200848895 九、發明說明: .【龟明所屬之技術領域】 • 本發明係關於一種液晶顯示面板。 【先前技術】 輕薄及省電等優點,已廣 性產品中。傳統液晶顯示 ,因此業界提出一種能較 液晶顯不面板。200848895 IX. Invention Description: [Technical Field to which Guiming belongs] • The present invention relates to a liquid crystal display panel. [Prior Art] The advantages of thinness and power saving have been widely used. Conventional liquid crystal displays, so the industry has proposed a panel that can be compared to liquid crystal.
液晶頒示面板具有無輕射、 泛應用於各種資訊、通訊、消費 面板通常存在視角窄及色偏問題 好解決該問題之八域垂直配向型 請一併參閱圖1及圖2,圖丄係一種先前技術八域垂 直配向型液晶顯示面板之立體結構示意圖,圖2係該液晶 顯不面板之平面結構示意圖。該液晶顯示面板1〇〇包括一 第一基板110、一與該第一基板11〇相對設置之第二基板 120及一夾於該第一基板11〇與該第二基板ι2〇之間之液 晶層130。該液晶層130由介電常數為負且各向異性之液 晶分子131構成。 該第一基板Π0包括一第一玻璃基板111、朝向該液 晶層130方向依序設置於該第一玻璃基板ill之鄰近該液 晶層130 —側之一彩色濾光片113、一公共電極115及複 數第一突起119。該彩色濾光片113包括複數紅色濾光單 元R(圖未示)、綠色濾光單元G(圖未示)及藍色濾光單元 B(圖未示)。該第一突起119開口向右之“V”形,且相互 平行間隔設置。 該第二基板120包括一第二玻璃基板I21、設置於該 第二玻璃基板121之鄰近該液晶層130 一側之複數掃描線 7 200848895 122、複數第一資料線123、複數第二資料線124、複數第 一薄膜電晶體125、複數第二薄膜電晶體126、複數第一晝 素電極127、複數第二晝素電極128及複數第二突起129。 該掃描線122相互平行設置。該第一資料線123、該 第二資料線124相互平行間隔設置,並與該掃描線122垂 直絕緣相交。每相鄰之二第一資料線123、每相鄰之二掃 描線122垂直交叉形成之最小矩形區域定義為一晝素單元 20, 一晝素單元20對應該彩色濾光片113之一濾光單元 R、G、B。該第二資料線124穿過該畫素單元20,並將該 畫素單元20劃分為一第一子晝素單元201及一第二子晝素 單元202。 該第一薄膜電晶體125設置於該第一資料線123與該 掃描線122之相交處,該第二薄膜電晶體126設置於該第 二資料線124與該掃描線122之相交處。該第一晝素電極 127設置於該第一子畫素單元201内,並且電連接至該第 一薄膜電晶體125。該第二晝素電極128設置於該第二子 晝素單元202内,並且電連接至該第二薄膜電晶體126。 該第一晝素電極127經由該第一資料線123、第一薄膜電 晶體125被施加第一灰階電壓,該第二畫素電極128經由 該第二資料線124、第二薄膜電晶體126被施加第二灰階 電壓,該二灰階電壓不同。 該第二突起129呈開口向右之“ V”形,相互平行間 隔設置,且與該第一突起119交錯設置。 請一併參閱圖3,係該第一子畫素單元201内之液晶 8 200848895 分子131之站向之俯視示意圖。當該第一畫素電極127與 相對之該公共電極115分別被施加第一灰階電壓及公共電 壓時,二者之間形成一電場。該電場使得夾於二電極115、 127之間之液晶分子131均向著垂直於該電場方向扭轉。 惟,該液晶分子131受該第一突起119與該第二突起129 之作用,沿該二突起119、129之斜面傾斜,該液晶分子 131具有A、B、C、D四個不同方向之站向。 同理,該第二晝素電極128與相對之公共電極115被 施加電壓時’其間之液晶分子131亦具有A、B、C、D四 個不同方向之站向。 請一併參閱圖4,係該二子晝素單元201、202内之液 晶分子131之站向之側視示意圖。由於該二晝素電極127、 128之被施加之灰階電壓不同,故該二子晝素單元201、202 内之電場不同,因此該二子晝素單元201、202之液晶分子 131之傾斜角(9 1、0 2不同。故,該液晶顯示面板100能 夠貫現八域顯不。 惟,該液晶顯示面板100之一晝素單元20需二資料線 123、124及二薄膜電晶體125、126驅動以獲得二不同之 驅動電壓,再配合二突起119、129使得該液晶顯示面板 100實現八域顯示,故該液晶顯示面板100佈線複雜、成 本較高。 【發明内容】 有鑑於此,提供一種佈線簡單、成本較低之多域液晶 顯示面板實為必要。 9 200848895 種液晶顯不面板包括一第一基板、一與該第_基板 對5又置之第二基板及一夾於該二基板之間之液晶層。該 .第一基板包括設置於其鄰近該液晶層一側之複數第一突 起,該複數第一突起呈開口向右之“V”形,且相互平行 間t δ又置。该第二基板包括設置於其鄰近該液晶層一側複 數第二突起,該複數第二突起呈開口向右之“V”形,相 互平行間隔設置,且與該第一突起交錯設置。該第二基板 進步包括複數相互平行設置之掃描線、複數相互平行且 與忒知描線絕緣相交之資料線及複數該掃描線與該資料線 2交構成之最小區域定義之晝素單元。該晝素單元包括一 第一子=素單元及一第二子晝素單元。該第一子畫素單元 包括第一薄膜電晶體及一第一晝素電極,該第二子晝素 包括一第二薄膜電晶體及一第二晝素電極。該二薄膜 私曰日體均包括一閘極、一沒極及一源極。該二薄膜電晶體 之閘極連接至同一掃描線。該第一薄膜電晶體之源極連接 至α亥資料線,该第一薄膜電晶體之没極連接至該第一晝素 弘極"亥第一薄膜電晶體之源極連接至該第一晝素電極, 該第二薄膜電晶體之汲極連接至該第二晝素電極。 相較於先前技術,本發明液晶顯示面板之每一畫素單 元僅品資料線及一薄膜電晶體驅動可獲得二不同之驅動 龟α亥晝素單元之一不同驅動電壓配合該二基板之突 起結構使得該液晶顯示面板實現多域顯示,故該液晶顯示 面板佈線簡單、成本較低。 種液晶顯示面板包括複數相互平行設置之掃描線、 200848895 =相互平行且與該掃描線絕緣相交之資料線 描線與該資料線相交構成之最小區域定義之畫數该掃 素包括一第一畫素電極、-第二晝素電極二ΐ :錢電晶體及一電組件。該第—薄膜電晶 二 ,、-源極及一沒極’其開極連接至該掃描線, 接至該資料線,纽極連接至該[晝素電極。該第= =極,該第二畫素電極藉由該電組件保持電連接,該ς 、、且件使得該二畫素電極之電壓相異。 ^ ^ 相較於先前技術,本發明液晶顯示面板之每一金 元僅需-資料線、一薄膜電晶體及一電組件驅動可;:早 =之驅動電壓’該一晝素單元之二不同驅動電壓二: :土板之突起結構使得該液晶顯示面板實現多域顯示,故 該液晶顯不面板佈線簡單、成本較低。 【實施方式】 μ一ί一併參閱圖5及圖6,圖5係本發明液晶顯示面板 弟:貫施方式之立體結構示意圖,圖6係該液晶顯示面板 平面、、σ構不思圖。该液晶顯示面板包括一第一基板 潘:與該第-基板51〇相對設置之第二基板52〇及一夾 於該第-基板510與該第二基板52〇之間之液晶層53〇。 夜阳層530由介電常數為負且各向異性之液晶分子丄 該第基板510包括一第一玻璃基板511、朝向該液 層530方向依序設置於該第一玻璃基板之鄰近該液 層530 —侧之一彩色濾光片513、一公共電極515及複 11 200848895 數第一突起519。該彩色濾光片513包括複數紅色淚光單 '元R(圖未示)、綠色遽光單元G(圖未示)及藍色濃光單元 ,B(圖未示)。該第一突起519呈開口向右之“ V”形,且相 互平行間隔設置。 5亥第一基板520包括一第二玻璃基板521、設置於該 第一玻璃基板521之鄰近該液晶層530 —侧之複數掃描線 522、複數資料線523、複數弟一薄膜電晶體525、複數第 二薄膜電晶體526、複數第一畫素電極527、複數第二畫素 電極528及複數第二突起529。 該掃描線522相互平行設置。該資料線523相互平行 間隔叹置並且與该掃描線522垂直絕緣相交。該資料線523 與,掃描線522垂直交叉形成之最小矩形區域定義為一晝 素Ϊ元6〇。一晝素單元60對應該彩色濾光片513之一濾 光單元R、G、B。該晝素單元6〇包括一第一子晝素單^ ⑼及一第二子畫素單元6〇2。該第一晝素電極527設置於 忒第一子晝素單元6〇1,該第二畫素電極528設置於該 二晝素單元602。 該第薄膜電晶體525設置於該資料線523與該掃描 _ 相又處,其包括一源極(未標示)、一閘極(未標示) 接===示)’該閘極連接至該掃描線522,該源極連 m 貝線523,該汲極連接至該第一晝素電極527。該 苴4 t膜電阳體Μ5設置於該二晝素電極527、528之間, :二二源極(未標示)、一閘極(未標示)及-汲極(未標 -τΐ極與第—薄膜電晶體525之間極連接至同一掃描 12 200848895 線522,該源極連接至該第一畫素電極527,該汲極連接至 該第二晝素電極528。該第一薄膜電晶體525之沟道之寬 f IV ) ( w 長比較大,該第二薄膜電晶體526之沟道之寬長比 較小。 當薄膜電晶體開啟時,其汲極電流Id與其沟道之寬長 比〔1)關係為:The liquid crystal display panel has no light radiation, is widely used in various information, communication, and consumer panels. Generally, there are narrow viewing angles and color shifting problems. The eight-domain vertical alignment type that solves this problem is also referred to FIG. 1 and FIG. A schematic diagram of a three-dimensional vertical alignment type liquid crystal display panel of the prior art, and FIG. 2 is a schematic diagram of a planar structure of the liquid crystal display panel. The liquid crystal display panel 1 includes a first substrate 110, a second substrate 120 disposed opposite the first substrate 11A, and a liquid crystal sandwiched between the first substrate 11 and the second substrate Layer 130. The liquid crystal layer 130 is composed of liquid crystal molecules 131 having a negative dielectric constant and anisotropy. The first substrate Π0 includes a first glass substrate 111, and is disposed on the side of the first glass substrate ill adjacent to the liquid crystal layer 130, a color filter 113, a common electrode 115, and The plurality of first protrusions 119. The color filter 113 includes a plurality of red filter units R (not shown), a green filter unit G (not shown), and a blue filter unit B (not shown). The first projections 119 are open to the right in a "V" shape and are spaced apart from each other in parallel. The second substrate 120 includes a second glass substrate I21, a plurality of scanning lines 7 200848895 122 disposed on a side of the second glass substrate 121 adjacent to the liquid crystal layer 130, a plurality of first data lines 123, and a plurality of second data lines 124. And a plurality of first thin film transistors 125, a plurality of second thin film transistors 126, a plurality of first halogen electrodes 127, a plurality of second halogen electrodes 128, and a plurality of second protrusions 129. The scanning lines 122 are arranged in parallel with each other. The first data line 123 and the second data line 124 are spaced apart from each other and intersect perpendicularly with the scan line 122. A minimum rectangular area formed by the intersection of each adjacent two first data lines 123 and each adjacent two scan lines 122 is defined as a pixel unit 20, and one of the unit elements 20 is filtered corresponding to one of the color filters 113. Units R, G, B. The second data line 124 passes through the pixel unit 20, and divides the pixel unit 20 into a first sub-cell unit 201 and a second sub-cell unit 202. The first thin film transistor 125 is disposed at an intersection of the first data line 123 and the scan line 122, and the second thin film transistor 126 is disposed at an intersection of the second data line 124 and the scan line 122. The first halogen electrode 127 is disposed in the first sub-pixel unit 201 and is electrically connected to the first thin film transistor 125. The second halogen electrode 128 is disposed in the second sub-cell unit 202 and electrically connected to the second thin film transistor 126. The first pixel electrode 127 is applied with a first gray scale voltage via the first data line 123 and the first thin film transistor 125. The second pixel electrode 128 passes through the second data line 124 and the second thin film transistor 126. A second gray scale voltage is applied, the two gray scale voltages being different. The second projections 129 have a "V" shape with an opening to the right, are disposed in parallel with each other, and are interlaced with the first projections 119. Referring to FIG. 3 together, the liquid crystal in the first sub-pixel unit 201 is a schematic view of the station of the molecule 131. When the first pixel electrode 127 and the common electrode 115 are respectively applied with the first gray scale voltage and the common voltage, an electric field is formed therebetween. This electric field causes the liquid crystal molecules 131 sandwiched between the two electrodes 115, 127 to be twisted perpendicular to the direction of the electric field. However, the liquid crystal molecules 131 are affected by the first protrusions 119 and the second protrusions 129, and are inclined along the slopes of the two protrusions 119 and 129. The liquid crystal molecules 131 have four different directions of A, B, C, and D. to. Similarly, when the second halogen element 128 and the opposite common electrode 115 are applied with a voltage, the liquid crystal molecules 131 therebetween also have a standing direction of four different directions of A, B, C, and D. Referring to FIG. 4 together, a schematic view of the station of the liquid crystal molecules 131 in the two sub-cell units 201 and 202 is shown. Since the applied gray scale voltages of the dioxad electrodes 127 and 128 are different, the electric fields in the two sub-dielectric units 201 and 202 are different, and thus the tilt angle of the liquid crystal molecules 131 of the two sub-decene units 201 and 202 (9) 1. The 0. 2 is different. Therefore, the liquid crystal display panel 100 can realize eight fields. However, one of the liquid crystal display panels 100 requires two data lines 123 and 124 and two thin film transistors 125 and 126. The liquid crystal display panel 100 is complicated in wiring and high in cost. The present invention provides a wiring. A simple, low-cost multi-domain liquid crystal display panel is necessary. 9 200848895 A liquid crystal display panel includes a first substrate, a second substrate disposed opposite the _substrate pair 5, and a sandwiched between the two substrates. The first substrate comprises a plurality of first protrusions disposed on a side of the liquid crystal layer adjacent thereto, the plurality of first protrusions having a "V" shape with an opening to the right, and being parallel to each other by t δ. The second The board includes a plurality of second protrusions disposed on a side of the liquid crystal layer adjacent to the liquid crystal layer, the plurality of second protrusions being in a "V" shape opening to the right, spaced apart from each other, and interlaced with the first protrusions. The invention comprises a plurality of scanning lines arranged in parallel with each other, a plurality of data lines which are parallel to each other and intersect with the insulated lines, and a plurality of pixel units defined by the minimum area formed by the intersection of the scanning lines and the data lines 2. The unit includes a first unit a sub-pixel unit and a second sub-cell unit. The first sub-pixel unit includes a first thin film transistor and a first halogen electrode, and the second sub-tenox includes a second thin film transistor and a a second halogen electrode. The two films have a gate, a gate and a source. The gates of the two thin film transistors are connected to the same scan line. The source of the first thin film transistor Connecting to the α-Hui data line, the first thin film transistor is connected to the first halogen element and the source of the first thin film transistor is connected to the first halogen electrode, the second thin film transistor The bungee is connected to the Dioxin electrode. Compared with the prior art, each pixel unit of the liquid crystal display panel of the present invention can only obtain one different driving voltage of one of the two different driving turtles, which is a product data line and a thin film transistor driving. The protruding structure of the two substrates enables the liquid crystal display panel to realize multi-domain display, so the liquid crystal display panel has simple wiring and low cost. The liquid crystal display panel includes a plurality of scanning lines arranged in parallel with each other, 200848895=parallel to each other and the scanning line The intersection of the insulated intersection data line and the data line constitutes the minimum area defined by the number of pixels. The sweep includes a first pixel electrode, a second halogen electrode, a second crystal electrode, and an electrical component. The thin film electro-crystal 2, the - source and the one-pole are connected to the scan line to the scan line, and the button is connected to the [elemental electrode. The =1th pole, the second pixel electrode is electrically connected by the electrical component, and the 使得, and the components make the voltages of the two pixel electrodes different. ^ ^ Compared with the prior art, each gold element of the liquid crystal display panel of the present invention only needs to be - a data line, a thin film transistor and an electrical component can be driven;: early = the driving voltage 'the different one of the unit Driving voltage two: : The protruding structure of the soil plate enables the liquid crystal display panel to realize multi-domain display, so the liquid crystal display panel is simple in wiring and low in cost. [Embodiment] Referring to FIG. 5 and FIG. 6, FIG. 5 is a schematic perspective view showing a three-dimensional structure of a liquid crystal display panel of the present invention, and FIG. 6 is a plan view of the liquid crystal display panel. The liquid crystal display panel includes a first substrate, a second substrate 52 opposite to the first substrate 51, and a liquid crystal layer 53 sandwiched between the first substrate 510 and the second substrate 52A. The night solar layer 530 is made of a liquid crystal molecule having a negative dielectric constant and anisotropic. The first substrate 510 includes a first glass substrate 511, and is disposed adjacent to the liquid layer 530 in the direction adjacent to the first glass substrate. 530 - one of the side color filters 513, a common electrode 515 and a plurality of 200848895 number of first protrusions 519. The color filter 513 includes a plurality of red tears, a single element R (not shown), a green light-emitting unit G (not shown), and a blue concentrated light unit, B (not shown). The first protrusions 519 have a "V" shape with an opening to the right and are spaced apart from each other in parallel. The first substrate 520 includes a second glass substrate 521, a plurality of scanning lines 522 disposed on the side of the first glass substrate 521 adjacent to the liquid crystal layer 530, a plurality of data lines 523, a plurality of thin film transistors 525, and a plurality of The second thin film transistor 526, the plurality of first pixel electrodes 527, the plurality of second pixel electrodes 528, and the plurality of second protrusions 529. The scanning lines 522 are arranged in parallel with each other. The data lines 523 are spaced apart from each other and are spaced apart from each other and perpendicularly insulated from the scanning lines 522. The minimum rectangular area formed by the data line 523 and the scanning line 522 perpendicularly intersecting is defined as a pixel unit 6〇. The unitary unit 60 corresponds to one of the color filters 513, the filter units R, G, B. The pixel unit 6A includes a first sub-cell unit (9) and a second sub-pixel unit 6〇2. The first pixel electrode 527 is disposed on the first sub-cell unit 6〇1, and the second pixel electrode 528 is disposed on the dioxet unit 602. The thin film transistor 525 is disposed at the data line 523 and the scan _ phase, and includes a source (not labeled) and a gate (not labeled) (===). The gate is connected to the gate A scan line 522 is connected to the m bus line 523, and the drain is connected to the first halogen electrode 527. The t4 t film electric anode Μ5 is disposed between the dioxin electrodes 527 and 528, and has two sources (not labeled), one gate (not labeled), and a 汲-pole (not labeled - τ ΐ The first thin film transistor 525 is connected to the same scan 12 200848895 line 522, the source is connected to the first pixel electrode 527, and the drain is connected to the second halogen electrode 528. The first thin film transistor The width of the channel of 525 is f IV ) (W is relatively long, and the width of the channel of the second thin film transistor 526 is relatively small. When the thin film transistor is turned on, the width-to-length ratio of the drain current Id to the channel thereof [1) The relationship is:
其中,Un為薄膜電晶體之場效應移動率(Field Effect Mobility) ,Cox 為閘極氧化物電容(Gate Oxide Capacitance),Vds為源極與没極之間之電壓。由上式可 知,當其它參數一定時,薄膜電晶體之汲極電流Id與其沟 成正比。 道之寬長比 該第一薄膜電晶體525之沟道之寬長比為15/5,其充 電能力較強,在一幀畫面之導通時間内,其汲極電壓基本 等於其源極電壓;該第二薄膜電晶體526之沟道之寬長比 為5/10,其充電能力較弱,在一幀畫面之導通時間内,其 汲極電壓小於其源極電壓。 請一併參閱圖7,圖7係該液晶顯示面板500之部份 驅動波形示意圖。Gn為施加至該掃描線522之掃描訊號, Vgh為薄膜電晶體525、526之開啟電壓,Vd為該資料線 523輸出之灰階電壓,Vdl為第一晝素電極527之電壓, Vd2為第二畫素電極528之電壓。 當開啟電壓Vgh施加至該掃描線522,與該掃描線522 13 200848895 電連接之第一薄膜電晶體525與第二薄膜電晶體526均導 通,該資料線523輸出灰階電壓至該第一薄膜電晶體525 之源極。 由於該第一薄膜電晶體525之沟道寬長比較大,其汲 極電壓基本等於其源極電壓,因此該第一晝素電極527之 電壓Vdl基本等於灰階電壓值。由於該第二薄膜電晶體 526之沟道寬長比較小,其汲極電壓小於其源極電壓,因 此該第二晝素電極528之電壓Vd2小於該第一畫素電極 527之電壓Vdl。該二畫素電極527、528之電壓Vdl、Vd2 分別與該公共電極515之電壓形成一電場,該二電場驅動 該二子晝素單元601、602内之液晶分子531扭轉,實現晝 面顯示。 請一併參閱圖8,係圖6所示二子晝素單元601、602 内液晶分子531之站向之俯視示意圖。該二子畫素單元 601、602内之電場使得其間之液晶分子531均向著垂直於 該電場之方向扭轉。該液晶分子531受到該第一突起519 與該第二突起529之作用,沿該二突起519、529之斜面傾 斜。該液晶分子531具有A、B、C、D四個不同方向之站 向。 請一併參閱圖9,係圖6所示二子畫素單元601、602 内液晶分子531之站向之侧視示意圖。該二畫素電極527、 528之電壓Vdl、Vd2大小不同,故該二子晝素單元601、 602内之電場不同,該二子畫素單元527、528内之液晶分 子531之傾斜角A、6»2不同,因而各實現四域顯示,該液 14 200848895 晶顯示面板500實現八域顯示。 . 相較於先前技術,該第二薄膜電晶體526為一電組 件,其使得該二晝素電極5 2 7、5 2 8電壓不同,因此本發明 液晶顯示面板500之一晝素單元60僅需一資料線523及二 薄膜電晶體525、526,即可使得該二畫素電極527、528 獲得不同之驅動電壓,從而配合二基板510、520之突起結 構實現八域顯示,因此該液晶顯示面板500佈線簡單、成 本較低。另,該第一晝素電極527、該第二畫素電極528 1 面積均較大,故該液晶顯示面板5 0 0有效顯示面積較大。 請參閱圖10,係本發明液晶顯示面板第二實施方式之 平面結構示意圖。該液晶顯示面板700與第一實施方式之 液晶顯示面板500之主要區別在於··該第一薄膜電晶體 725、該第二薄膜電晶體726之沟道之寬長比大 小一致,且均較小,在一幀晝面之導通時間内,該二薄膜 電晶體725、726之汲極電壓均小於各自源極電壓。該二薄 膜電晶體725、726之寬長比均為5/10。 k 請參閱圖11,係圖10所示液晶顯示面板700之部份 驅動波形示意圖。Vd’為資料線723輸出之灰階電壓,Vdr 為第一畫素電極727之電壓,Vd2’為第二畫素電極728之 電壓。 該第二薄膜電晶體726導通期間,其汲極電壓小於其 源極電壓。因此該第二晝素電極728之電壓Vd2’小於該第 一晝素電極727之電壓Vdlf。該第一子晝素單元801、第 二子晝素單元802之電場不同,配合二基板之突起結構各 200848895 實現四域顯示,該液晶顯示面板實現八域顯示。 簡 曰 a曰 曰 aa -、:ίΓ見有技術,該液晶顯示面才反700同樣佈線 早 乂低。同時,該液晶顯示面板700之二薄膜電 =:25 :726之沟道之寬長比一致’即結構一致,故該液 顯不面板700之製程簡單。 併㈣圖12及圖13’圖12係本發明液晶顯示面 反,弟二實施方式之示意圖’圖13係圖12所示液晶顯示 面5之f Π區域之局部放大示意圖。該液晶顯示面板800 與第一實施方式或第二實施方式之液晶顯示面板5 〇 〇、7⑽ 之主要區別在於:第—晝素電極827與第二薄膜電晶體826 之源極之間串接—電阻824。該電阻824由該第一晝素電 極827之一部份餘刻成細長之直線狀而形成。 该第二薄膜電晶體826與該電阻824 —同構成一電組 件。當電流流過該電組件,該電阻824起進一步分壓效果, 使侍第二畫素電極828之電壓不同於該第一晝素電極 之電壓,1而加強該液晶顯示面板_之八域顯示效果。 請參閱圖14,係本發明液晶顯示面板之第四實施方式 之局部放大示意圖。該液晶顯示面板9〇〇與第三實施方式 之液晶顯示面板800之主要區別在於:電阻924由第一晝 素電極之一部份蝕刻成細長之曲線狀而形成。 本發明液晶顯示面板不限於上述實施方式所述,其亦 具有其它變更設計,如:二薄膜電晶體之較大或較小之寬 長比可根據實際所需顯示之多域效果而確定;第二薄膜電 晶體在一幀晝面之導通時間内其汲極電壓小於其源極電 16 200848895 ^ —溥膜電晶體之源極可直接連接至第一;^ _ +曰 體之%搞·、ν« α 巾 /寻腰电晶 ,液日日顯示面板近一步包括一設置於 者 極盘笔-、每^ & 乐 旦素電 ^7 一Λ膘笔晶體之連接處之金屬電極,電阻由該金層 电極钱刻成細長之直線狀或曲線狀而 Μ笛-舍主^ 木旦京電極 :組極之間之電組件可由其它能夠起到分壓作用 曰、、’Τ、上所述,本發明確已符合發明專利之要件,爰依法 提出專利申請。惟,以上所述者僅為本發明之較佳實^方 ^ 士發明之範圍並不以上述實施方式為限,舉凡熟習本 :技π之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係一種先前技術八域垂直配向型液晶顯示面板之立體 結構不意圖。 圖2係圖1所示液晶顯示面板之平面結構示意圖。 圖3係圖2所示第一晝素單元内之液晶分子之站向之俯視 示意圖。 圖4係圖2所示二子晝素單元内之液晶分子之站向之側視 示意圖。 圖5係本發明液晶顯示面板第一實施方式之立體結構示意 圖。 圖6係圖5所示液晶顯示面板之平面結構示意圖。 圖7係圖5所示液晶顯示面板之部份驅動波形示意圖。 圖8係圖6所示二子晝素單元内液晶分子之站向之俯視示 17 200848895 意圖。 圖9係圖6所示二子畫素單元内液晶分子之站向之側視示 意圖。 圖10係本發明液晶顯示面板第二實施方式之平面結構示 意圖。 圖11係圖10所示液晶顯示面板之部份驅動波形示意圖。 圖12係本發明液晶顯示面板之第三實施方式之示意圖。 圖13係圖12所示液晶顯示面板之X Π區域之局部放大示 意圖。 圖14係本發明液晶顯示面板之第四實施方式之局部放大 示意圖。 【主要元件符號說明】 液晶顯示面板 500、 700 > 800 、 900 第一基板 510 第一薄膜電晶體 525 > 725 第一玻璃基板 511 第二薄膜電晶體 526、726、826 彩色遽光片 513 第一晝素電極 527 > 727 > 827 公共電極 515 第二畫素電極 528、728、828 第一突起 519 第二突起 529 第二基板 520 液晶層 530 弟《—玻璃基板 521 液晶分子 531 掃描線 522 晝素單元 60 資料線 523、 723 第一子晝素單元 601 、 801 電阻 824、 924 第二子晝素單元 602 、 802 18Among them, Un is the Field Effect Mobility of the thin film transistor, Cox is the Gate Oxide Capacitance, and Vds is the voltage between the source and the gate. It can be seen from the above equation that the gate current Id of the thin film transistor is proportional to the groove when other parameters are constant. The width of the track is 15/5 wider than the channel of the first thin film transistor 525, and the charging capability is strong. The drain voltage of the track is substantially equal to the source voltage during the on time of one frame; The width of the channel of the second thin film transistor 526 is 5/10, and the charging capability is weak. The gate voltage of the second thin film transistor 526 is less than the source voltage during the on time of one frame. Please refer to FIG. 7, which is a schematic diagram of a part of the driving waveform of the liquid crystal display panel 500. Gn is the scan signal applied to the scan line 522, Vgh is the turn-on voltage of the thin film transistors 525, 526, Vd is the gray scale voltage outputted by the data line 523, Vdl is the voltage of the first halogen electrode 527, and Vd2 is the first The voltage of the two pixel electrodes 528. When the turn-on voltage Vgh is applied to the scan line 522, the first thin film transistor 525 and the second thin film transistor 526 electrically connected to the scan line 522 13 200848895 are both turned on, and the data line 523 outputs a gray scale voltage to the first film. The source of the transistor 525. Since the first thin film transistor 525 has a relatively large channel length and a gate voltage substantially equal to its source voltage, the voltage Vdl of the first halogen electrode 527 is substantially equal to the gray scale voltage value. Since the second thin film transistor 526 has a relatively small channel length and a gate voltage lower than its source voltage, the voltage Vd2 of the second halogen electrode 528 is smaller than the voltage Vdl of the first pixel electrode 527. The voltages Vd1 and Vd2 of the two pixel electrodes 527 and 528 respectively form an electric field with the voltage of the common electrode 515, and the two electric fields drive the liquid crystal molecules 531 in the two sub-cell units 601 and 602 to be twisted to realize the surface display. Please refer to FIG. 8 together, which is a schematic plan view of the liquid crystal molecules 531 in the two sub-cell units 601 and 602 shown in FIG. The electric field in the two sub-pixel elements 601, 602 causes the liquid crystal molecules 531 therebetween to be twisted in a direction perpendicular to the electric field. The liquid crystal molecules 531 are subjected to the action of the first protrusions 519 and the second protrusions 529, and are inclined along the slopes of the two protrusions 519, 529. The liquid crystal molecules 531 have a standing direction of four different directions of A, B, C, and D. Please refer to FIG. 9 together, which is a side view of the liquid crystal molecules 531 in the two sub-pixel units 601 and 602 shown in FIG. The voltages Vdl and Vd2 of the two pixel electrodes 527 and 528 are different in size, so that the electric fields in the two sub-pixel units 601 and 602 are different, and the tilt angles A and 6» of the liquid crystal molecules 531 in the two sub-pixel units 527 and 528 are different. 2 different, thus implementing four-domain display, the liquid 14 200848895 crystal display panel 500 achieves eight-domain display. Compared with the prior art, the second thin film transistor 526 is an electrical component, which makes the voltage of the dioxane electrode 5 27 , 5 28 different. Therefore, the halogen unit 60 of the liquid crystal display panel 500 of the present invention is only A data line 523 and two thin film transistors 525 and 526 are required to obtain different driving voltages for the two pixel electrodes 527 and 528, so that the eight-domain display is realized by the protruding structures of the two substrates 510 and 520, so the liquid crystal display The panel 500 is simple in wiring and low in cost. In addition, the first pixel electrode 527 and the second pixel electrode 528 1 have a large area, so the effective display area of the liquid crystal display panel 500 is large. Referring to Figure 10, there is shown a plan view of a second embodiment of a liquid crystal display panel of the present invention. The main difference between the liquid crystal display panel 700 and the liquid crystal display panel 500 of the first embodiment is that the width and length of the channel of the first thin film transistor 725 and the second thin film transistor 726 are the same, and are small. The gate voltages of the two thin film transistors 725, 726 are less than the respective source voltages during the turn-on time of one frame. The width and length ratio of the two thin film transistors 725 and 726 are both 5/10. k Referring to FIG. 11, a schematic diagram of a partial driving waveform of the liquid crystal display panel 700 shown in FIG. Vd' is the gray scale voltage output from the data line 723, Vdr is the voltage of the first pixel electrode 727, and Vd2' is the voltage of the second pixel electrode 728. During the turn-on of the second thin film transistor 726, its drain voltage is less than its source voltage. Therefore, the voltage Vd2' of the second halogen electrode 728 is smaller than the voltage Vdlf of the first halogen electrode 727. The first sub-cell unit 801 and the second sub-cell unit 802 have different electric fields, and the four-domain display is realized by the protrusion structure of the two substrates. The liquid crystal display panel realizes eight-domain display.简 曰 a曰 曰 aa -,: Γ 有 See the technology, the LCD display surface is reversed 700, the wiring is early and low. At the same time, the width and length ratio of the channel of the liquid crystal display panel 700 is equal to that of the channel of the film: the film is uniform, so that the process of the liquid panel is not simple. Fig. 12 and Fig. 13' Fig. 12 are views showing a liquid crystal display surface of the present invention, and Fig. 13 is a partially enlarged schematic view showing a region of the liquid crystal display surface 5 shown in Fig. 12. The main difference between the liquid crystal display panel 800 and the liquid crystal display panels 5 〇〇, 7 (10) of the first embodiment or the second embodiment is that the first pixel electrode 827 and the source of the second thin film transistor 826 are connected in series - Resistor 824. The resistor 824 is formed by engraving a portion of the first halogen electrode 827 into an elongated linear shape. The second thin film transistor 826 and the resistor 824 form an electrical component. When a current flows through the electrical component, the resistor 824 further divides the voltage, so that the voltage of the second pixel electrode 828 is different from the voltage of the first halogen electrode, and the VIII field display of the liquid crystal display panel is enhanced. effect. Referring to Fig. 14, a partially enlarged schematic view showing a fourth embodiment of the liquid crystal display panel of the present invention. The main difference between the liquid crystal display panel 9A and the liquid crystal display panel 800 of the third embodiment is that the resistor 924 is formed by partially etching one of the first pixel electrodes into an elongated curved shape. The liquid crystal display panel of the present invention is not limited to the above embodiments, and has other modified designs. For example, the larger or smaller aspect ratio of the two thin film transistors can be determined according to the multi-domain effect of the actual desired display; The thickness of the second thin film transistor is less than the source voltage of the transistor during the on-time of one frame. 200848895 ^ The source of the germanium transistor can be directly connected to the first; ^ _ + % of the body ν« α towel / looking for the waist crystal, the liquid daily display panel further includes a metal electrode set at the junction of the crystal plate, and each of the ^ & The gold layer electrode is carved into a slender linear or curved shape and the flute-houser ^ Mudanjing electrode: the electrical components between the set poles can be used for other functions of partial pressure, Τ, 上As described, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only for the purpose of the invention, and the scope of the invention is not limited to the above-described embodiments, and those skilled in the art will be equivalently modified according to the spirit of the invention. Changes should be covered by the following patents. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a three-dimensional structure of a prior art eight-domain vertical alignment type liquid crystal display panel. 2 is a schematic plan view showing the structure of the liquid crystal display panel shown in FIG. 1. Fig. 3 is a top plan view showing the station of liquid crystal molecules in the first halogen unit shown in Fig. 2. Fig. 4 is a side elevational view showing the station of liquid crystal molecules in the dicotholin unit shown in Fig. 2. Fig. 5 is a schematic perspective view showing the first embodiment of the liquid crystal display panel of the present invention. FIG. 6 is a schematic plan view showing the structure of the liquid crystal display panel shown in FIG. 5. FIG. 7 is a schematic diagram showing a partial driving waveform of the liquid crystal display panel shown in FIG. 5. Figure 8 is a plan view showing the liquid crystal molecules in the diterpenoid unit shown in Figure 6. Fig. 9 is a side view showing the station of liquid crystal molecules in the two sub-pixel units shown in Fig. 6. Fig. 10 is a plan view showing the structure of a second embodiment of the liquid crystal display panel of the present invention. FIG. 11 is a schematic view showing a partial driving waveform of the liquid crystal display panel shown in FIG. Figure 12 is a schematic view showing a third embodiment of the liquid crystal display panel of the present invention. Fig. 13 is a partially enlarged plan view showing the X Π area of the liquid crystal display panel shown in Fig. 12. Figure 14 is a partially enlarged schematic view showing a fourth embodiment of the liquid crystal display panel of the present invention. [Description of main component symbols] Liquid crystal display panel 500, 700 > 800, 900 First substrate 510 First thin film transistor 525 > 725 First glass substrate 511 Second thin film transistor 526, 726, 826 Color fluorescent sheet 513 First halogen electrode 527 > 727 > 827 common electrode 515 second pixel electrode 528, 728, 828 first protrusion 519 second protrusion 529 second substrate 520 liquid crystal layer 530 brother - glass substrate 521 liquid crystal molecule 531 scanning Line 522 昼 unit 60 data line 523, 723 first sub-cell unit 601, 801 resistor 824, 924 second sub-cell unit 602, 802 18