界的典型。 步進機曝光一個晶粒或晶粒的一部分,然後步進至另 一個晶粒或同一晶粒的另一部分。在單一片基板上具有儘 可能多的噴嘴,有利於袖珍的列印頭設計,且有利於支撐 件上各積體電路的組合體以彼此精確的關係最小化。本發 明建構的噴嘴陣列,使超過10000噴嘴位在曝光區內。事 實上,整個積體電路可位在曝光區內,所以單一片基板可 設有超過1 4000個噴嘴,而不必就每一圖案步進和再對準 〇 一般的工作者會瞭解,上述技術可應用於以光微影掃 描器製造噴嘴陣列。圖15A至15C示意掃描器的作業。 -32- 200904646 在掃描器中,光源102發射光l〇4的較狹窄射束,其寬度 仍足以照射罩幕1〇6的整個寬度。狹窄射束104被聚焦穿 過較小的透鏡丨〇8,且被投射至安裝再曝光區112內之積 體電路92的一部份。罩幕106和晶圓工作台11〇在相反 方向彼此相對運動’所以罩幕的圖案被掃描通過整個曝光 區 1 12。 顯然地,此類型的光成像裝置也適於有效率地製造具 有大數目噴嘴的列印頭積體電路。 平坦外部噴嘴表面 如上所述,依據2005年10月11日申請之 USSN 1 1 /2466 8 7 (我們的檔案MNN 001US )號交互參考 案所列之步驟製造列印頭積體電路。只有改變曝光罩幕圖 案,以提供不同的腔室和加熱器組態。如2 0 0 5年1 0月 11日申請之USSN 11/246687 (我們的檔案MNN 00 1US ) 號案中所描述者,頂部層和腔室壁是整合的構造---合適 頂部和壁材料的單一電漿提升化學蒸鍍沉積(PECVD )。 合適的頂部材料可爲氮化矽、氧化矽、氧氮化矽、氮化鋁 等。頂部和壁被沉積在犧牲光阻劑之台架(scaffold )層 上,以在CMOS之鈍化層上形成整合的構造。 圖8顯示蝕刻進入犧牲層72內的圖案。該圖案由腔 室壁3 2和柱狀構造6 8 (下文討論)組成’其全部具均勻 厚度。在所示的實施例中,壁和柱的厚度是4微米。這些 構造是相對地薄,所以當所沉積的頂部和壁材料冷卻時, -33- 200904646 頂部層7 0的內表面中幾乎沒有凹陷(如果有的話)。鈾 刻圖案中的厚構造,將保持相對大體積的頂部/壁材料。 當材料冷卻和收縮時,外表面向內拉,以產生凹陷。 這些凹陷使得外表面不平坦,其不利於列印頭的維護 。如果擦拭或抹掉列印頭,紙塵和其他污物會留在凹陷內 。如圖9所示,頂部層72的外表面是平坦且無特徵的, 除了噴嘴2以外。藉由擦拭或抹掉,更容易移除灰塵和已 乾燥的墨水。 再塡注墨水流 參考圖10,除了在陣列的縱長向末端的入口供給較 少的噴嘴以外,每一墨水入口供給四個噴嘴。在起始的注 給期間和在氣泡阻塞的情況,隨機的噴嘴入口 1 4是有利 的。 如流動線74所示,至遠離入口 14之腔室28的再塡 注流比至緊鄰供給通道6之腔室28的再塡注流更長。爲 了均勻液滴噴射特徵,希望陣列中每一噴嘴有相同的墨水 再塡注時間。 如圖11所示,鄰近腔室的入口 76和遠離腔室的入口 78設計成不同尺寸。同樣地’柱狀構造68的位置設計成 對鄰近噴嘴入口 76和遙遠噴嘴入口 78提供不同水準的流 動限制。入口的尺寸和柱的位置可調整流體阻力(drag ) ,所以陣列中全部噴嘴的再塡注時間是均勻的。也可設計 柱的位置’以阻尼腔室28內蒸汽泡泡所產生的壓力脈衝 -34- 200904646 。運動經過入口的阻尼脈衝,防止各噴嘴之間的流體串擾 (cross talk)。再者,在柱68和入口 76、78之側面間 的間隙80、82,可做爲墨水再塡注流中所含之較大氣泡 的有效氣泡陷阱或捕捉器(trap )。 延長的噴嘴壽命 圖12顯示噴嘴陣列中一顏料通道的剖面,其具有 3200 dpi解析度所需的尺寸。應瞭解的是,「真實」3200 dpi是非常高的解析度-…比照相品質還好。此解析度超越 許多列印工作。通常1 6 0 0 d p i解析度比較適當。有鑑於 此,藉由共享二相鄰噴嘴之間的列印資料,列印頭積體電 路犧牲了解析度。以此方式,通常送至1 600 dpi列印頭 中一個噴嘴的列印資料,被取代性地送至3200 dpi列印 頭中相鄰的噴嘴。此模式的操作使噴嘴的壽命延長二倍以 上,且允許印表機以非常高的列印速率作業。在3 2 0 0 dp i 模式中,印表機以60 ppm (全彩A4 )列印,且在1600 dpi模式中,速率趨近120 ppm。 1 60 0 dpi模式的附加利益是:能使用具有列印引擎控 制器(PEC )和撓性印刷電路板之此列印頭積體電路’其 僅能建構於1 600 dpi解析度。 如圖12所示,噴嘴83和噴嘴84橫向地偏移只有 7.9 3 75微米。兩噴嘴以絕對關係進一步隔開,但是在紙饋 給方向的位移可說明噴嘴啓動(firing )順序的時間點( timing )。因爲相鄰噴嘴之間8微米的橫向移位是小的, -35- 200904646 所以爲了呈現的目的,可以忽略該移位。但是,藉由使高 頻振動(d i t h e r )最佳化(如果希望的話),可解決該移 位。 氣泡、腔室、和噴嘴匹配 圖1 3是噴嘴陣列的放大視圖。噴射孔和腔室壁兩者 皆爲橢圓形。將長軸配置成平行於媒介饋給方向,可允許 在饋給方向之橫向中高的噴嘴節距,同時維持需要的腔室 容積。再者,配置腔室的短軸使該等短軸在橫方向重疊, 此也改善了噴嘴包裝密度。 加熱器3 0是在其個別電極3 4和3 6之間延伸的懸臂 樑。長形樑加熱器元件產生氣泡,其大致呈橢圓形(在平 行於晶圓平面的剖面)。匹配氣泡9 0、腔室2 8、和噴射 孔2,可促進能量效率液滴噴射。對「自我冷卻」列印頭 而言,低能量液滴噴射是重要的。 結論 顯示在圖中的列印頭積體電路,提供「真實」3200 dpi解析度、和比1 600 dpi列印速率還高很多之列印速率 的選擇。分享較低解析度的列印資料延長噴嘴壽命,且提 供現存1 600 dpi列印引擎控制器和撓性印刷電路板的相 容性。均勻厚度的腔室壁圖案有平坦的外部噴嘴表面,其 較無阻塞的傾向。此外,致動器接觸組態和長形噴嘴構造 ’提供媒介饋給方向之橫方向上的高噴嘴節距,同時保持 -36- 200904646 平行於媒介饋給方向的薄噴嘴陣列。 所述的特定實施例在各方面只做例示用,且絕無限制 寬廣發明槪念之精神和範圍之意。 【圖式簡單說明】 圖1 A是連結列印頭積體電路構造的示意圖; 圖1 B本發明列印頭積體電路上噴嘴陣列的局部平面 視圖; 圖2是噴嘴陣列的單位晶胞; 圖3顯示組成噴嘴陣列之單位晶胞的複製圖案; 圖4是穿過噴嘴之CMOS層和加熱器元件的示意剖面 圖; 圖5A示意地顯示在相鄰致動器列具有相反電極性之 電極配置; 圖5 B示意地顯示在相鄰致動器列具有典型電極性之 電極配置; 圖6顯示圖1之列印頭積體電路的電極組態; 圖7顯示CMOS層之電力平面的剖面; 圖8顯示蝕刻進入頂/側壁層之犧牲台架層的圖案; 圖9顯示在蝕刻噴嘴孔以後之頂部的外表面; 圖1 〇顯示噴嘴的墨水供給流動; 圖11顯示不同列中至各腔室的不同入口; 圖1 2顯示用於一顏料通道的噴嘴間隔; 圖1 3顯示具有匹配橢圓形通道和噴射孔之噴嘴陣列 -37- 200904646 的放大視圖; 圖14是光微影步進機的示意圖;和 圖15A至15C示意地例示光微影步進機的的作業。 【主要元件符號說明】 2 :(噴射)孔(圖1B ) 2 :噴嘴(圖4 ) 6 :(墨水)供給通道 8 :媒介(紙)饋給方向 1 〇 :上墨水供給通道 1 2 :下墨水供給通道 1 4 :墨水饋給管(圖1 B ) 1 4 :墨水流道(圖4 ) 14:噴嘴入口(圖10) 1 6 :下噴嘴列 1 8 :上噴嘴列 20 :歹[| 22 :歹IJ 24 :列 26 :列 28 :腔室 3 0 :加熱器元件(圖2 ) 30:致動器(圖4) 32 :腔室壁 -38- 200904646 3 4:(負)電極(接點) 3 6:(正)電極(接點) 3 8 :單位封包 40:電力平面(金屬層) 41:介電層(材料)(圖4) 41 :歹1J (圖 7) 42 :接地平面(金屬層)(圖4 ) 42 :歹[J (圖 7 ) 43 :介電層(材料)(圖4) 43 :歹[J (圖 7 ) 44:金屬層(圖4) 44 :歹!](圖 7 ) 46 :(導)孔 47:介電層(材料) 4 8 :晶圓基板 5 2 :汲極 5 4 :源極 56: (CMOS)驅動電路 5 8 :場效電晶體 62 :邊緣 64 :阻抗性金屬區段 64 :間隙(圖6 ) 66_橋部(圖5A) 66 :阻抗性區段(圖5B ) -39- 200904646 6 6 :間隙(圖6 ) 6 8 :柱(狀構造) 7 0 :頂部層 72 :犧牲層 74 :流動線 76 :入口 78 :入口 80 :間隙 82 :間隙 83 :噴嘴 8 4 :噴嘴 9 0 :氣泡 9 2 :列印頭積體電路 94 :支撐構件 96 :彎曲側 9 8 :結合墊 100 :頁寬列印頭 1 〇 2 :光源 104 :光(射線) 1 0 6 :罩幕 1 0 8 :透鏡 1 1 〇 :晶圓工作台 1 12 :曝光區 -40Q In some embodiments, when printing at a lower print resolution, the print -8-200904646 watch machine operates at a higher print rate. Preferably, the higher printing rate is more than 60 pages per minute. In a preferred form, the print engine controller halves the color plane halftones printed by the adjacent nozzles in a high frequency vibration matrix. The high frequency vibration matrix is optimized for each The lateral displacement of the jetted droplets. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles disposed in adjacent columns; each nozzle having an ejection orifice, a chamber for receiving a printing fluid, and a corresponding actuation The actuator is for injecting the printing fluid through the injection hole; each chamber has an individual inlet to re-print the printing fluid, the printing fluid is ejected by the actuator; and the printing fluid supply Channels extending parallel to the adjacent columns to supply printing fluid to the actuators of each nozzle in the array via the respective inlets; wherein the nozzle inlets are constructed in one of the adjacent columns The re-injection flow rate is different from the re-injection flow rate of the nozzle inlets in the other column of the adjacent columns. The nozzle constructed in accordance with the present invention allows the ink supply channels on one side to be in a series. Since the supply passage is not only supplied to one row of nozzles on one side, the above construction allows the nozzle density on the surface of the print head to be large. However, because the flow rate through each inlet of the column is different, the columns that are further away from the supply channel do not have significantly longer re-injection times. Preferably, the nozzle inlets are constructed in one of the adjacent columns such that the re-injection flow rate is different from the inlet of the nozzles in the other column of the adjacent columns -9-200904646 The flow rate is injected, so the chamber re-injection time of all the nozzles in the array is approximately uniform. In another preferred form, the inlet closest to the column of supply channels is narrower than the column away from the supply channel. In some embodiments, there are two adjacent rows of nozzles on either side of the supply channel. Preferably, the inlet has a flow damped configuration. In a particularly preferred form, the flow damped configuration is the column 'designing the position of the column' to create a flow barrier. Columns in the inlet of one column and columns in the inlets of other columns create varying degrees of obstacles. Preferably the column produces a bubble trap or trap between the side of the column and the inlet side wall. Preferably, the column diffuses to propagate pressure pulses within the print fluid to reduce crosstalk between the nozzles. In some embodiments, the actuators are heater elements for generating a vapor bubble within the printing fluid such that droplets of the printing fluid are ejected from the ejection orifice. Preferably, the heater elements are beams suspended between their individual electrodes so that the heater elements are submerged within the printing fluid. Preferably, the injection holes are elliptical and the major axis of the injection holes is parallel to the longitudinal axis of the beam. Preferably, the major axes of adjacent injection holes are spaced apart by less than 50 microns. In another preferred form, the major axes of adjacent jets are spaced less than 25 microns apart. In a particularly preferred form, the major axes of adjacent orifices are spaced apart by less than 16 microns. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the lateral direction of the media feed direction. In a preferred embodiment, the nozzle pitch is greater than 3000 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (dpi) equal to the nozzle pitch. In a particular embodiment, the printhead is a page width -10-200904646 printhead that is configured to print an A4-size medium. Preferably, the array has more than 100,000 nozzles. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles disposed in a series of columns; each nozzle having an ejection orifice, a chamber for holding a printing fluid, and a heater element; a heater element for generating a vapor bubble in the printing fluid contained in the chamber to eject a droplet of the printing fluid through the ejection orifice; wherein the nozzle, the heater element, and the chamber All are elongate structures having a long dimension 'the lengths respectively exceed the other dimensions of each elongate configuration; and the individual dimensions of the nozzle, the heater, and the chamber are parallel And extending perpendicular to the column direction. In order to increase the nozzle density of the columns, each of the nozzle assemblies - the chamber, the orifice, and the heater element are constructed to form an elongate configuration - the elongate structures are all aligned in the transverse direction of the column direction. This increases the nozzle pitch of the column or the number of nozzles per turn (npi) while allowing a sufficiently large chamber volume and droplet volume to be maintained for proper pigment density. This also avoids the need to extend the large distance in the paper feed direction (in the case of a page width printer) or in the scanning direction (in the case of scanning a print head). Preferably, each column in the array is offset relative to its adjacent column, so that none of the equal lengths of the nozzles in a column does not match any of the same length dimensions in the adjacent column. Collinear. In another preferred form, the printhead is a pagewidth printhead for printing to a media substrate fed through the printhead in a media feed direction, such that the nozzles are of equal length Size -11 - 200904646, parallel to the media feed direction. Preferably, the length of each second nozzle is in the login. In a particularly preferred form, the "all" nozzles of the nozzles are formed in a flat top layer that partially defines the chamber; the stomach has a surface of the surface, except the outer surface Other than the ejector hole, the rest is flat. In a particularly preferred form, the nozzle of the array is formed on the underlying substrate. The substrate extends parallel to the top layer and is between the top layer and the substrate. The extended sidewall partially defines the chamber 'designing the shape of the sidewall' such that the interior surface of the sidewall is at least partially elliptical. Preferably, the side wall is elliptical except for the inlet opening for the printing fluid. In a particularly preferred form, the minor axes of the nozzles in one of the columns are partially overlapped with the minor axes of the nozzles in the adjacent column of the media feed direction. In another preferred form, the injection holes are elliptical. Preferably, the heater elements are beams suspended between their individual electrodes such that during use, the heater elements are submerged within the print fluid. Preferably, the vapor bubble generated by the heater element is elliptical in cross section parallel to the injection hole. In some embodiments, the printhead further includes a supply channel adjacent the array, the array extending parallel to the columns. In a preferred form, the nozzles of the array are nozzles of the first array, and the nozzles of the second array are formed on the other side of the supply channel; the second array is a mirror image of the first array, but relative to The first array is offset such that none of the long axes of the ejection holes in the first array are collinear with any of the long axes of the second array. Preferably, the long axes of the injection holes -12-200904646 in the first array, from the long axes of the injection holes in the second array, to the transverse direction of the medium feed direction The direction offset is less than 20 microns. In a particularly preferred form, the offset is about 8 microns. In some embodiments, the print head has a nozzle pitch of more than 1 600 nozzles per n (npi) in the transverse direction of the media feed direction. In a particularly preferred form, the substrate has a width in the media feed direction of less than 3 mm. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles for ejecting droplets of printing fluid to a printing medium as it moves in a printing direction relative to the printing head The printing medium; wherein the nozzles in the array are spaced apart from each other by less than 1 〇 micrometer in the vertical direction of the printing direction. Since the nozzles are spaced less than 10 microns in the vertical direction of the printing direction, the print head has a very high "true" print resolution - that is, by the high number of nozzles per turn reaching the height of each turn Points. Preferably, the nozzles in the array spaced apart from each other by less than 10 microns in the vertical direction of the printing direction are also spaced apart from each other by less than 150 microns in the printing direction. In another preferred form the array has more than 700 nozzles per square millimeter. Preferably, the array of nozzles is supported on a plurality of monolithic wafer substrates, each of which supports more than 10,000 of the nozzles. In another preferred form, each single wafer substrate supports more than 12,000 of the nozzles. In a particularly preferred form, the plurality of monolithic wafer substrates are mounted end-to-end -13-200904646 to form a table for mounting in the printer to feed more than 100,000 media in the media feed direction. The nozzles extend 200 mm to the middle in the transverse direction of the direction, the array having more than 140,000 i selectively, the print head further comprising each of the nozzles, the actuators having the same The lateral directions of the columns individually drive the transistors and the actuators of the power supply in adjacent columns, so the actuators in adjacent columns. Preferably, the electrical rows of each of the columns are offset in the lateral direction, so in each of the second, in a particularly preferred embodiment, the elongated wafer substrate extends flat on the small liquid crystal circular substrates. And along the length of the wafer substrate, in some embodiments, the print head PEC) is used to send print data to the P during use, by using a single nozzle between the print nozzles Prints the print resolution. Preferably, this is provided such that the two nozzles are the closest neighbors in the transverse direction of the print head. The page width print head of the print data is equally shared by the controller, and the print is constructed to pass through the print head; the print head is fed to the medium at 330 mm. In some embodiments the nozzles are equal. A plurality of actuators are respectively disposed in the adjacent columns, each of the uniformly spaced electrodes for connection to: wherein the electrodes have opposite polarities with opposite current flow directions from adjacent ones The electrodes are collinear to the electrodes of the actuator. The drop ejector is fabricated to supply power and data at the edges of the columns of the actuators. Having a print engine controller (nozzles of column I; wherein at least two controllers assigned to the array are selectively depressible) - a preferred form of movement of the nozzles in the array to the substrate of the print medium The column prints the two nozzles in the array. -14- 200904646 Preferably, the two nozzle centers are separated by less than 40 microns. In a particularly preferred form, the print head is a page width print head And the nozzle centers are spaced apart by less than meters in the transverse direction of the medium feed direction. Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the medium feed direction. Preferably, the print head In the transverse direction of the media direction, there is a nozzle pitch of more than 1600 nozzles per n (npi). In another preferred form, the nozzle pitch is greater than npi. Therefore, the present invention provides a spray for use. A printhead circuit for an inkjet print head, the printhead integrated circuit comprising: a single wafer substrate supporting an array of small droplet ejectors for ejecting droplets of printing fluid onto a print medium , each droplet spray has a nozzle and an actuator The actuator is adapted to pass droplets of the printing fluid through the nozzle; wherein the array has more than 1 0000 of such small droplet ejectors. Since a large number of small droplet ejectors are fabricated on a single wafer 'nozzle The array has a high nozzle pitch and the print head has a very high true "print resolution" - that is, the number of high points achieved by the high number of nozzles per turn. Preferably, the array has more than 12,000 The droplets are sprayed. In another preferred form, the printing medium moves in a direction relative to the printing print; and the nozzles in the array are in the vertical direction of the column direction 'separated from each other by less than 1 μm. In the special form, in the vertical direction of the printing direction, the two 6 micro-horizon are separated from each other by a spray of 3 000 integrators, and the jet is sprayed. "Injectors of each ejector head are -15-200904646. The nozzles in the array of ι〇 microns are also spaced apart from each other by less than 150 μm in the printing direction. In an embodiment, the array has more than 7 per square millimeter 00 such small droplet ejectors. In a particularly preferred form, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection To individual drive transistors and a power supply; the electrodes of the actuators in adjacent columns have opposite polarities, so the actuators in adjacent columns have opposite current flow directions. In yet another preferred form, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particular embodiment, the monolithic wafer substrate is elongate and extends parallel to the columns of the actuators, so that in use, power and data are supplied along the long edge of the wafer substrate. . In some forms, the inkjet printhead includes a plurality of printhead integrated circuits, and further includes a print engine controller (PEC) for feeding printed data to the array of droplet dischargers; The print engine controller can selectively reduce the print resolution during use by assigning print data to a single droplet ejector between at least two droplet ejector of the array. Preferably, the position of the two nozzles in the array is set such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the print medium substrate. In a particularly preferred form, the print engine controller equally shares the print data to the two nozzles in the array. Optionally, the center of the two nozzles is spaced less than 40 microns apart. In a particularly preferred embodiment, the print head is a page-16-200904646 wide print head, and the center of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the media feed direction. In yet another preferred form, the adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In some embodiments, the inkjet printhead includes a plurality of printhead integrated circuits that are mounted end-to-end to form a pagewidth printhead for a printer to construct the printer to The medium feed direction feeds the medium through the print head; the print head has more than 1 000 such nozzles, and the print head extends 200 mm to 330 in the lateral direction of the medium feed direction Millimeter. In another preferred form, the array has more than 140,000 of the nozzles. Preferably, the array of droplet discharges has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. Preferably, the nozzle pitch is greater than 3000 npi. Accordingly, the present invention provides a printhead integrated circuit for an inkjet printhead, the printhead integrated circuit comprising: a planar array of small droplet ejector, each droplet ejector having a data distribution a circuit, a drive transistor, a print fluid inlet, an actuator, a chamber, and a nozzle; a chamber is constructed to hold the print fluid adjacent the nozzle' so that the drive transistor drives the actuator during use, Spraying small droplets of the printing fluid through the nozzle; wherein the array has more than 700 such small droplet ejectors per square millimeter, due to the high density of small droplet ejectors fabricated on the wafer substrate, The nozzle array has a high nozzle pitch, and the print head has a very high -17-200904646 "true" print resolution - that is, the number of high nozzles per turn reaches the high number of dots per turn . Preferably, when the printing medium moves in a printing direction relative to the printing head, the array ejects droplets of the printing fluid onto the printing medium; and the nozzles in the array , in the vertical direction of the printing direction, are separated from each other by less than 10 μm. In another preferred form, the nozzles spaced apart from each other by less than 10 microns in the vertical direction of the printing direction are also spaced apart from each other by less than 1 50 micrometers in the printing direction. In a particular embodiment, a plurality of print head integrated circuits are used within the ink jet print head, each of the print head integrated circuits having more than one of the small droplet ejectors, and preferably, More than 1 2000 such nozzle unit cells. In some embodiments, the printhead integrated circuit is elongate and mounted end to end, so the printhead has more than 100,000 such small droplet ejectors, and the printhead is The medium feed direction extends 200 mm to 330 mm in the lateral direction. In another preferred form, the printhead has more than 140,000 such small droplet ejectors. In some preferred forms, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to a corresponding drive transistor and a power source a supply; wherein the electrodes of the actuators in adjacent columns have opposite polarities, so the actuators in adjacent columns have opposite current flow directions -18-200904646 preferably, In these embodiments, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column, so the electrodes of each of the second actuators are collinear. In another preferred form, the elongate wafer substrate extends parallel to the columns of the actuators and supplies power and data along the long edges of the wafer substrate. In a particular embodiment, the printhead includes a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during printing, the print data is assigned to the array A single nozzle between at least two nozzles, the print engine controller selectively reducing the print resolution. Preferably, the position of the two nozzles in the array is such that the two nozzles are the closest neighbors in the transverse direction of movement of the print head relative to the print media substrate. In another preferred form, the print engine controller equally shares the print data to the two nozzles in the array. Preferably, the two nozzle centers are separated by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the two nozzle centers are spaced apart by less than 16 microns in the transverse direction of the media feed direction. In still another preferred form, the centers of the adjacent nozzles are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In some forms, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the transverse direction of the media feed direction. Preferably, the nozzle pitch is greater than 3 000 npi. Accordingly, the present invention provides a pagewidth inkjet printhead comprising: an array of droplet ejection injectors for ejecting droplets of a printing fluid onto a printing medium, the printing medium being Feeding through the printhead in the media feed direction; each drop ejector having a nozzle, and an actuator for ejecting droplets of the print fluid through the nozzle; wherein the array has more than 10,000 The droplet ejection injectors, and the array extends 200 mm to 330 mm in the lateral direction of the medium feed direction. A page-width printhead with a large number of nozzles extending across the width of the media, providing a high nozzle pitch and a very high "true" print resolution, ie a high number of dots per turn per high number of nozzles Preferably, the array has more than 140,000 such small droplet ejectors. In another preferred form, the nozzles are spaced apart from each other by less than 1 〇 micrometer in the vertical direction of the media feed direction. In a particularly preferred form, the nozzles spaced apart from each other by less than 10 microns in the vertical direction of the media feed direction are also spaced apart from each other by less than 150 microns in the media feed direction. In a particular embodiment, the array droplet ejector is supported on a plurality of monolithic wafer substrates, each monolithic wafer substrate supporting more than 100,000 droplet ejection injectors, and preferably more than 1 2000 A small droplet ejector. In these embodiments, it is desirable for the array to have more than 700 droplet ejection devices per square millimeter. Optionally, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to an individual drive transistor and a power supply; The electrodes of the actuators in adjacent columns have opposite polarities -20-200904646, so the actuators in adjacent columns have opposite current flow directions. Preferably, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particularly preferred embodiment, the droplet ejection injectors are fabricated on an elongate wafer substrate that extends parallel to the columns of the actuators and along the The long edge of the wafer substrate supplies power and data. In some embodiments, the printhead has a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during use, at least the print data is dispensed to the array A single nozzle between the two nozzles, the print engine controller selectively reducing the print resolution. Preferably, the position of the two nozzles in the array is such that the two nozzles are most adjacent in the transverse direction of movement of the print head relative to the printing medium substrate. In a particularly preferred form, the print engine controller shares the printed material equally to the two nozzles in the array. Preferably, the two nozzles are spaced apart by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the center of the two nozzles are spaced less than 16 microns apart in the transverse direction of the media feed direction. Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the lateral direction of the media feed direction. Preferably, the printhead has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. In another preferred form, the nozzle pitch is greater than 3 000 npi. Accordingly, the present invention provides a printhead integrated circuit for an ink jet printer comprising: -21 - 200904646 A monolithic wafer substrate supporting an array of small droplet ejectors 'for ejecting droplets of printing fluid onto a printing medium, each droplet ejector having a nozzle and an actuator, The actuator is configured to eject droplets of the printing fluid through the nozzle; the array is formed on the monolithic wafer substrate by a series of photolithography etching and deposition steps; the steps involve a photo imaging device, which will The exposed area is exposed to light that is focused to project a pattern onto the monolithic substrate; wherein the array has more than 10,000 of the small droplet ejectors that are constructed to be exposed by the exposed area Surrounded by. The present invention configures the nozzle array such that the droplet ejector density is very high and reduces the number of exposure steps required. Preferably, the exposed area is less than 900 mm2. Preferably, the monolithic wafer substrate is surrounded by the exposed area. In another preferred form, the optical imaging device is a stepper that simultaneously exposes the entire mask. Optionally, the light imaging device is a scanner that scans a narrow band of light through the exposure area to expose the mask. Preferably, the single wafer substrate supports more than 12,000 droplet ejection injectors. In these embodiments, it is desirable for the array to have more than 700 small droplet ejectors per square millimeter. In some embodiments, the printhead integrated circuit is assembled to a pagewidth printhead having other similar printhead integrated circuits for ejecting droplets of the print fluid onto the print medium, the print The medium is fed through the print head in the media feed direction; wherein the array has more than 100,000 such small droplet ejectors, and the -22-200904646 array is in the lateral direction of the medium feed direction Extend 200 mm to 3 30 mm. In another preferred form, the nozzles are spaced apart from each other by less than 1 〇 micrometer in the vertical direction of the media feed direction. Preferably, the print head has more than 14,000 items of such small droplet ejectors. In a particularly preferred form, the nozzles ' spaced apart from each other by less than 10 microns in the vertical direction of the media feed direction are also spaced apart from each other by less than 150 microns. Optionally, the actuators are disposed in adjacent columns, each actuator having electrodes 'separated from each other in the lateral direction of the columns for connection to an individual drive transistor and a power supply; The electrodes of the actuators in adjacent columns have opposite polarities, so the actuators in adjacent columns have opposite current flow directions. Preferably, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particularly preferred embodiment, the droplet ejection injectors are fabricated on an elongate wafer substrate that extends parallel to the columns of the actuators and along the The long edge of the wafer substrate supplies power and data. In some embodiments, the printhead has a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during use, at least the print data is dispensed to the array A single nozzle between the two nozzles, the print engine controller selectively reducing the print resolution. Preferably, the position of the two nozzles in the array is set such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the printing medium substrate. In a particularly preferred form, the print guide -23-200904646 engine controller equally shares the print data to the two nozzles in the array. Preferably, the two nozzle centers are separated by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the center of the two nozzles are spaced less than 16 microns apart in the transverse direction of the media feed direction. Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the lateral direction of the media feed direction. Preferably, the printhead has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. In another preferred form, the nozzle pitch is greater than 3000 npi. [Embodiment] The same lithography etching as described in USSN 11/246687 (our file number MNN001US) filed on October 11, 2005, is used. And a deposition step, the print head integrated circuit (1C) shown in the drawing is fabricated. I would like to refer to the contents of this case for reference. The general worker will understand that the print head integrated circuit shown in the drawing has a chamber, a nozzle, and a heater electrode structure, which requires the use of USSN 11 /246687 filed on October 11, 2005 (our File number MNN00 1US) The different exposure masks shown in the figure. However, the process steps for forming the cantilever heater element, the chamber, and the injection orifice remain the same. Similarly, a complementary metal oxide semiconductor (CMOS) layer is formed in the same manner as discussed in USSN 1 1 /246687 (our file number MNN001US) filed on January 1, 2005, except for driving field effects. Outside the transistor (FET). Because of the higher density of the heater elements, the drive FET needs to be relatively small. -24- 200904646 Link Printhead Integrated Circuit Applicants have developed a number of printhead devices that use a series of printhead integrated circuits that are joined together to form a page width column Print head. In this manner, the print head integrated circuits can be combined into print heads. The range of applications in which the print heads are used is printed from a wide format to cameras and handsets with built-in printers. Each of the print head integrated circuits is mounted end to end on the support member to form a page width print head. The support member mounts the print head assembly circuit into the printer and distributes the ink to the individual integrated circuits. An example of this type of print head is described in USSN 1 1 /293 820, and the description of the case is hereby incorporated by reference. It should be understood that the term "ink" as used herein shall be interpreted to mean any printing fluid, unless the context clearly indicates that it is merely a coloring agent for image printing media. The print head integrated circuit can similarly inject ink, adhesive, medicament, or other functional fluid. 1A shows a schematic view of a pagewidth printhead 100 having a series of print head integrated circuits 92 mounted to a support member 94. The curved side 96 allows the nozzles of one of the print head integrated circuits 92 to overlap with the nozzles of adjacent print head integrated circuits in the paper feed direction. The nozzles of each of the print head integrated circuits 92 are overlapped to provide a continuous print across the junction between the two print head integrated circuits 92. This avoids "banding" in the printed results. In this manner, the individual print head circuits are connected, and any number of print heads can be fabricated using only a different number of print head integrated circuits. The end-to-end configuration of the print head integrated circuit 92 requires the supply of power -25-200904646 and data to the bond pads along the long side of each of the print head integrated circuits 92. The control of these connections, and the connected integrated circuit with the print engine controller (PEC), is described in detail in the application No. 11/544764 (our file number PUA001US) of October 10, 2006. 3200 dpi print heads Figure 1B shows a section of the nozzle array on the 3200 dpi (dot/吋) print head that the applicant has recently issued. The printhead has a true (true) 3200 dpi resolution because the nozzle pitch is 3200 dpi instead of a printer with a 3200 dpi addressable position but a nozzle pitch of less than 200 dpi. The cross-section shown in Figure 1 B shows eight unit cells of the nozzle array and the top layer is removed. The outline of the injection hole 2 has been shown for the purpose of illustration. "Unit cell" is the smallest repeating unit of the nozzle array and has a complete droplet ejector and four "half droplet ejector on either side of the complete ejector" "." Figure 2 shows a unit cell. The nozzles extend in the transverse direction of the media feed direction 8. The nozzles in the middle four rows are a pigment channel 4. One of the two sides of the ink supply supply passage 6 extends. The ink from the opposite side of the wafer flows to the ink supply path 6 via the ink feed tube 14. The upper and lower ink supply channels 1 〇, 丨 2 are separate pigment channels (although for larger pigment densities, they can print the same color of ink - for example, C C Μ Μ Y print head). The columns 20, 22 above the feed channel 6 are laterally offset in the media feed direction 8. The columns 24, 26 below the supply channel 6 are similarly biased in the direction of the media. Furthermore, columns 20, 22 and columns 24, 26 are offset relative to one another -26-200904646. Thus, the combined nozzle pitch of columns 20 through 26 in the transverse direction of the media feed direction is one quarter of the nozzle pitch of any individual column. The nozzle pitch along each column is approximately 32 microns (nominally 3 1 . 75 micron), so the combined nozzle pitch of all columns of a pigment channel is about 8 microns (nominal 7. 9375 microns). This is equal to the nozzle pitch of 3200 npi, so the print head has a resolution of 3 200 dpi. Unit cell Figure 2 is a unit cell of a nozzle array. Each unit cell has the equivalent of four droplet ejectors (two complete droplet ejectors and four "half droplet ejectors" on either side of the complete injectors). The droplet ejector is a nozzle, chamber, drive FET, and drive circuit for a single microelectromechanical (MEMS) fluid ejection device. The average worker will understand that for convenience, the droplet ejector is usually referred to simply as a nozzle; however, it is clear from the use of the content, whether the term refers only to the orifice or the entire MEMS device. The ink feed tube 14 is fed to the upper two nozzle rows 18 via the upper ink supply passage 1 . The lower nozzle row 16 is a different pigment channel that is fed by the feed channel 6. Each nozzle has a combined chamber 28 and a heater element 30 extending between the electrodes 34 and 36. Each chamber is elliptical and offset from each other, so its minor axes overlap laterally in the direction of media feed. This configuration allows the chamber volume, nozzle area, and heater size to be substantially the same as the 1 60 0 dpi print shown in the above-referenced USSN 11/246687 application filed on October 11, 2005 (our file MNN00 1US). head. Similarly, the chamber wall 32 is maintained at 4 microns thick, and the face -27-200904646 of the contacts 34, 36 is still 10 microns Χίο microns. Figure 3 shows a unit cell replica pattern constituting a nozzle array. Each unit cell 38 translates across the wafer to a width X. Adjacent columns are mirrored and shifted by half a width: 〇. 5x = y. As mentioned above, this provides a combined nozzle pitch of 0 for a pigment channel (20, 22, 24, 26). 25x. In the illustrated embodiment, x = 3 1. 75 and y = 7. 93 75. This provides a resolution of 3 20 0 dpi without reducing the size of the heater, chamber, or nozzle. Therefore, when working at 3 2 0 0 dp i, the printing density is 1 600 dpi printed on the USSN 11 /2 46687 reference (our file MNN001US) filed on January 1st, 1st, 2005. The head is still high; or the print head can be operated at 1 600 dpi to extend the life of the nozzle with a good print density. This feature of the print head is discussed further below. The heater contact arrangement heater element 30 and the size of the individual contacts 3 4, 3 6 are the same as the 1 600 dpi of the USSN 11/246687 reference file (Our file MNN00 1US) filed on October 11, 2005. Print the head. However, because there are twice the number of contacts, there are twice the number of FET contacts (negative contacts) that interrupt the "power plane (CMOS metal layer with positive voltage)". The germanium density of the holes in the power plane' produces a high impedance between the thin metal sheets between the holes. This impedance detracts from the overall efficiency of the printhead and reduces the drive pulses of some heaters relative to other heaters. 4 is a cross-sectional view of a wafer, a CMOS drive circuit 56, and a heater, -28-200904646. The driving circuit 56 of each of the printed head integrated circuits is fabricated on the wafer substrate 48 in a plurality of metal layers 40, 42, 44, 45, and the dielectric materials 41, 43 and 47 separate the metal layers. 46 passes through the layers to establish the desired interlayer connection. The drive circuit 56 has a drive FET (field effect transistor) 58 for each actuator 30, and the source 54 of the FET 58 is connected to the power plane 4 (connected to the position voltage of the power supply) The metal layer), and the drain 52 is connected to the ground plane 42 (a metal layer at zero voltage or ground). Additionally, each of the electrodes 34, 36 or each of the actuators 30 is coupled to a ground plane 42 and a power plane 40. The power plane 40 is typically the uppermost metal layer and the ground plane 42 is the first layer below the power plane (separated by the dielectric layer 41). Actuator 30, ink chamber 28, and nozzle 2 are fabricated on top of power plane metal layer 40. Etching through this layer forms apertures 46 so that negative electrode 34 can be connected to the ground plane and ink flow path 14 can extend from the back of wafer substrate 48 to ink chamber 28. As the nozzle density increases, the density of these holes or punctuations through the power plane also increases. Because of the large density of perforations that pass through the power plane, the gap between the perforations becomes smaller. A thin layer of metal layer that passes through these gaps is a relatively high resistance point. Since the power plane is connected to the supply along the side of the printhead integrated circuit, the current flowing to the actuator on the non-supply side of the printhead integrated circuit may have to pass through a series of these impedance gaps. The parasitic resistance added to the non-supply side actuator affects its drive current and affects the droplet ejection characteristics of these nozzles. The printhead uses several countermeasures to solve this problem. First, the adjacent columns -29-200904646 actuators have opposite current flow directions, i.e., the polarity of the electrodes in one of the columns changes in adjacent columns. For the purposes of this aspect of the printhead, the two rows of nozzles adjacent to the supply passage 6 are considered to be a single row as shown in Figure 5A, rather than being staggered as shown in the previous figures. The two columns A, B extend longitudinally along the length of the printhead integrated circuit. All of the negative electrodes 34 are along the outer edges of the adjacent columns A, B. Power is supplied from one side (referred to as edge 6 2 ), and current flows through only a row of thin resistive metal segments 64 before flowing through heater elements 30 in both columns. Therefore, the direction of current flow in column A and the direction of current flow in column B are opposite. The corresponding circuit diagram illustrates the benefits of this configuration. Because of the impedance RA of the thin section between the negative electrodes 34 of column A, the power supply V+ voltage drops. However, the positive electrode 36 of all the heaters 30 is at the same voltage (Va = Vb) with respect to the ground. The voltage drops as it traverses all of the heaters 30 of the two columns A and B (resistances Rha, RHB, respectively). The impedance of the thin bridge portion 66 between the negative electrodes 34 of the column B is deleted in the circuits of the columns A and B. 〇 Figure 5B shows the case where the polarity of the electrodes of the two adjacent columns is not reversed. In this case, the entire row of resistive segments 66 of column B is presented in the circuit. The supply voltage V + drops through the impedance Ra to the voltage of the positive electrode 36 of the VA-...column A. From there, after the impedance RHA of the column A heater, the voltage drops to ground. However, the voltage VA passes through the impedance Rb of the thin section 66 between the column B negative electrodes 34, and the voltage at the column B positive electrode 36 falls from Va to Vb. Therefore, the voltage drop across column B heater 30 is less than the voltage drop across column A. This changes the drive pulse and thus changes the droplet ejection characteristics. -30- 200904646 A second strategy for maintaining the integrity of the power plane is to interlace the adjacent pairs of electrodes in each column. Referring to Figure 6, each of the negative electrodes 34 is now staggered 'so each second electrode is laterally displaced to the column. The heater contacts 3 4 and 3 6 of adjacent columns are likewise staggered. This is used to make the gaps 64, 66 between the holes through the power plane 40 wider. The wider gap has less electrical resistance' and the voltage drop from the heater on the power supply side of the printhead integrated circuit is smaller. Figure 7 shows a larger section of the power plane 40. The electrodes 34 in the staggered columns 41, 44 correspond to the pigment channels fed by the feed channel 6. The half of the nozzles of the staggered columns 42, 43 with respect to the pigment channels on either side are fed by the feed channel 1 和 and by the feed channel 12 to the pigment channel. It will be appreciated that the five-pigment channel printhead integrated circuit has nine columns of negative electrodes that induce the resistance of the heater in the nozzle furthest from the power supply side. The gap between the negative electrodes is widened, greatly reducing the impedance generated by the components. This promotes more uniform droplet ejection characteristics throughout the nozzle array. Efficient Manufacturing The above characteristics increase the density of the nozzles on the wafer. Each individual integrated circuit is approximately 22 mm long, less than 3 mm wide, and can support more than 100,000 nozzles. This represents a significant increase in the number of nozzles in the applicant's 1 600 dpi print head integrated circuit (see the example of USSN 11/246687 (our file MNN00 1 US) filed on October 11, 2005). mouth. In fact, an array of 3 200 dpi print head nozzles -31 - 200904646, as shown in Figure 12, was fabricated with 1 2 800 nozzles. Since the entire nozzle array is located within the exposure range of the lithography stepper or scanner used to expose the mask (mask), the lithography manufacturing efficiency of so many (more than 10,000) nozzles is efficient. . Fig. 14 schematically shows an optical lithography stepper. Light source 102 emits a parallel ray 104 of a particular wavelength through a mask 106 having a pattern to be transmitted to integrated circuit 92. The pattern is focused through a lens 108 for reducing features and is projected onto a wafer stage 110 carrying an integrated circuit (or so-called "die") 92. The area of the wafer stage 110 illuminated by the light 104 is referred to as the exposure area 112. Unfortunately, the size of the exposure zone 112 is limited to maintain the accuracy of the projection pattern - the entire wafer tray cannot be exposed at the same time. The vast majority of lithographic steppers have an exposure area of less than 30 mm x 30 mm. A stepper manufactured by a major manufacturer (ASML, The Netherlands) has an exposed area of 22 mm x 22 mm, which is typical in the industry. The stepper exposes a portion of a die or grain and then steps to another die or another portion of the same die. Having as many nozzles as possible on a single substrate facilitates the compact printhead design and facilitates the precise relationship of the assemblies of the integrated circuits on the support to each other. The nozzle array constructed in the present invention has more than 10,000 nozzles in the exposure zone. In fact, the entire integrated circuit can be located in the exposure area, so a single substrate can be equipped with more than 1 4000 nozzles, without having to step and realign each pattern, the average worker will understand that the above technology can be Applied to fabricating nozzle arrays with photolithographic scanners. 15A to 15C illustrate the operation of the scanner. -32- 200904646 In the scanner, the light source 102 emits a narrower beam of light 104 with a width sufficient to illuminate the entire width of the mask 1〇6. The narrow beam 104 is focused through a smaller lens aperture 8 and projected onto a portion of the integrated circuitry 92 within the re-exposed area 112. The mask 106 and the wafer table 11 are moved relative to each other in opposite directions' so that the pattern of the mask is scanned through the entire exposure area 1 12 . Obviously, this type of optical imaging device is also suitable for efficiently producing a print head integrated circuit having a large number of nozzles. Flat External Nozzle Surface As described above, the print head integrated circuit is fabricated in accordance with the steps outlined in the USSN 1 1 / 2466 8 7 (our file MNN 001US) cross-referenced application filed on Oct. 11, 2005. Only change the exposure mask pattern to provide different chamber and heater configurations. For example, as described in USSN 11/246687 (our file MNN 00 1US) filed on October 11, 2005, the top layer and the chamber wall are integrated constructions - suitable top and wall materials A single plasma lifts chemical vapor deposition (PECVD). Suitable top materials can be tantalum nitride, hafnium oxide, hafnium oxynitride, aluminum nitride, and the like. The top and walls are deposited on a scaffold layer of sacrificial photoresist to form an integrated construction on the passivation layer of the CMOS. FIG. 8 shows a pattern etched into the sacrificial layer 72. The pattern consists of a chamber wall 32 and a columnar structure 68 (discussed below) which are all of uniform thickness. In the illustrated embodiment, the thickness of the walls and posts is 4 microns. These configurations are relatively thin so that when the deposited top and wall materials cool, there is little depression, if any, in the inner surface of the top layer 70 of -33-200904646. The thick construction in the uranium engraving pattern will maintain a relatively large volume of top/wall material. As the material cools and contracts, the outer surface pulls inward to create a depression. These depressions make the outer surface uneven, which is detrimental to the maintenance of the print head. If you wipe or erase the print head, paper dust and other contaminants will remain in the recess. As shown in Figure 9, the outer surface of the top layer 72 is flat and featureless except for the nozzle 2. It is easier to remove dust and dried ink by wiping or wiping off. Refilling the ink flow Referring to Figure 10, each ink inlet is supplied with four nozzles except that fewer nozzles are supplied to the entrance of the longitudinal end of the array. The random nozzle inlet 14 is advantageous during the initial injection and in the case of bubble blockage. As indicated by the flow line 74, the refill flow to the chamber 28 remote from the inlet 14 is longer than the refill flow to the chamber 28 adjacent the supply passage 6. For uniform droplet ejection characteristics, it is desirable for each nozzle in the array to have the same ink re-injection time. As shown in Figure 11, the inlet 76 adjacent the chamber and the inlet 78 remote from the chamber are designed to be different sizes. Similarly, the position of the columnar structure 68 is designed to provide different levels of flow restriction to the adjacent nozzle inlet 76 and the remote nozzle inlet 78. The size of the inlet and the position of the column adjust the fluid drag so that the re-injection time of all nozzles in the array is uniform. The position of the column can also be designed to dampen the pressure pulse generated by the steam bubble in the chamber 28 -34 - 200904646. A damping pulse that moves through the inlet prevents fluid crosstalk between the nozzles. Further, the gaps 80, 82 between the sides of the column 68 and the inlets 76, 78 can be used as effective bubble traps or traps for the larger bubbles contained in the ink refilling stream. Extended Nozzle Life Figure 12 shows a cross-section of a pigment channel in a nozzle array with dimensions required for 3200 dpi resolution. It should be understood that the "real" 3200 dpi is a very high resolution -... better than the photographic quality. This resolution goes beyond many printing jobs. Usually the resolution of 1 600 d p is appropriate. In view of this, by sharing the printed data between two adjacent nozzles, the print head integrated circuit sacrifices resolution. In this manner, the print material normally sent to one of the 1 600 dpi print heads is instead sent to the adjacent nozzles in the 3200 dpi print head. This mode of operation extends the life of the nozzle by more than two times and allows the printer to operate at very high print rates. In 3 2 0 0 dp i mode, the printer prints at 60 ppm (full color A4), and in 1600 dpi mode, the rate approaches 120 ppm. An additional benefit of the 1 60 0 dpi mode is that it is possible to use a print head integrated circuit with a print engine controller (PEC) and a flexible printed circuit board that can only be constructed at a resolution of 1 600 dpi. As shown in Figure 12, the nozzle 83 and the nozzle 84 are laterally offset only 7. 9 3 75 microns. The two nozzles are further spaced apart in absolute relationship, but the displacement in the paper feed direction may indicate the timing of the firing sequence of the nozzles. Since the lateral displacement of 8 microns between adjacent nozzles is small, -35-200904646, this shift can be ignored for the purpose of presentation. However, this shift can be resolved by optimizing the high frequency vibration (d i t h e r ) if desired. Bubbles, Chambers, and Nozzle Matching Figure 13 is an enlarged view of the nozzle array. Both the injection hole and the chamber wall are elliptical. Configuring the long axis parallel to the media feed direction allows for a high nozzle pitch in the lateral direction of the feed direction while maintaining the desired chamber volume. Furthermore, arranging the short axes of the chambers causes the short axes to overlap in the lateral direction, which also improves the nozzle packing density. Heater 30 is a cantilever beam that extends between its individual electrodes 34 and 36. The elongate beam heater element produces bubbles that are generally elliptical (in a section parallel to the plane of the wafer). The matching bubble 90, the chamber 28, and the ejection orifice 2 promote energy efficient droplet ejection. Low energy droplet ejection is important for a "self-cooling" print head. Conclusion The printhead integrated circuit shown in the figure provides a choice of "real" 3200 dpi resolution and a much higher print rate than the 1 600 dpi print rate. Sharing lower resolution prints extends nozzle life and provides compatibility with existing 1 600 dpi print engine controllers and flexible printed circuit boards. A uniform thickness chamber wall pattern has a flat outer nozzle surface that is less prone to blockage. In addition, the actuator contact configuration and the elongated nozzle configuration provide a high nozzle pitch in the lateral direction of the media feed direction while maintaining a thin nozzle array of -36-200904646 parallel to the media feed direction. The specific embodiments described above are to be considered in all respects as illustrative and illustrative BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view showing the construction of a joint print head integrated circuit; FIG. 1B is a partial plan view of the nozzle array on the print head integrated circuit of the present invention; FIG. 2 is a unit cell of the nozzle array; Figure 3 shows a replica pattern of a unit cell constituting a nozzle array; Figure 4 is a schematic cross-sectional view of a CMOS layer and a heater element passing through a nozzle; Figure 5A schematically shows an electrode having opposite polarity in an adjacent actuator column Figure 5B shows schematically the electrode configuration with typical electrode characteristics in adjacent actuator columns; Figure 6 shows the electrode configuration of the print head integrated circuit of Figure 1; Figure 7 shows the power plane profile of the CMOS layer Figure 8 shows the pattern of the sacrificial mesa layer etched into the top/sidewall layer; Figure 9 shows the outer surface at the top after etching the nozzle holes; Figure 1 shows the ink supply flow of the nozzles; Figure 11 shows the different columns to each Different inlets of the chamber; Figure 1 2 shows the nozzle spacing for a pigment channel; Figure 13 shows an enlarged view of the nozzle array -37-200904646 with matching elliptical channels and orifices; Figure 14 is a photolithography step machine A schematic diagram of the photolithography stepper is schematically illustrated in Figs. 15A to 15C. [Main component symbol description] 2 : (spray) hole (Fig. 1B) 2 : Nozzle (Fig. 4) 6 : (ink) supply channel 8: medium (paper) feed direction 1 〇: upper ink supply channel 1 2 : lower Ink supply channel 1 4 : Ink feed tube (Fig. 1 B ) 1 4 : Ink flow path (Fig. 4) 14: Nozzle inlet (Fig. 10) 1 6 : Lower nozzle column 1 8 : Upper nozzle column 20 : 歹 [| 22 : 歹 IJ 24 : Column 26 : Column 28 : Chamber 3 0 : Heater element ( Figure 2 ) 30 : Actuator ( Figure 4 ) 32 : Chamber wall - 38 - 200904646 3 4 : (Negative) electrode ( Contact) 3 6: (Positive) electrode (contact) 3 8 : Unit package 40: Power plane (metal layer) 41: Dielectric layer (material) (Fig. 4) 41 : 歹 1J (Fig. 7) 42 : Ground Plane (metal layer) (Fig. 4) 42 : 歹 [J (Fig. 7) 43 : Dielectric layer (material) (Fig. 4) 43 : 歹 [J (Fig. 7) 44: Metal layer (Fig. 4) 44 : 歹!] (Fig. 7) 46: (guide) hole 47: dielectric layer (material) 4 8 : wafer substrate 5 2 : drain 5 4 : source 56: (CMOS) drive circuit 5 8 : field effect transistor 62: Edge 64: Impedance metal section 64: Clearance (Fig. 6) 66_ Bridge (Fig. 5A) 66: Impedance section (Fig. 5B) -39- 20090464 6 6 6 : gap (Fig. 6) 6 8 : column (structure) 7 0 : top layer 72 : sacrificial layer 74 : flow line 76 : inlet 78 : inlet 80 : gap 82 : gap 83 : nozzle 8 4 : nozzle 9 0: bubble 9 2 : print head integrated circuit 94 : support member 96 : curved side 9 8 : bond pad 100 : page width print head 1 〇 2 : light source 104 : light (ray) 1 0 6 : mask 1 0 8 : Lens 1 1 〇: Wafer table 1 12 : Exposure area -40