TW200847056A - Genetic analysis systems and methods - Google Patents
Genetic analysis systems and methods Download PDFInfo
- Publication number
- TW200847056A TW200847056A TW096145856A TW96145856A TW200847056A TW 200847056 A TW200847056 A TW 200847056A TW 096145856 A TW096145856 A TW 096145856A TW 96145856 A TW96145856 A TW 96145856A TW 200847056 A TW200847056 A TW 200847056A
- Authority
- TW
- Taiwan
- Prior art keywords
- individual
- genotype
- profile
- phenotype
- report
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 196
- 238000012252 genetic analysis Methods 0.000 title claims 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 131
- 230000002068 genetic effect Effects 0.000 claims abstract description 131
- 201000010099 disease Diseases 0.000 claims abstract description 128
- 108090000623 proteins and genes Proteins 0.000 claims description 160
- 239000000523 sample Substances 0.000 claims description 68
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 63
- 108020004414 DNA Proteins 0.000 claims description 57
- 206010006187 Breast cancer Diseases 0.000 claims description 55
- 208000026310 Breast neoplasm Diseases 0.000 claims description 55
- 208000024827 Alzheimer disease Diseases 0.000 claims description 52
- 230000036541 health Effects 0.000 claims description 50
- 206010009944 Colon cancer Diseases 0.000 claims description 40
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 39
- 239000002773 nucleotide Substances 0.000 claims description 36
- 125000003729 nucleotide group Chemical group 0.000 claims description 36
- 238000004458 analytical method Methods 0.000 claims description 32
- 238000011282 treatment Methods 0.000 claims description 31
- 206010060862 Prostate cancer Diseases 0.000 claims description 30
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 30
- 208000008589 Obesity Diseases 0.000 claims description 24
- 201000006417 multiple sclerosis Diseases 0.000 claims description 24
- 208000010125 myocardial infarction Diseases 0.000 claims description 24
- 235000020824 obesity Nutrition 0.000 claims description 24
- 239000012472 biological sample Substances 0.000 claims description 20
- 208000011231 Crohn disease Diseases 0.000 claims description 18
- 210000003296 saliva Anatomy 0.000 claims description 18
- 210000004369 blood Anatomy 0.000 claims description 17
- 239000008280 blood Substances 0.000 claims description 17
- 206010025135 lupus erythematosus Diseases 0.000 claims description 16
- 208000024891 symptom Diseases 0.000 claims description 16
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 14
- 201000004681 Psoriasis Diseases 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- 101001100327 Homo sapiens RNA-binding protein 45 Proteins 0.000 claims description 11
- 102100038823 RNA-binding protein 45 Human genes 0.000 claims description 11
- 208000015943 Coeliac disease Diseases 0.000 claims description 10
- 238000009223 counseling Methods 0.000 claims description 9
- 235000005911 diet Nutrition 0.000 claims description 9
- 230000037213 diet Effects 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 230000002265 prevention Effects 0.000 claims description 8
- 238000002560 therapeutic procedure Methods 0.000 claims description 8
- 102000054765 polymorphisms of proteins Human genes 0.000 claims description 7
- 238000001712 DNA sequencing Methods 0.000 claims description 6
- 238000012217 deletion Methods 0.000 claims description 6
- 230000037430 deletion Effects 0.000 claims description 6
- 208000010412 Glaucoma Diseases 0.000 claims description 5
- 208000003807 Graves Disease Diseases 0.000 claims description 5
- 208000015023 Graves' disease Diseases 0.000 claims description 5
- 235000012000 cholesterol Nutrition 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 210000004209 hair Anatomy 0.000 claims description 5
- 208000002780 macular degeneration Diseases 0.000 claims description 5
- 238000002493 microarray Methods 0.000 claims description 5
- 201000008482 osteoarthritis Diseases 0.000 claims description 5
- 206010036790 Productive cough Diseases 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 230000002996 emotional effect Effects 0.000 claims description 4
- 230000003862 health status Effects 0.000 claims description 4
- 210000003802 sputum Anatomy 0.000 claims description 4
- 208000024794 sputum Diseases 0.000 claims description 4
- 210000004243 sweat Anatomy 0.000 claims description 4
- 210000002700 urine Anatomy 0.000 claims description 4
- 238000000018 DNA microarray Methods 0.000 claims description 3
- 208000034951 Genetic Translocation Diseases 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 claims description 3
- 208000018565 Hemochromatosis Diseases 0.000 claims description 3
- 206010061218 Inflammation Diseases 0.000 claims description 3
- 108091092878 Microsatellite Proteins 0.000 claims description 3
- 230000002759 chromosomal effect Effects 0.000 claims description 3
- 210000000349 chromosome Anatomy 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- 230000004054 inflammatory process Effects 0.000 claims description 3
- 238000000053 physical method Methods 0.000 claims description 3
- 238000004393 prognosis Methods 0.000 claims description 3
- 210000000582 semen Anatomy 0.000 claims description 3
- 239000002689 soil Substances 0.000 claims description 3
- 241000894007 species Species 0.000 claims description 3
- 239000011782 vitamin Substances 0.000 claims description 3
- 235000013343 vitamin Nutrition 0.000 claims description 3
- 229930003231 vitamin Natural products 0.000 claims description 3
- 229940088594 vitamin Drugs 0.000 claims description 3
- 101100284398 Bos taurus BoLA-DQB gene Proteins 0.000 claims description 2
- 206010013710 Drug interaction Diseases 0.000 claims description 2
- 241000282412 Homo Species 0.000 claims description 2
- 101100395312 Homo sapiens HLA-C gene Proteins 0.000 claims description 2
- 230000003542 behavioural effect Effects 0.000 claims description 2
- 238000004820 blood count Methods 0.000 claims description 2
- 230000007812 deficiency Effects 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 238000013442 quality metrics Methods 0.000 claims description 2
- 102200146596 rs2066845 Human genes 0.000 claims description 2
- 102210033146 rs5743293 Human genes 0.000 claims description 2
- 210000003491 skin Anatomy 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 208000005793 Restless legs syndrome Diseases 0.000 claims 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 1
- 230000037396 body weight Effects 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 150000003722 vitamin derivatives Chemical class 0.000 claims 1
- 230000007614 genetic variation Effects 0.000 abstract description 12
- 239000002131 composite material Substances 0.000 abstract description 4
- 230000009977 dual effect Effects 0.000 description 66
- 201000000980 schizophrenia Diseases 0.000 description 35
- 208000006673 asthma Diseases 0.000 description 34
- 238000012360 testing method Methods 0.000 description 33
- 208000029078 coronary artery disease Diseases 0.000 description 30
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 28
- 230000035772 mutation Effects 0.000 description 28
- 230000000694 effects Effects 0.000 description 27
- 206010020772 Hypertension Diseases 0.000 description 25
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 25
- 201000005202 lung cancer Diseases 0.000 description 25
- 208000020816 lung neoplasm Diseases 0.000 description 25
- 208000007536 Thrombosis Diseases 0.000 description 22
- 108010014172 Factor V Proteins 0.000 description 21
- 102100028452 Nitric oxide synthase, endothelial Human genes 0.000 description 21
- 101001128156 Homo sapiens Nanos homolog 3 Proteins 0.000 description 20
- 101001124309 Homo sapiens Nitric oxide synthase, endothelial Proteins 0.000 description 20
- 102000005038 SLC6A4 Human genes 0.000 description 20
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 20
- 206010039073 rheumatoid arthritis Diseases 0.000 description 20
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 19
- 102100040247 Tumor necrosis factor Human genes 0.000 description 19
- 208000018737 Parkinson disease Diseases 0.000 description 18
- 102100036241 HLA class II histocompatibility antigen, DQ beta 1 chain Human genes 0.000 description 17
- 108010065026 HLA-DQB1 antigen Proteins 0.000 description 17
- 210000000988 bone and bone Anatomy 0.000 description 17
- 101150037123 APOE gene Proteins 0.000 description 16
- 102100029470 Apolipoprotein E Human genes 0.000 description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 description 15
- 239000011707 mineral Substances 0.000 description 15
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 15
- 208000007848 Alcoholism Diseases 0.000 description 14
- 102100037529 Coagulation factor V Human genes 0.000 description 13
- 101000587058 Homo sapiens Methylenetetrahydrofolate reductase Proteins 0.000 description 13
- 102100029684 Methylenetetrahydrofolate reductase Human genes 0.000 description 13
- 230000003321 amplification Effects 0.000 description 13
- 238000003199 nucleic acid amplification method Methods 0.000 description 13
- 239000003814 drug Substances 0.000 description 12
- 210000003734 kidney Anatomy 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 102100036534 Glutathione S-transferase Mu 1 Human genes 0.000 description 11
- 101001071694 Homo sapiens Glutathione S-transferase Mu 1 Proteins 0.000 description 11
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 11
- 102100037850 Interferon gamma Human genes 0.000 description 11
- 102000003814 Interleukin-10 Human genes 0.000 description 11
- 108090000174 Interleukin-10 Proteins 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 238000002054 transplantation Methods 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 102100036321 5-hydroxytryptamine receptor 2A Human genes 0.000 description 10
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 10
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 102100038055 Glutathione S-transferase theta-1 Human genes 0.000 description 10
- 101000783617 Homo sapiens 5-hydroxytryptamine receptor 2A Proteins 0.000 description 10
- 101001032462 Homo sapiens Glutathione S-transferase theta-1 Proteins 0.000 description 10
- 239000003114 blood coagulation factor Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000000391 smoking effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 208000020925 Bipolar disease Diseases 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 9
- 230000002559 cytogenic effect Effects 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 238000011160 research Methods 0.000 description 9
- 206010005003 Bladder cancer Diseases 0.000 description 8
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 8
- 108010000543 Cytochrome P-450 CYP2C9 Proteins 0.000 description 8
- 102100029358 Cytochrome P450 2C9 Human genes 0.000 description 8
- 102100036243 HLA class II histocompatibility antigen, DQ alpha 1 chain Human genes 0.000 description 8
- 108010086786 HLA-DQA1 antigen Proteins 0.000 description 8
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 8
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 8
- 230000006399 behavior Effects 0.000 description 8
- 201000005112 urinary bladder cancer Diseases 0.000 description 8
- 108010074918 Cytochrome P-450 CYP1A1 Proteins 0.000 description 7
- 102100031476 Cytochrome P450 1A1 Human genes 0.000 description 7
- 102100029815 D(4) dopamine receptor Human genes 0.000 description 7
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 7
- 101000865206 Homo sapiens D(4) dopamine receptor Proteins 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 7
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 7
- 206010033128 Ovarian cancer Diseases 0.000 description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 description 7
- 208000006011 Stroke Diseases 0.000 description 7
- 206010001584 alcohol abuse Diseases 0.000 description 7
- 201000007930 alcohol dependence Diseases 0.000 description 7
- 208000025746 alcohol use disease Diseases 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 201000004101 esophageal cancer Diseases 0.000 description 7
- 201000001245 periodontitis Diseases 0.000 description 7
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 description 6
- 102100040202 Apolipoprotein B-100 Human genes 0.000 description 6
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 108020002739 Catechol O-methyltransferase Proteins 0.000 description 6
- 102100040999 Catechol O-methyltransferase Human genes 0.000 description 6
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 6
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 6
- 206010011878 Deafness Diseases 0.000 description 6
- 206010012438 Dermatitis atopic Diseases 0.000 description 6
- 102100038595 Estrogen receptor Human genes 0.000 description 6
- 208000009329 Graft vs Host Disease Diseases 0.000 description 6
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 6
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 6
- 102100040485 HLA class II histocompatibility antigen, DRB1 beta chain Human genes 0.000 description 6
- 108010075704 HLA-A Antigens Proteins 0.000 description 6
- 108010058607 HLA-B Antigens Proteins 0.000 description 6
- 108010039343 HLA-DRB1 Chains Proteins 0.000 description 6
- 208000008899 Habitual abortion Diseases 0.000 description 6
- 101000889953 Homo sapiens Apolipoprotein B-100 Proteins 0.000 description 6
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 6
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 6
- 101001094647 Homo sapiens Serum paraoxonase/arylesterase 1 Proteins 0.000 description 6
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 description 6
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 6
- 102100035476 Serum paraoxonase/arylesterase 1 Human genes 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 206010003246 arthritis Diseases 0.000 description 6
- 201000008937 atopic dermatitis Diseases 0.000 description 6
- 206010012601 diabetes mellitus Diseases 0.000 description 6
- 208000024908 graft versus host disease Diseases 0.000 description 6
- 208000016354 hearing loss disease Diseases 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 208000034213 recurrent susceptibility to 1 pregnancy loss Diseases 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 201000008827 tuberculosis Diseases 0.000 description 6
- 102000017919 ADRB2 Human genes 0.000 description 5
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 5
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 5
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 5
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 5
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 5
- 206010009900 Colitis ulcerative Diseases 0.000 description 5
- 102100020756 D(2) dopamine receptor Human genes 0.000 description 5
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 5
- 102100030943 Glutathione S-transferase P Human genes 0.000 description 5
- 101000959437 Homo sapiens Beta-2 adrenergic receptor Proteins 0.000 description 5
- 101000931901 Homo sapiens D(2) dopamine receptor Proteins 0.000 description 5
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 description 5
- 101001010139 Homo sapiens Glutathione S-transferase P Proteins 0.000 description 5
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 5
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 description 5
- 101000741790 Homo sapiens Peroxisome proliferator-activated receptor gamma Proteins 0.000 description 5
- 102100029193 Low affinity immunoglobulin gamma Fc region receptor III-A Human genes 0.000 description 5
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 5
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 5
- 102000005029 SLC6A3 Human genes 0.000 description 5
- 201000006704 Ulcerative Colitis Diseases 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 208000024714 major depressive disease Diseases 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000010445 mica Substances 0.000 description 5
- 229910052618 mica group Inorganic materials 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 102100028661 Amine oxidase [flavin-containing] A Human genes 0.000 description 4
- 102100033715 Apolipoprotein A-I Human genes 0.000 description 4
- 108010060159 Apolipoprotein E4 Proteins 0.000 description 4
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 4
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 4
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 4
- 206010008342 Cervix carcinoma Diseases 0.000 description 4
- 102100027829 DNA repair protein XRCC3 Human genes 0.000 description 4
- 101100226017 Dictyostelium discoideum repD gene Proteins 0.000 description 4
- 101150105460 ERCC2 gene Proteins 0.000 description 4
- 206010014522 Embolism venous Diseases 0.000 description 4
- 201000009273 Endometriosis Diseases 0.000 description 4
- 102100025403 Epoxide hydrolase 1 Human genes 0.000 description 4
- 102100037156 Gap junction beta-2 protein Human genes 0.000 description 4
- 102100035184 General transcription and DNA repair factor IIH helicase subunit XPD Human genes 0.000 description 4
- 208000005176 Hepatitis C Diseases 0.000 description 4
- 101000694718 Homo sapiens Amine oxidase [flavin-containing] A Proteins 0.000 description 4
- 101000733802 Homo sapiens Apolipoprotein A-I Proteins 0.000 description 4
- 101000884399 Homo sapiens Arylamine N-acetyltransferase 2 Proteins 0.000 description 4
- 101001077852 Homo sapiens Epoxide hydrolase 1 Proteins 0.000 description 4
- 101000954092 Homo sapiens Gap junction beta-2 protein Proteins 0.000 description 4
- 101001015004 Homo sapiens Integrin beta-3 Proteins 0.000 description 4
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 4
- 101000713305 Homo sapiens Sodium-coupled neutral amino acid transporter 1 Proteins 0.000 description 4
- 101000896517 Homo sapiens Steroid 17-alpha-hydroxylase/17,20 lyase Proteins 0.000 description 4
- 101000799388 Homo sapiens Thiopurine S-methyltransferase Proteins 0.000 description 4
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 4
- 101000830742 Homo sapiens Tryptophan 5-hydroxylase 1 Proteins 0.000 description 4
- 102100032999 Integrin beta-3 Human genes 0.000 description 4
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 4
- 208000001132 Osteoporosis Diseases 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 102100036916 Sodium-coupled neutral amino acid transporter 1 Human genes 0.000 description 4
- 102100021719 Steroid 17-alpha-hydroxylase/17,20 lyase Human genes 0.000 description 4
- 208000005718 Stomach Neoplasms Diseases 0.000 description 4
- 102100034162 Thiopurine S-methyltransferase Human genes 0.000 description 4
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 4
- 102100024971 Tryptophan 5-hydroxylase 1 Human genes 0.000 description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 4
- 102000002258 X-ray Repair Cross Complementing Protein 1 Human genes 0.000 description 4
- 108010000443 X-ray Repair Cross Complementing Protein 1 Proteins 0.000 description 4
- 108010074310 X-ray repair cross complementing protein 3 Proteins 0.000 description 4
- 108700031763 Xeroderma Pigmentosum Group D Proteins 0.000 description 4
- 201000010881 cervical cancer Diseases 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 208000026758 coronary atherosclerosis Diseases 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 206010017758 gastric cancer Diseases 0.000 description 4
- 208000019622 heart disease Diseases 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 201000001441 melanoma Diseases 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000012502 risk assessment Methods 0.000 description 4
- 201000011549 stomach cancer Diseases 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000002636 symptomatic treatment Methods 0.000 description 4
- 208000011580 syndromic disease Diseases 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 208000004043 venous thromboembolism Diseases 0.000 description 4
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 4
- KEWSCDNULKOKTG-UHFFFAOYSA-N 4-cyano-4-ethylsulfanylcarbothioylsulfanylpentanoic acid Chemical compound CCSC(=S)SC(C)(C#N)CCC(O)=O KEWSCDNULKOKTG-UHFFFAOYSA-N 0.000 description 3
- 102000017918 ADRB3 Human genes 0.000 description 3
- 108060003355 ADRB3 Proteins 0.000 description 3
- 102100031786 Adiponectin Human genes 0.000 description 3
- 102100033816 Aldehyde dehydrogenase, mitochondrial Human genes 0.000 description 3
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 3
- 102100029361 Aromatase Human genes 0.000 description 3
- 108700020463 BRCA1 Proteins 0.000 description 3
- 101150072950 BRCA1 gene Proteins 0.000 description 3
- 102100025401 Breast cancer type 1 susceptibility protein Human genes 0.000 description 3
- 102100037637 Cholesteryl ester transfer protein Human genes 0.000 description 3
- 206010010144 Completed suicide Diseases 0.000 description 3
- 108010026925 Cytochrome P-450 CYP2C19 Proteins 0.000 description 3
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 3
- 108010081668 Cytochrome P-450 CYP3A Proteins 0.000 description 3
- 102100027417 Cytochrome P450 1B1 Human genes 0.000 description 3
- 102100036194 Cytochrome P450 2A6 Human genes 0.000 description 3
- 102100029363 Cytochrome P450 2C19 Human genes 0.000 description 3
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 3
- 102100029808 D(3) dopamine receptor Human genes 0.000 description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 description 3
- 240000008168 Ficus benjamina Species 0.000 description 3
- 208000031886 HIV Infections Diseases 0.000 description 3
- 208000037357 HIV infectious disease Diseases 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 101000775469 Homo sapiens Adiponectin Proteins 0.000 description 3
- 101000678026 Homo sapiens Alpha-1-antichymotrypsin Proteins 0.000 description 3
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 3
- 101000919395 Homo sapiens Aromatase Proteins 0.000 description 3
- 101000880514 Homo sapiens Cholesteryl ester transfer protein Proteins 0.000 description 3
- 101000725164 Homo sapiens Cytochrome P450 1B1 Proteins 0.000 description 3
- 101000875170 Homo sapiens Cytochrome P450 2A6 Proteins 0.000 description 3
- 101000865224 Homo sapiens D(3) dopamine receptor Proteins 0.000 description 3
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 3
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 3
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 description 3
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 3
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 3
- 101000861263 Homo sapiens Steroid 21-hydroxylase Proteins 0.000 description 3
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 description 3
- 101000809797 Homo sapiens Thymidylate synthase Proteins 0.000 description 3
- 101000635938 Homo sapiens Transforming growth factor beta-1 proprotein Proteins 0.000 description 3
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 3
- 208000035150 Hypercholesterolemia Diseases 0.000 description 3
- 102100036721 Insulin receptor Human genes 0.000 description 3
- 102100039065 Interleukin-1 beta Human genes 0.000 description 3
- 102000003816 Interleukin-13 Human genes 0.000 description 3
- 108090000176 Interleukin-13 Proteins 0.000 description 3
- 208000007177 Left Ventricular Hypertrophy Diseases 0.000 description 3
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 3
- 102100025818 Major prion protein Human genes 0.000 description 3
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 3
- 108010009513 Mitochondrial Aldehyde Dehydrogenase Proteins 0.000 description 3
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 3
- 206010033645 Pancreatitis Diseases 0.000 description 3
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 3
- 208000005374 Poisoning Diseases 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102100027545 Steroid 21-hydroxylase Human genes 0.000 description 3
- 102100030416 Stromelysin-1 Human genes 0.000 description 3
- 102100038618 Thymidylate synthase Human genes 0.000 description 3
- 102100030742 Transforming growth factor beta-1 proprotein Human genes 0.000 description 3
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 206010000210 abortion Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 206010064930 age-related macular degeneration Diseases 0.000 description 3
- 239000003146 anticoagulant agent Substances 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 230000004872 arterial blood pressure Effects 0.000 description 3
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000013611 chromosomal DNA Substances 0.000 description 3
- 210000001268 chyle Anatomy 0.000 description 3
- 238000010219 correlation analysis Methods 0.000 description 3
- 231100000895 deafness Toxicity 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 235000021045 dietary change Nutrition 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 238000003205 genotyping method Methods 0.000 description 3
- 231100001261 hazardous Toxicity 0.000 description 3
- 231100000888 hearing loss Toxicity 0.000 description 3
- 230000010370 hearing loss Effects 0.000 description 3
- 229960002897 heparin Drugs 0.000 description 3
- 229920000669 heparin Polymers 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 231100000283 hepatitis Toxicity 0.000 description 3
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 201000010193 neural tube defect Diseases 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 208000022821 personality disease Diseases 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 108091035539 telomere Proteins 0.000 description 3
- 210000003411 telomere Anatomy 0.000 description 3
- 102000055501 telomere Human genes 0.000 description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 3
- 229960005080 warfarin Drugs 0.000 description 3
- 102100027499 5-hydroxytryptamine receptor 1B Human genes 0.000 description 2
- 102100040368 5-hydroxytryptamine receptor 6 Human genes 0.000 description 2
- 102000017920 ADRB1 Human genes 0.000 description 2
- 102100024645 ATP-binding cassette sub-family C member 8 Human genes 0.000 description 2
- 208000005676 Adrenogenital syndrome Diseases 0.000 description 2
- 102100028116 Amine oxidase [flavin-containing] B Human genes 0.000 description 2
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 2
- 102100040197 Apolipoprotein A-V Human genes 0.000 description 2
- 108010061118 Apolipoprotein A-V Proteins 0.000 description 2
- 102100030970 Apolipoprotein C-III Human genes 0.000 description 2
- 108010060219 Apolipoprotein E2 Proteins 0.000 description 2
- 108010060215 Apolipoprotein E3 Proteins 0.000 description 2
- 102000008128 Apolipoprotein E3 Human genes 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 102000038594 Cdh1/Fizzy-related Human genes 0.000 description 2
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 description 2
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 2
- 208000036086 Chromosome Duplication Diseases 0.000 description 2
- 102100033601 Collagen alpha-1(I) chain Human genes 0.000 description 2
- 208000008448 Congenital adrenal hyperplasia Diseases 0.000 description 2
- 108010069176 Connexin 30 Proteins 0.000 description 2
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 2
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 2
- 108010009911 Cytochrome P-450 CYP11B2 Proteins 0.000 description 2
- 108010074922 Cytochrome P-450 CYP1A2 Proteins 0.000 description 2
- 108010001202 Cytochrome P-450 CYP2E1 Proteins 0.000 description 2
- 102100024329 Cytochrome P450 11B2, mitochondrial Human genes 0.000 description 2
- 102100026533 Cytochrome P450 1A2 Human genes 0.000 description 2
- 102100024889 Cytochrome P450 2E1 Human genes 0.000 description 2
- 102100039208 Cytochrome P450 3A5 Human genes 0.000 description 2
- 102100025620 Cytochrome b-245 light chain Human genes 0.000 description 2
- 102100035186 DNA excision repair protein ERCC-1 Human genes 0.000 description 2
- 102100037373 DNA-(apurinic or apyrimidinic site) endonuclease Human genes 0.000 description 2
- 206010011891 Deafness neurosensory Diseases 0.000 description 2
- 208000012661 Dyskinesia Diseases 0.000 description 2
- 206010013975 Dyspnoeas Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 208000010228 Erectile Dysfunction Diseases 0.000 description 2
- 102100029951 Estrogen receptor beta Human genes 0.000 description 2
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 2
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 2
- 208000001914 Fragile X syndrome Diseases 0.000 description 2
- 102100039401 Gap junction beta-6 protein Human genes 0.000 description 2
- 102100031618 HLA class II histocompatibility antigen, DP beta 1 chain Human genes 0.000 description 2
- 108010045483 HLA-DPB1 antigen Proteins 0.000 description 2
- 206010019375 Helicobacter infections Diseases 0.000 description 2
- 208000031220 Hemophilia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 102100022057 Hepatocyte nuclear factor 1-alpha Human genes 0.000 description 2
- 102100022054 Hepatocyte nuclear factor 4-alpha Human genes 0.000 description 2
- 102100038009 High affinity immunoglobulin epsilon receptor subunit beta Human genes 0.000 description 2
- 101000724725 Homo sapiens 5-hydroxytryptamine receptor 1B Proteins 0.000 description 2
- 101000964051 Homo sapiens 5-hydroxytryptamine receptor 6 Proteins 0.000 description 2
- 101000760570 Homo sapiens ATP-binding cassette sub-family C member 8 Proteins 0.000 description 2
- 101000614701 Homo sapiens ATP-sensitive inward rectifier potassium channel 11 Proteins 0.000 description 2
- 101000768078 Homo sapiens Amine oxidase [flavin-containing] B Proteins 0.000 description 2
- 101000793223 Homo sapiens Apolipoprotein C-III Proteins 0.000 description 2
- 101000892264 Homo sapiens Beta-1 adrenergic receptor Proteins 0.000 description 2
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 2
- 101000856723 Homo sapiens Cytochrome b-245 light chain Proteins 0.000 description 2
- 101000876529 Homo sapiens DNA excision repair protein ERCC-1 Proteins 0.000 description 2
- 101001010910 Homo sapiens Estrogen receptor beta Proteins 0.000 description 2
- 101001045751 Homo sapiens Hepatocyte nuclear factor 1-alpha Proteins 0.000 description 2
- 101001045740 Homo sapiens Hepatocyte nuclear factor 4-alpha Proteins 0.000 description 2
- 101000878594 Homo sapiens High affinity immunoglobulin epsilon receptor subunit beta Proteins 0.000 description 2
- 101001077604 Homo sapiens Insulin receptor substrate 1 Proteins 0.000 description 2
- 101000599629 Homo sapiens Insulin-induced gene 2 protein Proteins 0.000 description 2
- 101001044927 Homo sapiens Insulin-like growth factor-binding protein 3 Proteins 0.000 description 2
- 101000852992 Homo sapiens Interleukin-12 subunit beta Proteins 0.000 description 2
- 101001033312 Homo sapiens Interleukin-4 receptor subunit alpha Proteins 0.000 description 2
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 2
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 2
- 101001116314 Homo sapiens Methionine synthase reductase Proteins 0.000 description 2
- 101001122476 Homo sapiens Mu-type opioid receptor Proteins 0.000 description 2
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 2
- 101000609255 Homo sapiens Plasminogen activator inhibitor 1 Proteins 0.000 description 2
- 101001047090 Homo sapiens Potassium voltage-gated channel subfamily H member 2 Proteins 0.000 description 2
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 2
- 101000621061 Homo sapiens Serum paraoxonase/arylesterase 2 Proteins 0.000 description 2
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 2
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 2
- 101000826399 Homo sapiens Sulfotransferase 1A1 Proteins 0.000 description 2
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 102100025087 Insulin receptor substrate 1 Human genes 0.000 description 2
- 102100037970 Insulin-induced gene 2 protein Human genes 0.000 description 2
- 102100022708 Insulin-like growth factor-binding protein 3 Human genes 0.000 description 2
- 102100036701 Interleukin-12 subunit beta Human genes 0.000 description 2
- 102100039078 Interleukin-4 receptor subunit alpha Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000017792 KCNJ11 Human genes 0.000 description 2
- 108010011185 KCNQ1 Potassium Channel Proteins 0.000 description 2
- 125000000415 L-cysteinyl group Chemical group O=C([*])[C@@](N([H])[H])([H])C([H])([H])S[H] 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 102100029205 Low affinity immunoglobulin gamma Fc region receptor II-b Human genes 0.000 description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 206010027439 Metal poisoning Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102100024614 Methionine synthase reductase Human genes 0.000 description 2
- 102100028647 Mu-type opioid receptor Human genes 0.000 description 2
- 102100029839 Myocilin Human genes 0.000 description 2
- 208000003019 Neurofibromatosis 1 Diseases 0.000 description 2
- 208000024834 Neurofibromatosis type 1 Diseases 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 108700002045 Nod2 Signaling Adaptor Proteins 0.000 description 2
- 101150083031 Nod2 gene Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102100029441 Nucleotide-binding oligomerization domain-containing protein 2 Human genes 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 206010030348 Open-Angle Glaucoma Diseases 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 2
- CXOFVDLJLONNDW-UHFFFAOYSA-N Phenytoin Chemical compound N1C(=O)NC(=O)C1(C=1C=CC=CC=1)C1=CC=CC=C1 CXOFVDLJLONNDW-UHFFFAOYSA-N 0.000 description 2
- 102100022807 Potassium voltage-gated channel subfamily H member 2 Human genes 0.000 description 2
- 102100037444 Potassium voltage-gated channel subfamily KQT member 1 Human genes 0.000 description 2
- 102100022309 Protein KIBRA Human genes 0.000 description 2
- 101710145046 Protein kibra Proteins 0.000 description 2
- 102100039233 Pyrin Human genes 0.000 description 2
- 108010059278 Pyrin Proteins 0.000 description 2
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 2
- 108010011005 STAT6 Transcription Factor Proteins 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 102100022824 Serum paraoxonase/arylesterase 2 Human genes 0.000 description 2
- 102100023980 Signal transducer and activator of transcription 6 Human genes 0.000 description 2
- 102100027198 Sodium channel protein type 5 subunit alpha Human genes 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- 206010065604 Suicidal behaviour Diseases 0.000 description 2
- 102100023986 Sulfotransferase 1A1 Human genes 0.000 description 2
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 2
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 2
- 101800000849 Tachykinin-associated peptide 2 Proteins 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 2
- 102100029152 UDP-glucuronosyltransferase 1A1 Human genes 0.000 description 2
- 101710205316 UDP-glucuronosyltransferase 1A1 Proteins 0.000 description 2
- 102000008219 Uncoupling Protein 2 Human genes 0.000 description 2
- 108010021111 Uncoupling Protein 2 Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 231100000176 abortion Toxicity 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 108010029483 alpha 1 Chain Collagen Type I Proteins 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 208000028587 autosomal dominant Parkinson disease 8 Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- -1 biotin compound Chemical class 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 238000009534 blood test Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 102000054766 genetic haplotypes Human genes 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 201000010536 head and neck cancer Diseases 0.000 description 2
- 208000014829 head and neck neoplasm Diseases 0.000 description 2
- 238000003505 heat denaturation Methods 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 201000001881 impotence Diseases 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 208000008127 lead poisoning Diseases 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 208000004731 long QT syndrome Diseases 0.000 description 2
- 201000004792 malaria Diseases 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- 201000003631 narcolepsy Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 208000019906 panic disease Diseases 0.000 description 2
- 230000002974 pharmacogenomic effect Effects 0.000 description 2
- 229960002036 phenytoin Drugs 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 108091033319 polynucleotide Chemical group 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Chemical group 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 201000006366 primary open angle glaucoma Diseases 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 208000010157 sclerosing cholangitis Diseases 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 231100000879 sensorineural hearing loss Toxicity 0.000 description 2
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 108010045815 superoxide dismutase 2 Proteins 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 208000009999 tuberous sclerosis Diseases 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- GMRQFYUYWCNGIN-ZVUFCXRFSA-N 1,25-dihydroxy vitamin D3 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-ZVUFCXRFSA-N 0.000 description 1
- 102100031236 11-beta-hydroxysteroid dehydrogenase type 2 Human genes 0.000 description 1
- 102100037426 17-beta-hydroxysteroid dehydrogenase type 1 Human genes 0.000 description 1
- 102100027962 2-5A-dependent ribonuclease Human genes 0.000 description 1
- SCVJRXQHFJXZFZ-KVQBGUIXSA-N 2-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purine-6-thione Chemical compound C1=2NC(N)=NC(=S)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)O1 SCVJRXQHFJXZFZ-KVQBGUIXSA-N 0.000 description 1
- 206010000021 21-hydroxylase deficiency Diseases 0.000 description 1
- 102100033875 3-oxo-5-alpha-steroid 4-dehydrogenase 2 Human genes 0.000 description 1
- 102100024959 5-hydroxytryptamine receptor 2C Human genes 0.000 description 1
- 102100036512 7-dehydrocholesterol reductase Human genes 0.000 description 1
- 101150092476 ABCA1 gene Proteins 0.000 description 1
- 102000010553 ALAD Human genes 0.000 description 1
- 101150082527 ALAD gene Proteins 0.000 description 1
- 108700005241 ATP Binding Cassette Transporter 1 Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000004476 Acute Coronary Syndrome Diseases 0.000 description 1
- 102100034336 Acyl-coenzyme A synthetase ACSM1, mitochondrial Human genes 0.000 description 1
- 102100035886 Adenine DNA glycosylase Human genes 0.000 description 1
- 208000017194 Affective disease Diseases 0.000 description 1
- 102100034042 Alcohol dehydrogenase 1C Human genes 0.000 description 1
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 1
- 102100022712 Alpha-1-antitrypsin Human genes 0.000 description 1
- 102100034033 Alpha-adducin Human genes 0.000 description 1
- 102100026882 Alpha-synuclein Human genes 0.000 description 1
- 102100037232 Amiloride-sensitive sodium channel subunit beta Human genes 0.000 description 1
- 102100022534 Amiloride-sensitive sodium channel subunit gamma Human genes 0.000 description 1
- 102100036439 Amyloid beta precursor protein binding family B member 1 Human genes 0.000 description 1
- 208000000103 Anorexia Nervosa Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 102100037320 Apolipoprotein A-IV Human genes 0.000 description 1
- 102100036451 Apolipoprotein C-I Human genes 0.000 description 1
- 101100346892 Arabidopsis thaliana MTPA1 gene Proteins 0.000 description 1
- 102100022278 Arachidonate 5-lipoxygenase-activating protein Human genes 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 102000017915 BDKRB2 Human genes 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 102100021257 Beta-secretase 1 Human genes 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100024167 C-C chemokine receptor type 3 Human genes 0.000 description 1
- 101710149862 C-C chemokine receptor type 3 Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102100034808 CCAAT/enhancer-binding protein alpha Human genes 0.000 description 1
- 108090000835 CX3C Chemokine Receptor 1 Proteins 0.000 description 1
- 102100039196 CX3C chemokine receptor 1 Human genes 0.000 description 1
- 102100038520 Calcitonin receptor Human genes 0.000 description 1
- 108010050543 Calcium-Sensing Receptors Proteins 0.000 description 1
- 102100033561 Calmodulin-binding transcription activator 1 Human genes 0.000 description 1
- 102100025465 Calpain-10 Human genes 0.000 description 1
- 102100032539 Calpain-3 Human genes 0.000 description 1
- 102100033868 Cannabinoid receptor 1 Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 102100032219 Cathepsin D Human genes 0.000 description 1
- 206010050389 Cerebral ataxia Diseases 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 102100034927 Cholecystokinin receptor type A Human genes 0.000 description 1
- 102000020038 Cholesterol 24-Hydroxylase Human genes 0.000 description 1
- 108091022871 Cholesterol 24-Hydroxylase Proteins 0.000 description 1
- 102100032404 Cholinesterase Human genes 0.000 description 1
- 208000006154 Chronic hepatitis C Diseases 0.000 description 1
- 102100024539 Chymase Human genes 0.000 description 1
- 102000050083 Class E Scavenger Receptors Human genes 0.000 description 1
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 102100029136 Collagen alpha-1(II) chain Human genes 0.000 description 1
- 102100036213 Collagen alpha-2(I) chain Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 102100027591 Copper-transporting ATPase 2 Human genes 0.000 description 1
- 102100031673 Corneodesmosin Human genes 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 108010058546 Cyclin D1 Proteins 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- 102100026897 Cystatin-C Human genes 0.000 description 1
- 108010000561 Cytochrome P-450 CYP2C8 Proteins 0.000 description 1
- 102100029359 Cytochrome P450 2C8 Human genes 0.000 description 1
- 102100039205 Cytochrome P450 3A4 Human genes 0.000 description 1
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 102100033195 DNA ligase 4 Human genes 0.000 description 1
- 102100034157 DNA mismatch repair protein Msh2 Human genes 0.000 description 1
- 102100021147 DNA mismatch repair protein Msh6 Human genes 0.000 description 1
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 102100027830 DNA repair protein XRCC2 Human genes 0.000 description 1
- 206010051055 Deep vein thrombosis Diseases 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 102100030012 Deoxyribonuclease-1 Human genes 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- 102100031920 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Human genes 0.000 description 1
- 102100025979 Disintegrin and metalloproteinase domain-containing protein 33 Human genes 0.000 description 1
- 108010045061 Dysbindin Proteins 0.000 description 1
- 102000005611 Dysbindin Human genes 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 102100022207 E3 ubiquitin-protein ligase parkin Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101150097734 EPHB2 gene Proteins 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100033902 Endothelin-1 Human genes 0.000 description 1
- 102100031968 Ephrin type-B receptor 2 Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000007530 Essential hypertension Diseases 0.000 description 1
- 102100035650 Extracellular calcium-sensing receptor Human genes 0.000 description 1
- 208000002476 Falciparum Malaria Diseases 0.000 description 1
- 206010016207 Familial Mediterranean fever Diseases 0.000 description 1
- 108010067741 Fanconi Anemia Complementation Group N protein Proteins 0.000 description 1
- 102100034553 Fanconi anemia group J protein Human genes 0.000 description 1
- 102100027297 Fatty acid 2-hydroxylase Human genes 0.000 description 1
- 102100026748 Fatty acid-binding protein, intestinal Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- 101710150822 G protein-regulated inducer of neurite outgrowth 1 Proteins 0.000 description 1
- 108010038179 G-protein beta3 subunit Proteins 0.000 description 1
- 102100024165 G1/S-specific cyclin-D1 Human genes 0.000 description 1
- 102000017692 GABRA5 Human genes 0.000 description 1
- 102100040837 Galactoside alpha-(1,2)-fucosyltransferase 2 Human genes 0.000 description 1
- 102100037260 Gap junction beta-1 protein Human genes 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 102000012004 Ghrelin Human genes 0.000 description 1
- 101800001586 Ghrelin Proteins 0.000 description 1
- 208000009139 Gilbert Disease Diseases 0.000 description 1
- 208000022412 Gilbert syndrome Diseases 0.000 description 1
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 1
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 102100040890 Glucagon receptor Human genes 0.000 description 1
- 102100022645 Glutamate receptor ionotropic, NMDA 1 Human genes 0.000 description 1
- 102100033398 Glutamate-cysteine ligase regulatory subunit Human genes 0.000 description 1
- 108050005205 Glutaredoxin Proteins 0.000 description 1
- 102100025945 Glutaredoxin-1 Human genes 0.000 description 1
- 102100033039 Glutathione peroxidase 1 Human genes 0.000 description 1
- 229920002306 Glycocalyx Polymers 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 102100039262 Glycogen [starch] synthase, muscle Human genes 0.000 description 1
- 102100038104 Glycogen synthase kinase-3 beta Human genes 0.000 description 1
- 102100035346 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3 Human genes 0.000 description 1
- 102100032610 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Human genes 0.000 description 1
- 102100028967 HLA class I histocompatibility antigen, alpha chain G Human genes 0.000 description 1
- 102100040482 HLA class II histocompatibility antigen, DR beta 3 chain Human genes 0.000 description 1
- 108010052199 HLA-C Antigens Proteins 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010061311 HLA-DRB3 Chains Proteins 0.000 description 1
- 108010024164 HLA-G Antigens Proteins 0.000 description 1
- 102000017911 HTR1A Human genes 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 102100028006 Heme oxygenase 1 Human genes 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 208000003698 Heroin Dependence Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000845090 Homo sapiens 11-beta-hydroxysteroid dehydrogenase type 2 Proteins 0.000 description 1
- 101000806242 Homo sapiens 17-beta-hydroxysteroid dehydrogenase type 1 Proteins 0.000 description 1
- 101001080057 Homo sapiens 2-5A-dependent ribonuclease Proteins 0.000 description 1
- 101000640851 Homo sapiens 3-oxo-5-alpha-steroid 4-dehydrogenase 2 Proteins 0.000 description 1
- 101000822895 Homo sapiens 5-hydroxytryptamine receptor 1A Proteins 0.000 description 1
- 101000761348 Homo sapiens 5-hydroxytryptamine receptor 2C Proteins 0.000 description 1
- 101000928720 Homo sapiens 7-dehydrocholesterol reductase Proteins 0.000 description 1
- 101000780198 Homo sapiens Acyl-coenzyme A synthetase ACSM1, mitochondrial Proteins 0.000 description 1
- 101001000351 Homo sapiens Adenine DNA glycosylase Proteins 0.000 description 1
- 101000780463 Homo sapiens Alcohol dehydrogenase 1C Proteins 0.000 description 1
- 101000780453 Homo sapiens All-trans-retinol dehydrogenase [NAD(+)] ADH1B Proteins 0.000 description 1
- 101000823116 Homo sapiens Alpha-1-antitrypsin Proteins 0.000 description 1
- 101000799076 Homo sapiens Alpha-adducin Proteins 0.000 description 1
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 1
- 101000740426 Homo sapiens Amiloride-sensitive sodium channel subunit beta Proteins 0.000 description 1
- 101000822373 Homo sapiens Amiloride-sensitive sodium channel subunit gamma Proteins 0.000 description 1
- 101000928670 Homo sapiens Amyloid beta precursor protein binding family B member 1 Proteins 0.000 description 1
- 101000806793 Homo sapiens Apolipoprotein A-IV Proteins 0.000 description 1
- 101000928628 Homo sapiens Apolipoprotein C-I Proteins 0.000 description 1
- 101000755875 Homo sapiens Arachidonate 5-lipoxygenase-activating protein Proteins 0.000 description 1
- 101000884385 Homo sapiens Arylamine N-acetyltransferase 1 Proteins 0.000 description 1
- 101000695703 Homo sapiens B2 bradykinin receptor Proteins 0.000 description 1
- 101000894895 Homo sapiens Beta-secretase 1 Proteins 0.000 description 1
- 101000945515 Homo sapiens CCAAT/enhancer-binding protein alpha Proteins 0.000 description 1
- 101000741435 Homo sapiens Calcitonin receptor Proteins 0.000 description 1
- 101000945309 Homo sapiens Calmodulin-binding transcription activator 1 Proteins 0.000 description 1
- 101000984149 Homo sapiens Calpain-10 Proteins 0.000 description 1
- 101000867715 Homo sapiens Calpain-3 Proteins 0.000 description 1
- 101000710899 Homo sapiens Cannabinoid receptor 1 Proteins 0.000 description 1
- 101000983528 Homo sapiens Caspase-8 Proteins 0.000 description 1
- 101000869010 Homo sapiens Cathepsin D Proteins 0.000 description 1
- 101000946804 Homo sapiens Cholecystokinin receptor type A Proteins 0.000 description 1
- 101000943274 Homo sapiens Cholinesterase Proteins 0.000 description 1
- 101000909983 Homo sapiens Chymase Proteins 0.000 description 1
- 101000771163 Homo sapiens Collagen alpha-1(II) chain Proteins 0.000 description 1
- 101000875067 Homo sapiens Collagen alpha-2(I) chain Proteins 0.000 description 1
- 101000777796 Homo sapiens Corneodesmosin Proteins 0.000 description 1
- 101000912205 Homo sapiens Cystatin-C Proteins 0.000 description 1
- 101000927810 Homo sapiens DNA ligase 4 Proteins 0.000 description 1
- 101001134036 Homo sapiens DNA mismatch repair protein Msh2 Proteins 0.000 description 1
- 101000968658 Homo sapiens DNA mismatch repair protein Msh6 Proteins 0.000 description 1
- 101000649306 Homo sapiens DNA repair protein XRCC2 Proteins 0.000 description 1
- 101000806846 Homo sapiens DNA-(apurinic or apyrimidinic site) endonuclease Proteins 0.000 description 1
- 101000992065 Homo sapiens Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial Proteins 0.000 description 1
- 101000720049 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 33 Proteins 0.000 description 1
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 1
- 101000925493 Homo sapiens Endothelin-1 Proteins 0.000 description 1
- 101001034811 Homo sapiens Eukaryotic translation initiation factor 4 gamma 2 Proteins 0.000 description 1
- 101000848171 Homo sapiens Fanconi anemia group J protein Proteins 0.000 description 1
- 101000937693 Homo sapiens Fatty acid 2-hydroxylase Proteins 0.000 description 1
- 101000911337 Homo sapiens Fatty acid-binding protein, intestinal Proteins 0.000 description 1
- 101000918494 Homo sapiens Fatty-acid amide hydrolase 1 Proteins 0.000 description 1
- 101000893710 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 2 Proteins 0.000 description 1
- 101001001388 Homo sapiens Gamma-aminobutyric acid receptor subunit alpha-5 Proteins 0.000 description 1
- 101000616435 Homo sapiens Gamma-sarcoglycan Proteins 0.000 description 1
- 101000954104 Homo sapiens Gap junction beta-1 protein Proteins 0.000 description 1
- 101001040075 Homo sapiens Glucagon receptor Proteins 0.000 description 1
- 101000870644 Homo sapiens Glutamate-cysteine ligase regulatory subunit Proteins 0.000 description 1
- 101001014936 Homo sapiens Glutathione peroxidase 1 Proteins 0.000 description 1
- 101001036130 Homo sapiens Glycogen [starch] synthase, muscle Proteins 0.000 description 1
- 101001014590 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas Proteins 0.000 description 1
- 101001014594 Homo sapiens Guanine nucleotide-binding protein G(s) subunit alpha isoforms short Proteins 0.000 description 1
- 101001079623 Homo sapiens Heme oxygenase 1 Proteins 0.000 description 1
- 101001076604 Homo sapiens Inhibin alpha chain Proteins 0.000 description 1
- 101001077600 Homo sapiens Insulin receptor substrate 2 Proteins 0.000 description 1
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 1
- 101001076418 Homo sapiens Interleukin-1 receptor type 1 Proteins 0.000 description 1
- 101000853012 Homo sapiens Interleukin-23 receptor Proteins 0.000 description 1
- 101000605522 Homo sapiens Kallikrein-1 Proteins 0.000 description 1
- 101001043594 Homo sapiens Low-density lipoprotein receptor-related protein 5 Proteins 0.000 description 1
- 101000984710 Homo sapiens Lymphocyte-specific protein 1 Proteins 0.000 description 1
- 101001098256 Homo sapiens Lysophospholipase Proteins 0.000 description 1
- 101001134216 Homo sapiens Macrophage scavenger receptor types I and II Proteins 0.000 description 1
- 101000760730 Homo sapiens Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000978431 Homo sapiens Melanocortin receptor 3 Proteins 0.000 description 1
- 101000978418 Homo sapiens Melanocortin receptor 4 Proteins 0.000 description 1
- 101001134060 Homo sapiens Melanocyte-stimulating hormone receptor Proteins 0.000 description 1
- 101000615613 Homo sapiens Mineralocorticoid receptor Proteins 0.000 description 1
- 101001028702 Homo sapiens Mitochondrial-derived peptide MOTS-c Proteins 0.000 description 1
- 101001030243 Homo sapiens Myosin-7 Proteins 0.000 description 1
- 101000982032 Homo sapiens Myosin-binding protein C, cardiac-type Proteins 0.000 description 1
- 101000604411 Homo sapiens NADH-ubiquinone oxidoreductase chain 1 Proteins 0.000 description 1
- 101001014610 Homo sapiens Neuroendocrine secretory protein 55 Proteins 0.000 description 1
- 101000634196 Homo sapiens Neurotrophin-3 Proteins 0.000 description 1
- 101000578062 Homo sapiens Nicastrin Proteins 0.000 description 1
- 101001124991 Homo sapiens Nitric oxide synthase, inducible Proteins 0.000 description 1
- 101000896414 Homo sapiens Nuclear nucleic acid-binding protein C1D Proteins 0.000 description 1
- 101000974356 Homo sapiens Nuclear receptor coactivator 3 Proteins 0.000 description 1
- 101001109698 Homo sapiens Nuclear receptor subfamily 4 group A member 2 Proteins 0.000 description 1
- 101000812677 Homo sapiens Nucleotide pyrophosphatase Proteins 0.000 description 1
- 101000992283 Homo sapiens Optineurin Proteins 0.000 description 1
- 101001086210 Homo sapiens Osteocalcin Proteins 0.000 description 1
- 101000976669 Homo sapiens Palmitoyltransferase ZDHHC8 Proteins 0.000 description 1
- 101000612089 Homo sapiens Pancreas/duodenum homeobox protein 1 Proteins 0.000 description 1
- 101001091365 Homo sapiens Plasma kallikrein Proteins 0.000 description 1
- 101000620009 Homo sapiens Polyunsaturated fatty acid 5-lipoxygenase Proteins 0.000 description 1
- 101000974726 Homo sapiens Potassium voltage-gated channel subfamily E member 1 Proteins 0.000 description 1
- 101000974720 Homo sapiens Potassium voltage-gated channel subfamily E member 2 Proteins 0.000 description 1
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 1
- 101000617546 Homo sapiens Presenilin-2 Proteins 0.000 description 1
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 1
- 101001043564 Homo sapiens Prolow-density lipoprotein receptor-related protein 1 Proteins 0.000 description 1
- 101001135385 Homo sapiens Prostacyclin synthase Proteins 0.000 description 1
- 101000605534 Homo sapiens Prostate-specific antigen Proteins 0.000 description 1
- 101001136986 Homo sapiens Proteasome subunit beta type-8 Proteins 0.000 description 1
- 101001136981 Homo sapiens Proteasome subunit beta type-9 Proteins 0.000 description 1
- 101000797903 Homo sapiens Protein ALEX Proteins 0.000 description 1
- 101000971468 Homo sapiens Protein kinase C zeta type Proteins 0.000 description 1
- 101000695187 Homo sapiens Protein patched homolog 1 Proteins 0.000 description 1
- 101001116937 Homo sapiens Protocadherin alpha-4 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000873676 Homo sapiens Secretogranin-2 Proteins 0.000 description 1
- 101000873658 Homo sapiens Secretogranin-3 Proteins 0.000 description 1
- 101000655897 Homo sapiens Serine protease 1 Proteins 0.000 description 1
- 101001041393 Homo sapiens Serine protease HTRA1 Proteins 0.000 description 1
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 1
- 101000777277 Homo sapiens Serine/threonine-protein kinase Chk2 Proteins 0.000 description 1
- 101000742986 Homo sapiens Serine/threonine-protein kinase WNK4 Proteins 0.000 description 1
- 101000869480 Homo sapiens Serum amyloid A-1 protein Proteins 0.000 description 1
- 101001026232 Homo sapiens Small conductance calcium-activated potassium channel protein 3 Proteins 0.000 description 1
- 101000639975 Homo sapiens Sodium-dependent noradrenaline transporter Proteins 0.000 description 1
- 101000713602 Homo sapiens T-box transcription factor TBX21 Proteins 0.000 description 1
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 1
- 101000715050 Homo sapiens Thromboxane A2 receptor Proteins 0.000 description 1
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 description 1
- 101000596771 Homo sapiens Transcription factor 7-like 2 Proteins 0.000 description 1
- 101000764260 Homo sapiens Troponin T, cardiac muscle Proteins 0.000 description 1
- 101000638161 Homo sapiens Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 1
- 101000798130 Homo sapiens Tumor necrosis factor receptor superfamily member 11B Proteins 0.000 description 1
- 101000801228 Homo sapiens Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 1
- 101000690425 Homo sapiens Type-1 angiotensin II receptor Proteins 0.000 description 1
- 101000890951 Homo sapiens Type-2 angiotensin II receptor Proteins 0.000 description 1
- 101000841325 Homo sapiens Urotensin-2 Proteins 0.000 description 1
- 101000777301 Homo sapiens Uteroglobin Proteins 0.000 description 1
- 101000621945 Homo sapiens Vitamin K epoxide reductase complex subunit 1 Proteins 0.000 description 1
- 101000669028 Homo sapiens Zinc phosphodiesterase ELAC protein 2 Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 101150027484 ILI3 gene Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102100025885 Inhibin alpha chain Human genes 0.000 description 1
- 102100025092 Insulin receptor substrate 2 Human genes 0.000 description 1
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 1
- 102100026016 Interleukin-1 receptor type 1 Human genes 0.000 description 1
- 102100036672 Interleukin-23 receptor Human genes 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 102100038297 Kallikrein-1 Human genes 0.000 description 1
- 108010093811 Kazal Pancreatic Trypsin Inhibitor Proteins 0.000 description 1
- 102000001626 Kazal Pancreatic Trypsin Inhibitor Human genes 0.000 description 1
- 125000002059 L-arginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])C(=N[H])N([H])[H] 0.000 description 1
- 102100031775 Leptin receptor Human genes 0.000 description 1
- 101710105045 Lipoprotein E Proteins 0.000 description 1
- 102100021926 Low-density lipoprotein receptor-related protein 5 Human genes 0.000 description 1
- 102100037611 Lysophospholipase Human genes 0.000 description 1
- 101150083522 MECP2 gene Proteins 0.000 description 1
- 229910015837 MSH2 Inorganic materials 0.000 description 1
- 101150069989 MTP2 gene Proteins 0.000 description 1
- 102100034184 Macrophage scavenger receptor types I and II Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 102100024590 Medium-chain specific acyl-CoA dehydrogenase, mitochondrial Human genes 0.000 description 1
- 102100023726 Melanocortin receptor 3 Human genes 0.000 description 1
- 102100023724 Melanocortin receptor 4 Human genes 0.000 description 1
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 1
- 102100030550 Menin Human genes 0.000 description 1
- 102100039124 Methyl-CpG-binding protein 2 Human genes 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 102100021316 Mineralocorticoid receptor Human genes 0.000 description 1
- 102000015494 Mitochondrial Uncoupling Proteins Human genes 0.000 description 1
- 108010050258 Mitochondrial Uncoupling Proteins Proteins 0.000 description 1
- 102100037173 Mitochondrial-derived peptide MOTS-c Human genes 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 102100038934 Myosin-7 Human genes 0.000 description 1
- 102100026771 Myosin-binding protein C, cardiac-type Human genes 0.000 description 1
- 102100038625 NADH-ubiquinone oxidoreductase chain 1 Human genes 0.000 description 1
- 101150079937 NEUROD1 gene Proteins 0.000 description 1
- 102100034559 Natural resistance-associated macrophage protein 1 Human genes 0.000 description 1
- 102000048238 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 108700020297 NeuroD Proteins 0.000 description 1
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 1
- 102100029268 Neurotrophin-3 Human genes 0.000 description 1
- 102100027341 Neutral and basic amino acid transport protein rBAT Human genes 0.000 description 1
- 102100028056 Nicastrin Human genes 0.000 description 1
- 108010008858 Nitric Oxide Synthase Type I Proteins 0.000 description 1
- 102100022397 Nitric oxide synthase, brain Human genes 0.000 description 1
- 101710090055 Nitric oxide synthase, endothelial Proteins 0.000 description 1
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 1
- 206010029748 Noonan syndrome Diseases 0.000 description 1
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 1
- 102100022676 Nuclear receptor subfamily 4 group A member 2 Human genes 0.000 description 1
- 102100039306 Nucleotide pyrophosphatase Human genes 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000019851 Opitz G/BBB syndrome Diseases 0.000 description 1
- 102100031822 Optineurin Human genes 0.000 description 1
- 102100031475 Osteocalcin Human genes 0.000 description 1
- 102100040557 Osteopontin Human genes 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 108091093018 PVT1 Proteins 0.000 description 1
- 102100023491 Palmitoyltransferase ZDHHC8 Human genes 0.000 description 1
- 102100041030 Pancreas/duodenum homeobox protein 1 Human genes 0.000 description 1
- 102100040884 Partner and localizer of BRCA2 Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100033616 Phospholipid-transporting ATPase ABCA1 Human genes 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 201000011336 Plasmodium falciparum malaria Diseases 0.000 description 1
- 229920012196 Polyoxymethylene Copolymer Polymers 0.000 description 1
- 102100022364 Polyunsaturated fatty acid 5-lipoxygenase Human genes 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100022755 Potassium voltage-gated channel subfamily E member 1 Human genes 0.000 description 1
- 102100022752 Potassium voltage-gated channel subfamily E member 2 Human genes 0.000 description 1
- 101150104557 Ppargc1a gene Proteins 0.000 description 1
- 206010036595 Premature delivery Diseases 0.000 description 1
- 102100022033 Presenilin-1 Human genes 0.000 description 1
- 102100022036 Presenilin-2 Human genes 0.000 description 1
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 1
- 108010069820 Pro-Opiomelanocortin Proteins 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 1
- 102100028772 Proline dehydrogenase 1, mitochondrial Human genes 0.000 description 1
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 1
- 102100033075 Prostacyclin synthase Human genes 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 102100038358 Prostate-specific antigen Human genes 0.000 description 1
- 102100035760 Proteasome subunit beta type-8 Human genes 0.000 description 1
- 102100035764 Proteasome subunit beta type-9 Human genes 0.000 description 1
- 102100021538 Protein kinase C zeta type Human genes 0.000 description 1
- 102100028680 Protein patched homolog 1 Human genes 0.000 description 1
- 108091000520 Protein-Arginine Deiminase Type 4 Proteins 0.000 description 1
- 102100035731 Protein-arginine deiminase type-4 Human genes 0.000 description 1
- 241000320126 Pseudomugilidae Species 0.000 description 1
- 206010037437 Pulmonary thrombosis Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 102000001195 RAD51 Human genes 0.000 description 1
- 102000004913 RYR1 Human genes 0.000 description 1
- 108060007240 RYR1 Proteins 0.000 description 1
- 108010068097 Rad51 Recombinase Proteins 0.000 description 1
- 101000629598 Rattus norvegicus Sterol regulatory element-binding protein 1 Proteins 0.000 description 1
- 101100098774 Rattus norvegicus Tap2 gene Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 108700038365 Reelin Proteins 0.000 description 1
- 102000043322 Reelin Human genes 0.000 description 1
- 102100037420 Regulator of G-protein signaling 4 Human genes 0.000 description 1
- 101710140404 Regulator of G-protein signaling 4 Proteins 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 101150057388 Reln gene Proteins 0.000 description 1
- 208000006289 Rett Syndrome Diseases 0.000 description 1
- 108091006619 SLC11A1 Proteins 0.000 description 1
- 108091006737 SLC22A4 Proteins 0.000 description 1
- 108091006736 SLC22A5 Proteins 0.000 description 1
- 108091006296 SLC2A1 Proteins 0.000 description 1
- 108091006299 SLC2A2 Proteins 0.000 description 1
- 108091006300 SLC2A4 Proteins 0.000 description 1
- 108091006311 SLC3A1 Proteins 0.000 description 1
- 108091006239 SLC7A9 Proteins 0.000 description 1
- 101500010645 Schistocerca gregaria Protease inhibitor SGPI-2 Proteins 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- 102100035897 Secretogranin-3 Human genes 0.000 description 1
- 102100032491 Serine protease 1 Human genes 0.000 description 1
- 102100021119 Serine protease HTRA1 Human genes 0.000 description 1
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 1
- 102100031075 Serine/threonine-protein kinase Chk2 Human genes 0.000 description 1
- 102100038101 Serine/threonine-protein kinase WNK4 Human genes 0.000 description 1
- 102100032277 Serum amyloid A-1 protein Human genes 0.000 description 1
- 208000028347 Sinus disease Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 102100037442 Small conductance calcium-activated potassium channel protein 3 Human genes 0.000 description 1
- 102100033929 Sodium-dependent noradrenaline transporter Human genes 0.000 description 1
- 102100023536 Solute carrier family 2, facilitated glucose transporter member 1 Human genes 0.000 description 1
- 102100023537 Solute carrier family 2, facilitated glucose transporter member 2 Human genes 0.000 description 1
- 102100033939 Solute carrier family 2, facilitated glucose transporter member 4 Human genes 0.000 description 1
- 102100036928 Solute carrier family 22 member 4 Human genes 0.000 description 1
- 102100036924 Solute carrier family 22 member 5 Human genes 0.000 description 1
- 101710168942 Sphingosine-1-phosphate phosphatase 1 Proteins 0.000 description 1
- 102000004183 Synaptosomal-Associated Protein 25 Human genes 0.000 description 1
- 108010057722 Synaptosomal-Associated Protein 25 Proteins 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 102100036840 T-box transcription factor TBX21 Human genes 0.000 description 1
- 208000002903 Thalassemia Diseases 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 102100036704 Thromboxane A2 receptor Human genes 0.000 description 1
- 102100029337 Thyrotropin receptor Human genes 0.000 description 1
- 102100035101 Transcription factor 7-like 2 Human genes 0.000 description 1
- 102100026893 Troponin T, cardiac muscle Human genes 0.000 description 1
- 108010091356 Tumor Protein p73 Proteins 0.000 description 1
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 1
- 102100032236 Tumor necrosis factor receptor superfamily member 11B Human genes 0.000 description 1
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 1
- 102100030018 Tumor protein p73 Human genes 0.000 description 1
- 102100026803 Type-1 angiotensin II receptor Human genes 0.000 description 1
- 102100040372 Type-2 angiotensin II receptor Human genes 0.000 description 1
- 102100040198 UDP-glucuronosyltransferase 1-6 Human genes 0.000 description 1
- 102100040213 UDP-glucuronosyltransferase 1A7 Human genes 0.000 description 1
- 101710205340 UDP-glucuronosyltransferase 1A7 Proteins 0.000 description 1
- 101710008381 UGT1A6 Proteins 0.000 description 1
- 102000005918 Ubiquitin Thiolesterase Human genes 0.000 description 1
- 108010005656 Ubiquitin Thiolesterase Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 102000008200 Uncoupling Protein 3 Human genes 0.000 description 1
- 108010021098 Uncoupling Protein 3 Proteins 0.000 description 1
- 102100029097 Urotensin-2 Human genes 0.000 description 1
- 102100031083 Uteroglobin Human genes 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- 102100023485 Vitamin K epoxide reductase complex subunit 1 Human genes 0.000 description 1
- 102100039877 Zinc phosphodiesterase ELAC protein 2 Human genes 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 229960002054 acenocoumarol Drugs 0.000 description 1
- VABCILAOYCMVPS-UHFFFAOYSA-N acenocoumarol Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=C([N+]([O-])=O)C=C1 VABCILAOYCMVPS-UHFFFAOYSA-N 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- PLOPBXQQPZYQFA-AXPWDRQUSA-N amlintide Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)CSSC1)[C@@H](C)O)C(C)C)C1=CC=CC=C1 PLOPBXQQPZYQFA-AXPWDRQUSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000010767 autosomal recessive early-onset Parkinson disease 6 Diseases 0.000 description 1
- 208000012821 autosomal recessive early-onset Parkinson disease 7 Diseases 0.000 description 1
- 102100021298 b(0,+)-type amino acid transporter 1 Human genes 0.000 description 1
- 208000005980 beta thalassemia Diseases 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 208000027119 bilirubin metabolic disease Diseases 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N biotin Natural products N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 201000000053 blastoma Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 208000015294 blood coagulation disease Diseases 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 230000018678 bone mineralization Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 230000009852 coagulant defect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002920 convulsive effect Effects 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 1
- 229940099500 cystamine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229960002069 diamorphine Drugs 0.000 description 1
- 235000020979 dietary recommendations Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 208000001848 dysentery Diseases 0.000 description 1
- 208000025688 early-onset autosomal dominant Alzheimer disease Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 201000008184 embryoma Diseases 0.000 description 1
- 208000028208 end stage renal disease Diseases 0.000 description 1
- 201000000523 end stage renal failure Diseases 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000009207 exercise therapy Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 108010091897 factor V Leiden Proteins 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000000249 far-infrared magnetic resonance spectroscopy Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 210000004517 glycocalyx Anatomy 0.000 description 1
- 201000010235 heart cancer Diseases 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 101150055960 hemB gene Proteins 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 208000010710 hepatitis C virus infection Diseases 0.000 description 1
- 208000036796 hyperbilirubinemia Diseases 0.000 description 1
- 238000009802 hysterectomy Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 230000007786 learning performance Effects 0.000 description 1
- 108010019813 leptin receptors Proteins 0.000 description 1
- 201000006903 long QT syndrome 3 Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 230000007087 memory ability Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 238000010197 meta-analysis Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012775 microarray technology Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 201000000585 muscular atrophy Diseases 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940127234 oral contraceptive Drugs 0.000 description 1
- 239000003539 oral contraceptive agent Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 208000028169 periodontal disease Diseases 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 206010036601 premature menopause Diseases 0.000 description 1
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 108020004930 proline dehydrogenase Proteins 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 208000002852 retinitis pigmentosa 4 Diseases 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 102200142609 rs6025 Human genes 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 108091005418 scavenger receptor class E Proteins 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 208000018556 stomach disease Diseases 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000035782 susceptibility to 1 Hirschsprung disease Diseases 0.000 description 1
- 208000035069 susceptibility to 3 celiac disease Diseases 0.000 description 1
- 208000035581 susceptibility to neural tube defects Diseases 0.000 description 1
- 208000033002 susceptibility to psoriasis 1 Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 208000014001 urinary system disease Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 208000009825 warfarin sensitivity Diseases 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 208000032620 x-linked multiple congenital anomalies-neurodevelopmental syndrome Diseases 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
- G16B50/30—Data warehousing; Computing architectures
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/10—Ploidy or copy number detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/40—Population genetics; Linkage disequilibrium
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B50/00—ICT programming tools or database systems specially adapted for bioinformatics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/172—Haplotypes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Bioethics (AREA)
- Physiology (AREA)
- Ecology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Food Science & Technology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
200847056 九、發明說明: 【先前技術】 人類基因組之定序及人類基因組之其他近期發展已揭露 任何兩人之間的基因組組成具有超過99·9%之相似性。個 體之間DNA之相對少的變異數目引起表型性狀之差異,且 與許多人類疾病、對各種疾病之易感性及對疾病治療之反 應有關。個體之間DNA之變異存在於編碼及非編碼區域兩 者中,且包括在基因組1)1^八序列中之特定基因座處的鹼基 變化,以及DNA之插入及缺失。出現在基因組中之單一鹼 基位置處的隻化係稱為單核普酸多態現象,或"SNp,,。 雖然SNP在人類基因組巾㈣罕見,但其造成個體之間 的大多數DNA序列變異,人類基因組中大約每丨二⑼個鹼 基對出現一次(參看 Internati〇nal HapMap Project, www.hapmap.org)。當可得到更多人類遺傳資訊時,吾人 開始瞭解SNP之複雜性。隨後,基因組中SNp之出現率變 得與各種疾病及病狀之存在及/或對各種疾病及病狀之易 感性相關。 隨著此等相關性及人類遺傳學的其他進展的產生,醫學 及個人健康通常向患者將尤其考慮其基因組資訊來作= 醫學及其他選擇之定製方法發展。因此,需要向個體及其 護理者提供特異於該個體之個人基因組之資訊,從而提供 個人化醫學決定及其他決定。 【發明内容】 本發明提供一種評估個體基因型相關性之方法,其包 127264.doc 200847056 含·· a)獲得該個體之遺傳樣品,…產生該個體之基因組概 況’ c)藉由比較該個體之基因組概況與人類基因型與表型 之相關性之當前資料庫來判定該個體之基因型與表型之相 關性,d)向該個體或該個體之健康護理管理者報告步驟c) 之該等結果,e)當另外人類基因型相關性變得已知時,用 該另外人類基因型相關性更新人類基因型相關性之該資料 庫’ f)藉由比較步驟c)之該個體之基因組概況或其一部分 與該另外人類基因型相關性來更新該個體之基因型相關性 且判疋該個體之另外基因型相關性,及g)向該個體或該個 體之該健康護理管理者報告步驟f)之該等結果。 本發明進一步提供一種評估個體基因型相關性之商業方 法,其包含:a)獲得該個體之遺傳樣品;b)產生該個體之 基因組概況;c)藉由比較該個體之基因組概況與人類基因 型相關性之當前資料庫來判定該個體之基因型相關性;d) 以保狯方式向該個體提供該個體之基因型相關性之該判定 之結果;e)當另外人類基因型相關性變得已知時,用該另 外人類基因型相關性更新人類基因型相關性之該資料庫; f)藉由比較該個體之基因組概況或其一部分與該另外人類 基因型相關性來更新該個體之基因型相關性且判定該個體 之另外基因型相關性,·及g)向該個體或該個體之健康護理 管理者提供該個體之基因型相關性之該更新的結果。 本發月之另一悲樣係一種產生個體之表型概況之方法, 其包含:a)提供一包含規則之規則集,每一規則指示至少 一種基因型與至少一種表型之間的相關性,b)提供一包含 127264.doc 200847056 複數個個體中之每一者之基因組概況的資料集,其中每一 基因組概況包含複數個基因M ; e)用至少—條新規則定期 更新該規則集’其中該至少一條新規則指示先前在該規則 集中並不彼此相關之基因型與表型之間的相關性;d)將每 -新規則應用於該等個體中之至少—者之該基因組概況, 藉此使該個體之至少一種基因型與至少一種表型相關,且 視情況e)產生一包含該個體之該表型概況之報告。 本《月亦提供-種系統,其包含a) 一包含規則之規則 集,每-規則指示至少-種基因型與至少一種表型之間的 相關f生,b)用至少-條新規則定期更新該規則集之代瑪, 其中該至少-條新規則指示先前在該規則集中並不彼此相 關之基因型與表型之間的相關性;c) 一包含複數個個體之 基因組概況之資料庫;d)將該規則集應用於個體之該等基 因組概況以判定該等個體之表型概況的代碼;及〇產生每 一個體之報告之代碼。 本發明之另一態樣係以保密或非保密方式經由網路傳送 上文所述之方法及系統。 以引用的方式併入 本說明書中提及之所有公開案及專利申請案均以引用的 方式併入本文中,該引用的程度就如同已特定及個別地將 各個公開案或專利申請案以引用的方式併入一般。 【實施方式】 本發明提供用於基於個體或個體組之儲存基因組概況來 產生表51概’兄’及用於基於該等儲存基因組概況來容易地 127264.doc 200847056200847056 IX. INSTRUCTIONS: [Prior Art] The sequencing of the human genome and other recent developments in the human genome have revealed that the genome composition of any two people has a similarity of more than 99.9%. The relatively small number of variations in DNA between individuals causes differences in phenotypic traits and is associated with many human diseases, susceptibility to various diseases, and response to disease treatment. Variations in DNA between individuals exist in both coding and non-coding regions, and include base changes at specific loci in the genome 1) 1 VIII sequence, as well as insertions and deletions of DNA. The only line that appears at the single base position in the genome is called the mononucleotide polymorphism, or "SNp,. Although SNPs are rare in human genome towels (4), they cause most DNA sequence variations between individuals, occurring approximately once every two (9) base pairs in the human genome (see Internati〇nal HapMap Project, www.hapmap.org) . When more human genetic information is available, we begin to understand the complexity of SNPs. Subsequently, the incidence of SNp in the genome becomes associated with the presence of various diseases and conditions and/or susceptibility to various diseases and conditions. With these correlations and other advances in human genetics, medical and personal health often develops patient-specific methods for medical and other choices, especially considering their genomic information. Therefore, it is desirable to provide individuals and their caregivers with information specific to the individual's personal genome, thereby providing personalized medical decisions and other decisions. SUMMARY OF THE INVENTION The present invention provides a method for assessing genotype correlation of an individual, which comprises 127264.doc 200847056 containing a) obtaining a genetic sample of the individual, ...generating a genomic profile of the individual' c) by comparing the individual The current database of genomic profiles and human genotypes and phenotypes to determine the genotype and phenotype of the individual, d) report the step c) to the individual or the individual's health care manager Etc. E) when the additional human genotype correlation becomes known, the database of human genotype correlations is updated with the additional human genotype correlation 'f) by comparing the individual's genome with step c) The profile or a portion thereof is associated with the additional human genotype to update the genotype association of the individual and to determine additional genotype correlations for the individual, and g) to report the step to the individual or the health care manager of the individual f) the results. The invention further provides a commercial method for assessing genotype correlation in an individual comprising: a) obtaining a genetic sample of the individual; b) generating a genomic profile of the individual; c) comparing the genomic profile of the individual with the human genotype The current database of correlations to determine the genotype correlation of the individual; d) the outcome of the determination of the genotype correlation of the individual to the individual in a manner of conservation; e) when additional human genotype correlation becomes When known, the database of human genotype correlations is updated with the additional human genotype correlation; f) updating the individual's gene by comparing the individual's genomic profile or a portion thereof to the additional human genotype Type correlation and determining additional genotype correlations for the individual, and g) providing the individual or the individual's health care manager with the results of the update of the individual's genotype correlation. Another sadness of this month is a method of generating an phenotypic profile of an individual comprising: a) providing a rule set containing rules, each rule indicating a correlation between at least one genotype and at least one phenotype , b) providing a data set comprising a genomic profile for each of the plurality of individuals 127264.doc 200847056, wherein each genomic profile comprises a plurality of genes M; e) periodically updating the rule set with at least a new rule' Wherein the at least one new rule indicates a correlation between genotypes and phenotypes that were not previously related to each other in the set of rules; d) applying a per-new rule to the genomic profile of at least one of the individuals, Thereby at least one genotype of the individual is associated with at least one phenotype and, depending on the situation e), a report containing the phenotypic profile of the individual is generated. This month also provides a system that includes a) a set of rules containing rules, each rule indicating a correlation between at least one genotype and at least one phenotype, and b) periodically using at least a new rule Updating the dynasty of the rule set, wherein the at least one new rule indicates a correlation between a genotype and a phenotype that were not previously related to each other in the rule set; c) a database containing a genomic profile of the plurality of individuals d) a code that applies the rule set to the genomic profiles of the individuals to determine the phenotypic profiles of the individuals; and 代码 generates a code for each individual's report. Another aspect of the present invention is to transmit the method and system described above via a network in a secure or non-secure manner. All publications and patent applications mentioned in this specification are hereby incorporated by reference in their entirety in the extent of the the the the the the The way it is incorporated into the general. [Embodiment] The present invention provides for generating a table genomic profile based on an individual or an individual group to generate a table </ br> and for easily based on the stored genomic profile. 127264.doc 200847056
產生原始及更新表型概況的方法及系統。基因組概況係藉 由自獲自個體之生物樣品判定基因型來產生。獲自個體之 生物樣品可為自其可得到遺傳樣品之任何樣品。樣品可來 自口腔拭子、唾液、血液、頭髮或任何其他類型之組織樣 接著了自生物樣品判定基因型。基因型可為任何遺傳 k異體或生物標記,例如單核苷酸多態現象(SNps)、單型 (haplotypes)或基因組之序列。基因型可為個體之整個基因 、、且序列。基因型可由產生成千或上百萬資料點之高產量分 析仔到,例如用於大多數或所有已知SNp之微陣列分析。 在其他實施例中,基因型亦可藉由高產量定序來判定。 基因型形成個體之基因組概況。將基因組概況用數位方 法儲存且在任何時刻容易存取以產生表型概況。藉由應用 使基因型與表型相關或關聯之規則來產生表型概況。規則 可基於證明基因型與表型之間的相關性的科學研究來產 生。相關性可由一或多位專家之委員會驗證或確認。藉由 將規則應用至個體之基因組概況,可判定個體之基因型與 表型之間的關聯。個體之表型概況將具有此判定。該判定 可為個體之基因型與給定表型之間的正關耳葬,以致該個體 具有給定表型或將產生該表型。或者,可判定為個體並不 具有或不會產生給表型。在其他實施例中,判定可為個 體具有或將產生表型之危險因數'估計或可能性。 判定可基於許多㈣產生,❹複數絲則可應用於基 因組概況以歡個體之基因型與特定表型之關聯。判定亦 可併有特異於個體之因素,諸如種族、性別、生活方式 127264.doc 200847056 (例如飲食與锻煉習慣)、年齡、環境(例如居住場所)、家 奴病史、個人病史及其他已知表型。特定因 現有規則以包含此等因素來達成。或者,獨立規: 猎此等因素產生且在已應用現有規則後應 表型判定。 ㈡版< ^型可包括任何可量測性狀或特徵,諸如對特定疾病之 心理:或對藥劑治療之反應'。可包括之其他表型為身體及 二諸如身高、體重、毛色、眼睛顏色、曬黑敏感 卜體里、記憶力、智力、樂觀程度及一般因素。表型亦 可包括與其他個體或生物體之遺傳比較。舉例而言,個體 可對其基因組概況與名人之基因組概況之間的相似性感興 趣。其亦可將其基因組概況與諸如細菌、植物或其他動物 之其他生物體相比較。 同時’所判定之個體之相關表型的集合包含個體之表型 概況。表型概況可藉由線上入口存取。或者,當表型概況 在特定時間存在時,其可以紙張形式提供,隨後更新亦以 紙張形式提供。表型概況亦可由線上人Π提供。該線上入 口可視情況為保密線上入口。可向用戶提供表型概況之存 取,該用戶為預訂產生表型與基因型之間的相關性之規 則、判定個體之基因組概況、將該等規則應用於基因組概 況及產生個體之表型概況之服務的個體。亦可向非用戶提 供存取,#中其可受限存取其表型概況及/或報告,或可 亡有所產生之初始報告或表型概況,但更新報告將僅在購 貝預疋後產生。諸如護理者、醫師及遺傳顧問之健康護理 127264.doc 200847056 管理者及提供者亦可存取表型概況。 在本發明之另一態樣中’可產生用戶及非用 概況且用數位方法儲存之,但表型概況及報告僅 限於用戶。在另一變體中,田“ u 予取』僅 戶及非用戶兩者均可存取其 基因型及表型概況,但對於 、 具有所產生之受限報二限存取,或 又限報口,而用戶具有全部存取且可具有所 產生之王錢告。在另_實施例中,用戶及非用戶兩者起Methods and systems for generating raw and updated phenotypic profiles. Genomic profiles are generated by determining genotypes from biological samples obtained from individuals. A biological sample obtained from an individual can be any sample from which a genetic sample can be obtained. The sample may be from a buccal swab, saliva, blood, hair or any other type of tissue sample followed by a biological sample to determine the genotype. The genotype can be any genetic k allogeneic or biomarker, such as a single nucleotide polymorphism (SNps), a haplotypes, or a sequence of genomes. The genotype can be the entire gene, and sequence of the individual. Genotypes can be analyzed by high yields that produce thousands or millions of data points, such as for microarray analysis of most or all known SNp. In other embodiments, the genotype can also be determined by high yield sequencing. The genotype forms the genomic profile of the individual. The genomic profile is stored in a digital manner and is readily accessible at any time to produce a phenotypic profile. A phenotypic profile is generated by applying rules that correlate or correlate genotypes with phenotypes. The rules can be based on scientific studies that demonstrate the correlation between genotype and phenotype. Relevance can be verified or confirmed by a committee of one or more experts. The association between an individual's genotype and phenotype can be determined by applying the rules to the individual's genomic profile. The phenotypic profile of the individual will have this determination. The determination can be a positive burial between the genotype of the individual and a given phenotype such that the individual has a given phenotype or will produce the phenotype. Alternatively, it can be determined that the individual does not have or does not produce a phenotype. In other embodiments, the determination may be a risk factor 'estimation or likelihood that the individual has or will produce a phenotype. The decision can be based on a number of (4) generations, and the complex number of filaments can be applied to the genome set to correlate the genotype of the individual with a particular phenotype. Judgment can also be specific to individuals, such as race, gender, lifestyle 127264.doc 200847056 (eg diet and exercise habits), age, environment (eg living place), family slave history, personal medical history and other known Phenotype. Specific factors Existing rules are achieved by including these factors. Alternatively, independent rules: hunting such factors are generated and should be phenotyped after the existing rules have been applied. (b) Edition <^ Type may include any measurable trait or characteristic, such as psychology for a particular disease: or response to a pharmaceutical treatment'. Other phenotypes that may be included are the body and two such as height, weight, coat color, eye color, tanning sensitivity, memory, intelligence, optimism, and general factors. The phenotype may also include genetic comparisons with other individuals or organisms. For example, an individual may be interested in similar sensitivities between his or her genomic profile and a celebrity's genomic profile. It can also compare its genomic profile to other organisms such as bacteria, plants or other animals. At the same time, the set of related phenotypes of the individuals determined comprises the phenotypic profile of the individual. The phenotypic profile can be accessed via an online portal. Alternatively, when the phenotypic profile is present at a particular time, it can be provided in paper form, and subsequent updates are also provided in paper form. The phenotypic profile can also be provided by online people. This online entry can be viewed as a secure online entry. The user may be provided with access to a phenotypic profile for the process of generating a correlation between phenotype and genotype, determining the genomic profile of the individual, applying the rules to the genomic profile, and generating an phenotypic profile of the individual The individual serving. It may also provide access to non-users, which may have limited access to their phenotypic profiles and/or reports, or may have an initial report or phenotypic profile that may result in a death, but the updated report will only be available upon purchase. Produced afterwards. Health care such as caregivers, physicians and genetic counselors 127264.doc 200847056 Managers and providers can also access phenotypic profiles. In another aspect of the invention, user and non-use profiles can be generated and stored in a digital manner, but phenotypic profiles and reports are limited to the user. In another variation, the field “u prefetched” both the household and the non-user can access the genotype and phenotypic profile, but for the limited access, or limited Reporting, and the user has full access and can have the generated money. In another embodiment, both the user and the non-user
初均可具有全部存取,或全部初始報告,但僅用戶可基於 其儲存之基因組概況而存取更新報告。 在本發明之另一態樣中’將有關多個遺傳標記與一或多 種疾病或病狀之關聯之資訊組合且對其進行分析以產生遺 傳複合指數(GCI)計分。此計分併有已知危險因數,以及 其他資訊及假定,諸如對偶基因頻率及疾病流行率。GCI 可用於疋性地估計疾病或病狀與遺傳標記集之組合效應的 關聯。GCI計分可用於向未在遺傳學方面訓練之人員提供 基於當前科學研究將其何種疾病之㈣危險與相關群體^ 較而得之可靠(即穩固)、可理解及/或直觀意義。GCI計分 可用於產生GCI Plus計分。GCI Plu_分可含有所有⑽假 定,包括病狀之危險(諸如壽命危險)、年齡限定流行率及/ 或年齡限定發病率。接著個體之壽命危險可計算為Gd P1US計分,其與個體之GCI計分除以平均Gci計分成比例。 平均GCI計分可自一組類似祖先背景之個體判定,例如一 組高加索人、亞洲人、東印度人或另一组具有共同祖先背 景之個體。各組可包括至少5、、15、2〇、25、3〇、 127264.doc -11- 200847056 35、40、45、50、55或60個個體。在一些實施例中,平均 值可自至少75、80、95或1〇〇個個體判定。GCI Plus計分 可藉由判定個體之GCI計分、將GCI計分除以平均相對危 險且乘以病狀或表型之壽命危險來判定。舉例而言,使用 來自圖22及/或圖25之資料及圖24中之資訊來計算諸如圖 19中之GCI Plus計分。 本發明包含使用如本文中所述之GCI計分,且一般技術Initial access can be full, or all initial reports, but only the user can access the update report based on the stored genomic profile. In another aspect of the invention, information relating to the association of a plurality of genetic markers with one or more diseases or conditions is combined and analyzed to produce a Genetic Composite Index (GCI) score. This score has a known risk factor, as well as other information and assumptions, such as the frequency of the dual gene and the prevalence of the disease. GCI can be used to quantitatively estimate the association of a disease or condition with the combined effect of a genetic marker set. The GCI score can be used to provide a person who is not trained in genetics with a reliable (ie, stable), understandable, and/or intuitive meaning based on the current scientific study of the risk of the disease (4) and the relevant group. GCI scores can be used to generate GCI Plus scores. The GCI Plu_ score may contain all (10) assumptions, including the risk of the condition (such as the risk of life), age-limited prevalence, and/or age-limited morbidity. The life risk of the individual can then be calculated as the Gd P1US score, which is divided by the individual's GCI score divided by the average Gci score. The average GCI score can be determined from a group of individuals with similar ancestral backgrounds, such as a group of Caucasians, Asians, East Indians, or another group of individuals with a common ancestor background. Each group can include at least 5, 15, 15, 2, 25, 3, 127, 264.doc -11 - 200847056 35, 40, 45, 50, 55 or 60 individuals. In some embodiments, the average value can be determined from at least 75, 80, 95, or 1 individual. The GCI Plus score can be determined by determining the individual's GCI score, dividing the GCI score by the average relative risk and multiplying the risk of life by the condition or phenotype. For example, the information from Figure 22 and/or Figure 25 and the information in Figure 24 are used to calculate a GCI Plus score such as that in Figure 19. The present invention encompasses the use of GCI scores as described herein, and general techniques
者將容易地瞭解GCI Plus計分或其變體替代如本文中所述 之GCI計分之用途。 灵施例中,對於母一所關注之疾病或病狀產生 二=。可收集此等GCHf分以形成個體之危險概況。 。十刀可用數位方法儲存,以致其在任何時刻容易存取從而 產生危險概況。危險概況可藉由廣泛疾病種類分類,諸如 癌症、心臟病、代謝障礙、精神病症、骨病或老年發作 症。廣泛疾病種類可進-步分為亞类員。舉例而t,對於諸 如癌症之廣泛種類而言,可列出癌症之亞類,諸如按類型 (肉瘤、癌瘤或白血病等)或按組織特異性(背部、乳房、卵It will be readily appreciated that the GCI Plus score or variant thereof can be used in place of the GCI score as described herein. In the case of the spirit, two diseases are produced for the disease or condition of the mother. These GCHf scores can be collected to form an individual's risk profile. . Ten knives can be stored in a digital way so that they are easily accessible at any time to create a dangerous profile. Risk profiles can be classified by a wide range of disease types, such as cancer, heart disease, metabolic disorders, psychiatric disorders, bone disorders or senile episodes. A wide range of disease types can be further divided into sub-categories. For example, t, for a wide variety of cancers, may list subtypes of cancer, such as by type (sarcoma, carcinoma or leukemia, etc.) or by tissue specificity (back, breast, egg)
巢、精巢、前列腺、骨、淋巴結、騰腺、食管 P 腦、肺、腎等)。 在另-實施例中,產生個體之GCI計分,此向 於個體罹患至少—種疾病或病二” f 之:感性之危險的容易理解之資訊。在一實=或= =病或病狀產生多個⑽計分。在另-實施例中,夢 、、入口存取至少-個⑽計分。或者,至少—個⑽ 127264.doc -12- 200847056 2可以紙張形式提供’隨後更新亦以紙張形式提供。在 ^例中’肖用戶提供至少—個Gci計分之存取,該用 戶為預訂服務之個體。在—#代實施財,向㈣戶存提 供存取,丨中其可受限存取其GCI計分中之至少—者,或 其可具有關於其所產生之⑽計分中之至少—者的初始報 告’但更新報告將僅在購買預定後產生。在另一實施例Nest, testis, prostate, bone, lymph nodes, adrenal gland, esophagus P brain, lung, kidney, etc.). In another embodiment, the individual's GCI score is generated, which is an easy-to-understand information that the individual suffers from at least one disease or disease "f": a risk of sensibility. In a real = or = = disease or condition A plurality of (10) scores are generated. In another embodiment, the dream, the entrance access is at least one (10) score. Or, at least one (10) 127264.doc -12-200847056 2 can be provided in paper form. Provided in paper form. In the example, 'Xiao user provides at least one Gci score access, the user is the individual who subscribes to the service. In the implementation of the ## generation, the (4) households provide access, which can be subject to Access to at least one of its GCI scores, or it may have an initial report on at least one of the (10) scores it generates, but the update report will only be generated after the purchase is scheduled. In another embodiment
中’諸如護理者、醫師及遺傳顧問之健康護理管理者及提 供者亦可存取個體GCI計分中之至少一者。 亦可能存在基礎預定模式。基礎預定可提供表型概況, 其中用戶可選擇將所有現有規則應用於其基因組概況,或 將現有規則之子集應用於其基因組概況。舉例而言,其可 選擇僅將規則應用於可起作用之疾病表型。基礎預定可在 預定種類中具有不同級別。舉例而言,不同級別可視用戶 需要與其基因組概況有相關之表型數目或可存取其表型概 況之人數而定。基礎預定之另一級別可將諸如已知表型 (諸如年齡、性別或病史)之特異於個體之因素併入其表型 概況中。基礎預定之又一級別可允許個體產生疾病或病狀 之至少一個GCI計分。若由於用於產生至少一個GCI計分 之分析發生變化而使得至少一個GCI計分存在任何變化, 則此級別之變體可進一步允許個體說明待產生之疾病或病 狀之至少一個GCI計分的自動更新。在一些實施例中,可 藉由電子郵件、聲音訊息、電文、郵遞或傳真告知個體自 動更新。 用戶亦可產生具有其表型概況以及關於表型之資訊(諸 127264.doc -13 - 200847056 如關於表型之遺傳及醫學資訊)的報告。舉例而言,群體 T表型之流行率、用於相關性之遺傳變異體、引起表型之 刀子機制、用於表型之療法、用於表型之治療選擇及預防 性作用可包括在報告中^在其他實施例中,報告亦可包括 以下資訊:諸如個冑之基因型與諸如名人或其他著名人士 八他個體之基因型之間的相似性。關於相似性之資訊可 (不限於)同源性百分比、相同變異體之數目及可能類 似之表型。此等報告可進一步含有至少一個⑽計分。Health care managers and providers such as caregivers, physicians, and genetic counselors may also access at least one of the individual GCI scores. There may also be a basic reservation mode. The base schedule provides a phenotypic profile in which the user can choose to apply all existing rules to their genomic profile, or apply a subset of existing rules to their genomic profile. For example, it may choose to apply only rules to a working disease phenotype. The base reservation can have different levels in the predetermined category. For example, different levels of visual user need to be related to the number of phenotypes associated with their genomic profile or the number of people who can access their phenotypic profile. Another level of underlying planning may incorporate factors specific to the individual such as a known phenotype (such as age, gender, or medical history) into their phenotypic profile. A further level of base reservation may allow an individual to generate at least one GCI score for a disease or condition. If there is any change in at least one GCI score due to a change in the analysis used to generate the at least one GCI score, then a variation of this level may further allow the individual to account for at least one GCI score of the disease or condition to be produced. Automatic update. In some embodiments, the individual may be automatically updated by email, voice message, message, post or fax. Users can also generate reports with their phenotypic profiles and information about phenotypes (see 127264.doc -13 - 200847056 for phenotypic genetic and medical information). For example, the prevalence of population T phenotypes, genetic variants for correlation, knife mechanisms that cause phenotypes, therapies for phenotypes, therapeutic options for phenotypes, and preventive effects can be included in the report. In other embodiments, the report may also include information such as the similarity between a genotype of a scorpion and a genotype such as a celebrity or other famous person. Information about similarity may (without limitation) percentage of homology, number of identical variants, and possibly a phenotype. These reports may further contain at least one (10) score.
右線上存取報告,則報告亦可提供通向具有關於表型之 其他貝訊之其他站點的鏈路,通向具有相同表型或一或多 種類似表型之人員之線上支援群及留言板的鏈路,通向線 上遺傳顧問或醫師之鏈路,或通向電話或親自安排預約遺 傳顧問或醫師之鏈路。若報告為紙張形式,則資訊可為上 述鏈路之網站地點,或遺傳顧問或醫師之電話號碼及地 主用戶亦可選擇在其表型概況中包括何種表型及在其報 告中包括何種資訊。表型概況及報告亦可由個體之健康護 ΐ官理者或提供者存取,諸如護理者、醫師、精神病學 豕、心理學家、治療學家或遺傳顧問。用戶可能夠選擇是 :由該個體之健康護理管理者或提供者存取表型概況及報 σ或其部分。 本發明亦^括優該収敎。優該狀預定在產 初始表型概況及報告制數位方法維護其基因組概況, ::用戶提供產生具有自最新研究更新之相關性之表型概 / 的機會。在另一實施例令,用戶具有產生具有自 127264.doc -14- 200847056 取新研究更新之相關性之危險概況及報告的機會。當研究 揭路基因型與表型、疾病或病狀之間的新相關性時,將基 於此等新相關性產生新規則且其可應用於已儲存且在維護 中之基因組概況。新規則可使先前不與任何表型相關之基 因型相關,使基因型與新表型相關,?文良現有相關性,或 提供基於基因型與疾病或病狀之間的新發現關聯來調節 GCI计分的基準。可經由電子郵件或其他電子方式告知用 戶新相關性,且若表型為受關注的,則其可選擇用新相關 φ 性更新其表型概況。用戶可選擇預定,I中其為每次更 新、多次更新或歷時指定時段(例如3個月、6個月或1年)之 無限次更新支付費用。另一預定級別可為每當基於新相關 性產生新規則時用戶使其表型概況或危險概況自動更新, 以替代個體選擇時間更新其表型概況或危險概況。 在預定之另一態樣中,用戶可指引非用戶去使用產生表 型與基因型之間的相關性之規則、判定個體之基因組概 況、將該等規則應用於基因組概況及產生個體之表型概況 _ 的服務。藉由用戶之指引可給予用戶預定服務或升級其現 有預定之折扣價格。經指引之個體可具有受限時間之自由 存取或具有折扣預定價格。 可產生人類及非人類個體之表型概況及報告以及危險概 況及報告。舉例而言,個體可包括其他哺乳動物,諸如 牛、馬、綿羊、犬或貓。如本文所使用之用戶為藉由購買 一或多種服務或為其支付費用而預訂服務之人類個體。服 務可包括(但不限於)以下服務中之一或多者··判定其或另 127264.doc -15- 200847056 一個體(諸如用戶之孩子或寵物)之基因組概況,獲得表型 概況,更新表型概況,及獲得基於其基因組及表型概況之 報告。 在本發明之另一態樣中,"區域調配”機制可自個體集中 在一起以產生個體之表型概況。在較佳實施例中,個體可 具有基於遺傳資訊產生之初始表型概況。舉例而言,產生 包括不同表型之危險因數以及所建議之治療或預防措施的 初始表型概況。舉例而言,該概況可包括關於特定病狀之 可用藥療法之資訊及/或關於飲食變化或鍛煉療法之建 議。個體可選擇拜訪醫師或遺傳顧問或經由網路入口或電 話聯繫醫師或遺傳顧問以討論其表型概況。個體可決定採 用特疋行動方案,例如採用特定藥療法、改變其飲食等。 接著個體可隨後提交生物樣品以評估其身體狀況之變化 及危險因數之可能變化。個體可藉由直接將生物樣品提交 給產生基因組概況及表型概況之設施(或相關聯設施,諸 如藉由產生遺傳概況及表型概況之組織與吾人簽訂合同之 設施)來判定變化。或者,個體可使用,,區域調配"機制,其 中個體可將其唾液、血液或其他生物樣品提交至其家中之 偵測裝置,藉由第三方對其進行分析,且傳送資料以併入 另一表型概況中。舉例而言,個體可接收基於其報告個體 患心肌梗塞(MI)之增加壽命危險之遺傳資料的初始表型報 告。該報告亦可具有關於降低MI危險之預防措施之建議, 諸如膽固醇降低藥及改變飲食。個體可選擇聯繫遺傳顧問 或醫師以討論該報告及預防措施以及決定改變其飲食。採 127264.doc -16 - 200847056 用新飲艮之^又時期後,個體可拜訪其私人醫師以量測其 膽固醇含1。可將新資訊(膽固醇含量)傳送(例如經由網際 路)至〃有基因組資訊之組織,且使用新資訊產生個體 之新表型概況,以及心肌梗塞及/或其他病狀之新危險因 數。 個體亦可使用”區域調配,,機制或直接機制來判定其個體 對特疋藥療法之反應。舉例而言,個體可量測其對藥劑之 反應,且可使用資訊來判定更有效之治療。可量測之資訊 包括(但不限於)代謝物含量、葡萄糖含量、離子含量(例 如,妈、鈉、鉀、鐵)、維生素、血細胞計數、體重指數 (BMI)、蛋白質含量、轉錄物含量、心跳速率等,其可藉 由容易得到之方法測定且可作為演算法中之因數以與初始 基因組概況組合以判定改良之總危險估計計分。 術δ吾生物樣品”係指可自個體分離之任何生物樣品,包 括自其可分離遺傳物質之樣品。如本文所使用,”遺傳樣 品"係指自個體獲得或源自個體之DNA及/或RNA。 如本文所使用,術語”基因組”意欲意謂人類細胞核中所 見之染色體DNA之全部補體。術語,,基因組DNA"係指天然 存在於人類細胞核中之一或多種染色體DNA分子,或染色 體DNA分子之一部分。 術語”基因組概況”係指關於個體基因之資訊集,諸如特 定SNP或突變之存在或不存在。基因組概況包括個體之基 因型。基因組概況亦可大體上為個體之完整基因組序列。 在一些實施例中,基因組概況可為至少60%、80%或95〇/〇 127264.doc •17- 200847056 的個體之完整基因組序列。基因組概況可為大約i〇〇%的 個體之元整基因組序列。提及基因組概況,,,其一部分,,係 指整個基因組之基因組概況之子集的基因組概況。 術語”基因型”係指個體之01^之特定基因組成。基因型 可包括個體之遺傳變異體及標記。遺傳標記及變異體可包 括核苷酸重複、核苷酸插入、核苷酸缺失、染色體易位、 染色體重複、或複本數(copy number)變異。複本數變異可 包括微衛星重複、核苷酸重複、著絲粒重複或端粒重複。 基因型亦可為SNPs、單型(hapl〇types)或雙型(dipl〇types)。 一個單型可指一個基因座或一個對偶基因。單型亦為單一 染色分體(chromatid)上統計上相關聯之單核苷酸多態現象 (SNPs)集。一個雙型為—組單型。 術語單核苷酸多態現象或"SNP"係指染色體上之特定基 因座,其展現相對於存在於人類群體内之該基因座上之含 氮鹼基的一致性之變異性,諸如至少百分之一(1%)。舉例 而言,當一個體可能在給定基因之特定核苷酸位置處具有 腺苷(A)時,另一者可能在此位置處具有胞嘧啶(c)、鳥嘌 呤(G)或胸腺嘧啶(T),以致在該特定位置處存在SNp。 如本文所使用,術語"SNP基因組概況"係指給定個體之 DNA在整個個體之整個基因組DNA序列中在SNp位點處的 鹼基含量。"SNP概況"可指整個基因組概況,或可指其一 部分,諸如可與特定基因或基因集相關聯之更局部化之 SNP概況。 術語"表型"用於描述個體之數量性狀或特徵。表型包括 127264.doc -18- 200847056 (但不限於)醫學及非1學病狀1學病狀包括疾病及病 症。表型亦可包括身體性狀’諸如毛色;生理性狀,諸如 肺活量;心、理性狀’諸如記憶料力;情緒性狀,諸如控 制憤怒之能力;種族,諸如種族背景;家譜,諸如個體之 出生地;及年齡,諸如預期年齡或不同表型之起始年齡。 表型亦可為單基_ ’其中認為—個基因可與表型相關; 或多基因的,其中多於一個基因與表型相關。 "規則"用於定義基因型與表型之間的相關性。規則可藉 由數值定義相關性,例如藉由百分比、危險因數或信賴計 分。規則可併有複數個基因型與表型之相關性。"規則集" 包含多於-條規則。”新規則”可為指示基因型與表型之間 的相關性之規則,對於該相關性當前並不存在規則。新規 則可使不相關之基因型與表型相關。新規則亦可使已與表 型相關之基因型與先前尚未與其相關之表型相關。"新規 則”亦可為藉由包括另一規則之其他因t改良之現有規 則。現有規則可由於個體之已知特徵(諸如種族、家譜、 地理、性別、年齡、家族史或其他先前判定之表型)而得 以改良。 使用”基因型相關性”在本文中係指個體之基因型之間的 統計相關性(諸如特定突變之存在),及傾向於諸如特定疾 病病狀身體狀恶及/或精神狀態之表型的可能性。在 特定基因型存在下觀察到特定表型之頻率決定基因型相關 性或特定表型之可能性的程度。舉例而言,如本文中所詳 述,產生脂蛋白元以同功異型物之SNP與傾向於早期發作 127264.doc -19· 200847056 阿茲海默氏病(Alzheimer’s disease)相關。基因型相關性亦 可指不傾向於某一表型之相關性,或負相關性。基因型相 關性亦可表示個體具有表型或傾向於具有表型之估計。基 因型相關性可由數值表示,諸如百分比、相對危險因數、 效應估計或信賴計分。 術語"表型概況π係指複數個與個體之基因型相關之表型 的集合。表型概況可包括藉由將一或多條規則應用於基因 組概況所產生之資訊,或關於應用於基因組概況之基因型 相關性之資訊。表型概況可藉由應用使複數個基因型與表 型相關之規則來產生。可能性或估計可以數值表示,諸如 百分比、數值危險因數或數值信賴區間。可能性亦可以 高、中或低表示。表型概況亦可指示表型之存在或不存在 或產生表型之危險。舉例而言,表型概況可指示藍色眼睛 之存在,或產生糖尿病之高危險。表型概況亦可指示預測 之預後、治療之有效性或對醫學病狀治療之反應。 術浯危險概況係指多於一種疾病或病狀之〇(::1計分之集 合。GCI計分係基於個體之基因型與一或多種疾病或病狀 之間的關聯之分析。危險概況可顯示按疾病種類分組之 GCI計分。此外,危險概況可顯示關於當調節個體年齡或 各種危險因數時預測GCI計分如何改變之資訊。舉例而 言,特定疾病之GCI計分可考慮飲食變化或所採用之預防 措施(禁煙、服藥、兩側根治性乳房切除、子宮切除)之效 應。GCI計分可以數值量測、圖形顯示、聽覺反饋或前述 各者之任何組合來顯示。 127264.doc -20- 200847056 如本文所使用,術語”線上入口”係指可容易地由個體經 由使用電腦及網際網路網站、電話或允許類似資訊存取之 其他方式存取之資訊來源。該線上入口可為保密網站。該 網站可提供通向其他保密及非保密網站之鏈路,例如通向 具有個體表型概況之保密網站,或通向諸如用於個體共享 特定表型之留言板之非保密網站的鏈路。On the right-hand access report, the report can also provide links to other sites with other phenotypes of the phenotype, to online support groups and messages for people with the same phenotype or one or more similar phenotypes. The link to the board leads to the link of an online genetic counselor or physician, or to a telephone or personally arrange a link to a genetic counselor or physician. If the report is in paper form, the information may be the site location of the above link, or the genetic counselor or physician's phone number and the landlord user may also choose which phenotype to include in their phenotypic profile and what to include in their report News. Phenotypic profiles and reports can also be accessed by an individual's health care provider or provider, such as a caregiver, physician, psychiatry, psychologist, therapist, or genetic counselor. The user may be able to select whether the phenotypic profile and the sigma or portion thereof are accessed by the individual's health care manager or provider. The present invention also includes the preferred. This is intended to be an initial phenotypic profile and a reporting digital approach to maintaining its genomic profile. :: Users provide an opportunity to generate phenotypes with relevance from the latest research updates. In another embodiment, the user has the opportunity to generate a hazard profile and report with the relevance of new research updates from 127264.doc -14-200847056. When investigating new correlations between genotypes and phenotypes, diseases or conditions, new rules will be generated based on these new correlations and they can be applied to stored and maintained genomic profiles. The new rules can correlate genotypes that were not previously associated with any phenotype, correlate genotypes with new phenotypes, or provide an existing correlation based on genotypes and disease or condition to regulate GCI. The benchmark for scoring. The user may be informed of new relevance via email or other electronic means, and if the phenotype is of interest, it may choose to update its phenotypic profile with the new relevant φ. The user can select a reservation, which is an unlimited update payment for each update, multiple updates, or a specified time period (e.g., 3 months, 6 months, or 1 year). Another predetermined level may be that the user automatically updates his phenotypic profile or risk profile whenever a new rule is generated based on the new correlation, in lieu of the individual selection time to update its phenotypic profile or risk profile. In another aspect of the schedule, the user may direct the non-user to use rules that produce a correlation between the phenotype and the genotype, determine the genomic profile of the individual, apply the rules to the genomic profile, and generate an individual's phenotype Overview _ service. The user's guidance can be used to give the user a reservation or upgrade their existing discounted price. The directed individual may have free access for a limited time or have a discounted predetermined price. It can produce phenotypic profiles and reports as well as hazard profiles and reports for humans and non-human individuals. For example, an individual can include other mammals such as cows, horses, sheep, dogs or cats. A user as used herein is a human individual who subscribes to a service by purchasing or paying for one or more services. The service may include, but is not limited to, one or more of the following services: determine its or another 127264.doc -15- 200847056 genomic profile of a body (such as a child or pet of a user), obtain a phenotypic profile, update the form Profile overview, and reports based on their genomic and phenotypic profiles. In another aspect of the invention, a "regional blending" mechanism can be brought together from an individual to produce an individual's phenotypic profile. In a preferred embodiment, the individual can have an initial phenotypic profile generated based on genetic information. For example, generating an initial phenotypic profile including risk factors for different phenotypes and suggested therapeutic or preventive measures. For example, the profile may include information about available medications for a particular condition and/or about dietary changes Or recommendations for exercise therapy. Individuals may choose to visit a physician or genetic counselor or contact a physician or genetic counselor via a web portal or telephone to discuss their phenotypic profile. Individuals may decide to adopt amnesty action plans, such as using specific medications, changing them. Diet, etc. The individual can then submit a biological sample to assess changes in his physical condition and possible changes in risk factors. The individual can submit the biological sample directly to the facility (or associated facility that produces the genomic profile and phenotypic profile, such as Judging by the organization that generates the genetic profile and phenotypic profile and the contract with us Change. Or, an individual can use, a regional blending " mechanism in which an individual can submit their saliva, blood, or other biological sample to a detection device in their home, analyze it by a third party, and transmit the data to Into another phenotypic profile. For example, an individual may receive an initial phenotypic report based on genetic data that reports an individual's increased risk of life-threatening myocardial infarction (MI). The report may also have preventive measures for reducing MI risk. Recommendations, such as cholesterol-lowering drugs and diet changes. Individuals can choose to contact a genetic counselor or physician to discuss the report and preventive measures and decide to change their diet. 127264.doc -16 - 200847056 After using the new drink, Individuals can visit their private physician to measure their cholesterol levels. 1. New information (cholesterol levels) can be transmitted (eg via the Internet) to organizations that have genomic information, and new information can be used to generate an individual's new phenotypic profile, and New risk factors for myocardial infarction and/or other conditions. Individuals may also use "regional blending, mechanisms or direct mechanisms to Determine the individual's response to specific drug therapy. For example, an individual can measure their response to an agent and can use information to determine a more effective treatment. Measurable information includes, but is not limited to, metabolite content, glucose content, ion content (eg, mom, sodium, potassium, iron), vitamins, blood cell count, body mass index (BMI), protein content, transcript content, The heart rate, etc., can be determined by a readily available method and can be used as a factor in the algorithm to combine with the initial genomic profile to determine the improved overall risk estimate score. "DNA sample" means any biological sample that can be isolated from an individual, including samples from which the genetic material can be isolated. As used herein, "genetic sample" refers to DNA obtained from or derived from an individual and/or Or RNA. As used herein, the term "genome" is intended to mean all complements of chromosomal DNA found in the human nucleus. The term "genomic DNA" refers to one or more chromosomal DNA molecules naturally present in the nucleus of a human, or a portion of a chromosomal DNA molecule. The term "genome profile" refers to a collection of information about an individual's genes, such as the presence or absence of a particular SNP or mutation. The genomic profile includes the genotype of the individual. The genomic profile can also be substantially the complete genomic sequence of the individual. In some embodiments, the genomic profile can be a complete genomic sequence of an individual of at least 60%, 80%, or 95〇/〇 127264.doc • 17- 200847056. The genomic profile can be about i〇〇% of the individual's whole genome sequence. Reference to a genomic profile, and a portion thereof, refers to a genomic profile of a subset of the genome profile of the entire genome. The term "genotype" refers to the specific genetic composition of an individual. Genotypes can include genetic variants and markers of an individual. Genetic markers and variants can include nucleotide repeats, nucleotide insertions, nucleotide deletions, chromosomal translocations, chromosomal duplications, or copy number variations. Replica variation can include microsatellite repeats, nucleotide repeats, centromeric repeats, or telomere repeats. Genotypes can also be SNPs, hapl〇types or dipl〇types. A single type can refer to a locus or a dual gene. A single type is also a set of statistically related single nucleotide polymorphisms (SNPs) on a single chromatogram. A double type is a single type. The term single nucleotide polymorphism or "SNP" refers to a specific locus on a chromosome that exhibits variability in the identity of a nitrogenous base relative to the locus present in the locus of the human population, such as at least One percent (1%). For example, when a body may have adenosine (A) at a particular nucleotide position of a given gene, the other may have cytosine (c), guanine (G), or thymine at this position. (T), so that SNp exists at this particular location. As used herein, the term "SNP genomic profile" refers to the base content of a given individual's DNA at the SNp site throughout the entire genomic DNA sequence of the individual. "SNP Profile" may refer to an entire genomic profile, or may refer to a portion thereof, such as a more localized SNP profile that may be associated with a particular gene or set of genes. The term "phenotype" is used to describe a quantitative trait or characteristic of an individual. Phenotypes include 127264.doc -18- 200847056 (but not limited to) medical and non-pathological conditions including diseases and conditions. The phenotype may also include physical traits such as coat color; physiological traits such as vital capacity; heart, rationality such as memory force; emotional traits such as ability to control anger; race, such as ethnic background; family tree, such as the birthplace of an individual; And age, such as the age of expectation or the starting age of a different phenotype. The phenotype may also be a single base _ 'where it is considered that one gene may be associated with a phenotype; or a multi-gene, wherein more than one gene is associated with a phenotype. "rules" are used to define the correlation between genotype and phenotype. Rules can define dependencies by numerical values, such as by percentage, risk factor, or trust score. Rules can have a correlation between multiple genotypes and phenotypes. "rule set" contains more than one rule. The "new rule" may be a rule indicating the correlation between genotype and phenotype, for which there is currently no rule. The new rules can make irrelevant genotypes related to phenotypes. The new rules can also correlate genotypes that have been associated with phenotypes with phenotypes that have not previously been associated with them. "New Rule" may also be an existing rule that is modified by including another rule. Existing rules may be due to known characteristics of the individual (such as race, genealogy, geography, gender, age, family history, or other prior judgments). The phenotype is improved. The use of "genotype-related" in this context refers to the statistical correlation between the genotypes of individuals (such as the presence of specific mutations), and tends to be like a specific disease. / or the likelihood of a phenotype of a mental state. The extent to which the frequency of a particular phenotype is determined in a particular genotype determines the likelihood of a genotype correlation or a particular phenotype. For example, as detailed herein, The production of lipoproteins with isoforms of SNPs is associated with an early onset of 127264.doc -19·200847056 Alzheimer's disease. Genotype correlation may also refer to a phenotype that does not tend to Correlation, or negative correlation. Genotype correlation may also indicate an individual having a phenotype or an estimate of a phenotype. Genotype correlation may be represented by a numerical value, such as a percentage, Relative risk factor, effect estimation, or trust scoring. The term " phenotypic profile π refers to a collection of phenotypes associated with an individual's genotype. The phenotypic profile may include applying one or more rules to the genome. Information generated by the profile, or information about the genotype correlation applied to the genome profile. The phenotypic profile can be generated by applying rules that relate a plurality of genotypes to the phenotype. The likelihood or estimate can be numerically represented, such as Percentage, numerical hazard factor or numerical confidence interval. Probability can also be expressed in high, medium or low. The phenotypic profile can also indicate the presence or absence of a phenotype or the risk of producing a phenotype. For example, a phenotypic profile can indicate The presence of blue eyes, or a high risk of developing diabetes. The phenotypic profile may also indicate the predicted prognosis, the effectiveness of the treatment, or the response to treatment of the medical condition. The risk profile refers to more than one disease or condition. A collection of 〇(::1 scores. The GCI score is based on an analysis of the association between an individual's genotype and one or more diseases or conditions. GCI scores grouped by disease type. In addition, the hazard profile can show information about how GCI scores are predicted when adjusting individual age or various risk factors. For example, GCI scores for specific diseases can be considered for dietary changes or The effects of precautions (no smoking, medication, bilateral radical mastectomy, hysterectomy). GCI scores can be displayed numerically, graphically, audibly, or any combination of the foregoing. 127264.doc -20 - 200847056 As used herein, the term "online entry" refers to a source of information that can be easily accessed by an individual via the use of a computer and internet website, telephone or other means of accessing similar information. The online portal can be kept confidential. A website that provides links to other confidential and non-confidential websites, such as a confidential website that has an individual phenotypic profile, or a chain of non-secure websites that serve message boards for individuals sharing a particular phenotype. road.
除非另有指示,否則本發明之實施可採用分子生物學、 細胞生物學、生物化學及免疫學之習知技術及描述,其在 熟習此項技術者之範圍内。該等習知技術包括核酸分離、 聚合物陣列合成、雜交、連接作用及使用標誌偵測雜交。 合適技術之特定說明在本文中例示及引用。然而,亦可使 用其他等效習知程序。其他習知技術及描述可見於標準實 驗手冊及課本中,諸如Genome Analysis: A Laboratory Manual Series (第 I-IV 卷),PCR Primer: A Laboratory Manual ’ Molecular Cloning: A Laboratory Manual(所有均 來自 Cold Spring Harbor Laboratory Press) ; Stryer, L. (1995) Biochemistry (第 4版)Freeman, New York; Gait, "Oligonucleotide Synthesis: A Practical Approach" 1984, IRL Press, London, Nelson and Cox (2000) ; Lehninger, Principles of Biochemistry第 3版,W.H· Freeman Pub·,New York,Ν·Υ.;及 Berg 等人(2002) Biochemistry,第 5 版, W.H. Freeman Pub.,New York,Ν·Υ.,所有文獻均以全文引 用的方式併入本文中以用於所有目的。 本發明之方法包括分析個體之基因組概況以向個體提供 127264.doc -21 - 200847056 關於表型之分子資訊。如本文中所詳述,該個體提供遺傳 樣品,自該樣品產生個人基因組概況。藉由相對於已建立 及確認之人類基因型相關性之資料庫比較個體之基因組概 況,來針對基因型相關性查詢該概況之資料。已建立及確 認之基因型相關性之資料庫可來自同行評論文獻且進一步 由該領域中之一或多位專家(諸如遺傳學家、流行病學家 或統計學家)來判斷,並對其進行驗證。在較佳實施例 中,基於驗證之基因型相關性而產生規則且將其應用於個 體之基因組概況以產生表型概況。向個體或個體之健康護 理官理者提供個體之基因組概況、表型概況之分析結果以 及解釋及辅助資訊,以准許個體之健康護理的個人化選 擇。 本發明之方法如圖1中所詳述,其中首先產生個體之基 因組概況。個體之基因組概況將含有關於基於遺傳變異或 標記之個體基因之資訊。遺傳變異為組成基因組概況的基 因型。該等遺傳變異或標記包括(但不限於)單核苷酸多態 現象、單核苷酸及/或多核苷酸重複、單核苷酸及/或多核 苷1缺失、祕衛生重複(具有典型5_丨,0⑻個重複單元之少 數核苷酸重複)、二核苷酸重複、三核苷酸重複、序列重 排(包括易位及複製)、複本數變異(在特定基因座損失及增 加)及其類似物。其他遺傳變異包括染色體複製及易位以 及著絲粒及端粒重複。 基因型亦可包括單型及雙型。在—些實施例中,基因組 概况可具有至少 100,000、300 000、5〇〇 〇〇〇或 1〇〇〇 〇〇〇種 127264.doc •22· 200847056 基因型。在-些實施例中,基因組概況可大體上為個體之 70正基口、、且序列。在其他實施例中,基因組概況為至少 60%' 80%或95%的個體之完整基因組序列。|因組概況 可為大約100%的個體之完整基因組序列。含有靶之遺傳 樣。π包括(但不限於)未擴增基因組DNA或樣品或擴增 DNA(或cDNA)。該等靶可為基因組dna之含有尤其關注 之ia傳標記的特定區域。 在圖1之步驟102中,將個體之遺傳樣品自個體之生物樣 口口刀離該荨生物樣品包括(但不限於)血液、頭髮、皮 膚、唾液、精液、尿液、糞便物質、汗液、口腔及各種身 體組織。在一些實施例中,組織樣品可直接由個體收集, 例如口腔樣品可藉由個體使用拭子相抵於其面頰内侧來獲 才于諸如唾液、精液、尿液、糞便物質或汗液之其他樣品 亦可由個體自身供應。其他生物樣品可由諸如抽血者、護 士或醫師之健康護理專家來採集。舉例而言,血液樣品可 由羞士自個體體内抽出。組織活組織檢查可由健康護理專 豕執行,且健康護理專家亦可使用套組以有效獲得樣品。 可移除小柱狀皮膚或可使用針移除組織或流體之小樣品。 在些實把例中,向個體提供具有用於個體之生物樣品 之樣品收集容器的套組。該套組亦可提供個體直接收集其 自身樣品之說明,諸如提供多少頭髮、尿液 '汗液或唾 液。套組亦可含有個體需要由健康護理專家採集之組織樣 品的說明。套組可包括可由第三方採集之樣品的部位,例 如可向接著自個體收集樣品之健康護理設施提供套組。套 127264.doc -23- 200847056 組亦可提供用於送至樣品處理設施之樣品之回收包裝,其 中在步驟104中將遺傳物質自生物樣品分離。 根據若干熟知生物化學及分子生物學方法中之任一者可 將DNA或RNA之遺傳樣品自生物樣品分離,參看例如, Sambrook ,等人,Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York) (1989)。亦存在用於自生物樣品分離DNA或RNA之若干種 市售套組及試劑,諸如可得自DNA Genotek、Gentra Systems、Qiagen、Ambion及其他供應商之彼等者。口腔 樣品套組容易市售,諸如來自Epicentre Biotechnologies之 MasterAmp™ 口 腔拭子(MasterAmp™ Buccal Swab)DNA提 取套組,同樣者為用於自血液樣品提取DNA之套組,諸如 來自Sigma Aldrich之Extract-N-AmpTM。來自其他組織之 DNA可藉由用蛋白酶來消化組織及加熱、離心樣品,且使 用苯酚-氯仿萃取不需要之物質,在水相中留下DNA來獲 得。DNA可接著進一步藉由乙醇沈澱分離。 在一較佳實施例中,自唾液分離基因組DNA。舉例而 言,使用可得自DNA Genotek之DNA自身收集套組技術, 個體收集唾液試樣以用於臨床處理。樣品可方便地於室溫 下儲存及運輸。樣品傳遞至進行處理之適當實驗室後,藉 由將樣品加熱變性且於50°C下通常使用由收集套組供應商 供應之試劑進行蛋白酶消化歷時至少一個小時來分離 DNA。接著將樣品離心,且用乙醇使上清液沈澱。將DNA 離心塊懸浮於適合於隨後分析之緩衝劑中。 127264.doc •24- 200847056 在另一實施例中,可使用RNA作為遺傳樣品。詳言之, 經表現之遺傳變異可自mRNA鑑別。術語”信息RNA”或 "mRNA"包括(但不限於)前mRNA轉錄物、轉錄物處理中間 物、準備轉譯之成熟mRNA及基因之轉錄物或源自mRNA 轉錄物之核酸。轉錄物處理可包括拼接、編輯及降解。如 本文所使用,源自mRNA轉錄物之核酸係指以下核酸··對 於其合成而言,mRNA轉錄物或其子序列最終用作模板。 因此,自mRNA逆轉錄之cDNA、自cDNA擴增之DNA、自 擴增DNA轉錄之RNA等均源自mRNA轉錄物。可使用此項 技術中已知之方法將RNA自若干身體組織中之任一者分 離,諸如使用可得自PreAnalytiX之PAXgene™血液RNA系 統(PAXgene™ Blood RNA System)將RNA自未分級全血分 離。通常mRNA將用於逆轉錄cDNA,其接著將用於基因變 異分析或經擴增用於基因變異分析。 基因組概況分析之前,通常將自由RNA逆轉錄之DNA抑 或cDNA擴增遺傳樣品。可藉由許多方法擴增DNA,其中 許多方法採用PCR。參看例如,PCR Technology: Principles and Applications for DNA Amplification (H. A. Erlich編,Freeman Press,NY,N.Y·,1992) ; PCR Protocols: A Guide to Methods and Applications (Innis 等人編, Academic Press,San Diego,Calif.,1990) ; Mattila等人, Nucleic Acids Res. 19,4967 (1991) ; Eckert等人,PCR Methods and Applications 1,17 (1991) ; PCR (McPherson等 人編,IRL Press,Oxford);及美國專利第4,683,202號、第 127264.doc -25- 200847056 4,683,195 號、第 4,800,159 號、第 4,965,188 號及第 5,333,675號,且其中每一者均以全文引用的方式併入本文 中以用於所有目的。 其他合適之擴增方法包括連接酶鏈反應(LCR)(例如, Wu及 Wallace,Genomics 4,560 (1989),Landegren等人, Science 241,1077 (1988)及 Barringer 等人 Gene 89:117 (1990))、轉錄擴增(尤dead· S(5:"73-"77 (79抑)及 WO88/10315)、自持序列複製 {Guatelli 等人,Proc· Nat,Acad· Sci. USA,87:1874、1 gjg 以外W及W090/06995)、靶聚核苷酸序列之選擇性擴增d 國專利第6,410,276號)、一致序列引子聚合酶鏈反應 PCR)(美國專利第4,437,975號)、隨意引子聚合酶鏈反應 (AP-PCR)(美國專利第5,413,909號、第5,861,245號)、基於 核酸之序列擴增(NABSA)、滚環擴增(RCA)、多重置換擴 增(]\40人)(美國專利第6,124,120號及第6,323,009號)及環對 環擴增(C2CA)(Dahl 等人 Proc. Natl,Acad· Sci 101:4548 4553 乃。(參看美國專利第5,409,818號、第5,554,5 17 號及第6,063,603號,其中每一者均以引用的方式併入本文 中)。可使用之其他擴增方法係描述於美國專利第 5,242,794 號、第 5,494,810 號、第 5,409,818 號、第 4,988,617號、第6,063,603號及第5,554,517號及美國第 09/854,317號中,其中每一者均以引用的方式併入本t 中0 使用若干方法中之任一者執行步驟106中基因組概况之 127264.doc -26- 200847056 產生。若干方法在用於鑑別遺傳變異之技術中已知,且包 括(但不限於)藉由若干方法中之任一者進行的DNA定序、 基於PCR之方法、片段長度多態現象檢定(限制性片段長度 多態現象(RFLP)、裂解片段長度多態現象(CFLP))、使用 對偶基因特異性募核普酸作為模板之雜交方法(例如, TaqMan PCR方法、侵入者方法、DNA晶片方法)、使用引 子擴展反應之方法、質譜法(MALDI-TOF/MS方法)及其類 似方法。 在一實施例中,高密度DNA陣列用於SNP鑑別及概況產 生。該等陣列可購自Affymetrix及Illumina(參看Affymetrix GeneChip® 500K Assay Manual,Affymetrix,Santa Clara, CA(以引用的方式併入);Sentrix® humanHap650Y基因型 分析微珠晶片,Illumina,San Diego,CA) 〇The practice of the present invention may employ, unless otherwise indicated, conventional techniques and descriptions of molecular biology, cell biology, biochemistry, and immunology, which are within the skill of those skilled in the art. Such conventional techniques include nucleic acid isolation, polymer array synthesis, hybridization, ligation, and the use of marker detection hybridization. Specific instructions for suitable techniques are exemplified and referenced herein. However, other equivalent conventional procedures can also be used. Other prior art techniques and descriptions can be found in standard laboratory manuals and textbooks such as Genome Analysis: A Laboratory Manual Series (Vol. I-IV), PCR Primer: A Laboratory Manual 'Molecular Cloning: A Laboratory Manual (all from Cold Spring) Harbor Laboratory Press); Stryer, L. (1995) Biochemistry (4th Edition) Freeman, New York; Gait, "Oligonucleotide Synthesis: A Practical Approach" 1984, IRL Press, London, Nelson and Cox (2000); Lehninger, Principles of Biochemistry, 3rd edition, WH Freeman Pub, New York, Ν·Υ.; and Berg et al. (2002) Biochemistry, 5th edition, WH Freeman Pub., New York, Ν·Υ., all literature It is incorporated herein by reference in its entirety for all purposes. The method of the invention comprises analyzing an individual's genomic profile to provide the individual with molecular information about the phenotype 127264.doc -21 - 200847056. As detailed herein, the individual provides a genetic sample from which a personal genomic profile is generated. The profile information is queried for genotype correlation by comparing the individual's genomic profile against a database of established and confirmed human genotype correlations. A database of established and confirmed genotype correlations can be obtained from peer review literature and further judged by one or more experts in the field (such as geneticists, epidemiologists or statisticians) and authenticating. In a preferred embodiment, rules are generated based on the genotype correlation of the validation and applied to the genomic profile of the individual to generate a phenotypic profile. An individual or individual health care provider is provided with an individual's genomic profile, phenotypic profile analysis results, and explanations and supporting information to permit individualized selection of individual health care. The method of the present invention is detailed in Figure 1, wherein the genomic profile of the individual is first generated. The individual's genomic profile will contain information about individual genes based on genetic variation or labeling. Genetic variation is the genotype that makes up the genome profile. Such genetic variations or markers include, but are not limited to, single nucleotide polymorphisms, single nucleotide and/or polynucleotide repeats, single nucleotide and/or polynucleoside 1 deletions, and secret hygienic repeats (typical) 5_丨, a small number of nucleotide repeats of 0 (8) repeating units), dinucleotide repeats, trinucleotide repeats, sequence rearrangements (including translocations and replication), number of replicas (loss and increase in specific loci) ) and its analogues. Other genetic variations include chromosomal replication and translocation as well as centromere and telomere repeats. Genotypes can also include both single and double types. In some embodiments, the genomic profile can have at least 100,000, 300 000, 5 〇〇 or 1 〇〇〇 127 127264.doc • 22· 200847056 genotype. In some embodiments, the genomic profile can be substantially 70 positive bases, and sequences of the individual. In other embodiments, the genomic profile is at least 60% '80% or 95% of the individual's complete genomic sequence. The group profile can be a complete genome sequence of approximately 100% of individuals. Contains the genetics of the target. π includes, but is not limited to, unamplified genomic DNA or sample or amplified DNA (or cDNA). Such targets may be specific regions of the genomic marker that are of particular interest to the genomic DNA. In step 102 of Figure 1, the genetic sample of the individual is removed from the biological sample of the individual, including, but not limited to, blood, hair, skin, saliva, semen, urine, fecal matter, sweat, Oral and various body tissues. In some embodiments, the tissue sample can be collected directly by the individual, for example, the oral sample can be obtained by the individual using the swab against the inside of the cheek to obtain other samples such as saliva, semen, urine, fecal matter or sweat. The individual supplies itself. Other biological samples may be collected by a health care professional such as a blood draw, a nurse, or a physician. For example, a blood sample can be withdrawn from the individual by a shy. Tissue biopsy can be performed by a health care specialist, and health care professionals can also use kits to effectively obtain samples. The small columnar skin can be removed or a small sample of tissue or fluid can be removed using a needle. In these examples, the individual is provided with a kit of sample collection containers for biological samples of the individual. The kit also provides instructions for the individual to collect their own samples directly, such as how much hair is provided, urine 'sweat or saliva. The kit may also contain instructions for the individual's tissue samples to be collected by a health care professional. The kit can include a portion of the sample that can be collected by a third party, for example, a kit can be provided to a health care facility that then collects samples from the individual. The set 127264.doc -23- 200847056 may also provide a recycled package for the sample sent to the sample processing facility, wherein the genetic material is separated from the biological sample in step 104. Genetic samples of DNA or RNA can be isolated from biological samples according to any of a number of well known biochemical and molecular biological methods, see, for example, Sambrook, et al, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York) ) (1989). There are also several commercially available kits and reagents for isolating DNA or RNA from biological samples, such as those available from DNA Genotek, Gentra Systems, Qiagen, Ambion, and other suppliers. Oral sample kits are readily available commercially, such as the MasterAmpTM Buccal Swab DNA extraction kit from Epicentre Biotechnologies, the same for kits for extracting DNA from blood samples, such as Extract from Sigma Aldrich. N-AmpTM. DNA from other tissues can be obtained by digesting tissue with a protease and heating, centrifuging the sample, and extracting the unwanted substance with phenol-chloroform to leave DNA in the aqueous phase. The DNA can then be further separated by ethanol precipitation. In a preferred embodiment, genomic DNA is isolated from saliva. For example, individuals can collect saliva samples for clinical treatment using the DNA self collection kit technology available from DNA Genotek. Samples can be conveniently stored and transported at room temperature. After the sample is passed to the appropriate laboratory for processing, the DNA is isolated by heat denaturation of the sample and protease digestion at 50 °C using reagents supplied by the collection kit supplier for at least one hour. The sample was then centrifuged and the supernatant was precipitated with ethanol. The DNA pellet was suspended in a buffer suitable for subsequent analysis. 127264.doc • 24-20084756 In another embodiment, RNA can be used as a genetic sample. In particular, genetic variants that are expressed can be identified from mRNA. The term "information RNA" or "mRNA" includes, but is not limited to, pre-mRNA transcripts, transcript processing intermediates, mature mRNAs and gene transcripts to be translated, or nucleic acids derived from mRNA transcripts. Transcript processing can include splicing, editing, and degradation. As used herein, a nucleic acid derived from an mRNA transcript refers to the following nucleic acid. For its synthesis, the mRNA transcript or a subsequence thereof is ultimately used as a template. Therefore, cDNA reverse-transcribed from mRNA, DNA amplified from cDNA, RNA transcribed from amplified DNA, and the like are derived from mRNA transcripts. RNA can be isolated from any of a number of body tissues using methods known in the art, such as separation of unfractionated whole blood using the PAXgeneTM Blood RNA System available from PreAnalytiX. Typically mRNA will be used to reverse transcribe cDNA, which will then be used for genetic variation analysis or amplification for gene variation analysis. Prior to genomic profiling, genetic samples were either reverse transcribed from free RNA or cDNA amplified. DNA can be amplified by a number of methods, many of which employ PCR. See, for example, PCR Technology: Principles and Applications for DNA Amplification (HA Erlich, ed., Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (Innis et al., Academic Press, San Diego, Calif) , 1990); Mattila et al, Nucleic Acids Res. 19, 4967 (1991); Eckert et al, PCR Methods and Applications 1, 17 (1991); PCR (McPherson et al., IRL Press, Oxford); Patent Nos. 4,683,202, 127, 264, doc-25-2008-470,056, 4, 683, 195, 4,800, 159, 4, 965, 188, and 5, 333, 675, each incorporated herein by reference in its entirety Used for all purposes. Other suitable amplification methods include ligase chain reaction (LCR) (e.g., Wu and Wallace, Genomics 4, 560 (1989), Landegren et al, Science 241, 1077 (1988) and Barringer et al. Gene 89: 117 (1990). )), transcriptional amplification (especially deadd S (5: "73-" 77 (79) and WO88/10315), self-sustaining sequence replication {Guatelli et al, Proc· Nat, Acad·Sci. USA, 87 : 1874, 1 gjg other than W and W090/06995), selective amplification of target polynucleotide sequence d national patent No. 6,410,276), consensus sequence primer polymerase chain reaction PCR) (US Patent No. 4,437,975), random Primer polymerase chain reaction (AP-PCR) (U.S. Patent Nos. 5,413,909, 5,861,245), nucleic acid based sequence amplification (NABSA), rolling circle amplification (RCA), multiple displacement amplification (]\40 (US Patent Nos. 6,124,120 and 6,323,009) and ring-to-loop amplification (C2CA) (Dahl et al. Proc. Natl, Acad. Sci 101:4548 4553. (See U.S. Patent No. 5,409,818) , 5, 554, 5 17 and 6,063, 603, each of which is incorporated herein by reference. The method of amplifying is described in U.S. Patent Nos. 5,242,794, 5,494,810, 5,409,818, 4,988,617, 6,063,603 and 5,554,517, and U.S. Patent No. 09/854,317, each of which is incorporated by reference. Incorporation into this t uses one of several methods to perform the generation of genomic profiles in step 106, 127264.doc -26-200847056. Several methods are known in the art for identifying genetic variations, and include (but are not limited to) DNA sequencing, PCR-based methods, fragment length polymorphism assays (restriction fragment length polymorphism (RFLP), cleavage fragment length polymorphism (CFLP)), by any of several methods, Hybridization method using a dual gene-specific priming acid as a template (for example, TaqMan PCR method, invader method, DNA wafer method), method using primer extension reaction, mass spectrometry (MALDI-TOF/MS method), and the like In one embodiment, high density DNA arrays are used for SNP identification and profile generation. The arrays are commercially available from Affymetrix and Illumina (see Affymetrix GeneChip®). 500K Assay Manual, Affymetrix, Santa Clara, CA (incorporated by reference); Sentrix® humanHap650Y genotype analysis microbead wafer, Illumina, San Diego, CA)
舉例而言,可藉由使用Affymetrix Genome Wide Human SNP Array 6.0對多於900,000個SNP進行基因型分析來產生 SNP概況。或者,可藉由使用 Affymetrix GeneChip Human Mapping 500K陣列組判定經由整個基因組採樣分析之多於 5 00,000個SNP。在此等檢定中,經由單一引子擴增反應, 使用限制酶消化、連接接器之人類基因組DNA來擴增人類 基因組之子集。如圖2中所示,接著可測定所連接DNA之 濃度。接著使擴增01^八斷裂且判定樣品之品質,隨後繼以 步驟106。若樣品符合PCR及斷裂標準,則使樣品變性, 對其進行標誌,且接著使其與由小DNA探針組成之微陣列 在經塗佈石英表面上之特定位置處雜交。監測與擴增DNA 127264.doc -27- 200847056 序列有關之與各探針雜交之標誌量,藉此產生序列資訊及 所得SNP基因型分析。 根據製造商之指導進行Affymetrix Gene Chip 50 OK Assay 之使用。簡言之,首先用NspI抑或Styl限制性核酸内切酶 消化經分離之基因組DNA。接著用分別黏接為NspI抑或 Styl限制DNA之NspI或Styl接器寡核苷酸連接經消化之 DNA。含有接器之DNA在連接後接著藉由PCR擴增以產生 介於約200與1100鹼基對之間的擴增DNA片段(如凝膠電泳 所證實)。將符合擴增標準之PCR產物純化及量化以用於斷 裂。用DNase I使PCR產物斷裂以用於最優DNA晶片雜交。 斷裂後,如凝膠電泳所證實,DNA片段應小於250鹼基 對,且平均約180鹼基對。接著使用末端脫氧核苷酸轉移 酶,用生物素化合物標誌符合斷裂標準之樣品。接著使經 標誌之片段變性且接著使其雜交至GeneChip 250K陣列 中。雜交後,將陣列染色,隨後以由以下步驟組成之三步 驟方法掃描:抗生蛋白鏈菌素藻紅素(S APE)染色,接著為 用生物素標記之抗抗生蛋白鏈菌素抗體(山羊)之抗體擴增 步驟,且最後為用抗生蛋白鏈菌素藻紅素(SAPE)染色。標 誌後,用陣列保存緩衝劑覆蓋陣列且接著用諸如 Affymetrix GeneChip Scanner 3000之掃描器對其進行掃 描。 如圖3中所示,掃描後,根據製造商之指南執行 Affymetrix GeneChip Human Mapping 500K Array Set之資 料分析。簡言之,使用基因晶片操作軟體(GeneChip 127264.doc -28 - 200847056For example, SNP profiles can be generated by genotyping more than 900,000 SNPs using the Affymetrix Genome Wide Human SNP Array 6.0. Alternatively, more than 50,000,000 SNPs analyzed via whole genome sampling can be determined by using the Affymetrix GeneChip Human Mapping 500K array set. In these assays, a single primer amplification reaction is used to amplify a subset of the human genome using restriction enzyme digestion, ligated human genomic DNA. As shown in Figure 2, the concentration of the ligated DNA can then be determined. The amplification is then broken and the quality of the sample is determined, followed by step 106. If the sample meets the PCR and fragmentation criteria, the sample is denatured, labeled, and then hybridized to a microarray consisting of small DNA probes at specific locations on the coated quartz surface. The amount of the marker associated with the amplified probe DNA 127264.doc -27- 200847056 is monitored to generate sequence information and the resulting SNP genotype analysis. Use the Affymetrix Gene Chip 50 OK Assay according to the manufacturer's instructions. Briefly, the isolated genomic DNA is first digested with NspI or Styl restriction endonuclease. The digested DNA is then ligated with NspI or Styl adapter oligonucleotides ligated to either NspI or Styl restriction DNA, respectively. The DNA containing the adaptor is ligated by PCR followed by amplification to generate an amplified DNA fragment between about 200 and 1100 base pairs (as evidenced by gel electrophoresis). The PCR product that meets the amplification criteria is purified and quantified for fragmentation. The PCR product was cleaved with DNase I for optimal DNA wafer hybridization. After cleavage, as confirmed by gel electrophoresis, the DNA fragment should be less than 250 base pairs and average about 180 base pairs. A terminal deoxynucleotidyl transferase is then used to label the sample that meets the fragmentation criteria with the biotin compound. The labeled fragments were then denatured and then hybridized into a GeneChip 250K array. After hybridization, the array was stained and subsequently scanned in a three-step method consisting of: streptavidin (S APE) staining followed by biotinylated anti-anti-streptavidin antibody (goat) The antibody amplification step, and finally stained with streptavidin (SAPE). After the labeling, the array is covered with an array of storage buffers and then scanned with a scanner such as the Affymetrix GeneChip Scanner 3000. As shown in Figure 3, after scanning, the Affymetrix GeneChip Human Mapping 500K Array Set was analyzed according to the manufacturer's guidelines. In short, use the gene chip operating software (GeneChip 127264.doc -28 - 200847056
Operating Software,GCOS)來獲得原始資料。資料亦可使 用 Affymetrix GeneChip Command Console™獲得。獲得原 始資料後用基因晶片基因型分析軟體(GeneChip Genotyping Analysis Software,GTYPE)分析。出於本發明 之目的,排除GTYPE判讀率小於80%之樣品。接著用 BRLMM及/或SNiPer演算法分析檢查樣品。排除BRLMM判 讀率小於95%或SNiPer判讀率小於98%之樣品。最後,執 行關聯分析,且排除SNiPer品質指數小於0.45及/或哈溫 (Hardy-Weinberg)p值小於 0.00001 之樣品。 替代DNA微陣列分析或除DNA微陣列分析外,可藉由 DNA定序來偵測諸如SNP及突變之遺傳變異。DNA定序亦 可用於定序個體之實質部分或整個基因組序列。傳統上, 常見DNA定序係基於聚丙烯醯胺凝膠分級以拆分鏈終止片 # {Sanger # Λ,Proc. Natl· Acad, Sci, USA 74:5463-5467 (7 977))。已進行且繼續開發替代方法以增加DNA定 序之速度及簡易性。舉例而言,高產量及單一分子定序平 臺可市售或正由 454 Life Sciences(Branford,CTKMargw/ies 等人,Nature (2005) 437:376-380 (2005)) ; Solexa(Hayward, CA) ; Helicos BioSciences Corporation(Cambridge,MA)(美國申請 案第 11/167046號,2005 年 6 月 23 曰申請)及 Li-Cor Biosciences (Lincoln,NE)(美國申請案第11/118031號,2005年4月29曰申 請)開發。 在步驟106中產生個體之基因組概況後,在步驟108中用 數位方法儲存該概況,該概況可以保密方式用數位方法儲 127264.doc -29- 200847056 存x電細可δ貝袼式編碼基因組概況以作為資料集之部分 儲存且可作為資料庫儲存,其中基因組概況可,,人庫”,且 稍後可再次存取。資料集包含複數個資料點,其中每一資 料點係關於-個體。每一資料點可具有複數個資料元素。 盆二料70素為用於鐘別個體之基因組概況之獨特識別符。 -可為條$碼。另_貧料元素為基因型資訊,諸如個體之 土口、、且之SNP或核苦酸序列。對應於基因型資訊之資料元 *亦可包括在f料點中。舉例而言,若基因型資訊包括由 微陣列分析鑑別之SNP,則其他資料元素可包括微陣列 L別號SNP rs編號及多晶型核:^酸。其他資料元素 可為基因型貧訊之染色體位置、資料之品質度量、原始資 料檔案、資料之影像及提取強度計分。 諸如身體資料、醫學資料、種族、家譜、地理、性別、 年齡、家族史、已知表型、人口統計資料、曝光資料、生 方式資料、行為資料及其他已知表型之個體之特定因素 # ,亦可作為資料元素併入。舉例而言,因素可包括(但不限 级)個體之以下因素.出生地、父母及/或祖父母、親戚家 譜、居住場所、祖先居住場所、環境條件、已知健康狀 況、已知藥劑相互作用、家族健康狀況、生活方式狀況、 飲食、鍛煉習慣、婚姻狀況及身體量測,諸如體重、身 高、膽固醇含量、心跳速率、血壓、葡萄糖含量及此項技 ,中已知之其他量測。上文對於個體之親戚或祖先(諸如 又母及祖父母)所提及之因素亦可作4資料元素併入且用 於針對表型或病狀判定個體之危險。 127264.doc -30- 200847056 特疋因素可自調查表或自個體之健康護理管理者庐得。 接著可存取且按需要利用來自”入庫”概況之資訊。舉例而 言,在個體之基因型相關性之初始評估中,將針對基因型 相關性分析個體之整個資訊(通常為跨越或取自整個基因 組之SNP或其他基因組序列)。在隨後之分析中,可按需要 或適當時自儲存或入庫之基因組概況存取整個資訊抑或其 一部分。 基因組概況與基因型相關性之資料庫之比較。 ^ 在步驟110中,自科學文獻獲得基因型相關性。藉由分 析已測試一或多種所關注之表型性狀之存在或不存在及基 因型概況的個體群來判定遺傳變異之基因型相關性。接著 審查概況中每一遺傳變異或多態現象之對偶基因以判定特 定對偶基因之存在或不存在是否與所關注之性狀相關聯。 可藉由標準統計方法執行相關性且指出遺傳變異與表型特 徵之間的統計上顯著之相關性。舉例而言,可判定多態現 籲 象A處之對偶基因A1之存在與心臟病相關。再舉例而言, 可能發現多態現象A處之對偶基因A1與多態現象B處之對 偶基因B1之組合存在與癌症危險之增加相關。分析結果可 公開於同行評論文獻中,由其他科研小組確認,及/或由 專家(諸如遺傳學家、統計學家、流行病學家及醫師)委員 會分析,且亦可驗證。 圖4、圖5及圖6中為基因型與表型之間的相關性之實 例’待應用於基因組概況之規則可基於該等相關性。舉例 而言,在圖4A及圖4B中,每一列對應於表型/基因座/種 127264.doc -31 - 200847056Operating Software, GCOS) to obtain the original data. Information can also be obtained using the Affymetrix GeneChip Command ConsoleTM. The original data was obtained and analyzed by GeneChip Genotyping Analysis Software (GTYPE). For the purposes of the present invention, samples having a GTYPE interpretation rate of less than 80% are excluded. The samples were then analyzed using the BRLMM and/or SNiPer algorithm. Samples with a BRLMM interpretation rate of less than 95% or a SNiPer interpretation rate of less than 98% were excluded. Finally, correlation analysis was performed and samples with a SNiPer quality index of less than 0.45 and/or a Hardy-Weinberg p value of less than 0.00001 were excluded. In addition to DNA microarray analysis or in addition to DNA microarray analysis, genetic variation such as SNPs and mutations can be detected by DNA sequencing. DNA sequencing can also be used to sequence a substantial portion of an individual or an entire genomic sequence. Traditionally, common DNA sequencing has been based on polyacrylamide gel fractionation to resolve strand termination sheets #{Sanger # Λ, Proc. Natl. Acad, Sci, USA 74: 5463-5467 (7 977)). Alternative methods have been developed and continue to be developed to increase the speed and simplicity of DNA sequencing. For example, high yield and single molecule sequencing platforms are commercially available or are being developed by 454 Life Sciences (Branford, CTK Margw/ies et al, Nature (2005) 437:376-380 (2005)); Solexa (Hayward, CA) Helicos BioSciences Corporation (Cambridge, MA) (US Application No. 11/167046, June 23, 2005) and Li-Cor Biosciences (Lincoln, NE) (US Application No. 11/118031, 2005 4) Application for the development of the 29th. After generating the genomic profile of the individual in step 106, the profile is stored in a digital method in step 108, and the profile can be stored in a secure manner using a digital method. 127264.doc -29- 200847056 存 x 细 可 袼 袼 编码 编码 编码 编码 编码 概况It is stored as part of the data set and can be stored as a database, where the genome profile can be, and the human bank can be accessed again later. The data set contains a plurality of data points, each of which is related to - individual. Each data point can have a plurality of data elements. The potted material 70 is a unique identifier for the genomic profile of the individual. - can be a $ code. The other _ poor element is genotype information, such as individual The SNP or nucleotide sequence of the soil, and the data element corresponding to the genotype information can also be included in the f-point. For example, if the genotype information includes the SNP identified by microarray analysis, then the other The data elements may include the microarray L-number SNP rs number and the polymorphic core: acid. Other data elements may be the chromosomal location of the genotype, the quality metric of the data, the original data file, and the capital Image and extraction intensity scores, such as body data, medical data, ethnicity, genealogy, geography, gender, age, family history, known phenotypes, demographics, exposure data, birth patterns, behavioral data, and other known The specific factor # of the individual of the phenotype may also be incorporated as a data element. For example, the factors may include (but are not limited to) the following factors of the individual: birthplace, parents and/or grandparents, relative genealogy, residence, Ancestors' living places, environmental conditions, known health conditions, known drug interactions, family health status, lifestyle status, diet, exercise habits, marital status, and physical measurements such as weight, height, cholesterol, heart rate, blood pressure , glucose content, and other measurements known in the art. The factors mentioned above for relatives or ancestors of the individual (such as the mother and grandparent) may also be incorporated into the phenotype or The condition determines the risk of the individual. 127264.doc -30- 200847056 Special factors can be self-investigated or self-individual health care managers The information from the “inbound” profile is then accessible and used as needed. For example, in the initial assessment of an individual's genotype correlation, the entire information of the individual will be analyzed for genotype correlation (usually spanning or SNPs or other genomic sequences taken from the entire genome.) In subsequent analyses, the entire information, or a portion thereof, can be accessed from the stored or stored genomic profile as needed or appropriate. A database of genomic profiles and genotype correlations Comparison. ^ In step 110, genotype correlation is obtained from the scientific literature. The genotype of genetic variation is determined by analyzing individual populations that have tested for the presence or absence of one or more phenotypic traits of interest and genotype profiles. Relevance. The dual gene for each genetic variation or polymorphism in the profile is then examined to determine if the presence or absence of a particular dual gene is associated with the trait of interest. Correlation can be performed by standard statistical methods and a statistically significant correlation between genetic variation and phenotypic characteristics can be indicated. For example, it can be determined that the presence of the dual gene A1 at polymorphism A is associated with heart disease. By way of further example, it may be found that the combination of the dual gene A1 at polymorphism A and the dual gene B1 at polymorphism B is associated with an increased risk of cancer. The results of the analysis can be published in peer-reviewed literature, confirmed by other research groups, and/or analyzed by experts (such as geneticists, statisticians, epidemiologists, and physicians) and can also be validated. An example of the correlation between genotype and phenotype in Figures 4, 5 and 6 'The rules to be applied to the genome profile can be based on these correlations. For example, in Figures 4A and 4B, each column corresponds to a phenotype/locus/species 127264.doc -31 - 200847056
族’其中圖4C至圖41含有關於此等列中之每一者之相關性 之進一步資訊。舉例而言,在圖4A中,如圖4M短表型名 稱索引中所示,BC之”短表型名稱"為乳癌之縮寫。在基因 座之屬名列BC 一4中,基因LSP1與乳癌相關。如圖4C中所 示以此相關性鑑別之公開或功能性SNP為rs3817198,其 中公開危險對偶基因為C,非危險對偶基因為τ。經由諸如 圖4Ε至圖4G中之基本公開案之公開案鑑別公開SNp及對偶 基因。在圖4E中之LSPk實例中,基本公開案為Ε_η等 人,Nature 447:713-720 (2007)。圖 22及圖 25進一步列出 相關性。圖22及圖25中之相關性可用於計算個體對於病狀 或表型之危險,例如用於計算GCI*GCI pius計分。Gci或 GCI Pius計分亦可併有諸如病狀之流行率之資訊,例如在 圖23中。 或者,可自儲存基因組概況產生相關性。舉例而言,具 有儲存基因組概況之個體亦可具有同樣儲存之已知表型資 訊。儲存基因組概況及已知表型之分析可產生基因型相關 !生。舉例而έ,250個具有儲存基因組概況之個體亦具有 其先前診斷患有糖尿病之儲存資訊^執行其基因組㈣之 分析且將其與無糖尿病個體之對照組相比較。接著判定先 前診斷患有糖尿病之個體具有較之對照組具有特定遺傳變 異體之較高料’且可在彼料遺傳變異體純尿病之間 產生基因型相關性。 型之確認相關 之基因型及相 在步驟112中,基於遺傳變異體與特定表 性產生規則。舉例而言,可基於表丨中所列 127264.doc -32- 200847056 關表型產生規則。基於相關性之規則可併有其他因素,諸 如性別(例如圖4)或種族(圖4及圖5)以產生效應估計,諸如 圖4及圖5中之彼等者。由規則產生之其他量測可為估計相 對危險增加,諸如在圖6中。效應估計及估計相對危險增 加可來自公間文獻,或自公開文獻計算。或者,規則可基 於自儲存基因組概況及先前已知表型產生之相關性。在一 些實施例中,規則係基於圖22及圖25中之相關性。Family 'where Figures 4C through 41 contain further information about the relevance of each of these columns. For example, in Figure 4A, as shown in the short phenotype name index of Figure 4M, the "short phenotype name" of BC is an abbreviation for breast cancer. In the genus BC-4 of the gene locus, the gene LSP1 and Breast cancer related. The published or functional SNP identified by this correlation as shown in Figure 4C is rs3817198, wherein the dangerous dual gene is disclosed as C and the non-dangerous dual gene is τ. Via the basic disclosure such as in Figures 4A to 4G The disclosure identifies open SNp and dual genes. In the example of LSPk in Figure 4E, the basic disclosure is Ε_η et al, Nature 447:713-720 (2007). Figures 22 and 25 further list correlations. And the correlation in Figure 25 can be used to calculate the individual's risk to the condition or phenotype, for example, to calculate the GCI*GCI pius score. Gci or GCI Pius scores may also have information such as the prevalence of the disease, For example, in Figure 23. Alternatively, correlation can be generated from the storage of the genomic profile. For example, an individual with a stored genomic profile can also have known phenotypic information that is also stored. Analysis of the stored genomic profile and known phenotype can be Generate genotype related! For example, 250 individuals with a stored genomic profile also have their previous diagnostic information for the diagnosis of diabetes, perform an analysis of their genome (4) and compare it to a control group of non-diabetic individuals. The individual with diabetes has a higher material than the control group with a specific genetic variant and can produce a genotype correlation between the genetic variants of the pure urinary disease. The genotype and phase of the confirmation of the type are in step 112. Based on genetic variants and specific phenotypic production rules. For example, rules can be generated based on the phenotypes listed in Table 127264.doc -32- 200847056. Based on the rules of relevance, there may be other factors, such as gender ( For example, Figure 4) or race (Figures 4 and 5) to produce an effect estimate, such as those in Figures 4 and 5. Other measurements produced by the rules may be an estimate of relative risk increase, such as in Figure 6. Effect estimates and estimates of relative risk increases can come from public documents or from published literature. Alternatively, rules can be based on self-storing genomic profiles and previously known phenotypes. Correlation. In some embodiments, the rule is based on FIG. 22 and FIG. 25 in the correlation.
在一較佳實施例中,遺傳變異體將為SNp。當SNp存在 於早一位點處時,在一個位點處帶有特定SNp對偶基因之 個體常常可預測在其他位點處帶有特定SNp對偶基因。 SNP與使個體傾向於疾病或病狀之對偶基因之相關性經由 連鎖不平衡發生’丨中兩個或兩個以上基因座處之對偶基 因之非隨機關聯在群體中比將預期經由再組合隨機形成更 頻繁或更不頻繁地發生。 諸如核芽酸重複或插入之其他遺傳標記或變異體亦可與 已^不與特疋表型相關聯之遺傳標記呈連鎖不平衡。舉例 :核#^插入與表型才目關且SNp與核普酸插入呈連鎖 不平衡。基於SNP與表型之間的相關性產生規則。亦可產 生基於核苷酸插入盥砉 a i之間的相關性之規則。任一種規 則或兩種規則可應用Μ 1 * μ ;基因組概況,因為一個SNP之存在 "生特定危險因數,另一者 組合時可增加危險。纟了產生另―危險因數’且當 經由連鎖不平橋 偶基因或·之:定=向性對偶基因與SNP之特定對 子偶基因組合共分離。SNP對偶基因 127264.doc -33 · 200847056 沿染色體之特定組合稱為單型,且其以組合形式存在之 DNA區域可稱為單型區段。當單型區段可由一個SNP組成 時,單型區段通常表示2個或2個以上展現個體之間的低單 型多樣性及具有通常低之再組合頻率的SNP之連續系列。 單型之鑑別可藉由鑑別位於單型區段中之一或多個SNP來 進行。因此,SNP概況通常可用於鑑別單型區段,而不一 定需要鑑別給定單型區段中之所有SNP。 SNP單型模式與疾病、病狀或身體狀態之間的基因型相 關性逐漸變得已知。對於給定疾病而言,將已知患有該疾 病之一組人之單型模式與無該疾病之一組人進行比較。藉 由分析許多個體,可判定群體中多態現象之頻率,且接著 此等頻率或基因型可與諸如疾病或病狀之特定表型相關。 已知SNP-疾病相關性之實例包括年齡相關之黃斑變性中補 體因子Η中之多態現象(ταβίπ#乂,Sc/wce/ 3⑽:355-35又 (2005))及與肥胖相關聯之INSIG2基因附近之變異體 SNP相關性包括包含CDKN2 A及B之9p21區域之多態現 象,諸如與心肌梗塞相關之rsl0757274、rs2383206、 rsl3333040、rs2383207 及 rsl0116277(i/e/ga^i"> 事乂, Science 316:1491-1493 (2007) ; McPherson 等人,Science 316··1488-1491 (2007))。In a preferred embodiment, the genetic variant will be SNp. When SNp is present at a single point earlier, individuals with a particular SNp dual gene at one site are often predictive of carrying a particular SNp dual gene at other sites. The association of SNPs with dual genes that make individuals prone to disease or condition occur via linkage disequilibrium. The non-random association of dual genes at two or more loci in the sputum is expected to be randomized in the population by recombination. Formation occurs more frequently or less frequently. Other genetic markers or variants, such as nucleonucleotide repeats or insertions, may also be in linkage disequilibrium with genetic markers that are not associated with a phenotype. Example: The nuclear #^ insertion is phenotyped and the SNp is in linkage disequilibrium with the nucleotide insertion. A rule is generated based on the correlation between the SNP and the phenotype. It is also possible to generate rules based on the correlation between nucleotide insertions 盥砉 a i . Any one or both rules can be applied to * 1 * μ; the genomic profile, because the presence of one SNP "specific risk factors, the other can increase the risk when combined. In addition, another risk factor is generated and is co-segregated by a combination of a conjugated unidirectional gene and a specific pair of genomic pairs of SNPs. The SNP dual gene 127264.doc -33 · 200847056 A specific combination along a chromosome is called a haplotype, and a DNA region which exists in a combined form may be referred to as a singular segment. When a single-type segment can be composed of one SNP, the single-type segment typically represents a continuous series of two or more SNPs exhibiting low simplicial diversity between individuals and having a generally low recombination frequency. Identification of a single type can be performed by identifying one or more SNPs located in a single type segment. Therefore, SNP profiles can generally be used to identify single-type segments without necessarily having to identify all SNPs in a given single-type segment. The genotype correlation between the SNP singular pattern and the disease, condition or physical state is gradually becoming known. For a given disease, a single-type pattern of a group known to have one of the diseases is compared to a group without the disease. By analyzing a number of individuals, the frequency of polymorphisms in the population can be determined, and then such frequencies or genotypes can be associated with a particular phenotype such as a disease or condition. Examples of known SNP-disease correlations include polymorphisms in complement factor Η in age-related macular degeneration (ταβίπ#乂, Sc/wce/ 3(10): 355-35 (2005)) and INSIG2 associated with obesity. The SNP correlation of variants near the gene includes polymorphisms of the 9p21 region including CDKN2 A and B, such as rsl0757274, rs2383206, rsl3333040, rs2383207, and rsl0116277 (i/e/ga^i"> , Science 316: 1491-1493 (2007); McPherson et al., Science 316·1488-1491 (2007)).
SNP可為功能性或非功能性的。舉例而言,功能性SNP 對細胞功能具有效應,藉此產生表型,而非功能性SNP在 功能方面無效應,但可與功能性SNP呈連鎖不平衡。SNP 127264.doc •34- 200847056 亦可為同義或非同義的。同義SNP為不同形式產生相同多 肽序列之SNP,且為非功能性SNp。若SNp產生不同多 肽,貝彳SNP為非同義的且可為或可不為功能性的。用於鑑 別為2個或2個以上單型之雙型中之單型的SNp或其他遺傳 標記亦可用於使與雙型相關聯之表型相關。關於個體之單 型、雙型及SNP概況之資訊可處於個體之基因組概況中。 在較佳實施例中,對於基於與相關於表型之另一遺傳標 舌己呈連鎖不平衡之遺傳標記產生的規則而言,該遺傳標記 可具有大於0.5之r2或D,計分,其為此項技術中常用於判定 連鎖不平衡之計分。在較佳實施例中,該計分大於〇6、 〇·7、〇·8、〇·9Ό、0.95或0.99。因此,在本發明中,用於使 表型與個體之基因組概況相關之遺傳標記可與相關於表型 之功月b性或公開SNP相同或不同。舉例而言,使用bc 4, 測試SNP及公開SNP為相同的,同樣,測試危險及非危險 對偶基因與公開危險及非危險對偶基因相同(圖4A及圖 C)。然而,對於BC—5、CASP8及其與乳癌之相關性而言, 測試SNP與其功能性或公開SNP不同,同樣,測試危險及 非危險對偶基因與公開危險及非危險對偶基因不同。相對 於基因組之正股來定位測試及公開對偶基因,且自此等行 可推斷為純合危險或非危險基因型,其可產生待應用於諸 如用戶之個體之基因組概況的規則。在一些實施例中,測 試SNP可能尚未鑑別,但使用公開SNp資訊,可基於諸如 TaqMan之另一檢定鑑別對偶基因差異或SNp。舉例而言, 圖25 A中之AMD—5 ’公開SNP為rsl061170,但測試$ 127264.doc -35- 200847056 未鑑別。測試SNP可藉由用公開SNP之LD分析來鑑別。或 者,可不使用測試SNP,而作為替代將使用TaqMan或其他 同等檢定來評估具有測試SNP之個體之基因組。 測試SNP可為π直接"或”標籤"SNP(圖4E至圖4G、圖5)。 直接SNP為與公開或功能性SNP相同之測試SNP,諸如對 於BC_4而言。直接SNP亦可用於FGFR2與乳癌之相關性, 其使用歐洲人及亞洲人體内之SNP rs 1073640,其中次要 對偶基因為A且其他對偶基因為事乂,iVaiwre #7··7⑽7-70P3 (2007))。用於FGFR2與乳癌之相關性之另 一公開或功能性SNP為rsl219648,亦在歐洲人及亞洲人體 内(//⑽⑽7乃。標籤SNP 用於測試SNP不同於功能性或公開SNP處,如BC-5中。標 籤SNP亦可用於其他遺傳變異體,諸如用於 CAMTAl(rs4908449)、9p21(rsl0757274、rs2383206、rsl3333040、 rs2383207、rsl0116277)、COLlAl(rsl800012)、FVL(rs6025)、 HLA-DQAl(rs4988889、rs2588331)、eNOS(rsl799983)、 MTHFR(ral801133)&APC(rs289333 80)iSNP。 SNP之資料庫公開可得自(例如)國際HapMap計劃 (International HapMap Project,參看 www_hapmap.org,SNPs can be functional or non-functional. For example, functional SNPs have an effect on cellular function, thereby producing a phenotype, while non-functional SNPs have no functional effects, but are in linkage disequilibrium with functional SNPs. SNP 127264.doc •34- 200847056 may also be synonymous or non-synonymous. Synonymous SNPs are SNPs that produce the same polypeptide sequence in different forms and are non-functional SNp. If SNp produces a different polypeptide, the Bellein SNP is non-synonymous and may or may not be functional. SNp or other genetic markers used to identify singles in two or more single types can also be used to correlate the phenotype associated with the double type. Information about individual phenotypes, bitypes, and SNP profiles can be in an individual's genomic profile. In a preferred embodiment, for a rule based on a genetic marker that is in linkage disequilibrium with another genetic tag associated with a phenotype, the genetic marker can have an r2 or D greater than 0.5, scored, This technique is often used to determine the score of linkage disequilibrium. In a preferred embodiment, the score is greater than 〇6, 〇·7, 〇·8, 〇·9Ό, 0.95 or 0.99. Thus, in the present invention, the genetic marker used to correlate the phenotype with the genomic profile of the individual may be the same as or different from the phenotype of the phenotype or the published SNP. For example, using bc 4, the test SNP and the open SNP are identical, as are the test for dangerous and non-hazard dual genes that are identical to open dangerous and non-hazard dual genes (Figure 4A and Figure C). However, for BC-5, CASP8, and its association with breast cancer, the test SNP is different from its functional or open SNP, as is the testing of dangerous and non-hazardous dual genes that differ from open and non-hazardous dual genes. The test and disclosure of the dual gene is located relative to the positive strand of the genome, and from which it can be inferred to be a homozygous dangerous or non-dangerous genotype that can generate rules for the genomic profile to be applied to an individual such as a user. In some embodiments, the test SNP may not have been identified, but using published SNp information, the dual gene difference or SNp may be identified based on another assay such as TaqMan. For example, the AMD-5' disclosed SNP in Figure 25A is rsl061170, but the test $127264.doc-35-200847056 is not identified. Test SNPs can be identified by LD analysis with published SNPs. Alternatively, the test SNP may not be used, and instead TaqMan or other equivalent assays will be used to assess the genome of the individual with the test SNP. The test SNP can be a π direct " or "tag" SNP (Fig. 4E to Fig. 4G, Fig. 5). The direct SNP is the same test SNP as the public or functional SNP, such as for BC_4. The direct SNP can also be used for The relationship between FGFR2 and breast cancer, using SNP rs 1073640 in Europeans and Asians, where the secondary dual gene is A and other dual genes are the case, iVaiwre #7··7(10)7-70P3 (2007)). Another public or functional SNP for the association of FGFR2 with breast cancer is rsl219648, also in Europeans and Asians (//(10)(10)7. Labeled SNPs are used to test SNPs differently from functional or open SNPs, such as BC-5 The tag SNP can also be used for other genetic variants, such as for CAMTAl (rs4908449), 9p21 (rsl0757274, rs2383206, rsl3333040, rs2383207, rsl0116277), COLlAl (rsl800012), FVL (rs6025), HLA-DQAl (rs4988889, rs2588331). ), eNOS (rsl799983), MTHFR (ral801133) & APC (rs289333 80) iSNP. The SNP database is publicly available, for example, from the International HapMap Project (see www_hapmap.org,
The International HapMap Consortium,Nature 426:789-796 (2003) 5 Sl The International HapMap Consortium,Nature 437:1299-1320 (2005)) > A IS ^ 0 ^ ^ f # (Human Gene Mutation Database,HGMD)、公開資料庫(參看 www.hgmd.org) 及單核苷酸多態現象資料庫(Single Nucleotide Polymorphism 127264.doc ·36· 200847056 database,dbSNPV炎在 十 4 看www.ncbi.nlm.nih.gov/sNp/)。此等 貧料庫提供SNP單刮,+处私 早生或硓夠判定SNP單型模式。因此, 此等SNP資料庫能夠檢 杈驗廣泛耗圍之疾病及病狀之遺傳危 險因數,諸如癌痄、於火& 發火性疾病、心血管疾病、神經退化 ^疾病及傳染性疾病。該等疾病或病狀可起作用,直中合 前存在治療及療法。治療可包括㈣性治療以及改善症: 及病狀之治療,包括生活方式變化。The International HapMap Consortium, Nature 426:789-796 (2003) 5 Sl The International HapMap Consortium, Nature 437:1299-1320 (2005)) > A IS ^ 0 ^ ^ f # (Human Gene Mutation Database, HGMD), Open database (see www.hgmd.org) and single nucleotide polymorphism database (Single Nucleotide Polymorphism 127264.doc · 36 · 200847056 database, dbSNPV inflammation at www.ncbi.nlm.nih.gov/ sNp/). These poor stocks provide SNP single scraping, + private early or enough to determine the SNP single type mode. Therefore, these SNP databases are capable of detecting genetic risk factors for a wide range of diseases and conditions, such as cancer, fire & igniting diseases, cardiovascular diseases, neurodegenerative diseases and infectious diseases. These diseases or conditions can work, and there are treatments and therapies before and after the combination. Treatment may include (iv) sexual treatment and improvement: and treatment of the condition, including lifestyle changes.
、亦可檢驗:如身體性狀、生理性狀、心理性狀、情緒性 恥一種族豕譜及年齡之許多其他表型。身體性狀可包括 门毛色眼目月顏色、身體或諸如精力、耐久力及敏捷 I*之欧狀、理性狀可包括智力、記憶力表現或學習表 現。種族及家譜可包括祖先或種族之鑑別,《個體祖先之 來源地。I齡可為個冑真實年齡之判冑,或㈣之遺傳學 使/、相對於普通群體之年齡。舉例而言,個體之真實年齡 ,38歲’然而其遺傳學可肖定其記憶能力或身體健康狀況 可為平均28歲。另一年齡性狀可為個體之計劃壽命。 其他表型亦可包括非醫學病狀,諸如”有趣”表型。此等 表型可包括與熟知個體之比較,諸如外國顯要人物、政治 家、名人、發明家、運動員、音樂家、藝術家、商人及聲 名狼籍之個體,諸如罪犯。其他”有趣”表型可包括與其他 生物體之比較,諸如細菌、昆蟲、植物或非人類動物。舉 例而言,個體可對瞭解其基因組概況與其寵物狗或與前總 統之基因組概況比較之情況如何感興趣。 在步驟114中,將規則應用於儲存基因組概況以產生步 127264.doc -37· 200847056 驟116之表型概況。舉例而言,圖4、圖5或圖6中之資訊可 形成應用於個體之基因組概況之規則或測試之基準。規則 可包含關於測試SNP及對偶基因之資訊,及圖4之效應估 計,其中用於效應估計之單位(UNITS)為效應估計之單 位,諸如OR,或優勢率(95%信賴區間)或平均值。在較佳 實施例中,效應估計可為基因型危險(圖4C至圖4G),諸如 純合子危險(homoz或RR)、危險雜合子(heteroz或RN)及非 危險純合子(homoz或NN)。在其他實施例中,效應估計可 為攜帶者危險,其為RR或RN vs NN。在再其他實施例 中,效應估計可基於對偶基因、對偶基因危險,諸如r vS. N。亦可存在兩個基因座(圖4J)或三個基因座(圖4K)之基因 型效應估計(例如針對兩個基因座效應估計之9種可能基因 型組合而吕為rrrr、RRNn等)。公開HapMap中之測試 SNP頻率亦在圖4H及圖41中指出。 在其他實施例中,來自圖21、圖22、圖23及/或圖25之 二貝訊可用於產生應用於個體之基因組概況之資訊。舉例而 吕’貧訊可用於產生個體之GCI或GCI Plus計分(例如圖 19)。該等計分可用於產生關於個體之表型概況中之一或 多種病狀之遺傳危險的資訊,諸如估計壽命危險(例如圖 15)。該等方法允許計算圖22或圖25中所列之一或多種表 型或病狀之估計壽命危險或相對危險。單一病狀之危險可 係基於一或多個SNP。舉例而言,表型或病狀之估計危險 可係基於至少2、3、4、5、6、7、8、9、10、11或12個 SNP,其中用於估計危險之SNP可為公開SNP、測試SNP或 127264.doc •38· 200847056 兩者(例如圖25)。 病狀之估計危險可係基於圖22或圖25中所列之SNP。在 一些實施例中,病狀之危險可係基於至少一個SNP。舉例 而言,個體患阿兹海默氏病(Alzheimers,AD)、結腸直腸 癌(CRC)、骨關節炎(〇A)或剝脫青光眼(XFG)之危險之評 估可係基於1個SNP(例如,AD為rs4420638、CRC為 rs6983267、OA 為 rs4911178 且 XFG 為 rs2165241)。對於諸 如肥胖(BMIOB)、格雷氏病(Graves1 Disease,GD)或金色 沉著病(HEM)之其他病狀而言,個體之估計危險可係基於 至少1個或2個SNP(例如,BMIOB為rs9939609及/或 rs9291171 ; GD 為 DRB1 *0301 DQA1 *0501 及 / 或 rs3 087243 ; HEM 為 rsl800562 及 / 或 rsl29128)。對於諸如 (但不限於)心肌梗塞(MI)、多發性硬化症(MS)或牛皮癖 (PS)之病狀而言,1、2或3個SNP可用於評估個體患該病狀 之危險(例如,MI 為 rsl866389、rsl333049及 / 或 rs6922269; MS 為 rs6897932、rsl2722489 及 / 或 DRB1*1501 ; PS 為 rs6859018、rsll209026及 / 或HLAC*0602)。對於估計個體 患過動腿症候群(RLS)或乳糜瀉(CelD)之危險而言,為1、It can also be tested: such as physical traits, physiological traits, psychological traits, emotional shame, a family spectrum and many other phenotypes of age. Physical traits may include the color of the eye of the eye, the body, or the shape of the body, such as energy, endurance, and agility. The rationality may include intelligence, memory performance, or learning performance. Race and genealogy can include the identification of ancestors or races, the source of individual ancestors. The age of I can be a judgment of the true age, or (4) the genetics of /, relative to the age of the general group. For example, the true age of an individual, 38 years old, however, its genetics can be determined by its memory ability or physical health status can be an average of 28 years old. Another age trait can be the planned life of the individual. Other phenotypes may also include non-medical conditions, such as "fun" phenotypes. Such phenotypes may include comparisons with well-known individuals, such as foreign dignitaries, politicians, celebrities, inventors, athletes, musicians, artists, merchants, and infamous individuals, such as criminals. Other "fun" phenotypes may include comparisons with other organisms, such as bacteria, insects, plants, or non-human animals. For example, an individual may be interested in knowing how their genomic profile compares to their pet dog or to the genus profile of the predecessor. In step 114, the rules are applied to store the genomic profile to generate a phenotypic profile of step 127264.doc - 37 · 200847056. For example, the information in Figures 4, 5, or 6 can form a basis for rules or tests applied to an individual's genomic profile. The rules may include information about testing SNPs and dual genes, and the effect estimates of Figure 4, where the unit of effect estimation (UNITS) is the unit of effect estimation, such as OR, or the odds ratio (95% confidence interval) or average. . In a preferred embodiment, the effect estimates can be genotype risk (Fig. 4C to Fig. 4G), such as homozygous risk (homoz or RR), heterozygous heterozygotes (heteroz or RN), and non-hazard homozygotes (homoz or NN). . In other embodiments, the effect estimate may be carrier risk, which is RR or RN vs NN. In still other embodiments, the effect estimate can be based on dual gene, dual gene risk, such as r vS. N. There may also be genotype effect estimates for two loci (Fig. 4J) or three loci (Fig. 4K) (e.g., nine possible genotype combinations estimated for two locus effects and rrrr, RRNn, etc.). The test SNP frequency in the published HapMap is also indicated in Figures 4H and 41. In other embodiments, the signals from Fig. 21, Fig. 22, Fig. 23, and/or Fig. 25 can be used to generate information for the genomic profile applied to the individual. For example, Lu's poor news can be used to generate individual GCI or GCI Plus scores (eg, Figure 19). Such scores can be used to generate information about the genetic risk of one or more of the phenotypic profiles of an individual, such as an estimated life risk (e.g., Figure 15). These methods allow for the calculation of the estimated life-risk or relative hazard of one or more of the phenotypes or conditions listed in Figure 22 or Figure 25. The risk of a single condition can be based on one or more SNPs. For example, the estimated hazard of a phenotype or condition may be based on at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 SNPs, wherein the SNP used to estimate the hazard may be public SNP, test SNP or 127264.doc •38· 200847056 Both (eg Figure 25). The estimated risk of the condition can be based on the SNPs listed in Figure 22 or Figure 25. In some embodiments, the risk of a condition can be based on at least one SNP. For example, an individual's assessment of the risk of Alzheimer's disease (Alzheimers, AD), colorectal cancer (CRC), osteoarthritis (〇A), or exfoliation of glaucoma (XFG) may be based on 1 SNP ( For example, AD is rs4420638, CRC is rs6983267, OA is rs4911178 and XFG is rs2165241). For other conditions such as obesity (BMIOB), Graves disease (GD), or golden stagnation (HEM), the estimated risk for an individual may be based on at least 1 or 2 SNPs (eg, BMIOB is rs9939609) And/or rs9291171; GD is DRB1 *0301 DQA1 *0501 and / or rs3 087243; HEM is rsl800562 and / or rsl29128). For conditions such as, but not limited to, myocardial infarction (MI), multiple sclerosis (MS), or psoriasis (PS), 1, 2, or 3 SNPs can be used to assess an individual's risk of developing the condition ( For example, MI is rsl866389, rsl333049, and/or rs6922269; MS is rs6897932, rsl2722489, and/or DRB1*1501; PS is rs6859018, rsll209026, and/or HLAC*0602). For the estimated risk of an individual having Leg Leg Syndrome (RLS) or Celiac Disease (CelD),
2、3、或 4個 SNP(例如,RLS 為 rs6904723、rs2300478、 rsl026732及 / 或 rs9296249 ; CelD 為 rs6840978、rsll571315、 rs2187668及 / 或 DQA1*0301 DQB1*0302)。對於前列腺癌 (PC)或狼瘡(SLE)而言,1、2、3、4或5個SNP可用於估計 個體患PC或SLE之危險(例如,PC為η4242384、 rs6983267、rsl6901979、rsl7765344及 /或 rs4430796 ; SLE 127264.doc -39- 2008470562, 3, or 4 SNPs (for example, RLS is rs6904723, rs2300478, rsl026732, and / or rs9296249; CelD is rs6840978, rsll571315, rs2187668, and / or DQA1*0301 DQB1*0302). For prostate cancer (PC) or lupus (SLE), 1, 2, 3, 4, or 5 SNPs can be used to estimate the risk of PC or SLE in an individual (eg, PC is η4242384, rs6983267, rsl6901979, rsl7765344, and/or Rs4430796 ; SLE 127264.doc -39- 200847056
為 rsl2531711、rsl0954213、rs2004640、DRB1*0301 及/或 DRB1 * 1501)。對於估計個體患黃斑變性(AMD)或類風濕性 關節炎(RA)之壽命危險而言,可使用1、2、3、4、5或6個 SNP(例如,AMD 為 rsl0737680、rsl0490924、rs541862、 rs2230199、rsl061170及/或 rs9332739 ; RA為 rs6679677、 rsll203367、rs6457617、DRB*0101、DRB1*0401 及 /或 DRB1*0404)。對於估計個體患乳癌(BC)之壽命危險而 言,可使用1、2、3、4、5、6或7個SNP(例如, rs3803662 、 rs2981582 、 rs4700485 、 rs3817198 、 rsl7468277、rs6721996及 / 或 rs3803662)。對於估計個體患 克羅恩氏病(Crohn’s disease,CD)或2型糖尿病(T2D)之壽 命危險而言,可使用1、2、3、4、5、6、7、8、9、10或 11 個 SNP(例如,CD 為 rs2066845 、rs5743293 、 rsl0883365 、 rsl7234657 、 rsl0210302 、 rs9858542 、 rsll805303 、 rsl000113 、 rsl7221417 、 rs2542151 及 /或 rsl0761659 ; T2D為 rsl3266634、rs4506565 ' rsl0012946、 rs7756992 、 rsl0811661 、 rsl2288738 、 rs8050136 、 rsllll875、rs4402960、rs5215及 / 或 rsl801282)。在一些實 施例中,用作判定危險之基準之SNP可與上文所提及或圖 22或圖25中所列之SNP呈連鎖不平衡。 個體之表型概況可包含許多表型。藉由本發明之方法評 估患者患疾病或其他病狀諸如可能之藥物反應(包括代謝 作用、功效及/或安全性)之危險特別可以預測或診斷分析 對於多種無關疾病及病狀之易感性,無論在有症狀、症狀 127264.doc -40- 200847056 珂或無症狀之個體,包括一或多種疾病/病狀傾向性對偶 基因之攜帶者。因& ’此等方法提供個體對疾病或病狀之 易感性之一般評估,而無需測試特定疾病或病狀之任何預 想概念。舉例而言,本發明之方法可以基於個體之基因組 概況來評估個體對表丨、圖4、圖5或圖6中所列之若干病狀 中之任-者的^性。此外,㈣方法可以評估個體對於 一或多種表型或病狀(諸如圖22或圖25中所示者)之估計壽 命危險或相對危險。 該評估較佳提供此等病狀之2種或2種以上’更佳此等病 狀之3、4、5、10、20、50、1〇〇或甚至更多種的資訊。在 較佳實施财’纟型概況係由至少2〇條規則應用於個體之 基因组概況而產生。在其他實施例中’至少5〇條規則應用 於個體之基因組概況。表型之單—規則可應用於單基因表 型。多於一條規則亦可應用於單一表型,諸如多基因表型 或早基因表型’其中單—基因中之多個遺傳變異體影響具 有該表型之可能性。 在個體患者之基因組概況之初始篩選後,當其他核苷酸 變異體諸如SNPS變得已知時,經由與該等其他核苦酸變異 體比較來進行(或得到)個體之基因型相關性的更新。舉例 而3,可由瀏覽新基因型相關性之科學文獻之一或多位一 般热習遺傳學領域技術者定期如每日、每週或每月執行步 驟110。接著可進一步由一或多位此領域專家之委員會確 認該新基因型相關性。亦可接著基於新確認之相關性用新 規則定期更新步驟112。 127264.doc -41 - 200847056 新規則可包含無現有規則之基因型或表型。舉例而言, 發現不與任何表型相關之基因型與新表型或現有表型相 關。新規則亦可用於先前無基因型與之相關之表型之間的 相關性。亦可對具有現有規則之基因型與表型判定新規 則。舉例而言,存在基於基因型A與表型A之間的相關性 之規則。新研究揭露基因型B與表型A相關,且產生基於 此相關性之新規則。另一實例為發現表型6與基因型A相 關聯’且因此可產生新規則。 亦可對基於已知相關性但並非公開科學文獻中最初鑑別 之相關性的發現產生規則。舉例而言,可報告基因型c與 表型C相關。另一公開案報告基因型D與表型D相關。表型 C及表型D為相關症狀,例如表型c可為呼吸急促,且表型 D為小肺活量。可發現基因型c與表型D或基因型〇與表型 C之間的相關性且經由用具有基因型c及基因型d以及表型 C及表型D之個體之現有儲存基因組概況的統計學方法或 藉由其他研究來對其進行確認。接著可基於新發現及確認 之相關產生新規則。在另_實施例中,可研究許多具有 特定或相關表型之個體之儲存基因組概況以判定個體共有 之基因型,且可判定相關性。可基於此相關性產生新規 則〇 亦可產生規則以改良現有規則。舉例而言,基因型與表 型之間的相關性可藉由已知個體特徵來部分敎,該特徵 諸如種族、家譜、,也理、性別、年齡、家族史或該個體之 何’、他已知表型。可產生基於此等已知個體特徵之規則 127264.doc -42- 200847056 且將其併入現有規則中以提供改良規則。選擇待應用之改 良規則將視個體之特定個體因素而定。舉例而言,規則可 係基於當個體具有基因型E時個體具有表型E之可能性為 3 5%。然而,若個體具有特定種族,則可能性為5%。可基 於此結果產生新規則且將其應用於具有彼特定種族之個 體。或者,可應用判定為35%之現有規則,且接著應用用 於彼表型之基於種無之另一規則。基於已知個體特徵之規 則可自科學文獻判定或基於儲存基因組概況之研究判定。 當開發新規則,或可定期(諸如一年至少一次)應用新規則 日守,可添加新規則且在步驟1 i 4中將其應用於基因組概 況。 個體患疾病之危險之資訊亦可擴展為允許較精細解析 SNP基因組概況之技術進步。如上文所指出,初始SNp基 因組概況可容易地使用用於掃描5〇〇,〇〇〇個snp之微陣列技 術來產生。假定單型區段之性質,此數目慮及個體之基因 組中所有SNP之代表性概況。儘管如此,估計通常在人類 基口組中存在大約1千萬個SNP(國際pjapMap計劃; www.hapmap.org)。因為技術進步允許更精細細節程度之 SNP之實際、成本有效解析,諸如1,〇〇〇,〇〇〇、1,5 〇〇,〇〇〇、 2,000,〇〇〇、3,0〇〇,〇〇〇或更多個州1>之微陣列,或整個基因 組定序’所以可產生更詳細之SNP基因組概況。同樣,更 精細SNP基因組概況之成本有效分析及snp·疾病相關性之 主資料庫之更新將藉由電腦分析方法之進步而能夠實現。 在步驟116中產生表型概況後,用戶或其健康護理管理 127264.doc -43- 200847056 者可經由線上入口或網站存取其基因組或表型概況,如在 步驟118中。亦可向用戶或其健康護理管理者提供含有表 型概況及與表型及基因組概況有關之其他資訊之報告,如 在步驟120及步驟122中。該等報告可印刷、儲存於用戶電 腦中或線上察看。 樣品線上報告在圖7中展示。用戶可選擇顯示單一表型 或多於一種表型。用戶亦可具有不同察看選項,例如圖7 中所不之”快速察看"選項。表型可為醫學病狀且快速報告 中之不同治療及症狀可連接至含有關於治療之其他資訊之 其他網頁。舉例而言,藉由點擊藥劑,其將通向含有關於 劑里、成本、副作用及有效性之資訊之網站。其亦可比較 藥劑與其他治療。網站亦可含有通向藥劑製造商之網站之 鏈路。另一鏈路可向用戶提供產生藥物基因組概況之選 擇,其將包括基於其基因組概況之資訊,諸如其可能對藥 劑起反應。亦可提供通向藥劑替代者之鏈路,諸如預防性 行為,諸如健身及重量減輕,且亦可提供通向飲食補充、 飲食計劃及通向鄰近健身倶樂部、醫療所、健康提供者、 日常型水療及其類似物之鏈路。亦可提供教育及資訊視 訊、可用治療之概述、可能之治療物及一般推薦。 線上報告亦可提供通向親自安排預約醫師或遺傳諮詢或 接觸線上遺傳顧K醫師之鏈路,向用戶提供請求更多關 於其表型概況之資訊的機會。在線上報告中亦可提供通向 線上遺傳諮詢及醫師詢問之鏈路。 報告亦可以其他格式察看,諸如斟 w 確如對於早一表型之綜合察 127264.doc -44- 200847056 看,其中提供每-種類之更多細節。舉例而言,可能存在 關於用戶產生表型之可能性之更詳細統計,關於典型症狀 或表型之更多資訊,諸如醫學病狀之樣本症狀,或諸如身 高之身體非醫學病狀之範圍;或關於基因及遺傳變異體之 更多資訊,諸如群體發病率,例如在世界範圍内,或在不 同國豕中,或在不同年齡範圍或性別中。舉例而言,圖丄5 展不許多病狀之估計壽命危險之概述。個體可察看關於特 定病狀之更多資訊,諸如前列腺癌(圖16)或克羅恩氏病(圖 17) ° 在另一實施例中,報告可為”有趣”表型,諸如個體之基 因組概況與諸如Albert Einstein之著名個體之基因組概況 的相似〖生報告可顯示個體之基因組概況與Einstein之基 因組概況之間的相似性且可進一步顯示Einstein之預測IQ 及個體之預測IQ。其他資訊可包括一般群體之基因組概況 及其IQ與個體及Einstein之基因組概況及其〖Q相比之情況 如何。 在另一實施例中,報告可顯示已與用戶之基因組概況相 關之所有表型。在其他實施例中,報告可僅顯示與個體之 基因組概況正相關之表型。在其他格式中,個體可選擇顯 示表型之特定亞群,諸如僅醫學表型,或僅可起作用之醫 學表型。舉例而言,可起作用之表型及其相關基因型可包 括克羅恩氏病(與IL23R及CARD 15相關)、!型糖尿病(與 HLA-DR/DQ相關)、狼瘡(與hla-DRBI相關)、牛皮癬 (HLA-C)、多發性硬化症(hla_dqA1)、格雷氏病(hla_ 127264.doc -45- 200847056 DRB 1) 類風濕性關Sp炎(HLA-DRB1)、2型糖尿病 (TCF7L2)、乳癌(BRCA2)、結腸癌(Apc)、間歇性記憶 (KIBRA)及骨質疏鬆症(C0L1A1)。個體亦可選擇在其報告 中顯示表型之亞類,諸如對於醫學病狀僅為發炎性疾病, 或對於非醫學病狀僅為身體性狀。在一些實施例中,個體 可選擇顯示所有病狀,藉由加亮彼等病狀(例如,圖15a、 圖〗5D)、加亮僅具有高危險之病狀㈤15B)或僅具有低危 險之病狀(圖15C)對個體計算估計危險。 由個體提交及傳達至個體之資訊可為保密及機密的,且 該等資訊之存取可由個體控制。源自複雜基因組概況之資 訊可以管理機構批准、可理解、醫學相關及/或高影響力 貧料形式提供給個體。資訊亦可為受一般關注,而非醫學 相關的。資訊可藉由若干方式保密地傳達至個體,包括 (但不限於)入口介面及/或郵件。更佳地,藉由入口介面將 資訊保密地(若個體如此選擇)提供給個體,個體能夠保密 且機捃地存取資訊。該介面較佳由線上網際網路網站存取 提供或替代方式為允許私人、保密及容易可用存取之電 話或其他方式。藉由經由網路傳送資料來向個體或其健康 羞理官理者提供基因組概況、表型概況及報告。 口此,圖8為展示經由其可產生表型概況及報告之代表 性實例邏輯裝置之簡圖。圖8展示一電腦系統(或數位裝 置)800,其用於接收及儲存基因組概況、分析基因型相關 土於基因型相關性之分析產生規則、將規則應用於基 因組概況及產生表型概況及報告。該電腦系統8〇〇可視為 127264.doc 46- 200847056 可讀取來自媒體811及/或網路埠805之指令之邏輯設備, 其可視情況連接至具有固定媒體8 12之伺服器809。圖8中 所不之系統包括CPU 801、磁碟機803、諸如鍵盤815及/或 滑氣816之可選輸入裝置及可選監視器8〇7。可經由所指通 信媒體達成至本地或遠程之伺服器809的資料通信。該通 信媒體可包括傳送及/或接收資料之任何構件。舉例而 a,通信媒體可為網路連接、無線連接或網際網路連接。 該連接可經由全球資訊網提供通信。設想關於本發明之資 料可經由該等網路或連接傳送以由對方822接收及/或審 查。接收對方822可為(但不限於)個體、用戶、健康護理提 供者或健康護理管理者。在一實施例中,電腦可讀取媒體 包括適合於傳送生物樣品或基因型相關性之分析結果之媒 體。該媒體可包括關於個體受檢者之表型概況之結果,其 中使用本文中所述之方法得到該結果。 個人入口將較佳用作接收及評價基因組資料之個體之主 要面入口將旎夠使個體跟蹤其樣品自收集至測試及結 果之=展。經由人口存取’向個體介紹基於其基因組概況 之患常見遺傳病症之相對危險。用戶可選擇經由入口將何 種規則應用於其基因組概況。 在一實施财,-或多個網頁將具有表型清單及每-表 i方之方S ’帛丨可在财財進㈣擇錢該表型包括 在其表型概況中。表型可與關於表型之資訊連接,以幫助 戶產生關於其需要包括在其表型概況中之表型的有見識 選擇。網頁亦可具有根據疾病組而編組之表型,例如可起 127264.doc -47- 200847056 用之疾病或不可起作用之疾病。舉例而言,用戶可僅、里 =起作用之表型’諸如HLA_DQA1及乳糜寫。用戶亦^ =擇顯不表型之症狀前或症狀後治療。舉例而言,個體可 、擇可起作用之表型用症狀前治療(在增加之篩選外) 於礼糜寫而言為無楚質飲食之症狀前治療。另一實例可為 阿兹海=氏病,斯達⑽atin)、鍛煉、維生素及腦力勞動 、症狀則’口療。血拴症為另一實例’用避免口服避孕藥及 ❿〗免長:間靜坐之症狀前治療。用經批准症狀後治療之表 型之一實例為與CFH相關之濕型AMD,其中個體可獲得 對其病狀之雷射治療。 風表型亦可根據疾病或病狀類型或種類而編組,例如神經 殺風 ^内刀/必、免疫學等。表型亦可分為醫學及非 商學表型。網頁上之表型之其他分組可分為身體性狀、生 理性狀、心理性狀或情緒性狀。網頁可進一步提供藉由選 擇一個方框來選擇-組表型之部分。舉例而言,選擇所有 • I型、僅醫學相關表型、僅非醫學相關表型、僅可起作用 之表型、僅不可起作用之表型、不同疾病組或”有趣”表 里有趣表型可包括與名人或其他著名個體之比較,或 與其他動物或甚至其他生物體之比較。可用於比較之基因 組概況之清單亦可在網頁上提供給用戶選擇以與用戶之美 因組概況比較。 1 線上入口亦可提供搜尋引擎,以幫助用戶導覽入口,搜 尋敎表型,或搜尋由其表型概況或報告揭露之特定術語 或貧訊。通向存取合作者服務及產品提供之鏈路亦可由入 127264.doc -48· 200847056 口提供。亦可提供用於具有常見或類似表型之個體通向支 援群、留言板及聊天室的其他鏈路。線上入口亦可提供通 向具有關於用戶表型概況中之表型之更多資訊的其他站點 之鏈路。線上入口亦可提供允許用戶與朋友、家庭或健康 濩理管理者共享其表型概況及報告之服務。用戶可選擇在 表型概況中顯示其想要與其朋友、家庭或健康護理管理者 共享之表型。 表型概況及報告向個體提供個人化基因型相關性。向個 體提供之基因型相關性可用於確定個人健康護理及生活方 式之選擇。若發現遺傳變異體與可得到治療之疾病之間有 強相關性,則遺傳變異體之偵測可幫助決定開始疾病之治 療及/或個體之監測。在存在統計顯著相關性但並非視作 強相關性之情況下,個體可與個人醫師一起審查資訊且決 疋適當有益之行動方案。鑒於特定基因型相關性可有益於 個體之可能行動方案包括施以治療性治療、監測治療之可 能需要或治療之效應或在飲食、鍛煉及其他個人習慣/活 動方面進行生活方式變化。舉例而言,諸如乳糜瀉之可起 作用之表型可具有無麵質飲食之症狀前治療。同樣,基因 型相關性資訊可經由藥物基因組學應用於預測個體將對用 特定藥劑或藥劑療法治療所具有之可能反應,諸如特定藥 劑治療之可能功效或安全性。 用戶可選擇向其健康護理管理者(諸如醫師或遺傳顧問) 提供基因組及表型概況。基因組及表型概況可由健康護理 官理者直接存取,由用戶印刷出給予健康護理管理者之複 127264.doc -49- 200847056 本,或經由線上入口(諸如姆ά始 相 、布如I由線上報告上之鏈路)將1 接發送至健康護理管理者。 此恰當資訊之傳遞將准許患者與其醫師協力行動。詳+ 之,患者與其醫師之間的討論可經由個體之入口及通向: 學資訊之鏈路,以及將患者之基因組資訊存入其病歷中: 能力而實現。醫學資訊可包括預防及健康資訊。藉由本發 明向個體患者提供之資訊將能夠使患者對其健康護理作^ 有見識之選擇。以此方式,患者將能夠作出可幫助其避免 及/或延緩罹患其個體基因組概況(遺傳而得之DNA)更可能 產生之疾病的選擇。另外,患者將能夠採用就個人而言適 合其特定醫學需要之治療方案。個體亦將具有存取其會產 生病患及需要此資訊幫助其醫師形成治療性策略之基因型 貧料之能力。 基因型相關性資訊亦可結合遺傳諮詢’用於建議配偶考 慮再現,及對母親、父親及/或孩子之潛在遺傳關注。遺 傳顧問可向具有顯示患特定病狀或疾病之增加危險之表型 概況的用戶提供資訊及支援。其可解釋關於病症之資訊, 分析遺傳模式及再發生之危險,以及與用戶—起審查可用 選擇。遺傳顧問亦可提供指引用戶去求助社區或國家支援 服務之支援性建議。可—起包括遺傳諮詢與㈣預定計 劃。在—些實施例中,遺傳諮詢可在需要之24小時内安排 且可在諸如晚上、星期#、星期曰及/或假曰之時間期間 獲得。 個體之入口亦將有助於傳遞初始篩選外之其他資訊。將 127264.doc -50- 200847056For rsl2531711, rsl0954213, rs2004640, DRB1*0301 and/or DRB1 * 1501). For estimating the life risk of an individual with macular degeneration (AMD) or rheumatoid arthritis (RA), 1, 2, 3, 4, 5 or 6 SNPs can be used (for example, AMD is rsl0737680, rsl0490924, rs541862, Rs2230199, rsl061170 and/or rs9332739; RA is rs6679677, rsll203367, rs6457617, DRB*0101, DRB1*0401 and/or DRB1*0404). 1, 2, 3, 4, 5, 6 or 7 SNPs (eg, rs3803662, rs2981582, rs4700485, rs3817198, rsl7468277, rs6721996, and/or rs3803662) may be used to estimate the life risk of an individual with breast cancer (BC). . For estimating the life risk of an individual with Crohn's disease (CD) or type 2 diabetes (T2D), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 SNPs (eg, CD is rs2066845, rs5743293, rsl0883365, rsl7234657, rsl0210302, rs9858542, rsll805303, rsl000113, rsl7221417, rs2542151, and/or rsl0761659; T2D is rsl3266634, rs4506565 'rsl0012946, rs7756992, rsl0811661, rsl2288738, rs8050136, rsllll875, Rs4402960, rs5215 and / or rsl801282). In some embodiments, the SNP used as a benchmark for determining risk may be in linkage disequilibrium with the SNPs mentioned above or listed in Figure 22 or Figure 25. An individual's phenotypic profile can include many phenotypes. Assessing the risk of a patient suffering from a disease or other condition, such as a possible drug response (including metabolism, efficacy, and/or safety) by the method of the present invention, is particularly predictive or diagnostic for susceptibility to a variety of unrelated diseases and conditions, regardless of In individuals with symptoms, symptoms 127264.doc -40- 200847056 无 or asymptomatic, including carriers of one or more disease/disease-biased dual genes. Because &' these methods provide a general assessment of an individual's susceptibility to a disease or condition without the need to test any intended concept for a particular disease or condition. For example, the methods of the present invention can assess an individual's susceptibility to any of the conditions listed in Table 4, Figure 4, Figure 5, or Figure 6 based on the genomic profile of the individual. In addition, the (iv) method can assess an individual's estimated life risk or relative risk for one or more phenotypes or conditions, such as those shown in Figure 22 or Figure 25. Preferably, the assessment provides information on two or more of these conditions, preferably 3, 4, 5, 10, 20, 50, 1 or even more of these conditions. In the preferred implementation, the profile is generated by applying at least two rules to the genome profile of the individual. In other embodiments, at least 5 rules are applied to the genomic profile of the individual. A phenotypic-rule can be applied to a single gene phenotype. More than one rule can also be applied to a single phenotype, such as a multi-gene phenotype or an early genetic phenotype, where multiple genetic variants in a single gene affect the likelihood of having the phenotype. After the initial screening of the genomic profile of the individual patient, when other nucleotide variants such as SNPS become known, the genotype correlation of the individual is performed (or obtained) by comparison with the other nucleotide acid variants Update. For example, one or more of the scientific literature for browsing the relevance of a new genotype may be performed by a technician in the field of genetics, such as daily, weekly or monthly. This new genotype correlation can then be further confirmed by one or more committees of experts in the field. Step 112 may then be periodically updated with the new rules based on the newly confirmed relevance. 127264.doc -41 - 200847056 The new rules may include genotypes or phenotypes without existing rules. For example, genotypes that are not associated with any phenotype are found to be associated with a new phenotype or an existing phenotype. The new rules can also be used to correlate previously phenotypes without genotypes associated with them. New rules can also be established for genotypes and phenotypes with existing rules. For example, there are rules based on the correlation between genotype A and phenotype A. The new study reveals that genotype B is associated with phenotype A and produces new rules based on this correlation. Another example is to find that phenotype 6 is associated with genotype A and thus can generate new rules. Rules can also be generated for findings based on known correlations but not the relevance of the initial identification in the published scientific literature. For example, the reportable genotype c is associated with phenotype C. Another publication reports that genotype D is associated with phenotype D. Phenotype C and phenotype D are related symptoms, for example, phenotype c may be shortness of breath, and phenotype D is small lung capacity. Correlation between genotype c and phenotypic D or genotype 〇 and phenotype C can be found and via existing stored genomic profiles of individuals with genotype c and genotype d and phenotype C and phenotype D Methodology or confirmation by other research. New rules can then be generated based on the correlation between new findings and confirmations. In another embodiment, a stored genomic profile of a plurality of individuals with a particular or related phenotype can be studied to determine the genotype shared by the individual and the correlation can be determined. New rules can be generated based on this correlation. Rules can also be generated to improve existing rules. For example, the correlation between genotype and phenotype can be partially paralyzed by known individual characteristics, such as race, genealogy, ethics, gender, age, family history, or the individual's The phenotype is known. Rules based on such known individual characteristics can be generated 127264.doc -42- 200847056 and incorporated into existing rules to provide improved rules. The choice of improvement rules to be applied will depend on the individual individual factors of the individual. For example, the rule may be based on the fact that the individual has a phenotype E of 35% when the individual has genotype E. However, if the individual has a specific race, the probability is 5%. Based on this result, new rules can be generated and applied to individuals with specific races. Alternatively, an existing rule determined to be 35% can be applied, and then another rule based on the phenotype is applied. Rules based on known individual characteristics can be determined from scientific literature or based on studies that store genomic profiles. When a new rule is developed, or a new rule can be applied on a regular basis (such as at least once a year), a new rule can be added and applied to the genome profile in step 1 i 4 . Information on the risk of an individual suffering from a disease can also be extended to allow for a finer analysis of the technological advances in the SNP genome profile. As indicated above, the initial SNp genome set can be easily generated using microarray technology for scanning 5 〇〇, s snp. Given the nature of the singular segment, this number takes into account the representative profile of all SNPs in the individual's genome. Despite this, it is estimated that there are usually about 10 million SNPs in the human base group (International pjapMap program; www.hapmap.org). Because technological advances allow for practical, cost-effective analysis of SNPs with finer detail levels, such as 1, 〇〇〇, 〇〇〇, 1,5 〇〇, 〇〇〇, 2,000, 〇〇〇, 3,0〇〇, 〇〇〇 or more of the state 1> microarray, or the entire genome sequencing 'so can produce a more detailed SNP genomic profile. Similarly, cost-effective analysis of more detailed SNP genome profiles and updates to the master database of snp·disease correlations will be achieved through advances in computer analysis. After generating the phenotypic profile in step 116, the user or his or her health care management 127264.doc -43- 200847056 can access their genomic or phenotypic profile via an online portal or website, as in step 118. A report containing the phenotypic profile and other information related to the phenotype and genomic profile may also be provided to the user or his health care manager, as in steps 120 and 122. These reports can be printed, stored in the user's computer or viewed online. The sample line report is shown in Figure 7. Users can choose to display a single phenotype or more than one phenotype. Users can also have different viewing options, such as the "Quick View" option in Figure 7. The phenotype can be a medical condition and different treatments and symptoms in the quick report can be linked to other pages that contain additional information about the treatment. For example, by clicking on a pharmaceutical agent, it will lead to a website containing information about the dosage, cost, side effects and effectiveness. It can also compare pharmaceuticals with other treatments. The website may also contain a website to the pharmaceutical manufacturer. Another link may provide the user with a choice to generate a pharmacogenomic profile that will include information based on their genomic profile, such as it may react to the agent. Links to the surrogate may also be provided, such as Preventive behaviors such as fitness and weight loss, as well as links to dietary supplements, diet plans and links to neighbouring fitness clubs, health clinics, health providers, daily spas and the like. Education is also available. And information videos, an overview of available treatments, possible treatments and general recommendations. Online reports can also provide access to personal arrangements Physicians or genetic counseling or contact with the link of the online physician, providing the user with an opportunity to request more information about their phenotypic profile. Links to online genetic counseling and physician enquiries can also be provided in the online report. The report can also be viewed in other formats, such as 斟w as shown in the comprehensive phenotype of 127264.doc -44- 200847056, which provides more details on each type. For example, there may be a user-generated phenotype More detailed statistics on the likelihood of more typical symptoms or phenotypes, such as sample symptoms of medical conditions, or areas of non-medical conditions such as height, or more information about genes and genetic variants Such as group morbidity, for example, worldwide, or in different countries, or in different age ranges or genders. For example, Figure 5 shows an overview of the estimated lifespan risk of many conditions. Individuals can see For more information on specific conditions, such as prostate cancer (Figure 16) or Crohn's disease (Figure 17) ° In another embodiment, the report can be an "fun" table , such as the genomic profile of an individual similar to the genomic profile of a well-known individual such as Albert Einstein. The bio-report can show the similarity between the genomic profile of the individual and the genomic profile of Einstein and can further show Einstein's predictive IQ and individual predictive IQ. Other information may include the genomic profile of the general population and how its IQ is compared to the genomic profile of the individual and Einstein and its Q. In another embodiment, the report may show all tables that have been associated with the user's genomic profile. In other embodiments, the report may only display a phenotype that is positively correlated with the genomic profile of the individual. In other formats, the individual may choose to display a particular subpopulation of the phenotype, such as a medical phenotype only, or may only function The medical phenotype. For example, the functional phenotype and its associated genotypes may include Crohn's disease (associated with IL23R and CARD 15),! Type 2 diabetes (associated with HLA-DR/DQ), lupus (related to hla-DRBI), psoriasis (HLA-C), multiple sclerosis (hla_dqA1), Gracie's disease (hla_127264.doc -45- 200847056 DRB 1 Rheumatoid-like spp inflammation (HLA-DRB1), type 2 diabetes (TCF7L2), breast cancer (BRCA2), colon cancer (Apc), intermittent memory (KIBRA), and osteoporosis (C0L1A1). Individuals may also choose to display a subtype of phenotype in their reports, such as only an inflammatory disease for a medical condition, or only a physical trait for a non-medical condition. In some embodiments, the individual may choose to display all conditions by highlighting their condition (eg, Figure 15a, Figure 5D), highlighting a condition with only high risk (5) 15B), or only having a low risk. The condition (Fig. 15C) calculates the estimated risk for the individual. Information submitted and communicated to an individual by an individual may be confidential and confidential, and access to such information may be controlled by the individual. Information derived from complex genomic profiles can be provided to individuals in the form of regulatory approval, comprehensibility, medical relevance, and/or high impact leanness. Information can also be of general concern, not medically relevant. Information can be communicated confidentially to individuals in a number of ways, including (but not limited to) portal interfaces and/or emails. More preferably, the information is provided to the individual in a confidential manner (if the individual so chooses) through the portal interface, and the individual can access the information confidentially and voluntarily. The interface is preferably accessed by a wire Internet website or alternatively by means of a private, secure and easily accessible phone or other means. Provide genomic profiles, phenotypic profiles and reports to individuals or their health humiliators by transmitting data via the Internet. Thus, Figure 8 is a simplified diagram showing representative example logic devices through which phenotypic profiles and reports can be generated. Figure 8 shows a computer system (or digital device) 800 for receiving and storing genomic profiles, analyzing genotype-related soil genotype correlation analysis generation rules, applying rules to genomic profiles, and generating phenotypic profiles and reports. . The computer system 8 can be viewed as 127264.doc 46- 200847056 A logical device that can read instructions from the media 811 and/or the network 805, which can optionally be connected to the server 809 having the fixed media 8 12 . The system shown in Figure 8 includes a CPU 801, a disk drive 803, optional input devices such as a keyboard 815 and/or slippery air 816, and an optional monitor 8〇7. Data communication to a local or remote server 809 can be made via the indicated communication medium. The communication medium can include any component that transmits and/or receives data. For example, a communication medium can be a network connection, a wireless connection, or an internet connection. This connection provides communication via the World Wide Web. It is contemplated that information relating to the present invention may be transmitted via such networks or connections for receipt and/or review by the counterpart 822. The recipient 822 can be, but is not limited to, an individual, a user, a health care provider, or a health care manager. In one embodiment, the computer readable medium includes a medium suitable for transmitting the results of the analysis of the biological sample or genotype correlation. The media can include results regarding the phenotypic profile of the individual subject, wherein the results are obtained using the methods described herein. The entry point for individuals who are better served as individuals for receiving and evaluating genomic data will be sufficient for individuals to track their samples from collection to testing and results. The relative risk of a common genetic disorder based on its genomic profile is introduced to the individual via population access. The user can choose which rules to apply to their genomic profile via the portal. In one implementation, - or multiple web pages will have a phenotype list and each side of the table s can be selected in the phenotypic profile of the phenotype. The phenotype can be linked to information about the phenotype to help the user develop an informed choice about the phenotype that they need to include in their phenotypic profile. The web page may also have a phenotype grouped according to the disease group, for example, a disease that may be used by 127264.doc -47-200847056 or a disease that does not work. For example, the user can write only the phenotypes that are active = such as HLA_DQA1 and chyle. The user also has to choose to treat the symptoms before or after the symptoms. For example, an individual may choose a pre-existing phenotype for pre-symptomatic treatment (in addition to the increased screening) in the case of a pre-symptomatic treatment with no symptoms of a Chu diet. Another example may be Azhai's disease, Star (10)atin, exercise, vitamins and mental work, and symptoms. Blood stasis is another example of 'avoiding oral contraceptives and sputum 〗 〖Exemption: pre-symptomatic treatment. An example of a phenotype that is treated with approved symptoms is a wet-type AMD associated with CFH, in which an individual can obtain laser treatment for his condition. The wind phenotype can also be grouped according to the type or type of disease or condition, such as nerve killing, internal knives, immunology, and the like. Phenotypes can also be divided into medical and non-commercial phenotypes. Other subgroups of phenotypes on the web page can be classified into physical traits, rational traits, psychological traits, or emotional traits. The web page may further provide for selecting a portion of the group phenotype by selecting a box. For example, select all • Type I, medical-only phenotypes, non-medical-related phenotypes, phenotypes that only work, phenotypes that only work, different disease groups, or interesting tables in the “fun” table. Types may include comparisons with celebrities or other well-known individuals, or comparisons with other animals or even other organisms. A list of genomic profiles that can be used for comparison can also be provided on the web page to the user to select to compare with the user's esthetic profile. 1 Search engines can also be provided at the online portal to help users navigate through the portals, search for phenotypes, or search for specific terms or poor news that are revealed by their phenotypic profiles or reports. Links to access partner services and product offerings are also available on 127264.doc -48· 200847056. Other links for individuals with common or similar phenotypes to support groups, message boards, and chat rooms are also available. The online portal also provides links to other sites that have more information about the phenotype in the user's phenotype profile. Online portals also provide services that allow users to share their phenotypic profiles and reports with friends, family or health care managers. The user can choose to display the phenotype in the phenotypic profile that they want to share with their friends, family, or health care manager. Phenotypic profiles and reports provide individuals with personalized genotype correlations. The genotype correlation provided to individuals can be used to determine the choice of personal health care and lifestyle. If there is a strong correlation between genetic variants and treatable diseases, detection of genetic variants can help determine the initiation of treatment and/or individual monitoring. In the presence of a statistically significant correlation, but not as a strong correlation, an individual may review the information with an individual physician and decide on a suitably beneficial course of action. Given that a particular genotype correlation may be beneficial to an individual's possible course of action, including therapeutic treatment, monitoring the possible or therapeutic effects of the treatment, or lifestyle changes in diet, exercise, and other personal habits/activities. For example, a phenotype such as celiac disease may have a pre-symptomatic treatment of a no-fruit diet. Similarly, genotype-related information can be applied via pharmacogenomics to predict the likely response an individual will have to treatment with a particular agent or agent therapy, such as the likely efficacy or safety of a particular drug treatment. The user may choose to provide a genomic and phenotypic profile to their health care manager, such as a physician or genetic counselor. The genome and phenotypic profile can be accessed directly by the health care official, printed by the user to the health care manager, 127264.doc -49- 200847056, or via an online portal (such as the beginning of the phase, the cloth I The link on the online report) sends 1 to the health care manager. This transfer of appropriate information will allow the patient to act in concert with his or her physician. In detail, the discussion between the patient and his or her physician can be achieved through the entry and access of the individual: the link to learn information, and the storage of the patient's genomic information into their medical records: capabilities. Medical information can include prevention and health information. The information provided to individual patients by the present invention will enable patients to make informed choices about their health care. In this way, the patient will be able to make choices that can help them avoid and/or delay the disease that is more likely to occur in their individual genomic profile (hereditary DNA). In addition, patients will be able to adopt treatment options that are personally appropriate for their particular medical needs. Individuals will also have access to their ability to develop patients and need this information to help their physicians develop a genotype of poor therapeutics. Genotype-related information can also be combined with genetic counseling to suggest a spouse reconsideration and potential genetic concerns for mothers, fathers, and/or children. The Genetic Adviser can provide information and support to users with a phenotypic profile that shows an increased risk of developing a particular condition or disease. It can explain information about the condition, analyze the genetic pattern and the risk of recurrence, and review the available choices with the user. Genetic counselors can also provide supportive advice to guide users to community or national support services. It can include genetic counseling and (4) scheduled programs. In some embodiments, genetic counseling can be scheduled within 24 hours of the need and can be obtained during periods such as evening, week#, weekdays, and/or false alarms. The entrance to the individual will also help to convey additional information beyond the initial screening. Will be 127264.doc -50- 200847056
告知個體關於其個人遺傳概況之新科學發現,諸如關於其 當前或潛在病狀之新治療或預防策略之資訊。該等新發現 亦可傳遞至其健康護理管理者。在較佳實施例中,藉^電 子郵件告知用戶或其健康護理提供者關於用戶之表^概況 中之表型的新基因型相關性及新研究。在其他實施例中, 將"有趣"表型之電子郵件發送至用戶,例如電子郵件可主 知其,其基因組概況與Abraham Lincoln之基因組概況7; 一致且經由線上入口可獲得其他資訊。 本發明亦提供—種用於產生新規則、改良規則、組合規 1用新規則定期更新規則集、保密地維護基因組概況之 貝料庫、將該等規則應用於基因組概況以判定表型概況, 及用於產生報告之電腦代碼系統。電腦代碼用於告知用戶 新相關性或修訂相關性、新規則或修訂規則及新報告或修 «丁報e w如新預防及健康資訊、關於開發中之新療法之 資訊或新可用治療。 商業方法 本發明提供—種評估個體之基因型相關性的商業方法, '、係基於相對於已建立之醫學相關遺傳變異體之源自臨床 的貧料庫比較患者之基因組概況來評估。本發明進一 供一種制個體之儲存基因峰況評估並非最初已知之新 相關性以產生個體之更新表型概況,而不要求個體提 :生物樣品之商業方法。說明該商業方法之流程圖在圖9 當個體最初需要及購 貝許多常見人類疾病、病狀及身體 127264.doc -51 - 200847056 狀態之基因型相關性之個人化基因組概況時,主題商業方 法之收益來源部分在步驟101中產生。需要及購買;經由 許多來源進行,包括(但不限於)線上網路人口、線上㈣ 服務及個體之個人醫師或個人醫學關注之類似來源。在二 替代實施例中’可免費提供基因組概況,且在之後步驟 (諸如步驟103)處產生收益來源。Inform individuals about new scientific findings about their individual genetic profiles, such as information about new treatment or prevention strategies for their current or underlying conditions. These new findings can also be passed to their health care managers. In a preferred embodiment, the e-mail is used to inform the user or his or her health care provider of new genotype correlations and new studies regarding the phenotype in the user's profile. In other embodiments, an "fun" phenotype email is sent to the user, e.g., an email can be known, and its genomic profile is consistent with Abraham Lincoln's genomic profile 7; and other information is available via the online portal. The present invention also provides a recipe for generating new rules, improving rules, combining rules, periodically updating rule sets with new rules, maintaining a genomic profile in a confidential manner, and applying the rules to a genome profile to determine a phenotypic profile. And a computer code system for generating reports. Computer code is used to inform users of new relevance or revision of relevance, new or revised rules, and new reports or revisions such as new prevention and health information, information about new treatments under development, or new available treatments. Commercial Methods The present invention provides a commercial method for assessing the genotype correlation of an individual, 'based on comparing the genomic profile of a patient relative to a clinically derived poor repository of established medically relevant genetic variants. The present invention further provides for an individual to store a genetic peak condition assessment that is not originally known for a new correlation to produce an updated phenotypic profile of the individual, without requiring the individual to: a commercial method of biological sample. A flow chart illustrating the business method is shown in Figure 9. When an individual initially needs and purchases a personalized genomic profile of many common human diseases, conditions, and genotype correlations of the body 127264.doc -51 - 200847056 state, the subject business method The revenue source portion is generated in step 101. Needed and purchased; conducted through many sources, including (but not limited to) online network population, online (4) services, and individual sources of personal physician or personal medical concern. In a second alternative embodiment, the genomic profile can be provided free of charge and a source of revenue is generated at a subsequent step (such as step 103).
用戶或顧客要求購買表型概況。為回應需要及 步驟U)3中向顧客提供用於進行遺傳樣品分離之生物樣品 的收集套組。當需要係經由線上、電話或收集套組不能容 易地在身冑上用於顧客之其他來源提出時,#由提供當日 或隔夜傳遞之諸如專遞服務之快遞提供收集套組。該收集 套組中包括-用於樣品之容器,以及用於將該樣品快遞至 產生基因組概況之實驗室的包裝材料。該套組亦可包括用 於將樣品發送至樣品處理設施或實驗室之說明,及用於獲 取其基因組概況及表型概況之說明,其可經由線上入口進 行0 如上文所詳述,基因組DNA可自許多類型之生物樣品中 之任一者獲得。較佳地,使用市售收集套組(諸如可得自 DNA Genotek之收集套組)將基因組DNA自唾液分離。唾液 及該套組之使用允許非擴散性樣品收集,因為顧客方便地 在收集套組之容器中提供唾液樣品且接著密封該容器。另 外’唾液樣品可於室溫下儲存及運輸。 將生物樣品存放於收集或試樣容器中後,在步驟丨〇 5中 顧客將該樣品傳遞至進行處理之實驗室。通常,顧客可藉 127264.doc -52- 200847056 由諸如當日或隔夜專遞服務之快遞使用收集套組中提供之 包裝材料將樣品傳遞/發送至實驗室。 處理樣品及產生基因組概況之實驗室可遵守適當政府機 構之準則及要求。舉例而言,在美國,處理實驗室可由諸 如食品與藥物管理局(Fo〇d and Drug Administration, FDA)或醫療保險與醫療補助服務中心(Centers for Medicare and Medicaid Services,CMS)之一或多個聯邦機 構及/或一或多個國家機構調控。在美國,臨床實驗室可 根據1988年臨床實驗室改進修正案(Clinical Laboratory Improvement Amendments,CLIA)認可或批准。 在步驟107中,實驗室處理先前所述之樣品以分離DNA 或RNA之遺傳樣品。接著在步驟109中執行經分離之遺傳 樣品之分析及基因組概況之產生。較佳地,產生基因組 SNP概況。如上文所述,若干種方法可用於產生SNP概 況。較佳地,諸如購自Affymetrix或Illumina之平臺之高密 度陣列用於SNP鑑別及概況產生。舉例而言,SNP概況可 使用如上文更詳細描述之Affymetrix GeneChip檢定來產 生。隨著技術之發展,可存在可產生高密度SNP概況之其 他技術供應商。在另一實施例中,用戶之基因組概況將為 該用戶之基因組序列。 產生個體之基因組概況後,較佳為將基因型資料譯成代 碼,在步驟111中輸入,且在步驟113中存放於保密資料庫 或保管庫中,將資訊儲存於其中以作曰後參考。基因組概 況及相關資訊可為機密的,將此私有資訊及基因組概況之 127264.doc -53- 200847056 存取限制為由個體及/或其個人醫師管 __ ^ 亦可由用戶允 許諸如個體之家庭及遺傳顧問之其他人存取。 室之站點上。或者, ’由處理實驗室產生 入含有資料庫之獨立 該資料庫或保管庫可位於處理實驗 資料庫可位於獨立位置。在此情況下 之基因組概況資料可在步驟111中輸 設施中。The user or customer requests to purchase a phenotypic profile. In response to the need and step U) 3, a collection kit for providing biological samples for genetic sample separation is provided to the customer. When it is necessary to make an online, telephone or collection set that cannot be easily presented on the body for other sources of customers, the collection set is provided by a courier such as a courier service that is delivered on the same day or overnight. The collection kit includes - a container for the sample, and a packaging material for delivering the sample to a laboratory that produces the genomic profile. The kit may also include instructions for sending the sample to a sample processing facility or laboratory, and instructions for obtaining a genomic profile and phenotypic profile, which can be performed via an online portal. 0 As detailed above, genomic DNA Available from any of a number of types of biological samples. Preferably, genomic DNA is isolated from saliva using a commercially available collection kit such as a collection kit available from DNA Genotek. The use of saliva and the kit allows non-diffuse sample collection because the customer conveniently provides a saliva sample in the container of the collection kit and then seals the container. In addition, saliva samples can be stored and transported at room temperature. After storing the biological sample in a collection or sample container, the customer passes the sample to the laboratory for processing in step 丨〇5. Typically, customers can use the packaging materials provided in the collection kits, such as the same day or overnight delivery service, to deliver/send samples to the lab at 127264.doc -52- 200847056. Laboratories processing samples and generating genomic profiles can comply with the guidelines and requirements of appropriate government agencies. For example, in the United States, the processing laboratory may be one or more of, such as the Fosd and Drug Administration (FDA) or the Centers for Medicare and Medicaid Services (CMS). Regulatory agencies and/or one or more national agencies regulate. In the United States, clinical laboratories are accredited or approved under the 1988 Clinical Laboratory Improvement Amendments (CLIA). In step 107, the laboratory processes the previously described sample to isolate a genetic sample of DNA or RNA. Analysis of the isolated genetic samples and generation of the genomic profile are then performed in step 109. Preferably, a genomic SNP profile is generated. As mentioned above, several methods are available for generating SNP profiles. Preferably, a high density array such as that purchased from Affymetrix or Illumina is used for SNP identification and profile generation. For example, a SNP profile can be generated using the Affymetrix GeneChip assay as described in more detail above. As technology advances, there may be other technology vendors that can generate high density SNP profiles. In another embodiment, the user's genomic profile will be the user's genomic sequence. Preferably, the genotype data is translated into a code, entered in step 111, and stored in a secure database or vault in step 113, and the information is stored therein for later reference. Genomic profiles and related information can be confidential, restricting access to this private information and genome profile to 127264.doc -53- 200847056 by individuals and/or their personal physicians __ ^ can also be permitted by users such as individual families and Access by others of the genetic counselor. On the site of the room. Alternatively, 'by the processing laboratory to generate a separate database containing the database or the vault can be located in the processing experiment database can be located in a separate location. The genomic profile data in this case can be transferred to the facility in step 111.
產生個體之基因組概況後,接著在步驟115中相對於已 建立之醫學相關遺傳變異體之源自臨床的資料庫比較個體 之遺傳變異。或者,基因型相關性可不為醫學相關的,但 仍將其併入基因型相關性之資料庫中,例如諸如眼睛顏色 之身體性狀,或諸如與名人之基因組概況相似性之" 表型。 、 醫學相關SNP可已經由科學文獻及相關來源建立。亦可 建立非SNP遺傳變異體以與表型相關。通常,藉由比較已 知患有疾病之一組人之單型模式與無該疾病之一組人來建 立SNP與給定疾病之相關性。藉由分析許多個體,可判定 群體中多態現象之頻率,且接著此等基因型頻率可與諸如 疾病或病狀之特定表型相關聯。或者,表型可為非醫學病 狀。 予丙 相關SNP及非SNP遺傳變異體亦可經由分析個體之儲存 基因組概況判定,而非藉由可得到之公開文獻判定。具有 儲存基因組概況之個體可揭示先前已判定之表型。個體之 基因型及所揭示表型之分析可與無表型之彼等分析比較, 以判定接著可應用於其他基因組概況之相關性。已判定其 127264.doc -54- 200847056 基因組概況之個體可填寫關於先前已衫之表型之調查 表。調查表可含有關於醫學及非醫學病狀(諸如先前診斷 之疾病、醫學病狀之家族史、生活方式、身體性狀、心理 性狀、年齡、社交生活、環境及其類似項目)之問題。 在一實施例中,若個體填寫調查表,則其可免費判定其 基因組概況。在一些實施例中,調查表將定期由個體填寫 以免費存取其表型概況及報告。在其他實施例中,填寫調 查表之個體可有貧格預定升級,以致其具有比其先前預定 級別多之存取,或其可以降低之成本購買或更新預定。 首先在步驟121中由研究/臨床諮詢委員會針對科學準確 性及重要性批准存放於醫學相關遺傳變異體之資料庫中之 所有資訊’若在步驟119中批准,則結合以適當政府機構 之審查及監督。舉例而言,在美國,FDA可經由批准用於 確認遺傳變異體(通常為SNP、轉錄物含量或突變)相關資 料之冷异法來提供監督。在步驟123中,對其他遺傳變異 體-疾病或病狀相關性監控科學文獻及其他相關來源,且 在確認其準確性及重要性以及政府機構審查及批准後,在 步驟125中將此等其他基因型相關性添加至主資料庫中。 經批准、確認之醫學相關遺傳變異體之資料庫結合以全 基因組個體概況將有利地允許執行對大量疾病或病狀之遺 傳危險评估。彙編個體之基因組概況後,可經由比較個體 之核苷酸(遺傳)變異體或標記與已與特定表型(諸如疾病、 病狀或身體狀態)相關之人類核苷酸變異體之資料庫來判 定個體基因型相關性。經由比較個體之基因組概況與基因 127264.doc -55- 200847056 型相關性之主眘祖庙 可告知個體是否發現其對於遺傳危 險因素為陽性或陰性, 及達至何種程度。個體將接收關 a續’之la圍之經斜風企 予 w之疾病狀態(例如阿茲海默氏 病、心血營症在 ,^ g疾病、血液凝固)之相對危險及/或傾向性資 ^ +例而5 ’可包括表1中之基因型相關性。另外,資 =庫中之SNP疾病相關性可包括(但不限於)圖4中所示之彼 g相關陸亦可包括圖5及圖6中之其他相關性。因此,主After generating an individual's genomic profile, the genetic variation of the individual is then compared in step 115 against a clinically derived database of established medically relevant genetic variants. Alternatively, the genotype correlation may not be medically relevant, but it is still incorporated into a database of genotype correlations, such as physical traits such as eye color, or " phenotypes such as similarity to celebrity genomic profiles. Medical-related SNPs may have been established by scientific literature and related sources. Non-SNP genetic variants can also be established to correlate with phenotypes. Typically, the association of a SNP with a given disease is established by comparing a single-type pattern of a group of people known to have a disease with a group without the disease. By analyzing a number of individuals, the frequency of polymorphisms in the population can be determined, and then these genotype frequencies can be associated with a particular phenotype such as a disease or condition. Alternatively, the phenotype can be a non-medical condition. The C-related SNP and non-SNP genetic variants can also be determined by analyzing the individual's stored genome profile rather than by available public literature. An individual with a stored genomic profile can reveal a previously determined phenotype. Analysis of the individual's genotype and revealed phenotype can be compared to their analysis without phenotype to determine the relevance that can then be applied to other genomic profiles. Individuals who have determined their 127264.doc -54- 200847056 genome profile can fill out a questionnaire about the phenotype of the previous shirt. The questionnaire may contain questions regarding medical and non-medical conditions such as previously diagnosed diseases, family history of medical conditions, lifestyle, physical traits, psychological traits, age, social life, environment, and the like. In one embodiment, if an individual fills in a questionnaire, they can determine their genomic profile for free. In some embodiments, the questionnaire will be periodically filled in by individuals to access their phenotypic profiles and reports for free. In other embodiments, the individual filling out the survey form may have a poorly scheduled upgrade so that it has more access than its previous predetermined level, or it may purchase or update the reservation at a reduced cost. First, in step 121, the Research/Clinical Advisory Committee approves all information stored in the database of medically relevant genetic variants for scientific accuracy and importance', if approved in step 119, combined with review by appropriate government agencies and Supervision. For example, in the United States, FDA can provide oversight by approving cold-form methods used to identify genetic variants (usually SNPs, transcript levels, or mutations). In step 123, the scientific literature and other relevant sources are monitored for other genetic variants - disease or condition correlation, and after confirming their accuracy and importance, as well as review and approval by government agencies, such other in step 125 Genotype correlation is added to the master repository. The pool of approved and validated medically relevant genetic variants combined with a genome-wide individual profile will advantageously allow for the implementation of a genetic risk assessment of a large number of diseases or conditions. Compilation of an individual's genomic profile can be accomplished by comparing individual nucleotide (genetic) variants or markers to a library of human nucleotide variants that have been associated with a particular phenotype (such as disease, condition, or physical state). Determine individual genotype correlations. By comparing the individual's genomic profile with the gene 127264.doc -55- 200847056 type, the main Shenzu Temple can tell the individual whether it is positive or negative for genetic risk factors and to what extent. The individual will receive the relative risk and/or propensity of the disease state (eg, Alzheimer's disease, heart disease, blood disease, blood coagulation). ^ + and 5 ' may include genotype correlations in Table 1. In addition, the SNP disease correlations in the library may include, but are not limited to, the other relevant correlations in Figures 5 and 6 as shown in Figure 4. Therefore, the Lord
9 "業方法在無夕種疾病及病狀可能引起何種後果之任何 預想打算下提供患該等疾病及病狀之危險分析。 在,、他實知4列中,!吉合全基因組個體概況之基因型相關 性為非醫學相關表型,諸如"有趣,,表型或身體性狀,諸如 毛色。在較佳實施例中,如上文所述將規則或規則集應用 於個體之基因組概況或SNp概況。將規則應用於基因組概 況產生個體之表型概況。 因此,隨著新相關性之發現及確認,用其他基因型相關 性擴展人類基因型相關性之主資料庫。按需要或適當時可 藉由自儲存於資料庫中之個體之基因組概況存取恰當資訊 來進行更新。舉例而言,變得已知之新基因型相關性可係 基於特定基因變異體。接著可藉由檢索及比較僅個體之整 個基因組概況之基因部分來進行個體是否可對新基因型相 關性敏感之判定。 較佳地分析及解釋基因組查詢之結果以便以可理解之格 式呈現給個體。在步驟117中,接著如上文所詳述藉由郵 件或經由線上入口介面以保密、機密形式向患者提供初始 127264.doc •56· 200847056 篩選之結果。 報告可含有表型概況以及關於表型概況中之表型之基因 組資訊,例如關於所涉及之基因之基礎遺傳學或不同群體 中遺傳變異體之統計學。可包括在報告中之基於表型概況 之其他資訊為預防策略、健康資訊、療法、症狀瞭解、早 期偵測方案、介入方案及表型之改進鑑別及子分類。個體 之基因組概況之初始篩選後,進行或可進行受控之適度更 新。 隨著新基因型相關性之出現且經確認及批准,進行個體 之基因組概況之更新或使該概括與更新一起可用於主資料 庫。基於新基因型相關性之新規則可應用於初始基因組概 況以提供更新表型概況。在步驟127中可藉由比較個體之 基因組概況與新基因型相關性之相關部分來產生更新基因 型相關性概況。舉例而言,若發現新基因型相關性係基於 特疋基因之變異’則可針對新基因型相關性分析個體之基 因組概況之彼基因部分。在該種狀況下,可應用—或多條 新規則以產±更新表型概況,❿#具有已應用之規則之整 個規則术。在步驟129中以保密方式提供個體之更新基因 型相關性之結果。 為向用戶或顧客提供之服務。可 提供不同級別之基因組概況分析之預定及其組合。同樣, 預疋級別可變化以向個體提供其希望隨其基因型相關性接 收之服務量之選棵。囡仏 ^ U此’所提供之服務級別將隨個體購 貝之服務預定之級別而變化。 127264.doc -57- 200847056 用戶之入門級別預定可包括基因組概況及初始表型概 況。此可為基礎預定級別。在該基礎預定級別中可為不同 、、及别之服務。舉例*言’特定預定級別可提供對於遺傳諮 詢、具有治療或預防特定疾病之特定專業知識之醫師及其 他^務選擇之指引。遺傳諮詢可線上或用電話獲得。在^ 只細•例中,該預定之價格可視個體對其表型概況選擇之 表型數目而定。另—選擇可為用戶是否選擇訪問線上遺傳 諮詢。 在另h况下,預疋可提供初始全基因組之基因型相關 性,將個體之基因組概況維護於資料庫中;若個體如此選 擇貝J該資料庫可為保密的。&初始分析《复,可在個體要 求及額外付款後產生後續分析及額外結果。此可為優質級 別之預定。 在本商業方法之一個實施例中,執行個體危險之更新且 相應貧訊基於預訂(subscription)提供於個體。更新可提供 於購買優級預訂之用戶(subscribers)。基因型相關性分析 之預訂可根據個體之偏好提供新基因型相關性之特定種類 或子集之更新。舉例而言,個體可能僅希望獲悉具有已知 治療或預防方案之基因型相關性。為幫助個體決定是否執 行另一分析,可向個體提供已變得可用之其他基因型相關 性之資訊。該資訊可方便地用郵件或電子郵件發送至用 戶。 在優級預訂中,可能存在其他級別之服務,諸如基礎預 訂中所提及者。在優級中可提供其他預訂模式。舉例而 127264.doc -58- 200847056 吕’取雨級別可向用戶提供無限之更新及報告。當判定新 相關性及規則日f ’可更新用戶之概況。纟此級別下,用戶 亦可允許存取無限數目之個體,諸如家庭成員及健康護理 官理者。用戶亦可無限的訪問線上遺傳顧問及醫師。 優級之下一級別之預訂可能提供較受限態樣,例如有限 次之更新。用戶可在預訂期内具有有限次之基因組概況的 更新,例如一年4次。在另一預訂級別中,用戶可將其儲 存基因組概況一週更新一次,一月更新一次,或一年更新 一次。在另一個實施例中,用戶可能僅可選擇更新其基因 組概況之有限數目之表型。 個人入口亦將方便地允許個體維持危險或相關性更新及 資訊更新之預訂,或者要求更新之危險估計及資訊。如上 文所述,可提供不同預訂級別以允許個體選擇各種級別之 基因型相關性結果及更新,且可由用戶經由其個人入口選 擇不同預訂級別。 此等預定選擇中之任一者將有助於主題商業方法之收益 來源。主題商業方法之收益來源亦將藉由增加新顧客及用 戶來增加,其中將新基因組概況添加至資料庫中。 表1 :具有與表型相關之遺傳變異體之代表性基因。 基因 表型 A2M — 阿茲海默氏病 ABCA1 HDL膽固醇 ABCB1 HIV ABCB1 癲癇症 ABCB1 腎移植併發症 ABCB1 地局肀(digoxin),血清濃度 ABCB1 -至生辱氏病;潰癌性結腸炎_ 127264.doc -59- 200847056 基因 表型 ABCB1 帕金森氏病(Parkinson’s disease) ABCC8 2型糖尿病 ABCC8 2型糖尿病 ABO 心肌梗塞 ACADM 中鏈醯基-CoA脫氫酶缺乏 ACDC 2型糖尿病 ACE 2型糖尿病 ACE 高血壓 ACE 阿茲海默氏病 ACE 心肌梗塞 ACE 心血管 ACE 左心室肥厚 ACE 冠狀動脈疾病 ACE 冠狀動脈硬化 ACE 糖尿病性視網膜病 ACE 全身性紅斑狼瘡 ACE 動脈血壓 ACE 勃起功能障礙 ACE 狼瘡 ACE 多囊腎病 ACE 中風 ACPI 1型糖尿病 ACSM1 (LIP)c 膽固醇含量 ADAM33 哮喘 ADD! 高血壓 ADD1 動脈血壓 ADH1B 酒精濫用 ADH1C 酒精濫用 ADIPOQ 2型糖尿病 ADIPOQ 肥胖 ADORA2A 恐慌症 ADRB1 高血壓 ADRB1 心臟衰竭 ADRB2 哮喘 ADRB2 高血壓 ADRB2 肥胖 ADRB2 動脈金壓 ADRB2 2型糖尿病 ADRB3 肥胖 ADRB3 2型糖尿病 ADRB3 高血壓 AGT 高血壓 127264.doc -60- 200847056 基因 表型 AGT 2型糖尿病 AGT 原發性高血壓 AGT 心肌梗塞 AGTR1 高血壓 AGTR2 高血壓 AHR 乳癌 ALAD 鉛中毒 ALDH2 酒精中毒 ALDH2 酒精濫用 ALDH2 結腸直腸癌 ALDRL2 2型糖尿病 ALOX5 哮喘 ALOX5AP 哮喘 APBB1 阿茲海默氏病 APC 結腸直腸癌 APEX1 肺癌 APOA1 冠狀動脈硬化 APOA1 HDL膽固醇 APOA1 冠狀動脈疾病 APOA1 2型糖尿病 APOA4 2型糖尿病 APOA5 甘油三酸酯 APOA5 冠狀動脈硬化 APOB 高膽固醇血症 APOB 肥胖 APOB 心企管 APOB 冠狀動脈疾病 APOB 冠心病 APOB 2型糖尿病 APOC1 阿茲海默氏病 APOC3 甘油三酸酯 APOC3 2型糖尿病 APOE 阿茲海默氏病 APOE 2型糖尿病 APOE 多發性硬化症 APOE 冠狀動脈硬化 APOE 帕金森氏病 APOE 冠心病 APOE 心肌梗塞 APOE 中風 APOE 阿茲海默氏病 APOE 冠狀動脈疾病 127264.doc -61 - 200847056 基因 表型 APP 阿茲海默氏病 AR 前列腺癌 AR 乳癌 ATM 乳癌 ATP7B 威爾森病(Wilson disease) ATXN80S 脊髓小腦性共濟失調 BACE1 阿茲海默氏病 BCHE 阿茲海默氏病 BDKRB2 高血壓 BDNF 阿茲海默氏病 BDNF 雙極性病症 BDNF 帕金森氏病 BDNF 精神分裂症 BDNF 記憶 BGLAP 骨密度 BRAF 甲狀腺癌 BRCA1 乳癌 BRCA1 乳癌;卵巢癌 BRCA1 卵巢癌 BRCA2 乳癌 BRCA2 乳癌;卵巢癌 BRCA2 卵巢癌 BRIP1 乳癌 C4A 全身性紅斑狼瘡 CALCR 骨密度 CAMTA1 間歇性記憶 CAPN10 2型糖尿病 CAFN10 2型糖尿病 CAPN3 肌肉萎縮症 CARD15 克羅恩氏病 CARD 15 克羅恩氏病;潰瘍性結腸炎 CARD15 發炎性腸病 CART 肥胖 CASR 骨密度 CCKAR 精神分裂症 CCL2 全身性紅斑狼瘡 CCL5 HIV CCL5 哮喘 CCND1 結腸直腸癌 CCR2 HIV CCR2 HIV感染 CCR2 c型肝炎 CCR2 心肌梗塞 127264.doc -62- 2008470569 " The method of providing a risk analysis of the disease and condition in any of the intended effects of the disease and condition. In, he knows 4 columns,! The genotype correlation of the Geegen genome individual profile is a non-medical related phenotype, such as "interesting, phenotypic or physical traits, such as coat color. In a preferred embodiment, a rule or set of rules is applied to an individual's genomic profile or SNp profile as described above. Applying the rules to the genomic profile produces an individual's phenotypic profile. Therefore, with the discovery and confirmation of new correlations, the main database of human genotype correlations is extended with other genotype correlations. Updates can be made by accessing appropriate information from the genomic profile of the individual stored in the database, as needed or appropriate. For example, new genotype correlations that become known can be based on specific genetic variants. The determination of whether the individual can be sensitive to the new genotype can then be made by searching and comparing the gene portion of the entire genomic profile of the individual. The results of the genomic query are preferably analyzed and interpreted to be presented to the individual in an understandable format. In step 117, the results of the initial 127264.doc • 56·200847056 screening are then provided to the patient in a confidential, confidential form by mail or via the online portal interface as detailed above. The report may contain a phenotypic profile and genomic information about the phenotype in the phenotypic profile, such as basic genetics of the genes involved or statistics of genetic variants in different populations. Additional information based on phenotypic profiles that can be included in the report is improved identification and sub-categorization of prevention strategies, health information, therapies, symptom understanding, early detection protocols, intervention protocols, and phenotypes. After the initial screening of the individual's genomic profile, a controlled moderate update may be made or may be performed. As new genotype correlations emerge and are confirmed and approved, an update of the individual's genomic profile can be made or made available to the master database along with the update. New rules based on new genotype correlations can be applied to the initial genome overview to provide an updated phenotypic profile. In step 127, an updated genotype correlation profile can be generated by comparing the genomic profile of the individual to the relevant portion of the new genotype correlation. For example, if a new genotype correlation is found to be based on a variant of a particular gene, then the gene portion of the individual's genomic profile can be analyzed for the new genotype correlation. In this case, you can apply – or multiple new rules to produce ± update the phenotypic profile, ❿# with the entire rule of the applied rules. The results of the updated genotype correlation of the individual are provided in a confidential manner in step 129. A service provided to users or customers. Schedules and combinations of different levels of genomic profiling can be provided. Similarly, the level of pre-exposure can be varied to provide individuals with a selection of services that they wish to receive with their genotype correlation.服务 ^ U This service level will vary depending on the level of the individual's purchase of the service. 127264.doc -57- 200847056 The user's entry level schedule can include a genomic profile and an initial phenotypic profile. This can be a base predetermined level. Different, and other services may be provided in the basic predetermined level. For example, a particular predetermined level may provide guidance to physicians and other options for genetic counseling, specific expertise in treating or preventing a particular disease. Genetic counseling can be obtained online or by telephone. In the case of a fine example, the predetermined price may depend on the number of phenotypes selected by the individual for his phenotypic profile. Alternatively—choose whether the user chooses to access online genetic counseling. In other cases, the pre-existing provides the genotype correlation of the initial whole genome, maintaining the individual's genome profile in the database; if the individual chooses this, the database can be kept secret. & initial analysis, complex, can generate subsequent analysis and additional results after individual requirements and additional payments. This can be a premium grade reservation. In one embodiment of the business method, an update of the individual's risk is performed and the corresponding poor is provided to the individual based on the subscription. Updates are available to purchase subscribers (subscribers). The genotype correlation analysis subscription provides an update of a particular species or subset of new genotype correlations based on individual preferences. For example, an individual may only wish to be informed of a genotype correlation with a known treatment or prevention regimen. To help an individual decide whether to perform another analysis, individuals can be provided with information about other genotype correlations that have become available. This information can be easily sent to users by mail or email. In a premium subscription, there may be other levels of service, such as those mentioned in the underlying subscription. Other booking modes are available in the premium class. For example, 127264.doc -58- 200847056 Lu's rain level provides users with unlimited updates and reports. The user's profile can be updated when the new relevance and rule day f' is determined. At this level, users can also access an unlimited number of individuals, such as family members and health care administrators. Users also have unlimited access to online genetic counselors and physicians. Subscriptions below the Premier level may offer more limited features, such as limited updates. Users may have a limited number of updates to the genome profile during the booking period, for example 4 times a year. At another booking level, users can update their stored genome profile once a week, once a month, or once a year. In another embodiment, the user may only have the option to update a limited number of phenotypes of their genome profiles. Personal portals will also conveniently allow individuals to maintain reservations for hazard or related updates and information updates, or to request updated risk estimates and information. As described above, different booking levels may be provided to allow an individual to select various levels of genotype correlation results and updates, and the user may select different booking levels via their personal portal. Any of these predetermined options will contribute to the source of revenue for the subject business approach. The source of revenue for the subject business approach will also be increased by adding new customers and users, with a new genome profile added to the database. Table 1: Representative genes with genetic variants associated with phenotypes. Gene phenotype A2M - Alzheimer's disease ABCA1 HDL cholesterol ABCB1 HIV ABCB1 Epilepsy ABCB1 Kidney transplantation complications ABCB1 Digoxin, serum concentration ABCB1 - to the sinus disease; ulcerative colitis _ 127264. Doc -59- 200847056 Gene phenotype ABCB1 Parkinson's disease ABCC8 Type 2 diabetes ABCC8 Type 2 diabetes ABO Myocardial infarction ACADM Medium chain thiol-CoA dehydrogenase deficiency ACDC Type 2 diabetes ACE Type 2 diabetes ACE Hypertension ACE Alzheimer's disease ACE Myocardial infarction ACE Cardiovascular ACE Left ventricular hypertrophy ACE Coronary artery disease ACE Coronary atherosclerosis ACE Diabetic retinopathy ACE Systemic lupus ACE Arterial blood pressure ACE Erectile dysfunction ACE Lupus ACE Polycystic kidney disease ACE Stroke ACPI Type 1 Diabetes ACSM1 (LIP)c Cholesterol Content ADAM33 Asthma ADD! Hypertension ADD1 Arterial Blood Pressure ADH1B Alcohol Abuse ADH1C Alcohol Abuse ADIPOQ Type 2 Diabetes ADIPOQ Obesity ADARA2A Panic Disorder ADRB1 Hypertension ADRB1 Heart Failure ADRB2 Asthma ADRB2 Hypertension ADRB2 Obesity ADRB2 Artery Gold pressure ADRB2 Type 2 diabetes ADRB3 Obesity ADRB3 Type 2 diabetes ADRB3 Hypertension AGT Hypertension 127264.doc -60- 200847056 Gene phenotype AGT Type 2 diabetes AGT Essential hypertension AGT Myocardial infarction AGTR1 Hypertension AGTR2 Hypertension AHR Breast cancer ALAD Lead poisoning ALDH2 Alcoholism ALDH2 Alcohol abuse ALDH2 Colorectal cancer ALDRL2 Type 2 diabetes ALOX5 Asthma ALOX5AP Asthma APBB1 Alzheimer's disease APC Colorectal cancer APEX1 Lung cancer APOA1 Coronary arteriosclerosis APOA1 HDL cholesterol APOA1 Coronary artery disease APOA1 Type 2 diabetes APOA4 2 Type 2 Diabetes APOA5 Triglyceride APOA5 Coronary Arteriosclerosis APOB Hypercholesterolemia APOB Obesity APOB Cardiac Tumor APOB Coronary Artery Disease APOB Coronary Heart Disease APOB Type 2 Diabetes APOC1 Alzheimer's Disease APOC3 Triglyceride APOC3 Type 2 Diabetes APOE Zhaimo's disease APOE type 2 diabetes APOE multiple sclerosis APOE coronary arteriosclerosis APOE Parkinson's disease APOE coronary heart disease APOE myocardial infarction APOE stroke APOE Alzheimer's disease APOE coronary artery disease 127 264.doc -61 - 200847056 Gene phenotype APP Alzheimer's disease AR Prostate cancer AR Breast cancer ATM Breast cancer ATP7B Wilson disease ATXN80S Spinal cerebral ataxia BACE1 Alzheimer's disease BCHE Az Hermann's disease BDKRB2 Hypertension BDNF Alzheimer's disease BDNF Bipolar disorder BDNF Parkinson's disease BDNF Schizophrenia BDNF Memory BGLAP Bone mineral density BRAF Thyroid cancer BRCA1 Breast cancer BRCA1 Breast cancer; Ovarian cancer BRCA1 Ovarian cancer BRCA2 Breast cancer BRCA2 Breast cancer; Ovarian cancer BRCA2 Ovarian cancer BRIP1 Breast cancer C4A Systemic lupus erythematosus CALCR Bone mineral density CAMTA1 Intermittent memory CAPN10 Type 2 diabetes CAFN10 Type 2 diabetes CAPN3 Muscular atrophy CARD15 Crohn's disease CARD 15 Crohn's disease; Ulcerative colitis CARD15 Inflammatory bowel disease CART Obesity CASR Bone mineral density CCKAR Schizophrenia CCL2 Systemic lupus erythematosus CCL5 HIV CCL5 Asthma CCND1 Colorectal cancer CCR2 HIV CCR2 HIV infection CCR2 Hepatitis C CCR2 Myocardial infarction 127264.doc -62- 200847056
基因 表型 CCR3 哮喘 CCR5 HIV CCR5 HIV感染 CCR5 c型肝炎 CCR5 哮喘 CCR5 多發性硬化症 CD14 異位性皮膚炎(atopy) CD14 哮喘 CD14 克羅恩氏病 CD14 克羅恩氏病;潰瘍性結腸炎 CD14 牙周炎 CD14 總IgE CDH1 前列腺癌 CDH1 結腸直腸癌 CDKN2A 黑素瘤 CDSN 牛皮癬 CEBPA 骨髓白血病 CETP 冠狀動脈硬化 CETP 冠心病 CETP 高膽固醇血症 CFH 黃斑變性 CFTR 囊腫性纖維化 CFTR 胰腺炎 CFTR 囊腫性纖維化 CHAT 阿茲海默氏病 CHEK2 乳癌 CHKNA7 精神分裂症 CMA1 異位性皮膚炎(atopic dermatitis) CNR1 精神分裂症 COL1A1 骨密度 COL1A1 骨質疏鬆症 COL1A2 骨密度 COL2A1 骨關節炎 COMT 精神分裂症 COMT 乳癌 COMT 帕金森氏病 COMT 雙極性病症 COMT 強迫症 COMT 酒精中毒 CR1 全身性紅斑狼瘡 CRP C-反應性蛋白質 CST3 阿茲海默氏病 127264.doc -63- 200847056Gene phenotype CCR3 Asthma CCR5 HIV CCR5 HIV infection CCR5 Hepatitis C CCR5 Asthma CCR5 Multiple sclerosis CD14 Atopic dermatitis (atopy) CD14 Asthma CD14 Crohn's disease CD14 Crohn's disease; Ulcerative colitis CD14 Periodontitis CD14 Total IgE CDH1 Prostate cancer CDH1 Colorectal cancer CDKN2A Melanoma CDSN Psoriasis CEBPA Myeloid leukemia CETP Coronary arteriosclerosis CETP Coronary heart disease CETP Hypercholesterolemia CFH Macular degeneration CFTR Cystic fibrosis CFTR Pancreatitis CFTR Cystic fibrosis CHAT Alzheimer's disease CHEK2 Breast cancer CHKNA7 Schizophrenia CMA1 Atopic dermatitis CNR1 Schizophrenia COL1A1 Bone mineral density COL1A1 Osteoporosis COL1A2 Bone mineral density COL2A1 Osteoarthritis COMT Schizophrenia COMT Breast cancer COMT Parkinson Disease COMT Bipolar disorder COMT Obsessive-compulsive disorder COMT Alcoholism CR1 Systemic lupus erythematosus CRP C-reactive protein CST3 Alzheimer's disease 127264.doc -63- 200847056
基因 表型 CTLA4 1型糖尿病 CTLA4 格雷氏病 CTLA4 多發性硬化症 CTLA4 類風濕性關節炎 CTLA4 全身性紅斑狼瘡 CTLA4 紅斑狼瘡 CTLA4 乳糜瀉 CTSD 阿茲海默氏病 CX3CR1 HIV CXCL12 HIV CXCL12 HIV感染 CYBA 冠狀動脈硬化 CYBA 高血壓 CYP11B2 高血壓 CYP11B2 左心室肥厚 CYP17A1 乳癌 CYP17A1 前列腺癌 CYP17A1 子宮内膜異位 CYP17A1 子宮内膜癌 CYP19A1 乳癌 CYP19A1 前列腺癌 CYP19A1 子宮内膜異位 CYP1A1 肺癌 CYP1A1 乳癌 CYP1A1 結腸直腸癌 CYP1A1 前列腺癌 CYP1A1 食道癌 CYP1A1 子宮内膜異位 CYP1A1 細胞遺傳學研究 CYP1A2 精神分裂症 CYP1A2 結腸直腸癌 CYP1B1 乳癌 CYP1B1 青光眼 CYP1B1 前列腺癌 CYP21A2 21-羥化酶缺乏 CYP21A2 先天性腎上腺增生症 CYP21A2 先天性腎上腺增生症 CYP2A6 吸煙行為 CYP2A6 於驗 CYP2A6 肺癌 CYP2C19 幽門螺桿菌(H. pylori)感染 CYP2C19 苯妥英(phenytoin) CYP2C19 胃病 127264.doc -64- 200847056 基因 表型 CYP2C8 惡性癔原蟲(Plasmodhim falciparum)癔疾 CYP2C9 抗凝劑併發症 CYP2C9 殺鼠靈(warfarin)敏感性 CYP2C9 對殺鼠靈療法起反應 CYP2C9 結腸直腸癌 CYP2C9 苯妥英 CYP2C9 醋石肖香豆素(acenocoumarol)反應 CYP2C9 凝固障礙 CYP2C9 高金壓 CYP2D6 結腸直腸癌 CYP2D6 帕金森氏病 CYP2D6 CYP2D6弱代謝者表型 CYP2E1 肺癌 CYP2E1 結腸直腸癌 CYP3A4 前列腺癌 CYP3A5 前列腺癌 CYP3A5 食道癌 CYP46A1 阿茲海默氏病 DBH 精神分裂症 DHCR7 史-李-歐氏症候群(Smith-Lemli-Opitz syndrome) DISCI 精神分裂症 DLST 阿茲海默氏病 DMD 肌肉萎縮症 DRD2 酒精中毒 DRD2 精神分裂症 DRD2 吸煙行為 DRD2 帕金森氏病 DRD2 遲發性運動障礙 DRD3 精神分裂症 DRD3 遲發性運動障礙 DRD3 雙極性病症 DRD4 注意力不足過動症 DRD4 精神分裂症 DRD4 喜好新奇 DBD4 ADHD DRD4 人格特質 DRD4 海洛因(heroin)溢用 DKD4 酒精濫用 DRD4 酒精中毒 DRD4 人格障礙 DTNBP1 精神分裂症 EDN1 南血壓 127264.doc -65- 200847056 基因 表型 EGFR 肺癌 ELAC2 前列腺癌 ENPP1 2型糖尿病 EPHB2 前列腺癌 EPHX1 肺癌 EPHX1 結腸直腸癌 EPHX1 細胞遺傳學研究 EPHX1 慢性阻塞性肺病/COPD ERBB2 乳癌 ERCC1 肺癌 ERCC1 結腸直腸癌 ERCC2 肺癌 ERCC2 細胞遺傳學研究 ERCC2 膀胱癌 ERCC2 結腸直腸癌 ESR1 骨密度 ESR1 骨礦質密度 ESR1 乳癌 ESR1 子宮内膜異位 ESR1 骨質疏鬆症 ESR2 骨密度 ESR2 乳癌 雌激素受體 骨礦質密度 F2 冠心病 F2 中風 F2 靜脈血栓栓塞 F2 驚闕前期 F2 血栓症 F5 靜脈血栓栓塞 F5 驚闕前期 F5 心肌梗塞 F5 中風 F5 缺血性中風 F7 冠狀動脈硬化 F7 心肌梗塞 F8 血友病 F9 血友病 FABP2 2型糖屎病 FAS 阿茲海默氏病 FASLG 多發性硬化症 FCGR2A 全身性紅斑狼瘡 FCGR2A 紅斑狼瘡 127264.doc -66- 200847056Gene phenotype CTLA4 Type 1 diabetes CTLA4 Gracies CTLA4 Multiple sclerosis CTLA4 Rheumatoid arthritis CTLA4 Systemic lupus erythematosus CTLA4 Lupus erythematosus CTLA4 Celiac disease CTSD Alzheimer's disease CX3CR1 HIV CXCL12 HIV CXCL12 HIV infection CYBA Coronary artery Hardening CYBA Hypertension CYP11B2 Hypertension CYP11B2 Left ventricular hypertrophy CYP17A1 Breast cancer CYP17A1 Prostate cancer CYP17A1 Endometriosis CYP17A1 Endometrial cancer CYP19A1 Breast cancer CYP19A1 Prostate cancer CYP19A1 Endometriosis CYP1A1 Lung cancer CYP1A1 Breast cancer CYP1A1 Colorectal cancer CYP1A1 Prostate cancer CYP1A1 Esophageal cancer CYP1A1 Endometriosis CYP1A1 Cytogenetic study CYP1A2 Schizophrenia CYP1A2 Colorectal cancer CYP1B1 Breast cancer CYP1B1 Glaucoma CYP1B1 Prostate cancer CYP21A2 21-Hydroxylase deficiency CYP21A2 Congenital adrenal hyperplasia CYP21A2 Congenital adrenal hyperplasia CYP2A6 Smoking behavior CYP2A6 is tested for CYP2A6 lung cancer CYP2C19 Helicobacter pylori (H. pylori) infection CYP2C19 phenytoin CYP2C19 stomach disease 127264.doc -64- 200847 056 Gene phenotype CYP2C8 Plasmodhim falciparum dysentery CYP2C9 Anticoagulant complication CYP2C9 Warfarin sensitivity CYP2C9 Response to warfarin therapy CYP2C9 Colorectal cancer CYP2C9 phenytoin CYP2C9 Acetate coumarin ( Acenocoumarol) CYP2C9 coagulation disorder CYP2C9 high gold pressure CYP2D6 colorectal cancer CYP2D6 Parkinson's disease CYP2D6 CYP2D6 weak metabolizer phenotype CYP2E1 lung cancer CYP2E1 colorectal cancer CYP3A4 prostate cancer CYP3A5 prostate cancer CYP3A5 esophageal cancer CYP46A1 Alzheimer's disease DBH spirit Schizophrenia DHCR7 History-Lim-Opitz Syndrome DISCI Schizophrenia DLST Alzheimer's Disease DMD Muscular Dystrophy DRD2 Alcoholism DRD2 Schizophrenia DRD2 Smoking Behavior DRD2 Parkinson's Disease DRD2 Late Cardiac dyskinesia DRD3 Schizophrenia DRD3 Delayed dyskinesia DRD3 Bipolar disorder DRD4 Attention deficit hyperactivity disorder DRD4 Schizophrenia DRD4 Favorite novelty DBD4 ADHD DRD4 Personality trait DRD4 Heroin spill DKD4 Alcohol abuse DRD4 wine Poisoning DRD4 Personality disorder DTNBP1 Schizophrenia EDN1 South blood pressure 127264.doc -65- 200847056 Gene phenotype EGFR Lung cancer ELAC2 Prostate cancer ENPP1 Type 2 diabetes EPHB2 Prostate cancer EPHX1 Lung cancer EPHX1 Colorectal cancer EPHX1 Cytogenetic study EPHX1 Chronic obstructive pulmonary disease / COPD ERBB2 Breast cancer ERCC1 Lung cancer ERCC1 Colorectal cancer ERCC2 Lung cancer ERCC2 Cytogenetic study ERCC2 Bladder cancer ERCC2 Colorectal cancer ESR1 Bone mineral density ESR1 Bone mineral density ESR1 Breast cancer ESR1 Endometriosis ESR1 Osteoporosis ESR2 Bone mineral density ESR2 Breast cancer Estrogen receptor Body bone mineral density F2 Coronary heart disease F2 Stroke F2 Venous thromboembolism F2 Pre-convulsive F2 Thrombosis F5 Venous thromboembolism F5 Pre-convulsive F5 Myocardial infarction F5 Stroke F5 Ischemic stroke F7 Coronary arteriosclerosis F7 Myocardial infarction F8 Hemophilia F9 Hemophilia FABP2 type 2 glycocalyx FAS Alzheimer's disease FASLG multiple sclerosis FCGR2A systemic lupus erythematosus FCGR2A lupus 127264.doc -66- 200847056
基因 表型 FCGR2A 牙周炎 FCGR2A 類風濕性關節炎 FCGR2B 紅斑狼瘡 FCGR2B 全身性紅斑狼瘡 FCGR3A _ 全身性紅斑狼瘡 FCGR3A 紅斑狼瘡 FCGR3A 牙周炎 FCGR3A 關節炎 FCGR3A 類風濕性關節炎 FCGR3B 牙周炎 FCGR3B 牙周病 FCGR3B 紅斑狼瘡 FGB 血纖維蛋白原 FGB 心肌梗塞 FGB 冠心病 FLT3 骨髓白血病 FLT3 白血病 FMR1 脆性 X 症候群(Fragile X syndrome) FRAXA 脆性X症候群 FUT2 幽門螺桿菌感染 FVL 凝血因子V突變(Factor V Leiden) G6PD G6PD缺乏 G6PD 1¾膽紅素企症 GABRA5 雙極性病症 GBA 戈謝病(Gaucher disease) GBA 帕金森氏病 GCGR (FAAH,ML4R,UCP2) 體質/肥胖 GCK 2型糖尿病 GCLM (F12, TLR4) 動脈粥樣硬化,心肌梗塞 GDNF 精神分裂症 GHRL 肥胖 GJB1 夏-馬-圖三氏病(Charcot-Marie-Tooth disease) GJB2 耳聾 GJB2 非症候群型感覺神經性聽力損失 GJB2 感覺神經性聽力損失 GJB2 聽力損失/耳聾 GJB6 非症候群型感覺神經性聽力損失 GJB6 聽力損失/耳聾 GNAS 高血壓 GNB3 高金壓 GPX1 肺癌 GRIN1 精神分裂症 127264.doc -67- 200847056Gene phenotype FCGR2A Periodontitis FCGR2A Rheumatoid arthritis FCGR2B Lupus erythematosus FCGR2B Systemic lupus erythematosus FCGR3A _ Systemic lupus erythematosus FCGR3A Lupus erythematosus FCGR3A Periodontitis FCGR3A Arthritis FCGR3A Rheumatoid arthritis FCGR3B Periodontitis FCGR3B Periodontal Disease FCGR3B Lupus erythematosus FGB Fibrinogen FGB Myocardial infarction FGB Coronary heart disease FLT3 Myeloid leukemia FLT3 Leukemia FMR1 Fragile X syndrome FRAXA Fragile X syndrome FUT2 Helicobacter pylori infection FVL Factor V Leiden G6PD G6PD Lack of G6PD 13⁄4 bilirubin disease GABRA5 bipolar disorder GBA Gaucher disease GBA Parkinson's disease GCGR (FAAH, ML4R, UCP2) Constitution / obesity GCK type 2 diabetes GCLM (F12, TLR4) atherosclerosis , myocardial infarction GDNF schizophrenia GHRL obesity GJB1 Charcot-Marie-Tooth disease GJB2 deafness GJB2 non-symptomatic sensorineural hearing loss GJB2 sensorineural hearing loss GJB2 hearing loss / deafness GJB6 non Syndrome-type sensory nerve Hearing loss GJB6 Hearing loss/Deafness GNAS Hypertension GNB3 High gold pressure GPX1 Lung cancer GRIN1 Schizophrenia 127264.doc -67- 200847056
基因 表型 GRJN2B 精神分裂症 GSK3B 雙極性病症 GSTM1 肺癌 GSTM1 結腸直腸癌 GSTM1 乳癌 GSTM1 前列腺癌 GSTM1 細胞遺傳學研究 GSTM1 膀胱癌 GSTM1 食道癌 GSTM1 頭頸癌 GSTM1 白血病 GSTM1 帕金森氏病 GSTM1 胃癌 GSTP1 肺癌 GSTP1 結腸直腸癌 GSTP1 乳癌 GSTP1 細胞遺傳學研究 GSTP1 前列腺癌 GSTT1 肺癌 GSTT1 結腸直腸癌 GSTT1 乳癌 GSTT1 前列腺癌 GSTT1 膀胱癌 GSTT1 細胞遺傳學研究 GSTT1 哮喘 GSTT1 苯中毒 GSTT1 食道癌 GSTT1 頭頸癌 GYS1 2型糖尿病 HBB 地中海貧血症 HBB β-地中海貧血症 HD 亨丁 頓氏病(Huntington’s disease) HFE 血色沉著病 HFE 離子含量 HFE 結腸直腸癌 HK2 2型糖尿病 HLA 類風濕性關節炎 HLA 1型糖尿病 HLA 貝西氏病(Behcet's Disease) HLA 乳糜瀉 HLA 牛皮癬 HLA 格雷氏病 127264.doc -68 - 200847056 基因 表型 HLA 多發性硬化症 HLA 精神分裂症 HLA 哮喘 HLA 糖尿病 HLA-A 狼瘡 HLA-A 白金病 HLA-A HIV HLA-A 1型糖尿病 HLA-A 移植物抗宿主疾病 HLA-A 多發性硬化症 HLA-B 白血病 HLA-B 貝西氏病 HLA-B 乳糜瀉 HLA-B 1型糖尿病 HLA-B 移植物抗宿主疾病 HLA-B 肉狀瘤病 HLA-C 牛皮癬 RLA-DPA1 麻療 HLA-DPB1 1型糖尿病 HLA-DPB1 哮喘 HLA-DQA1 1型糖尿病 HLA-DQA1 乳靡;寫 HLA-DQA1 子宮頸癌 HLA-DQA1 哮喘 HLA-DQA1 多發性硬化症 HLA-DQA1 2型糖尿病;1型糖尿病 HLA-DQA1 紅斑狼瘡 HLA-DQA1 反覆流產 HLA-DQA1 牛皮癬 HLA-DQB1 1型糖尿病 HLA-DQB1 乳糜瀉 HLA-DQB1 多發性硬化症 HLA-DQB1 子宮頸癌 HLA-DQB1 紅斑狼瘡 HLA-DQB1 反覆流產 HLA-DQB1 關節炎 HLA-DQB1 哮喘 HLA-DQB1 HIV HLA-DQBI 淋巴瘤 HLA-DQB1 肺結核 HLA-DQBI 類風濕性關節炎 HLA-DQBI 2型糖尿病 HLA-DQBI 移植物抗宿主疾病 127264.doc -69- 200847056Gene phenotype GRJN2B Schizophrenia GSK3B Bipolar disorder GSTM1 Lung cancer GSTM1 Colorectal cancer GSTM1 Breast cancer GSTM1 Prostate cancer GSTM1 Cytogenetic research GSTM1 Bladder cancer GSTM1 Esophageal cancer GSTM1 Head and neck cancer GSTM1 Leukemia GSTM1 Parkinson's disease GSTM1 Gastric cancer GSTP1 Lung cancer GSTP1 Colorectal GSTP1 Breast Cancer GSTP1 Cytogenetic Research GSTP1 Prostate Cancer GSTT1 Lung Cancer GSTT1 Colorectal Cancer GSTT1 Breast Cancer GSTT1 Prostate Cancer GSTT1 Bladder Cancer GSTT1 Cytogenetic Study GSTT1 Asthma GSTT1 Benzene Poisoning GSTT1 Esophageal Cancer GSTT1 Head and Neck Cancer GYS1 Type 2 Diabetes HBB Thalassemia HBB Β-thalassemia HD Huntington's disease HFE Hemochromatosis HFE Ion content HFE Colorectal cancer HK2 Type 2 Diabetes HLA Rheumatoid arthritis HLA Type 1 Diabetes HLA Behcet's Disease HLA Celiac disease HLA Psoriasis HLA Gracies 127264.doc -68 - 200847056 Gene phenotype HLA Multiple sclerosis HLA Schizophrenia HLA Asthma HLA Diabetes HLA-A Lupus HLA-A Platinum disease HLA-A HIV HLA-A Type 1 diabetes HLA-A Graft-versus-host disease HLA-A Multiple sclerosis HLA-B Leukemia HLA-B Bercy's disease HLA-B Celiac disease HLA-B 1 Type 2 Diabetes HLA-B Graft-versus-host disease HLA-B Sarcoidosis HLA-C Psoriasis RLA-DPA1 Alpha treatment HLA-DPB1 Type 1 diabetes HLA-DPB1 Asthma HLA-DQA1 Type 1 diabetes HLA-DQA1 chyle; write HLA -DQA1 Cervical cancer HLA-DQA1 Asthma HLA-DQA1 Multiple sclerosis HLA-DQA1 Type 2 diabetes; Type 1 diabetes HLA-DQA1 Lupus erythematosus HLA-DQA1 Recurrent miscarriage HLA-DQA1 Psoriasis HLA-DQB1 Type 1 diabetes HLA-DQB1 X-ray HLA-DQB1 Multiple Sclerosis HLA-DQB1 Cervical cancer HLA-DQB1 Lupus erythematosus HLA-DQB1 Over-abortion HLA-DQB1 Arthritis HLA-DQB1 Asthma HLA-DQB1 HIV HLA-DQBI Lymphoma HLA-DQB1 Tuberculosis HLA-DQBI Rheumatoid arthritis HLA-DQBI type 2 diabetes HLA-DQBI graft versus host disease 127264.doc -69- 200847056
基因 表型 HLA-DQB1 發作性睡病 HLA-DQB1 類風濕性關節炎 HLA-DQB1 硬化性膽管炎 HLA-DQB1 2型糖尿病;1型糖尿病 HLA-DQB1 格雷氏病 HLA-DQB1 C型肝炎 HLA-DQBI 慢性C型肝炎 HLA-DQB1 瘧疾 HLA-DQBI 惡性瘧原蟲瘧疾 HLA-DQBI 黑素瘤 HLA-DQBI 牛皮癬 HLA-DQBI 休格連氏症候群(Sjogren’s syndrome) HLA-DQBI 全身性紅斑狼瘡 HLA-DRBl 1型糖尿病 HLA-DRB1 多發性硬化症 HLA-DRBl 全身性紅斑狼瘡 HLA-DRBI 類風濕性關節炎 HLA-DRBl 子宮頸癌 HLA-DRBI 關節炎 HLA-DRBI 乳糜瀉 HLA-DRBI 紅斑狼瘡 HLA-DRBl 肉狀瘤病 HLA-DRBl HIV HLA-DRBl 肺結核 HLA-DRBl 格雷氏病 HLA-DRBl 淋巴瘤 HLA-DRBl 牛皮癬 HLA-DBB1 哮喘 HLA-DRBl 克羅恩氏病 HLA-DRBl 移植物抗宿主疾病 HLA-DRBl 慢性C型肝炎 HLA-DRBl 發作性睡病 HLA-DRBl 系統性硬化症 HLA-DRBl 休格連氏症候群 HLA-DRBl 1型糖尿病 HLA-DRBl 類風濕性關節炎 HLA-DRBl 硬化性膽管炎 HLA-DRBl 2型糖尿病;1型糖尿病 HLA-DRBl 幽門螺桿菌感染 HLA-DRBl C型肝炎 HLA-DRBl 青少年關節炎 HLA-DRBl 白金病 127264.doc -70- 200847056Gene phenotype HLA-DQB1 narcolepsy HLA-DQB1 rheumatoid arthritis HLA-DQB1 sclerosing cholangitis HLA-DQB1 type 2 diabetes; type 1 diabetes HLA-DQB1 Gracie's disease HLA-DQB1 hepatitis C HLA-DQBI Chronic hepatitis C HLA-DQB1 Malaria HLA-DQBI Plasmodium falciparum malaria HLA-DQBI Melanoma HLA-DQBI Psoriasis HLA-DQBI Sjogren's syndrome HLA-DQBI Systemic lupus erythematosus HLA-DRBl type 1 Diabetes HLA-DRB1 Multiple Sclerosis HLA-DRBl Systemic Lupus Erythematosus HLA-DRBI Rheumatoid Arthritis HLA-DRBl Cervical Cancer HLA-DRBI Arthritis HLA-DRBI Celiac Disease HLA-DRBI Lupus Erythematosus HLA-DRBl Sarcoma Disease HLA-DRBl HIV HLA-DRBl Tuberculosis HLA-DRBl Gracies HLA-DRBl Lymphoma HLA-DRBl Psoriasis HLA-DBB1 Asthma HLA-DRBl Crohn's disease HLA-DRB1 Graft-versus-host disease HLA-DRBl Chronic C-type Hepatitis HLA-DRBl narcolepsy HLA-DRBl systemic sclerosis HLA-DRBl Hugh-linked syndrome HLA-DRBl type 1 diabetes HLA-DRBl rheumatoid arthritis HLA-DRBl sclerosing cholangitis HLA-DRBl 2 Diabetes; Type 1 diabetes HLA-DRBl Helicobacter pylori infection HLA-DRBl C hepatitis HLA-DRBl juvenile arthritis HLA-DRBl platinum disease 127264.doc -70- 200847056
基因 表型 HLA-DRB1 瘧疾 HLA-DRB1 黑素瘤 HLA-DRB1 反覆流產 HLA-DRB3 牛皮癬 HLA-G 反覆流產 HMOX1 冠狀動脈硬化 HNF4A 2型糖尿病 HNF4A 2型糖尿病 HSD11B2 高血壓 HSD17B1 乳癌 HTR1A 重度抑鬱症 HTR1B 酒精依賴 HTR1B 酒精中毒 HTR2A 記憶 HTR2A 精神分裂症 HTR2A 雙極性病症 HTR2A 抑營症 HTR2A 重度抑鬱症 HTR2A 自殺 HTR2A 阿茲海默氏病 HTR2A 神經性厭食症 HTR2A 高企壓 HTR2A 強迫症 HTR2C 精神分裂症 HTR6 阿茲海默氏病 HTR6 精神分裂症 HTRA1 濕型年齡相關之黃斑變性 IAPP 2型糖尿病 IDE 阿茲海默氏病 IFNG 肺結核 IFNG 1型糖尿病 IFNG 移植物抗宿主疾病 IFNG B型肝炎 IFNG 多發性硬化症 IFNG 哮喘 IFNG 乳癌 IFNG 腎移植 IFNG 腎移植併發症 IFNG 長哥 IFNG 反覆流產 IGFBP3 乳癌 IGFBP3 前列腺癌 127264.doc -71 - 200847056Gene phenotype HLA-DRB1 malaria HLA-DRB1 melanoma HLA-DRB1 recurrent miscarriage HLA-DRB3 psoriasis HLA-G recurrent miscarriage HMOX1 coronary atherosclerosis HNF4A type 2 diabetes HNF4A type 2 diabetes HSD11B2 hypertension HSD17B1 breast cancer HTR1A major depression HTR1B alcohol Dependent on HTR1B Alcoholism HTR2A Memory HTR2A Schizophrenia HTR2A Bipolar disorder HTR2A Inhibition HTR2A Major depression HTR2A Suicide HTR2A Alzheimer's disease HTR2A Anorexia nervosa HTR2A High stress HTR2A Obsessive-compulsive disorder HTR2C Schizophrenia HTR6 Azhai Mohs disease HTR6 schizophrenia HTRA1 wet type age-related macular degeneration IAPP type 2 diabetes IDE Alzheimer's disease IFNG tuberculosis IFNG type 1 diabetes IFNG graft versus host disease IFNG hepatitis B IFNG multiple sclerosis IFNG asthma IFNG Breast cancer IFNG kidney transplantation IFNG kidney transplantation complications IFNG long brother IFNG reverse abortion IGFBP3 breast cancer IGFBP3 prostate cancer 127264.doc -71 - 200847056
基因 表型 IL10 全身性紅斑狼瘡 IL10 哮喘 IL10 移植物抗宿主疾病 IL10 HIY DL10 腎移植 IL10 腎移植併發症 IL10 B型肝炎 IL10 青少年關節炎 IL10 長壽 IL10 多發性硬化症 IL10 反覆流產 1L10 類風濕性關節炎 IL10 肺結核 IL12B 1型糖尿病 IL12B 哮喘 IL13 哮喘 IL13 異位性皮膚炎 IL13 慢性阻塞性肺病/COPD ILI3 格雷氏病 ILIA 牙周炎 ILIA 阿茲海默氏病 IL1B 牙周炎 IL1B 阿茲海默氏病 IL1B 胃癌 IL1R1 1型糖尿病 IL1RN 胃癌 IL2 哮喘;濕疹;過敏性病 IL4 哮喘 IL4 異位性皮膚炎 IL4 HIV IL4R 哮喘 IL4R 異位性皮膚炎 1L4R 總血清IgE IL6 骨礦化 IL6 腎移植 IL6 腎移植併發症 IL6 長壽 EL6 多發性硬化症 IL6 骨密度 IL6 骨礦質密度 IL6 結腸直腸癌 IL6 青少年關節炎 IL6 類風濕性關節炎 127264.doc -72- 200847056 基因 表型 IL9 哮喘 INHA 卵巢早衰 INS 1型糖尿病 INS 2型糖尿病 INS 1型糖尿病 INS 肥胖 INS 前列腺癌 INSIG2 肥胖 INSR 2型糖尿病 INSR 高血壓 INSR 多囊卵巢症候群 IPF1 2型糖尿病 IRS1 2型糖尿病 IRS1 2型糖尿病 IRS2 2型糖尿病 ITGB3 心肌梗塞 ITGB3 冠狀動脈硬化 ITGB3 冠心病 ITGB3 心肌梗塞 KCNE1 EKG異常 KCNE2 EKG異常 KCNH2 EKG異常 KCNH2 長QT症候群 KCNJ11 2型糖尿病 KCNJ11 2型糖尿病 KCNN3 精神分裂症 KCNQ1 EKG異常 KCNQ1 長QT症候群 KIBRA 間歇性記憶 KLK1 高血壓 KLK3 前列腺癌 KRAS 結腸直腸癌 LDLR 高膽固醇血症 LDLR 高血壓 LEP 肥胖 LEPR 肥胖 LIG4 乳癌 UPC 冠狀動脈硬化 LPL 冠狀動脈疾病 LPL 南脂質血症 LPL 甘油三酸酯 LRP1 阿茲海默氏病 127264.doc -73- 200847056 基因 表型 LRP5 骨密度 LRRK2 帕金森氏病 LRRK2 帕金森氏病 LTA 1型糖尿病 ΙΊΑ 哮喘 LTA 全身性紅斑狼瘡 LTA 敗企症 UTC4S 哮喘 MAOA 酒精中毒 MAOA 精神分裂症 MAOA 雙極性病症 MAOA 吸煙行為 MAOA 人格障礙 MAOB 帕金森氏病 MAOB 吸煙行為 MAPT 帕金森氏病 MAPT 阿茲海默氏病 MAPT 癡呆 MAPT 額顳葉癡呆 MAPT 進行性核上麻痹 MC1R 黑素瘤 MC3R 肥胖 MC4R 肥胖 MECP2 瑞特氏症候群(Rett syndrome) MEFV 家族性地中海熱 MEFV 澱粉樣變性 MICA 1型糖尿病 MICA 貝西氏病 MICA 乳糜瀉 MICA 類風濕性關節炎 MICA 全身性紅斑狼瘡 MLH1 結腸直腸癌 MME 阿茲海默氏病 MMP1 肺癌 MMP1 卵巢癌 MMP1 牙周炎 MMP3 心肌梗塞 MMP3 卵巢癌 MMP3 類風濕性關節炎 MPO 肺癌 MPO 阿茲海默氏病 MPO 乳癌 127264.doc -74- 200847056 基因 表型 MPZ 夏-馬-圖二氏病 MS4A2 哮喘 MS4A2 異位性皮膚炎 MSH2 結腸直腸癌 MSH6 結腸直腸癌 MSR1 前列腺癌 MTHFR 結腸直腸癌 MTHFR 2型糖尿病 MTHFR 神經管缺陷 MTHFR 高半胱胺酸 MTHFR 靜脈血栓栓塞 MTHFR 冠狀動脈硬化 MTHFR 阿茲海默氏病 MTHFR 食道癌 MTHFR 驚闕前期 MTHFR 反覆流產 MTHFR 中風 MTHFR 深靜脈血栓 MT-ND1 2型糖尿病 MTR 結腸直腸癌 MT-RNR1 非症候群型感覺神經性聽力損失 MTRR 神經管缺陷 MTRR 高半胱胺酸 MT-TL1 2型糖尿病 MUTYH 結腸直腸癌 MYBPC3 心肌症 MYH7 心肌症 MYOC 原發性開角型青光眼 MYOC 青光眼 NATl 結腸直腸癌 NAT1 乳癌 NATl 膀胱癌 NAT2 結腸直腸癌 NAT2 膀胱癌 NAT2 乳癌 NAT2 肺癌 NBN 乳癌 NCOA3 乳癌 NCSTN 阿茲海默氏病 NEUROD1 1型糖尿病 NF1 多發性神經纖維瘤1 NOS1 哮喘 127264.doc -75- 200847056 基因 表型 NOS2A 多發性硬化症 NOS3 高血壓 NOS3 冠心病 NOS3 冠狀動脈硬化 NOS3 冠狀動脈疾病 NOS3 心肌梗塞 NOS3 急性冠狀動脈症候群 NOS3 動脈血壓 NOS3 驚闕前期 NOS3 氧化氮 NOS3 阿茲海默氏病 NOS3 哮喘 NOS3 2型糖尿病 NOS3 心血管疾病 NOS3 貝西氏病 NOS3 勃起功能障礙 NOS3 慢性腎衰竭 NOS3 錯中毒 NOS3 左心室肥厚 NOS3 反覆流產 NOS3 糖尿病性視網膜病 NOS3 中風 NOTCH4 精神分裂症 NPY 酒精濫用 NQOl 肺癌 NQOl 結腸直腸癌 NQOl 苯中毒 NQOl 膀胱癌 NQOl 帕金森氏病 NR3C2 高血壓 NR4A2 帕金森氏病 NRG1 精神分裂症 NTF3 精神分裂症 OGGI 肺癌 OGGI 結腸直腸癌 OLR1 阿茲海默氏病 OPA1 青光眼 OPRM1 酒精濫用 OPRM1 物質依賴 OPTN 原發性開角型青光眼 P450 藥劑代謝 PADI4 類風濕性關節炎 127264.doc •76- 200847056 基因 表型 PAH 苯酮尿症/PKU PAI1 冠心病 PAI1 哮喘 PALB2 乳癌 PARK2 帕金森氏病 PARK7 帕金森氏病 PDCD1 紅斑狼瘡 PINK1 帕金森氏病 PKA 記憶 PKC 記憶 PLA2G4A 精神分裂症 PNOC 精神分裂症 POMC 肥胖 PON1 冠狀動脈硬化 PON1 帕金森氏病 PON1 2型糖尿病 PON1 動脈粥樣硬化 PON1 冠狀動脈疾病 PONi 冠心病 PON1 阿茲海默氏病 PONI 長壽 PON2 冠狀動脈硬化 PON2 早產分娩 PPARG 2型糖尿病 PPARG 肥胖 PPARG 2型糖尿病 PPARG 結腸直腸癌 PPARG 高血壓 PPARGC1A 2型糖尿病 PRKCZ 2型糖尿病 PRL 全身性紅斑狼瘡 PRNP 阿茲海默氏病 PRNP 唐傑二氏症(Creutzfeldt-Jakob disease) PRNP 唐傑二氏症(Jakob-Creutzfeidt disease) PRODH 精神分裂症 PRSS1 胰腺炎 PSEN1 阿茲海默氏病 PSEN2 阿茲海默氏病 PSMB8 1型糖尿病 PSMB9 1型糖尿病 PTCH 非黑素瘤皮膚癌 PTGIS 高血壓 127264.doc •77- 200847056Gene phenotype IL10 Systemic lupus erythematosus IL10 Asthma IL10 Graft versus host disease IL10 HIY DL10 Kidney transplantation IL10 Kidney transplantation complications IL10 Hepatitis B IL10 Adolescent arthritis IL10 Longevity IL10 Multiple sclerosis IL10 Recurrent miscarriage 1L10 Rheumatoid arthritis IL10 Tuberculosis IL12B Type 1 Diabetes IL12B Asthma IL13 Asthma IL13 Atopic dermatitis IL13 Chronic obstructive pulmonary disease/COPD ILI3 Gracies ILIA Periodontitis ILIA Alzheimer's disease IL1B Periodontitis IL1B Alzheimer's disease IL1B Gastric cancer IL1R1 type 1 diabetes IL1RN gastric cancer IL2 asthma; eczema; allergic disease IL4 asthma IL4 atopic dermatitis IL4 HIV IL4R asthma IL4R atopic dermatitis 1L4R total serum IgE IL6 bone mineralization IL6 kidney transplantation IL6 kidney transplantation complications IL6 Longevity EL6 Multiple Sclerosis IL6 Bone Mineral Density IL6 Bone Mineral Density IL6 Colorectal Cancer IL6 Adolescent Arthritis IL6 Rheumatoid Arthritis 127264.doc -72- 200847056 Gene phenotype IL9 Asthma INHA Premature ovarian failure INS Type 1 Diabetes INS Type 2 Diabetes INS type 1 diabetes INS obesity INS prostate cancer INSIG2 obesity INSR type 2 diabetes INSR hypertension INSR polycystic ovary syndrome IPF1 type 2 diabetes IRS1 type 2 diabetes IRS1 type 2 diabetes IRS2 type 2 diabetes ITGB3 myocardial infarction ITGB3 coronary atherosclerosis ITGB3 coronary heart disease ITGB3 myocardial infarction KCNE1 EKG Abnormal KCNE2 EKG abnormality KCNH2 EKG abnormal KCNH2 long QT syndrome KCNJ11 type 2 diabetes KCNJ11 type 2 diabetes KCNN3 schizophrenia KCNQ1 EKG abnormal KCNQ1 long QT syndrome KIBRA intermittent memory KLK1 hypertension KLK3 prostate cancer KRAS colorectal cancer LDLR hypercholesterolemia LDLR Hypertension LEP Obesity LEPR Obesity LIG4 Breast Cancer UPC Coronary Arteriosclerosis LPL Coronary Artery Disease LPL Southern Lipidemia LPL Triglyceride LRP1 Alzheimer's Disease 127264.doc -73- 200847056 Gene phenotype LRP5 Bone mineral density LRRK2 Parkinson's disease Disease LRRK2 Parkinson's disease LTA type 1 diabetes 哮喘 Asthma LTA Systemic lupus erythematosus LTA Abortive disease UTC4S Asthma MAOA Alcoholism MAOA Schizophrenia MAOA Bipolar disorder MAOA Smoking behavior M AOA Personality Disorder MAOB Parkinson's Disease MAOB Smoking Behavior MAPT Parkinson's Disease MAPT Alzheimer's Disease MAPT Dementia MAPT Frontotemporal Dementia MAPT Progressive Nuclear Paralysis MC1R Melanoma MC3R Obesity MC4R Obesity MECP2 Reiter's Syndrome ( Rett syndrome) MEFV Familial Mediterranean fever MEFV Amyloidosis MICA Type 1 diabetes MICA Beth's disease MICA Celiac disease MICA Rheumatoid arthritis MICA Systemic lupus erythematosus MLH1 Colorectal cancer MME Alzheimer's disease MMP1 Lung cancer MMP1 Ovary Cancer MMP1 Periodontitis MMP3 Myocardial infarction MMP3 Ovarian cancer MMP3 Rheumatoid arthritis MPO Lung cancer MPO Alzheimer's disease MPO Breast cancer 127264.doc -74- 200847056 Genetic phenotype MPZ Summer-horse-Graphic disease MS4A2 Asthma MS4A2 Atopic dermatitis MSH2 Colorectal cancer MSH6 Colorectal cancer MSR1 Prostate cancer MTHFR Colorectal cancer MTHFR Type 2 Diabetes MTHFR Neural tube defect MTHFR Hypercysteine MTHFR Venous thromboembolism MTHFR Coronary arteriosclerosis MTHFR Alzheimer's disease MTHFR Esophageal cancer MTHFR pre-convulsive MTHFR anti Abortion MTHFR Stroke MTHFR Deep vein thrombosis MT-ND1 Type 2 Diabetes MTR Colorectal cancer MT-RNR1 Non-synchronous group Sensory neuron hearing loss MTRR Neural tube defect MTRR High cysteine MT-TL1 Type 2 diabetes MUTYH Colorectal cancer MYBPC3 Myocardium MYH7 Myocardial MYOC Primary Open Angle Glaucoma MYOC Glaucoma NATl Colorectal Cancer NAT1 Breast Cancer NATl Bladder Cancer NAT2 Colorectal Cancer NAT2 Bladder Cancer NAT2 Breast Cancer NAT2 Lung Cancer NBN Breast Cancer NCOA3 Breast Cancer NCSTN Alzheimer's Disease NEUROD1 Type 1 Diabetes NF1 Multiple neurofibromatosis 1 NOS1 Asthma 127264.doc -75- 200847056 Gene phenotype NOS2A Multiple sclerosis NOS3 Hypertension NOS3 Coronary heart disease NOS3 Coronary atherosclerosis NOS3 Coronary artery disease NOS3 Myocardial infarction NOS3 Acute coronary syndrome NOS3 Arterial blood pressure NOS3 Pre-preperfusion NOS3 Nitric oxide NOS3 Alzheimer's disease NOS3 Asthma NOS3 Type 2 diabetes NOS3 Cardiovascular disease NOS3 Bercy's disease NOS3 Erectile dysfunction NOS3 Chronic renal failure NOS3 Misdiagnosis NOS3 Left ventricular hypertrophy NOS3 NOS3 diabetic retinopathy NOS3 stroke NOTCH4 schizophrenia NPY alcohol abuse NQOl lung cancer NQOl colorectal cancer NQOl benzene poisoning NQOl bladder cancer NQOl Parkinson's disease NR3C2 hypertension NR4A2 Parkinson's disease NRG1 schizophrenia NTF3 schizophrenia OGGI lung cancer OGGI Colorectal cancer OLR1 Alzheimer's disease OPA1 Glaucoma OPRM1 Alcohol abuse OPRM1 Substance-dependent OPTN Primary open-angle glaucoma P450 Agent metabolism PADI4 Rheumatoid arthritis 127264.doc •76- 200847056 Genetic phenotype PAH Phenylketoneuria Symptoms / PKU PAI1 Coronary heart disease PAI1 Asthma PALB2 Breast cancer PARK2 Parkinson's disease PARK7 Parkinson's disease PDCD1 Lupus erythematosus PINK1 Parkinson's disease PKA Memory PKC Memory PLA2G4A Schizophrenia PNB schizophrenia POMC Obesity PON1 Coronary arteriosclerosis PON1 Parkinson's disease Disease PON1 Type 2 Diabetes PON1 Atherosclerosis PON1 Coronary artery disease PONi Coronary heart disease PON1 Alzheimer's disease PONI Longevity PON2 Coronary arteriosclerosis PON2 Premature delivery PPARG Type 2 diabetes PPARG Obesity PPARG 2 Type 2 diabetes PPARG colorectal cancer PPARG hypertension PPARGC1A type 2 diabetes PRKCZ type 2 diabetes PRL systemic lupus erythematosus PRNP Alzheimer's disease PRNP Creutzfeldt-Jakob disease PRNP Tang Jie Er's disease (Jakob- Creutzfeidt disease) PRODH schizophrenia PRSS1 pancreatitis PSEN1 Alzheimer's disease PSEN2 Alzheimer's disease PSMB8 type 1 diabetes PSMB9 type 1 diabetes PTCH non-melanoma skin cancer PTGIS hypertension 127264.doc •77- 200847056
基因 表型 PTGS2 結腸直腸癌 PTH 骨密度 PTPNll 努南症候群(Noonan syndrome) ΡΊΤΝ22 類風濕性關節炎 PTPRC 多發性硬化症 PVT1 終末期腎病 RAD51 乳癌 RAGE 糖尿病性視網膜病 RBI 視網膜胚細胞瘤 RELN 精神分裂症 REN 高血壓 RET 甲狀腺癌 RET 希爾施普龍氏病(Hirschsprung's disease) RFC1 神經管缺陷 RGS4 精神分裂症 RHO 色素性視網膜炎 RNASEL 前列腺癌 RYR1 惡性發熱 SAA1 澱粉樣變性 SCG2 高血壓 SCG3 肥胖 SCGB1A1 哮喘 SCN5A 布魯加達症候群(Brngada syndrome) SCN5A EKG異常 SCN5A 長QT症候群 SCNN1B 高血壓 SCNN1G 高血壓 SERPINA1 COPD SERPINA3 阿茲海默氏病 SERPINA3 COPD SERPINA3 帕金森氏病 SERPINEl 心肌梗塞 SERPINE1 2型糖尿病 SERPINEl 冠狀動脈硬化 SERPINEl 肥胖 SERPINEl 驚闕前期 SERPINEl 中風 SERPINEl 兩血壓 SERPINEl 反覆流產 SERPINEl 靜脈血栓栓塞 SLC11A1 肺結核 SLC22A4 克羅恩氏病;潰瘍性結腸炎 SLC22A5 克羅恩氏病;潰瘍性結腸炎 127264.doc -78 - 200847056Gene phenotype PTGS2 Colorectal cancer PTH Bone mineral density PTPNll Noonan syndrome ΡΊΤΝ22 Rheumatoid arthritis PTPRC Multiple sclerosis PVT1 End stage renal disease RAD51 Breast cancer RAGE Diabetic retinopathy RBI Retinal blastoma RELN Schizophrenia REN Hypertension RET Thyroid cancer RET Hirschsprung's disease RFC1 Neural tube defects RGS4 Schizophrenia RHO Retinitis pigmentosa RNASEL Prostate cancer RYR1 Malignant fever SAA1 Amyloidosis SCG2 Hypertension SCG3 Obesity SCGB1A1 Asthma SCN5A Bru Addition syndrome (Brngada syndrome) SCN5A EKG abnormality SCN5A Long QT syndrome SCNN1B Hypertension SCNN1G Hypertension SERPINA1 COPD SERPINA3 Alzheimer's disease SERPINA3 COPD SERPINA3 Parkinson's disease SERPINEl Myocardial infarction SERPINE1 Type 2 diabetes SERPINEl Coronary arteriosclerosis SERPINEl Obesity SERPINEl Pre-convulsion SERPINEl stroke SERPINEl two blood pressure SERPINEl recurrent miscarriage SERPINEl venous thromboembolism SLC11A1 tuberculosis SLC22A4 Crohn's disease; ulcerative SLC22A5 colitis Crohn's disease; ulcerative colitis 127264.doc -78 - 200847056
基因 表型 SLC2A1 2型糖尿病 SLC2A2 2型糖尿病 SLC2A4 2型糖尿病 SLC3A1 胱胺酸尿 SLC6A3 注意力不足過動症 SLC6A3 帕金森氏病 SLC6A3 吸煙行為 SLC6A3 酒精中毒 SLC6A3 精神分裂症 SLC6A4 抑鬱症 SLC6A4 重度抑鬱症 SLC6A4 精神分裂症 SLC6A4 自殺 SLC6A4 酒精中毒 SLC6A4 雙極性病症 SLC6A4 人格特質 SLC6A4 注意力不足過動症 SLG6A4 阿茲海默氏病 SLC6A4 人格障礙 SLC6A4 恐慌症 SLC6A4 酒精濫用 SLC6A4 情感障礙 SLC6A4 焦慮症 SLC6A4 吸煙行為 SLC6A4 重度抑鬱症;雙極性病症 SLC6A4 海洛因濫用 SLC6A4 大腸急躁症 SLC6A4 偏頭痛 SLC6A4 強迫症 SLC6A4 自殺行為 SLC7A9 胱胺酸尿 SNAP25 ADHD SNCA 帕金森氏病 S0D1 ALS/肌肉萎縮性側索硬化 SOD2 乳癌 SOD2 肺癌 S0D2 前列腺癌 SPINK1 胰腺炎 SPP1 多發性硬化症 SRD5A2 前列腺癌 STAT6 哮喘 STAT6 總IgE 127264.doc -79- 200847056 基因 表型 SULT1A1 乳癌 SULT1A1 結腸直腸癌 TAPI 1型糖尿病 TAPI 紅斑狼瘡 TAP2 1型糖尿病 TAP2 1型糖尿病 TBX21 哮喘 TBXA2R 哮喘 TCF1 2型糖尿病 TCF1 2型糖尿病 TF 阿茲海默氏病 TGFB1 乳癌 TGFB1 腎移植 TGFB1 腎移植併發症 TH 精神分裂症 THBD 心肌梗塞 TLR4 哮喘 TLR4 克羅恩氏病;潰瘍性結腸炎 TLR4 敗血症 TNF 哮喘 TNFA 腦血管疾病 TNF 1型糖尿病 TNF 類風濕性關節炎 TNF 全身性紅斑狼瘡 TNF 腎移植 TNF 牛皮癬 TNF 敗血症 TNF 2型糖尿病 TNF 阿茲海默氏病 TNF 克羅恩氏病 TNF 1型糖尿病 TNF B型肝炎 TNF 腎移植併發症 TNF 多發性硬化症 TNF 精神分裂症 TNF 乳靡腐 TNF 肥胖 TNF 反覆流產 TNFRSF11B 骨密度 TNFRSF1A 類風濕性關節炎 TNFRSF1B 類風濕性關節炎 TNFRSF1B 全身性紅斑狼瘡 127264.doc -80- 200847056Gene phenotype SLC2A1 Type 2 diabetes SLC2A2 Type 2 diabetes SLC2A4 Type 2 diabetes SLC3A1 Cystamine SLC6A3 Attention deficit hyperactivity disorder SLC6A3 Parkinson's disease SLC6A3 Smoking behavior SLC6A3 Alcoholism SLC6A3 Schizophrenia SLC6A4 Depression SLC6A4 Major depression SLC6A4 Schizophrenia SLC6A4 Suicide SLC6A4 Alcoholism SLC6A4 Bipolar disorder SLC6A4 Personality traits SLC6A4 Attention deficit hyperactivity disorder SLG6A4 Alzheimer's disease SLC6A4 Personality disorder SLC6A4 Panic disorder SLC6A4 Alcohol abuse SLC6A4 Affective disorder SLC6A4 Anxiety disorder SLC6A4 Smoking behavior SLC6A4 Major depression Symptoms; bipolar disorder SLC6A4 heroin abuse SLC6A4 colorectal irritability SLC6A4 migraine SLC6A4 obsessive-compulsive disorder SLC6A4 suicidal behavior SLC7A9 cystine urinary SNAP25 ADHD SNCA Parkinson's disease S0D1 ALS/muscle atrophic lateral sclerosis SOD2 breast cancer SOD2 lung cancer S0D2 prostate cancer SPINK1 Pancreatitis SPP1 Multiple Sclerosis SRD5A2 Prostate Cancer STAT6 Asthma STAT6 Total IgE 127264.doc -79- 200847056 Gene phenotype SULT1A1 Breast cancer SULT1A1 Colon Rectal cancer TAPI type 1 diabetes TAPI Lupus erythematosus TAP2 Type 1 diabetes TAP2 Type 1 diabetes TBX21 Asthma TBXA2R Asthma TCF1 Type 2 diabetes TCF1 Type 2 diabetes TF Alzheimer's disease TGFB1 Breast cancer TGFB1 Kidney transplantation TGFB1 Kidney transplantation complications TH Schizophrenia THBD myocardial infarction TLR4 asthma TLR4 Crohn's disease; ulcerative colitis TLR4 sepsis TNF asthma TNFA cerebrovascular disease TNF type 1 diabetes TNF rheumatoid arthritis TNF systemic lupus erythematosus TNF kidney transplantation TNF psoriasis TNF sepsis TNF type 2 diabetes TNF Alzheimer's disease TNF Crohn's disease TNF type 1 diabetes TNF B hepatitis TNF kidney transplantation complications TNF multiple sclerosis TNF schizophrenia TNF chyle rot TNF obesity TNF recurrent miscarriage TNFRSF11B bone density TNFRSF1A rheumatoid Arthritis TNFRSF1B rheumatoid arthritis TNFRSF1B systemic lupus erythematosus 127264.doc -80- 200847056
基因 表型 TNFRSF1B 關節炎 TNNT2 心肌症 TP53 肺癌 TP53 乳癌 TP53 結腸直腸癌 TP53 前列腺癌 TP53 子宮頸癌 TP53 卵巢癌 TP53 吸煙 TP53 食道癌 TP73 肺癌 TPH1 自殺 TPH1 重度抑鬱症 TPH1 自殺行為 TPH1 精神分裂症 TPMT 硫代嘌呤曱基轉移酶活性 TPMT 白J&L病 TPMT 發炎性腸病 TPMT 硫代嘌呤S-甲基轉移酶表型 TSC1 結節性硬化症 TSC2 結節性硬化症 TSHR 格雷氏病 TYMS 結腸直腸癌 TYMS 胃癌 TYMS 食道癌 UCHL1 帕金森氏病 UCP1 肥胖 UCP2 肥胖 UCP3 肥胖 UGT1A1 高膽紅素金症 UGT1A1 吉爾波特症候群(Gilbert syndrome) UGT1A6 結腸直腸癌 UGT1A7 結腸直腸癌 UTS2 2型糖尿病 VDR 骨密度 VDR 前列腺癌 VDR 骨礦質密度 VDR 1型糖尿病 VDR 骨質疏鬆症 VDR 骨量 VDR 乳癌 VDR 鉛中毒 127264.doc -81 - 200847056 基因 表型 VDR 肺結核 VDR 2型糖尿病 VEGF 乳癌 vit D rec 特發性矮小 VKORC1 對殺鼠靈療法起反應 WNK4 高血壓 ΧΡΑ 肺癌 XPC 肺癌 XPC 細胞遺傳學研究 XRCC1 肺癌 XRCC1 細胞遺傳學研究 XRCC1 乳癌 XRCC1 膀胱癌 XRCC2 乳癌 XRCC3 乳癌 XRCC3 細胞遺傳學研究 XRCC3 肺癌 XRCC3 膀胱癌 ZDHHC8 精神分裂症 遺傳複合指數(GCI) 許多病狀或疾病之病因係歸因於遺傳及環境因素。基因 型分析技術之最新進展已提供鑑別疾病與整個基因組中之 遺傳標記之間的關聯的機會。實際上,許多最新研究已發 現該等關聯,其中特定對偶基因或基因型與患疾病之增加 危險相關。此等研究中之一些涉及收集一組測試病例及一 組對照組,以及進行兩個群體之間的遺傳標記之對偶基因 分布之比較。在此等研究中之一些中,特定遺傳標記與疾 病之間的關聯為與其他遺傳標記分離之度量,其作為背景 處理且未在統計分析中說明。 遺傳標記及變異體可包括SNP、核苷酸重複、核苷酸插 入、核苷酸缺失、染色體易位、染色體複製或複本數變 127264.doc -82 - 200847056 異。複本數變異可包括微衛星重複、核芽酸重複、著絲粒 重複或端粒重複。 在本發明之-您、樣中,將有關多個遺傳標記與—或多種 疾病或狀況之關聯之資訊組合且對其進行分析以產生⑽ °十刀。GCI计分可用於向未在遺傳學方面訓練之人員提供 基於曰刖科學研究將其何種疾病之個體危險與相關群體比 較而得之可t (即穩固)、可理解及/或直觀意義。在一實施 例中用於產生不同基因座之組合效應之穩固GCI計分的 方去係基於對所研究之每一基因座所報告之個體危險。舉 例而S,鑑別所關注之疾病或病狀且接著查詢包括㈠旦不 =於)資料庫、專利公開案及科學文獻之資訊來源中關於 該疾病或病狀與一或多個遺傳基因座之關聯的資訊。使用 品質標準驗證及評估此等資訊來源。在一些實施例中,評 估過程包括多個步驟。在其他實施例中,針對多個品質標 準-平估資訊來源。使用源自資訊來源之資訊來鑑別所關注 φ 之每一疾病或病狀之一或多個遺傳基因座的優勢率或相對 危險。 在一替代實施例中,至少一個遺傳基因座之優勢率(〇R) 或相對危險(RR)不可獲自可用資訊來源。接著使用〇)同一 基因座之多個對偶基因之所報告0R、(2)來自諸如HapMap 資料集之資料集之對偶基因頻率,及/或(3)來自可用資源 (例如,CDC、National Center for Health Statistics 等)之疾 病/病狀流行率來計异RR以得出所關注之所有對偶基因之 RR。在一實施例中,分開地或獨立地估計同一基因座之 127264.doc -83- 200847056 多個對偶基因之〇R。在一較佳實施例中,將同一基因座 之多個對偶基因之0 R組合以說明不同對偶基因之〇 R之間 的依賴性。在一些實施例中,使用已建立之疾病模型(包 括(但不限於)諸如相乘、相加、哈佛改良(Hazard-modified)、 顯性效應) 來產生表示根據所選模型之個體之 危險的中間計分。 在另一實施例中,使用分析所關注之疾病或病狀之多個 ㈣及使自此等不賴型獲得之結果相關的方法;藉此將 可藉由選擇特定疾病模型而引入之可能誤差減至最小。此 方法將自關於相對危險之計算《資訊㈣獲得的流行率、 對偶基因頻率及OR之估計之合理誤差的影響減至最小。 由於流行率估計對RR作用之"線性"或單調性質,故不正確 估計流行率對最後等輯分幾乎不存在作用;其限制條件 為將同一模型一致地應用於產生報告之所有個體。 在另一實施例中,使用考慮環境/行為/人口統計資料作 為其他"基因座"之方法。在相關實施例中,該資料可自資 訊來源獲得,諸如醫學或科學文獻或資料庫(例如,吸煙 與肺癌之關聯,或來自保險業健康危險評估卜在一實施 例中,對一或多種複雜疾病產生⑽計>。複#疾,病可受 多個基因、環境因素及其相互作用影響。#研究複雜疾病 時需要分析大量可能相互作用。在一實施例中,使用一程 序來杈正多重比較,諸如邦弗朗尼校正(B〇nferr〇ni correction)。在一替代實施例中,當測試之間無依賴性或 展現特殊類型之依賴性時,使用Simes測試控制總顯著性 127264.doc -84 - 200847056 程度(亦稱為”族系誤差率")(Sarkar S.(1998))。有序MTP2 隨機變數之一些可能性不等式:Simes推測之證據(Ann Stat 26:494-504)。Simes測試拒絕如下之總體虛無假設: 若;^出义灸/尺,其中任何灸可為1,.·.,尺,則所有則試特定性 虛無假設為真。(Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751-754·)。Gene phenotype TNFRSF1B Arthritis TNNT2 Cardiomyopathy TP53 Lung cancer TP53 Breast cancer TP53 Colorectal cancer TP53 Prostate cancer TP53 Cervical cancer TP53 Ovarian cancer TP53 Smoking TP53 Esophageal cancer TP73 Lung cancer TPH1 Suicide TPH1 Major depression TPH1 Suicidal behavior TPH1 Schizophrenia TPMT Thio Thiol-transferase activity TPMT White J&L disease TPMT Inflammatory bowel disease TPMT Thiopurine S-methyltransferase phenotype TSC1 Tuberous sclerosis TSC2 Tuberous sclerosis TSHR Gracie disease TYMS Colorectal cancer TYMS Gastric cancer TYMS Esophageal cancer UCHL1 Parkinson's disease UCP1 Obesity UCP2 Obesity UCP3 Obesity UGT1A1 Hyperbilirubinemia UGT1A1 Gilbert syndrome UGT1A6 Colorectal cancer UGT1A7 Colorectal cancer UTS2 Type 2 diabetes VDR Bone mineral density VDR Prostate cancer VDR Bone mineral Density VDR Type 1 Diabetes VDR Osteoporosis VDR Bone VDR Breast Cancer VDR Lead Poisoning 127264.doc -81 - 200847056 Gene phenotype VDR Tuberculosis VDR Type 2 Diabetes VEGF Breast cancer vit D rec Idiopathic short VKORC1 Reversing warfarin therapy Should be WNK4 Hypertension 肺癌 Lung cancer XPC Lung cancer XPC Cytogenetics XRCC1 Lung cancer XRCC1 Cytogenetics XRCC1 Breast cancer XRCC1 Bladder cancer XRCC2 Breast cancer XRCC3 Breast cancer XRCC3 Cytogenetic research XRCC3 Lung cancer XRCC3 Bladder cancer ZDHHC8 Schizophrenia genetic composite index (GCI) Many The cause of the condition or disease is due to genetic and environmental factors. Recent advances in genotyping techniques have provided an opportunity to identify the association between disease and genetic markers in the entire genome. In fact, many recent studies have found such associations in which specific dual genes or genotypes are associated with increased risk of disease. Some of these studies involved the collection of a set of test cases and a control group, as well as a comparison of the distribution of the dual genes for genetic markers between the two populations. In some of these studies, the association between a particular genetic marker and a disease is a measure of separation from other genetic markers that is treated as a background and not illustrated in the statistical analysis. Genetic markers and variants may include SNPs, nucleotide repeats, nucleotide insertions, nucleotide deletions, chromosomal translocations, chromosomal duplications, or copies. 127264.doc -82 - 200847056 Replica variation can include microsatellite repeats, nuclear bud repeats, centromeric repeats, or telomere repeats. In the present invention, information relating to the association of multiple genetic markers with - or a plurality of diseases or conditions is combined and analyzed to produce (10) ° ten knives. The GCI score can be used to provide a person who is not genetically trained to be able to compare the individual risk of a disease with a relevant group based on a scientific study. (ie, stable), understandable, and/or intuitive. The robust GCI scores used to generate the combined effects of different loci in one embodiment are based on the individual risk reported for each locus studied. For example, S, identifying the disease or condition of interest and then querying for information about the disease or condition and one or more genetic loci, including (a) not in the database, the patent disclosure, and the scientific literature. Associated information. Use quality standards to verify and evaluate these sources of information. In some embodiments, the evaluation process includes multiple steps. In other embodiments, the source of information is evaluated for multiple quality criteria. Use information from sources of information to identify the odds or relative risk of one or more genetic loci for each disease or condition of interest φ. In an alternate embodiment, the odds ratio (〇R) or relative risk (RR) of at least one genetic locus is not available from available sources of information. Then use 〇) reported multiple ORFs of the same locus, (2) the frequency of the dual gene from a data set such as the HapMap data set, and/or (3) from available resources (eg, CDC, National Center for The disease/condition prevalence of Health Statistics, etc., is calculated to account for the RR of all the dual genes of interest. In one embodiment, the 〇R of 127264.doc-83-200847056 multiple dual genes of the same locus is estimated separately or independently. In a preferred embodiment, the OR of the plurality of dual genes of the same locus is combined to account for the dependence between 〇 R of the different dual genes. In some embodiments, an established disease model (including but not limited to such as multiplication, addition, Hazard-modified, dominant effect) is used to generate a hazard indicative of an individual according to the selected model. Intermediate scoring. In another embodiment, a plurality of methods (4) for analysing the disease or condition of interest and methods for correlating the results obtained from such contiguous types are used; thereby reducing the possible errors introduced by selecting a particular disease model To the minimum. This method minimizes the impact of the prevalence of the relative risk calculations (IV) on the prevalence, the frequency of the dual gene, and the reasonable error of the OR estimate. Since the prevalence rate estimates the "linear" or monotonic nature of RR, it is incorrect to estimate that the prevalence has little effect on the final score; the constraint is that the same model is applied consistently to all individuals who produce the report. In another embodiment, a method of considering environmental/behavior/demographic data as the other "locus" is used. In related embodiments, the information may be obtained from a source of information, such as a medical or scientific literature or database (eg, association of smoking with lung cancer, or from an insurance health risk assessment) in one embodiment, for one or more complexities Disease production (10) counts. Complex diseases can be affected by multiple genes, environmental factors and their interactions. #After studying complex diseases, it is necessary to analyze a large number of possible interactions. In one embodiment, a procedure is used to correct Multiple comparisons, such as Branfini correction. In an alternative embodiment, the Simess test is used to control total significance when there is no dependency between tests or exhibits a particular type of dependence. Doc -84 - 200847056 Degree (also known as "family error rate") (Sarkar S. (1998)). Some likelihood inequalities for ordered MTP2 random variables: evidence from Simess's hypothesis (Ann Stat 26:494-504 The Simes test rejects the following null hypothesis: If ^^ is a moxibustion/foot, any moxibustion can be 1, .., and the ruler, then all the test hypothesis is true. (Simes RJ (1986) An im Proven Bonferroni procedure for multiple tests of significance. Biometrika 73:751-754·).
可用於多基因及多環境因數分析情況下之其他實施例控 制假發現率,亦即被假拒絕之所拒絕虛無假設之預期比 例。如在微陣列研究中,當虛無假設之一部分可假定為假 時,此方法尤其適用。Devlin等人(2003,Analysis of multilocus models of association. Genet Epidemiol 25:36-47)提出在多基因座關聯研究中測試大量可能基因x基因相 互作用時控制假發現率之Benjamini及Hochberg(1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300)逐步增加程序的變體。Benjamini及Hochberg程 序與Simes測試有關;設置A:* ,使得,其 拒絕對應於;之所有浐虛無假設。事實上,當所有 虛無假設為真時,則Benjamini及Hochberg程序還原為 Simes測試(Benjamini Y,Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165-1188) o 在一些實施例中,與個體群體比較,基於其中間計分將 127264.doc -85- 200847056 個體分級以產生最後等級計分,其可表示為在群體中之等 級,諸如第99百分位或第99、第98、第97、第96、第95、 第94、第93、第92、第91、第90、第89、第88、第87、第Other embodiments that can be used in the context of multi-gene and multi-environment factor analysis control the false discovery rate, i.e., the expected ratio of rejected null hypotheses that are falsely rejected. As in microarray studies, this method is especially useful when one of the null hypotheses can be assumed to be false. Devlin et al. (2003, Analysis of multilocus models of association. Genet Epidemiol 25:36-47) proposed Benjamini and Hochberg (1995, Controlling) to control false discovery rates when testing a large number of possible gene x gene interactions in a multilocus association study. The false discovery rate: a practical and powerful approach to multiple testing. JR Stat Soc Ser B 57: 289-300) Gradually increase the variant of the program. The Benjamini and Hochberg programs are related to the Simes test; setting A:* such that it rejects the corresponding hypothesis; In fact, when all null hypotheses are true, the Benjamini and Hochberg programs are restored to the Simes test (Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165-1188) o In some embodiments, compared to the individual population, the 127264.doc -85-200847056 individual is ranked based on the intermediate score to generate a final grade score, which can be expressed as a rank in the group, such as the 99th percentile. Or 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87,
86、第85、弟84、弟83、第82、第81、第8〇、第79、第 78、第77、第76、第75、第74、第73、第72、第71、第 70、第69、第65、第60、第55、第50、第45、第40、第 40、第35、第30、第25、第20、第^义第㈣〜第^咬第^百 分位。在另一實施例中,等級計分可顯示為範圍,諸如第 100至弟95百分位、弟95至第85百分位、第85至第60百分 位,或第100與第〇百分位之間的任何子範圍。在又一實施 例中,以品質將個體分級,諸如最高第75四分位數,或最 低第25四分位數。在另一實施例中,與群體之平均或中值 計分比較來將個體分級。 在實她例中,與個體比較之群體包括來自各種地理及 種族背景之大量人員,諸如全球群體。在其他實施例中, 與個體比較之群體侷限於特定地理、家譜、種族、性別、 年齡(胎兒、嬰兒、兒童、青少年、少年、成年、老年個 體)、疾病狀態(諸如有症狀、無症狀、攜帶者、早期發 :、晚期發作)。在—些實施例中,與個體比較之群體係 付自公開及/或私人資訊來源中所報告之資訊。 ^八 】中使用顯示使個體之GCI計分或GCI Plus 哭赤:見4匕纟—些實施例中’使用螢幕(諸如電腦監視 二口視螢幕)使每該顯示可視化,諸如具有相關資訊之個 人入口。在另一實施例中’該顯示為靜態顯示,諸如印刷 127264.doc -86 - 200847056 頁面。在一實施例中,該顯示可包括(但不限於)以下各項 + 心一成多者:蔹、渚那 i-5、π·20、2i_ 25、26-30、31-35、36-40、41·45、46-50、51_55、56_ 60、61-65、66-70、7ΐ·75、76 8g、8i 85、86_9〇、91_ 95 96_1GG)顏色或灰度級梯度、溫度計、量規、餅分 圖、直方圖或條形圖。舉例而言,圖18及圖19為對於MS 之不同顯示且圖2G為對於克羅恩氏病之顯示。在另一實施 例中,溫度計用於顯示GCI計分及疾病/病狀流行率。在另 一實施例中,溫度計顯示隨所報告GCI計分而變之位準, 例如圖15至圖17,顏色對應於危險。溫度計可顯示隨GCI 汁为增加之色度變化(諸如自較低GCI計分之藍色逐漸地變 為較高GCI計分之紅色)。在_相關實施例巾,溫度計顯示 隨所報告GCI計分及危險等級增加時之色度變化兩者而變 的位準。 在一替代實施例中,藉由使用聽覺反饋將個體之 分傳遞至個體。在一實施例中,聽覺反饋為危險等級高或 低之言語說明。在另一實施例中,聽覺反饋為諸如數字、 百分位、範圍、四分位數或與群體之平均或中值Ga計分 之比較的特SGCI計分之講述。在—實施例中,人員親自 或經由諸如電話(陸上通信線、移動電話或衛星電話)之電 信裝置或經由個人入口傳遞聽覺反饋。在另一實施例中, 藉由諸如電腦之自動系統傳遞聽覺反饋。在一實施例中, 聽覺反饋作為互動式聲音響應(IVR)系統之部分傳遞,該 系統為允許電腦偵測聲音及使用普通電話之按鈕音之技 127264.doc -87· 200847056 術。在另一實施例中,個體可經由IVR系統與中心伺服器 互動。IVR系統可作出預先記錄或動態產生之音訊之反應 以與個體互動且向其提供其危險等級之聽覺反饋。在一實 例中,個體可呼叫由IVR系統回答之號碼。視情況進入鑑 別碼、保密碼或經歷聲音識別協定後,IVR系統要求主體 自諸如按鈕音或聲音菜單之菜單中選擇選項。此等選項中 之一者可向個體提供其危險等級。 在另一實施例中,使用顯示使個體之GCI計分可視化且 諸如經由個人入口使用聽覺反饋進行傳遞。此組合可包括 GCI計分之視覺顯示及聽覺反饋,其論述gci計分與個體 之總體健康之關聯性且可建議可能預防措施。 在一實例中,使用多步驟過程產生GCI計分。最初,對 於待研究之每-病狀而言,計算來自每—遺傳標記之優勢 率的相對危險。對於每一流行率值严〇 〇1、〇 〇2、、 •5基於〃,L行率及HapMaP對偶基因頻率計算HapMap CEU群體之GCI計分。若在變化流行率下GCI計分不變, 則所考慮之唯一假定為存在相乘模型。否則,判定該模型 對流行率敏感。對於不判讀值之任何組合,獲得相對危險 及在HapMap群體中之計分分布。對於每一新個體而言, 將個體之計分與HapMap分布比較且所得計分為個體在此 群體中之等級。所報告計分之解析度由於在過程期間所作 之假定可較低。群體將劃分成分位數(3_6 bin),且所報告 —將為個體之等級所在之—。基於諸如每一疾病之計分 之解析度的考慮,bin之數目對於不同疾病可不同。在不 127264.doc -88 - 200847056 同HapMap個體之計分之間相等情況下,將使用平均等 級。 在一實施例中,較高GCI計分解釋為罹患或診斷患有病 狀或疾病之危險增加之指示。在另一實施例中,使用數學 杈型得出GCI計分。在一些實施例中,GCI計分係基於解 /夬關於群體及/或疾病或病狀之基礎資訊之不完全性質的 數學模型。在一些實施例中,該數學模型包括作為計算86, 85th, 84th, 83rd, 82nd, 81st, 8th, 79th, 78th, 77th, 76th, 75th, 74th, 73rd, 72nd, 71st, 70th , 69th, 65th, 60th, 55th, 50th, 45th, 40th, 40th, 35th, 30th, 25th, 20th, 2nd, 4th, 4th, 2nd, 2nd Bit. In another embodiment, the rating score can be displayed as a range, such as the 100th to the 95th percentile, the 95th to the 85th percentile, the 85th to the 60th percentile, or the 100th and the 100th. Any subrange between the quantiles. In yet another embodiment, the individual is ranked by quality, such as the highest 75th quartile, or the lowest 25th quartile. In another embodiment, the individual is ranked in comparison to the average or median score of the population. In her case, the group compared to the individual includes a large number of people from a variety of geographic and ethnic backgrounds, such as global groups. In other embodiments, the population compared to the individual is limited to a particular geography, genealogy, race, gender, age (fetus, infant, child, adolescent, juvenile, adult, elderly individual), disease state (such as symptomatic, asymptomatic, Carrier, early hair: late episode). In some embodiments, the group system compared to the individual is paid for information reported in public and/or private information sources. ^8] Use the display to make the individual's GCI score or GCI Plus cry: See 4 - In some embodiments 'use a screen (such as a computer monitor two-screen) to visualize each display, such as with relevant information Personal entrance. In another embodiment, the display is a static display, such as the printed 127264.doc -86 - 200847056 page. In an embodiment, the display may include, but is not limited to, the following: + the heart is more than one: 蔹, 渚 i i-5, π·20, 2i_ 25, 26-30, 31-35, 36- 40, 41·45, 46-50, 51_55, 56_ 60, 61-65, 66-70, 7ΐ·75, 76 8g, 8i 85, 86_9〇, 91_ 95 96_1GG) color or gray level gradient, thermometer, quantity Rule, pie chart, histogram or bar chart. For example, Figures 18 and 19 show different displays for MS and Figure 2G shows for Crohn's disease. In another embodiment, a thermometer is used to display GCI scores and disease/condition prevalence. In another embodiment, the thermometer displays a level that varies with the reported GCI score, such as Figures 15 through 17, the color corresponding to a hazard. The thermometer can show an increase in chromaticity with the GCI juice (such as the blue from the lower GCI score gradually becoming the higher GCI scored red). In the _ related embodiment, the thermometer shows the level as a function of both the reported GCI score and the change in chromaticity as the hazard level increases. In an alternate embodiment, the individual's points are passed to the individual by using auditory feedback. In one embodiment, the audible feedback is a verbal description of a high or low hazard level. In another embodiment, the auditory feedback is a description of a special SGCI score such as a number, a percentile, a range, a quartile, or a comparison to a group average or median Ga score. In an embodiment, the audible feedback is delivered by a person in person or via a telecommunications device such as a telephone (landline, mobile or satellite) or via a personal portal. In another embodiment, the audible feedback is delivered by an automated system such as a computer. In one embodiment, the audible feedback is delivered as part of an interactive audio response (IVR) system that allows the computer to detect sound and use the button sound of a regular telephone. 127264.doc -87· 200847056. In another embodiment, the individual can interact with the central server via the IVR system. The IVR system can make pre-recorded or dynamically generated audio responses to interact with the individual and provide them with an audible feedback of their level of danger. In one example, the individual can call the number answered by the IVR system. The IVR system requires the subject to select an option from a menu such as a button tone or sound menu, as appropriate after entering the authentication code, security code or experiencing the voice recognition protocol. One of these options provides the individual with a level of danger. In another embodiment, the display is used to visualize the individual's GCI scores and to communicate using audible feedback, such as via a personal portal. This combination may include a visual display and auditory feedback of the GCI score, which discusses the association of the gci score with the overall health of the individual and may suggest possible preventive measures. In one example, a multi-step process is used to generate a GCI score. Initially, the relative risk of the odds ratio from each genetic marker was calculated for each condition to be studied. For each prevalence value, 〇1, 〇 〇2, and •5 calculate the GCI score of the HapMap CEU population based on the 〃, L-rate and HapMaP dual gene frequencies. If the GCI score is unchanged at the change prevalence, the only assumption considered is the existence of a multiplicative model. Otherwise, the model is determined to be sensitive to prevalence. For any combination of uninterpreted values, relative hazards and scoring distributions in the HapMap population are obtained. For each new individual, the individual score is compared to the HapMap distribution and the score is scored as the individual's rank in the population. The resolution of the reported scores can be lower due to assumptions made during the process. The group will be divided into component digits (3_6 bin), and the reported - will be the level of the individual -. The number of bins may vary for different diseases based on considerations such as the resolution of the score for each disease. The average level will be used if there is no equivalence between the scores of HapMap individuals and 127264.doc -88 - 200847056. In one embodiment, a higher GCI score is interpreted as an indication of an increased risk of developing or diagnosing a condition or disease. In another embodiment, the GCI score is derived using a mathematical model. In some embodiments, the GCI scoring is based on a mathematical model that resolves the incomplete nature of the underlying information about the population and/or disease or condition. In some embodiments, the mathematical model is included as a calculation
GCI计分之基準之部分的特定至少一個假定,其中該假定 包括(但不限於):假定給定優勢率值;假定已知病狀之流 行率;假定已知群體中之基因型頻率;及假定顧客來自與 用於研究之群體及HapMap相同之家譜背景;假定合併危 險為個體遺傳標記之不同危險因數之乘積。在一些實施例 中’⑽亦彳包括假定基因型之多基因型步員率為卿或個 體遺傳標記中之每一者之對偶基因的頻率之乘積(例如, 不同SNP或遺傳標記在群體中無依賴性)。 相乘模型 在-實施财,根據假定歸因於遺傳標記集之危險為歸 因於個體遺傳標記之危險之乘積來計算⑽計分。此意謂 =為不同遺傳標記對於疾病之危險之貢獻獨立於其他遺^ =己因形式上,存在具有危險對偶基因一及非危險對 ^口,〜之㈣傳標記。在_ ζ·中,吾人指示三 广基因型值一一。個體之基因型資訊可由載體 述,其中根據位置中之危險對偶基因之數目, 1或2。吾人藉由指示位置,·中之雜合基因型與 127264.doc -89- 200847056 同一位置處之純合非危險對偶基因相比的相對危險。換言 之,吾人定義Λ類似地,吾人將响基因型之相 對危險指示為= 在相乘模型下,吾人假定具有 基因型(g!,···,以)之個體之危險為GC7(gi,…,= 。相乘模 ι=ϊ 1 型先前已在文獻中用於模擬病例對照研究,或用於可視化 目的。 估計相對危險。A specific at least one hypothesis of a portion of the GCI scoring benchmark, wherein the hypothesis includes, but is not limited to, assuming a given odds ratio value; a presumed prevalence of known conditions; assuming a genotype frequency in the known population; It is assumed that the customer is from the same family background as the population used for the study and HapMap; the assumed risk of merger is the product of the different risk factors of the individual genetic markers. In some embodiments, '(10) also includes the multiplicative genotype of the genotype as a product of the frequency of the dual gene of each of the individual or individual genetic markers (eg, different SNPs or genetic markers are not present in the population) Dependency). The multiplication model calculates (10) the score based on the product of the risk of the individual genetic marker based on the hypothesis that the risk attributed to the genetic marker set is based on the hypothesis. This means that = the contribution of different genetic markers to the risk of the disease is independent of other legacy ^ = the cause of the form, there is a dangerous dual gene and a non-hazardous pair of mouth, ~ (four) pass mark. In _ ζ·, we instructed Sanguang genotype values one by one. The genotype information of an individual can be described by a vector in which the number of even genes in question is 1 or 2 depending on the location. By indicating the position, the heterozygous genotype of the medium is relatively dangerous compared to the homozygous non-hazard dual gene at the same position as 127264.doc -89- 200847056. In other words, we define Λ similarly, we indicate the relative risk of the genotype as = under the multiplication model, we assume that the risk of individuals with genotypes (g!, ···, ) is GC7 (gi,... , = . Multiply mode ι = ϊ Type 1 has previously been used in the literature to simulate case-control studies, or for visualization purposes. Estimated relative risk.
在另一實施例中,已知不同遺傳標記之相對危險且相乘 模型可用於危險評估。然而,在包括關聯研究之一些實施 例中研九ϋ又计免除相對危險之報告。在一些病例對照研 九中,不此直接自資料而不經進一步假定來直接計算相對危 險。為替代報告相對危險,通常報告基因型之優勢率(〇r), 其為帶有具給定危險基因型(r心抑或之疾病之優勢與不帶 有具給定危險基因型之疾病之優勢的比較。形式上: 〇<=攻喊 自優勢率得到相對危險可需要其他假定。諸如假定已知 或估計整個群體中之對偶基因頻率及 π·(此等頻㈣自諸如包括12〇個染&體之HapMap資料 集之當前資料集估計)’及/或已知疾病之流行率P=P降 自前述三個方程式可得出: 127264.doc 200847056 P^a-p{D\nin)^b^p(D\nir) + c* φ|π), ^Μ) ι-尸㈣ν;|), ζ ι-ρ(ι>|^|) ο 藉由相對危險之定義,除以;7iYD|AA·〉項後,第一個方 程式可重寫為: 1 ^ ci -¥ +In another embodiment, the relative risk of different genetic markers is known and the multiplicative model can be used for risk assessment. However, in some of the examples including the association study, the report on the relative risk is excluded. In some case-control studies 9, the relative risk is not directly calculated directly from the data without further assumptions. To replace the relative risk of reporting, the genotype's odds ratio (〇r) is usually reported, which is the advantage of having a given risk genotype (r/s of heart disease or disease without a given risk genotype) The comparison: Formally: 〇<= yelling from the dominance rate to obtain relative danger may require other assumptions. For example, assume that the frequency of the dual gene in the entire population is known or estimated and π·(this equal frequency (four) from, for example, includes 12〇 Estimation of the current data set of the HapMap dataset of the stained & body] and/or the prevalence of known diseases P=P can be derived from the above three equations: 127264.doc 200847056 P^ap{D\nin)^ B^p(D\nir) + c* φ|π), ^Μ) ι-尸(四)ν;|), ζ ι-ρ(ι>|^|) ο By definition of relative danger, divide by; 7iYD After the |AA·〉 item, the first equation can be rewritten as: 1 ^ ci -¥ +
Ρ 且因此,後兩個方程式可重寫為 OR] = rr^P)+bK+c^i α + (6 -/7)4 + c4, (1) ORf ~ {a-p)+bXx +c4 a + Z^+(c-/7)4。 應注意當α=1(非危險對偶基因頻率為1)時,方程式系統 1 相當於 Zhang J 及 Yu Κ·中之 Zhang 及 Yu 式(What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA, 280:1690-1, 1998),該案以全文引用的方式併入本文中。與zhang&Yu 式對比’本發明之一些實施例考慮群體中之對偶基因頻 率,其可影響相對危險。此外,一些實施例考慮相對危險 之相互依賴性。與獨立地計算相對危險中之每一者相反。 方程式糸統1可重寫為兩個二次方程式,至多有四個可 月b解梯度下降决异法可用於解此等方程式,其中起始點 127264.doc -91 - 200847056 設置為優勢率,例如4 =似丨及名=创2。 舉例而言: 以八,^2)=6^((2 + (6一+4)一4 ·((“一+〇名), /2(^5^)= 〇Rf{o + b^ + (c — p)^i)^* ((α·~ρ)++ c^i) 〇 付到此專方程式之解相當於得到函數办λ】 之最小值。且 And therefore, the last two equations can be rewritten as OR] = rr^P)+bK+c^i α + (6 -/7)4 + c4, (1) ORf ~ {ap)+bXx +c4 a + Z^+(c-/7)4. It should be noted that when α=1 (the frequency of the non-hazard dual gene is 1), Equation System 1 is equivalent to Zhang and Yu of Zhang and J. (What's the relative risk? A method of correcting the odds ratio in cohort studies JAMA, 280: 1690-1, 1998), which is incorporated herein by reference in its entirety. In contrast to zhang & Yu formula, some embodiments of the invention consider the frequency of dual genes in a population, which can affect relative risk. Moreover, some embodiments consider the relative risk interdependence. Contrary to independently calculating each of the relative risks. Equation 1 can be rewritten as two quadratic equations, and at most four can be used to solve the equations, where the starting point 127264.doc -91 - 200847056 is set to the dominant rate. For example 4 = like 丨 and name = create 2. For example: 八,^2)=6^((2 + (6一+4)一4 ·(("一+〇名), /2(^5^)= 〇Rf{o + b^ + (c — p)^i)^* ((α·~ρ)++ c^i) The solution to this special equation is equivalent to the minimum value of the function λ].
因此, dg d入-2f\ (λ!,λ2) · b. (λ2 - OR2)+2f2 (Xi,λ2 )(21^ + ολ2 + a - OR^b - p + OR^p), dg , d入一 2(2 (入i’、). e. (λ! - ORJ+2((^^2)(2(^2 + bXi + a - OR2c - p + OR2p)。 在此實例中,吾人由設置、;;0 = 〇&開始。吾人將 經由該演算法將值[epsil〇n]=10-iQ設置為容差常數。在迭 代i中,吾人定義:Therefore, dg d is -2f\ (λ!, λ2) · b. (λ2 - OR2) + 2f2 (Xi, λ2 ) (21^ + ολ2 + a - OR^b - p + OR^p), dg , d into a 2 (2 (in i',). e. (λ! - ORJ+2((^^2)(2(^2 + bXi + a - OR2c - p + OR2p). In this example, We start with the setting, ;;0 = 〇& We will set the value [epsil〇n]=10-iQ to the tolerance constant via this algorithm. In iteration i, we define:
γ=ιηιη 0.001, X;γ=ιηιη 0.001, X;
Yi-l [epsilon]+10 ^r(xi-i5yi-ii [epsilon]+10 άλ1 dgάλ. 接 著吾人設置: Wυ^(Χμ,Υμ), yi m毫(Ά-ι)。 重複此等迭代直到容差,其中在供應代碼中容 127264.doc _ 200847056 差設置為ίο·7。 在此實例中,此等方程式給出α、Ζ>、c、ρ、6^及〇及2之 不同值之正確解。圖1〇 相對危險估計之穩固。 在些灵施例中,量測不同參數(流行率、對偶基因頻 率及優勢率誤差)對相對危險之估計之作用。為量測對偶 基因頻率及流行率估計對相對危險值之作用,自不同優勢 率及不同對偶基因頻率之一組值計算(根據HWE)相對危 ⑩ 險,且對於0至1範圍内之流行率值繪製此等計算之結果。 圖10。另外,對於流行率之固定值而言,可繪製隨危險一 對偶基因頻率而變之所得相對危險。圖〗丨。在所有情況 下,§ P — 0 時,λρΟΑ 且 λ2 = 〇Τ?2,且當产 i,λι=λ2 = 〇。此 可直接自方程式計算。另外,在一些實施例中,當危險對 偶基因頻率較高時,^更接近線性函數,且、更接近具有 有界一次導數之凹函數。在極限情況下,當C叫時, a2 = 〇r2+p(i-〇r2)h〇r广。 鲁 〇R2\l-P)+pOR}右 — ,後 者同樣接近線性函數。當危險-對偶基因頻率較低時,、及 λ 2接近函數1 /;;之情況。在極限情況下,當c = 〇护, 七一 一 〇R\ 寸 1 -p + pOA ’ —l — p + pOR:。此指示對於高危險-對偶基因 頻率而言,流行率之錯誤估計不會顯著影響所得相對危 險。此外,對於低危險-對偶基因頻率而言,若用ρ , = α之 流行率值取代正確流行率户,則所得相對危險將至多相"^差 士倍。此在圖11之部分(C)及(d)中說明。應注意對於高危 127264.doc •93- 200847056 險-對偶基因頻率而言,兩個圖相#類似,且當對於低對 偶基因頻率而言,相對危險值之差異存在較高偏差時,此 偏差小於2倍。 計算GCI計分 在一實施例中,藉由使用表示相關群體之參考集來計算 遺傳複合指數。此參考集可為HapMap中之群體中之一 者,或另一基因型資料集。 在此實施例中,如下計算GCI。對於Η固危險基因座中之 每一者,使用方程式系統丨自優勢率計算相對危險。接 著十异參考集中每一個體之相乘計分。具有相乘計分s 之個體之GCI為具有計分〆&之參考資料集中所有個體之 分率。舉例而言,若參考集中5〇%之個體具有小於s之相乘 計分’則個體之最終GCI計分將為〇 5。 其他模型 在一實施例中,使用相乘模型。在替代實施例中,其他 模型可用於判定GCI計分之目的。其他合適之模型包括(但 不限於): 相加模s。在相加模型*下,具有基因型(gi,.办)之個體 之危險假定為%/(&,".,&)=。 廣義相加模型。在廣義相加模型下,假定存在函數/使 得具有基因型(gl,.",gJ之個體之危險為。 /=1 哈佛改良計分(Het)。此計分係源自g.A Colditz等人,以 致將該计分應用於遺傳標記(哈佛(Harvar(j)報導於⑶以以 prevention 第 4 卷上·· Harvard cancer dsk index· 127264.doc -94- 200847056 W Controls, 11:477-488, 2000 , A ^ ^ 方式併入本文中)〇 Het計分大舻μ么虎μ λ Τ刀大體上為廣義相加計分萬 函數/對優勢率值起作用而非相對 "Β 升和對卮險。此可適用於相斜 危險難以估計之情況。為定差# 月為疋義函數,’中間函數g定義為: g(x): 〇 1<χ<1.09 5 1.09 <χ <1.49 101.49 <χ< 2.99 252.99 < χ < 6.99 50 6.99 < χYi-l [epsilon]+10 ^r(xi-i5yi-ii [epsilon]+10 άλ1 dgάλ. Then I set: Wυ^(Χμ,Υμ), yi m milli(Ά-ι). Repeat these iterations until Tolerance, where the difference in the supply code is 127264.doc _ 200847056 is set to ίο·7. In this example, these equations give different values of α, Ζ >, c, ρ, 6^, and 〇 and 2. Correct solution. Figure 1. The relative risk estimate is stable. In some examples, the effects of different parameters (prevalence, dual gene frequency, and odds ratio error) on the estimation of relative risk are measured. The prevalence rate is estimated to have a relative risk value, calculated from a group of values of different odds ratios and different dual gene frequencies (according to HWE), and the results of such calculations are plotted for prevalence values in the range of 0 to 1. Figure 10. In addition, for a fixed value of prevalence, the relative hazard of changing the frequency of a pair of even genes can be plotted. Figure 丨 In all cases, § P — 0, λρΟΑ and λ2 = 〇 Τ?2, and when i, λι=λ2 = 〇. This can be directly from the equation In addition, in some embodiments, when the frequency of the dangerous dual gene is higher, ^ is closer to the linear function and closer to the concave function with the bounded first derivative. In the limit case, when C is called, a2 = 〇r2+p(i-〇r2)h〇r is broad. R〇R2\lP)+pOR}right-, the latter is also close to a linear function. When the risk-dual gene frequency is low, and λ 2 is close to the function 1 /;; In the extreme case, when c = 〇, 七 \ R \ inch 1 -p + pOA ’ —l — p + pOR:. This indication does not significantly affect the relative risk of gain for high-risk-dual gene frequencies. In addition, for low-risk-dual gene frequencies, if the prevalence rate is replaced by the prevalence value of ρ, = α, the relative risk will be multi-phase "^ difference. This is illustrated in parts (C) and (d) of Fig. 11. It should be noted that for the high-risk 127264.doc •93- 200847056 risk-dual gene frequency, the two maps are similar, and when there is a high deviation between the relative risk values for the low-dual gene frequency, the deviation is less than 2 times. Calculating the GCI Score In one embodiment, the genetic composite index is calculated by using a reference set representing the relevant population. This reference set can be one of the populations in the HapMap, or another genotype data set. In this embodiment, the GCI is calculated as follows. For each of the tamping risk loci, the equation system is used to calculate the relative risk from the dominance rate. Then multiply the scores of each individual in the ten different reference sets. The GCI of an individual with a multiplied score s is the fraction of all individuals in the reference set with the score 〆 & For example, if an individual in the reference set of 5〇% has a multiplication score less than s, then the individual's final GCI score will be 〇 5. Other Models In one embodiment, a multiplicative model is used. In an alternate embodiment, other models can be used to determine the purpose of the GCI scoring. Other suitable models include (but are not limited to): Additive mode s. Under the additive model*, the risk of individuals with genotypes (gi,.) is assumed to be %/(&,".,&)=. Generalized additive model. Under the generalized additive model, it is assumed that there is a function/make the genotype (gl,.", the risk of the individual of gJ is . /=1 Harvard Improvement Score (Het). This score is derived from gA Colditz et al. So that the score is applied to genetic markers (Harvar (j) reported in (3) to prevent the fourth volume of Harvard cancer dsk index 127264.doc -94- 200847056 W Controls, 11:477-488, 2000, A ^ ^ mode is incorporated in this article) 〇 Het scores 舻 么 么 μ μ μ 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上 大体上This can be applied to situations where the risk of phase-crossing is difficult to estimate. For the fixed-difference month, the intermediate function g is defined as: g(x): 〇1<χ<1.09 5 1.09 <χ < 1.49 101.49 <χ< 2.99 252.99 < χ < 6.99 50 6.99 < χ
接著’計算尤相之量,其中(為參考群體中 SNP,·中雜合個體之頻率。料函數,定義為伽=响如, 且哈佛改良計分(Het)簡單地定義為念。 /=1 1 哈佛改良計分(〒㈣p此計分類似於Het計分,不同處在 於值het由值h〇m = g“㈣代替,其巾i為具*純合危險- 對偶基因之個體之頻率。 最大值-優勢率。在此模型中,假定遺傳標記中之一者 (具有最大優勢率者)給出整組之組合危險之下界。形式 上,具有基因型(gl,_",g〇之個體之計分為 計分之間的比較 在一實例中,對於10個與T2D相關聯之SNP,基於Then 'calculate the amount of special phase, where (for the SNP in the reference population, the frequency of the heterozygous individual. The material function, defined as gamma = ringing, and the Harvard improved score (Het) is simply defined as the reading. /= 1 1 Harvard Improvement Score (〒(四)p This score is similar to the Het score, except that the value het is replaced by the value h〇m = g “(4), and the towel i is the frequency of the individual with the homozygous danger-dual gene Maximum-dominance rate. In this model, it is assumed that one of the genetic markers (the one with the greatest odds ratio) gives the lower bound of the combined risk of the entire group. Formally, it has a genotype (gl, _", g〇 The individual's score is divided into scores. In an example, for 10 SNPs associated with T2D, based on
HapMap CEU群體中之多個模型計算GCI計分。相關SNP為 rs7754840 、 rs4506565 、 rs7756992 、 rsi〇811661 、 rsl2804210 、 rs8050136 、 rsiiii875 、 rs44〇2960 、 127264.doc -95 - 200847056 rs5215、rsl801282。對於此等SNP中之每一者而言,三種 可能基因型之優勢率在文獻中有報導。CEU群體由三十組 母親-父親-孩子三位體組成。使用來自此群體之六十位父 母以避免依賴性。排除在10個SNP中之一者中具有不判讀 之一位個體,從而產生一組59位個體。接著使用若干種不 同模型計算每一個體之GCI等級。 觀察到對於此資料集而言,不同模型產生高度相關之結 果。圖12及圖13。計算每對模型之間的史皮爾曼相關性 (Spearman correlation)(表2),其展示相乘及相加模型具有 0.97之相關係數,且因此使用相加抑或相乘模型gci計分 將為穩固的。類似地,哈佛改良計分與相乘模型之間的相 關性為0.83,且哈佛計分與相加模型之間的相關係數為 〇·7。然而,使用最大值優勢率作為遺傳計分產生由一個 SNP界定之二叉計分。總體而言,此等結果指示計分分級 提供將模型依賴性減至最小之穩固構架。 表2:關於模型對之間的CEU資料之計分分布之史皮爾 曼相關性Multiple models in the HapMap CEU population calculate GCI scores. The relevant SNPs are rs7754840, rs4506565, rs7756992, rsi〇811661, rsl2804210, rs8050136, rsiiii875, rs44〇2960, 127264.doc -95 - 200847056 rs5215, rsl801282. For each of these SNPs, the odds ratios of the three possible genotypes are reported in the literature. The CEU group consists of thirty groups of mother-father-child triads. Use sixty parents from this group to avoid dependencies. One of the 10 SNPs was excluded from having one of the individuals, thereby producing a group of 59 individuals. The GCI level for each individual is then calculated using several different models. It has been observed that for this data set, different models produce highly correlated results. Figure 12 and Figure 13. Calculate the Spearman correlation between each pair of models (Table 2), which shows that the multiplicative and additive models have a correlation coefficient of 0.97, and therefore the use of additive or multiplicative models for gci scoring will be robust of. Similarly, the correlation between the Harvard improved scoring and multiplication model is 0.83, and the correlation coefficient between the Harvard scoring and adding models is 〇·7. However, using the maximum odds ratio as a genetic score produces a binary score defined by a SNP. Overall, these results indicate that the scoring hierarchy provides a robust framework that minimizes model dependencies. Table 2: Spielman correlations on the scoring distribution of CEU data between model pairs
量測T2D之流行率之變化對所得分布之作用。流行率值 0.001至0.512變化(圖14)。對於T2D之情況,觀察到不同 127264.doc -96- 200847056 μ行率值產生相同順序之個體 、文反爾曼相關性> 〇 9 9、, 因此可假定流行率之人為固定值為0.01。 ) 將模型擴展至任意數目之變異體 在另一實施例中,模型可 w μ 芏出現任恩數目之可能蠻 體之h形。先前之考慮處理 牡一種了犯變異體(狀、 似、rr)之情形。通常,當 夕SNP關聯時,可在群 發現任意數目之變異體。舉例 备 仏上 田兩個遺傳標記之間The effect of changes in the prevalence of T2D on the resulting distribution was measured. Prevalence values ranged from 0.001 to 0.512 (Figure 14). For the case of T2D, it was observed that different 127264.doc -96-200847056 μ row rate values produced the same order of individuals, text inversion correlation > 〇 9 9 , so it can be assumed that the prevalence rate is fixed at 0.01. Extending the model to any number of variants In another embodiment, the model can w μ 芏 appear as a possible morpheme of the number h. Previous considerations have dealt with the case of mutans, which are variants (like, rr, rr). Typically, any number of variants can be found in the cluster when the SNP is associated. For example, between the two genetic markers
的相互作用與病狀相關聯時,存 ^ y 仔在九種可能變異體。此產 生八個不同優勢率值。 也 為使初始式一般化’可假定存在…種可能變里體 a0,".,ak,其中頻率為/〇,7ι “,八,所量測優勢率為 1,〇及1…·,〇&,且未知相對危險值為 7 ’Λ1,···,/^。此外,可 假疋所有相對危險及優勢率孫相 / 、 另手係相對於〜計,且因此 ΛThe interactions associated with the condition are stored in nine possible variants. This produces eight different odds ratio values. Also to make the initial generalization 'can be assumed to exist... kinds of possible variants a0,".,ak, where the frequency is /〇, 7ι", eight, the measured odds ratio is 1, 〇 and 1...·, 〇&, and the relative relative risk value is 7 'Λ1,···, /^. In addition, all relative dangers and odds ratios can be assumed to be relatives, and the other hand is relative to the count, and therefore Λ
判定 Σ^Λί 0Ri=、^- ο Σ^Λΐ ~λίΡ i=0 此外,若設置卜^从,則此產生以下方程式 . COR, 广 C-p + OR^p, 且由此, 127264.doc -97- 200847056 ί=0 i:Q C - ρ + Q&p, 或 ι=Σ— i^C-p^O^pJudgment Σ^Λί 0Ri=, ^- ο Σ^Λΐ ~λίΡ i=0 In addition, if you set Bu^, this produces the following equation. COR, 广Cp + OR^p, and thus, 127264.doc -97 - 200847056 ί=0 i:QC - ρ + Q&p, or ι=Σ— i^Cp^O^p
夕後者為/、有一個變數⑹之方程式。此方程式可 夕不㈣(基本上多達糾個不同解)。諸如梯 最優化工具可用於得到^ΣΜ之最接近解。 ^ 本發明使用穩固計分構架來量化危險㊣… 模型可產生不同計分時,結果通常相1。因此^同逍傳 之量化通常不依賴於所用模型。,&險因數 估計相對危險病例對照研究 在病例對照研究中自多個對偶基因之優勢率估計相對危 險之方法亦在本發明中提供。與Μ方法對比,該方法考 慮對偶基因頻率、疾病之流行率及不同對偶基因之相對危The latter is /, there is a formula of the variable (6). This equation can be no (four) (basically up to a different solution). A ladder optimization tool can be used to get the closest solution to ^ΣΜ. ^ The present invention uses a robust scoring architecture to quantify hazard positive... When the model can produce different scoring, the result is usually phase 1. Therefore, the quantification of 逍 逍 is usually independent of the model used. , & risk factors Estimated relative risk case-control studies Methods for estimating relative risk from multiple dominance rates in case-control studies are also provided in the present invention. In contrast to the sputum method, this method considers the frequency of the dual gene, the prevalence of the disease, and the relative risk of different dual genes.
險,間的依賴性。量測模擬病例對照研究之方法之效能, 且㊂忍為其極為精確。 方法 Ϊ測試特定SNP與疾病D之關聯之情況下,11及Ν表示此 特疋SNP之危險及非危險對偶基因。假定個人對於危險對 偶基因為純合’對㈣危險對偶基因分別為雜合或純合, (丨)P(RN|D)及p(NN|D)表示受疾病影響之可能性, 心、fRN及fNN用於表示群體中三種基因型 等定義,相對危險定義為: 127264.doc -98- 200847056 p(d\rn) m p(d\nn) o 在病例對照研究中,可估計值P(RR|D)、P(RR卜D),亦 即,病例及對照組中RR之頻率,以及可估計P(RN|D)、 P(RN|〜D)、P(NN|D)及P(NN卜D),亦即病例及對照組中RN 及NN之頻率。為估計相對危險,可使用貝葉斯定律(Bayes law)得到: P(RR\D)fNN ^ ' P(NN\D)fRR, p(d\rn)/nn m ' ρ{ώ\νν)/μ ο 因此,若已知基因型之頻率,則吾人可使用彼等來計算 相對危險。群體中基因型之頻率不能自病例對照研究自身 計算,因為其係視群體中疾病之流行率而定。詳言之,若 疾病之流行率為p(D),則: fRR二P(M\D)p(D)+P(RR\〜D)(l-p(D)), fRN=P(RN\D)p(D)+P(RN\〜D)(l-p(D)), fNN=P(NN\D)p(D)+P(NN\〜D)(l-p(D))。 127264.doc -99- 200847056 當p(D)足夠小時,基因型之頻率可近似於對照組群體中 基因型之頻率,但當流行率較高時,此並非精確估計。然 而,若給定參考資料集(例如,HapMap [引用]),則吾人可 基於該參考資料集估計基因型頻率。 大多數當前研究並不使用參考資料集來估計相對危險, 且僅報告優勢率。優勢率可寫為: 〇R ^P(RR\D)P(NN\-D) M ~ P(NN\D)P(RR\- D)Risk, dependence. The efficacy of the method of simulating a case-control study was measured, and the three tolerances were extremely accurate. Methods In the case of testing the association of a specific SNP with disease D, 11 and Ν represent the dangerous and non-hazard dual genes of this particular SNP. It is assumed that the individual is homozygous for the dangerous dual gene 'to the (four) dangerous dual gene, respectively, heterozygous or homozygous, (丨)P(RN|D) and p(NN|D) indicate the possibility of being affected by the disease, heart, fRN And fNN is used to indicate the definition of three genotypes in the population. The relative risk is defined as: 127264.doc -98- 200847056 p(d\rn) mp(d\nn) o In case-control studies, the estimated value P (RR) |D), P (RR Bu D), that is, the frequency of RR in the case and control group, and the estimated P(RN|D), P(RN|~D), P(NN|D), and P( NN Bu D), which is the frequency of RN and NN in the case and control group. To estimate the relative hazard, use Bayes law to obtain: P(RR\D)fNN ^ ' P(NN\D)fRR, p(d\rn)/nn m ' ρ{ώ\νν) /μ ο Therefore, if the frequency of genotypes is known, then we can use them to calculate relative hazards. The frequency of genotypes in the population cannot be calculated from the case-control study itself, as it is dependent on the prevalence of disease in the population. In particular, if the prevalence of the disease is p(D), then: fRR two P(M\D)p(D)+P(RR\~D)(lp(D)), fRN=P(RN\ D) p(D)+P(RN\~D)(lp(D)), fNN=P(NN\D)p(D)+P(NN\~D)(lp(D)). 127264.doc -99- 200847056 When p(D) is small enough, the frequency of genotypes can approximate the frequency of genotypes in the control population, but this is not an accurate estimate when the prevalence is high. However, given a reference set (for example, HapMap [reference]), we can estimate the genotype frequency based on this reference set. Most current studies do not use reference sets to estimate relative hazards and only report odds. The odds ratio can be written as: 〇R ^P(RR\D)P(NN\-D) M ~ P(NN\D)P(RR\- D)
〇R =P(RN\D)P(NN\-D) m ~ P(NN\D)P(RN\- D) 優勢率通常係有利的,因為通常不需要具有群體中對偶 基因頻率之钴計;為計算優勢率,通常需要病例及對照組 中之基因型頻率。 在一些情形下,基因型資料自身並不可用,但諸如優勢 率之概要資料為可用的。此為基於先前病例-對照研究之 結果執行薈萃分析之情況。在該種狀況下,論證如何自優 勢率得到相對危險。使用以下方程式持有之事實: P(D) = 4^(〇|收)+^Ρ(ϋ|ΝΝ)。 若此方程式除以P(D|NN),則吾人得到: 此允許優勢率以下列方式書寫: ρΦ) (D) P(D\RR)(l-P(D\NN))^ ρ(Ρ\ΝΝ) P{D\NN)(l-P(D\RR))^ m p(D) p(D\NN) m 127264.doc 100· 200847056 4b + fm - p(D) ’朋肋一 ρφ)、。 藉由類似計算’得到以下方程式系統結果: a^RR =入跋 --RR^RR ^ -^RN^RN ^ΝΝ ~ Ρ(^) fRR^ +fNN ~Ρ(〇)λκκ ORrn = ~^R^RR ^^RN^rn H-f^ -p(D) 方程式1 若群體中基因型之優勢率、頻率及疾病之流行率已知, 則可藉由解此方程式組而得到相對危險。 應庄思此等為兩個二次方程式,且因此其具有最多四個 解J而,如下文所示,通常存在此方程式之一個可能 解。 應注意當fNN = l時,方程式系統丨相當於Zhang&Yu式; 然而,此處考慮群體中之對偶基因頻率。此外,吾人之方 法考慮兩個相對危險彼此依賴之事實,而先前方法建議獨 立地計算相對危險中之每一者。 多對偶基因基因座之相對危險。若考慮多標記或其他多 對偶基因變異體,則計算稍顯複雜。a0,al,··.,^表示可能之 k+Ι個對偶基因,其中a〇為非危險對偶基因。假定k+i個可 能對偶基因之群體中之對偶基因頻率為f〇,fi,f2,…,&。對於 對偶基因i而言,相對危險及優勢率定義為: 127264.doc -101 - 200847056 1 P(D\a0) z 户(4ai—/>(/%)) —,一 i - p(z%)。 以下方程式適用於疾病之流行率: Ρφ) = χ/;Ρ(%) i=0 〇 因此’藉由將方程式兩側除以p(D|a〇),吾人得到〇R = P(RN\D)P(NN\-D) m ~ P(NN\D)P(RN\- D) The dominance rate is usually advantageous because cobalt with a dual gene frequency in the population is usually not required In order to calculate the odds ratio, genotype frequencies in cases and controls are usually required. In some cases, the genotype data itself is not available, but summary information such as the rate of advantage is available. This is the case for performing a meta-analysis based on the results of previous case-control studies. In this situation, it is demonstrated how the self-improvement rate is relatively dangerous. Use the following equation to hold the fact: P(D) = 4^(〇|收)+^Ρ(ϋ|ΝΝ). If this equation is divided by P(D|NN), then we get: This allowable odds ratio is written in the following way: ρΦ) (D) P(D\RR)(lP(D\NN))^ ρ(Ρ\ΝΝ P{D\NN)(lP(D\RR))^ mp(D) p(D\NN) m 127264.doc 100· 200847056 4b + fm - p(D) '朋肋一ρφ),. By similar calculations, the following equation system results are obtained: a^RR = input 跋--RR^RR ^ -^RN^RN ^ΝΝ ~ Ρ(^) fRR^ +fNN ~Ρ(〇)λκκ ORrn = ~^R ^RR ^^RN^rn Hf^ -p(D) Equation 1 If the prevalence rate, frequency, and prevalence of genotypes in a population are known, the relative risk can be obtained by solving this equation set. This should be two quadratic equations, and therefore it has a maximum of four solutions, and as shown below, there is usually one possible solution to this equation. It should be noted that when fNN = l, the equation system 丨 is equivalent to the Zhang&Yu formula; however, the frequency of the dual gene in the population is considered here. In addition, our approach considers the fact that two relative hazards are dependent on each other, while previous methods recommend independent calculation of each of the relative hazards. The relative risk of multiple-dual gene loci. If multiple markers or other multi-dial variants are considered, the calculations are slightly more complicated. A0,al,··.,^ indicates possible k+Ι dual genes, where a〇 is a non-hazard dual gene. It is assumed that the frequency of the dual gene in the population of k+i possible dual genes is f〇, fi, f2, ..., & For the dual gene i, the relative risk and odds ratio are defined as: 127264.doc -101 - 200847056 1 P(D\a0) z household (4ai-/>(/%)) —, an i-p(z %). The following equation applies to the prevalence of disease: Ρφ) = χ/;Ρ(%) i=0 〇 Therefore, by dividing the two sides of the equation by p(D|a〇), we get
從而產生:Thereby producing:
OR Σ/Λ -p〇D) /=0 1 ---- ΣΜ-^ρ(ΰ)OR Σ/Λ -p〇D) /=0 1 ---- ΣΜ-^ρ(ΰ)
藉由設置c = tA /=〇 藉由定義c,其為: 結果為A, = C. __ p(D)OR^C^p(D) 因此,By setting c = tA /=〇 by defining c, it is: The result is A, = C. __ p(D)OR^C^p(D) Therefore,
偶 p{D)OR^C-p{D) 此為具有一個變數C之多項式方程式。一旦確定C,則 確定相對危險。多項式具有k+1之次數,且因此吾人預期 具有至多k+Ι個解。然而,因為方程式之右側作為c之函數 嚴格遞減’所以通常可僅存在此方程式之一個解。使用對 分檢索容易得到此解,因為該解限於C=1與0=;^辦之間。 /=〇 相對危險估計之穩固。量測不同參數中之每一者(流行 127264.doc 200847056 率、 用0 對偶基因頻率及優勢率誤差)對相對危 為量測對偶基因頻率及流行率估計對相 險之估計之作 對危險值之作 用,自不同優勢率、不同對偶基因頻率之—組值計算(根 據HWE)相對危險,且對於〇至1範圍内之流行率值繪製此 等計算之結果。 9Even p{D)OR^C-p{D) This is a polynomial equation with a variable C. Once C is determined, the relative hazard is determined. The polynomial has the number of k+1, and thus we expect to have at most k+Ι solutions. However, since the right side of the equation is strictly decreasing as a function of c', usually only one solution of this equation exists. This solution is easily obtained using a binary search because the solution is limited to C=1 and 0=; /=〇 Relative risk estimate is solid. Measure each of the different parameters (population 127264.doc 200847056 rate, use 0-to-one gene frequency and odds ratio error) to estimate the relative risk and the prevalence of the relative risk for the relative risk. Role, from different odds ratios, different dual gene frequencies - group value calculation (according to HWE) relative risk, and the results of these calculations are plotted for the prevalence values in the range of 〇1. 9
另外,對於流行率之固定值而言,緣製隨危險_對偶基 因頻率而變之所得相對危險。明顯地,在所有情況下,當 P(D)=0 時’人rr=0Rrr 且 kN=〇RRN,且當〆⑺=ι 時, XRR^RN=“此可直接自方程式!計算。另外,當危險對偶 基因頻率較高時’ 近線性情況,且^接近具有有界 二次導數之凹函數。當危險·對偶基因頻率較低時,^及 λΚΝ接近函W/P(D)之情況。此意謂對於高危險·對偶基因 頻率而言,流行率之錯誤估計不會過多影響所得相對危 險0 以下實例說明及闡明本發明。本發明之範疇並不受此等 實例限制。In addition, for a fixed value of the prevalence rate, the relative risk of the change depending on the frequency of the dangerous _ dual gene. Obviously, in all cases, when P(D) = 0 'human rr = 0Rrr and kN = 〇 RRN, and when 〆 (7) = ι, XRR^RN = "This can be calculated directly from the equation! When the frequency of the dangerous dual gene is high, the near-linear case, and ^ is close to the concave function with bounded second derivative. When the frequency of the dangerous·dual gene is low, ^ and λΚΝ are close to the case of W/P(D). This means that for high-risk, dual gene frequencies, the erroneous estimation of prevalence does not unduly affect the relative risk of the invention. The following examples illustrate and clarify the invention. The scope of the invention is not limited by such examples.
實例I SNP概況之產生及分析 向個體提供套組中之樣品試管,諸如可得自DNA Genotek之套組,個體將唾液樣品(約4毫升,將自該樣品 提取基因組DNA)存放於其中。將該唾液樣品發送至用於 處理及分析之CLIA認證實驗室。通常藉由用方便地以收集 套組提供給個體之運輸容器隔夜郵寄而將樣品發送至機構。 在一較佳實施例中,自唾液分離基因組DNA。舉例而 127264.doc 200847056 言,使用可得自DNA Genotek之DNA自身收集套組技術, 個體收集約4 ml唾液試樣以用於臨床處理。樣品傳遞至進 行處理之適當實驗室後,藉由將樣品加熱變性且於5〇亡下 通常使用由收集套組供應商供應之試劑進行蛋白酶消化歷 時至少一個小時來分離DNA。接著將樣品離心,且用乙醇 使上清液沈澱。將DNA離心塊懸浮於適合於隨後分析之緩 衝劑中。EXAMPLE I Generation and Analysis of SNP Profiles Individuals are provided with sample tubes in kits, such as kits available from DNA Genotek, in which individuals sample saliva (about 4 ml from which genomic DNA will be extracted). The saliva sample is sent to a CLIA-certified laboratory for processing and analysis. Samples are typically sent to the facility by overnight mailing with a shipping container that is conveniently provided to the individual in the collection kit. In a preferred embodiment, genomic DNA is isolated from saliva. For example, 127264.doc 200847056, using DNA self-collection kit technology available from DNA Genotek, individuals collect about 4 ml of saliva samples for clinical treatment. After the sample is passed to the appropriate laboratory for processing, the DNA is isolated by heat denaturation of the sample and 5 minutes of death, usually by protease digestion with reagents supplied by the collection kit supplier for at least one hour. The sample was then centrifuged and the supernatant was precipitated with ethanol. The DNA pellet was suspended in a buffer suitable for subsequent analysis.
根據熟知程序及/或由收集套組之製造商提供之程序將 個體之基因組DNA自唾液樣品分離。通常,首先將樣品加 熱變性且進行蛋白酶消化。接著,將樣品離心,且保留上 清液。接著用乙醇使上清液沈澱以產生含有約5_16盹基因 組DNA之離心塊。將DNA離心塊懸浮於1〇 mM THs pH 7·6、i mM EDTA(TE)中。藉由使用由陣列製造商提供之 儀器及說明書,使基因組DNA與市售高密度SNp陣列(諸如 可知自Affymetrix或Ulumina之陣列)雜交來產生SNp概況。 將個體之SNP概況存放於保密資料庫或保管庫中。 藉由與已建立之醫學相關SNP(其在基因組中之存在與特 疋疾病或病狀相關)之源自臨床之資料庫比較,針對賦予 危險之SNP來查詢患者之資料結構。該資料庫含有特定 SNP及SNP單型與特定疾病或病狀之統計相關性之資訊。 舉例而言,如實例m中所示,脂蛋白元£基因之多態現象 產生蛋白質之不同同功異型物,其接著與發生阿茲海默氏 病之統計學可能性相關。作為另一實例,具有稱為凝血因 子V突變之金液凝固蛋白因子v之變異體的個體具有增加 127264.doc -104 - 200847056 之凝結傾向。SNP已與疾病或病狀表型相關聯之許多基因 在表1中展示。資料庫中之資訊係由研究/臨床諮詢委員會 針對其科學準確性及重要性而批准,且可在政府機構監督 下審查。隨著更多SNP-疾病相關性自科學界出現,不斷更 新該資料庫。 分析個體之SNP概況之結果由線上入口或郵件保密地提 供給患者。向患者提供解釋及支援性資訊,諸如實例iv中 對於凝血因子V突變所示之資訊。諸如經由線上入口保密 存取個體之SNP概況資訊將有助於與患者之醫師討論且准 許個體選擇個人化醫藥。Individual genomic DNA is isolated from saliva samples according to well-known procedures and/or procedures provided by the manufacturer of the collection kit. Typically, the sample is first heat denatured and subjected to protease digestion. Next, the sample was centrifuged and the supernatant was retained. The supernatant was then precipitated with ethanol to yield a centrifugation block containing approximately 5-16 ng of genomic DNA. The DNA pellet was suspended in 1 mM THs pH 7.6, i mM EDTA (TE). The SNp profile is generated by hybridizing genomic DNA to a commercially available high density SNp array, such as an array known from Affymetrix or Ulumina, using instruments and instructions provided by the array manufacturer. The individual's SNP profile is stored in a confidential database or vault. The patient's data structure is queried for the risk-indicating SNP by comparing it to a clinically derived database of established medical-related SNPs whose presence in the genome is associated with a particular disease or condition. This database contains information on the statistical relevance of specific SNPs and SNPs to specific diseases or conditions. For example, as shown in Example m, the polymorphism of the lipoprotein £ gene produces a different isoform of the protein, which in turn is associated with the statistical likelihood of developing Alzheimer's disease. As another example, an individual having a variant of the gold coagulant factor v known as the coagulation factor V mutation has an increased tendency to coagulate 127264.doc -104 - 200847056. Many of the genes in which SNPs have been associated with disease or condition phenotypes are shown in Table 1. The information in the database is approved by the Research/Clinical Advisory Committee for its scientific accuracy and importance and can be reviewed under the supervision of government agencies. As more SNP-disease correlations emerge from the scientific community, the database is continually updated. The results of analyzing the individual's SNP profile are provided to the patient confidentially by an online portal or email. Provide explanations and supportive information to the patient, such as the information shown in Example iv for mutations in Factor V. Accessing an individual's SNP profile information, such as via an online portal, will facilitate discussion with the patient's physician and allow the individual to select personalized medicine.
實例II 基因型相關性之更新 為回應初始判定個體之基因型相關性之要求,產生基因 組概況’產生基因型相關性,且如實例I中所述向個體提 供結果。初始判定個體之基因型相關性後,隨後當其他基 因型相關性變得已知時,判定或可判定更新相關性。用戶 具有優質級別預定且將其基因型概況維護於保密資料庫 中。對儲存基因型概況執行更新相關性。 舉例而言,諸如上文實例ί中所述之初始基因型相關性 可判疋特定個體並不具有Αρ〇Ε4且因此不傾向於早期發作 阿兹海默氏病,且此個體並不具有凝血因子V突變。此初 始判定後’新相關性可變得已知且經確認,以致給定基因 (假設基因χυζ)之多態現象與特定病狀(假設病狀321)相 關。將此新基因型相關性添加至人類基因型相關性之主資 127264.doc -105- 200847056 料庫中。接著藉由首先自儲存於保密資料庫中之特定個體 之基因組概況檢索相關基因XYZ資料來向特定個體提供更 新。將特定個體之相關基因XYZ資料與基因XYZ之更新主 資料庫資訊比較。自此比較判定特定個體對病狀3 21之易 感性或遺傳傾向性。將此判定之結果添加至特定個體之基因 型相關性中。向特定個體提供是否特定個體易感染或遺傳上 傾向於病狀321之更新結果,以及解釋及支援性資訊。Example II Update of Genotype Correlation In response to the initial determination of the genotype correlation of an individual, a Genome Profile was generated to generate genotype correlation and the results were provided to the individual as described in Example I. After initially determining the genotype correlation of an individual, then when other genotype correlations become known, it is determined or determinable to update the correlation. The user has a quality level reservation and maintains his genotype profile in a confidential database. Perform an update correlation on the stored genotype profile. For example, an initial genotype correlation such as described in Example ί above may be such that a particular individual does not have Αρ〇Ε4 and therefore does not favor early-onset Alzheimer's disease, and the individual does not have coagulation Factor V mutation. After this initial decision, the 'new correlation' can become known and confirmed so that the polymorphism of a given gene (hypothetical gene χυζ) is associated with a specific condition (hypothetical condition 321). Add this new genotype correlation to the core of the human genotype correlation 127264.doc -105- 200847056. The update is then provided to the particular individual by first retrieving the relevant gene XYZ data from the genomic profile of the particular individual stored in the confidential database. The XYZ data of the relevant gene of a particular individual is compared with the updated master database information of the gene XYZ. From this comparison, the susceptibility or genetic predisposition of a particular individual to the condition 3 21 was determined. The result of this determination is added to the genotype correlation of a particular individual. The specific individual is provided with an updated result of whether the particular individual is susceptible or genetically predisposed to the condition 321 , as well as explanatory and supporting information.
實例III ® ApoE4基因座與阿茲海默氏病之相關性 已展示阿茲海默氏病(AD)之危險與脂蛋白元E(APOE)基 因之多態現象有關,該多態現象產生APOE之三種同功異 型物,稱為ApoE2、ApoE3及ApoE4。該等同功異型物因 APOE蛋白質中殘基112及158處之一或兩個胺基酸而彼此 不同。ApoE2 含有 112/1 58 cys/cys ; ApoE3 含有 112/1 58 cys/arg ;且 ApoE4含有 112/1 5 8 arg/arg。如表 3 中所示,較 早年齡時發作阿茲海默氏病之危險隨APOE ε4基因複本數 • 增加而增加。同樣,如表3中所示,AD之相對危險隨 APOE ε4基因複本數增加而增加。 表3 : AD危險對偶基因之流行率(Corder等人,Sc/wce.· 261:921-3, 1993) APOE ε4複本 流行率 阿茲海默氏病危險 發作年齡 0 73% 20% 84 1 24% 47% 75 2 3% 91% 68 127264.doc • 106 - 200847056 表4 :具有ApoE4之AD之相對危險(Farrer等人,丄4ΜΑ· 278:1349-56, 1997) ΑΡΟΕ基因型 優勢率 ε2ε2 0.6 ε2ε3 0.6 ε3ε3 1.0 ε2ε4 2.6 ε3ε4 3.2 ε4ε4 14.9Example III ® Correlation of the ApoE4 Locus with Alzheimer's Disease The risk of Alzheimer's disease (AD) has been implicated in the polymorphism of the lipoprotein E (APOE) gene, which produces APOE Three isoforms, called ApoE2, ApoE3, and ApoE4. The equivalent work is different from each other due to one of the residues 112 and 158 or two amino acids in the APOE protein. ApoE2 contains 112/1 58 cys/cys; ApoE3 contains 112/1 58 cys/arg; and ApoE4 contains 112/1 5 8 arg/arg. As shown in Table 3, the risk of developing Alzheimer's disease at an earlier age increases with an increase in the number of APOE ε4 gene copies. Similarly, as shown in Table 3, the relative risk of AD increases as the number of APOE ε4 gene replicas increases. Table 3: Prevalence of AD dangerous dual genes (Corder et al, Sc/wce. 261: 921-3, 1993) APOE ε4 Replica prevalence Alzheimer's disease risk episode age 0 73% 20% 84 1 24 % 47% 75 2 3% 91% 68 127264.doc • 106 - 200847056 Table 4: Relative risk of AD with ApoE4 (Farrer et al., 丄 4ΜΑ· 278:1349-56, 1997) ΑΡΟΕ genotype odds ratio ε2ε2 0.6 Ε2ε3 0.6 ε3ε3 1.0 ε2ε4 2.6 ε3ε4 3.2 ε4ε4 14.9
實例IV 凝血因子V突變陽性患者之資訊 以下資訊例示可提供給具有展示存在凝血因子V突變之 基因之基因組SNP概況的個體之資訊。個體可具有基礎預 定,其中資訊可以初始報告形式供應。 何為凝血因子V突變? 凝血因子V突變並非疾病,其為自某人之父母傳下之特 定基因的存在。凝血因子V突變為血液凝固所需要之蛋白 因子V(5)之變異體。缺乏因子V之人很可能嚴重出血,而 具有凝血因子V突變之人之血液具有增加之凝結傾向。 帶有凝血因子V突變基因之人產生血塊(血栓症)之危險 比群體之其他人高五倍。然而,許多具有該基因之人類將 不會罹患血塊。在英國及美國,5%之人口帶有一或多個 凝血因子V突變之基因,其遠多於實際上將罹患血栓症之 人數。 你如何獲得凝血因子V突變? 因子V之基因係自某人之父母傳下。如同所有遺傳特 127264.doc -107- 200847056 徵’-個基因遺傳自母親而一個遺傳自父親。因此,有可 能遺傳:兩個正常基因,或-個凝血因子v突變基因及一 個正常基因’或兩個凝血因子乂突變基因。具有一個凝血 因子v突變基因將產生產生血栓症之略高危險但具有兩 個基因則使危險高得多。 何為凝血因子V突變之症狀? 無徵象’除非你具有血塊(血检症)。 何為危險信號? 取常見問題為腿部血塊。此問題由腿變得腫脹、疼痛及 紅色而指示。在較罕見情況下,可能產生肺部血塊(肺血 栓症),使得呼吸困難。視血塊之大小而定,此可在僅引 起注意至患者經歷嚴重呼吸困難之範圍内變化。在甚至更 罕見情況下,凝塊可能存在於手臂或身體之另一部分。因 為此等凝塊在將血帶入心臟之靜脈中而非動脈(其將血帶 出心臟)中形成,所以凝血因子v突變並不增加冠狀動脈血 检症之風險。 可作何措施來避免血塊? 凝血因子V突變僅略增加產生血塊之危險且許多具有此 病狀之人將不會經歷血栓症。吾人可進行許多事情來避免 產生血塊。避免長時間在同一位置站立或就坐。當長距離 旅行時’重要的是有規則地鍛煉,血液不可”靜止不動,,。 超重或吸煙將大大增加血塊之危險。帶有凝血因子V突變 基因之女性不應服用避孕丸,因為此將顯著增加罹患血栓 症之機會。帶有凝血因子V突變基因之女性亦應在受孕之 127264.doc -108- 200847056 前諮詢其醫生,因為此亦可增加血栓症之危險。 醫生如何發現你是否具有凝血因子v突變? 凝血因子V突變之基因可在血液樣品中發現。 腿或手臂中之血塊通常可藉由超音波檢查來偵測。 亦可在將物質注入血液中以使凝塊突出後藉由x射線偵 測凝塊。肺部血塊較難發現,但通常醫生將使用放射性物 質來測試肺部血流分布,及空氣在肺中之分布。兩種模式 應匹配,失配則指示凝塊之存在。 凝血因子V突變如何治療? 具有凝血因子V突變之人並不需要治療,除非其血液開 始產生凝塊,在此情況下,醫生將開血液稀釋(抗凝劑)藥 物’諸如殺鼠靈(例如瑪爾維(Marevan))或肝素以防止進一 步凝塊。治療將通常持續三至六個月,但若存在若干凝 塊,則可耗費更長時間。在嚴重情況下,藥劑治療之過程 可無限期地纟續,在極罕見情況下,血塊可需要手術移 除。 如何在懷孕期間治療凝血因子V突變? 帶有兩個凝血因子V突變基因之女性在懷孕期間將需要 接叉用肝素凝結劑藥物之治療。上述情況亦適用於僅帶有 一個凝血因子V突變基因、先前自身具有血塊或具有血塊 家族史之女性。 所有帶有凝血因子v突變基因之女性可需要穿戴特殊長 襪以防止在懷孕最後一半期間之凝塊。孩子出生後,可為 其開抗凝劑藥劑肝素。 127264.doc 109- 200847056 預後 產生凝塊之危險隨年齡而增加,但在考察帶有該基因之 超過100歲之人中發現僅少數曾經罹患血栓症。國家遺傳 顧問協會(National Society for Genetic Counselors,nsgc) 可提供在你區域中之遺傳顧問之清單,以及關於建立家族 史之貧訊。在www.nsgc.org/consumer搜尋其線上資料庫。 雖然本發明之較佳實施例已在本文中展示且描述,但熟 習此項技術者將顯而易見,該等實施例僅係舉例提供。在 不脫離本發明之情況下許多變化、變更及取代現將由熟習 此項技術者想到。應瞭解本文中所述之本發明之實施例的 各種替代可用於實施本發明。意欲由下列申請專利範圍來 界疋本發明之範疇且藉此涵蓋此等申請專利範圍及其均等 物之範疇内之方法及結構。 【圖式簡單說明】 圖1為說明本文中之方法態樣的流程圖。 圖2為基因組DNA品質控制量測之實例。 圖3為雜父品質控制量測之實例。 圖4為來自公開文獻之具有測試§Νρ及效應估計之代表 性基因型相關性的表格。Α·υ表示單—基因座之基因型相 關性;j)表示兩個基因座之基因型相關性;κ)表示三個基 因座之基因型相關性;L)為用於Α_κ之種族及國家縮寫^ 索引;Μ)為Α·Κ中短表型名稱之縮寫、遺傳率及遺傳率之 參考文獻的索引。 圖5A-J為具有效應估計之代表性基因型相關性之表格。 127264.doc -110- 200847056 圖6A-F為代表性基因型相關性及估計相對危險之表格。 圖7為樣品報告。 圖8為用於經由網敗公士 刀析及傳运基口組及表型概況之系 統的示意圖。 圖9為說明本文中之商業方法態樣的流程圖。 圖10:流行率之估計對相對危險估計之作用。 母®表對應於在假定哈迪-溫伯格平衡(Hardy-Weinberg Equilibrium)下群體中之對偶基因頻率之不同 值。兩條黑線對應於9及6之優勢率,兩條紅線對應於认 4,且兩條藍線對應於3及2之優勢率。 圖11 :對偶基因頻率之估計對相對危險估計之作用。每 -圖表對應於群體中流行率之不同值。兩條黑線對應於9 及6之優勢率’兩條紅線對應於6及4,且兩條藍線對應於3 及2之優勢率。 圖12 :不同模型之絕對值之成對比較。 圖13 :基於不同模型之分級值(GCI計分)之成對比較。 不同對之間的史皮爾曼相關性(Spearman c_lati〇n)在表2 中給出。 圖14:流行率報告對GCI計分之作用。任何兩個流行率 值之間的史皮爾曼相關性為至少0.99。 圖15為來自個人化入口之樣品網頁之圖例。 圖16為來自個人化入口之樣品網頁對於個人患前列腺癌 之危險的圖例。 圖17 :來自個人化入口之樣品網頁對於個體患克羅恩氏 127264.doc -111 - 200847056 病之危險的圖例。 圖18為基於HapMAP使用2個SNP對於多發性麻^ 化症之 GCI計分的直方圖。 圖19為使用GCI Plus對於患多發性硬化症之個體壽命危 險。 圖20為克羅恩氏病之GCI計分之直方圖。 圖21為多基因座相關性之表格。 圖22為SNP及表型相關性之表格。 圖23為表型及流行率之表格。 圖24為圖21、圖22及圖25中縮寫的詞彙表。 圖25為SNP及表型相關性之表格。 【主要元件符號說明】 800 801 803 805 807 809 電腦系統(或數位裝置) CPU 磁碟機 網路琿 可選監視器 伺服器 811 、 812 媒體 815 鍵盤 816 滑鼠 822 對方 127264.docEXAMPLE IV Information for Coagulation Factor V Mutant Positive Patients The following information is illustrative of information available to individuals with a genomic SNP profile displaying a gene with a Factor V mutation. Individuals may have a base reservation in which information may be available in an initial report format. What is the clotting factor V mutation? A clotting factor V mutation is not a disease, it is the presence of a specific gene transmitted from a parent of a person. Factor V mutation is a variant of protein factor V (5) required for blood coagulation. People who are deficient in factor V are likely to have severe bleeding, while blood with a person with a factor V mutation has an increased tendency to coagulate. People with a coagulation factor V mutation are five times more likely to develop a blood clot (thrombotic disease) than others in the group. However, many people with this gene will not suffer from blood clots. In the United Kingdom and the United States, 5% of the population carries one or more genes for Factor V mutations, far more than the number of people who will actually have thrombosis. How do you get a clotting factor V mutation? The gene of factor V is passed down from the parents of someone. As with all genetics 127264.doc -107- 200847056 levy--a gene is inherited from the mother and one is inherited from the father. Therefore, it is possible to inherit: two normal genes, or one coagulation factor v mutant gene and one normal gene' or two coagulation factor 乂 mutant genes. Having a coagulation factor v mutant gene will produce a slightly higher risk of developing thrombosis but having two genes makes the risk much higher. What are the symptoms of the clotting factor V mutation? No signs ‘ unless you have a blood clot (blood test). What is a dangerous signal? Take the common problem for the blood clots in the legs. This problem is indicated by the legs becoming swollen, painful and red. In rare cases, pulmonary blood clots (pulmonary thrombosis) may occur, making breathing difficult. Depending on the size of the blood clot, this can vary within the range that only draws attention to the patient experiencing severe breathing difficulties. In even rarer cases, a clot may be present in the arm or another part of the body. Since the clots are formed in the veins that carry blood into the heart rather than the arteries that carry blood out of the heart, the coagulation factor v mutation does not increase the risk of coronary blood test. What can be done to avoid blood clots? Coagulation factor V mutations only slightly increase the risk of developing a blood clot and many people with this condition will not experience thrombosis. We can do a lot to avoid clots. Avoid standing or sitting in the same position for a long time. When traveling long distances, it is important to exercise regularly, blood can't be static, and overweight or smoking will greatly increase the risk of blood clots. Women with clotting factor V mutations should not take birth control pills because this will Significantly increase the chance of developing thrombosis. Women with clotting factor V mutations should also consult their doctor before conception 127264.doc -108- 200847056, as this may increase the risk of thrombosis. How do doctors discover if you have Coagulation factor v mutations? Genes of coagulation factor V mutations can be found in blood samples. Blood clots in the legs or arms can usually be detected by ultrasound examination. They can also be injected into the blood to make the clots stand out. Clots are detected by x-rays. Pulmonary blood clots are difficult to detect, but usually doctors will use radioactive materials to test the distribution of blood flow in the lungs and the distribution of air in the lungs. The two modes should match, and the mismatch indicates the clot. The presence of clotting factor V mutations? People with clotting factor V mutations do not need treatment unless their blood begins to produce clots, in which case The doctor will prescribe a blood-dilution (anticoagulant) drug such as warfarin (such as Marevan) or heparin to prevent further clots. Treatment will usually last for three to six months, but if there are several clots It can take longer. In severe cases, the process of drug treatment can be repeated indefinitely. In rare cases, blood clots may need surgical removal. How to treat clotting factor V mutation during pregnancy? A woman with a coagulation factor V mutation will need to be treated with a heparin coagulant drug during pregnancy. The same applies to a woman with only one coagulation factor V mutation, a previous blood clot, or a family history of blood clots. All women with coagulation factor v mutations may need to wear special stockings to prevent clots during the last half of pregnancy. After the child is born, he can prescribe anticoagulant heparin. 127264.doc 109- 200847056 Prognosis produces coagulation The risk of the block increases with age, but only a few of those who have been over 100 years old with the gene have been found to have thrombosis. The National Society for Genetic Counselors (nsgc) can provide a list of genetic counselors in your area, as well as a poor family history. Search for an online database at www.nsgc.org/consumer. The preferred embodiment has been shown and described herein, but it will be apparent to those skilled in the art that the embodiments are provided by way of example only. It is to be understood that various alternatives to the embodiments of the invention described herein may be used to practice the invention. The scope of the invention is intended to be Methods and structures within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart illustrating the method aspect of the present invention. Figure 2 is an example of genomic DNA quality control measurement. Figure 3 shows an example of the quality control measurement of the parent. Figure 4 is a table from the published literature with representative genotype correlations for testing § Νρ and effect estimates. Α·υ indicates genotype correlation of single-locus; j) indicates genotype correlation of two loci; κ) indicates genotype correlation of three loci; L) is race and country for Α_κ The abbreviation ^ index; Μ) is the index of the abbreviations, heritability and heritability of short phenotype names in Α·Κ. Figures 5A-J are tables of representative genotype correlations with effect estimates. 127264.doc -110- 200847056 Figure 6A-F is a table of representative genotype correlations and estimated relative hazards. Figure 7 is a sample report. Figure 8 is a schematic illustration of a system for analyzing and transporting a port group and phenotype profile via a network. Figure 9 is a flow chart illustrating the aspect of the business method herein. Figure 10: The effect of estimates of prevalence on relative risk estimates. The parent® table corresponds to a different value for the frequency of the dual gene in the population under the assumed Hardy-Weinberg Equilibrium. The two black lines correspond to the odds ratios of 9 and 6, the two red lines correspond to the 4, and the two blue lines correspond to the odds ratios of 3 and 2. Figure 11: Effect of the estimation of the frequency of the dual gene on the relative risk estimate. Each - chart corresponds to a different value of the prevalence in the population. The two black lines correspond to the odds ratios of 9 and 6. 'Two red lines correspond to 6 and 4, and the two blue lines correspond to the odds ratios of 3 and 2. Figure 12: Pairwise comparison of the absolute values of different models. Figure 13: Pairwise comparison of grading values (GCI scores) based on different models. The Spearman correlation (Spearman c_lati〇n) between the different pairs is given in Table 2. Figure 14: The effect of the prevalence report on GCI scoring. The Spearman correlation between any two prevalence values is at least 0.99. Figure 15 is a legend of a sample web page from a personalized portal. Figure 16 is a legend of a sample web page from a personalized portal for the risk of prostate cancer in an individual. Figure 17: A sample web page from a personalized portal for individuals with a risk of Crohn's 127264.doc -111 - 200847056 disease. Figure 18 is a histogram of GCI scores for multiple malignancies using two SNPs based on HapMAP. Figure 19 is a graph showing the lifetime risk of individuals with multiple sclerosis using GCI Plus. Figure 20 is a histogram of the GCI score for Crohn's disease. Figure 21 is a table of correlations for multiple loci. Figure 22 is a table of SNP and phenotypic correlation. Figure 23 is a table of phenotypes and prevalence rates. Figure 24 is a glossary of the abbreviations in Figures 21, 22 and 25. Figure 25 is a table of SNP and phenotypic correlation. [Main component symbol description] 800 801 803 805 807 809 Computer system (or digital device) CPU drive Network 珲 Optional monitor Server 811, 812 Media 815 Keyboard 816 Mouse 822 Each other 127264.doc
Claims (1)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86806606P | 2006-11-30 | 2006-11-30 | |
US95112307P | 2007-07-20 | 2007-07-20 | |
US11/781,679 US20080131887A1 (en) | 2006-11-30 | 2007-07-23 | Genetic Analysis Systems and Methods |
US97219807P | 2007-09-13 | 2007-09-13 | |
US98562207P | 2007-11-05 | 2007-11-05 | |
US98968507P | 2007-11-21 | 2007-11-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200847056A true TW200847056A (en) | 2008-12-01 |
TWI363309B TWI363309B (en) | 2012-05-01 |
Family
ID=38962435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096145856A TWI363309B (en) | 2006-11-30 | 2007-11-30 | Genetic analysis systems, methods and on-line portal |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP2102651A4 (en) |
JP (2) | JP2010522537A (en) |
KR (1) | KR20090105921A (en) |
CN (1) | CN103642902B (en) |
AU (1) | AU2007325021B2 (en) |
CA (1) | CA2671267A1 (en) |
GB (1) | GB2444410B (en) |
HK (1) | HK1139737A1 (en) |
TW (1) | TWI363309B (en) |
WO (1) | WO2008067551A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104573408A (en) * | 2013-10-18 | 2015-04-29 | 大江基因医学股份有限公司 | Single nucleotide polymorphism disease incidence prediction system |
TWI857617B (en) * | 2022-09-15 | 2024-10-01 | 美商圖策智能科技有限公司 | Disease risk scoring method and system based on genome sequencing |
Families Citing this family (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8340950B2 (en) | 2006-02-10 | 2012-12-25 | Affymetrix, Inc. | Direct to consumer genotype-based products and services |
US20080131887A1 (en) | 2006-11-30 | 2008-06-05 | Stephan Dietrich A | Genetic Analysis Systems and Methods |
WO2008103299A2 (en) | 2007-02-16 | 2008-08-28 | Massachusetts Eye & Ear Infirmary | Methods and compositions for prognosing, detecting, and treating age-related macular degeneration |
US20080228700A1 (en) | 2007-03-16 | 2008-09-18 | Expanse Networks, Inc. | Attribute Combination Discovery |
FR2934698B1 (en) * | 2008-08-01 | 2011-11-18 | Commissariat Energie Atomique | PREDICTION METHOD FOR THE PROGNOSIS OR DIAGNOSIS OR THERAPEUTIC RESPONSE OF A DISEASE AND IN PARTICULAR PROSTATE CANCER AND DEVICE FOR PERFORMING THE METHOD. |
KR20110053995A (en) * | 2008-08-08 | 2011-05-24 | 네이비제닉스 인크. | Methods and systems for planning individual activities |
JP2012502398A (en) * | 2008-09-12 | 2012-01-26 | ナビジェニクス インコーポレイティド | Method and system incorporating multiple environmental and genetic risk factors |
NZ572036A (en) | 2008-10-15 | 2010-03-26 | Nikola Kirilov Kasabov | Data analysis and predictive systems and related methodologies |
WO2010067381A1 (en) * | 2008-12-12 | 2010-06-17 | Decode Genetics Ehf | Genetic variants as markers for use in diagnosis, prognosis and treatment of eosinophilia, asthma, and myocardial infarction |
US8108406B2 (en) | 2008-12-30 | 2012-01-31 | Expanse Networks, Inc. | Pangenetic web user behavior prediction system |
EP2370929A4 (en) | 2008-12-31 | 2016-11-23 | 23Andme Inc | LOOKING FOR PARENTS IN A DATABASE |
JP2012525147A (en) | 2009-04-30 | 2012-10-22 | グッド スタート ジェネティクス, インコーポレイテッド | Methods and compositions for assessing genetic markers |
US12129514B2 (en) | 2009-04-30 | 2024-10-29 | Molecular Loop Biosolutions, Llc | Methods and compositions for evaluating genetic markers |
WO2010139006A1 (en) * | 2009-06-01 | 2010-12-09 | Genetic Technologies Limited | Methods for breast cancer risk assessment |
DE102010013114B4 (en) * | 2010-03-26 | 2012-02-16 | Rüdiger Lawaczeck | Prediagnostic safety system |
KR20110136638A (en) * | 2010-06-15 | 2011-12-21 | 재단법인 게놈연구재단 | System and method for forming online social network using genomic information |
WO2012006669A1 (en) * | 2010-07-13 | 2012-01-19 | Fitgenes Pty Ltd | System and method for determining personal health intervention |
US20120078901A1 (en) * | 2010-08-31 | 2012-03-29 | Jorge Conde | Personal Genome Indexer |
WO2012054653A2 (en) | 2010-10-19 | 2012-04-26 | Medtronic, Inc. | Diagnostic kits, genetic markers, and methods for scd or sca therapy selection |
CN105956398A (en) * | 2010-11-01 | 2016-09-21 | 皇家飞利浦电子股份有限公司 | In vitro diagnostic testing including automated brokering of royalty payments for proprietary tests |
US9163281B2 (en) | 2010-12-23 | 2015-10-20 | Good Start Genetics, Inc. | Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction |
US8718950B2 (en) | 2011-07-08 | 2014-05-06 | The Medical College Of Wisconsin, Inc. | Methods and apparatus for identification of disease associated mutations |
EP2761520B1 (en) * | 2011-09-26 | 2020-05-13 | Trakadis, John | Diagnostic method and system for genetic disease search based on the phenotype and the genome of a human subject |
US10378060B2 (en) | 2011-10-14 | 2019-08-13 | Dana-Farber Cancer Institute, Inc. | ZNF365/ZFP365 biomarker predictive of anti-cancer response |
KR101295785B1 (en) * | 2011-10-31 | 2013-08-12 | 삼성에스디에스 주식회사 | Apparatus and Method for Constructing Gene-Disease Relation Database |
US10437858B2 (en) | 2011-11-23 | 2019-10-08 | 23Andme, Inc. | Database and data processing system for use with a network-based personal genetics services platform |
US8209130B1 (en) | 2012-04-04 | 2012-06-26 | Good Start Genetics, Inc. | Sequence assembly |
US10227635B2 (en) | 2012-04-16 | 2019-03-12 | Molecular Loop Biosolutions, Llc | Capture reactions |
KR20140009854A (en) * | 2012-07-13 | 2014-01-23 | 삼성전자주식회사 | Method and apparatus for analyzing gene information for treatment decision |
KR101967248B1 (en) * | 2012-08-16 | 2019-04-10 | 삼성전자주식회사 | Method and apparatus for analyzing personalized multi-omics data |
JP5844715B2 (en) * | 2012-11-07 | 2016-01-20 | 学校法人沖縄科学技術大学院大学学園 | Data communication system, data analysis apparatus, data communication method, and program |
KR101533395B1 (en) * | 2013-01-21 | 2015-07-08 | 이상열 | Method and system estimating resemblance between subject using single nucleotide polymorphism |
WO2014119914A1 (en) * | 2013-02-01 | 2014-08-07 | 에스케이텔레콤 주식회사 | Method for providing information about gene sequence-based personal marker and apparatus using same |
EP2971159B1 (en) | 2013-03-14 | 2019-05-08 | Molecular Loop Biosolutions, LLC | Methods for analyzing nucleic acids |
US20140274763A1 (en) * | 2013-03-15 | 2014-09-18 | Pathway Genomics Corporation | Method and system to predict response to pain treatments |
US9192647B2 (en) | 2013-10-04 | 2015-11-24 | Hans-Michael Dosch | Method for reversing recent-onset type 1 diabetes (T1D) by administering substance P (sP) |
US10851414B2 (en) | 2013-10-18 | 2020-12-01 | Good Start Genetics, Inc. | Methods for determining carrier status |
FI20136079A (en) * | 2013-11-04 | 2015-05-05 | Medisapiens Oy | Genetic health assessment procedure and system |
DE202014010499U1 (en) | 2013-12-17 | 2015-10-20 | Kymab Limited | Targeting of human PCSK9 for cholesterol treatment |
KR101400946B1 (en) * | 2013-12-27 | 2014-05-29 | 한국과학기술정보연구원 | Biological network analyzing device and method thereof |
KR102131973B1 (en) * | 2013-12-30 | 2020-07-08 | 주식회사 케이티 | Method and System for personalized healthcare |
WO2015171370A1 (en) | 2014-05-05 | 2015-11-12 | Medtronic, Inc. | Methods and compositions for scd, crt, crt-d, or sca therapy identification and/or selection |
WO2015175530A1 (en) | 2014-05-12 | 2015-11-19 | Gore Athurva | Methods for detecting aneuploidy |
EP4328245A3 (en) | 2014-07-15 | 2024-06-05 | Kymab Ltd. | Antibodies for use in treating conditions related to specific pcsk9 variants in specific patients populations |
EP3332790A1 (en) | 2014-07-15 | 2018-06-13 | Kymab Limited | Antibodies for use in treating conditions related to specific pcsk9 variants in specific patients populations |
DE202015009002U1 (en) | 2014-07-15 | 2016-08-18 | Kymab Limited | Targeting of human PCSK9 for cholesterol treatment |
WO2016023916A1 (en) | 2014-08-12 | 2016-02-18 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
US20180032673A1 (en) * | 2014-09-03 | 2018-02-01 | Otsuka Pharmaceutical Co., Ltd. | Pathology determination assistance device, method and storage medium |
WO2016040446A1 (en) | 2014-09-10 | 2016-03-17 | Good Start Genetics, Inc. | Methods for selectively suppressing non-target sequences |
US10429399B2 (en) | 2014-09-24 | 2019-10-01 | Good Start Genetics, Inc. | Process control for increased robustness of genetic assays |
WO2016071701A1 (en) | 2014-11-07 | 2016-05-12 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
EP3271480B8 (en) | 2015-01-06 | 2022-09-28 | Molecular Loop Biosciences, Inc. | Screening for structural variants |
CN107548498A (en) | 2015-01-20 | 2018-01-05 | 南托米克斯有限责任公司 | System and method for the chemotherapy in the high-level carcinoma of urinary bladder of response prediction |
AU2016219480B2 (en) * | 2015-02-09 | 2021-11-11 | 10X Genomics, Inc. | Systems and methods for determining structural variation and phasing using variant call data |
AU2016226162B2 (en) * | 2015-03-03 | 2017-11-23 | Nantomics, Llc | Ensemble-based research recommendation systems and methods |
KR102508971B1 (en) * | 2015-07-22 | 2023-03-09 | 주식회사 케이티 | Method and apparatus for predicting the disease risk |
WO2017048945A1 (en) * | 2015-09-16 | 2017-03-23 | Good Start Genetics, Inc. | Systems and methods for medical genetic testing |
AU2016324166A1 (en) * | 2015-09-18 | 2018-05-10 | Omicia, Inc. | Predicting disease burden from genome variants |
KR101795662B1 (en) * | 2015-11-19 | 2017-11-13 | 연세대학교 산학협력단 | Apparatus and Method for Diagnosis of metabolic disease |
FR3045874B1 (en) * | 2015-12-18 | 2019-06-14 | Axlr, Satt Du Languedoc Roussillon | ARCHITECTURE FOR GENOMIC DATA ANALYSIS |
JP6776576B2 (en) * | 2016-03-28 | 2020-10-28 | 富士通株式会社 | Database processing program, database processing device and database processing method |
KR101991007B1 (en) * | 2016-05-27 | 2019-06-20 | (주)메디젠휴먼케어 | A system and apparatus for disease-related genomic analysis using SNP |
US20190333607A1 (en) * | 2016-06-29 | 2019-10-31 | Koninklijke Philips N.V. | Disease-oriented genomic anonymization |
KR101815529B1 (en) * | 2016-07-29 | 2018-01-30 | (주)신테카바이오 | Human Haplotyping System And Method |
WO2018042185A1 (en) * | 2016-09-02 | 2018-03-08 | Imperial Innovations Ltd | Methods, systems and apparatus for identifying pathogenic gene variants |
CN106778083A (en) * | 2016-11-28 | 2017-05-31 | 墨宝股份有限公司 | A kind of method and device for automatically generating genetic test report |
EP3553737A4 (en) * | 2016-12-12 | 2019-11-06 | Nec Corporation | Information processing device, genetic information creation method, and program |
CN108884488A (en) * | 2017-03-15 | 2018-11-23 | 东洋纺株式会社 | Gene tester and gene detecting kit |
CN108629153A (en) * | 2017-03-23 | 2018-10-09 | 广州康昕瑞基因健康科技有限公司 | Cma gene analysis method and system |
JP7414281B2 (en) * | 2017-08-08 | 2024-01-16 | クイーンズランド ユニバーシティ オブ テクノロジー | How to diagnose early heart failure |
KR102073590B1 (en) * | 2017-08-17 | 2020-02-06 | (주)에이엔티홀딩스 | Method, system and non-transitory computer-readable recording medium for providing a service based on genetic information |
KR102097540B1 (en) * | 2017-12-26 | 2020-04-07 | 주식회사 클리노믹스 | Method for disease and phenotype risk score calculation |
CN108549795A (en) * | 2018-03-13 | 2018-09-18 | 刘吟 | Genetic counselling information system based on pedigree chart frame |
GB201810897D0 (en) * | 2018-07-03 | 2018-08-15 | Chronomics Ltd | Phenotype prediction |
CN109355368A (en) * | 2018-10-22 | 2019-02-19 | 江苏美因康生物科技有限公司 | A kind of kit and method of quick detection hypertension individuation medication gene pleiomorphism |
US10896742B2 (en) | 2018-10-31 | 2021-01-19 | Ancestry.Com Dna, Llc | Estimation of phenotypes using DNA, pedigree, and historical data |
GB2578727A (en) * | 2018-11-05 | 2020-05-27 | Earlham Inst | Genomic analysis |
EP3899039A4 (en) * | 2018-12-20 | 2022-09-14 | The Johns Hopkins University | Treating type 1 diabetes, other autoimmune diseases |
JP7137520B2 (en) * | 2019-04-23 | 2022-09-14 | ジェネシスヘルスケア株式会社 | How to determine the risk of pancreatitis |
JP7137521B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | How to determine your risk of psoriasis |
JP7137525B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | How to determine the risk of contact dermatitis |
JP7137524B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | Methods for determining risk of knee osteoarthritis |
JP7137523B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | How to determine your risk of hives |
JP7137526B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | Methods for determining the risk of atopic dermatitis |
JP7137522B2 (en) * | 2019-04-24 | 2022-09-14 | ジェネシスヘルスケア株式会社 | How to determine your scoliosis risk |
KR102357453B1 (en) * | 2019-06-24 | 2022-02-04 | (주) 아이크로진 | Service method and platform for visualizing using a gene information |
KR102091790B1 (en) * | 2019-09-02 | 2020-03-20 | 주식회사 클리노믹스 | System for providng genetic zodiac sign using genetic information between examinees and organisms |
KR102151716B1 (en) * | 2019-12-06 | 2020-09-04 | 주식회사 클리노믹스 | System for providing gemetic surmane information using genomic information |
KR102179850B1 (en) * | 2019-12-06 | 2020-11-17 | 주식회사 클리노믹스 | System and method for predicting health using analysis device for intraoral microbes (bacteria, virus, viroid, and/or fungi) |
KR102136207B1 (en) * | 2019-12-31 | 2020-07-21 | 주식회사 클리노믹스 | Sytem for providing personalized social contents imformation based on genetic information and method thereof |
KR102138165B1 (en) * | 2020-01-02 | 2020-07-27 | 주식회사 클리노믹스 | Method for providing identity analyzing service using standard genome map database by nationality, ethnicity, and race |
KR102223362B1 (en) * | 2020-08-10 | 2021-03-05 | 주식회사 쓰리빌리언 | System and method to identify disease associated genetic variants by using symptom associated genetic variants relationship |
KR102223361B1 (en) * | 2020-09-23 | 2021-03-05 | 주식회사 쓰리빌리언 | System for diagnosing genetic disease using gene network |
US20220161251A1 (en) * | 2020-11-20 | 2022-05-26 | Singular Genomics Systems, Inc. | Contactless detection of an aberrant condition |
CN113921143B (en) * | 2021-10-08 | 2024-04-16 | 天津金域医学检验实验室有限公司 | Personalized estimation method and system for Bayes factors in coseparation analysis |
CN114360732B (en) * | 2022-01-12 | 2024-04-09 | 平安科技(深圳)有限公司 | Medical data analysis method, device, electronic equipment and storage medium |
CN116135991A (en) * | 2023-03-30 | 2023-05-19 | 华中科技大学同济医学院附属协和医院 | Coronary heart disease-related SNPs in IL12B gene and its application |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067139A (en) * | 1998-08-25 | 2000-03-03 | Hitachi Ltd | Electronic medical record system |
AU785341B2 (en) * | 1999-08-27 | 2007-01-25 | Iris Biotechnologies Inc. | Artificial intelligence system for genetic analysis |
WO2001026029A2 (en) * | 1999-10-01 | 2001-04-12 | Orchid Biosciences, Inc. | Method and system for providing genotype clinical information over a computer network |
US20030208454A1 (en) * | 2000-03-16 | 2003-11-06 | Rienhoff Hugh Y. | Method and system for populating a database for further medical characterization |
JP2002107366A (en) * | 2000-10-02 | 2002-04-10 | Hitachi Ltd | Diagnosis support system |
WO2002063415A2 (en) * | 2000-12-04 | 2002-08-15 | Genaissance Pharmaceuticals, Inc. | System and method for the management of genomic data |
US20020128860A1 (en) * | 2001-01-04 | 2002-09-12 | Leveque Joseph A. | Collecting and managing clinical information |
US20020187483A1 (en) * | 2001-04-20 | 2002-12-12 | Cerner Corporation | Computer system for providing information about the risk of an atypical clinical event based upon genetic information |
US7461006B2 (en) * | 2001-08-29 | 2008-12-02 | Victor Gogolak | Method and system for the analysis and association of patient-specific and population-based genomic data with drug safety adverse event data |
US20030108938A1 (en) * | 2001-11-06 | 2003-06-12 | David Pickar | Pharmacogenomics-based clinical trial design recommendation and management system and method |
US20040053263A1 (en) * | 2002-08-30 | 2004-03-18 | Abreu Maria T. | Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease |
JPWO2004109551A1 (en) * | 2003-06-05 | 2006-07-20 | 株式会社日立ハイテクノロジーズ | Information providing system and program using base sequence related information |
GB0313964D0 (en) * | 2003-06-16 | 2003-07-23 | Mars Inc | Genotype test |
US7084264B2 (en) * | 2003-07-16 | 2006-08-01 | Chau-Ting Yeh | Viral sequences |
US8222005B2 (en) * | 2003-09-17 | 2012-07-17 | Agency For Science, Technology And Research | Method for gene identification signature (GIS) analysis |
KR20060130039A (en) * | 2003-10-15 | 2006-12-18 | 가부시끼가이샤 사인포스트 | Genetic polymorphism determination method, disease risk determination method, and array for determination of disease risk |
US20050209787A1 (en) * | 2003-12-12 | 2005-09-22 | Waggener Thomas B | Sequencing data analysis |
US7127355B2 (en) * | 2004-03-05 | 2006-10-24 | Perlegen Sciences, Inc. | Methods for genetic analysis |
EP1771575A1 (en) * | 2004-07-16 | 2007-04-11 | Bayer HealthCare AG | Single nucleotide polymorphisms as prognostic tool to diagnose adverse drug reactions (adr) and drug efficacy |
CA2587979A1 (en) * | 2004-11-19 | 2006-05-26 | Oy Jurilab Ltd | Method and kit for detecting a risk of essential arterial hypertension |
-
2007
- 2007-11-30 AU AU2007325021A patent/AU2007325021B2/en not_active Ceased
- 2007-11-30 WO PCT/US2007/086138 patent/WO2008067551A2/en active Application Filing
- 2007-11-30 JP JP2009539519A patent/JP2010522537A/en active Pending
- 2007-11-30 GB GB0723512A patent/GB2444410B/en active Active
- 2007-11-30 TW TW096145856A patent/TWI363309B/en not_active IP Right Cessation
- 2007-11-30 EP EP07854875A patent/EP2102651A4/en not_active Ceased
- 2007-11-30 CA CA002671267A patent/CA2671267A1/en not_active Abandoned
- 2007-11-30 CN CN201310565723.1A patent/CN103642902B/en active Active
- 2007-11-30 KR KR1020097013756A patent/KR20090105921A/en not_active Withdrawn
-
2010
- 2010-06-30 HK HK10106416.1A patent/HK1139737A1/en not_active IP Right Cessation
-
2014
- 2014-05-16 JP JP2014102062A patent/JP2014140387A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104573408A (en) * | 2013-10-18 | 2015-04-29 | 大江基因医学股份有限公司 | Single nucleotide polymorphism disease incidence prediction system |
TWI857617B (en) * | 2022-09-15 | 2024-10-01 | 美商圖策智能科技有限公司 | Disease risk scoring method and system based on genome sequencing |
Also Published As
Publication number | Publication date |
---|---|
AU2007325021B2 (en) | 2013-05-09 |
CA2671267A1 (en) | 2008-06-05 |
JP2014140387A (en) | 2014-08-07 |
HK1139737A1 (en) | 2010-09-24 |
TWI363309B (en) | 2012-05-01 |
AU2007325021A1 (en) | 2008-06-05 |
EP2102651A2 (en) | 2009-09-23 |
WO2008067551A2 (en) | 2008-06-05 |
GB0723512D0 (en) | 2008-01-09 |
JP2010522537A (en) | 2010-07-08 |
WO2008067551A3 (en) | 2008-12-11 |
GB2444410B (en) | 2011-08-24 |
EP2102651A4 (en) | 2010-11-17 |
GB2444410A (en) | 2008-06-04 |
CN103642902A (en) | 2014-03-19 |
CN103642902B (en) | 2016-01-20 |
KR20090105921A (en) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI363309B (en) | Genetic analysis systems, methods and on-line portal | |
US9092391B2 (en) | Genetic analysis systems and methods | |
EP2215253B1 (en) | Method and computer system for correlating genotype to phenotype using population data | |
CN101617227B (en) | Genetic analysis systems and methods | |
TWI423063B (en) | Methods and systems for personalized action plans | |
TWI423151B (en) | Methods and systems for incorporating multiple environmental and genetic risk factors | |
Kerr et al. | An actionable KCNH2 Long QT Syndrome variant detected by sequence and haplotype analysis in a population research cohort | |
Hicks et al. | Integrative analysis of response to tamoxifen treatment in ER-positive breast cancer using GWAS information and transcription profiling | |
He et al. | Association of XRCC3 and XRCC4 gene polymorphisms, family history of cancer and tobacco smoking with non-small-cell lung cancer in a Chinese population: a case–control study | |
Kohailan et al. | Patterns and distribution of de novo mutations in multiplex Middle Eastern families | |
Wright et al. | Primer in genetics and genomics, article 5—Further defining the concepts of genotype and phenotype and exploring genotype–phenotype associations | |
Link et al. | Microsatellites used in forensics are in regions enriched for trait-associated variants | |
Chan et al. | Applied human genetic epidemiology | |
Wilson Sayres et al. | HGV2011: Personalized genomic medicine meets the incidentalome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |