200847836 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示面板,特別關於一種有機電激 發光顯示面极。 •【先前技術】 ' 平面顯示裝置如液晶顯示裝置(Liquid Crystal Display Devlce )、電漿顯示裝置(Plasma Display PanelJPDP )或有 機電 /放光顯示·裝置(〇rganic Eiectr〇iuminescent Display Apparatus)較以往陰極射線管顯示裝置來得輕薄短小,故 已逐漸成為現今常見的顯示裝置。其中,有機電激發光 顯示裝置係具有輕薄、可撓曲、易攜、全彩、高亮度、省 電、視角寬廣及高應答速度等優點。 以驅動方式來分類,有機電激發光顯示裝置可分為主 動矩陣式與被動矩陣式兩種。其中,雖然主動矩陣式有機 電激發光顯示裝置具有較佳的顯示效果,但製造成本較被 動矩陣式有機電激發光顯示裝置來的高。 如圖1所示,為一種習知之被動式有機電激發光面板 1,係包含一基板n,而基板u上係依序形成一第一電極 •層12、纟素定義層13、一陰極阻隔層14、一有機發光 層15與一第二電極層16。 *如圖2所示,於製作有機電激發光面板工時,係先沉 積妓圖案化第-電極層12以形成複數第—電極i2i於基 板11上此時,該等第_電極121係沿著基板η之一行 7 200847836 方向排列。然後,沉積並圖案化一絕緣材料以形成栅攔狀 的晝素定義層13,晝素定義層13係形成於第一電極層12 上,藉以定義出複數個發光區域。之後,沉積並圖案化一 負光阻材料以形成陰極阻隔層14於各列的晝素定義層13 之上。而後,沉積一有機材料以形成有機發光層15,以及 再沉積一金屬以形成一第二電極層16,而第二電極層16 具有複數第二電極161。藉由陰極阻隔層14之高度,可隔 絕各第二電極161於行方向上的導通。 各發光區域的第一電極121、有機發光層15與第二電 極161係構成一有機發光二極體(OLED)元件,其中第 一電極121與第二電極161係分別作為有機發光二極體元 件的陽極與陰極。通常,有機發光二極體元件應用於顯示 器時,則稱此種顯示器為有機電激發光顯示器。 一驅動電路係連接到各行的第一電極121與各列的第 二電極161,並提供電位差於這二個電極層12、16之間以 驅動各發光區域的有機發光層15發光。 除此之外,第一電極層12與第二電極層16連接至外 部電路的走線(圖中未示)係可在形成於第一電極層12 之前,經由沉積與圖案化等步驟而形成於基板11上。其 中,該等走線的材質可以是金屬,圖案化該等走線亦需要 使用一道光罩製程。 然而,前述的製作方法共需要四道光罩製程來分別圖 案化第二金屬層、第一電極12、晝素定義層13及陰極阻 隔層14,亦即所需的製程步驟較多。因此,若能夠減少需 8 200847836 要的光罩製程則可減少製作成本。 因此,如何提供一種被動矩陣式有機電激發光顯示 板及其製作方法,避免上述問題之發生及改善上述面 點,實為一重要的課題。 缺 【發明内容】 有鑑於上述課題,本發明之目的為提供一種被動矩户 式有機電激發光顯示面板及其製作方法,具有節省製作+ 驟之優點。 夕 緣是,為達上述目的,依本發明之被動矩陣式有機+ 數發光顯示面板包含一基板、一第一電極層、一補助包 刀電極 層、一陰極阻隔層、一有機發光層及一第二電極層。第— 電極層具有複數弟一電極’逐行设置於基板上。補助電極 層具有複數行分隔部、複數列分隔部及複數走線部,行丄 隔部係覆蓋第一電極邊緣並與基板接觸,且相鄰二行分^ 部間具有一間隙,列分隔部設置於第一電極上,而行分: 邹與列分隔部係定義出複數發光區域。陰極阻隔層係對應 讀等列分隔部而設置於辅助電極層上。有機發光層對應發 光區域而設置於第一電極上。第二電極層具有複數第二電 ,栋,分別設置於有機發光層上,走線部連接第一電極層及 、第二電極層。 為達上述目的,依本發明之被動矩陣式有機電激發光 _示面板之製作方法包含下列步驟:沉積並圖案化一^一 電極層以於一基板之一行方向上形成複數第一電極;沉積 9 200847836 並圖案化一輔助電極層以形成複數行分隔& 部及複數走線部,其中,行分隔部係分^、後數叫分$ 與基板,且相鄰之二行分隔部間係具有^ 係設置於第-電極上,而行分隔部與列分二巧分:, 數發光區域;形成一陰極阻隔層於辅助電二二係定義出J -有機發光層於第—電極層上,有機發光層:二;曾砣: f而設置於第一電極上;以及沉積一第二電極層 光層上,並在對應發光區域中形成複數第二電極,而走線 部係連接第一電極層及第二電極層 承上所述,依本發明之被動矩陣式有機電激發光-真 面板及其製作方法,係利用三道光罩製穩來分別圖案^而 一電極層、輔助電極層及陰極阻隔層。相較W用技二 言’本發明之有機電激發光顯示面板之製作方法嫁實= 省—道光罩製程,而可有效地節省製作成本。另外,周 該等行分隔部具有斜面之設置且覆莫任第,電極之。 緣’使得第-電極不易產生穿孔而盘第〜電極造成錐:; t外,辅助電極層之材質係為金屬或複合金|,故該Γ電 分隔部與該等列分隔部可具有良好之遮光性,使得有= 教發光顯示面板具有良好之對比度。如此4,本發, 有機電激發光顯示面板甚至可以不需要利用偏光板來曰 加對比度’更具有節省材料成本之功效。 【實施方式】 以下將参照相關圖式,說明依本發明較传實施例之、 200847836 動矩=式有機電激發光顯示面板及其製作方法。 閱圖3至圖7 ’料本發明較佳f施例之有機電 坊X二顯不面板2之製作方法的製作流程圖。 、一:配合圖3所示,沉積並圖案化一第一電極層22以 於土板21之行方向上形成複數第一電極221。於本實施 例中基板21可為一玻螭基板、一塑膠基板或一柔性基 ί反^外,第一電極層22係可以濺鍍(sPuttering)或是 離:電錢(i〇n plating)之方式形成於基板U上。此外, 第一電極層22之材質可為導電金屬氧化物,例如為氧化 銦錫(ιτ〇)、氧化铭辞(ΑΖ〇)或氧化銦辞(ιζ〇)。於此 步驟中,需要使用一道光罩製程。 …明同日寸芩照圖4Α與圖4Β所示,沉積並圖案化一輔助 電極層23以形成複數行分隔部231、複數列分隔部232及 複,走線部233。其中,二行分隔部231係分別設置於相 鄰第一電極221之間,且相鄰之該等行分隔部231間係具 有一間隙s,而該等列分隔部232係分別設置於該等第一 私極221上。於此,間隙s係具有阻隔相鄰之第一電極221 之作用,使得相鄰之第一電極221不導通。該等行分隔部 231與該等列分隔部232係定義出有機電激發光顯示面板 之複數發光區域Α1 ’而該等走線部233係設置於有機電激 發光顯示面板之一非顯示區域Α2 (如圖4Β所示)。藉此, 輔助電極層23之该等行分隔部231與該等列分隔部232 之功用係如習知之晝素定義層之功用,可將有機電激發光 顯示面板2區分成該等發光區域A1,而輔助電極層23之 11 200847836 走線部233係如習知之走線金屬層’有、+ 板2係可利用走線部233與-外部電發光顯示面 在圖案化輔助電极層23時,係必須使用、、,接於此 於本實施例中,辅助電極層23之逼,罩 .η 合金屬係可為氣化短_、銘 比羽:Γ或其組合。輔助電極層23之材質為金屬, -匕白知的晝素定義層具有較高的導電性, ^ ^ ^ 因此,辅助電極 θ 23可P牛低有機電激發光顯示面板上之資料線㈤ 之阻!几’使得驅動電壓下降,可節省電能。此外,由於輔 助電極層23之材質係為金屬或複合金屬,光線較不易穿 透,由此可見,該等行分隔部231與該等列分隔部232可 具有良好之遮光性,進而提高有機電激發光顯示面板2之 對比度。如此一來,本發明之有機電激發光顯示面板2甚 至可以不需要利用偏光板來增加對比度,更具有節省材津斗 成本之功效。 另外,於本實施例中,該等行分隔部231於列方向八 別具有一斜面231a,其係覆蓋第一電極221之邊緣教延= 至基板21,而該等行分隔部231之斜面231a,係經由— 刻製程所形成。由於第一電極221之邊緣係受該等行八蝕 •部231之斜面231a覆蓋,故當有機電激發光顯示刀^ 不慎受到壓迫時,第一電極221鄰近行分隔部231 不易因壓迫而產生穿孔,而導致第一電極221與第 (圖中未表示)短路。 槌層 請苓閱圖5,係形成一陰極阻隔層24於辅助電 12 200847836 23上。於本實施例中,陰極阻隔層24係設置於該等列分 隔部232上,且陰極阻隔層24之材質可為負光阻。於此, 係必須使用再一道光罩製程來形成陰極阻隔層24。 接著,請參閱圖6,係沉積一有機發光層25於第一電 極層22上,有機發光層25係對應該等發光區域A1而設 •置於該等第一電極221上。其中,有機發光層25可為一 -堆疊結構,其係依序包含一電洞傳輸層、一發光層及一電 子傳輸層(圖中均未表示)。 再來,如圖7所示,係沉積一第二電極層26於有機 發光層25上,並對應該等發光區域A1中形成複數第二電 極261,而該等走線部233係連接第一電極層22及第二電 極層26。於本實施例中,第二電極層26之材質係選自鋁、 名弓、錤、銦、錫、猛、銀、金以及含鎂之合金至少其中之 — 〇 藉此,有機激電發光顯示面板2係可利用該等走線部 233與一外部電路(圖中未示)電性連接。 由上述可知,本發明之有機電激發光顯示面板2之製 作方法,相較習用技術而言,利用輔助電極層23並配合 相鄰二行分隔部之間隙S可取代習知晝素定義層與第二金 ,屬層之功用。因此,只需要三道光罩製程來分別圖案化第 一電極層22、輔助電極層23及陰極阻隔層24。可見,本 發明之有機電激發光顯示面板2之製作方法確實可節省一 道光罩製程,而可有效地節省製作成本。 接著,請參閱圖7,係為本發明較佳實施例之有機電 13 200847836 激發光顯示面板2包含一基板21、一第一電極層22、一 輔助電極層23、一有機發光層25、一第二電極層26以及 一陰極阻隔層24。然而,基板21、第一電極層22、輔助 電極層23、有機發光層25、第二電極層26及陰極阻隔層 24之構成與結構係與前揭實施例中之基板21、第一電極 層22、輔助電極層23、有機發光層25、第二電極層26及 陰極阻隔層24相同,在此給予相同標號且容不贅述。 承上所述,依本發明之有機電激發光顯示面板及其製 作方法,係利用三道光罩製程來分別圖案化第一電極層、 輔助電極層及陰極阻隔層。相較習用技術而言,本發明之 有機電激發光顯示面板之製作方法確實可節省一道光罩 製程,而可有效地節省製作成本。另外,由於該等行分隔 部具有斜面之設置,使得第一電極鄰近行分隔部之周緣不 易產生穿孔而造成短路。此外,輔助電極層之材質係為金 屬或複合金屬,故該等行分隔部與該等列分隔部具有良好 之遮光性,使得有機電激發光顯示面板具有良好之對比 度。如此一來,本發明之有機電激發光顯示面板甚至可以 不需要利用偏光板來增加對比度,更具有節省材料成本之 功效。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 14 200847836 圖1係為習知之有機電激發光顯示面板之一示意圖; 圖2係為習知之有機電激發光顯示面板之另一示意 圖, 圖3係為本發明較佳實施例之有機電激發光顯示面板 之製作方法之一製作流程圖,係顯示形成第一電極層之態 』樣; • 圖4A係為本發明較佳實施例之有機電激發光顯示面 板之製作方法之一製作流程圖,係顯示形成輔助電極層之 態樣; 圖4B係為本發明較佳實施例之有機電激發光顯示面 示板之一示意圖,係顯示發光區域與非顯示區域之態樣; 圖5係為本發明較佳實施例之有機電激發光顯示面板 之製作方法之一製作流程圖,係顯示形成陰極阻隔層之態 樣; 圖6係為本發明較佳實施例之有機電激發光顯示面板 之製作方法之一製作流程圖,係顯示形成有機發光層之態 樣;以及 圖7係為本發明較佳實施例之有機電激發光顯示面板 之製作方法之一製作流程圖,係顯示形成第二電極層之態 -樣,另外也顯示了有機電激發光顯示面板之結構。 元件符號說明: I 被動矩陣式有機電激發光顯示面板 II 基板 15 200847836 12 第一電極層 121 第一電極 13 晝素定義層 14 陰極阻隔層 15 有機發光層 ;16 第二電極層 -161 第二電極 2 被動矩陣式有機電激發光顯示面板 21 基板 22 第一電極層 221 第一電極 23 辅助電極層 231 行分隔部 231a斜面 232 列分隔部 233 走線部 24 陰極阻隔層 25 有機發光層 26 第二電極層 261 第二電極 A1 發光區域 A2 非顯示區域 S 間隙 16200847836 IX. Description of the Invention: [Technical Field] The present invention relates to a display panel, and more particularly to an organic electroluminescence display surface electrode. • [Prior Art] 'Planar display devices such as liquid crystal display devices (Liquid Crystal Display Devlce), plasma display devices (Plasma Display Panel JPDP) or organic electric/radiation display devices (〇rganic Eiectr〇iuminescent Display Apparatus) The ray tube display device has become light and thin, and has gradually become a common display device. Among them, the organic electroluminescent display device has the advantages of being thin, flexible, portable, full color, high brightness, power saving, wide viewing angle and high response speed. Classified by driving method, the organic electroluminescent display device can be divided into a main active matrix type and a passive matrix type. Among them, although the active matrix type organic electroluminescence display device has a better display effect, the manufacturing cost is higher than that of the passive matrix type organic electroluminescence display device. As shown in FIG. 1 , a passive organic electroluminescent panel 1 of the prior art comprises a substrate n, and a first electrode layer 12, a halogen defining layer 13 and a cathode blocking layer are sequentially formed on the substrate u. 14. An organic light emitting layer 15 and a second electrode layer 16. * As shown in FIG. 2, in the production of the organic electroluminescent panel, the first patterned electrode layer 12 is deposited to form a plurality of first electrodes i2i on the substrate 11. At this time, the first electrode 121 is along the edge. One row of the substrate η is arranged in the direction of 200847836. Then, an insulating material is deposited and patterned to form a gate-like halogen-defining layer 13 formed on the first electrode layer 12, thereby defining a plurality of light-emitting regions. Thereafter, a negative photoresist material is deposited and patterned to form a cathode barrier layer 14 over the individual definition layers 13 of the columns. Thereafter, an organic material is deposited to form the organic light-emitting layer 15, and a metal is deposited to form a second electrode layer 16, and the second electrode layer 16 has a plurality of second electrodes 161. By the height of the cathode barrier layer 14, the conduction of the second electrodes 161 in the row direction can be blocked. The first electrode 121, the organic light-emitting layer 15 and the second electrode 161 of each of the light-emitting regions constitute an organic light-emitting diode (OLED) element, wherein the first electrode 121 and the second electrode 161 are respectively used as organic light-emitting diode elements. Anode and cathode. Generally, when an organic light emitting diode element is applied to a display, the display is referred to as an organic electroluminescent display. A driving circuit is connected to the first electrode 121 of each row and the second electrode 161 of each column, and provides a potential difference between the two electrode layers 12, 16 to drive the organic light-emitting layer 15 of each of the light-emitting regions to emit light. In addition, the traces (not shown) of the first electrode layer 12 and the second electrode layer 16 connected to the external circuit may be formed through deposition and patterning steps before being formed on the first electrode layer 12. On the substrate 11. Among them, the material of the traces may be metal, and patterning the traces also requires a mask process. However, the foregoing fabrication method requires a total of four mask processes to separately pattern the second metal layer, the first electrode 12, the halogen defining layer 13, and the cathode barrier layer 14, that is, more processing steps are required. Therefore, if the mask process required for 200820083636 can be reduced, the manufacturing cost can be reduced. Therefore, how to provide a passive matrix type organic electroluminescence display panel and a method for fabricating the same, which avoids the above problems and improves the above-mentioned aspects, is an important subject. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a passive rectangular organic electroluminescence display panel and a method for fabricating the same, which have the advantages of saving production and manufacturing. In order to achieve the above objective, the passive matrix organic + digital light emitting display panel according to the present invention comprises a substrate, a first electrode layer, a auxiliary knife electrode layer, a cathode barrier layer, an organic light emitting layer and a Second electrode layer. The first electrode layer has a plurality of electrodes and is disposed on the substrate row by row. The auxiliary electrode layer has a plurality of row partitions, a plurality of column partitions, and a plurality of trace portions, the row partition portion covers the first electrode edge and is in contact with the substrate, and the adjacent two rows have a gap between the two portions, and the column partition portion It is disposed on the first electrode, and the line division: the Zou and column division defines a complex light-emitting area. The cathode barrier layer is provided on the auxiliary electrode layer corresponding to the read column spacer. The organic light-emitting layer is disposed on the first electrode corresponding to the light-emitting region. The second electrode layer has a plurality of second electrodes, respectively disposed on the organic light emitting layer, and the wiring portion connects the first electrode layer and the second electrode layer. In order to achieve the above object, a method for fabricating a passive matrix type organic electroluminescent light-emitting panel according to the present invention comprises the steps of: depositing and patterning an electrode layer to form a plurality of first electrodes in a row direction of a substrate; depositing 9 200847836 and patterning an auxiliary electrode layer to form a plurality of row separation & and a plurality of trace portions, wherein the row partition is divided into ^, the last number is divided into $ and the substrate, and the adjacent two rows are separated The system is disposed on the first electrode, and the row separation portion and the column are divided into two parts: a plurality of light-emitting regions; forming a cathode barrier layer on the auxiliary electro-secondary system to define a J-organic light-emitting layer on the first electrode layer , the organic light-emitting layer: two; Zeng: f is disposed on the first electrode; and depositing a second electrode layer on the light layer, and forming a plurality of second electrodes in the corresponding light-emitting region, and the wire connecting the first The electrode layer and the second electrode layer are as described above, and the passive matrix type organic electroluminescence-true panel according to the present invention and the manufacturing method thereof are respectively patterned by using three masks to form an electrode layer and an auxiliary electrode layer. Cathode barrier layer . Compared with the W technology, the manufacturing method of the organic electroluminescent display panel of the present invention is a method of manufacturing a state-of-the-art mask, which can effectively save production costs. In addition, the row of the partitions has a beveled surface and is provided with an electrode. The edge ' makes the first electrode less likely to be perforated and the disk first to the electrode causes the cone: t, the material of the auxiliary electrode layer is metal or composite gold|, so the electric separation portion and the column separation portion can have good The light-shielding property makes it possible to have a good contrast ratio. In this way, the organic electroluminescent display panel can even save the material cost without using a polarizing plate to increase the contrast ratio. [Embodiment] Hereinafter, a 200847836 moving moment type organic electroluminescence display panel and a method of fabricating the same according to the present invention will be described with reference to the related drawings. 3 to 7 are a flow chart for fabricating a method for fabricating an organic electric panel X two display panel 2 according to a preferred embodiment of the present invention. First, in conjunction with FIG. 3, a first electrode layer 22 is deposited and patterned to form a plurality of first electrodes 221 in the row direction of the earth plate 21. In this embodiment, the substrate 21 can be a glass substrate, a plastic substrate or a flexible substrate. The first electrode layer 22 can be sputtered or separated from: i〇n plating. The method is formed on the substrate U. Further, the material of the first electrode layer 22 may be a conductive metal oxide such as indium tin oxide (ITO), oxidized inscription (ΑΖ〇) or indium oxide (ι). In this step, a mask process is required. An auxiliary electrode layer 23 is deposited and patterned to form a plurality of rows of partitions 231, a plurality of columns of partitions 232, and a plurality of traces 233, as shown in Fig. 4A and Fig. 4B. The two rows of partitions 231 are respectively disposed between the adjacent first electrodes 221, and the adjacent row of partitions 231 have a gap s, and the row of partitions 232 are respectively disposed at the same The first private pole 221. Here, the gap s has a function of blocking the adjacent first electrode 221 such that the adjacent first electrode 221 is not turned on. The row dividing portion 231 and the column dividing portion 232 define a plurality of light emitting regions Α1' of the organic electroluminescent display panel, and the wiring portions 233 are disposed in one of the non-display regions of the organic electroluminescent display panel. (Figure 4Β). Thereby, the functions of the row separation portion 231 of the auxiliary electrode layer 23 and the column separation portion 232 are functions of a conventional halogen defining layer, and the organic electroluminescent display panel 2 can be divided into the light emitting regions A1. 11 of the auxiliary electrode layer 23 200847836 The wiring portion 233 is a conventional wiring metal layer 'Yes, + 2 2 can use the wiring portion 233 and the external electroluminescent display surface when patterning the auxiliary electrode layer 23 It is necessary to use, and, in the present embodiment, the auxiliary electrode layer 23 is forced, and the cover η metal system may be a gasification short _, Mingbi feather: Γ or a combination thereof. The auxiliary electrode layer 23 is made of a metal, and the bismuth-defined layer of the bismuth has a high conductivity, ^ ^ ^ Therefore, the auxiliary electrode θ 23 can be used as a data line on the display panel of the organic electroluminescent display panel (5). Resisting! A few 'to make the drive voltage drop, can save energy. In addition, since the material of the auxiliary electrode layer 23 is metal or a composite metal, the light is less likely to penetrate, and thus the row separation portion 231 and the column separation portion 232 can have good light shielding properties, thereby improving organic electricity. The contrast of the light display panel 2 is excited. In this way, the organic electroluminescent display panel 2 of the present invention can even increase the contrast without using a polarizing plate, and has the effect of saving material cost. In addition, in the embodiment, the row dividing portions 231 have a slope 231a in the column direction, which covers the edge of the first electrode 221 to the substrate 21, and the slope 231a of the row partition 231. , formed by the process of engraving. Since the edge of the first electrode 221 is covered by the slope 231a of the row of the etched portions 231, when the organic electroluminescence light is inadvertently pressed, the first electrode 221 is not easily pressed by the row partition 231. The perforation is generated, causing the first electrode 221 to be short-circuited with the first (not shown).槌 Layer Please refer to Figure 5 to form a cathode barrier layer 24 on the auxiliary power 12 200847836 23 . In this embodiment, the cathode barrier layer 24 is disposed on the column spacers 232, and the material of the cathode barrier layer 24 may be a negative photoresist. Here, a further mask process must be used to form the cathode barrier layer 24. Next, referring to FIG. 6, an organic light-emitting layer 25 is deposited on the first electrode layer 22, and the organic light-emitting layer 25 is disposed on the first electrode 221 corresponding to the light-emitting area A1. The organic light-emitting layer 25 may be a one-stack structure comprising a hole transport layer, a light-emitting layer and an electron transport layer (not shown). Then, as shown in FIG. 7, a second electrode layer 26 is deposited on the organic light-emitting layer 25, and a plurality of second electrodes 261 are formed in the corresponding light-emitting region A1, and the trace portions 233 are connected to the first Electrode layer 22 and second electrode layer 26. In this embodiment, the material of the second electrode layer 26 is selected from at least one of aluminum, stellite, bismuth, indium, tin, fierce, silver, gold, and magnesium-containing alloys - thereby, an organic electroluminescent display The panel 2 can be electrically connected to an external circuit (not shown) by the wiring portions 233. It can be seen from the above that the method for fabricating the organic electroluminescent display panel 2 of the present invention can replace the conventional pixel defining layer with the auxiliary electrode layer 23 and the gap S of the adjacent two rows of partitions. The second gold is the function of the layer. Therefore, only three mask processes are required to separately pattern the first electrode layer 22, the auxiliary electrode layer 23, and the cathode barrier layer 24. It can be seen that the manufacturing method of the organic electroluminescent display panel 2 of the present invention can save a mask process, and can effectively save the manufacturing cost. Next, please refer to FIG. 7 , which is an organic power 13 according to a preferred embodiment of the present invention. The 200847836 excitation light display panel 2 includes a substrate 21 , a first electrode layer 22 , an auxiliary electrode layer 23 , an organic light emitting layer 25 , and a The second electrode layer 26 and a cathode barrier layer 24. However, the structure and structure of the substrate 21, the first electrode layer 22, the auxiliary electrode layer 23, the organic light-emitting layer 25, the second electrode layer 26, and the cathode barrier layer 24 are the substrate 21 and the first electrode layer in the foregoing embodiments. 22, the auxiliary electrode layer 23, the organic light-emitting layer 25, the second electrode layer 26, and the cathode barrier layer 24 are the same, and the same reference numerals are used herein. As described above, the organic electroluminescent display panel and the method of fabricating the same according to the present invention utilize a three-mask process to separately pattern the first electrode layer, the auxiliary electrode layer and the cathode barrier layer. Compared with the conventional technology, the manufacturing method of the organic electroluminescent display panel of the present invention can save a mask process, and the production cost can be effectively saved. Further, since the row partitions have a beveled arrangement, the first electrode is less likely to be perforated adjacent to the periphery of the row partition to cause a short circuit. Further, since the material of the auxiliary electrode layer is metal or a composite metal, the row partitions and the column spacers have good light shielding properties, so that the organic electroluminescent display panel has a good contrast. In this way, the organic electroluminescent display panel of the present invention can even increase the contrast by using a polarizing plate, and has the effect of saving material cost. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional organic electroluminescent display panel; FIG. 2 is another schematic diagram of a conventional organic electroluminescent display panel, and FIG. 3 is a preferred embodiment of the present invention. Example of a method for fabricating an organic electroluminescent display panel, showing a state in which a first electrode layer is formed; FIG. 4A is a method for fabricating an organic electroluminescent display panel according to a preferred embodiment of the present invention 1 is a flow chart showing the formation of an auxiliary electrode layer; FIG. 4B is a schematic view showing an organic electroluminescent display panel according to a preferred embodiment of the present invention, showing a state of a light-emitting area and a non-display area; 5 is a flow chart of a method for fabricating an organic electroluminescent display panel according to a preferred embodiment of the present invention, showing a state in which a cathode barrier layer is formed; FIG. 6 is an organic electro-excitation according to a preferred embodiment of the present invention. One of the manufacturing methods of the light display panel is a flow chart showing the formation of an organic light-emitting layer; and FIG. 7 is an organic electroluminescent display according to a preferred embodiment of the present invention. Production flow chart of one method of manufacturing the plate, a display system of the second electrode layer is formed state - like, also shows additional organic electroluminescent display panel of the structure. Component symbol description: I passive matrix organic electroluminescent display panel II substrate 15 200847836 12 first electrode layer 121 first electrode 13 halogen definition layer 14 cathode barrier layer 15 organic light emitting layer; 16 second electrode layer -161 second Electrode 2 Passive matrix organic electroluminescent display panel 21 Substrate 22 First electrode layer 221 First electrode 23 Secondary electrode layer 231 Row partition 231a Bevel 232 Column partition 233 Trace portion 24 Cathode barrier layer 25 Organic light-emitting layer 26 Two-electrode layer 261 second electrode A1 light-emitting area A2 non-display area S gap 16