[go: up one dir, main page]

TW200844693A - Compact three dimensional image display device - Google Patents

Compact three dimensional image display device Download PDF

Info

Publication number
TW200844693A
TW200844693A TW96140509A TW96140509A TW200844693A TW 200844693 A TW200844693 A TW 200844693A TW 96140509 A TW96140509 A TW 96140509A TW 96140509 A TW96140509 A TW 96140509A TW 200844693 A TW200844693 A TW 200844693A
Authority
TW
Taiwan
Prior art keywords
light
image
display device
array
spatial light
Prior art date
Application number
TW96140509A
Other languages
Chinese (zh)
Other versions
TWI406115B (en
Inventor
Bo Kroll
Ralf Haeussler
Armin Schwerdtner
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7A external-priority patent/GB0621360D0/en
Priority claimed from GB0705407A external-priority patent/GB0705407D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200844693A publication Critical patent/TW200844693A/en
Application granted granted Critical
Publication of TWI406115B publication Critical patent/TWI406115B/en

Links

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

Holographic display device comprising a first EASLM and a second EASLM, the pair permitting independent modification of phase and amplitude, in which holographic reconstruction is visible through one or more virtual observer windows. An advantage is that an observer may view a holographic reconstruction through one or more virtual observer windows from a device housing a pair of EASLMs which permit independent modification of phase and amplitude.

Description

200844693 九、發明說明: 【發明所屬之技術領域】 本案為一種全像顯示裝置,尤指包含第一電子式定址空間光 凋憂器與第一電子式定址空間光調變器,並且可透過一個或多個 虛擬觀察員視窗來看見全像重建之全像顯示器裝置。 【先前技術】 _ 包腦產生的影像全像圖(C〇mpUter—generated vide〇 holograms,CGHs)是由一個或更多的空間光調變器(spatial light modulators,SLMs)所編譯而成;空間光調變器可包括電 子或光學可控制的元件。這些元件根據影像全像圖來對全像圖值 進行編碼,藉此達到調變光的振幅及相位之目的。電腦產生的影 像全像圖是可以被計算出來的,例如通過同調光線追縱、通過模 擬受到場景反射的光以及參考波之間的干擾,或者通過傅立葉 ⑩ (Fourier)或菲涅耳(Fresnel)轉換。一個理想的空間光調變器是 " 能表現任意複數的數值,即分別控制進入光波的相位及振幅。然 、而’典型的空間光調變器只能控制振幅或相位其中一種特性,並 且帶有影響其他特性的不良效應。調變光的振幅及相位具有幾種 不同的方式,例如利用電子式定址液晶空間光調變器、光學式定 址液晶空間光調變器、磁光空間光調變器、微鏡裝置或者聲光調 變器。光的調變可為空間上連續的或由個別可定址元件所構成, 可為一維或二維排列、二進制、多階層或連續。 6 200844693 值來對入^ ’專有名詞”編碼”意指提供空間光調變器控制 重建。戶圖、扁碼,使得二維場景可以透過空間光調變器來進行 所μ空間光調變器編碼全像圖”綠全像圖在空 益上進行編碼。 ^ :於、、、屯自動式立體顯示板,觀察員透過影像全像圖可觀察 . ^ 光波波_光學4建。三維場景是在延伸於觀察員的 • ^及:間光調變器之間或者甚至空間光調變器之後的空間進行 &建。空間光調變器也能利用影像全像圖進行編碼,使得觀察員 能在空間光調變器之前觀察到重建的三維場景物件,而在空間光 凋全為上或其後方觀察到其他物件。 1光凋堯為的元件疋光傳輸性較佳的元件,其射線所產生 的干擾至夕在定義的位置,並且超過幾毫米的空間同調性長 度W可提供全像重建至少在一個維度具有足夠的解析度。這類 鲁 型的光將稱為’’充份同調光”。 * 為了縣足_咖_性,由光源發射的光譜必需限制於 •-偏當狹窄的波長翻内,也就是必需接近單色。高亮度發光 -極體(LEDs)的光譜頻寬是足夠狹窄來確保全像重建的時間同調 性。核縣調變ϋ上的繞射歧與波長成關,意指只有一個 單色光源將導致目標點的重建強烈。朗的光酬導致寬闊的目 標點以及模躺目標重建。#獅的光譜可以被當料單色的。 發光-極體(XED)的光#練寬是充份狹窄的,能幫助較佳的重建。 7 200844693 空間同離與光源的橫向寬度有關。習用的光源、,像是發光 二極體(LEDs)或者冷陰極發光燈(CCFLs),如果它們的發射光是 通過充彳7?狹*的缝隙也可以滿足這些需求。雷射光源的光可視為 從繞射限制_光_發射,根據模型_純度、將產生目標的 尖銳重建’即每-個目標點被重建為繞射限制的點。 從工間非同凋光源所產生的光是橫向延伸,並且會造成重建 目I板糊。㈣的情況是由重建在既定位置的目標點寬闊大小所 決定。為了在全像圖重建上使用空間非同調光源,必須在亮度和 利用孔徑限觀源橫向寬度之間找到—個折衷點。較小的光源, 會得到比較好的空間同調性。 、、如U:肖於縱向延展的觀絲瓣,直線統可被視為點 、一’、口此光波就能在那個方向進行同調傳播,並且非同調於 其他方向。 八5 ’全像圖藉由波在水平和垂直方向白勺同調超重疊來 、像地重建%景。上述的影像全像圖被稱做全視差全像圖。重建 =物件可被視為在水平和垂直方向的移動視差,如同真實物件。 然較相可視紐需要在空間光調變n的水平㈣直方向具 有高的解析度。 8 200844693 有全像重建。辦導致4義件科斜義視差。透視圖並不 會在垂直義上改變。僅具辑視差的全像_要线光調變器 通系工間光》周欠為的而求會因為限制於僅具水平視差(_) 的全像_減少。全像4賴赴於斜方向,㈣直方向不會 在垂直方向_減會少於全視差的全侧。僅具垂直視差⑽)200844693 IX. Description of the invention: [Technical field of invention] The present invention is a holographic display device, and particularly includes a first electronically-positioned spatial light eliminator and a first electronically-positioned spatial light modulator, and is permeable to one Or multiple virtual observer windows to see the holographic reconstructed hologram display device. [Prior Art] _ C〇mpUter-generated vide〇holograms (CGHs) are compiled from one or more spatial light modulators (SLMs); space The light modulator can include electronic or optically controllable elements. These components encode the hologram values based on the image hologram to achieve the purpose of modulating the amplitude and phase of the light. Computer-generated image holograms can be calculated, such as by coherent ray tracing, by simulating the reflection of light reflected by the scene, and by reference waves, or by Fourier or Fresnel. Conversion. An ideal spatial light modulator is " can represent any complex number of values, that is, control the phase and amplitude of the incoming light wave. However, a typical spatial light modulator can only control one of the amplitudes or phases, with adverse effects that affect other characteristics. The amplitude and phase of the modulated light can be varied in several ways, such as using an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a magneto-optical spatial light modulator, a micromirror device, or an acousto-optic light. Modulator. The modulation of light may be spatially contiguous or consist of individual addressable elements, which may be one or two dimensional, binary, multi-level or continuous. 6 200844693 The value to encode the 'proper noun' code means to provide spatial light modulator control reconstruction. The user map and the flat code enable the two-dimensional scene to be encoded by the spatial light modulator to encode the hologram of the μ-space optical modulator. The green hologram is encoded on the air. ^ :Auto, 、, 屯Stereoscopic display panel, the observer can observe through the image hologram. ^ Lightwave _ Optical 4 is built. The 3D scene is extended between the observer's ^ ^ and : inter-optical modulator or even after the spatial light modulator Space & Space Light Modulators can also be coded using image holograms, allowing observers to observe reconstructed 3D scene objects before spatial light modulators, while spatially or otherwise Other objects are observed. 1 Light-emitting components are better in light transmission, and the interference caused by the rays is at a defined position, and the spatial coherence length exceeding a few millimeters can provide holographic reconstruction. There is sufficient resolution in one dimension. This type of Lu-shaped light will be called ''full dimming'). * For the county foot _ _ _ sex, the spectrum emitted by the light source must be limited to - - the narrow wavelength of the turn, that is, must be close to monochrome. High-brightness illumination - The spectral bandwidth of the polar bodies (LEDs) is narrow enough to ensure time homology of holographic reconstruction. The diffraction divergence on the nucleus of the nuclear county is related to the wavelength, meaning that only one monochromatic source will result in a strong reconstruction of the target point. Long's rewards lead to wide target points and reconstruction of the model. The spectrum of #狮 can be considered monochrome. Light-polar (XED) light # Width is narrow and can help better reconstruction. 7 200844693 The spatial separation is related to the lateral width of the light source. Conventional light sources, such as light-emitting diodes (LEDs) or cold cathode light-emitting lamps (CCFLs), can also meet these needs if they emit light through a 7-inch gap. The light from the laser source can be viewed as a point from the diffraction limit _ light_emission, according to the model_purity, which will produce a sharp reconstruction of the target, ie each target point is reconstructed as a diffraction limit. The light generated from the non-conforming light source in the work room is laterally extended and causes reconstruction of the I. (4) The situation is determined by the wide size of the target point of reconstruction at a given location. In order to use a spatially non-coherent light source for hologram reconstruction, a compromise must be found between the brightness and the lateral width of the source of the aperture. Smaller sources will give better spatial coherence. For example, if U is a longitudinally extending viewing wire, the straight line can be regarded as a point, a ', and the light wave can transmit in the same direction in the same direction, and it is not in the same direction. The eight 5' hologram reconstructs the % scene by super-overlapping the waves in the horizontal and vertical directions. The above image hologram is referred to as a full parallax hologram. Reconstruction = Objects can be viewed as moving parallax in the horizontal and vertical directions, just like real objects. However, the phase of the visible light needs to have a high resolution in the horizontal direction of the spatial light modulation n (four). 8 200844693 There is a holographic reconstruction. The office led to the 4th Division of the oblique parallax. The perspective does not change vertically. A holographic image with only a series of parallax _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The hologram 4 depends on the oblique direction, and (4) the straight direction does not decrease in the vertical direction less than the full side of the full parallax. Only vertical parallax (10)

的全像圖是隨可以域的但較騎見。全像纽只發生在垂直 方向,會產生具有垂直移動視差的重建物件。而在水平方向不會 有移動視差。由於左眼和右眼觀_的透視圖不同,因此透視圖 必須分別地產生。 討論相關的技術 典型地,用於產生三維圖像的裝置較缺乏緊冑,即需要複雜 鲁及龐大的光學系統’使其無法使用在可攜式裝置,或在手持式裝 —置’例如手機。以,職咖為例,用於產生較大三維圖_ ,裝置長度是以公尺為單位。以難〇4/〇44659⑽嶋 為參考,用於重建影像三維圖像的裝置具有超過1()公分的厚度。 因此,上述的習用裝置對於手機或其他可攜式、手持式或車^的 顯示裝置具有過厚的厚度。 在W0 20_44659 (_06/_994)之中提及藉由充份同調 9 200844693 的繞射重建二維場景概置;裝置_光源或直線光 於對焦光_伽物技嶋。她於軸全料-空間光調變器於傳輸模式至少在—個„虛擬觀察員視窗”重:二 維場景(關於虛擬觀察員視窗的描述及相關的技術請參考附件^ π)。每-個虛擬觀察員視窗是設置於靠近觀察員的眼睛,並且 小上受到限制,所以虛擬觀察員視窗是於單—的繞射階級,因此 每一個眼睛可赠見三_景在_㈣杜_完整重建 錐狀的重歧間是延展於郎光機器表面及虛擬齡員 間。為了讓全歸建沒有谓,虛_察員織的大小必需錢 過重建的-個繞射階級週期性間隔。然而,這必需至少足夠大, 能讓觀察員經由視窗看見三維場景的完整重建。另—個眼睛能經 由相同的虛織察員視窗,或是由第二個光源所產生的第二個虛 擬觀察員視窗來進行觀察。此時,典型上較大的可見區域會限制 於局部設置的虛擬觀察員視窗。f_解決方法是在由習用高解 度空間光調變器表面所產生的微小化大區域進行重建,以減低至 虛擬觀察員視窗的尺寸大小。這將產生由於幾何上原因而較小的 、、:/〇射角度,以及利用’肖費者層級的計算設備,即足夠實現高品質 即時全像重建的光調變器解析度。 然而,已知產生三維圖像的方法,呈現出由於較大的空間光 調變器表面區域,因而需要一個體積大、容量大、重量重及昂貴 200844693 的透絲聚焦的缺點。因此,裝置將有大的厚度及重量。另一個 缺點,是當絲大透斜,祕邊緣的色聽嚴魏減低重 建的品質。在US 20〇6/25_提及一個改進包括透鏡狀陣列的光 源改進方法’ _它是制於域_像全像财,於此作為一 個參考,。 … 在職)擔麵中提到了產生三維影像的手機。然而,所 提及的三轉像是自動讀顯示所產生。_自動立體顯示 產生三_像的—個問題是在典型上觀看者察覺目像是在顯示器 内部,而觀看者的眼_向於射在顯示器的表面上。在許多實 例中觀看:#眼目3的焦點及二維圖像的察覺位置之間的不同,將 可能造成使用者碑服的縣。在_全像技術產生三維圖像的 實例中,這些問題將不會發生,或是大大地減少。 【發明内容】 在第方面’提供了一個全像顯示裝置,包含第一電子式定 ,空間光婦H與第二電子式定址雜光調魏,這個成對能允 ^獨2地碰她與振幅,且在其巾可透過—個或多個虛擬觀察 貝視窗來看見全像重建。全像重建可經由—個或二個虛擬觀察員 視窗來觀察到。顯轉可_背光及微透鏡_進行照射。全像 顯示器裝置可令光源為發光二極體。 11 200844693 一全像顯示裝置可讓-個電子式定址帥光調魏調變相位, 另個電子式定址空間光調變器調變振幅。全像顯示裝置可讓〆 個電子式定址空間光調變器調變相位與振幅的—種組合,另一個 電子式定址空間光調變ϋ調變相位與振幅的另—種不同組合。 全像顯示裝置可讓電子式定址空間光調變器之間不 φ 〇 /、 _ 電子式定址找光霞ϋ可職具有彳Μ、或極小間隔的相鄰 層。電子式定址空間細變ϋ可制歧實體上直接或間接的連 接。 全像顯示裝置可讓光源為固定且實體上直接或間接連接電子 式定址空間光調變器。 全像顯示裝置可使得電子式定址空間光調變器具有有關一個 或多個虛擬觀察員視窗的排列像素。The hologram is available as a domain but more than a ride. A full-image button occurs only in the vertical direction and produces a reconstructed object with a vertical moving parallax. There is no moving parallax in the horizontal direction. Since the perspectives of the left and right eye views are different, the perspective views must be generated separately. DISCUSSION OF RELATED TECHNOLOGY Typically, devices for generating three-dimensional images are less tight, requiring complex and bulky optical systems that make them incapable of being used in portable devices, or in handheld devices such as mobile phones. . For example, the job coffee is used to generate a large three-dimensional map _ , and the length of the device is in meters. Referring to Difficult 4/〇 44659(10)嶋, the device for reconstructing a three-dimensional image of the image has a thickness of more than 1 (cm). Therefore, the above-mentioned conventional device has an excessive thickness for a mobile phone or other portable, handheld or car display device. In W0 20_44659 (_06/_994), it is mentioned that the two-dimensional scene is reconstructed by the diffraction of the coherent 9 200844693; the device_light source or the linear light is focused on the gamma technology. She is in the transmission mode of the full-space optical modulator in the transmission mode at least in the "virtual observer window": two-dimensional scene (for the description of the virtual observer window and related technology, please refer to the attachment ^ π). Each virtual observer window is placed close to the observer's eyes, and the upper limit is limited, so the virtual observer window is in the single-drilling class, so each eye can be given three _ _ in the _ (four) Du _ complete reconstruction The tapered cross-dissection is extended between the surface of the Langguang machine and the virtual inmates. In order to make the full construction no name, the size of the virtual_inspector must be re-established - a periodic interval of the diffraction class. However, this must be at least large enough to allow the observer to see a complete reconstruction of the 3D scene via the window. Another eye can be viewed through the same virtual weaver window or a second virtual observer window generated by the second source. At this point, a typically large visible area is limited to the locally set virtual observer window. The f_ solution is to reconstruct the large areas of miniaturization produced by the surface of the conventional high resolution spatial light modulator to reduce the size of the virtual observer window. This will result in a smaller, geometrical, and/or angle of incidence, as well as a computational device that utilizes a 'Shabber' level, i.e., a modulator resolution sufficient to achieve high quality instant holographic reconstruction. However, it is known that a method of producing a three-dimensional image exhibits the disadvantage of a large volume, large capacity, heavy weight, and expensive warp focusing of 200844693 due to the large spatial light modulator surface area. Therefore, the device will have a large thickness and weight. Another disadvantage is that when the silk is too sharp, the color of the secret edge is severely reduced and the quality of the reconstruction is reduced. A modification of the light source improvement method comprising a lenticular array is mentioned in US 20 〇 6/25 _ _ which is made in the domain _ image, as a reference. ... The on-the-job) mentioned the mobile phone that produces 3D images. However, the three-turn image mentioned is produced by an automatic read display. The problem with auto-stereoscopic display producing a three-image is that the viewer typically perceives that the image is inside the display, while the viewer's eye is directed onto the surface of the display. Watching in many instances: #The difference between the focus of the eye 3 and the perceived position of the two-dimensional image will likely result in a county where the user is convinced. In instances where _Full Image technology produces 3D images, these problems will not occur or be greatly reduced. SUMMARY OF THE INVENTION In a first aspect, a holographic display device is provided, including a first electronic formula, a spatial illuminator H, and a second electronic locating miscellaneous ray, which can directly touch her and Amplitude, and holographic reconstruction is seen in the towel through one or more virtual viewing bay windows. A holographic reconstruction can be observed through one or two virtual observer windows. The display can be illuminated with backlights and microlenses. The holographic display device allows the light source to be a light emitting diode. 11 200844693 A holographic display device allows an electronically-positioned light to adjust the phase, and another electronically-spaced spatial modulator to modulate the amplitude. The holographic display device allows one electronically-positioned spatial light modulator to modulate the combination of phase and amplitude, and the other electronically-spaced spatial tonal modulation modulates the different combinations of phase and amplitude. The holographic display device allows electronically-addressed spatial light modulators to be positioned between φ 〇 /, _ electronically located to the adjacent layer of light or small spacing. The electronic address space is fine-tuned to directly or indirectly connect to the entity. The holographic display device allows the light source to be fixed and physically connected directly or indirectly to the electronic address spatial light modulator. The holographic display device can cause the electronic address spatial light modulator to have an array of pixels associated with one or more virtual observer windows.

I 從第一電子式定址空間光調變器至第二電子式定址空間光調 變器的光的繞射是利用菲涅耳(Fresnel)繞射法則,但是不包含夫 朗和斐(Fraunhofer)繞射法則。 12 200844693 全像顯轉置可使得由第m定址空f狀調變ϋ的每一 個像素所傳送_度切_是人射在第二電子式定址空間光調 變器對應的像素上,考慮在二維剖面的情況。 全像顯示裝置可侧減少第一電子式定址空間光調變器中的 像素孔徑財絲最小化串音,透過菲科繞射酬,但是不包 含夫朗和斐繞射法則。 隔離層可純電子式定址郎光觸器來最小化電磁場,防 止-個電子式定址空間光調變II不良影響鄰近的電子狀址空間 光調變器的效能。透鏡_可設置在電子式定址空間光調變器之 間,以最小化串音。可利用減小第一電子式定址空間光調變器中 的像素孔㈣方絲將$音減至最小。彻夫朗和斐繞射法則, 可減小第-電子式定址m光調變II巾的像素孔徑來最小化串 音。光纖面板可設置在f子式定址郎光調糊之間,以最小化 串音。 全像顯示裝置可讓虛擬觀察員視窗利^空間或時間多工進行 舖置。 13 200844693 全像顯示裝置可使得顯示器為可操作的,以對於氣察員的左 眼接著右眼’在包含全像_介上進㈣間序列地重新⑽全像 圖0 全像顯示裝置可使得顯示器不需要任何的投影透鏡,即可產 生聚焦在螢幕上的二賴像’且無_螢幕離在光學遠場壯 置的距離。 ^I The diffraction of light from the first electronically addressed spatial light modulator to the second electronically addressed spatial light modulator utilizes the Fresnel diffraction law, but does not include Fraunhofer. The law of diffraction. 12 200844693 Full-image transposition can be transmitted by each pixel of the m-th address space f-modulation _ _ _ _ is a person shot on the pixel corresponding to the second electronic address space optical modulator, considering The case of a two-dimensional profile. The holographic display device can reduce the pixel aperture of the first electronically-positioned spatial light modulator to minimize crosstalk, and is transmitted through Ficoll, but does not include the Fraunhofer diffraction rules. The isolation layer can be used to minimize the electromagnetic field by purely electronically arranging the optical contactor, preventing an electronically addressed spatial light modulation II from adversely affecting the performance of the adjacent electronic address space. Lens _ can be placed between electronically addressed spatial light modulators to minimize crosstalk. The $ pitch can be minimized by reducing the pixel hole (four) squares in the first electronically addressed spatial light modulator. The Chevron and Fiji diffraction laws reduce the pixel aperture of the first-electronic address m-modulation II towel to minimize crosstalk. The fiber optic panel can be placed between the f-spots to minimize crosstalk. The holographic display unit allows the virtual observer window to be spaced or time multiplexed for placement. 13 200844693 The holographic display device can make the display operable to re-sequence (10) hologram with the left eye and the right eye of the inspector's left eye and the right eye. The display does not require any projection lens to produce a second image that is focused on the screen and has no distance from the optical far field. ^

王像顯不衣置可使用光束分光鏡來將全像圖像傳送至觀客 的每一個眼睛。 、 源 纖議置在先 全像顯示裝置可·縣指向元件進行虛, 擬觀察員視窗追 中’區域與矩陣之間的介面是棱形,或是球的其 柱的部分_,輕_梅_壯崎=或疋圓 光束指向元株沾η如』_. ^•每万式控制,以變化 成先束#曰向凡件是由等向主體材料内部的液晶區域所組成, 70件的局部折射或繞射屬性 變器、光源及與光源 像’’員不裝置可讓電子式定址空間光調 200844693 排列的透鏡物全部置於賴式盒内, 陣列擴大10至60倍。 且在其t,光源經 由透鏡 全像顯示裝置可_f光及微透鏡陣列進行照射。微透鏡 歹J可在顯Μ的小區域上提供局部關性,此區域是顯示器對於 使用在重建物件之給定關資訊進行編碼的唯-部份。顯示哭^ 包含反射式偏光#。顯示II可包含稜鏡光學膜。 ° 文:::=::生全像重建•一 調 利用”空間光調變H編碼全像圖” t指全像岐在空 變器上進行編碼。 【實施方式】 緊 A.紅外線有機發光二極體顯示器與光學式定址空間光調變器的 密結合 UU歸彳提供光科定址空縣調_與可在光學式定址 空間光調變器'上寫人圖樣的紅外線發射顯示器的緊密結合,這樣 的結合能齡適當的_條件下產生三維圖像。 15 200844693 光學式定址空間光暖n包域光n層與位於在傳導性電極 1的液曰曰(LC)層。當電壓加至電極,入射在感光器層上的光圖 樣將轉換至用於調變讀取光束的液晶層。在習用技術中,入射光 =樣疋由電子式定址空間光調變器(EASL]y_周變的寫入光束所 ,供。電子式定址空間光機II是由光源照射並且成像到光學式 疋址空間_變||上。通常,寫人光束是非_的,可避免斑點 圖樣現象,而讀取絲是㈤雛的,具有產生繞棚案的能力。 光學式奴空間光輕H相較於t子式定址空間光調變器的 優點是光學式定址空間光調變料具有連續、非像素或非隨式 =結構’而電子式定址空間光調變關為像素結構。像素在光的 空間分配上產生銳邊··此銳邊相當於高空間頻率。 高空間頻率會導致在光學遠場裡廣舰射的娜。因此,電子式 纽空間光調變財產生在光學遠場付希望出現的光學繞射加 工⑽’必雜用如空間濾波等已知的技術來消除。在絲處理程 進行1間濾波需要增加額外的步驟,這會讓裝置變的較厚 =會造成光的浪費。光學式定址空間光調變魏型的裝置: 疋月b夠在光學式定址空間光調變財允許連續賴樣產生。連續 的圖樣可讓光強度,具有較少的㈣肖變化在任何給定方向轉換至 光束傳播的方向。因此,較少的陡餐化擁有能比電子式定址介 間光調變H裝置所產生的像素邊緣低的高空間頻率的濃度。在^ 16 200844693 光觸器的裝置中,較低翻高空間頻率可促 置並且比包含電子式定址空間光調變器的裝 相較於電子式定址空間光調變器,光學 ===器裝置可為雙穩態裝置。因此,光學式定址_ 調μ可比電子式放纠光婦雜置具有 这可增加可攜式褒置或手持式裝置的電池壽命。 欠 在乂個實施例介紹不需要成像光學的緊密裝置。光學式定址 空間光調變器利用红外綠古“德义 -極_〜= 體顯示器寫人。有機發光 接連接光學式定址空間光調變器,形成不具成 予的緊後衣置。有機發光二極體可以是可舖置的型式,以电 成有機發光二鋪_。絲式纽郎光調㈣可由多個較小 的可舖置型光學式定址郎細變輯組成。 有機發光二極體_贿光學式紐郎光調魏的緊如且 合可以是透明。透明的有機發光二極體顯示器是目前已知的了例 如在之後的,,有機發光二極體材料”章節中所描述的内容。在—個 例子中,有機發光二極體顯示器與光學式定址空間光調變器的緊 密組合是從對邊至三_像所形成的邊進触射,可見光經由有 機發光二極體與絲式定址空間光調變器向觀察員傳送。更好的 方法是有機發光二__!!發出紅外線來寫人至光學式定址空 17 200844693 間光調變器的紅外線感應感光器層。因為人類的眼睛對紅外線不 敏感’所以觀察者看不見任一種從紅外線寫入光束產生的光。 另一個例子,有機發光二極體顯示_光學式定址空間光調 變器的緊紐合可讓寫人光束與讀取光束在鮮式定址空間光調 、支為的對邊上為入射的。在另一個例子,有機發光二極體顯示器 癱與光學式定址空間光調變器的緊密組合可讓反射層是在光學式: 址空間光調變器的邊上,此為有機發光二極體顯示器的對邊,使 侍二維圖像可從光學式定址空間光調變器的相同邊觀察到,也就 疋有機發光二極體顯示器所在的邊,照射源也如同有機發光二極 醜示樣,位於絲式定址空間光調魏關邊上:這是反 射顯示器的例子。 φ 包括紅外線有機發光二極體的陣列的實施例中,紅外線發射 , 有機發光二極體允剌由光學式定址空間細變ϋ所傳送的可見 • 光的振幅、相位或振幅及相位的組合進行控制,促使全像圖在光 學式定址空間光調變n巾產生。光學式定址空間_變器可包含 一對透明隔板,在隔板上塗有兩種電力導電膜,如同參考資料中 US4,941,735所描述的内容。連續或不連續的感光膜可塗至其中一 個導電膜上。 雙穩悲鐵電式液晶或一些其它型式的液晶,可限制在另一個 200844693 導電膜誠細之間。起動龍可加 間光調變n中,絲式,以光束 絲式定址空 動光學讀料麵触。以私騎財私式或啟 間先调.3^的感光區來程式光學式定址空間工 址空間光婦n被程式的_ I ^。光學式定 讀光束的舰。 了触寫人縣的鱗,旋轉閱 昭明圖=一種實施例。1〇是照明裝置,用於提供平面區域的 …、,、H具有充份關謝纽便能夠產生 二:於蝴影像 -中们例子疋在圖四中。如同1〇 ::=r:r燈或發—在=: 鏡==:=密的’如透一 ^ 於山士 的先/原可由紅、綠及藍雷射所組成,或是 粉、ίΓ雛光的紅、綠及藍發光二極體所组成。然而,具有 充知二間_性的非雷射光源(例如:發光二極 、 =螢:燈)是更佳的、。雷射光源的― 看者/恤點、相對上較為昂貴以及所有關於傷害全像顯示觀 ^或疋進行全像顯示裝置_讀人員的轉等可能的安全問 t元件1〇_13的厚度全部可約為數公分,或是更低。元件η可 韻細_,使得純紐(修紅色、騎賴色光)的像 19 200844693 素是射向元件12,儘管如果使用彩色光源,色彩過渡器是不需要 的。το件12是在透明基板上的紅外線有機發光二極體陣列。紅外 線有機發光二極體陣列將使得每一個紅外線有機發光二極體在元 件13的方向發射的光,平行且符合從唯一對應的色彩像素發出的 光。元件13為光學式絲雜光調麵。鱗式定址空間光 、言周變器,紅外線有機發光二極體陣列提供寫入光束,·元件^發射 鲁的形色光束為讀取光束。位於點I4離包括緊密全像圖產生器 雜置-些距離的觀看者’可從15的方向觀看駐_像。元件 10、1卜U及I3是配置成實體連接(真實上連接),每一個形成結 構的-層,使得整體為單一、統一的物件。實體連接可為直接的。 或是間接的’如果有薄的中間層,覆蓋在相鄰層之間的膜。實體 連接可關在確保正確_互組合制的小區域中,或是可延伸 至較大的區域’甚至層的整個表面。實體連接可由層與層的黏接 •來實現,例如藉由使用光學傳送膠_的方式,以便形成緊密的 ,錄圖產生器I5’或是藉由其它任何的方式(參考概要製造程序部 、Ο / 丄元件10可包含一個或兩個稜鏡光學膜來增加顯示器的亮度: 讀的膜是已知的,例如在us 5,陶9_s 5,919,551中所描 、,〔的内谷70件10可包含偏光疋件’或是偏光元件的集合。線性 偏光薄片是其中-個例子。另外—個例子是反射式偏光片,可傳 20 200844693 达-個線性偏化狀態,並且反射正交線性偏化狀態_這樣的薄片 疋已知的,例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光’可傳送—個圓形偏化狀態,並且反射正交圓形偏 化狀怨-這樣的薄片是已知的,例如在US6,181,395中所描述的 内谷。兀件10可包含聚焦系統,此聚焦系統可為緊密的 ’例如透 鏡狀陣列或微透鏡陣列。元件1G可包含其它在背光科技的領域中 已知的光學元件。 圖四是習用技術侧視圖,指出垂直聚焦系統1104的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形 式’參照於參考資料WO 2006/119920。並以水平線光源LS2幾近 準直的光束通過照明單位的聚焦元件11〇2至觀察員平面〇p為 例。根據圖四,許多的線光源LS1,LS2,LS3是一個個上下排列。 每一個光源發射的光,在垂直方向是充份空間同調性的,在水平 方向是空間非同調性的。這個光會通過光調變器SLM的傳輸元 件。這個光因為全像圖編碼的光調變器SLM的元件,僅在垂直方 向的繞射。聚焦元件1102在觀察員平面〇p以數個繞射階級(只有 一個是有用的)成像光源LS2。由光源LS2所發射的光束是作為只 通過聚焦系統1104的聚焦元件1102的例子。在圖四中,三個光 束顯示第一繞射階級1105、第零繞射階級11〇6及負一繞射階級 1107。與單一點光源相比,線光源允許非常高的光強度產生。使 21 200844693 用多個已增加效率與針對重建三維場景的每一個部分進行線光源 7列的全像區域可提升有效的光強度。另—個優點,不採用雷射, 多個分隔的(例如在可為遮光器一部份的槽闌之後)常見光源可產 生充份的同調光。 B·兩對有機發光二極體與光學式定址空間光調㈣的組合的緊密 ' 組合。 、山 、在更進-步的實施财’可使用兩對機發光二極體與光學 式定址空間光觀11敝合的f密組合,以連軌緊密的方式來 調k的振·及她。目此,由振巾績她城的複數可以逐一像 素的方式在傳送光中編譯。 廷個實施例包含第―由紅外線有機發光二極體_及光學式 籲定址空間光調變器配對的緊密組合及第二由紅外線有機發光二極 ' 體陣列及光學式定址空間光調變器輯的緊密組合。 第-對調變傳送光的振幅,第二對調變傳送光的相位。也可 以第-對調變傳送光的相位,第二對調變傳送細振幅。每一個 、、、工外線有機發光一極體陣列與光學式定址空間光調變器的緊密組 :可如同在A部份所描述的。兩對紅外線有機發光二極體陣列與 光學式纽空間細變II的緊密組合是由紅外線過濾_分離, 22 200844693 紅外線過脑會°及收紅外線而不處理可見光。 曰在第步驟中’第一紅外線有機發光二極體陣列寫入圖樣, 以提財第-光學式紐空間光調變器中的振幅調變。在第二步 、…第外線有機發光二極體陣列寫人圖樣,以提供在第二 光學式定址郎光調變器中的相位調變。紅外線濾、光片阻止紅外 線的戌漏從第-緊如合—肢外秦械發光二減_與光學 式定址找光靖器卿二緊密組合—對紅外線有機發光二極體 陣列’、光子式疋址空間光調變器.紅外線過㈣也預防從第二對红 外線有機發光二極断顺辟式定址㈣細魏的緊密組合 9卜線搞至帛—對紅外财機發光二減_與光學式定址 空間光調變器的緊密組合。然而,紅外線過義傳送從第一對紅 外線有機&光―極體翻與騎式定址空間光調魏的緊密組合 的可見光轉為第二對紅外線有機發光二極體陣順光學式定 址空間光調魏的緊合㈣讀取光束。由第二絲式定址空 間光調變n傳送的光已在钱與她進行調變 ,因此當觀看者觀The king image can be used to transmit a holographic image to each eye of the viewer using a beam splitter. The source fiber is placed in the first holographic display device. The county pointing component is imaginary. The interface between the region and the matrix is the prismatic shape, or the part of the column of the ball _, light_mei_ Zhuangqi = or 疋 round beam pointing to the meta-strain η _ _. ^ • per 10,000 control, to change into the first bundle # 曰 to the workpiece is composed of the liquid crystal region inside the isotropic body material, 70 parts of the The refracting or diffractive property variator, the light source, and the illuminator, such as the illuminator, allow the electronically addressed spatial light tone 200844693 to be placed in a Lai box, and the array is enlarged by 10 to 60 times. And at t, the light source is illuminated by the lens holographic display device _f light and the microlens array. The microlens 歹J provides locality in a small area of the display that is the only part of the display that encodes the given information for the reconstructed object. Show crying ^ contains reflective polarized #. Display II can comprise a ruthenium optical film. ° Text:::=::Real-image reconstruction • One-tone Use of “space light modulation H-coded hologram” t refers to the hologram 岐 encoding on the air conditioner. [Embodiment] The tight combination of the A. Infrared organic light-emitting diode display and the optically-addressed spatial light modulator UU is provided by the optical-addressed space county _ and the optically-addressable space light modulator A close-knit combination of an infrared-emitting display that writes a human pattern, such a combination of age-appropriate _ conditions to produce a three-dimensional image. 15 200844693 Optically addressed spatial light warm n-package light n-layer with a liquid helium (LC) layer at the conductive electrode 1. When a voltage is applied to the electrodes, the light pattern incident on the photoreceptor layer is converted to a liquid crystal layer for modulating the read beam. In conventional techniques, the incident light = sample is supplied by an electronically addressed spatial light modulator (EASL) y_variant written beam. The electronically addressed spatial light machine II is illuminated by a light source and imaged to an optical疋 空间 空间 通常 | 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常The advantage of the t-sampling spatial light modulator is that the optically-addressed spatial light-modulating material has a continuous, non-pixel or non-slave = structure' and the electronically-addressed spatial light modulation is turned into a pixel structure. Sharp edges are produced on the space distribution. · This sharp edge is equivalent to a high spatial frequency. High spatial frequencies will result in a wide-fired naval in the optical far field. Therefore, the electronic neon space light tone becomes rich in the optical far field. The occurrence of optical diffraction processing (10) must be eliminated by known techniques such as spatial filtering. One additional filtering in the wire processing requires additional steps, which can make the device thicker = a waste of light. Optically-addressed spatial light modulation Type of device: 疋月b is enough to achieve continuous grading in the optically-spaced space. The continuous pattern allows the light intensity to have less (four) chord changes in any given direction to the direction of beam propagation. Therefore, less steep meal has a higher spatial frequency concentration than the edge of the pixel produced by the electronically-addressed inter-mode optical modulation H device. In the device of the photo-contact device, the lower turn-up space The frequency can be boosted and compared to an electronically addressed spatial light modulator compared to an electronic addressed spatial light modulator, the optical === device can be a bistable device. Therefore, optical addressing _ 调 μ Comparable electronic amps have the ability to increase the battery life of portable devices or handheld devices. In less detail, a compact device that does not require imaging optics is introduced. Optically-spaced spatial light modulators are utilized. Infrared green ancient "Deyi-polar_~= body display writer. Organic light-emitting connection optically-spaced space light modulator to form a tight rear garment. The organic light-emitting diode can be laid. Type to Electro-optical organic light two shop _. Silk-style New Lang light tone (four) can be composed of a number of smaller, deployable optical positioning Lang fine series. Organic light-emitting diode _ bribery optical New Zealand Lang light Wei as tight as The combination may be transparent. A transparent organic light emitting diode display is what is currently known, for example, in the following, Organic Light Emitting Diode Materials section. In an example, an organic light emitting diode The close combination of the body display and the optically-addressed spatial light modulator is an edge-injection from the opposite side to the three-image, and the visible light is transmitted to the observer via the organic light-emitting diode and the wire-addressed spatial light modulator. A better way is to use organic light-emitting __!! to emit infrared light to write the infrared-sensing photoreceptor layer of the optical modulator. The human eye is not sensitive to infrared rays, so the observer cannot see. Any of the light generated by writing a beam from an infrared ray. As another example, the organic light-emitting diode display _ optically-addressed spatial light modulators can be used to make the write beam and the read beam incident on the opposite side of the freshly-spaced light. In another example, the close combination of the organic light emitting diode display and the optically addressed spatial light modulator allows the reflective layer to be on the side of the optical: address spatial light modulator, which is an organic light emitting diode. The opposite side of the display allows the two-dimensional image to be viewed from the same side of the optically-addressed spatial light modulator, that is, on the side where the organic light-emitting diode display is located, and the illumination source is also like the organic light-emitting diode In the case of the silk-addressed space, the light is on the Weiguan side: this is an example of a reflective display. In the embodiment of φ comprising an array of infrared organic light-emitting diodes, the infrared light-emitting, organic light-emitting diode allows a combination of amplitude, phase or amplitude and phase of visible light transmitted by the optically-spaced fine-tuning space. Control, causing the hologram to be generated in the optically addressed spatial light modulation. The optically addressed space _ variator may comprise a pair of transparent spacers coated with two electrically conductive films as described in the reference US 4,941,735. A continuous or discontinuous photosensitive film can be applied to one of the conductive films. Bistable and sturdy ferroelectric liquid crystal or some other type of liquid crystal can be confined between another 200844693 conductive film. The starter can be used to adjust the n-mode, silk type, and the optical fiber is spot-contacted by the beam. In the private riding or privately-adjusted. 3^ photosensitive area to program the optical address space address space is the program _ I ^. A ship that optically reads the beam. Touching the scales of the county, rotating the Zhaoming map = an embodiment. 1〇 is a lighting device, which is used to provide a flat area of ...,,, H, which can be produced with sufficient enthusiasm to produce two: in the butterfly image - in the example of Figure 4. Like 1〇::=r:r lamp or hair-in =: mirror ==:=tight 'such as through one ^ in the mountain's first / original can be composed of red, green and blue laser, or powder, The red, green and blue light-emitting diodes of the young light. However, it is better to have a non-laser light source (for example, a light-emitting diode, a firefly: a lamp) that is well-known for its two properties. Laser light source - viewer / shirt point, relatively expensive and all about the damage hologram display view or 疋 omnidirectional display device _ read personnel turn, etc. possible security question t element 1 〇 _13 thickness all Can be about a few centimeters or less. The component η can be fine-grained, so that the image of the pure (red, riding) light is directed to the element 12, although a color transition is not required if a colored light source is used. The τ member 12 is an infrared organic light emitting diode array on a transparent substrate. The infrared line organic light emitting diode array will cause each of the infrared organic light emitting diodes to emit light in the direction of the element 13 in parallel and conforming to the light emitted from the unique corresponding color pixel. Element 13 is an optical silk stray surface. The scalar-addressed spatial light, the variator, the infrared organic light-emitting diode array provides a write beam, and the component emits a Lu-shaped color beam as a read beam. The viewer located at point I4 from the close omni-image generator is at a distance - viewing the resident image from the direction of 15. The elements 10, 1 and U3 are configured to be physically connected (realally connected), each forming a layer of structure such that the whole is a single, uniform object. Physical connections can be direct. Or indirect 'if there is a thin intermediate layer, cover the film between adjacent layers. The physical connection can be in a small area that ensures correct _ mutual integration, or can extend to a larger area' or even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer glue to form a compact, recorded image generator I5' or by any other means (refer to the Summary Manufacturing Program, The Ο / 丄 element 10 may comprise one or two 稜鏡 optical films to increase the brightness of the display: a read film is known, for example as described in us 5, Tao 9_s 5,919,551, [the inner valley 70 pieces 10 Contains polarized elements' or a collection of polarizing elements. Linear polarizing sheets are one of them. Another example is reflective polarizers, which can transmit 20 200844693 up to a linearly polarized state, and reflect orthogonal linear polarization State _ such a sheet 疋 is known, for example, as described in US 5,828, 488. Another example is a reflective polarized 'transportable' circularly polarized state, and a reflection of orthogonal circular biased grievances - such Sheets are known, such as the inner valleys described in US 6,181,395. The element 10 may comprise a focusing system, which may be a compact 'eg lenticular array or microlens array. Element 1G may comprise its It is an optical element known in the field of backlight technology. Figure 4 is a side view of a conventional technique, pointing out the three focusing elements 1101, 1102, 1103 of the vertical focusing system 1104, in the form of a cylindrical lens arranged horizontally in the array. In the reference WO 2006/119920, the beam which is nearly collimated with the horizontal line source LS2 passes through the focusing unit 11〇2 of the illumination unit to the observer plane 〇p. According to Fig. 4, many line sources LS1, LS2, LS3 are Arranged one by one. The light emitted by each light source is spatially homogenous in the vertical direction and spatially non-coherent in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. The elements of the image-modulated optical modulator SLM are only diffracted in the vertical direction. The focusing element 1102 is in the observer plane 〇p with several diffraction stages (only one is useful) imaging light source LS2. The beam is taken as an example of a focusing element 1102 that passes only through the focusing system 1104. In Figure 4, the three beams show the first diffractive class 1105, the zeroth diffractive class 11〇6, and the negative Diffraction class 1107. The line source allows for very high light intensity generation compared to a single point source. 21 200844693 uses multiple efficiencies and a full-image area of 7 lines of line source for each part of the reconstructed 3D scene. Improves effective light intensity. Another advantage is that no laser is used, and multiple sources (for example, after a slot that can be part of the shutter) can produce sufficient dimming. B. Two pairs of organic A close 'combination of the combination of the light-emitting diode and the optically-addressed spatial light tone (4). The mountain, in the implementation of the further step-by-step, can use two pairs of light-emitting diodes and optically-addressed space. The combination of f, in a tightly coupled way to adjust the vibration of k and her. In this way, the complex number of the city can be compiled in the transmitted light one by one. Embodiments include a close-in combination of an infrared organic light-emitting diode _ and an optical call-address spatial light modulator and a second infrared-emitting organic light-emitting diode array and an optically-spaced spatial light modulator A close combination of the series. The first pair modulates the amplitude of the transmitted light, and the second pair modulates the phase of the transmitted light. It is also possible to adjust the phase of the transmitted light by the first-pair modulation and the fine amplitude by the second pair of modulation. A close group of each of the organic light-emitting diode arrays and the optically-addressed spatial light modulators can be as described in Section A. The close combination of the two pairs of infrared organic light-emitting diode arrays and the optical button space change II is separated by infrared filtering. 22 200844693 Infrared rays pass through the infrared and receive infrared light without processing visible light. In the first step, the first infrared organic light emitting diode array is written in a pattern to improve the amplitude modulation in the first optical optical spatial modulator. In the second step, the outer-line organic light-emitting diode array writes a human pattern to provide phase modulation in the second optically-positioned Langguang modulator. Infrared filter, light film to prevent the leakage of infrared rays from the first-tight-like-extra-external Qin-induced luminescence reduction _ and optical-type positioning to find the light of the device is closely combined - the infrared organic light-emitting diode array ', photon疋 空间 空间 . . . . . . . 红外线 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四A compact combination of spatially positioned spatial modulators. However, the infrared over-sense transmission converts the visible light from the first pair of infrared organic & light-polar body flip-up and the riding-type address space to the second pair of infrared organic light-emitting diode arrays. Adjust the Wei's tightness (4) to read the beam. The light transmitted by the second wire-type address space light modulation n has been modulated in the money with her, so when the viewer views

看包含這兩個緊密組合對的裝置所發射的糾,觀察者 三維圖像。 /T J 基於白附目倾振㈣崎技術健複錄值絲現 么光-極體_7F讀光學式定址空間光調變器兩者都具有高解析 23 200844693 圖像,使得觀看者可看 度。因此,這個實施例可應用於產生全像 到二維圖像。 平面’顯不—個實施的例子。2G是照明裝置,用於提供 p區域的照明’並且㈣具有充份_雛,能夠產生三維圖 、膽中提供了關於大區域影像全像圖的實例 丨'個例子。這類型的裝置如同20可採用白色___ 陰極榮光燈或發出的光線入射在聚焦系統上的白光發 =其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣 ^ ’者用於2G的光源可由紅、綠及藍雷射所組成,或是發出 充份同雛光的紅、綠及藍發光二鋪所組成。然而,具有充份 空間同調性的非雷射光源(例如:發光二極體,有機發光二極體, 冷陰桎螢光燈)疋更佳的。雷射光源的缺點,像是在全像重建上造 射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀看者 ,或疋進仃全軸喊置絲I作人貞魏料可能的安全問題。 儿件2G.23、26·28的厚度全部可約為數公分,献更低。元 件可包含色彩猶料列,使得彩色光_如紅色、綠色及藍 =的像素是射向元件22’儘管如果使用彩色光源,色彩過濾器 疋不而要❺το件22疋在透縣板上的紅外線有機發光二極體陣 列卜線有機發光一極體陣列將使得每-個紅外線有機發光二 24 200844693 仰的方向發射的光,平行且符合從唯—對應的色彩像 ” X出的光。讀23為光學式定址雜光賴器、。齡光學式定 址空間光調變器,紅外線有機發光二極體陣列提供寫入光束:元 件發射的彩色綠為讀取光束。树%私外線過濾器= 傳送可見光而中斷紅外線光,使得元件22所杳射的紅外線光不影 響元件27。元件27是光學式定址空間光調變器。元件^是在^ 明基板上的紅外線有機發光二極體陣列。紅外線有機發光二極體 陣列將使得每一個紅外線有機發光二極體在元件27的方向發射的 光,平行且符合從唯—對應的色雜素翻的光。關於光學式定 址空間光調變器27 ’紅外線有機發光二極體陣列28提供寫入光 束|元件26發射的彩色光束為讀取光束。關於傳送光,元件23 調^振幅’元件27調變相位。也可以元件27調變振幅,元件幻 凋、欠相位。因為從透明基板28上紅外線有機發光二極體陣列來的 光疋务射在το件26的方向,元件26可吸收紅外線光,防止元件 28的光至光學式定址空間光調賴23。這樣的設定,兩個有機發 光二極體陣列22及28放出的光線,在實質上為相反的方向,確 保兩,學式定址空間光調變器23及27可放置在接近的位置 將光予式疋址空間光調變^ a及π靠近能夠減少光學耗損及因 光束分歧而產生的像素串音問題:當光學式定址空間光調變器23 及27是非常靠近的,可實現通過光學式定址空間光調變器的彩色 光線光束的非重疊傳播的較佳近似值。圖二元件27及28的次序 25 200844693 可以相反,但是這不認為是理想對於實現通過光學式定址空間光 調變器23及27的彩色光線光束之間低串音及高傳輸目標的設定。 元件20可包含一個或兩個稜鏡光學臈來增加顯示器的亮度: 這樣的膜是已知的,例如在1;8 5,056,892與us 5,919,551中所描 述的内容。元件2〇可包含偏光元件,或是偏光元件的集合。^ 偏光薄片是其中—個例子。另外一個例子是反射式偏光片,可傳 ,一個線性飢雜’並且反射正交雜航㈣·這樣的薄片 疋已知的’例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片,可傳送—個_偏化狀態,並且反射正交圓形偏 化=:這樣的薄片是已知的,例如在US6,⑻,395中所描述的 Si陳=Μ可包含聚焦系統’此聚焦系統可為緊密的’例如透 ==物。树㈣他峨科技的領域中 看者密全細產生器25秘置-距離的觀 2及ΙΓ 觀看到三維圖像。元件2〇、f、26、 層,使得整體3Λ體連接(真實上連接)’每—舞成結構的一 間接的,二;:二—Τ。賴射樵的。或是 可限制在確層=的膜。實體連接 G戍中’或是可延伸至較大的 26 200844693 區域’甚至層的整個表面。實體連接可由層與層的黏接來實現, 例如藉由使用光學傳送膠黏劑的方式,以便形成緊密的全像圖產 生态15 ’或是藉由其它任何的方式(參考概要製造程序部份)。 隹圖二中,理想情況下有機發光二極體陣列22及28放出的 光線疋相當準直的。細’實際有機發光二極體放出的光線可能 為不準直’例如朗伯(Lambertianx完全擴散)分配的光。當有機發 光-極體的光放射並不是十分準直時,有機發光二極體可以盡可 能的靠近對應的光學式定址空間光調魏。在這樣的情況,入射 在光學式植空職魏表面的強度將變化至近似人射角餘弦的 平方。在45。或60。的入射光將導致強度僅為垂直入射光的二分之 -或是四分之-。因此’假如有機發光二極體是充份相間隔地隔 ,,可見光像素総㈣,並且足齡近光學式定妙間光調變 益’幾何效應將導致横越光學式定址空間光調變器空間上產生的 電位差發生重域化,甚至是在有機魏二鋪光放射分配為郎 伯(Μ,的限制情況下。入射的紅外線強度在有機發光二極 體的先垂直人射的絲式定址空狀霞器的點之間可能不會降 =’㈣職咖。編_化裝置 〜構,減夕的對比是可接受的。 在圖二中’理想情況下有機發光二極體陣列22及28放出的 27 200844693 光線是相當準直的。然而,實際有機發光二極體放出的光線可能 為不準直,例如朗伯(LambertianXs全擴散)分配的光。當有機發 光二極體的光放射是不準直時,有機發光二極體的幾何光分料 利用布拉格(Bragg)過滤器全像光學元件來進行修正,例如在us ’ 3,670中所^述的内谷。布拉格過濾器全像光學元件可造成光 準直’或是比起沒有賴此元件具有較佳神紐。圖八顯示了 布祕過翁全像光學元件的_實例。在圖八巾,⑼是有機發 光二極體陣列,81是全像光學元件布拉格過滤器,包含布拉格平 面’例如布拉格平面84,而82為光學式定址空間光調變器。在有 機發光二極體陣列80中的一個單一有機發光二極體幻,發射的紅 外線的分佈是如85所示意的分佈。由有機發光二極體陣列骱所 發射的光麟86 ’在全像絲元件S1巾賴㈣,接著近似正交 的入射在光學式定址空間光調變器82上。在這個方法中,改進入 射在光學式纽郎細魏82上的紅外線神紐是可以實現 零的。 另一個實施例如圖五所示。57是照明裝置,用於提供平面區 域的照明,並且照明具有充份的_性,能夠產生三維圖像。如 在US 20〇6/25〇671中提供了關於大區域影像全像圖的實例即為一 個例子。這_的裝置可湖白色光轉列的形式,例如冷陰極 螢光燈或發出的光線人射在聚㈣、統上的白光發光二極體,其中 28 200844693 聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用 於57的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光 的紅、綠及監發光二極體所域L具有充份空賴調性的 非雷射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈) 是更佳的。雷射光源的缺點,像是在全像重建上造成雷射斑點、 相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像 顯示裝置組裝工作人員的眼睛等可能的安全問題。 ► 元件57可包含一個或兩個稜鏡光學膜來增加顯示器的亮度·· 這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描 述的内容。元件57可包含偏光元件,或是偏光元件的集合。線性 偏光薄片是其中-個例子。另外—個例子是反射式偏光片,可傳 送一個線性偏化狀態,並且反射正交線性偏化狀態_這樣的薄片 > 是已知的,例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏 化狀態這樣的薄片是已知的,例如在仍⑽,5中所描述的 内容。树57可包含其它在背光科技的領域中已知的光學元件。 兀件57、50-54的厚度全部可約為數公分,或是更低。元件 51可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色 光)的像素是射向元件S2,儘管如果使用彩色光源,色彩過遽器是 29 200844693 不需要的 耕52是在透明基板上的紅外線有機發光二極體陣列。红外 線有機發光二極體陣列將使得對於每一個色彩像素,一個包含二 種紅外線有機發光二極體的唯—成對在元件53的方向發射的=, 會平打且符合從它們所對應的色彩像素發出的光。第一種的红外 Z機發光确侧,㈣線的紅外線有機 舍先-極體發射第二波長的紅外線,第二波長與第—波長是不相 同的。疋件53是光學式定址空間光調變器。元件%是另一光學 式定址空狀觀11。_絲式定址郎光簡H,紅外線有 鑛光二極體陣列提供寫人絲;元件51發射的彩色絲為讀取 先束。先學式定址空間光調變器53是由有機發光二極斷列U 發射的兩條外·長巾㈣—波長所㈣。絲式定址空間光 调變器53對於有機發光二極體陣列Μ所發射的兩個紅外線波長 的弟二波長不敏感,並且會將有機發光二極體陣列52發射的兩個 紅外線波長的第二波長傳送。光學式定址空間光調變器%是由有 機毛光一極體陣列52發射的兩個紅外線波長中的第二波長所控 制。光學式定址空間光調變器54對於有機發光二極體陣列π所 發射的_紅外長的第—波長是不觀的,或者可利用光學 式定址空間光爾H 53的吸收及/絲防止第—紅外線波長的光 到達光學式定址空間光調魏54,藉由它的吸收,在緊密的全像 30 200844693 圖產生器55中,並不一定需要對於第一紅外線波長不敏感的光學 式定址空間細變H Μ。或者也可使用發射雜相波長的單一 種有機發光二極體,兩種不同波長的相對強度是由一個參數所決 疋’像是橫越有機發光二極體的電壓。兩種不同波長的放射可利 用時間多工進行控制。 對於傳送光’元件53調龜幅,元件54觀她。也可以 元件54如振巾* ’元件53調變她。這樣的設定,有機發光二 極體陣列52發射具有兩種不同波長的光,確保兩個光學式定址* 間光調變11 53及54可放置在非常接近驗置。將絲式定址: 間光調變11 53及54靠近能_少光學耗損及目絲分歧而產生 的像素串音問題:當光學式定址空間光調變器%及Μ是非常靠 近的,可實猶過光學歧址空間光觀器_色光線光束的非 重疊傳播的較佳近似值。 位於點%離包括緊密全像圖產生器%的裝置一些距離峨 看者’可從55的方向觀看到三維圖像。元件57、50、51、52、53 疋配置成3體連接(真實上連接),每-個形成結構的-層, 使得整體料—統—的物件。實體連接可為直接的。或是間接 、果有薄的中間層’覆盍在相鄰層之間的膜。實體連接可限 制在確保正確_互排_小_中,或是可延伸至較大的區 31 200844693 -、―甚至層的正個表面。實體連接可由層與層的黏接來實現,例 〜藉由使絲學傳讀軸的方式,以便形成緊㈣全像圖產生 為55 ’或是藉由其它任何的方式(參考概要製絲序部份)。 在光學式定址帥細魏執行振幅處,在典型的設定 、巾’人射的讀取絲絲將讀由將光束通過雜偏光片來達到 _ =性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,其中 電場是由感光層所產生,影響光的偏化狀態。在這樣的裝置中, 離開光學式定址空間光調變器喊會通過另一個線性偏光片,可 因光的偏錄悲改變喊少強度,如同它通過光學式定址空間光 調變器時一樣。 在光學式定址糾光調變錄行她調魏,除非它們已處 _ 於定義的雜偏化狀態’在典型的設定巾,人射的讀取光學光束 將會㈣將光束通過雜偏光絲達到線性偏化。相位調變是由 '施加電場輔騎㈣’射電場是域光層職生,影響光的 相位狀態。在相位調變的一個例子中,使用向列型相位液晶,光 軸方向是間_定的’但是鑛射是施加電壓的函數。在相位調 變的例子中,使用鐵電性液晶,雙折射是固定的’但是光軸的方 向是由施加電壓所控制。在相位調變實作中,使用其中任一種方 法,輸出光束對於由施加電壓控制的輸入光束而言具有相位差。 32 200844693 可執行相位調變的液晶元件的其中一個例子為如如献兑元件 排列,在其中使用了具有正介電賴方向性的向列型液晶的反平 行排列區域,如同在US5,973,817所描述的内容。 C.緊密型光源與電子式定址空間細變騎緊密組合。 這個實施織供電子式定址郎光調魏與充份_性緊密 應型光源的緊密組合,這組合能夠在適當的照明情況下產生三維圖 • 像。 在這個實施例中,描述了不需要成像光學的電子式定址空間 光調變器與緊_光_緊練合。這個實施例提供了—個光源 或多個光源、㈣方法、電子式定㈣fa_t||(EAsLM)及非 必要的77光鏡70件的緊密組合,此組合麟在適當的卿情況下 產生三維圖像。 在圖十一中為一個實施例。110是照明裳置用於提供平面區域 的知明’其帽暇具有充份關雛以便_產生三維圖像。 2006/250671提及—個肖於大區域影像全像圖的照明裝置例 子,其中-_子是在圖四巾。如同nG的裝置可為白光光源陣 列的形式,例如冷陰極螢紐·出的親人射絲㈣統上的 白光發光二極體’其中聚㈣統可為緊密的,如透鏡狀陣列或微 33 200844693 透鏡陣列。或者,用於110的光源可由紅、綠及藍雷射所組成, 或是發出充份同雛光的紅、綠及藍發光二極體所組成。紅色, 綠色及藍色發光二極體可成為有機發光二極體(〇leDs)。然而,具 有充份空間_性的非雷射规(例如:發光二極體,有機發光二 極體,冷陰極縣燈)是更侧。雷射光_缺點,像是在全像重 建上造成雷射賴、姆上較為昂貴以及所有關於傷害全像顯示 觀看者歧進行全像顯示裝置組裝工作人s的眼睛等可能的安全 問題。 元件110的厚度可約為數公分,或是更低。在較佳實施例中, 几件1HM13全部厚度會低於三公分,以便提供充份同調性的緊密 光源。το件111可為色彩過濾器陣列,使得彩色光觀例如紅色、 綠色及藍色光)的像素是射向元件112,儘f如果使卿色光源, 色彩過遽狀不需要的。树112是電子式纽空間光調變器。 元件113疋非必要的光束分光鏡元件。位於點η#離包括緊密全 像圖產生裔115的裝置-些距離的觀看者,可從115的方向觀看 到三維圖像。 元件110可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度·這樣的膜是已知的,例如在仍5,056,892與us 5,919,551中 所描述的内容。元件110可包含偏光元件,或是偏光元件的集合。 34 200844693 線性偏光薄片是其中—個例子。另外—個例子是反射式偏光片, :傳送個線性偏化狀態,並且反射正交線性偏化狀態·這樣的 缚=是已知的’例如在us 5,828,權中所描述的内容。另一個例 干是反射式偏光片,可傳送—麵形偏化狀態,並且反射正交圓 $偏化狀_這樣賴#是已知的,例如在use,⑻,a%中所描 述的内容。元件11G可包含其它在f光科技的領域巾已知的光學 元件。 電子式紐空間光調變H是空間光調魏的—種,在其中元 件陣列中的每-個元件可_電子式進行定址。每個元件對入射 的光進行-些作用’例如用來調變它所傳送的光的振幅,或者調 變它所傳送的光的她’或者調變它所傳送的光的振幅及相位的 組合。在US 5,973,817 +提供了一個電子式定址空間光調變器的 籲例子,此例子為相位調變電子式定址空間光調變器。液晶電子式 , 歧空間細變11為電子式定址空間光調㈣的-侧子。磁光 電子式定址㈣__為電子式定址帥光輕^的另—個例 子0 το件no,m,m及113是配置成實體連接(真實上連接), 每一個形成結構的—層,使得整體為單-、統-的物件。實體連 接可為直接的。或是_的,如果有薄財間層,覆蓋在相鄰層 35 200844693 之間的膜。實體可關在雜正確_錄合㈣的小區域 中,或是可延伸錄大的_,甚至層·絲面。實體連接可 由層與層的黏接來實現,例如㈣使用光學傳送膠賴的方式, 以便形成緊密的全像圖產生器m,歧齡其妹何的方式(參 考概要製造程序部份)。 圖四是習用技術側視圖,指出垂直聚焦系統腿的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形 式。亚以水平線光源LS2幾近準直的光束通過翻單位的聚焦元 件1102至觀祭員平面〇p為例。根據圖四,許多的線光源^工,脱, LS3是-個個上下排列。每—個光源發射的光,在垂直方向是充 份空間__,在水付向是^___。這個光會通過 光調變器SLM的傳輸元件。這麵因為全像圖編碼的光調變器 SLM的元件’僅在垂直方向的繞射。聚焦元件腺在觀察員平面 〇p以數個繞射階級(只有-個是有用的)成像光源LS2。由光源LS2 所發射的光束是作為只通過聚焦系統聰的聚焦元件的例 子在圖四中,二個光束顯示第一繞射階級11〇5、第零階級Η% 及負-階級1107。鮮-點統相比,線統允許非常高的光強 度產生。使用多個已增加效率與針對重建三維場景的每一個部分 進行線光源排列的全像區域可提升有效的光強度。另一個優點, 不採用雷射,多個分隔的(例如在可為遮光器一部份的槽闌之後) 36 200844693 常見光源可產生充份的同調光。 通常’全像顯示用來在虛擬觀察員視窗中重建波前。波前是 ^固實際物體會產生的東西,如果它存在的話。當觀察員的眼睛 疋於可月匕為夕個虛擬觀察員視窗(v〇Ws)中的一個虛擬觀察員 •視窗時,他會看見4義物件。如圖六A _,全像顯示由下列 構成要素所組成.光源,透鏡,空間光調變器及非必要光束分光 鏡0 6為了幫助空間光調變器與可顯示全像圖像的緊密型光源的緊 益組合產生’單-光源及圖六Α的單—透鏡可由統_及透鏡 陣列或透鏡狀陣列分別取代,如圖“所示。在圖六^中,光源 照射空間光調變器,並且透鏡成像光源至觀察員平面。空間光調 • til編碼全像圖像且調變進人的波前,使得波前可重建在虛擬觀 ^ 察員視窗中。非必要光束分光鏡元件可使用來產生數個虛擬觀察 - 員視窗,例如一個用於左眼的虛擬觀察員視窗與一個用於右眼的 虛擬觀察員視窗。 假設使用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光 源必須分隔’使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同 時至虛擬觀察員視窗。 37 200844693 圖六B的裝置適合採用可應用於緊密全像顯示的緊密設計。 這樣的全像顯示可適用於行動應用,例如在行動電話或個人數位 助理中。典型地,這樣的全像顯示將有一英吋或幾英吋等級的螢 幕尺忖。全像次顯示螢幕的尺对可小至^一公分。適合的元件將在 下面作詳細描述。 1)光源/光源陣列 固定的單一光源可使用於簡單的情況下。如果觀察員移動, 觀察員可被追蹤,顯示器可進行調整以使得產生的圖像可讓在新 位置的觀察員看得見。此時,要*是沒虛擬觀察員視窗的追縱, 就是追蹤是在空間光調器、之後使用光束指向元件來進行。 性予目標全像重建。點光源的陣列可與包含二 陣列一起使用。 二維排列透鏡的透鏡Look at the three-dimensional image of the corrector, observer, emitted by the device containing the two closely combined pairs. /TJ based on white eye-catching (four) Saki technical health duplication value silk now - polar body _7F reading optical address space optical modulator both have high resolution 23 200844693 image, making viewers view . Therefore, this embodiment can be applied to generate a hologram to a two-dimensional image. The plane 'not visible' is an example of implementation. 2G is an illumination device for providing illumination of the p-region and (4) is capable of producing a three-dimensional map, and an example of a large-area image hologram is provided in the gallbladder. This type of device can be used as a white ___ cathode glory or a white light emitted by the focusing system on the focusing system = where the focusing system can be tight, such as a lenticular array or a microlens array for 2G The light source can be composed of red, green and blue lasers, or it can be composed of red, green and blue light-emitting tiles. However, non-laser sources (e.g., light-emitting diodes, organic light-emitting diodes, cold-yellow fluorescent lamps) having sufficient spatial coherence are better. The shortcomings of laser light sources, such as shooting spots on holographic reconstruction, relatively expensive and all the viewers about the damage hologram display, or the entanglement of the full axis shouting silk I can be a safety issue for people. . The thickness of the pieces 2G.23 and 26·28 can all be about several centimeters, which is lower. The component may contain a color juxtaposition such that the colored light _ such as red, green, and blue = pixels are directed toward the element 22', although if a color light source is used, the color filter does not have to be οτο 22 The infrared organic light-emitting diode array of the organic light-emitting diode array will cause the light emitted by each of the infrared organic light-emitting diodes 24, 200844693 to be parallel, and conform to the light from the only-corresponding color image "X." 23 is an optically-addressed stray lighter, an optical-addressed spatial light modulator, and an infrared organic light-emitting diode array provides a write beam: the color green emitted by the component is a read beam. Tree % Private Line Filter = The transmission of visible light interrupts the infrared light such that the infrared light emitted by element 22 does not affect element 27. Element 27 is an optically addressed spatial light modulator. Element ^ is an array of infrared organic light emitting diodes on the substrate. The infrared organic light emitting diode array will cause each of the infrared organic light emitting diodes to emit light in the direction of the element 27, parallel and conforming to the only corresponding color mixture. Regarding the optically-addressed spatial light modulator 27', the infrared organic light-emitting diode array 28 provides a write beam; the color beam emitted by the element 26 is a read beam. With respect to the transmitted light, the element 23 adjusts the amplitude 'element 27 to the modulation phase. The component 27 can also modulate the amplitude, the component is fading, and the phase is negative. Since the light ray from the infrared organic light emitting diode array on the transparent substrate 28 is incident on the direction of the τ, the element 26 can absorb infrared light. The light of the component 28 is prevented from being optically tuned to the optically addressed spatial light. 23. With such a setting, the light emitted by the two organic light emitting diode arrays 22 and 28 is substantially opposite in direction, ensuring two, spatially-spaced spatial light. The modulators 23 and 27 can be placed in close proximity to modulate the optical localization of the optical space and reduce the optical loss and the pixel crosstalk caused by the beam divergence: when the optically addressed spatial tone The transducers 23 and 27 are in close proximity to a preferred approximation of the non-overlapping propagation of the colored light beams through the optically addressed spatial light modulator. Figure 2 The order of elements 27 and 28 25 200844693 This can be reversed, but this is not considered to be ideal for achieving low crosstalk and high transmission targets between the colored light beams passing through the optically addressed spatial light modulators 23 and 27. Element 20 can include one or two xenon optics.臈 增加 增加 增加 增加 : 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 这样 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 An example is a reflective polarizer that can transmit, a linear hunger, and a reflection of the orthogonal singularity (four). Such a sheet is known as described in, for example, US 5,828,488. Another example Is a reflective polarizer that can transmit a _-biased state, and reflects orthogonal circular polarization =: such a sheet is known, for example, as described in US 6, (8), 395, Focusing system 'This focusing system can be tight' such as through. Tree (4) In the field of his technology, the viewer is full of fine 25 generators - the concept of distance 2 and ΙΓ to see the three-dimensional image. The elements 2〇, f, 26, and layers, such that the entire 3 body is connected (realally connected), each of which is an indirect, two; Lai shot. Or it can be limited to the film with the layer =. The physical connection G戍' can extend to the larger 26 200844693 area even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generation state 15' or by any other means (refer to the outline manufacturing procedure section). ). In Fig. 2, the light emitted by the organic light-emitting diode arrays 22 and 28 is ideally collimated. The light emitted by the fine 'actual organic light-emitting diodes may be light that is not collimated, such as Lambertianx's complete diffusion. When the light emission of the organic light-polar body is not very collimated, the organic light-emitting diode can be as close as possible to the corresponding optically-spaced light. In such a case, the intensity of the incident on the surface of the optical implant will change to the square of the cosine of the human angle. At 45. Or 60. The incident light will result in a intensity that is only two- or - four-quarters of the normal incident light. Therefore, if the organic light-emitting diodes are separated by a sufficient interval, the visible light pixel 総 (4), and the age-near optical tuned light-modulated variability 'geometry effect will lead to traversing the optically-spaced spatial light modulator space. The potential difference generated on the surface is re-localized, even in the case of the organic Wei-two-spreading radiation distribution as the Lange (Μ, the limit case. The incident infrared intensity is in the vertical vertical shot of the organic light-emitting diode. Between the points of the gaze device may not fall = '(4) staff coffee. Editing _ chemical device ~ structure, the contrast of the eve is acceptable. In Figure 2 'ideally, the organic light-emitting diode array 22 and 28 The emitted light of 2008 2008693 is quite collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as the light distributed by Lambertian Xs. When the light emission of the organic light-emitting diode is When not collimated, the geometrical light split of the organic light-emitting diode is modified using a Bragg filter holographic optical element, such as the inner valley described in us '3,670. Bragg filter holographic optical element Causing light collimation' is better than not relying on this component. Figure 8 shows an example of a fabric-like omni-directional optical component. In Figure 8, the (9) is an organic light-emitting diode array, 81 Is a holographic optical element Bragg filter comprising a Bragg plane 'for example a Bragg plane 84, and 82 is an optically addressed spatial light modulator. A single organic light emitting diode in the organic light emitting diode array 80, emitting The distribution of the infrared rays is a distribution as illustrated by 85. The light ray 86' emitted by the organic light-emitting diode array 在 is in the full-image element S1 (4), and then approximately orthogonally incident in the optically-addressed space. In the method 82, the infrared ray which is incident on the optical neutron is 82 can be realized. Another embodiment is shown in Fig. 5. 57 is a illuminating device for providing a planar area. Illumination, and illumination is sufficient to produce three-dimensional images. An example of a large-area image hologram is provided in US 20〇6/25〇671. This device can be used as an example. Lake white In the form of a light-transfer, such as a cold-cathode fluorescent lamp or a light-emitting diode that emits light on a poly(four), system, the 28 200844693 focusing system can be compact, such as a lenticular array or a microlens array. Alternatively, the light source for 57 may be composed of red, green, and blue lasers, or the red, green, and illuminating diodes that emit sufficient coherent light have a non-laser that is sufficiently vacant. Light sources (eg, light-emitting diodes, organic light-emitting diodes, cold-cathode fluorescent lamps) are better. The disadvantages of laser light sources, such as laser spots on holographic reconstruction, are relatively expensive and all Possible safety issues such as the damage hologram showing the viewer or the eyes of the holographic display assembly staff ► Element 57 can contain one or two 稜鏡 optical films to increase the brightness of the display. The contents described in, for example, US 5,056,892 and US 5,919,551. Element 57 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are one of them. Another example is a reflective polarizer that can transmit a linearly biased state and reflect an orthogonal linearly biased state _ such a sheet > is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state, and a sheet that reflects an orthogonal circularly polarized state is known, for example, as described in still (10), 5. Tree 57 may comprise other optical components known in the art of backlighting. The thickness of the jaws 57, 50-54 may all be on the order of a few centimeters or less. Element 51 may comprise a color filter array such that pixels of colored light (eg, red, green, and blue light) are directed toward element S2, although if a color light source is used, the color filter is 29 200844693. An infrared organic light emitting diode array on the substrate. The infrared organic light emitting diode array will enable, for each color pixel, a pair of two infrared organic light emitting diodes that emit only in the direction of element 53 will be flattened and conform to the color pixels from which they correspond. The light emitted. The first type of infrared Z illuminates the side, and the infrared ray of the (four) line first emits a second wavelength of infrared light, and the second wavelength is different from the first wavelength. The element 53 is an optically addressed spatial light modulator. Element % is another optically addressed vacancy view 11. _ wire-type addressing Lang Guangjian H, infrared has a mineral light diode array to provide a human silk; the color yarn emitted by the component 51 is read first. The pre-study address spatial light modulator 53 is two outer and long towels (four)-wavelength (four) emitted by the organic light-emitting diode. The wire-addressed spatial light modulator 53 is insensitive to the two infrared wavelengths of the two-infrared wavelength emitted by the organic light-emitting diode array and will emit the second of the two infrared wavelengths emitted by the organic light-emitting diode array 52. Wavelength transmission. The optically addressed spatial light modulator % is controlled by a second of the two infrared wavelengths emitted by the organic hair lens array 52. The optically-addressed spatial light modulator 54 is invisible to the first wavelength of the _IR long emitted by the organic light-emitting diode array π, or may utilize the absorption and/or wire prevention of the optically-addressed space H 53 - the infrared wavelength of light reaches the optically addressed spatial light modulation Wei 54, by which absorption, in the compact hologram 30 200844693 map generator 55, does not necessarily require an optical addressing space that is insensitive to the first infrared wavelength Fine-tuned H Μ. Alternatively, a single organic light-emitting diode emitting a hetero-phase wavelength may be used. The relative intensities of the two different wavelengths are determined by a parameter such as the voltage across the organic light-emitting diode. Two different wavelengths of radiation can be controlled by time multiplexing. For the transmitted light 'element 53', the element 54 is viewed. It is also possible to modulate her by element 54 such as a vibrating towel*' With such a setting, the organic light emitting diode array 52 emits light having two different wavelengths, ensuring that the two optically addressed* optical modulations 11 53 and 54 can be placed in close proximity to the assay. Positioning the wire: Inter-optical modulation 11 53 and 54 are close to the pixel crosstalk problem that can be caused by less optical loss and divergence of the eye: when the optical address space optical modulator % and Μ are very close, A better approximation of the non-overlapping propagation of the optical spectroscopy optical illuminator. The device located at a point % from the % of the compact hologram generator is some distance 峨 viewer can view the three-dimensional image from the direction of 55. The elements 57, 50, 51, 52, 53 are arranged in a 3-body connection (real connection), each forming a structural-layer, such that the overall material-like object. Physical connections can be direct. Or indirect, fruity thin intermediate layer 'covers the film between adjacent layers. The physical connection can be limited to ensure correct _ mutual _ small _, or can be extended to a larger area 31 200844693 -, even the positive surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example, by making the line read the axis so that the compact (four) hologram is generated as 55 ' or by any other means (refer to the outline silking order) Part). At the amplitude of the optical positioning of the fine Wei, in a typical setting, the reading of the towel is read by the beam passing through the hybrid polarizer to achieve _= sex bias. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, wherein the electric field is generated by the photosensitive layer, affecting the polarization state of the light. In such a device, leaving the optically addressed spatial light modulator will pass through another linear polarizer, which can be less intense due to the erratic change of the light, as it is when optically spatially modulating the spatial modulator. In the optical addressing, the brightness correction is recorded, except that they have been in the defined hetero-biased state. In a typical setting, the human-reading optical beam will (four) pass the beam through the hybrid polarizer. Linearly biased. The phase modulation is caused by the 'applying electric field auxiliary riding (four)' field. The electric field is the directional layer, affecting the phase state of the light. In one example of phase modulation, a nematic phase liquid crystal is used, the direction of the optical axis being a constant - but the mineralization is a function of the applied voltage. In the case of phase modulation, ferroelectric liquid crystal is used, and birefringence is fixed 'but the direction of the optical axis is controlled by the applied voltage. In phase modulation implementation, using either of these methods, the output beam has a phase difference for the input beam that is controlled by the applied voltage. 32 200844693 One example of a liquid crystal element that can perform phase modulation is, for example, a redistribution element arrangement in which an anti-parallel arrangement of nematic liquid crystals having positive dielectric directionality is used, as in US 5,973,817. Described content. C. The compact light source is closely combined with the electronic positioning space. This implementation is a close-knit combination of electronically-positioned Lang Guangwei and a full-fledged styling source that produces a three-dimensional image with appropriate illumination. In this embodiment, an electronic address space optical modulator that does not require imaging optics is described as being tightly coupled. This embodiment provides a close combination of a light source or a plurality of light sources, a (four) method, an electronic formula (four) fa_t|| (EAsLM), and an optional 77 light mirror 70. This combination produces a three-dimensional map in the appropriate case. image. In Figure 11 is an embodiment. 110 is a lighting skirt used to provide a flat area of knowledge 'its cap is sufficiently closed to produce a three-dimensional image. 2006/250671 refers to an example of a lighting device that is a large image of a large area image, in which the -_ sub is in Figure 4. The device like nG can be in the form of a white light source array, for example, a cold cathode fluorescent light emitting a white light emitting diode (in the white light emitting diode), wherein the poly (four) system can be compact, such as a lenticular array or micro 33 200844693 Lens array. Alternatively, the light source for 110 may be composed of red, green, and blue lasers, or may be composed of red, green, and blue light-emitting diodes that are sufficiently light. Red, green and blue light-emitting diodes can be organic light-emitting diodes (〇leDs). However, non-laser gauges with sufficient space (eg, light-emitting diodes, organic light-emitting diodes, cold cathode lamps) are more lateral. Laser light_disadvantages, such as the glare-reconstruction of the laser, the expensiveness of the laser, and all the safety issues associated with the damage of the hologram display viewer's eyes to the hologram display device assembly worker's eyes. Element 110 may have a thickness of about a few centimeters or less. In the preferred embodiment, several pieces of 1HM13 will have a total thickness of less than three centimeters to provide a closely spaced, compact source. The το member 111 can be a color filter array such that the pixels of the colored light, such as red, green, and blue light, are directed toward the element 112, which is not required if the color source is too bright. Tree 112 is an electronic neo-space light modulator. Element 113 is a non-essential beam splitter element. The viewer at the point η# from the device including the close-up hologram 115 is able to view the three-dimensional image from the direction of 115. Element 110 may comprise one or two xenon optical films to increase the brightness of the display. Such films are known, for example, as described in still 5,056,892 and us 5,919,551. Element 110 can comprise a polarizing element or a collection of polarizing elements. 34 200844693 Linear polarizing sheets are one of them. Another example is a reflective polarizer, which transmits a linearly biased state and reflects the orthogonal linearly biased state. Such a constraint = is known, for example, as described in US 5,828, the right. Another example is a reflective polarizer that transmits a -plane-biased state, and reflects an orthogonal circle of $biased_ such that Lai is known, for example, as described in use, (8), a%. . Element 11G may comprise other optical elements known in the field of f-light technology. The electronic neon space light modulation H is a kind of spatial light modulation Wei, in which each component in the element array can be electronically addressed. Each element performs some action on the incident light 'for example, to modulate the amplitude of the light it transmits, or to modulate the light it transmits, or to modulate the combination of the amplitude and phase of the light it transmits. . An example of an electronically addressed spatial light modulator is provided in US 5,973,817+, which is a phase modulated electronic addressed spatial light modulator. The liquid crystal electronic type, the fine-grained space 11 is the - side of the electronically-spaced spatial light (4). Magneto-optical electronic addressing (4) __ is an electronic example of positioning light and light ^ another example 0 το pieces no, m, m and 113 are configured as physical connections (real connection), each forming a layer of the structure, making the whole It is a single-, unified-object. Entity connections can be direct. Or _, if there is a thin fiscal layer, cover the film between the adjacent layer 35 200844693. The entity can be closed in a small area of the correct _ recording (4), or can be extended to a large _, or even a layer of silk. The physical connection can be achieved by layer-to-layer bonding, for example (4) using an optical transfer glue to form a compact hologram generator m, depending on how it is used (refer to the Summary Manufacturing Procedures section). Figure 4 is a side view of a conventional technique showing the three focusing elements 1101, 1102, 1103 of the vertical focusing system legs in the form of cylindrical lenses arranged horizontally in the array. The near-collimated beam of the horizontal line source LS2 is exemplified by the unit of focusing element 1102 of the flip unit to the plane 〇p of the spectator. According to Figure 4, many of the line sources are off, and the LS3 is arranged one above the other. The light emitted by each light source is a sufficient space __ in the vertical direction and ^___ in the water direction. This light passes through the transmission element of the light modulator SLM. This is because the elements of the hologram-encoded optical modulator SLM are only diffracted in the vertical direction. The focusing element gland is in the observer plane 〇p with several diffraction stages (only one is useful) imaging source LS2. The light beam emitted by the light source LS2 is an example of a focusing element that passes only through the focusing system. In Fig. 4, the two light beams display a first diffraction order 11〇5, a zeroth order Η%, and a negative-class 1107. Compared to the fresh-point system, the line system allows very high light intensity to be generated. Efficient light intensity can be enhanced by using a plurality of holographic regions that have increased efficiency and arranged for each of the portions of the reconstructed three-dimensional scene. Another advantage is that no lasers, multiple partitions (for example, after a slot that can be part of the shutter) 36 200844693 Common light sources produce sufficient dimming. Usually the 'Full Image display' is used to reconstruct the wavefront in the virtual observer window. The wavefront is what the solid object will produce if it exists. When the observer's eyes linger on a virtual observer in the virtual observer window (v〇Ws), he will see 4 objects. As shown in Figure 6A _, the hologram display consists of the following components: light source, lens, spatial light modulator and unnecessary beam splitter 0 6 to help spatial light modulator and compact display of holographic image The compact combination of the light source produces a 'single-light source and the single-lens of the figure 可由 can be replaced by the _ and the lens array or the lenticular array, as shown in the figure. In Figure 6 ^, the light source illuminates the spatial light modulator And the lens images the light source to the observer plane. The spatial light modulation • til encodes the holographic image and is modulated into the wavefront so that the wavefront can be reconstructed in the virtual observer window. The optional beam splitter element can be used To create several virtual observer windows, such as a virtual observer window for the left eye and a virtual observer window for the right eye. Assuming that the source array and the lens array or lenticular array are used, the light sources in the array must be separated 'Let the light passing through the lens array or the lenticular array of all the lenses simultaneously to the virtual observer window. 37 200844693 The device of Figure 6B is suitable for use in compact holographic displays. This omni-directional display is suitable for mobile applications, such as in mobile phones or personal digital assistants. Typically, such holographic displays will have a screen size of one inch or a few inches. The scale of the screen can be as small as ^1 cm. Suitable components will be described in detail below. 1) A single source of light source/light source array can be used for simple cases. If the observer moves, the observer can be tracked. Adjustments are made so that the resulting image is visible to the observer at the new location. At this point, * is the tracking of the virtual observer window, that is, the tracking is performed in the spatial light modulator followed by the beam pointing component. Sexual image reconstruction. The array of point sources can be used with two arrays.

可設定的光源陣列可藉由以背光照亮的液晶顯示器(lcd)來 實現。為了產生點或線光源的陣列,只有適#的像素是切換到傳 送狀態。這些光源的孔徑必須足夠小,以保證提供充份空間同調 鏡的透鏡狀陣列一起使用。 較好的是將有機發光二極體顯示器作為統_。身為自發 38 200844693 光衣置,比起液日日絲員示器大部分產生的光會由如色彩過滤器等元 件吸收或是為處在非充份傳遞狀態下的像素,能具有更好的緊密 性及更好的省電效果。然而,液晶顯示器可能比有機發光二極體 顯示器更具有整體價格優勢,即使有機發光二極體顯示器能比液 晶顯示器以更有效率的方式提供光線。當以有機發光二極體顯示 斋作為光轉_,只有切換至其上的像素需要在眼睛位置產生 虛擬觀察員視窗。有機發光二極體顯示器可具有二維排列的像素 或是-維制的線絲。每—個點光源的發光區域或是每一個線 光源的寬度都需要足夠的小,來保證提供充份空間同調性於目標 的全像重建。同樣的,點光源的陣列較適合與包含二維排列透鏡 的透鏡陣列-起使用。線光源的陣列是較適合與包含平行排列圓 柱形透鏡的透鏡狀陣列一起使用。 2)聚焦方法:單—透鏡,透鏡陣列錢鏡狀陣列 聚红具成像—個光源或多個絲至觀察貞平面。者 =非常靠近聚焦工具時,在空間先調變器中編二的 件。^是錢謝W嫩-倾數個聚焦元 干工間_變||鱗焦玉位置是可以交換的。 對於t 緊密組合, 子式定址纠光調魏、與祕_性妓_光源的 薄的聚焦工具是必制:制具有凸_折射透鏡是 39 200844693 過厚的。取而代之的是使用繞射或全像透鏡。繞射或全像透鏡可 具有單一透鏡、透鏡陣列或透鏡狀陣列的功能。這樣的材料是存 在的’如由 Physical Optics Corporation,Torrance,CA,USA 所提供 的表面起伏全像產品。或者是使用透鏡陣列。透鏡陣列包含二維 排列的透鏡,每一個透鏡分配至光源陣列的一個光源。另一個選 擇是使用透鏡狀陣列。透鏡狀陣列包含一維排列够圓柱形透鏡, 每一個透鏡有一個在光源陣列中的對應光源。如上所述,如果使 用光源陣列與透鏡陣列或疋透鏡狀陣列,陣列中的光源必須分 隔,使得騎透鏡_或是透鏡狀_全部透鏡的光同時至虛擬 觀察員視窗。 通過透鏡陣列或是透鏡狀陣列的透鏡的光對於任何其它的透 鏡是非_的。因此,在空醜婦紅編碼的全像圖是由次全 籲像圖所組成’每-個次全像圖對應至一個透鏡。每—個透鏡的孔 -徑必須足夠大,以保證重建物件的解析度足夠。可以使用孔徑與 全I圖編石馬區域典型&寸幾乎的透鏡,如在 讎_94中所描述的例子。也就是說每—個透鏡的孔徑是 一或數宅米。 3)空間光調變器 編碼。通常,對於全像圖的編碼 全像圖是在空間光調變器上 200844693 是由複數的二維_所組成。因此,理想上空間光調變器應 夠調變通過空間光調變器每一個像素的局部光光束的振幅及相 位。然而’-般的空間光調變器只能調變振幅或是相位,而不能 獨立進行調變。 振幅調變空間光調變器可與執跡相位編碼組合使用,例如布 A哈特(Burckhardt)編碼。它的缺點是需要兰個像素來編碼-個複 數,並且重建的物件亮度較低。 相位調變空間光調變器可產生較高亮度的重建。舉例而言, 可使用所謂的2相位編碼,棚兩個像素來編碼—個複數。 儘官電子式定址空間光觀II具有侧邊緣的特性,這將導 # 致不希望的較高繞射階級在它們的繞射圖樣中,可藉由使用柔軟 孔絲減少或排除這些_。柔軟孔徑是不具绪傳送截止的孔 .a。柔軟孔徑傳送方法的一個例子是具有高斯圖形。高斯圖形是 已知對於繞射系統有幫助的。理由是高斯函數的傅立葉轉換為高 斯函數本身的鮮結果。因此,她於_具有在本身傳送圖形 中尖銳截止的孔徑進行傳送,除了橫向比例參數之外,光束強度 波形函數的繞射是不改變的。可使用高斯傳送_的薄片陣列。 當這些被提供與電子式定址空間光調變器孔徑排列在一起,與具 41 200844693 有在光束傳送圖形中尖銳截止的系統相比,將得到無較高繞射階 級或大量減低的較高繞射階級系統。高斯過濾器或柔軟孔徑過溃 為會抑制繞射加工品為高空間頻率。高斯器過濾或柔軟孔徑過液 器會最小化在對於左右眼的虛擬觀察員視窗之間的串音。 4)光束分光鏡元件 組像素編碼虛擬觀察S視窗2的資訊The configurable array of light sources can be implemented by a liquid crystal display (lcd) illuminated in a backlight. In order to generate an array of point or line sources, only the pixels of the appropriate # are switched to the transfer state. The apertures of these sources must be small enough to ensure that ample space is provided for use with the lenticular array of mirrors. It is preferable to use an organic light emitting diode display as a system. As a spontaneous 38 200844693 light-clothing, most of the light produced by the silker's display will be absorbed by components such as color filters or pixels that are not fully delivered. Closeness and better power saving effect. However, liquid crystal displays may have an overall price advantage over organic light-emitting diode displays, even though organic light-emitting diode displays provide light in a more efficient manner than liquid crystal displays. When the organic light emitting diode is used as the light ray, only the pixels switched to it need to create a virtual observer window at the eye position. The organic light emitting diode display can have a two-dimensional array of pixels or a -dimensional wire. The illuminating area of each point source or the width of each line source needs to be sufficiently small to provide a holographic reconstruction that provides sufficient spatial coherence to the target. Similarly, an array of point sources is preferred for use with lens arrays comprising two-dimensional array lenses. An array of line sources is more suitable for use with a lenticular array comprising cylindrical lenses arranged in parallel. 2) Focusing method: single lens, lens array, money mirror array, poly red image, one light source or multiple wires to observe the pupil plane. If you are very close to the focus tool, edit the two in the space first modulator. ^ is the money thank you W tender - tilt a number of focus elements dry work _ change | | scale jade position can be exchanged. For the close combination of t, the thin focusing tool of the sub-addressing and illuminating, and the _ _ _ _ _ source is a must: the system has a convex _ refraction lens is 39 200844693 too thick. Instead, a diffractive or holographic lens is used. A diffractive or holographic lens can have the function of a single lens, a lens array or a lenticular array. Such materials are present as a surface relief holographic product as provided by Physical Optics Corporation, Torrance, CA, USA. Or use a lens array. The lens array comprises two-dimensionally arranged lenses, each lens being assigned to a light source of the array of light sources. Another option is to use a lenticular array. The lenticular array comprises a one-dimensional array of cylindrical lenses, each lens having a corresponding source in the array of light sources. As described above, if a light source array and a lens array or a lenticular lens array are used, the light sources in the array must be separated such that the light of the lens or the lenticular lens is simultaneously to the virtual observer window. Light passing through the lens array or the lens of the lenticular array is non-transparent to any other lens. Therefore, the hologram coded in the empty ugly red is composed of the sub-full image map. Each of the holograms corresponds to one lens. The hole diameter of each lens must be large enough to ensure that the resolution of the reconstructed object is sufficient. It is possible to use a lens with a full aperture and a full I-picture stone area, as in the example described in 雠_94. That is to say, the aperture of each lens is one or several square meters. 3) Spatial light modulator coding. In general, the coded hologram for the hologram is on the spatial light modulator. 200844693 is composed of a complex two-dimensional _. Therefore, ideally, a spatial light modulator should modulate the amplitude and phase of the local light beam passing through each pixel of the spatial light modulator. However, the 'scenary spatial light modulator can only modulate the amplitude or phase, and cannot be modulated independently. Amplitude modulated spatial light modulators can be used in combination with the tracked phase encoding, such as Burckhardt encoding. Its disadvantage is that it requires a pixel to encode a complex number, and the reconstructed object is less bright. The phase modulation spatial light modulator produces a higher brightness reconstruction. For example, so-called 2-phase encoding can be used, and two pixels are used to encode a complex number. The electronically-addressed spatial view II has the characteristics of side edges which will result in an undesired higher diffraction order in their diffraction pattern, which can be reduced or eliminated by the use of soft apertures. The soft aperture is a hole that does not have a transfer cutoff. a. An example of a soft aperture transmission method is to have a Gaussian pattern. Gaussian graphics are known to be useful for diffraction systems. The reason is that the Fourier transform of the Gaussian function is a fresh result of the Gaussian function itself. Therefore, she transmits with an aperture that is sharply cut off in the transmission pattern itself, and the diffraction of the beam intensity waveform function does not change except for the lateral scale parameter. A Gaussian Transfer _ slice array can be used. When these are provided in alignment with the electronically addressed spatial light modulator aperture, a higher winding with no higher diffraction level or a large reduction is obtained compared to a system with a sharp cutoff in the beam delivery pattern of 41 200844693 Shooting class system. A Gaussian filter or a soft aperture is broken to prevent the diffraction product from being a high spatial frequency. A Gaussian filter or a soft aperture dispenser minimizes crosstalk between the virtual observer windows for the left and right eyes. 4) Beam splitter component group Pixel coded virtual observation S window 2 information

於左眼的―個或數個虛 虛擬觀察員視窗會限制在空間光調變器編碼資訊的傅立葉轉 換的個週期性區間。使用現有最大解析度的空間光調變器,虛 擬觀祭㈣窗的大小為1G絲騎級。在—些情況下,對於應用 在沒有追蹤的全像顯示中時,這可能會是太小的。空間多工的虛 擬=察員視窗是這個問題的—個解決方法:產生多個虛擬觀察員 視^在空間多工的例子中’虛擬觀察員視窗會在空間光調變器 =不_=同時產生。這可由光束分光鏡來實現。舉例而言, 1先調變H上的_組像素編碼虛峨额視窗1的資訊,另一 南2的資訊。光束分光鏡會區分這二組 _ 1與虛擬觀察員視窗2會並列在觀察 1與虛擬觀察員視窗2 貝視窗。多工也可以用來產生左右眼的虛 並不需要無接縫並置,且在對 擬觀察員視窗 擬觀察員視窗與對於右眼的一個或數個虛 之間可具有間隔 隔。必需要小心虛擬觀察員視窗的較 42 200844693 南繞射階級並不會與其它的虛擬觀察員視窗重疊。 分光鏡元件的-個簡單例子是包含黑色條紋的視差屏障,其 中黑色條紋之間具有透明區域,如在US2_23()49中所描述的 内容。另一個例子是雙凸透鏡狀薄片,如在卿隨卿中所 描述的内容。分光鏡元件的另一個例子是透鏡陣列與稜鏡遮蔽 物。在緊密的全伽种,翻财齡敎财分光鏡元件, 然而典型10毫米大小的虛織察員視窗僅足夠提供一眼,這並不 符合-般觀看者具有兩個眼睛,並且相隔約為10公分。然而,可 以使用時間多工來作為帥多工的另—個選擇。在缺少空間多工 的情況下,將不需要再使用分光鏡元件。 空間多工也可使用在彩色全像重建的產生。對於空間色彩多 .工,像素會進行分群,每—群包含紅色,綠色及藍色色彩元素。 34些群是空間上分隔在空間光調變器,並且細射紅色,綠色 及監色光。每-群會_針對目標對_色_素計算的全像圖 編碼。每—群重建它的全像目標重建的色彩元素。 5)時間多ji 夕叫况下’虛擬觀察i視窗會在空間光調變器上 目同的位置相繼產生。這可妓替光源的位置與同時重編碼空間 43 200844693 光調變器來實現。光源的錢位置必須使得觀察員平面中的虛擬 觀察員視窗是無接缝並㈣。如果時間多从足細的,即完整 週期大於25 Hz,眼睛將會看見連續擴展的虛擬觀察員視窗。 夕工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情 況:不需要無接縫並置,且在對於左眼的—個或數個虛擬觀 察貝視窗與對於右眼的—個或數個虛擬觀察員視窗之間可具有間 隔。這樣的多工可為空間或時間多工。 …=間與時間的多工也可以結合。舉一個例子,三個虛擬觀察 貝=自疋為空間多工,用以產生對於—個眼睛的擴大虛擬觀察員 視窗。4個擴大的虛擬觀察貞視窗是時間多工,以產生對於左眼 的擴大虛擬觀察員視t以及對於右眼_大虛擬觀察員視窗。 必而要小心虛擬觀察員視窗的較高繞射階級並不會與其它的 虛擬觀察員視窗重疊。 h擴大虛擬觀察員視窗的多工是較建議與空間光調變器的 重扁馬起使用,因為它提供了具對於觀察員移動,視差連續變 化的擴大虛擬觀察員视g。簡單*言,沒有重編碼的多工,會在 擴大的虛擬觀察員视窗料同部份,提供重覆的内容。 44 200844693 .夕工也可朗縣色全餘 會與空間細變壯的麵 Z、、‘·、、一们切 綴的,㈣._=:=績覆是 6)不想要的較高繞射階級的處理 馨如果較大的虛擬觀察員視窗是由較小的虛擬觀察員視窗拼凑 ^的^擬觀察員視窗_高繞概級,將可能在其它虛极觀 祭貝視窗中產生擾亂串音,除非有執行避免此問題的步驟。舉— 们门子彡果每個虛擬觀察員視窗都是位於空間光調變器編瑪 貝flK的傅立葉轉換的轉繞軸級巾,虛擬麟貞絲的第—繞 射階級將可能與鄰近的虛擬觀察員視窗重疊。這樣的重疊可能會 鲁導致擾亂的为景’如果不想要的圖像強度超過需求圖像強度的約 -5/°~ ’這將可4錢的制的明顯。在這樣的情況,會傾向於補 償或抑制較高的燒射階級。 如果照射空間光調變器的角度是不變的話,可以使用固定的 角過滤器。這要不是全像顯示不具追蹤功能就是光束分光鏡元件 (例如光束指向元件)是位於空間光調變器之後的狀況。固定的角過 濾器可為布拉格濾波器(Bragg fllter)或是法布立-培若定規具(Fabry 45 200844693The one or more virtual observer windows in the left eye are limited to the periodic intervals of the Fourier transform of the spatial light modulator encoded information. Using the existing maximum resolution spatial light modulator, the size of the virtual observation (four) window is 1G wire rider. In some cases, this may be too small for applications that are not tracked in the hologram display. The spatial multiplexed virtual = inspector window is the solution to this problem: generating multiple virtual observers. In the case of spatial multiplexing, the virtual observer window is generated at the same time as the spatial light modulator = not _=. This can be achieved by a beam splitter. For example, 1 firstly modulates the information of the _ group of pixels on the H-coded virtual threshold window 1 and the information of the other 2 south. The beam splitter will distinguish between the two groups _ 1 and the virtual observer window 2 will be juxtaposed in the observation 1 and the virtual observer window 2 bay window. Multiplexing can also be used to create the illusion of the left and right eyes without the need for seamless juxtaposition, and there can be a gap between the prospective observer window and the one or more virtual fields for the right eye. It is necessary to be careful that the virtual observer window will not overlap with other virtual observer windows. A simple example of a beam splitter element is a parallax barrier containing black stripes with a transparent area between the black stripes, as described in US 2_23() 49. Another example is a lenticular sheet, as described in Qing Suiqing. Another example of a beam splitter element is a lens array and a ruthenium shield. In the tight full gamut, the treasury is divided into three parts, but a typical 10 mm sized virtual weaver window is only enough to provide a glance, which does not match the average viewer with two eyes and is about 10 apart. Centimeters. However, time multiplex can be used as an alternative to handsome work. In the absence of space multiplex, there is no need to use a beam splitter element. Spatial multiplexing can also be used in the generation of color hologram reconstruction. For space color, work, pixels will be grouped, each group contains red, green and blue color elements. 34 groups are spatially separated in the spatial light modulator, and fine-cut red, green and monitor light. Each-group will be coded for the hologram of the target pair _color_prime. Each-group recreates the color elements of its holographic target reconstruction. 5) Time is more than ji. Under the circumstance, the virtual observation i window will be generated in the same position on the spatial light modulator. This can be achieved by replacing the position of the light source with the simultaneous re-encoding space 43 200844693 light modulator. The money position of the light source must be such that the virtual observer window in the observer plane is seamless and (4). If the time is more than sufficient, that is, the full period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window. Xigong can also be used to create virtual observer windows for left and right eyes. In such a case: there is no need for seamless juxtaposition, and there may be a gap between one or several virtual viewing bay windows for the left eye and one or several virtual observer windows for the right eye. Such multiplexing can be space or time multiplex. ...= multiplex between time and time can also be combined. As an example, three virtual observations are self-contained as spatial multiplexes to create an expanded virtual observer window for an eye. The four expanded virtual viewing windows are time multiplexed to produce an expanded virtual observer view for the left eye and a large virtual observer window for the right eye. Care must be taken that the higher diffraction level of the virtual observer window does not overlap with other virtual observer windows. h Enlarging the multiplexer of the virtual observer window is more recommended than the re-flattening of the spatial light modulator, as it provides an expanded virtual observer g with a continuous change in parallax for observer movement. Simple * words, without re-encoding multiplex, will provide repeated content in the same part of the expanded virtual observer window. 44 200844693 . Xigong is also the best of the Klang County and the Z-, '·, and the slashes of the space. (4)._=:= The score is 6) Undesirable higher winding The processing of the shooting class is as if the larger virtual observer window is a small observer window that is assembled by a smaller virtual observer window, which may cause disturbing crosstalk in other virtual observation windows, unless There are steps to avoid this problem.举— 门 彡 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个 每个The windows overlap. Such overlap may cause the scene to be disturbed. If the unwanted image intensity exceeds the required image intensity by about -5/°~', this will be obvious for the 4 money system. In such cases, it tends to compensate or suppress a higher firing level. If the angle of the illuminated spatial light modulator is constant, a fixed angle filter can be used. This is not the case where the hologram display does not have a tracking function or the beam splitter element (e.g., beam pointing element) is located behind the spatial light modulator. The fixed angle filter can be a Bragg fleler or a Fabry-Perrault gauge (Fabry 45 200844693)

Perot Etalon) 〇 在空間光調變器產生具不想要的繞射階級的幾何光強度分配 上,可使用布拉格過濾器成像光學元件來對幾何光強度分配作修 正’例如在US 5,153,670中所描述的内容。布拉格過濾器全像光 學元件可造成與沒使用此元件時不同的光強度分配。圖七顯示了 布拉格過濾器全像光學元件的功能。在圖七中,%是空間光調變 φ 1,71是全像光學元件布拉格過遽器,包含布減平®,例如布 拉格平面74。在空間光調變器70上的單一元件73提供如圖中乃 的繞射光強度分配。由空間光調變器70繞射的光線76,在全像 光學元件71中經歷散射,接著在不同於7〇與71之間的原始傳播 的方向傳送。如果光線76傳送的方向在70與71之間為不想要的 第一階級繞射光,可以容易看見布拉格過濾器71成功改變這些光 _ 至不同的方向,可使它不會造成不想要且可能妨礙觀看者的光學 加工品,典型的觀看者將會位於接近垂直於70的方向。 蝙 在專利申請號DE 10 2006 030 503中提及用於抑制繞射階級 的可調式法布立培若定規。所提到的是介於兩個塗上部分反射塗 層的共面玻璃薄片之間的液晶層。對於每一個塗層光束的反射, 光束疋部分反射及部分傳送。傳送光束的干擾以及它們之間的相 位差將決定干擾是否為建設性或者為破壞性,如在法布立_培若定 46 200844693 規具標準中所描述的内容 束的入射角而改變。 °給疋一個波長,干擾及傳送會隨著光 給定-個光傳播方向,干擾可藉由改變液 > 送方向的折射轉作難。折射率3 ΘΒ、光的傳 斤射羊疋由苑加於液晶層的Perot Etalon) In the case of spatial light modulators producing geometrical light intensity distributions with unwanted diffraction levels, Bragg filter imaging optics can be used to correct geometric light intensity distributions [eg, in US 5,153,670 Described content. A Bragg filter holographic optical component can result in a different light intensity distribution than when the component is not used. Figure 7 shows the function of the Bragg filter holographic optics. In Figure 7, % is the spatial light modulation φ 1,71 is a holographic optical element Bragg filter, including a cloth flattening®, such as a Bragg plane 74. A single element 73 on the spatial light modulator 70 provides a diffracted light intensity distribution as shown. Light 76, which is diffracted by spatial light modulator 70, undergoes scattering in holographic optical element 71 and is then transmitted in a different direction than the original propagation between 7 and 71. If the direction in which the light rays 76 are transmitted is between the 70 and 71 is an unwanted first-stage diffracted light, it can be easily seen that the Bragg filter 71 successfully changes the light to a different direction so that it does not cause unwanted and may hinder The viewer's optically processed product, a typical viewer will be located approximately perpendicular to the direction of 70. An adjustable method for suppressing the diffractive class is mentioned in the patent application No. DE 10 2006 030 503. Mentioned is a liquid crystal layer between two coplanar glass sheets coated with a partially reflective coating. For each reflection of the coated beam, the beam is partially reflected and partially transmitted. The interference of the transmitted beam and the phase difference between them will determine whether the interference is constructive or destructive, as changed by the angle of incidence of the beam as described in the Fabry-Perdit 46 200844693 gauge standard. ° Give a wavelength, interference and transmission will follow the light given - the direction of light propagation, the interference can be changed by changing the refraction of the liquid > direction. The refractive index is 3 ΘΒ, and the light is transmitted by the garden to the liquid crystal layer.

控制。因此’在法布立·培紋規具的所有限制中,角傳送特性曰 能夠被調整的,並且繞射階級可依需求選擇傳送或為反射。例如疋 ==布立_培紋規具是奴絲麵級最轉送及第—階級最 U能還是會有—些不想要的第二階級與較高階級的傳 达。在法布立-培若定規具的所有限制中,這裝置可幫助對於特定 繞射階級進拥定或依序·,根據需求鱗送或為反射。 空間過濾、II可使用在繞射階級的選擇。空間過濾器可設 空間光調變器與虛擬虛擬觀察員視窗之間,並且包含透明^不透 • 喔域。這些可时傳送需制繞梅級,並I阻礙 '+想要的繞射階級。這些空間_器可為固定的或是可設定的。 ,例如:設置在空間光調變H與虛擬觀察員視窗之間的電子式定址 空間光調變器可作為可設定式空間過濾器。 7)眼部追縱 在具有眼部追縱的電子式定址空間光調變器與充份同調性的 緊密型光源的緊密組合中,眼部位置偵測器可偵測觀察員的眼部 47 200844693 位置。所以,—個或數個虛 置,使得觀察f可、#&自可自動地設置在眼部位 貝可透過虛擬觀察員視窗看到重建的物件。 並:二需求舆影響效能的電力_, 追縱m其對於可_置歧顿錢置。沒有 斤、貝必須自仃調整顯示器的位置。 的,因為在較佳的實麵巾,? d °以做到 家在顯不态是可能包含在個人數位 你η丁動祕中的手持式顯示器。個人數 使用者,通常會垂吉㈣的 對库使用去㈣ 盗,對於調整虛擬觀察員視窗來 f應使用者眼部的位置,並不會有太大的幫助。大家都知道,手 寺式裝置較时會麟自己改變手上裝置財向,以獲得最理 j的硯看狀態’如同在wo㈣6941中所描述的内容。因此,在 、樣的衣置中’亚不需要使用者眼部追縱及複雜且不緊密如包含 掃描鏡的追縱光學。但是眼睛追蹤可以應用在其它的裝置中,如 果對於裝置而言,額外需求的設備與電源不會造成過度的負擔。 在/又有追縱的情況下,電子式定址空間光調變器與充份同調 随緊在型光源的緊雜合’需要域A的虛擬觀察貞視窗來簡化 顯示器的調整。較好的虛擬觀察員視窗大小應該是眼睛瞳孔大小 的數心這可由使則、間距m光調變II的單__較大虛擬觀察員 視窗來完成’或是由個大間距空間光調變㈣數錄小虛擬觀 48 200844693 察貝視窗拼凑而成。 虛擬觀π員視窗的位置是由光源陣列中的光源位置來決定。 眼部位··_眼部的位置,並且設定光_位置,以讓虛 擬觀察員視窗適合眼部的位置。S US2006膨994與 US2006應71巾描述了魏麵崎蹤。 、另種方式㈤光源位於是固定的位置時,虛擬觀察員視窗 可被私動&光源桃f要對於細的光人射肖變化相對不敏感的 工門光周h如果光源是為了移動虛擬觀察員視窗位置而移 動/由;在緊碰合巾可能有異常光傳騎況,這樣的設定將可 此很難Λ現緊㈣光源與空間光調變器的緊密組合,在這樣實例 中4顯示器中具有固定的光路徑及作躺示器中最後光學元件 的光束指向元件,將會有所幫助。 = +巾頒示了光束指向元件。這個光束指向元件 在顯示器的輸_絲束㈣度。它可具有騎X與y追蹤可 控纖鏡及對於z_追縱可控制透鏡的光學特性。例如,圖二十及 二十一的光束指向元件的任—個或兩個都可應用於單—裝置内。 光束指向树是可控槪航件錢可湖折射元件。可控制折 射讀可包含翻液晶的關_,液晶是叙在具有等向性線 49 200844693 電偶極子電辨張量矩陣巾。_具錢鏡或透鏡的形狀。電場 控制液晶的有效折射率且·幫助光束指向。電場可在元件間變 化’用以產生在元件間變化的光束指向特性。如圖二十所示,電 場是施加在透明的電極之間。液晶具有單軸折射特性,並且可被 麵,以使触直它的光姆射轉同於主斷料或”矩陣,,的折 射率。其餘的設定,可從習用技術中獲得。主體材料具有等向折 射率。如果液晶的絲是沿著z方向侧,如圖二十所示的適當 ►電場應用,沿著Z方向傳播的平面波,當它通過光束指向元件^ 並不會有折射發生’因為它並沒有遇到任何垂直於它的波映廷向 量0>〇yntingv_r)的折射率變化。然❿,如果施加電場在電極上, 使得液晶的光軸是垂直於z方向,沿著z方向傳紐偏化平行於 光軸的平面波,當它通過光束指向树時,將遭遇最多的折射, 因為沿著它的(系統可提供的)偏化的方向,它經歷最多可能的折射 率變化。折射的程度將可在這兩個極端例子之間,藉由選擇施加 在主體材料的適當電場而進行調整。 如果凹洞是_,科是魏,那㈣可完絲束指向。 圖二十-顯稍於光束指向合適的稜形。如果液晶的光軸是沿著Z 方向排列,如圖二十—所示的適當電場應用,沿著Z方向傳播的 平面波,當它通過絲指向元件時並不會有折射發生,因為它並 沒有在它的偏化方向遇到任何的折射率變化。然而,如果電子領 50 200844693 域=用橫越電極如此的液晶光軸是與z方向垂直的,平面波傳 播&著z方向&個是被偏化平行於光祕經驗最乡賴射因為它 p光束&向TL件’因為它經驗最多可能的折射率祕可提供變 化垂直的它的波映廷向量(P—ting vector) 〇 然^如果施加電場在電極上,使魏晶的光軸是垂直於Z方向, 沿著z方向_被偏化平躲光⑽平敏,當它通過光束指向 兀件時’將遭遇最多的折射,_它經歷最多垂直⑽(系統可提 供的)波映廷向量(poynting她r)的可能折射率變化。折射的程度 將可在這兩個極端例子之間,藉由選擇施加在域㈣的適當電control. Therefore, in all the limitations of the Fabry Petrigree gauge, the angular transmission characteristic 曰 can be adjusted, and the diffractive class can be selectively transmitted or reflected as desired. For example, 疋 == 立立_培纹规具 is the most transferred of the slaves and the first class is the most U can still have some unwanted second class and higher class communication. In all the limitations of the Fabry-Perrault gauge, this device can help to set or sequence for a particular diffraction class, or to send or reflect according to demand. Spatial filtering, II can be used in the selection of the diffraction class. The spatial filter can be placed between the spatial light modulator and the virtual virtual observer window and contains transparent and transparent fields. These time-transfers need to be made around the plum level, and I hinder the '+ desired diffracting class. These space_devices can be fixed or configurable. For example, an electronic addressing between the spatial light modulation H and the virtual observer window can be used as a settable spatial filter. 7) Eye tracking In the close combination of the electronic address space light modulator with eye tracking and the close-constrained compact light source, the eye position detector can detect the observer's eye 47 200844693 position. Therefore, one or several imaginary, so that the observation f can, #& can be automatically set in the eye part, the reconstructed object can be seen through the virtual observer window. And: The second demand, the power that affects the performance _, the 縱 其 其 其 其 其 其 其 其 其 其 其 其 其 。 。 No pounds or shells must adjust the position of the monitor automatically. Because of the better real face towel,? d ° to achieve home is not possible is included in the personal digital display of your hand-held display. The number of users, usually used by the library (4), is not used to adjust the virtual observer window to the position of the user's eyes. As we all know, the temple-style device will change the financial position of the device on its own to obtain the most obscure state of the j' as described in wo (4) 6941. Therefore, in the case of the clothes, the user does not need to trace the eyes of the user and is complicated and not as tight as the tracking optics including the scanning mirror. However, eye tracking can be applied to other devices, and for the device, the extra demand for the device and the power supply does not cause an excessive burden. In the case of / after the tracking, the electronic address space light modulator and the full coherence of the tightly coupled light source require a virtual observation window of the domain A to simplify the adjustment of the display. The better virtual observer window size should be the number of eyes of the eye pupil size. This can be done by a single virtual observer window that makes the spacing m light modulation II or a large spacing spatial light modulation (four) number. Recording a small virtual view 48 200844693 Chaba window patchwork. The position of the virtual view window is determined by the position of the light source in the array of light sources. The position of the eye part··_ eye, and the light_position is set to fit the virtual observer window to the position of the eye. S US2006 expands 994 and US2006 should describe the Wei Weiqi trace. Another way (5) When the light source is in a fixed position, the virtual observer window can be privately moved & the light source peach is relatively insensitive to the fine light ray change. If the light source is for moving the virtual observer The position of the window is moved/by; in the case of a tightly touched towel, there may be abnormal light transmission. This setting will make it difficult to close the tight combination of the light source and the spatial light modulator. In such an example, in the 4 display It would be helpful to have a fixed light path and a beam pointing element for the last optical element in the lying device. = + towel gives the beam pointing element. This beam is directed at the element's tow (four) degree in the display. It can have the X and y tracking stellar mirrors and the optical properties of the z_ tracking controllable lens. For example, either or both of the beam directing elements of Figures 20 and 21 can be applied to a single device. The beam pointing tree is a controllable slewing piece of Qianke Lake refracting elements. The controllable refractive reading can include the turning off of the liquid crystal, and the liquid crystal is described as having an isotropic line 49 200844693 Electric dipole electric tensor matrix towel. _ Shape with lens or lens. The electric field controls the effective refractive index of the liquid crystal and helps the beam to be directed. The electric field can vary between elements to produce a beam directing characteristic that varies between elements. As shown in Figure 20, the electric field is applied between the transparent electrodes. The liquid crystal has a uniaxial refractive property and can be surfaced so that the light that strikes it is converted to the refractive index of the main break or "matrix," and the remaining settings can be obtained from conventional techniques. The host material has Isotropic refractive index. If the filament of the liquid crystal is along the z-direction side, as shown in Fig. 20, the appropriate ► electric field application, the plane wave propagating along the Z direction, when it passes through the beam pointing element ^ does not have refraction occurs' Because it does not encounter any refractive index change perpendicular to its wave-forming vector 0 > 〇yntingv_r). Then, if an electric field is applied to the electrode, the optical axis of the liquid crystal is perpendicular to the z-direction, along the z-direction. The meandering plane wave parallel to the optical axis, when it is directed through the beam, will encounter the most refraction, because it experiences the most likely refractive index change along its (system-providable) direction of polarization. The degree of refraction will be adjusted between these two extreme examples by selecting the appropriate electric field applied to the host material. If the cavity is _, the ke is Wei, then (4) can be pointed by the tow. Slightly light The beam points to a suitable prism. If the optical axis of the liquid crystal is aligned along the Z direction, as shown in Figure XX, the appropriate wave field is applied. The plane wave propagating along the Z direction does not have to be directed toward the component through the wire. Refraction occurs because it does not encounter any change in refractive index in its direction of polarization. However, if the electron collar 50 200844693 domain = the liquid crystal axis of the traverse electrode is perpendicular to the z direction, plane wave propagation & The z-direction & is biased parallel to the light secret experience as the most popular because it p-beam & to the TL piece 'because it experiences the most possible refractive index secret to provide a vertical variation of its wave-forming vector ( P-ting vector) If the electric field is applied to the electrode, the optical axis of Wei Jing is perpendicular to the Z direction, and the z-direction is eclipsed (10) flattened when it passes the beam to the element. 'The most refraction will be encountered, _ it experiences the most possible vertical refractive index change of the vertical (10) (system-provided) wave-forming vector (poynting her r). The degree of refraction will be between these two extreme examples, Choose the appropriate electricity to apply in the domain (four)

場而進行調整D 8)範例 接著將描述一個電子式定址空間光調變器與充份同調性緊密 Φ 型光源的緊密組合的例子,此組合能夠在適當的照明情況下產生 • 二維圖像,並且可設置於個人數位助理或行動電話中。電子式定 . 址空間光調變器與充份同調性緊密型光源的緊密組合包含作為光 源陣列的有機發光二極體顯示器、電子式定址空間光調變器與透 鏡陣列’如圖十二所示。 取決於虛擬觀察員視窗(在圖十二中以〇W代表)的位置需 求’會啟動有機發光二極體顯示器中的特定像素。這些像素照射 51 200844693 準連續的 電子式定址空間光調㈣,並且藉由透鏡_成像在觀察員平 面。透鏡陣列的每個透鏡至少—個像素在有機發光二極體顯示哭 中被啟動起來。桃齡定的尺寸別、,如果料眼為2〇卿, 可追蹤到帶有4〇_躺增量的虛擬贿貞視f。雜的追縱是 有機發光二極體像素是具有部分空_雛的光源。部分的 同調性會產生目標點的模糊的重建。在繪圖給定的尺寸大小,如 果像素見度為20微米,在距離顯示器100毫米的目標點會產生帶 有100微米向模_重建。這對於人類視覺系統的解析度: 足夠的。 通過透鏡_的不同透鏡触,並沒有明_共同同調性。 同調性的需求是限制至透鏡陣列的每一個單一透鏡。因此,重建 目標點的解析度是由透鏡陣列的間距來決定。對於人類視覺系統 而言’典型的透鏡間距將為1毫米階級,以保證充份解析度。如 果有機發光二極體間距是20微米,這表示透鏡間距與有機發光二 極體間距的比值為50:1。如果每一個透鏡僅有單一個有機發光二 極體被照亮,這表示每5〇λ2=2,5〇〇有機發光二極體中,僅有一個 有機發光二極體將被照亮。因此,此顯示器將為低功率顯示器。 在此所指的全像顯示與傳統有機發光二極體顯示器之間的差異是 52 200844693 剞者集中光於觀看者的眼睛,反之後者發射光至2π球面度。傳統 的有機發光一極體頒示态實現約1,〇〇〇 的發光度,(發明者 於實作中計#)’狀在實務上,照賴械發光二極體應能實現 1,000 cd/mA2發光度的數倍。 虛擬觀察員視窗是限制在空間光調變器中編碼資訊的傅立葉 頻譜的一個繞射階級。如果空間光調變器的像素間距是〗〇网^,並 且需要兩個像素來編碼一個複數,即如果在相位調變電子式定址 空間光調變ϋ上 2她編碼,在湖·的波長,虛擬觀察員 視窗會有10mm寬的寬度。虛擬觀察員視窗可利用空間或時間多 工,將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在空 間多工的情況下,需要額外的光學元件,如光束分光鏡。 彩色全像鱗可由時間多絲實現。彩色有機發光二極體顯 不器的紅色,綠色及藍色像素是湘具有對紅色,綠色及藍色光 學波長計算的全像關空間細變H關步重編碼來相繼地啟 動。 、 顯示器可包含眼部位置偵測器,用以偵測觀察員的眼睛位 置。眼部位置偵測器連接控制有機發光二極體顯示器的像素活動 53 200844693 的計算最好是由外部的編碼 在空間光調魏上編碼的全像圖 個人數位_或行_話,_示錄產生的三 單元來執行,㈣技要較高的計觀力。顯㈣料會接著送至 維圖像 對於實務上贿,可使㈣—(rtm) eField adjustments D 8) The example will then describe an example of an intimate combination of an electronically addressed spatial light modulator with a fully coherent compact Φ-type source that can be produced with appropriate illumination • Two-dimensional images And can be set in a personal digital assistant or mobile phone. The close combination of the electronic space-determining optical modulator and the fully coherent compact light source includes an organic light-emitting diode display as an array of light sources, an electronic address space light modulator and a lens array as shown in FIG. Show. Depending on the location requirements of the virtual observer window (represented by 〇W in Figure 12), a particular pixel in the organic light-emitting diode display is activated. These pixels illuminate the 51 200844693 quasi-continuous electronic address space tones (4) and are imaged by the lens on the observer plane. At least one pixel of each lens of the lens array is activated in the display of the organic light emitting diode crying. The size of the peach age, if the eye is 2 〇 Qing, can be traced to a virtual bribe with a 4 〇 lie increment. The miscellaneous trace is that the organic light-emitting diode pixel is a light source with a partial air. Partial homology produces a fuzzy reconstruction of the target point. In drawing a given size, if the pixel visibility is 20 microns, a target point of 100 micrometers will be generated at a target point of 100 mm from the display. This is the resolution of the human visual system: enough. Through the different lens touches of the lens _, there is no clear symmetry. The need for coherence is limited to each single lens of the lens array. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. For the human visual system, the typical lens spacing would be 1 mm class to ensure full resolution. If the organic light-emitting diode pitch is 20 μm, this means that the ratio of the lens pitch to the organic light-emitting diode pitch is 50:1. If only one organic light-emitting diode is illuminated for each lens, this means that of every 5 〇 λ2 = 2, 5 〇〇 organic light-emitting diodes, only one organic light-emitting diode will be illuminated. Therefore, this display will be a low power display. The difference between the holographic display referred to herein and the conventional organic light-emitting diode display is 52 200844693. The latter concentrates on the viewer's eyes, whereas the latter emits light to 2π steradian. The conventional organic light-emitting one-polarization state realizes a luminosity of about 1, 〇〇〇, (inventor's calculation in practice #)' in practice, the illuminating diode should be able to achieve 1,000 Several times the cd/mA2 luminosity. The virtual observer window is a diffractive class that limits the Fourier spectrum of the encoded information in the spatial light modulator. If the pixel pitch of the spatial light modulator is 〇 ^ ^, and two pixels are needed to encode a complex number, ie if the phase modulation is in the electronically addressed spatial light modulation, she encodes the wavelength at the lake. The virtual observer window will have a width of 10mm wide. Virtual observer windows can be used to piece together virtual observer windows into an expanded virtual observer window, using space or time multiplexing. In the case of space multiplex, additional optical components, such as beam splitters, are required. The color hologram scale can be realized by time multifilament. The red, green, and blue pixels of the color organic light-emitting diode display are successively activated by the holographic change of the red, green, and blue optical wavelengths. The display may include an eye position detector for detecting the position of the observer's eyes. The eye position detector is connected to control the pixel activity of the organic light-emitting diode display. 53 The calculation of 200844693 is preferably performed by an external coded image in the spatial light tone of the hologram ______ The three units produced are executed, and (4) the skills are higher. (4) will be sent to the U.S. image. For practical bribery, (4)-(rtm) e

Imagmg 所製造的2.6英啊幕尺对> XGA液晶顯示器好式定址空間光調變器。次像素的間距為 μιη如果:^讀用於紅職全像顯示的建構,_全像圖的振 幅=變編碼’在縣電子式紐钟光調變器a4m的地方,觀察 視窗根據計算為L3mm寬。·單色的情況,觀察視窗根據計算 為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調 變’觀察視窗根據計算為6mm寬。如果使用相同的設定,但是改 用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為 12mm 寬。 此外’仍具有其它種高解析度的電子式定址空間光調變器。 Seiko (RTM) Epson (RTM) Corporation of Japan 已發表單色電子式 定址空間光調變器,例如D4:L3D13U 1.3英吋螢幕尺寸且像素間 距為15μηι的面板。此公司也發表了同類型的禹板 D5:L3D09U_61G00,具有0.9英吋螢幕尺寸及ΙΟμιη的像素間距。 54 200844693 於西元2GG6年12月12日,此公司公告發表同類型的面板 L3D07U-81G00,具有〇,7英对螢幕尺寸及8 5μιη的像素間距。如 果D4:L3D13U 1.3糾面板聽建構單色的全像顯示,並採用全 像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間 光調變器0.4m的位置,虛擬觀察員視窗可計算出為5 6腿寬。 D.成對的電子式定址空間光調變器的緊密組合 在另-個實施例中,可以依序及緊密的方式,利用二個電子 式定址空間光調賴的組合來調變光的振幅及她。所以,包含 振幅及相位的複數,可以逐一像素的方式,編碼於傳送光中。 這個實施例包含二個電子式纽空間光調㈣的緊密組合。 第-個電子式定址空間光調變器調變傳送柄振幅,第二個電子 式定址空間絲變器調變傳送光_位。也可以第—個電子式定 址空間光機器調變傳送光的相位,第二個電子式定㈣間光調 變器調變魏光龍幅。每—_子式定址郎細魏都可如C 部份所描述-樣。除了採用二個電子故址空間光調變器之外, 整體的配置可㈣C部份所描述的—樣。任何财於是幫助振幅 目位的獨立霞的其它種二個電子式定址郎光霞器調變特 性的任意組合都是可能的。 55 200844693 在第,财,第—電子式定址如糊變闕用圖樣編 變哭利用在弟—步驟中’第二電子式纽空間光調 ;周: 碼’以騎相_變。從第二電子式定址空間光 所傳_光已練振幅及相位上進行調變,因此,當觀察 ^觀祭裝置這二個電子式定址㈣光婦器攸置所發射的光 日守,可觀察到三維圖像。 基於習用相位與振幅的調變技術促進複數數值的表現,電子 式定址空間細魏可具有高解。因此,此實闕可用於產 生全像圖來使得三_像可由觀察她察到。 ”圖十三為-個實施例。13〇是照明裝置,用於提供平面區域的 舨明’射照明是具有充份的同雛以便能夠產生三維圖像。在 籲US 2006/250671提及一個用於大區域影像全像圖的照明裝置例 •子,其卜侧子是在圖四巾。如同⑽的裝置可為白光光源陣 • 顺喊’例如雜極縣燈或發㈣光線人射在聚㈣統上的 白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微 透鏡陣列。或者,驗13()的光源可由紅、綠及藍雷射所組成, 或是發出充份關性光的紅、綠及藍發光二極體所組成。紅、綠 及k發光二極體可為有機發光二極體(〇LEDs)。_,具有充份空 間同雛的非雷射光源(例如··發光二極體,有機發光二極體,冷 56 200844693 陰極螢光燈)是更佳的。雷射光賴缺點,像是在全像重建上造成 =射斑點、姆上㈣昂細及财_傷害全像顯示觀看者或 是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 兀件130可包含_個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中 龜所描述的内容。元件130可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中—個例子。另外—個例子歧射式偏光片, 可傳送-個·偏錄態,纽反射正交雜偏錄態_這樣的 薄=是已知的’例如在us 5,828,488中所描述的内容。另一個例 子疋反射式偏光片’可傳送—個圓形偏化狀態,並且反射正交圓 形偏化狀態…這樣的薄片是已知的’例如在仍⑽挪中所描 述的内容。元件m可包含聚㈣統,此聚㈣統可為緊密的, 籲例如透鏡狀陣列或微透鏡陣列。元件π〇可包含其它在背光科技 的領域中已知的光學元件。 -元件130的厚度可約為數公分,或是更低。在較佳的實作中, 元件34的厚度i °卩是小於3公分的,提供充份賴性的緊 密光源。元件131可為色彩過遽器陣列,使得彩色光線(例如紅色、 綠色及藍轉錢㈣树132,絲如果使师色光源, 色彩過滤器是不需要的。元件132是電子式定址空間光調變器。 57 200844693 元件133是電子式定址空縣調_。元件i34是非必要的光束 分光鏡元件。對於傳送光,元件132調變振幅而元件133調變相 位。或是,由元件B3調變振幅而元件132調變相位。將電子式 定址空間光調變器132及133靠近能夠減少光學耗損及因光束分 歧而產生的像素串音問題:當電子式定址空間光調變器132及133 是非常靠近的,可實輯猶子式定址郎光調魏的彩色光線 先束的非重讀播的較佳近錄。位於點135離包括緊密全像圖 產生^ 136的裝置一些距離的觀看者,可從136財向觀看到三 維圖像。 讀m、m、mm及m是配置成實體連接(真實上連 接)’每-個形成結構的一層,使得整體為單一、統一的物件。實 體連接可為直接的。或是間接的,如果有騎㈣層,覆芸在相 。實體連射_在顧正麵她: 中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可 由層與層的雜來實現,例城域収學傳獅_的=了 以便形成緊密的全像圖產生哭 考概要製造程序部份)。 4疋猎由其它任何的方式(參 在包子式疋址二間光調變器執行振幅調變處业— 卜入射的讀取先學光束將會藉由將光束通過線性來的ς 58 200844693 線性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,施加 電場會影響光的偏化狀態。在這樣的裝置中,離開電子式定址空 間光調變器的光會通過另一個線性偏光片,可因光的偏化狀態改 變而減少強度,如同它通過電子式定址空間光調變器時一樣。 在電子式定址空間光調變器執行相位調變處,除非它們已處 於定義的線性偏化狀態,在典型的設定中,入射的讀取光學光束 將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由 電%的應用所控制,電場會影響光的相位狀態。在相位調變的一 個例子中,使用向列型相位液晶,光軸方向是間隔固定的,但是 雙折射是施加電壓的函數。在相位調變的一個例子中,使用鐵電 性液晶,雙騎是固定的,但是絲的方向是由施加賴所控制。 在相位調變實作巾其巾任—齡法,輸出絲與為施加電 壓函數的輸人光束會具有相減。可執行她調變的液晶元件的 其中-個例子為Freedericksz元件排列,在其中使用了具有正介電 質異方向性的向列型液晶的反平行排列區域,如同在118 5,973,817 所描述的内容。 用於緊密全細示㈣密組合,包含兩個則、分隔或最小分 隔方式結合的電子式定址糾細義。她的實财式是兩個 空間光調變器具有相同數量的像素。因為兩個電子式定址空間光 59 200844693 。周受裔對於觀祭員來說並不是等距離的,兩個電子式定址空間光 調變器的像素間距可能需要稍稍的不同(但會仍舊大概相同),來補 你不门距_對於觀祭貝戶斤造成的影響。已通過第一空間光調變器 的像素的光,會通過第二空間光調變器對應的像素。因此,光是 會經由兩個空間光調變器來調變,並且可獨立地實現複雜的振幅 與相位調變。舉一個例子,第一空間光調變器進行振幅調變,而 第二空間光調變器進行相位調變。同樣地,任何相當於是幫助振 幅及相位的獨立調變的其它種二個空間光調變器調變特性的任意 組合都是可能的。 必需注意,通過第一空間光調變器的像素的光,只能通過第 —空間光調變器對應的像素。如果從第一空間光調變器像素射出 的光,通過第二空間光調變器非對應、鄰近的像素時,串音將會 發生。這些串音可能會導致圖像品質降低的問題。在此提供四個 在像素間最小化串音問題的可能方法。由 習用的技術可顯而易見 的’這些方法可同樣的應用於B部份實施例。 (1)第一個最簡單的方法是直接將調整像素後的兩個空間光調 變為連結或黏接在一起。在第一空間光調變器的像素,可能會有 引起光偏離傳播的繞射現象。空間光調變器之間的分隔必須要足 夠的薄,薄至第二空間光調變器鄰近像素之間的串音到達可接受 200844693 的程度。舉-個例子,具有1Q _像賴距的兩個電子式定址空 間光調變器的間隔,必須小於或等於10_100μηι的等級。這在傳: 製造的空間光調變器中是幾乎不可能實現的,因為玻璃蓋的厚^ 即為lmm的等級。當然,能使空間細變器之間具有薄的分隔^ 的”三明治”方式,是較減進行在—健序#巾。可細概^製^ 程序部份所贿的製造方法,來製作包含兩_隔距雜小或最 小的電子式定址空間光調變器的裝置。 圖十四顯示由狹縫1〇μπι寬的繞射計算而得的菲涅耳繞射數 據圖表,在二維模型中變化離狹缝的距離,縱軸為slit(z),橫軸為 slit(x)。均勻照明的狹缝是位在x軸上-5μπι到+5_之間,並且Ζ 為零微米。光傳送媒介被用來獲得15的折射率,為用於緊密裝置 的典型媒介。選定的光為具有633 nm真空波長的紅光。綠色與藍 ^ 色波長比紅色光小,因此對於紅色光的計算,在三個顏色紅、綠 、及藍當中,展現出最強的繞射影響。可以使用parametric TecMology (RTM) €〇φ” Needham,隐,USA 的產品 M她㈤ (RTM)軟體來執行計算。圖十五顯示些微的強度留在狹縫中心上 ΙΟμιη寬範圍内,為離狹縫距離的函數。在距離狹缝2〇_的地方, 圖十五顯示大於9〇%的強度仍然在狹缝的1〇μιη寬的範圍内。因 此,在這個二維模型中,小於5%的像素強度會入射在每一個鄰近 的像素上。這是在像素間零邊界寬的限制情況下的計算結果。實 61 200844693 際在像素間的邊界寬是大於零的,因此串音問題在真實系統中會 低於這裡所#的結果。在圖十四巾,菲科繞射圖接近狹縫, 例如離狭縫50μπι,並且有點近似在狹縫的高帽型強度函數。因 此’ /又有覓的繞射特徵接近狹縫。寬的繞射特徵是高帽型函數的 L #、、%射函數的4寸性,此為習用已知的sinc Square(j函數。寬的繞 射考寸徵可由圖十四中距離狹縫3〇〇μιη的例子觀察到。這指出了繞 射效應可利用將兩個電子式定址空間光調變器設置的足夠接近來 瞻控制’而且將兩個電子式定址^間光調變器設置的非常接近的一 個優點是繞射數據圖表的函數型式,會由遠場特性改變至較有效 率包含接近垂直於狹縫的軸的光的函數型式。這個優點是與習用 王像技術的想法相違背的,習用的技術會傾向認為在光通過空間 光調變器的小孔徑時,會引起強的、大的及不可避免的繞射效應。 因此,習用的技術不會有將兩個空間光調變器靠近在一起的動 機,會預期這樣的方式會導致必然發生且嚴重由繞射效應所引起 響的像素串音問題。 圖十六顯示強度分佈的等高線圖,強度分佈為離狹缝距離的 函數。等尚線的標繪是在對數尺度上,而不是線性尺度。使用了 十條等鬲線,全部含括100強度因數範圍。對於10μιη的狹缝寬 度,強度分配大程度的邊界在距離狹缝大約50μιη的範圍内是清 楚的。 62 200844693 在進-步的實施例中,可減少第一電子式定址空間光調變器 的像素孔祕域來減輕在第二電子式定址空間光調魏的串音問 題。 (2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如 圖十七所示。較好的方法是讓透鏡的數量和每一個空間光調變間 中的像素數量相等。兩個空間光調變H關距以及透鏡陣列的間 距可以輕微的不同,來補償觀察員的距離差距。每—個透鏡成像 第-空間光調變器的像素至第二空間光調變器對應的像素上,如 圖十七中大钱束Π1所示。也可能光會通過鄰近的透鏡造成串 音問題’如大量光束Π2解。如果它的強度是足_低,或是 它的方向是充份的不同,使其無法到達虛擬觀察員視窗時,將可 被忽視。 每個透鏡的數值孔徑(Numerical Aperture,NA)必須足夠的 大,以成像具充份解析度的像素。舉—個例子,對於細的解析 度,需要約為0.2峨值孔徑(ΝΑ)。這也表示如果假定是幾合光 學’如殺間光調變器與透鏡陣列的間距為1〇μηι,透鏡陣列與每 一空間光調變器之間的最大距離大約為25μιη。 63 200844693 也可能指派每個空間光調變器的數個像素至透鏡陣列的一個 透鏡舉-個例子,以第一空間光調變器的四個像素為一群,可 藉由透鏡陣列中的—個透鏡來成像到第二空間朗變器的一個由 四個像素顺朗群。雜喊鏡陣觸透鏡數量會為每一個空 間光调y巾的像素數量的四分之—。如此可允許使用較高數值 孔徑的透鏡,因此可獲得較高解析度的成像像素。 (3)第三個方法是盡可能的減少第—電子式定址雜光調變器 的像素孔徑。從繞射的觀點來,第二空間光調變器由第一空間光 周又的刪象素所照射的區域,是由第一電子式定址空間光調 變器的像素絲寬度D及齡細決定,如針八所示。在圖十 八中’ d兩個電子式定址空間光調變器之間的距離,而w是兩個 第-P皆級繞射最小值之間的距離,發生於第零階級最大值的任一 邊。這是假定為細和斐(F_hGfe_射,或是夫朗和斐繞射的 合理近似。 減少孔徑寬度D -方©可減少照紐域巾々部分的直接投射 的範圍’如圖权中的虛線所示。在另—方面,依照繞射角正比 於夫朗和文、、:射中的ι/d ’繞射角會被增加。這增加了在第二電子 式定址空間細變n上闕輯的寬度讀射區域的全部寬度為 w。在夫朗和斐繞射方法中,給予分隔d,D可被決定,並利用方 64 200844693 繞射中的 程式W = w來最小化w,此方程式是從夫朗和斐 兩個第一階最小值之間的距離推得。 例如,如縦0.5陣,d是叫m及w是鄉m,可 f 的最小值。然而在這個例子巾,夫朗和斐方法可能不合 疋一個好的近似,這個例子· 了使”子式定址钟光調變I 之間的距離來控制夫朗和斐繞射方式中的繞射過程的原則。口口 _四個方法使用了光纖面板來成像第光調變器 素至第二空間細魏的像素上。光纖面板是由二轉列的平行 先纖所構成。光_長度與也因此面板的厚度典型為數公羞,面 板表面的對角線長度是長至數英对。舉一個例子,光纖的間距可 為 6师。Edmund 0ptics Inc.〇f B如參n, ^ 知吻 具有如此先_距的光纖面板。每—條光纖從它的其中—瑞弓丨導 光至另-端。因此,在面板—端的圖像會被傳送至另—端,且有 高解析度且不用聚焦元件。這樣的面板可作為兩個空間光調變器 之間的分隔層’如針九所示。錄錢較佳於單模光纖,因為 多模光_鮮效軸單模域好。當先_心的㈣率與液晶 的折射率是相穩合時,會制最佳_合效率,㈣這可最小化 非'/圼耳背向反射損失。 65 200844693 在兩個雜光調魏之間沒錢外的玻。偏光片、電極 :、配向層疋直接連接光纖面板。這些層每—個都是非常的薄,即 為1-1_的等級。因此,液晶(LQ層La與LC2是在靠近面板 的地方。通過第-空間光調變器像素的光會被引導至第二空間光 調變器對應的像素。這可最小化鄰近像素㈣音。面板傳送第_ 空間光調魏輸出端的光分佈至第二空間光調變器的輸入端。平 均而言’每個像素應至少-個光纖。如果每個像素少於-個光纖 的話’平均而言’空間光調魏將喪失解析度,造成顯示於全像 顯示中的應用的圖像品質減低。 在圖十九中帛空間光調變器調變振幅,第二空間光調變 器調變相位。其它缺進完整複雜調變的兩個電子式定址空間光 調變器的調變特性組合都是可能的。 圖十’員示了對於王像圖巾編碼振幅與相位資訊的緊密排列的 例子。 104疋㈣U用於提供平面區域的照明,其中照明是具有充 份的同調性以便能夠產生三維圖像。在us 2006/250671提及一個 用於大區域影像全像圖的_裝置例子。如同1G4的裝置可為白 光光源陣形式,例如冷陰_紐或發㈣親人射在聚焦 糸統上的白光發光二極體,其中聚㈣統可為緊密的,如透鏡狀 66 200844693 陣列或微透鏡陣列動。或者,用於辦的光源可由紅、綠及藍雷 射所組成,或是發出充份_性紅、綠及藍發光二極體戶II 成。然而,具有充份m同雛的非雷射光源⑽如:發光二極體, 錢發光二極體,冷陰極縣燈)是更㈣。雷射賴的缺點,像 是在全像重建上造成雷射賴、姉上較為昂責以及所有關於傷 害全像顯示觀看者歧進行全像顯示裝置組紅作人員的眼睛等 可能的安全問題。 元件104可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的’例如在us 5,㈣,892與us 5,9i9,55i中 所描述的内容。元件104可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中-個例子。另外—個例子是反射式偏光片, 可傳送-個雜偏化狀態,並且反射正交雜偏化雜·這樣的 鲁 ^是已知的,例如在US 5,828,488中所描述的内容。另一個例 、子是反射式偏光>;’可魏—侧形偏化狀態,並且反射正交圓 、祕化狀態-這樣的薄片是已知的,例如在us 6,⑻,395中所描 述的内容。元件104可包含其它在背光科技的領域中已知的光 元件。 元件104, 100-103 #厚度全部可約為數公分,或是更低。元件 而可包含色彩過濾、器_,使得桃光線(例如紅色、綠色及藍 67 200844693 色光)的像素是射向元件1〇2,儘管如果使用彩色光源,色彩過遽 為疋不需要的。το件1〇2是編碼相位資訊的電子式定址空間光調 變器,例如Freedericksz元件。元件103先編碼振幅資訊的電子式 疋址空間光賴H,例如在—般商業上的液日日日顯示器I置中。元 件102的每一個元件,在此以搬标,會與元件1〇3中對應的 元件排列’们08表示。然而,儘管元件1〇2與1〇3中的元件且 有相同的橫向間隔或間距,元件102中的元件大小會小於或等ς 凡件103中的元件’因為_元件浙的光在進人元件⑽的元 件108之所’典型地會經歷一些繞射。振幅與相位的編碼次序可 與圖十中所示的相反。 #位於點106離包括緊密全像圖產生器105的裝置-些距離的 减看者,可從1G5的方向觀看到三維圖像。树⑽、im 是如之前所描述的配置成實體連接,以便能形成緊密的 全像圖產生器105。 ^構成要素包含-對或二對有機發光二極體與光 密組 _器組合或是-個或兩個電子式定址空間光調變器的緊 σ ’且具有目標全像重建的大倍率三維圖像顯示裝置 圖一十四顯不了—個構成要素包含—對或二對有機發光二極 68 200844693 體與光學式纽空間光調變器組合或是—個或兩個 間光調變㈣緊餘合1具有目標全像重建的大倍 顯示裝置。這個裝置的構成要素包括 _ +—、准圖像 谷^樣的組合能夠在適當的照爾況,於虛擬觀察 圖 _產生看得見的三_像,這麵置元件可例 如正s在個人數⑽理或娜電話中。如圖二十四所示, 凋變器與充侧雛的緊密型光源的緊密組合包含辆陣外 間光調變器及透鏡陣列。在圖二切中的空間光調變器、,歹包]含= 對或二對有機發光二極體與辟式奴空間光調變器組合=一 個或兩個電子歧址空間光調變器的緊練合,或是―:有:發 光-極體及光學式定址空間光調變器的組合成對及一個、七 址空間光調變器。 毛工疋 在一個簡單的例子中,光源陣列可由下列方式形成。單一光 源如單色的發光二極體,放置在緊鄰孔徑陣列的位置,使:能昭 射孔徑。如果孔徑是一維陣列的狹縫,從狹縫傳送出去的光 成一維陣列的光源。如果孔徑是二維陣列的圓,圓的照射集I即 形成二維陣列的光源。典型的孔徑寬將約為20μιη。這樣的光源陣 列適合用於對於一眼的觀察員視窗的產生。 69 200844693 在圖―十四中’光源陣列歧置在距離透鏡_ U的距離位 ^光源_可為圖-耕1㈣光源,並且可選擇性的包含圖-的碰11。確切的說’每一個在光源陣列中的光源是設置在距 一、、見車列中匕所對應的透鏡U距離的地方。在較佳的實施例中, 光源陣列與透鏡陣列的平面是呈平行狀的。空間光調變器可位在 、、’ j的任迨。虛擬觀察員視窗與透鏡陣列的距離為u。透鏡 謇陣列中的透鏡是聚光鏡,聚焦長度f是由f=1/[1/u+1/v]所給定。 在較^的實施例中,V的值是在300mm到600mm的範圍内。更 好的只化例中’ v大約為4〇〇mm。在較佳的實施例+,^的值是在 _到3Gmm的域内。更好的實施例中,u大約為加麵。放 大因數Μ是由v/u所決定。乂是經由空間光調變器調變後的光源, 在虛擬觀察員視龍放大的因素。在較佳的實施例中,Μ的值是 在1〇到6〇的範圍内。更好的實施例中,Μ大約為20。為了實現 鲁如此的放大因數,並且具有好的全像圖像品質,需要準確排列的 -絲_與透鏡_。為了轉精確的_,以及在光源陣列與 •透鏡_之間維持_的距離,直到超過元件的使用壽命為止, 裝置元件需要具有強烈的機械穩定度。 虛峨察員視窗可以是可追縱的或不可追蹤的。如果虛擬觀 察員視窗是可追縱的,則根據虛擬觀察員視窗所需的位置,光源 陣列中特定的光源會被啟動。啟動的光源會照射空間光調變器, 200844693 並且藉由透鏡陣列成像至觀察員平面。在光源陣列中,對於透於 陣列中的每一個透鏡至少啟動一個光源。追蹤是為準連續的。如 果u是20mm且V是40〇mm,假若像素間距為2〇μιη,可追蹤到 帶有4〇Ομιη橫向增量的虛擬觀察員視窗。賴的追縱是準連續 的。如果u是20mm且ν是400mm,f大概是i9rmn。 在光源陣列中的光源可能僅具有部分的空間同調性。部分的 同調性會導致目標點的模糊重建。如果口是如麵且ν是彻軸, 假若光源寬縣,轉顯衫、應咖的目標點的重建會有 1〇_的橫賴糊。輯於人類視覺系、_解析度是足夠的f 在通過透鏡陣列中不同透鏡的光之間並不需要具有任何明顯 的相互同雛。同雛的需求是關在透鏡物巾的每—個單一 透鏡。因此,重建目標點的解析度是由透鏡陣列的間距來決定。 八至的透鏡f植將為lmm的等級,贿證對於人類視覺系統的充 份解析度。 /觀⑦胃視_限制在空間光調龍巾編碼資訊的傅立葉 頻』個繞射階級。如果空間光調變器的像素間距是吻瓜,並 位、扁碼,在5〇〇nm的波長,虛擬觀察員 71 200844693 視窗會有K)麵寬的寬度。趣驗窗可彻郎或時間多 工’將數個虛擬觀察員視窗拼凑成擴大的虛擬觀察員視窗。在, 要額外的光學元件,如光束分光鏡。在部二 案實作 “述了一些多工的方法,這些多工的方法也可能應用於本 中0 彩色全像«抑_化來纽。耗有機贱 示器的紅色,綠色繼恤織、m色及藍色= ^皮長#的全像_空間_變器關步重柄來相繼地啟 動0 —裝置元件形成的顯示器可包含眼部位置_器,用以偵測觀 ^的暢i。目晴編酿_細期中光源 動的控制單位。 一^空間光調變器上編碼的全像圖的計算最好是由外部的編碼 早7’目為它需錄高崎算能力。黯:#料會接著送至 個人數位助理或行耗話,以顯示全像產生的三維圖像。Imagmg's 2.6-inch screen ruler > XGA LCD display good-addressed spatial light modulator. The spacing of the sub-pixels is μιη. If: ^ is used for the construction of the red holographic display, the amplitude of the _ hologram = variable coding 'where the county electronic clock damper a4m, the observation window is calculated as L3mm width. • In the case of monochrome, the observation window is calculated to be 4 mm wide. If the same setting is used, but the phase modulation of the 2 phase encoding is used, the observation window is calculated to be 6 mm wide. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm wide. In addition, there are still other high-resolution electronic address space optical modulators. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as the D4:L3D13U 1.3-inch screen size with a pixel pitch of 15μηι. The company also published the same type of seesaw D5: L3D09U_61G00, with a 0.9 inch screen size and 像素μιη pixel pitch. 54 200844693 On December 12, 2GG6, the company announced the same type of panel L3D07U-81G00, with 〇, 7 inches to screen size and 8 5μιη pixel pitch. If the D4:L3D13U 1.3 correction panel is constructed to display a monochrome holographic display and uses the holographic Burckhardt amplitude modulation coding, the distance is 0.4m from the electronically addressed spatial light modulator, virtual observer The window can be calculated to be 5 6 leg width. D. Close Combination of Paired Electronic Address Space Light Modulators In another embodiment, the combination of two electronically addressed spatial light modulations can be used to modulate the amplitude of the light in a sequential and compact manner. And her. Therefore, a complex number including amplitude and phase can be encoded in the transmitted light pixel by pixel. This embodiment contains a close combination of two electronic neon spatial tones (4). The first electronically addressed spatial light modulator modulates the transmission handle amplitude, and the second electronically addressed spatial filament transformer modulates the transmitted light _ bit. It is also possible to modulate the phase of the transmitted light by the first electronically-spaced optical machine, and the second electronically-defined (four) optical modulator to modulate the Wei Guanglong. Each _ sub-location can be described as in Section C. In addition to the use of two electronic address space optical modulators, the overall configuration can be as described in section C. Any combination of the other two types of electronically located Lange's modulation characteristics that help the amplitude of the independent position is possible. 55 200844693 In the first, the financial, the first - electronic address, such as the paste, use the pattern to change the crying use in the younger brother - step 'the second electronic type of neo-space light; week: code 'to ride the phase _ change. From the second electronically-located spatial light, the amplitude and phase of the light have been modulated. Therefore, when observing the two electronic addresses of the device (four), the light-emitting device is installed. A three-dimensional image was observed. The modulation technique based on the conventional phase and amplitude promotes the representation of complex numbers, and the electronic address space can have a high solution. Therefore, this can be used to generate a hologram to make the _image visible to her. Figure 13 is an embodiment. 13〇 is a lighting device used to provide a flat area of the 'lighting' is a full complement to enable the production of three-dimensional images. A reference to US 2006/250671 is mentioned. An example of a lighting device for a large-area image full-image image, the side of which is shown in Figure 4. The device like (10) can be a white light source array. • Shouting, for example, a miscellaneous county lamp or a hair (four) light person A white light emitting diode on a poly(4) system in which the focusing system can be compact, such as a lenticular array or a microlens array. Alternatively, the light source of the 13() can be composed of red, green, and blue lasers, or The red, green and blue light-emitting diodes are composed of red, green and blue light-emitting diodes. The red, green and k-light emitting diodes can be organic light-emitting diodes (〇LEDs). _, a non-laser light source with sufficient space (eg · LED, organic light-emitting diode, cold 56 200844693 cathode fluorescent lamp) is better. Laser light depends on the shortcomings, such as in the holographic reconstruction caused by = spot, the upper (four) And the _ _ damage hologram shows the viewer or the hologram display device assembler Possible safety issues such as the eyes of a person. The device 130 may comprise one or two optical films to increase the brightness of the display: such films are known, for example, as described in US 5,056,892 and US 5,919,551. The component 130 may comprise a polarizing element or a collection of polarizing elements. A linear polarizing sheet is one of the examples. Another example is a polarizing polarizer that can transmit a - biased state, a neon reflection orthogonal misregistration State _ such thin = is known 'for example as described in us 5, 828, 488. Another example 疋 reflective polarizer 'transmits a circularly polarized state, and reflects the orthogonal circular polarization state... Such a sheet is known, for example, as described in still (10). The element m may comprise a poly(tetra) system, which may be compact, such as a lenticular array or a microlens array. Including other optical components known in the art of backlight technology. - The thickness of component 130 can be on the order of a few centimeters or less. In a preferred implementation, the thickness i of the component 34 is less than 3 cm. Provide adequate A compact light source. Element 131 can be a color filter array such that colored light (e.g., red, green, and blue money (four) trees 132, if the color source is a color source, a color filter is not required. Element 132 is an electron. 57. Address element 133 is an electronically addressed spatial modulo _ element i34 is an unnecessary beam splitter element. For transmitting light, element 132 modulates the amplitude and element 133 modulates the phase. The amplitude is modulated by element B3 and the phase of element 132 is modulated. The proximity of electronically-addressed spatial light modulators 132 and 133 can reduce optical loss and pixel crosstalk caused by beam divergence: when electronically addressed spatial light modulation The devices 132 and 133 are very close to each other, and can be used to record the better recent recording of the non-rereading of the color light of the first light. A viewer located at point 135 some distance from the device including the compact hologram generation 136 can view a three-dimensional image from 136. Reading m, m, mm, and m is a layer that is configured to be physically connected (realally connected)' each forming structure so that the whole is a single, unified object. The physical connection can be direct. Or indirect, if there is a ride (four) layer, the cover is in the phase. The physical continuum _ in the front of her: or, can extend to a larger area, even the entire surface of the layer. The physical connection can be realized by the layer-to-layer complication, for example, the metropolitan area accepts the lion__ to form a compact hologram to generate the crying test summary manufacturing program). 4 疋 Hunting by any other method (in the bun 疋 二 二 二 执行 执行 执行 执行 — — — — — 入射 入射 入射 入射 入射 入射 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, and the applied electric field affects the polarization state of the light. In such a device, the light leaving the electronically-spaced light modulator passes through another linearity. A polarizer that reduces the intensity due to a change in the polarization state of the light, as it does when it is electronically addressed to a spatial light modulator. In an electronically addressed spatial light modulator, phase modulation is performed unless they are already defined. Linearly biased state, in a typical setting, the incident reading optical beam will be linearly polarized by passing the beam through a linear polarizer. Phase modulation is controlled by the application of electricity, which affects light. Phase state. In one example of phase modulation, nematic phase liquid crystal is used, the optical axis direction is fixed at intervals, but birefringence is a function of applied voltage. In the example, ferroelectric liquid crystal is used, the double ride is fixed, but the direction of the wire is controlled by the application. In the phase modulation, the towel is used as the age-of-age method, and the output wire and the input function are applied as a function of voltage. The beam will have a subtraction. One example of a liquid crystal element that can perform her modulation is a Freedericksz element arrangement in which an anti-parallel arrangement of nematic liquid crystals having a positive dielectric anisotropy is used, as in 118. 5,973,817. For close-to-close (four) dense combination, including two, separated or minimal separation methods, the electronic addressing is correct. Her real money is that the two spatial light modulators have the same The number of pixels. Because the two electronically addressed spatial light 59 200844693. Zhou is not equidistant for the spectator, the pixel spacing of the two electronically addressed spatial light modulators may need to be slightly different (but will still be Probably the same), to make up for your doorstep _ for the effect of the observation of the shellfish. The light that has passed through the pixels of the first spatial light modulator will pass through the second spatial light modulator. Therefore, the light is modulated by two spatial light modulators, and complex amplitude and phase modulation can be independently implemented. For example, the first spatial light modulator performs amplitude modulation, and The second spatial light modulator performs phase modulation. Similarly, any combination of the other two spatial light modulator modulation characteristics that are equivalent to independent modulation of amplitude and phase is possible. The light passing through the pixels of the first spatial light modulator can only pass through the pixel corresponding to the first spatial light modulator. If the light emitted from the first spatial light modulator pixel passes through the second spatial light modulator, Crosstalk will occur when corresponding, adjacent pixels. These crosstalks may cause problems with reduced image quality. Here are four possible ways to minimize crosstalk between pixels. It is obvious by conventional techniques. 'These methods can be applied equally to Part B embodiments. (1) The first and easiest way is to directly adjust the two spatial lights after adjusting the pixels to be connected or bonded together. In the pixels of the first spatial light modulator, there may be a diffraction phenomenon that causes the light to deviate from propagation. The separation between the spatial light modulators must be sufficiently thin, as thin as the crosstalk between adjacent pixels of the second spatial light modulator reaches an acceptable level of 200844693. For example, the spacing of two electronically addressed spatial light modulators with a 1Q _ image distance must be less than or equal to the level of 10_100μηι. This is almost impossible to achieve in the transmission of the spatial light modulator, because the thickness of the glass cover is a level of lmm. Of course, the "sandwich" method that enables the thinness of the space between the thinners to be separated is a reduction in the -health #巾. The manufacturing method of the part of the program can be used to make a device containing two or less small or small electronic address space light modulators. Figure 14 shows the Fresnel diffraction data graph calculated by the diffraction of the slit 1 〇 μπι wide, changing the distance from the slit in the two-dimensional model, the vertical axis is slit(z), and the horizontal axis is slit (x). The uniformly illuminated slit is located between -5 μm and +5_ on the x-axis and Ζ is zero microns. Optical transmission media are used to obtain a refractive index of 15, which is a typical medium for compact devices. The selected light is red light with a vacuum wavelength of 633 nm. The green and blue color wavelengths are smaller than the red light, so for the calculation of red light, the strongest diffraction effects are exhibited in the three colors red, green, and blue. You can use parametric TecMology (RTM) €〇φ” Needham, Hidden, USA's product M (5) (RTM) software to perform calculations. Figure 15 shows that the slight intensity is left in the center of the slit ΙΟμιη wide, for the narrow The function of the seam distance. Where the distance from the slit 2〇_, Figure 15 shows that the intensity greater than 9〇% is still in the range of 1〇μιη wide of the slit. Therefore, in this two-dimensional model, less than 5% The pixel intensity is incident on each adjacent pixel. This is the result of the limitation of the zero boundary width between pixels. Actually, the boundary width between pixels is greater than zero, so the crosstalk problem is real. The system will be lower than the result of ##. In Figure 14 towel, Fico's diffraction pattern is close to the slit, for example 50μπι from the slit, and is somewhat similar to the high-hat strength function of the slit. The diffraction characteristic of 觅 is close to the slit. The wide diffraction characteristic is the L # of the high-hat function, and the 4-inch property of the % injection function. This is the sinc square (j function) which is commonly used. The sign can be from the distance slit 3〇〇μιη in Figure 14. The example is observed. This indicates that the diffraction effect can be closely controlled by setting the two electronically addressed spatial light modulators close enough and that the two electronically addressed optical modulators are placed very close together. One advantage is that the functional pattern of the diffracted data graph changes from a far-field characteristic to a more efficient function that contains light that is close to the axis perpendicular to the slit. This advantage is contrary to the idea of the conventional imagery technique. The technique tends to think that when the light passes through the small aperture of the spatial light modulator, it will cause strong, large and unavoidable diffraction effects. Therefore, the conventional technology does not have to bring two spatial light modulators closer. Together, the motivation is expected to result in a pixel crosstalk problem that must occur and is severely caused by the diffraction effect. Figure 16 shows a contour plot of the intensity distribution, the intensity distribution as a function of the distance from the slit. The plot of the line is on the logarithmic scale, not the linear scale. Ten equal-twist lines are used, all including a range of 100 intensity factors. For a slit width of 10 μm, strong A large degree of boundary is clearly defined in the range of approximately 50 μm from the slit. 62 200844693 In an advanced embodiment, the pixel aperture of the first electronically addressed spatial light modulator can be reduced to mitigate The second electronically-spaced space is used to adjust the crosstalk problem of Wei. (2) The second method is to use a lens array between two spatial light modulators, as shown in Figure 17. The better method is to let the lens The number of pixels is equal to the number of pixels in each spatial light modulation. The distance between the two spatial light modulation H and the distance between the lens arrays can be slightly different to compensate for the distance difference of the observer. The pixel of the light modulator is on the pixel corresponding to the second spatial light modulator, as shown in Figure 17 of the big money bundle Π1. It is also possible that light will cause crosstalk problems through adjacent lenses, such as a large number of beam Π2 solutions. If its intensity is _low, or if its direction is sufficiently different to make it impossible to reach the virtual observer window, it will be ignored. The numerical aperture (NA) of each lens must be large enough to image a pixel with sufficient resolution. As an example, for a fine resolution, an aperture of approximately 0.2 峨 is required. This also means that if it is assumed that the optical distance between the lens array and the lens array is 1 〇 μηι, the maximum distance between the lens array and each spatial light modulator is about 25 μm. 63 200844693 It is also possible to assign a number of pixels of each spatial light modulator to one lens of the lens array, taking a group of four pixels of the first spatial light modulator, which can be used by the lens array. A lens is imaged into a second spatial ramper by a group of four pixels. The number of interrogation lenses will be four quarters of the number of pixels in each space. This allows the use of lenses with higher numerical apertures, thus resulting in higher resolution imaging pixels. (3) The third method is to reduce the pixel aperture of the first-electronic address stray modulator as much as possible. From the viewpoint of diffraction, the area of the second spatial light modulator illuminated by the deleted pixels of the first spatial light is the pixel width D and the age of the first electronically-positioned spatial light modulator. The decision is as shown in pin eight. In Figure 18, the distance between the two electronically-spaced spatial light modulators, and w is the distance between the two first-P-level diffraction minimums, which occurs in the zeroth class maximum. One side. This is assumed to be a fine and fierce (F_hGfe_ shot, or a reasonable approximation of the Fraun and Fiji diffraction. Reducing the aperture width D - square © can reduce the range of direct projection of the new area of the frame" In the other way, according to the diffraction angle, the diffraction angle is proportional to the ι/d ' in the shot, and the ι/d ' in the shot is increased. This increases the fineness n in the second electronic address space. The width of the width of the read area is w. In the Fraun and Fis diffraction methods, the division d, D can be determined, and the program W = w in the diffraction of 64 64 44 44 44 is used to minimize w. The equation is derived from the distance between the two first-order minimums of Fraun and Fiji. For example, if 縦0.5, d is m and w is the minimum value of m, but f. However, in this example, The Frang and Fiji methods may not fit together a good approximation. This example has the principle of making the distance between the sub-addresses of the clock-modulated I to control the diffraction process in the Fraunhofer diffraction mode. The _ four methods use a fiber optic panel to image the illuminator to the pixels of the second space. The panel is composed of two parallel columns of parallel precursors. The length of the light_length and therefore the thickness of the panel is typically a few shame, and the diagonal length of the panel surface is as long as several inches. For example, the spacing of the fibers can be 6 division. Edmund 0ptics Inc.〇f B, as for n, ^ knows the kiss with the fiber-optic panel of the first _ distance. Each fiber is guided from its - ray bow to the other end. Therefore, in the panel - The image of the end will be transmitted to the other end, and there is high resolution and no focusing component. Such a panel can be used as a separation layer between two spatial light modulators, as shown in the pin 9. The recording is better than Single mode fiber, because the multimode light_fresh axis is good in single mode domain. When the (four) rate of the first _ heart is consistent with the refractive index of the liquid crystal, the best efficiency is obtained. (4) This can minimize the non-/ The back of the ear is reflected by the reflection. 65 200844693 There is no money outside the two kinds of miscellaneous light. The polarizer, the electrode: the alignment layer is directly connected to the fiber optic panel. Each of these layers is very thin, that is Level 1-1_. Therefore, liquid crystal (LQ layer La and LC2 are in the vicinity of the panel. By the first - The light of the inter-optical modulator pixel is directed to the pixel corresponding to the second spatial light modulator. This minimizes the adjacent pixel (four) sound. The panel transmits the light distribution of the _ spatial light-modulated Wei output to the second spatial light tone The input of the transformer. On average, 'each pixel should be at least one fiber. If each pixel is less than - one fiber, 'on average' the spatial light modulation will lose the resolution, resulting in display in the hologram display. The image quality of the applied application is reduced. In Figure 19, the spatial spatial modulator modulates the amplitude, and the second spatial optical modulator modulates the phase. Other electronically addressed spatial tones that lack complete complex modulation The combination of the modulation characteristics of the transformer is possible. Figure 10's shows an example of the tight alignment of the amplitude and phase information of the image of the image. 104 疋 (4) U is used to provide illumination of a planar area where the illumination is sufficiently homogenous to enable the creation of a three-dimensional image. An example of a device for large area image hologram is mentioned in us 2006/250671. A device such as a 1G4 may be in the form of a white light source array, such as a white light emitting diode on a focusing system, such as a luminescent lens, wherein the poly (tetra) system may be compact, such as a lenticular 66 200844693 array or micro. The lens array is moving. Alternatively, the light source used for the operation may consist of red, green and blue lasers, or a full-color red, green and blue light-emitting diode. However, a non-laser light source (10) having a sufficient m and the same type, such as a light-emitting diode, a light-emitting diode, and a cold cathode lamp, is more (four). The shortcomings of the laser ray, such as the glare of the holographic reconstruction, the more blame on the slap and all the safety issues such as the hologram of the injury showing the viewer's eyes and the eyes of the holographic display device group. Element 104 may comprise one or two xenon optical films to increase the brightness of the display: such films are known' as described, for example, in us 5, (d), 892 and us 5, 9i9, 55i. Element 104 can comprise a polarizing element or a collection of polarizing elements. Linear polarizing sheets are one of them. In addition, an example is a reflective polarizer, which is capable of transmitting a hetero-biased state, and is known to reflect orthogonal hetero-biasing, such as that described in U.S. Patent 5,828,488. Another example, the sub-reflective polarizing >; 'Wei-side-biased state, and reflecting orthogonal circles, secret state - such a sheet is known, for example, in us 6, (8), 395 Described content. Element 104 can include other optical components known in the art of backlighting. The elements 104, 100-103 #all may be on the order of a few centimeters or less. The component may include a color filter, such that the pixels of the peach light (e.g., red, green, and blue 67 200844693 shades) are directed toward the component 1〇2, although if a color light source is used, the color overshoot is not required. Το件1〇2 is an electronic address space optical modulator that encodes phase information, such as Freedericksz components. Element 103 first encodes the electronic address space of the amplitude information, for example, in a commercially available liquid day and day display I. Each element of the element 102, here, will be labeled, and will be represented by the corresponding element arrangement in the element 〇3. However, in spite of the elements in elements 1〇2 and 1〇3 and having the same lateral spacing or spacing, the element size in element 102 will be less than or equal to that of component 103 in the component 103. The elements 108 of the component (10) typically undergo some diffraction. The order of encoding the amplitude and phase can be reversed as shown in Figure 10. The locator 106 is located at point 106 from the apparatus including the compact hologram generator 105 - the distance viewers can view the three-dimensional image from the direction of 1G5. The tree (10), im are configured to be physically connected as previously described so as to form a compact hologram generator 105. ^The constituent element contains -pair or two pairs of organic light-emitting diodes and light-tight group _ combiner or - or two electronically-positioned spatial light modulators with tight σ ' and large-magnification three-dimensional with target holographic reconstruction Figure 14 shows the image display device - a component consists of - pair or two pairs of organic light-emitting diodes 68 200844693 body and optical type of new space light modulator combination or - or two light modulation (four) tight Yuhe 1 has a large magnification display device with target holographic reconstruction. The components of this device include _ + -, a combination of quasi-images, which can produce a visible three-image in a virtual view, which can be, for example, positively Number (10) in the phone or in the phone. As shown in Figure 24, the close combination of the inductive and the compact source of the charging side includes an external optical modulator and lens array. The spatial light modulator in Fig. 2, the package contains = or two pairs of organic light-emitting diodes and the combination of space-type light modulators = one or two electronically-addressed spatial light modulators Tightening, or -: There are: a combination of illuminating-polar body and optically-addressed spatial light modulators and a seven-space spatial light modulator. In a simple example, the array of light sources can be formed in the following manner. A single light source, such as a single-color light-emitting diode, is placed in close proximity to the aperture array so that the aperture can be illuminated. If the aperture is a slit of a one-dimensional array, the light that is transmitted from the slit is a one-dimensional array of light sources. If the aperture is a circle of a two-dimensional array, the illumination set I of the circle forms a light source of a two-dimensional array. A typical aperture width will be approximately 20 μm. Such an array of light sources is suitable for use in the production of an observer window at a glance. 69 200844693 In Figure 14, the 'light source array is dislocated at a distance from the lens _ U. The light source _ can be a picture-cultivation 1 (four) light source, and optionally includes a touch-of-graph 11 of the figure. Specifically, each of the light sources in the array of light sources is located at a distance from the lens U corresponding to 匕 in the train. In a preferred embodiment, the array of light sources is parallel to the plane of the lens array. The spatial light modulator can be located at the end of the 'j'. The distance between the virtual observer window and the lens array is u. The lens in the lens array is a concentrating mirror, and the focal length f is given by f = 1 / [1/u + 1 / v]. In a more preferred embodiment, the value of V is in the range of 300 mm to 600 mm. More preferably, the 'v is about 4 mm. In the preferred embodiment +, the value of ^ is in the domain of _ to 3 Gmm. In a more preferred embodiment, u is approximately faceted. The amplification factor is determined by v/u.乂 is the source of the light source modulated by the spatial light modulator, which is amplified by the virtual observer. In a preferred embodiment, the value of Μ is in the range of 1 〇 to 6 。. In a more preferred embodiment, Μ is approximately 20. In order to achieve such an amplification factor and have a good holographic image quality, an accurate arrangement of -wire_and lens_ is required. In order to achieve accurate _, and maintain a distance of _ between the array of light sources and the lens _ until the component's useful life is exceeded, the device components need to have strong mechanical stability. The virtual observer window can be traceable or untrackable. If the virtual observer window is traceable, the particular light source in the light source array will be activated depending on the desired position of the virtual observer window. The activated light source illuminates the spatial light modulator, 200844693 and is imaged by the lens array to the observer plane. In the array of light sources, at least one light source is activated for each lens that is transmitted through the array. Tracking is quasi-continuous. If u is 20mm and V is 40〇mm, if the pixel pitch is 2〇μιη, the virtual observer window with 4〇Ομηη lateral increment can be traced. Lai’s pursuit is quasi-continuous. If u is 20mm and ν is 400mm, f is probably i9rmn. The light source in the array of light sources may only have partial spatial homology. Partial homology leads to fuzzy reconstruction of the target point. If the mouth is as the face and ν is the axis, if the source is wide, the reconstruction of the target point of the shirt and the coffee will have a 〇 _ _ _. In the human visual system, _ resolution is sufficient f does not need to have any obvious mutual brood between the light passing through different lenses in the lens array. The same needs of the chicks are for each single lens of the lens towel. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. The eight-to-one lens will be rated at 1mm, and the bribe will be fully resolved for the human visual system. / View 7 stomach view _ limited to the space light to adjust the information of the dragon towel code of the Fourier frequency "a diffraction class. If the pixel spacing of the spatial light modulator is a melon, parallel, flat code, at a wavelength of 5 〇〇 nm, the virtual observer 71 200844693 window will have a K) face width. The fun window can be slashed or time multiplexed' to piece together several virtual observer windows into an expanded virtual observer window. In the case of additional optical components, such as beam splitters. In the second case of the implementation of the case, "there are some multiplexed methods. These multiplexed methods may also be applied to the zero-color hologram in this article." _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ m color and blue = ^ pico # full image _ space _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The control unit of the light source movement in the fine period is the control unit of the light source moving in the fine period. The calculation of the hologram image encoded on the space light modulator is preferably performed by the external code as early as it is required to record the Takasaki calculation ability. The #料 will then be sent to the personal digital assistant or line to display the three-dimensional image produced by the full image.

Irm對於^務上的例子’可使用由SanyG (RTM) EpSQn (RTM) Paging Devices Corporation of Japan mi'A^ 2.6 72 200844693 XGA液晶顯4電子式定址空間光轉器。次像素的間距為 Π㈣。如果這是於紅賴全像顯叫建構,_全像圖的振 幅繼編碼,在距離電子式定址空間光調變減如的地方,觀疚 視窗根據計算為_寬。.單色的㈣,贿視窗根據計: 為4麵寬。如果使用相同的設定,但是改用2相___ 變’觀察視窗根據計算為6聰寬。如果使用相同的設定,但是改 用基諾形式(Kinofbrm)編碼__變,觀察視據計算為 12mm 寬。 仍具有其它種高解析度的電子式定址空間光調變器。Seik0 (RTM) Epson (RTM) Corporation of Japan 空間光調變器’例如D4:L3D13U U英时營幕尺寸且像素間距為 15μιη的面板。此公司也發表了同類型的面板 # D5:L3D〇9U_61G00 ’具有〇.9英叶榮幕尺寸及ΙΟμηι的像素間距。 於西元2006年12 S 12日,此公司公告發表同類型的面板 L3D07U-嶋〇,具有〇·7英对螢幕尺寸及8 5卿的像素間距。如 果D4:L3D13U U英对面板用於建構單色的全像顯示,並採用全 像的布克哈特(Burckhardt)振幅调變編碼,則距離電子式定址空間 光調變器0.4m的位置,虛擬觀察員視窗可計算出為5 6mm寬。 F·包含一對或兩對有機發光二極體與光學式定址空間光調變器組 73 200844693 合或是—個4兩個電子錢址如光觀n的緊練合,且具有 目標全像重建的三維圖像顯示裝置 口對或兩對有機發光二極體與光學式定址空間光調變器級合 或是-個或兩個電子式定址空間光調變器的緊密組合,是較推薦 2於手持式二_稀置妓較大的三軸示裝置巾,因為這 ίΓ:是非常緊密的。這樣的組合可整合至例如行動電話、衛 =航裝置、相顯示器、電腦遊戲裝置、個人數位助理(PDA)、 媒_電腦顯示器、桌上型電腦螢幕或是薄型電視顯示器中。這 於St較針對於單一使用者。使用者-般是位在垂直 離 X、、位置’並且是離裝置可得到最佳觀看效果的距 合傾2約為的_ ° A家都知道,手持式裝置的使用者 同在"w己改欠手上裝置的方向’以獲得最理想的觀看狀態,如 P胸酬中所描述的内容。因此,在這樣的裝置中,並 風而要仙麵部魏及_且不緊密如包含掃織的追縱光 :外=艮睛追縱可咖在其它的裝置中,如果對於裝置而言, 1外茜求的設倾電財會造成過度的貞擔。 ^含-對或兩對有機發光二極體與光學式定址空間光調變器 ^或疋-個或_電子式纽空間光調變器的緊密組合,且具 目“全像重建的衛星導航三維圖像顯示裝置具有如下的優點。 74 200844693 駕駛者可找到路線資訊的三維圖像,例如在下一個路口要執行的 操控方式,並且因為三維圖像資訊能更符合接近駕駛者駕駛時的 感知,能比二維圖像資訊來的更佳。其它顯示器上的資訊,例如 選單,可以三維方式顯示。顯示器上部份或是全部的資訊皆可以 二維方式顯示。 以包含—對或兩對有機發光二極體與光學式定址空間光調變器 組合或是—個或兩個電子式纽空間光調變器的緊密組合,且具 2=像重建的車用三維圖像顯示裝置具有如下的優點。此裝 置可成可以直接地齡三維資訊,例如在倒車的時候,或 爾幢板)與鄰近 一絡(d減情況的三維圖像。在通道比車輛較狹窄的地方, =圖像_裝置有喊駛者了解車輛通不過此通道。三維圖 輛資=裝設在車輛上的感應11所提供的資訊來建立。其它的車 弓I擊轉速編在_上,例如速度、溫度、每分鐘 地顯干如U細不於車輛中賴訊。衛星導航資訊可三維 式:器上。顯示紅部份或是全部的資訊皆可以三維方An example of Irm's use can be used by SanyG (RTM) EpSQn (RTM) Paging Devices Corporation of Japan mi'A^ 2.6 72 200844693 XGA liquid crystal display 4 electronic address space optical rotator. The pitch of the sub-pixels is Π (4). If this is the construction of the red photographic image, the amplitude of the _full image is coded. In the place where the optical modulation is reduced from the electronic address space, the viewing window is calculated as _ wide. . Monochrome (four), bribe window according to the calculation: for 4 sides wide. If the same setting is used, but use the 2-phase ___ variable 'observation window' according to the calculation for 6 Cong Kuan. If the same setting is used, but the Kinofbrm encoding __ is used instead, the viewing data is calculated to be 12 mm wide. There are still other high resolution electronic address space light modulators. Seik0 (RTM) Epson (RTM) Corporation of Japan Space Light Modulators such as the D4: L3D13U U-Time Panel with a 15μm pixel pitch. The company also published the same type of panel # D5:L3D〇9U_61G00 ’ has a 〇.9 Ying Ye Rong screen size and 像素μηι pixel pitch. On 12 S 12, 2006, the company announced the same type of panel L3D07U-嶋〇, with a 7-inch screen size and a pixel pitch of 8 5 cm. If the D4:L3D13U U-pair panel is used to construct a monochrome holographic display and uses the holographic Burckhardt amplitude modulation code, the distance from the electronically addressed spatial light modulator is 0.4m. The virtual observer window can be calculated to be 5 6mm wide. F· comprises one or two pairs of organic light-emitting diodes and an optically-addressed spatial light modulator group 73 200844693 or a pair of four electronic money sites such as a light view n, and has a target hologram The reconstructed three-dimensional image display device or two pairs of organic light-emitting diodes and optically-addressed spatial light modulators are combined or one or two electronically-positioned spatial light modulators are closely combined. 2 in the hand-held two _ thinner than the larger three-axis display device, because this Γ: is very tight. Such a combination can be integrated into, for example, a mobile phone, a navigation device, a phase display, a computer game device, a personal digital assistant (PDA), a media-computer display, a desktop computer screen, or a thin television display. This is more for St than for a single user. The user is generally located at a distance of X from the vertical position, and is at a distance of about 2 from the device. The home is known to be the same as the user of the handheld device. The direction of the device has been changed to 'get the best viewing status, as described in P. Therefore, in such a device, the wind is pleasing to the face and the _ is not as tight as the ray that contains the woven fabric: the outer 艮 縱 縱 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在1 The pleading of the electricity and finance will cause excessive burden. ^In- or two pairs of organic light-emitting diodes and optically-addressed spatial light modulators or 疋- or _ electronic neo-space light modulators, and the "full-image reconstruction of satellite navigation" The three-dimensional image display device has the following advantages: 74 200844693 The driver can find a three-dimensional image of the route information, such as the control mode to be performed at the next intersection, and because the three-dimensional image information is more in line with the perception when the driver is driving, It can be better than 2D image information. Other information on the display, such as the menu, can be displayed in 3D. Some or all of the information on the display can be displayed in 2D. To contain - or two pairs of organic A combination of a light-emitting diode and an optically-addressed spatial light modulator or a close combination of one or two electronic-type spatial light modulators, and a 2=image reconstruction vehicle three-dimensional image display device having the following Advantages. This device can be used to directly view three-dimensional information, such as when reversing, or adjacent to a network (d 3D image of the situation). The channel is narrower than the vehicle. Place, = image_ device has a shouter to understand that the vehicle does not pass this channel. The three-dimensional map of the vehicle = the information provided by the sensor 11 installed on the vehicle to build. The other car bow I hit the speed on the _, For example, speed, temperature, and every minute, such as U, are not in the vehicle. Satellite navigation information can be three-dimensional: on the device. Display red or all information can be three-dimensional

輪出视窗的大小 。如果有機發光 是由傅立葉平財繞射圖樣的漏性間隔所 二極體_ ϋ妓電子式定址帥光調變器 75 200844693 中的像素’是接近10μιη ’那麼對於波長5⑻腫的可見光,在 距離500mm的地方,根據全像圖的空間光調變器所使用的編石馬, 虛擬觀察員視窗(vow)的寬度約為10mm到25mm。這對於—個 眼睛而言是足夠寬的。對於另外—眼的第二虛擬觀察員,可由野 空間光調變器的内容進行空間或時間上的多工方式來建立。在缺 少追蹤的情況下,為了看見最佳的三維圖像,觀察員必須旋轉或 * _裝置及/或他自己本身的位置,讓他的眼睛能位在虛擬觀察員 馨視窗’並且位於離裝置最佳的距離。 數個虛擬觀察貞視諸湊而成的方式可讓調整顯示裝置位置 及方向的程序較為容易。兩個或三個虛擬觀察員視窗可在x_及 方向並列,使得虛減察員視窗可涵蓋較大的區域。拼凑的方式 可由空間或時間多工,或是空間及時間多工的組合來完成。工 鲁在時間多工中,光是時間上依序地投射至虛擬觀察員視窗中。如 果虛擬觀察貞視窗具有不同_容,空間光調魏必須重編嗎。 在空間多功,對於不同虛擬觀察S視窗的内容,杜相同的時 間於空間光調變器中進行編碼,但是是在空間光調變器的不同區 域。光束分光鏡可將空間光調變器不同區域的光分至不同的虛擬 觀察員視窗。可使用空間及時間多工的組合。 典型用於行動電話_人數位助理的手持式三_示裝置的 76 200844693 全像次顯示可 維圖像,例如藉由顯示相同 二維圖像齡裝置可切換顯示二 的圖像至觀看者的每—個眼睛的方式 圖, 了包含-對或_有機發光 間光調變器組合或是—麵兩個 式疋址空 組合的三維圖像顯示裝置的實施例。在二:調變器的緊密 ,在行動電話上,4咖彳^ s铜二巾的裝置是行動電話 •使_打電:== 動電話3〇::動:電=它:實施方式+ ’天線可•行 ^ 動電忐30裝配兩個攝影機33及34,分別 =使用=錢及魏_像。魏及魏_像包含立體圖像 一貝Γ t請配備數字及及τ符號的,以及其它 功月b的备鍵36,例如在馨莫μ认、阳ασ ’、 等。在按鍵上龜-中移動,退回或是啟動關閉 、 鍵扣的標示例如,,〇N"OFF”或是”2",可避 混淆,可防止在進行二维參士 … 、〜 了―,心像4通_雙方,觀看對方時顛倒 有。使用上’兩個觀看者的眼睛與兩個攝影機33及34最 疋/、面的ϋ且伽相臉是位在接近垂餘螢幕區域3 置。這樣能確保兩個攝影機%及34在包含觀看者眼睛的平种 77 200844693 記錄視差。觀看者的頭部對 * 、'、、、員不咨的最理想觀察位置是預先決 =的==攝影機33及34能在這個位置獲得觀看者頭部最 此三維圖像電話通話中的另-方也是同樣如 中。為τΐρ I在紐想时品f的雙向三_像電話通話 希^^看者精確地面向攝影機33及34,可能會較 夕,藝城二目目_虛擬觀韩視料纽每個眼睛大太 ^料心可⑽概看者的眼界對於觀看者攝影機方向在位 向上的錯誤。藉由將褒置朝向拍照的目標,裝置可對目標 進仃二維顧。或者’可藉域置螢幕上的小按賴示來引導使 =者使用’猎此完成裝置的最理想方向設置。裝置也可具備眼部 追縱功能。在此所描述職置格式翻法可使驗可全像地、自 動立體顯示地或_其餘何方法產生三_像的裝置。 在雙向的三轉像電話職細,娜機33及34分別記錄 使用者的右眼及左眼圖像。從這些圖像獲得的資料,會用於在三 ^/像通財另-方對應的手持裝置上,以建立三維影像圖像。 如果三維圖像是自動立_示地產生,從攝影機33及34的觀看 可直接地伽在自動立體顯示器巾產生兩個眼_圖像。如果三 、、隹圖像是全像地產生,包含從攝影機33及34觀看的資料應該要 進行處理’例如藉由使用產生全像圖的電腦’例如在—個或兩個 空間光調變器之上允許全像資料的適當編碼。當三維圖像是全像 78 200844693 地產生,此二維顯示器為一種全彳ng _ w 时— 種王像顯不益。相較於自動立體顯示 η 冰度^,即調節(眼睛_與視差。全像 全像重建 一一 像重建,即在正麵深度產生全部目標點的 像電t^rrr式三_示器的翻包含鱗雙向三維影 場景的= 是包括由通話中的另-方顯示目標或 否有損害。另一個廡 破知查物叩疋 獲得幫助。三維顯示可择進:體^的確§忍,可由三維顯示來 力,例如編或是物人。體進行區別能 看個體,以進行更進-步的連^規 方式,觀看者會喜歡三維顯示勝於二末規看成人内容的 不同個體的眼睛之間會有不同的在 有目標全像重建的:_干壯^士 在個貝苑例中,具 使用者變化投射左=目會有選單選項,能夠讓顯示器的 射左眼財眼的虛擬觀察 早選項的選擇上,使用者按 門的_。在選 觀察員視窗之間的分隔。如果這Χ是已設二來^或是減少虛擬 且試圖觀看三維圖像時 :° 又疋㈣’當觀看顯示器並 料可選擇最佳的虛擬觀察員視窗之間的分 79 200844693 隔距離,讓觀看者觀看可實現的最好三維圖像。接著,所選擇的 距離可儲存在使用者的偏好^如果有多個個體使用裝置時, 則可將多個使用者偏好儲存在裝置當中。這樣的選單選項可被實 作,儘管裝置具有能力各观去追職看者騎睛位置,因為^ 斤k擇希主的虛挺觀察員視窗之間的精確距離會比追縱^體 的&擇來的更好。一旦這樣的選擇產生了,將可加快追縱的速度, 在眼睛之_距離成顧定的參數之後,對於觀察員的^ 所需要的精確位置決定會較低。能夠選擇兩個虛擬觀察員視窗之 ’更好的距離’也提供了超越自動立體顯示系統的優點,在自動 立體顯示系統中’左眼與右眼圖像之間的距離是傾向於使用裝置 硬體來固定。 人。、:對或兩對有機發光二極體與光學式定址空間光調變器組 • i/、是個或兩個電子式定址空間光調變的緊密組合的平面投 上,4置發射的光也可投_絲錢或是—些其它的表面 式。=取代如F部份所贿的投射光缝個虛織察貞視窗的方 顯示Ϊ此’在行動電話_人數位助理或是在其它裝置中的三維 ’、、、不農置也能如同以卩袋型投影機的方式來使用。 200844693 可藉由伽m細變II纖人射光的振幅及她來提升全 攝囷的°°貝。因此,複數值的全像圖可在空間光調變器上編 碼’讓重建在螢幕顿上賴像具有較好品質。 在先七所A述的—對或兩對有機發光二極體與光學式定 ‘ ^空間光調變器组合或—個或兩個電子式定址空間光調變器的緊 植合’可作為空間光調變器使用於投影機中。由於此組合的大 小為緊密的,投韻也將妓緊密的。投職甚至刊為如行動 絲或是個人數位祕或是—些其它的裝置:可藉由"三維顯示 為”與π投影機"模式來進行切換。 相較於習用的二維投影機,全像式二維投影機具有不需要投 影透鏡以及投射的_在光學遠場中的全部距離都是聚焦的優 鬌‘點自用的全像式二維投影機,例如在W〇2〇〇5/〇59881中所描述 ,_容,使料-空間光調變器,因此無法進行__變= .此所描述的全像式二維投影機,將能夠進行複雜的The size of the rounded window. If the organic luminescence is the leakage interval of the Fourier 财 财 绕 绕 _ _ _ ϋ妓 ϋ妓 ϋ妓 ϋ妓 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 In the 500mm area, the virtual observer window (vow) has a width of about 10mm to 25mm according to the stone used by the hologram spatial light modulator. This is wide enough for an eye. For the other-eye second virtual observer, it can be established by spatial or temporal multiplexing by the content of the wild space light modulator. In the absence of tracking, in order to see the best 3D image, the observer must rotate or * _ device and / or his own position, so that his eyes can be in the virtual observer window "and located in the best device the distance. Several virtual observations can be made in a way that makes it easier to adjust the position and orientation of the display device. Two or three virtual observer windows can be juxtaposed in the x_ and direction so that the virtual inspector window can cover a larger area. The way to piece together can be done by space or time multiplexing, or a combination of space and time multiplexing. In the time-to-work, Lu Lu is projected into the virtual observer window in time. If the virtual observation window has a different _ content, the spatial light adjustment Wei must be re-edited. In the space, for the content of different virtual observation S windows, Du is the same time in the spatial light modulator, but in the different areas of the spatial light modulator. The beam splitter splits the light in different areas of the spatial light modulator into different virtual observer windows. A combination of space and time multiplexing can be used. 76 for hand-held three-display devices typically used for mobile phones _ number of assistants 2008 2008 693 full-image display of colorimetric images, for example by displaying the same two-dimensional image age device can switch the display of two images to the viewer An embodiment of a three-dimensional image display device comprising a pair of - or - an organic light-to-bright light modulator combination or a face-to-face two-dimensional address space combination. In the second: the tightness of the modulator, on the mobile phone, the device of 4 coffee 彳 ^ s copper two towel is a mobile phone • make _ call: == mobile phone 3 〇:: move: electricity = it: implementation + ' The antenna can be equipped with two cameras 33 and 34, respectively = use = money and Wei _ image. Wei and Wei _ images contain stereo images. Please use the numbers and τ symbols, as well as other backup keys 36 of the power month b, for example, in Xinmo, Yang ασ ’, etc. On the button, the turtle-middle movement, the return or start-off, the button indication, for example, 〇N"OFF" or "2", can avoid confusion and prevent the two-dimensional participation in the... The heart is like a 4-way _ both sides, and when they watch each other, they are upside down. The eyes of the two viewers are used with the two cameras 33 and 34, and the face and the gamma face are located close to the remaining screen area 3. This ensures that both cameras % and 34 record parallax in the flat species containing the viewer's eyes 77 200844693. The most ideal viewing position of the viewer's head for *, ',, and staff is predetermined == Cameras 33 and 34 can obtain the other three-dimensional image in the viewer's head at this location. - The party is also the same. For the τΐρ I in the New Zealand time, the two-way three-like telephone call of the singer f ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Too care (10) The eye of the viewer is wrong with the viewer's camera orientation. By positioning the device toward the target of the photograph, the device can take a two-dimensional view of the target. Or 'You can use the small button on the screen to guide you to use the best direction setting for the device. The device can also have an eye tracking function. The placement format method described herein allows for the detection of a full-image, auto-stereoscopic display or other means of generating a three-image device. In the two-way three-turn image, the machines 33 and 34 record the user's right and left eye images, respectively. The data obtained from these images will be used to create a 3D image on a handheld device corresponding to the same. If the three-dimensional image is automatically generated, the viewing from the cameras 33 and 34 can be directly applied to the auto-stereoscopic display towel to produce two eye-images. If the images are generated in a holographic manner, the data contained in the cameras 33 and 34 should be processed 'for example, by using a computer that produces a hologram', such as in one or two spatial light modulators. The appropriate encoding of the hologram data is allowed above. When the 3D image is holographically generated, the 2D display is a full 彳 ng _ w — the king image is not good. Compared with the autostereoscopic display η ice degree ^, that is, adjustment (eye _ and parallax. holographic hologram reconstruction one-image reconstruction, that is, the image of the entire target point is generated at the front depth t ^ rrr type _ _ Turning over the two-dimensional three-dimensional shadow scene containing scales is to include the target displayed by the other party in the call or whether there is damage. Another smashing the knowledge of the object to get help. The three-dimensional display can be selected: the body ^ is indeed §, can be Three-dimensional display force, such as editing or object person. The difference between the body can be seen in the individual, in order to carry out a more advanced step, the viewer will like the three-dimensional display is better than the eyes of different individuals who look at adult content. There will be different reconstructions in the target hologram: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Observe the choice of the early option, the user presses the door _. The separation between the selected observer windows. If this is already set to 2 or reduce the virtual and try to view the 3D image: ° 疋 (4) 'When Watch the monitor and choose the best virtual view Points between the windows 79 200844693 The distance between the viewers allows the viewer to view the best three-dimensional image that can be achieved. Then, the selected distance can be stored in the user's preference. ^When there are multiple individuals using the device, Multiple user preferences are stored in the device. Such a menu option can be implemented, although the device has the ability to look after the viewer's eye-catching position, because of the precision between the virtual observer's window The distance will be better than the choice of the & & once the choice is made, it will speed up the speed of the memorial, after the eye's distance is determined by the parameters, for the observer's ^ The precise position decision will be lower. The ability to select the 'better distance' of the two virtual observer windows also provides the advantage over the autostereoscopic display system, the distance between the left and right eye images in the autostereoscopic display system. It is inclined to use the device hardware to fix. Human,: or two pairs of organic light-emitting diodes and optical address space light modulator group • i /, is one or two electronically addressed spatial light modulation The close combination of the plane can be cast, and the light emitted by the 4 sets can also be cast _ silk money or some other surface type. = Replace the projection of a piece of light that is bribed as part of the F section. This 'in the mobile phone _ number of assistants or three-dimensional ', in other devices can also be used as a pocket-type projector. 200844693 can be used by gamma fine fiber II The amplitude and her to enhance the full-motion ° ° ° Bay. Therefore, the complex-valued hologram can be coded on the spatial light modulator 'Let the reconstruction on the screen has a better quality. The first seven A - or two pairs of organic light-emitting diodes combined with optical fixed '^ spatial light modulators or one or two electronically-positioned spatial light modulators can be used as spatial light modulators In the projector, since the size of this combination is tight, the rhythm will also be tight. The job is even published as a action wire or a personal digital secret or some other device: it can be switched by the "3D display" and "π projector" mode. Compared to the conventional 2D projector The omni-directional two-dimensional projector has a holographic two-dimensional projector that does not require a projection lens and projects all of the distances in the optical far field that are focused, for example, in W〇2〇〇 As described in 5/〇59881, _capacitance, space-space optical modulators, therefore cannot be __variable =. The holographic two-dimensional projector described here will be able to perform complex

具有非常佳的圖像品質。 I H.使用-個或兩個紅外線有機發光二極體顯示器與光學式定址空 間光調變器的緊密組合的自動立體或全像顯示器 二 200844693 紅外線有機發# 一極體頋示器與光學式定址空間光調變器的 緊Ί(例如A部份所描述_容)也能使用在自動立體顯示器 (ASD]:,特別疋在行動電話或是個人數位助理中的手持式自動立 _.、、、、,、、、㈣於翻的觀看者而言,觀看自動立體顯示器並 不像觀看全像顯示H—_舒適,_在—歸況下,自動立體 顯示器比起全像顯示器可能較為便宜或是較容易去產生或去提供 圖像資料。自動立體顯示器提供數個觀看區域,藉由每個觀看區 ►域顯示三維場景的不同觀點。如果觀看者的眼睛是在不同的觀看 區域’他將看到立體的圖像。自動立體顯示器與全像技術的差異: 自動立體顯示器提供兩個平面圖像,而全像技術更提供三維場景 中每一個目標點的Z-資訊。 通系’自動立體顯TFll是以顯示||上觀看區域的空間多工為 基礎,並且使用光素分光鏡元件,例如雙凸透鏡(lenticulars)、障礙 •遮蔽师如如masks)或是稜鏡遮蔽物麵㈣。障礙遮蔽物也 : 可稱之為”視差障礙”。自動立體顯示器的缺點是每一個觀看區域 的解析度會典型地反比於觀看區域的數量。但是這個缺點可由如 上所描述的自動立體顯示器的優點來補償。 紅外線有機發光二極體顯示器與振幅調變光學式定址空間光 調變器的緊密組合(例如在A部份所描述的内容)可使用來成為具 82 200844693 2广度的振幅調變顯示器。如果紅外線有機發 ,振幅調變光學#址空間光調變器的緊密組合是盘光 ίΓΓ合的話,财建構出具高解析度的自動讀顯示器3 似5的高崎射補翻輕辭工簡失的鱗度。’、 十^要-個❹個額相絲式定址空縣器的 立體顯示urn❹財嶋:輸_—個或多個 光學式纽雜糊變n㈣麵合⑽如:在a與b部份所描成 的内容)的優點是_樣式的光學式定址空間光調變器。自動2 顯示器包含光束分光鏡與有機發光二極體陣列,可能會由於圖樣 式的有機發光二極體而具有加卫品,例如:在光束分光鏡期間鱼 有機發光二極體_之_#紋效應(M咖effeets)。相較之下, 在緊密組合的光學式定址如光婦^上㈣訊是_的:僅有 光束分光鏡期間,不會出現週期性的加工品。 自動立體顯示H的光源可為-個或多個光源,例如發光二極 體,雷射,有機發光二極體或冷陰極螢光燈。絲不需為同調性 的。如果使用有機發光二極體且自動立體顯示器顯示色彩圖像, 則會在光源與光發射顯示器及振幅調變光學式定址空間光調變器 的緊密組合之間需要色彩過濾器層,例如紅色,綠色及藍色過渡 器。 83 200844693 紅外線有機發光二極體顯示器與光學式定址空間光調變器的 緊饴組合(例如在A部份所描述的内容)也可以使用在全像顯示, 特別疋在打動電話或個人數位助理中的手持式顯示器。全像顯示 器是以顯示器上觀看區域的空間多工為基礎,並且使用光素分光 、兄元件例如雙凸透鏡(lenticulars)、障礙遮蔽物作紅如r脆如)或 疋稜鏡遮蔽物(prism masks)。障礙遮蔽物也可稱之為”視差障礙 ’’。紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊 瞻魏合(例如在A部份所描述的内容)可使用來成為具有高解析度 的王像,、、、頁示為。如果紅外線有機發光二極體顯示器與振幅調變光 學式定址空間光調變器的緊密組合是與光束分光鏡元件結合的 话’則可建構出具高解析度的全像顯示器。緊密組合的高解析度 可補償因為空間多工而損失的解析度。在另-個實施例中,兩對 有機發光二極體_與光學式定址空間光調變器的緊密組合的組 u可以依序且緊密的方式使絲調變光的振幅與她,如b部份 所&述的。因此’由振幅油位組成的複數,可·逐一像 • 素的方式在傳送光巾編碼。如果兩對紅外線有機發光二極體顯示 器與振幅婦光學式定址空間細變H的緊密組合是與光束分光 鏡兀件結合,I柯魏出高解析度的全細示器。緊密組合的高 解析度可補·為空間多卫而損失的解析度。具有光束分光鏡元 件的全像顯*11可提供數織看區域,藉由每她看區域顯示三 、准场豕的不同觀點。如果觀看者的眼睛是在不同的觀看區域,他 84 200844693 將看到立體的圖像 匕维傳輪t需要的資料處理系統。 圖—十二顯示了三維傳輪中需要的次^ + 二…其卜方22〇舆另一方2二,料處理系统。在圖二十 像的拍攝断侧 疋:維傳針。用於建立圖 _雜置30妓—此且有 功柄裝踩進行收集H 1〜、有 其中-杨嘯咖,她理可在 置,或是可在另-方221的壯署㈣丁動電活3〇或是等效的裝 個行動R _ 、A ’但綠妓能在位於兩 丁動电权間的傳輸網路上的 ^$-m222, t.u^224Af;^223 〇;;;2^ $可為無線連線或非無線連線。中嶋22 : 异的=,使得三維圖像,例如電腦產生的全像圖或自動立體丁辱 ==:個一 _輪網路使用電腦來執 、 、為汁异將不耗費行動電話的電池電力,但取 ,代之使壯要的電源。可制位於傳輸網路的電腦來對大量的 二維fi像電話通話的圖像同時進行處理,這可允許更有效率地利 十开貝源例如藉由減少未使用的計算處理能力的數量。如果 而要的力;0 ’贿動電話或其它敏裝置的重量將會降 低,它將需要較少的電腦電路與記憶體,因為計算需求將會藉由 位在傳輸醜上的電腦來執行計算n執行計算的軟體將僅 85 200844693 輪’不謝裝在行動電話或其 的i圍二# Γ將減少行動電話的記憶體需求以及軟體盗版 數:唯m轉二tr式碼中任何的企業機密的保護。雖然大多 =_顯=要的計算可由_統故來執行,不過也可 :兩=料异疋在貧料傳送前於使用者裝置中進行。例如,如 果兩個拍攝圖像是非常相似的,若兩個 兩個圖像之間差显的差显_ , 予、風弟圖像及 _次4^ 圖像’則因為差異圖像非常易於進行可 Z貝料傳送__技術’因此將可促進資料的傳送。同樣 =維嶋咐撕—_轉,_眺縮的圖 -對系統的一個例子中’第-圖像與第二圖像形成 t體絲員不圖像,並且由你用去00A JLL· U+ 至中間裝置224。第-傳象/衣置經由連線222傳送 傳讀像可為兩個立體顯補像之間的差里 因&關像典型地將比完細像需要較少 談是在進行中,則第—圖像可為現在圖像與前一個^ 間相圖像之間的差異。同樣的,第二圖像 個時間點的圖像之㈣#里ρ -在圖像/、别- 圖七象間的差八。接者,根據從接收資料的對應深度 的巧。2 224可利用習用對於二維與三維_圖像之間轉換 序來對二維㈣圖像進行計算。對於彩色的 —維圖像在⑽要謝㈣元素,並且概們的對= 86 200844693 度圖。接著,關於二維圖像與深度圖的資料會經由連線奶傳送 至使用者221的裝置。使用者221的裝置會在它的緊密型三維顯 不裝置中,根據接收到的二維圖像與深度圖編碼全像圖。為了有 效率的使用傳賴1 ’在這個系統巾傳輸的資料可進行習用的壓 縮程序’並且在接收裝置巾執行對觸解壓鞠作。制最有效 率的資料壓縮數量,相較於使用較少資料壓縮的頻寬需求花費, 會平衡行動裝置的電池執行資料壓縮與解壓縮的電力。 中間裝置224可存取包含已知三維形狀集合的函式庫,並在 其中試圖制穩合它計算的三維㈣的配對,或者它可存取包含 已知二維圖形集合的函式庫,並在其巾試賴到穩合進入的二維 圖像資料的配對。如果在已知形狀中可制好的配對,這可加快 計算程序的速度’因為二維或三_像之後可表示為對應已知的 形狀。三維形狀的函式庫可提供如—組運_星的面孔或身體形 狀’例如主要的網球運動員或魏運動員,以及全部或部分主要 的運動場地,例如著名_球場_是著名的足球場地。例如, 人臉的三維圖像可表示為一個中間裝置224已存取過的資料,加 上臉部表情變化’例如微笑雌,加上頭髮長度的變化,因° 為在資料齡後職可能㈣或剪短。如果—崎續性的差異發 生’中間裝置224 6存取過的記錄明顯比資料過時,例如在長^ 間上,人的頭髮長度已經明顯的改變,則這個在中間裝置 ^ ^ Cj 87 200844693 存取過的資料可由中間裝置224進行 到在它已存取過的記錄當中沒有發間裝置-遇 時,它將增加新的形狀到記錄的集合當中。、准或二維圖像 J·幫助二維圖像内容至三維圖像内容的系統 安全廣泛採用的三維顯示技術中的—個困難、 三維格式產生,並且現在A部份的内容鱗續^是以 事實°部分上是因為現在所使用的大多_ 錄二維圖像,並且沒有資料是可以使用在三^置都持_己 在很少有齡麟觀看者要求三維_容或轉彳^ °此外’現 生的三維内容。 〗疋獲倾二維内容產 =二顯需要-個支援從二維内容產生三維内容的系統。 ==中給定一個系統。在圖二十三中,即使在觀看者23。3 圖像L;u _置,__細_放二維電視 ==在這個系統中,具有中間系統咖,可將二維内容轉 軸谷挪。錄__序可她看者付f域,或是 以匕方來付費支援,例如廣告客戶23〇3。在圖二十三中,合 ,客戶2303的齡由電視公司纖來播放,廣告客戶^二 ^粕纖給中㈣、統細,由已知的二維魄轉換^ 、准内各的轉換程序將二_容轉換成三維内容。廣告客戶的利益 88 200844693 是以三維的電視廣告呈現給觀看者纖,這將比二維電視廣告更 引心主意。或者’觀看者可支付費用給中間系統23〇f総 換亚接收-些或全部電視播放的三維格式。㈣錢會確保 内容的提供是正確且同步的格式,例如假使二維圖像有提供:的 ^應深賴,兩個資料集合會明步方式提供,即三維顯畔置 賴,彻雜的二維圖像使 =度=二維齡裝置可轻_稀置、自紅 的三維顯示裝置。提供三維她 =、細不裝置的類型。相似於上述的系統也可翻於 放么司的提供者所提供的内容,例如電影或錄影帶供應商等。插 --^ 統,並且收到提供的二==支:費用提供二維内容給中間系 可例如為家庭電影的心= 或圖片的圖像。 知4錄㈣内容或是如照片 如電腦 供者與希望觀看三維圖像内者用在二維内容提 行計算,囉㈣在_4===來執 於傳輸網路上的電腦可使用來同時進行大量的二維到三 89 200844693 換的圖像處理’這可允許更有效率地_計算資源,例如藉由減 少未使用輯算處理能力的數量。如果需要的計算能力減少,則 觀看者的二細tf裝置的成本將會降低,因為它將需要較少的電 腦電路與記㈣’且計算·將會藉由位在傳輸網<上的電腦: 執行計算。最後’執行計算的軟體將僅需要絲在條傳輪網路 上的電腦’不需要安裝在觀看者的三維顯示裝置中。這將減少觀 馨看者的—軸不裝置的記紐需求以及軟體盜版的範圍,並且會 ^加私式碼巾任何的企業機密藝護。軸大多數三維圖像顯示 而要的计异可由中間系統來執行’不過也可能—些圖料算是在 觀看麵三維顯示裝置中執行。三維圖像顯示裝置可執行I些圖 像叶舁,例如解壓縮已壓縮的圖像資料,或是從二維圖像與它的 對應深度11來產生空間光調變器的全像編碼。 • 、在:個例子中,中間系統可習用二維與三維圖像之間轉 .換的4絲序,計算接收到的二賴像的對應深度圖。對於彩色 • 〜Θ像㈤要—維圖像在三個主要顏色中的三個元素,並且連同 匕Ρ的對應财®。接著,關於二維圖像與深度圖的資料會傳送 =規看,的三維顯示裝置。觀看者的三維顯示器裝置會在它的空 了右同欠°。中,根據接收到的二維圖像與深度圖編碼全像圖。為 的=料使用傳送頻寬,在這個系統中傳輸的資料可進行習用 、Ί序並且在接收裝置巾執行對應的解麵動作。使用最 200844693 有效率的:#縮數量,她於使峻少資料雜賴寬需求花 費’會平衡提供資料繼縮魏至三_示裝置的花費。 ,中間裝置可存取已知三維形麵合㈣料,並在其中試圖找 :合它計算的三_料的配對,或者它可存取已知二維圖形的 工在其中4®找聽合進人的二維圖像資料的配對。如果 在已知雜巾可找聰的崎,這可加快計算程賴速度,因為 :=二_像之後可表示紐應已知的形狀。三維形狀的函式 如一組運動明星的面孔或身體形狀,例如主要的網球運 =足球運動員’以及全部或部分主要的運動場地,例如著名 的足球場地。例如,人臉的三維圖像可表示 或皺广#Β衣置已存取過的#料,加上臉部表情變化,例如微笑 =’加上頭髮長度的變化’因為在資料儲存後頭髮可能留 ==如果—崎續罐跑十繼已存取記 更新》如果^5=_犧爾繼224進行 對的棘·骑#技树現好配 像時,它將增加新計算的三 K.觀察員視窗的空間多工與二維編碼 200844693 這個實施例是關於全像顯*器的虛擬觀察員視窗(V0Ws)的 空間多工’亚結合二維編觸使用。除此之外,全像顯示器可如 同在A ’ B ’ C或D部份中所描述_容,或是任何f用的全像 示器。 〜 數個處擬觀察員視窗,例如—個驗左_虛擬觀察員視窗 馨與-個用於右眼的虛擬觀察員視窗,可由空間或時間多工來產生 疋已知的。關於空間多工,兩個虛擬觀察員視窗是在同一個時間 點產生的,並且經由光束分光鏡來區分,相似於自動立體顯示器, 如在WO ·_27228巾所描述軸容。賴於時間多工,虛擬觀 察員視窗是時間上依序產生的。 热向,習 用的全像顯示系統具有―娜甜。聰空間多工而 吕’使騎照㈣統在水平方向是空__性的,並且是以水 平線光源與透鏡狀陣列為基礎,如圖四由習用技術觸 2006/0細所獲得_容。這具有可_自動立體顯示器已知技 術的優點。然而’它的缺點是在水平方向上的全像重建是不可处 取而代之的是使麟 i維編碼,僅在垂直方向產生全像重b 與移動視差。因此’垂直焦狀在重建物件的平面上,而 點是在㈣光調變器的平面上。這些散光會減少空間視覺的: f,意即它減少了觀看者接㈣的全像重建的品質。_地,時 92 200844693 間多工系統也具有缺 得的快速空間光調變 點,它們需要尚不能在全部顯示器尺寸中獲 器,即時可取得也是過分的昂貴。 又 -祕 碼在水平與垂直方向㈣提供全像重建,而因此 ==不會產_,散光會減少空_的品#,意即減少 了硯看者全像重義品f。,這個實侧的目的是 結合一維編碼來實現虛擬觀察員視窗的空間多工。 在這個實_丨巾,具有水平無直局部性的照明會 與光束分光鏡結合,光束分光鏡會將光分為對於左眼虛擬觀察員 視囪的光及對於右眼虛擬觀察貝視窗的光。因此,必須考慮位於 光束刀光鏡的繞射。光束分光鏡可為棱鏡陣列,第二透鏡陣列(例 如靜恶陣列或是變量陣列,如圖二十中所示)或是障礙遮蔽物。 圖二十五顯示了這個實施例的例子。圖二十五為包含二維光 源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光 鏡的全像顯示器示意圖。光束分光鏡會將離開空間光調變器的光 線,分離成二束光線,分別照射用於左眼的虛擬觀察員視窗(VOWL) 與用於右眼的虛擬觀察員視窗(VOWR)。在這個例子中,光源的數 量是一個或多個;透鏡的數量與光源的數量是相同的。 93 200844693 在這個例子中,光束分光鏡是在空間光調變器之後。光束分 光鏡與m光調變n的位置也可相互交換。圖二十六顯示了這個 實施例_子,在平_ +是使賴鏡_作為光束分光鏡。照 明裝置包含η元件的二維光源陣列(LS1,LS2, ... LSn )及η元件的 二維透鏡陣列(L1,L2, ... Ln),在圖二十六中只顯示兩個光源與兩 個透鏡。每-個統是它所關的透鏡來成像至觀察員平 面。光源_關距鱗鏡_關距是要使得全部光源圖像能 同時出現在祕貞平面’即包含^健擬觀察貞視窗的平面。在 圖二十六中’並沒有顯示左眼虛擬觀察員視窗(VOWL)與右眼虛擬 觀察員視窗(VOWR),因為它們是在圖的外面,且為圖的右邊。可 增加額外的視野透鏡。為了提供紐的空_雛,透鏡陣列的 間距是相似於次全像_典敎小,即—至數公釐的等級。照明 在每-個透鏡岐水平且垂直线_性的,因為是小的或 為點光源’且因為使用二維透鏡陣列。透鏡陣列可為折射、繞射 或全像式的。 在這個例子中,光束分光鏡是一維的垂直棱鏡陣列。入射在 棱鏡-個斜面的光,會偏斜至左眼虛擬觀察員視窗(t〇v〇wL),入 射在棱鏡另-個斜_光,會偏斜至右眼虛_察員視窗⑼ VOWR)。從相同Ls與相同透鏡產生的光線,在通過光束分光鏡 之後’也為相頭調。因此,具有垂直與水平聚焦姐垂直與水 94 200844693 平移動視差的二維編碼是可能的。 全像圖是在具有二維編碼的空間光調變器上進行編石馬。對於 左眼及右眼的全像圖是—個攔位—個攔位的交錯,意即棚位合交 錯編碼對於左眼與右_全像資訊。更好地是在每-個棱财具 個對於左眼全像資訊的攔位及—鑛於魏全像資訊的棚 • 位。另-個方法’在每—個棱鏡的斜面下也可有兩個或更多個全 像圖的攔位’例如三個對於左眼虛擬觀察員視窗的搁位,並且接 著為三個對於右眼虛擬觀察員視窗的樹立。光束分光鏡的間距可 與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者, 為了能容許透視縮短(perspective sh〇rtening),光束分光鏡的間距可 比空間光調變||_距稍微小—點,歧比它的整數(例如兩或三) 倍數稍微小一點。 從具左眼全像的攔位發出的光會重建對於左眼的目標,並且 照射左眼虛擬觀察員視窗(V〇WL);從具右眼全像的攔位發出的光 會重建對於右眼的目標,並且照射右眼虛擬觀察員視窗。 因此,每一個眼睛會看到適當的重建。如果棱鏡陣列的間距是充 分的小,則眼睛不能解析棱鏡結構,且棱鏡結構不會妨礙全像圖 的重建。每一個眼睛會看見具有全聚焦與全移動視差的重建,並 且沒有散光。 95 200844693 在光束分光鏡上將會有繞射’因為同調光會照射光束分光 鏡。光束分规可視為產生乡重繞概級的齡光栅。斜的棱鏡 斜面具有_式光栅的效果。對於卿式光柵,最大強度是導向 特定的繞繼級。對_鏡_,—崎幻自度倾棱鏡的一個Has a very good image quality. I H. Auto-stereoscopic or holographic display using a combination of one or two infrared organic light-emitting diode displays and an optically-addressed spatial light modulator. 200844693 Infrared organic hair #One-pole display and optical The closeness of the address space optical modulator (such as the one described in Part A) can also be used in auto-stereoscopic displays (ASD):, especially in mobile phones or personal digital assistants. ,,,,,,, (4) In the case of a flipped viewer, viewing an autostereoscopic display is not as comfortable as viewing a full-image display. In an off-state, an autostereoscopic display may be cheaper than a full-image display. Or it is easier to generate or provide image data. The autostereoscopic display provides several viewing areas, and each viewing area ► field displays different views of the three-dimensional scene. If the viewer's eyes are in different viewing areas, he You will see a stereoscopic image. The difference between autostereoscopic display and holographic technology: Autostereoscopic display provides two flat images, while omnidirectional technology provides each target point in a 3D scene. Z-information. The auto-stereoscopic TFll is based on the spatial multiplexing of the viewing area on the display || and uses photo-distributing elements such as lenticulars, obstacles, masks such as masks or It is the masking surface (four). Obstacle cover also: It can be called "parallax barrier". A disadvantage of autostereoscopic displays is that the resolution of each viewing area is typically inversely proportional to the number of viewing areas. However, this disadvantage can be compensated for by the advantages of the autostereoscopic display as described above. The close combination of an infrared organic light-emitting diode display and an amplitude-modulated optically-addressed spatial light modulator (as described in Section A) can be used to make an amplitude-modulated display with a breadth of 82 200844693 2 . If the infrared ray is organic, the close combination of the amplitude modulation optical optical space modulator is the combination of the light and the light. The financial construction has a high-resolution automatic reading display. degree. ', 十^要-一一一一相相式式空空县's stereo display urn❹财嶋: lose _—one or more optical nuzzles change n (four) face (10) such as: in part a and b The advantage of the described content is the _-style optically addressed spatial light modulator. The Auto 2 display consists of a beam splitter and an organic light-emitting diode array, which may have a garnish due to the organic-emitting diode of the pattern, for example: fish organic light-emitting diode during the beam splitter _# Effect (M coffee effeets). In contrast, in a tightly combined optical address such as a light-emitting device (four), it is _: only during the beam splitter, periodic processed products do not appear. The light source of the autostereoscopic display H can be one or more light sources, such as a light emitting diode, a laser, an organic light emitting diode or a cold cathode fluorescent lamp. Silk does not need to be homogenous. If an organic light-emitting diode is used and the autostereoscopic display displays a color image, a color filter layer, such as red, is required between the light source and the light-emitting display and the tightly-adjusted optically-addressed spatial light modulator. Green and blue transitions. 83 200844693 The close combination of an infrared organic light-emitting diode display and an optically-addressed spatial light modulator (such as described in Part A) can also be used in holographic displays, especially when it is used to activate a telephone or personal digital assistant. Handheld display in the middle. A holographic display is based on spatial multiplexing of the viewing area on the display, and uses photon spectroscopy, brilliance elements such as lenticulars, obstacle masks for red such as brittleness, or prism masks. ). Obstacle masks can also be called "parallax barriers". Infrared organic light-emitting diode displays and optically-addressed spatial light modulators can be used to become (for example, what is described in Part A) A high-resolution image of the king,,, and page shows that if the close combination of the infrared organic light-emitting diode display and the amplitude-modulated optically-addressed spatial light modulator is combined with the beam splitter element, then it can be constructed. Produces a high-resolution holographic display. The high resolution of tightly combined compensation compensates for the loss of resolution due to spatial multiplexing. In another embodiment, two pairs of organic light-emitting diodes _ and optically addressed spatial light The tightly combined group u of the transformer can make the amplitude of the twilight change light in a sequential and intimate manner, as described in section b. Therefore, the complex number consisting of amplitude oil levels can be imaged one by one. The way of the element is to transmit the light towel code. If the close combination of the two pairs of infrared organic light emitting diode displays and the amplitude of the female optical address space is changed with the beam splitter element, I Ke Wei has a high resolution. Fully-shower. The high resolution of the compact combination can compensate for the loss of resolution for space multi-wei. The full-image display with the beam splitter component*11 can provide a number of woven viewing areas, with three areas per her viewing area. Different views of the prospective field. If the viewer's eyes are in different viewing areas, he will see the three-dimensional image of the three-dimensional transmission wheel. The second required in the ^ ^ two ... its side 22 〇舆 the other side 2 2, material processing system. In the picture of the image of the twenty-six image of the side of the 疋: dimension transmission needle. Used to create a map _ miscellaneous 30 妓 - this There is a handle to collect H 1~, there is - Yang Xiaoca, she can be placed, or can be in the other side of the 221 (4) Ding electric activity 3 〇 or equivalent to install an action R _ , A ' but green 妓 can be on the transmission network between the two powers ^$-m222, tu^224Af; ^223 〇;;; 2^ $ can be wireless or non-wireless. Lieutenant 22: Different =, making 3D images, such as computer-generated hologram or auto-stereo shame ==: one _ round network using a computer The juice will not consume the battery power of the mobile phone, but take the power of the strong one. It can be used to process the image of a large number of two-dimensional fi-like telephone calls simultaneously on the computer of the transmission network. This may allow for more efficient exploitation of the source, for example by reducing the amount of unused computational processing power. If the force is required; 0 'the cost of a bribe phone or other sensitive device will decrease, it will require less The computer circuit and the memory, because the computing needs will be calculated by the computer on the transmission ugly. The software that performs the calculation will only be 85 200844693 rounds 'I don't appreciate the mobile phone or its i Wai 2# Reduce the memory requirements of mobile phones and the number of software pirates: protection of any corporate secrets in the m-to-tr code. Although most of the calculations can be performed by the _ system, it is also possible that the two materials are performed in the user device before the poor material is delivered. For example, if the two captured images are very similar, if the difference between the two images is significantly different, the image of the image, the image of the wind and the image of the 4th image are very easy. Carrying out the __technology's will enable the transfer of data. The same = 嶋咐 嶋咐 — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ To the intermediate device 224. The first image/clothing is transmitted via the connection 222. The difference between the two stereoscopic images and the image can typically be less than the fine image is in progress. The first image can be the difference between the current image and the previous image. Similarly, in the image of the second image time point (4), ρ - the difference between the image /, the other - picture seven. Receiver, based on the corresponding depth of the received data. 2 224 can be used to calculate two-dimensional (four) images for the conversion between two-dimensional and three-dimensional images. For color-dimensional images in (10) thanks to (four) elements, and the pair of them = 86 200844693 degrees. Next, the data on the two-dimensional image and the depth map is transmitted to the device of the user 221 via the connected milk. The user 221 device encodes the hologram based on the received two-dimensional image and depth map in its compact three-dimensional display device. In order to efficiently use the information transmitted in the system towel, the conventional compression program can be performed and the touchdown is performed on the receiving device. The most efficient amount of data compression is the cost of compressing and decompressing the battery of the mobile device compared to the bandwidth requirement for using less data compression. The intermediary 224 can access a library containing a collection of known three-dimensional shapes and attempt to stabilize the three-dimensional (four) pairing it computes, or it can access a library containing a collection of known two-dimensional graphics, and Pairing the two-dimensional image data that is steadily entering in its towel. This can speed up the calculation of the program if the pairing is made in a known shape' because the two or three image can be represented as corresponding to the known shape. The library of three-dimensional shapes can provide, for example, the face or body shape of a group of stars, such as a major tennis player or a Wei athlete, and all or part of a major sports venue, such as the famous _Campus_ is a famous football field. For example, a three-dimensional image of a human face can be represented as data that has been accessed by an intermediate device 224, plus facial expression changes, such as smiling females, plus changes in hair length, because ° is possible after the age of the data (4) Or cut short. If the difference between the stagnation and the stagnation occurs, the record accessed by the intermediate device 224 6 is obviously older than the data, for example, in the long interval, the length of the human hair has changed significantly, and this is stored in the intermediate device ^ ^ Cj 87 200844693 The fetched material can be made by the intermediary device 224 to the extent that it has no access device among the records it has accessed - it will add a new shape to the set of records. , quasi- or two-dimensional image J. Systematic safety of two-dimensional image content to three-dimensional image content. A difficult, three-dimensional format is produced in the widely used three-dimensional display technology, and now the content of the A part is continued. In fact, part of the fact is because most of the _ recorded 2D images are used now, and there is no data that can be used in the three 置 都 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Also 'live 3D content. 〗 疋 倾 二维 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Given a system in ==. In Figure 23, even in the viewer 23. 3 image L; u _ set, __ fine _ put 2D TV == In this system, with the intermediate system coffee, you can move the 2D content to the axis . Record __ can be seen by her viewers to pay f domain, or to pay for support, such as advertisers 23〇3. In Figure 23, the customer's age of 2303 is broadcasted by the TV company's fiber, the advertiser's ^2^粕 fiber is given to the middle (four), and the system is converted by the known two-dimensional ^. Convert the binary content into three-dimensional content. Advertiser Benefits 88 200844693 is a three-dimensional TV commercial that is presented to viewers, which will be more inspirational than 2D TV commercials. Alternatively, the viewer may pay a fee to the intermediate system 23〇f総 to receive the three-dimensional format of some or all of the television broadcasts. (4) Money will ensure that the content is provided in a correct and synchronized format. For example, if the two-dimensional image is provided: ^ should be deeply relied upon, and the two data collections will be provided in a clear-cut manner, that is, the three-dimensional display will be relied upon, and the two Dimensional image makes = degree = two-dimensional device that can be light-thin, self-red three-dimensional display device. Provide a three-dimensional type of her =, fine device. Systems similar to those described above can also be adapted to the content provided by the provider of the company, such as a movie or video tape provider. Insert the system and receive the provided two == branches: the fee provides two-dimensional content to the middle system. For example, the heart of the home movie = or the image of the picture. Know 4 (4) content or such as photos such as computer providers and those who wish to view 3D images for use in 2D content calculations, 啰 (4) _4=== to the computer on the transmission network can be used simultaneously Performing a large number of 2D to 3 89 200844693 image processing 'this allows for more efficient computing resources, for example by reducing the amount of unused processing power. If the required computing power is reduced, the cost of the viewer's two-tap device will be reduced because it will require less computer circuitry and memory (and) and will be calculated by the computer located on the transmission network. : Perform calculations. Finally, the software that performs the calculation will only need the computer on the strip network to be installed in the viewer's three-dimensional display device. This will reduce the need for the viewers to view the axis and the scope of software piracy, and will add any corporate secret code to the private code. Most of the three-dimensional image display of the axis can be performed by the intermediate system. However, it is also possible that some of the images are executed in the viewing surface three-dimensional display device. The three-dimensional image display device may perform a plurality of image leaflets, such as decompressing the compressed image material, or generating a holographic image of the spatial light modulator from the two-dimensional image and its corresponding depth 11. • In an example, the intermediate system can use the 4-wire sequence between the 2D and 3D images to calculate the corresponding depth map of the received image. For color • ~ Θ (5) To - the image is in three of the three main colors, and together with the corresponding ® 财. Next, the data about the two-dimensional image and the depth map will be transmitted to the three-dimensional display device. The viewer's 3D display device will owe at the same time as it is empty. The full image map is encoded according to the received two-dimensional image and depth map. The transmission bandwidth is used for the material, and the data transmitted in this system can be used, sequenced, and executed in the receiving device. Use the most 200844693 efficient: # shrink the number, she will make the data less than the broad demand for spending will balance the cost of the data to the third to show the device. The intermediate device can access the known three-dimensional surface (four) material, and in the attempt to find: the pairing of the three materials calculated by it, or it can access the known two-dimensional graphics in which 4® finds the hearing Pairing of two-dimensional image data. If you know the rags, you can speed up the calculation process, because := _ image can indicate the shape that should be known. A three-dimensional shape function such as the face or body shape of a group of sports stars, such as the main tennis player = football player's and all or part of the main sports venues, such as the famous football stadium. For example, a three-dimensional image of a human face can be expressed or wrinkled. #Β衣置的的料#, plus facial expression changes, such as smile = 'plus hair length change' because the hair may be stored after the data is stored Leave == If - Sustained cans run ten consecutive access records update "If ^5 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Space Multiplication of Observer Window and 2D Coding 200844693 This embodiment is about the spatial multiplexing of virtual observer windows (V0Ws) for holographic displays. In addition, the holographic display can be as described in A' B 'C or Part D, or any full-image display for f. ~ Several observer windows, such as a left-view virtual observer window and a virtual observer window for the right eye, can be generated by space or time multiplexing. With regard to spatial multiplexing, two virtual observer windows are generated at the same point in time and are distinguished by a beam splitter, similar to an autostereoscopic display, as described in WO _27228. Depending on time, the virtual observer window is generated in time. The hot direction, the conventional holographic display system has "Na Tian." Cong space is multiplexed and Lu's riding photo (four) is empty in the horizontal direction, and is based on the horizontal line light source and lenticular array, as shown in Figure 4 by the conventional technology touch 2006/0. This has the advantage that the known technology of the autostereoscopic display can be achieved. However, its shortcoming is that the holographic reconstruction in the horizontal direction is incapable of replacing the uni-dimensional code, producing only the eigenweight b and the moving parallax in the vertical direction. Thus the 'vertical focus' is on the plane of the reconstructed object and the point is on the plane of the (four) light modulator. These astigmatism reduces the spatial visual: f, meaning that it reduces the quality of the holographic reconstruction of the viewer's (4). _ 地, 时 92 200844693 The multiplex system also has the lack of fast-space optical modulation points, which need to be available in all display sizes, and it is too expensive to get instantly. Again - the secret code provides full-image reconstruction in the horizontal and vertical directions (4), so == will not produce _, astigmatism will reduce the empty _ product #, which means that the actor's hologram is reduced. The purpose of this real side is to combine the one-dimensional coding to achieve spatial multiplex of virtual observer windows. In this real scarf, the illumination with horizontal non-straight locality is combined with the beam splitter, which splits the light into light for the left-eye virtual observer and for the right eye. Therefore, the diffraction at the beam cutter must be considered. The beam splitter can be a prism array, a second lens array (e.g., a static array or a variable array, as shown in Figure 20) or a barrier mask. An example of this embodiment is shown in Figure twenty-fifth. Figure 25 is a schematic diagram of a holographic display comprising a light source of a two-dimensional array of light sources, a lens of a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams that illuminate the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye. In this example, the number of light sources is one or more; the number of lenses is the same as the number of light sources. 93 200844693 In this example, the beam splitter is behind the spatial light modulator. The positions of the beam splitter and the m-light modulation n can also be exchanged. Figure 26 shows this example _ sub, in the flat _ + is to make the ray mirror _ as a beam splitter. The illumination device comprises a two-dimensional array of light sources (LS1, LS2, ... LSn) of n elements and a two-dimensional lens array (L1, L2, ... Ln) of n elements, only two light sources are shown in Figure 26 With two lenses. Each system is the lens it closes to image to the observer plane. The light source _ 距 鳞 _ _ 关 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In Figure 26, the left-eye virtual observer window (VOWL) and the right-eye virtual observer window (VOWR) are not displayed because they are outside the figure and are on the right side of the figure. Additional field of view lenses can be added. In order to provide a blank, the spacing of the lens array is similar to that of the sub-holomorphic image, that is, to a few millimeters. Illumination is horizontal and perpendicular to each lens , because it is small or a point source' and because a two-dimensional lens array is used. The lens array can be refractive, diffractive or holographic. In this example, the beam splitter is a one-dimensional array of vertical prisms. The light incident on the prism-bevel will be deflected to the left-eye virtual observer window (t〇v〇wL), incident on the prism and another oblique _ light, which will be skewed to the right eye virtual _ inspector window (9) VOWR) . Light rays generated from the same Ls and the same lens are also phase-adjusted after passing through the beam splitter. Therefore, it is possible to have a two-dimensional coding of the vertical moving parallax with vertical and horizontal focus sisters vertical with water 94 200844693. The hologram is performed on a spatial light modulator with two-dimensional code. The hologram for the left and right eyes is a block-interlace of the blocks, meaning that the sheds are erroneously coded for left-eye and right-full-image information. It is better to have a block for the left-eye hologram information and a shed for the mine-wide image information. Another method 'can also have two or more hologram traps under the slope of each prism', for example three seats for the left eye virtual observer window, and then three for the right eye The establishment of a virtual observer window. The distance between the beam splitters may be the same as the spacing of the spatial light modulators, or an integer (eg, two or three) multiples, or, in order to allow for perspective sh〇rtening, the beam splitter spacing may be spatially lighter The change ||_ is slightly smaller than the point, and the integer is slightly smaller than the integer (for example, two or three). Light emitted from the block with the full image of the left eye reconstructs the target for the left eye and illuminates the virtual observer window of the left eye (V〇WL); the light emitted from the block with the full image of the right eye is reconstructed for the right eye The target and illuminate the virtual observer window of the right eye. Therefore, each eye will see an appropriate reconstruction. If the pitch of the prism array is sufficiently small, the eye cannot resolve the prism structure and the prism structure does not interfere with the reconstruction of the hologram. Each eye will see a reconstruction with full focus and full motion parallax, and no astigmatism. 95 200844693 There will be diffraction on the beam splitter' because the same dimming will illuminate the beam splitter. The beam splitter can be regarded as an age grating that produces a township rewinding profile. Oblique prism The bevel has the effect of a _-type grating. For a clear grating, the maximum intensity is directed to a particular winding stage. For _ mirror _, - one of the singularity self-dip prism

斜面導向位於左眼虛擬觀察員視窗位置的繞射階級,另—個最大 強度會從棱鏡的另-個斜面導向位於右眼虛擬觀察員絲位置的 另-個繞射階級。更精確來說,封裝式(envd〇ping) sinc_sq_d函 數的強度最大值是移至這些位置,魏射階級是位在固定的位 置。棱鏡陣财在左眼虛織察員視窗的位置產生—個強度封裝 smc_SqUared函數最大值’在右眼虛擬觀察員視窗的位置產生另一 個強度難Sine_sq_d函絲域。其錄繼級_度將會是 很小的(意即sine squared強度函數最大值是狹窄的),並且將不會 產生干擾串音,因為棱鏡陣列的填充因子是大的,例如接近黯。。 如同在習用技術中可見的,為了提供虛鐵察員視窗給二個 或多個觀察員,可藉由使用更複雜的棱鏡陣列(例如兩種類型的棱 鏡’具有相同的頂角,但是不同的非對稱程度,連續地相鄰配置/ 產生多個虛擬觀察貞視窗。然而,使用靜態的棱鏡_是 個別地追蹤觀察員。 " 96 200844693 在另一個例子中,每個透鏡可使用多於一個光源。每個透鏡 額外的光源可利用來產生額外的虛擬觀察員視窗,提供給額外的 觀祭員。這是描述在WO 2004/044659 (US2006/0055994)中,對於 m個觀祭員提供—個透鏡與m個光源的例子。在這個更進一步的 例子中,利用每個透鏡m個光源與雙倍的空間多工來產生㈤個左 邊虛擬觀察員視窗及m個右邊虛擬觀察員視窗,提供給m個觀察 ; M。每個透鏡m個光源是以m對-的對應方式,其中⑽是一個整 • 數。 接著是這個實施例的例子。使用2〇英吋螢幕尺寸,並具有下 列的參數值··觀察員距離2m,像素間距在垂直上為69叫,在水 平上為207μπι,使用布克哈特(Burckhardt)編碼,以及光學波長為 633nm。布克哈特(Burckhardt)編碼是在垂直方向,具有69卿的次 ❿像素間距與—η高的虛織察員視窗(垂直期間)。忽略透視縮 短,垂直棱鏡陣列的間距為414μιη,也就是在每個全棱鏡下具有 •兩個空間光調變器的攔位。因此,觀察員平面中的水平期間為 3mm。這也同樣為虛擬觀察員視窗的寬度。這個寬度在直徑上是 小於理想大約4mm的眼睛瞳孔。在另一個相似的例子中,如果空 間光調變器具有50μιη的較小間距,虛擬觀察·f將會有25咖 的寬度。 97 200844693 如果成年人眼睛的分隔為65mm(這是典型的),棱鏡必須偏斜 光士 32.5mm,在那個位置光會與包含虛擬觀察員視窗的平面相 父。更精確來說,強度封裝sine-squared函數最大值需要偏斜士 32.5mm。這對於2m的觀察員距離相當於是士 〇 93。的角度。對於 棱鏡折射率η= 1·5,適當的棱鏡角度為土 186。。棱鏡角度是定義 為基底與棱鏡斜邊之間的角度。 對於在3mm的觀察員平面中的水平期間,另一眼的位置是在 大約21繞射階級的距離(意即65mm除3mm)。由另一個虛擬觀察 員視_的較高繞射階級所導致在左眼虛擬觀察員視窗與在右眼虛 擬觀察員視窗之中的串音因而是可以忽略的。 為了實作追蹤,光源追蹤為一個簡單的追蹤方法,意即適應 光源的位置。如果空間光調變器與棱鏡陣列不是在相同的平面 上’在空間光調變器像素與棱鏡之間,將會具有由視差所導致的 擾亂相關橫向偏移。這將可能會導致擾亂串音。上述的例子,2〇 英对螢幕尺寸的像素,在垂直於每個棱鏡尖端所形成的轴的方 向,可能具有70%的填充因子,也就是在每個邊上,像素大小為 145μιη作用區域及31卿無作用的區域。如果棱鏡陣列的建構區 域疋私向空間光调變為,在棱鏡陣列與空間光調變器之間的分隔 可能大約為1 mm。無串音的水平追蹤範圍將會是士 3丨μιη /丨* 98 200844693 2 m = 土 62 mm。如果小的串音是可容許的,那麼追蹤的範圍將會 較大。這個追蹤範圍並不是很大,但它是足夠允許一些追蹤進行, 使得觀看者將會有較少的限制,像是限制他/她的眼睛的放置位置。 空間光調變器與棱鏡陣列之間的視差是可以避免的,較好的 方法是利用將棱鏡陣列整合或是直接整合在空間光調變器中(像是 折射、繞射或是全像式棱鏡陣列)。這對於產品而言將為專業構成 ® 要素(specialized component)。另一種選擇是棱鏡陣列的橫向機械移 動,雖然這是較不建議的,因為移動機械部分會使得裝置變得更 為複雜。 另一個關鍵性的問題是由棱鏡角度所決定的固定虛擬觀察員 視窗分隔。這可能會對非標準眼睛分隔的觀察員或是心追縱造成 困擾。其中-個解決方法’是可使用包含封裂液晶區域 (encapsulated liquid-crystal domains)的組合,如图一丄 一 m一卞一所示。接 著,電場可_折神,以及偏斜肢。這购財法可與棱鏡 陣列合併,以便連續地個別提供變量偏斜與固定偏斜。在另一種 解決方法中,可用液晶層覆蓋棱鏡陣列的結構邊。接著,電場可 控制折射率,以及偏斜角度。如果虛擬觀察員視窗具有足=許 不同眼睛純的祕貞與ζ·追蹤如此大的寬度,則變量偏斜组合 是不需要的。 、口 99 200844693 们車又稷雜的解決方法是使用可控制的棱鏡陣列,例如 e補㈣棱鏡陣列(如圖二十七所示)或是填滿液晶的棱鏡(如圖二 十所不)。在圖一十七中,具有棱鏡元件159的層包含電極1517、 1518及填滿兩個分離液辦 519、1520的凹洞。每一個液體填滿凹 洞的棱形部分。舉’例子,液體可以是油或水。在液體1519、 mo之間’丨面的斜率是依據施加在電極bi?、的電壓所決 定。如果液體具林_折醉,光束將會遭受偏向,偏向是由 施加在電極1517、1518的電壓所決定。目此,棱鏡元件159扮 ^可控制的絲細元件。對於需要追蹤虛織察貞視窗至觀察 員眼目月的實作’提供電子式全像技術,這對对請人的方法而言 疋们重要的特性。由申請人提出的專利申請號de 102007G24mG、DE 1G2_24236.2,描述了具有棱鏡元件虛擬 觀察員視窗至觀察員眼睛的追蹤。The bevel guides the diffractive class at the virtual observer's window position of the left eye, and the other maximum intensity is directed from the other bevel of the prism to another diffractive class located at the virtual observer's position of the right eye. More precisely, the maximum intensity of the envd〇ping sinc_sq_d function is moved to these positions, and the Wei-ray class is in a fixed position. The prismatic array is generated at the position of the left-eye virtual observer window—a strength package smc_SqUared function maximum value' produces another intensity-insensitive Sine_sq_d letter field at the position of the right-eye virtual observer window. Its recording _ degree will be small (meaning that the maximum sine squared intensity function is narrow) and will not cause interference crosstalk because the fill factor of the prism array is large, such as close to 黯. . As can be seen in the prior art, in order to provide a virtual scout window to two or more observers, a more complex prism array can be used (eg, two types of prisms have the same apex angle, but different non- The degree of symmetry, continuously adjacently configured/generating multiple virtual viewing windows. However, using static prisms _ is to track observers individually. " 96 200844693 In another example, more than one light source can be used per lens. Additional light sources for each lens can be utilized to create additional virtual observer windows for additional spectators. This is described in WO 2004/044659 (US2006/0055994), providing a lens for m spectators An example of m light sources. In this further example, m light sources per multiplex and double spatial multiplexing are used to generate (5) left virtual observer windows and m right virtual observer windows for m observations; M. Each lens m light source is in m-to-correspondence, where (10) is an integer. Next is an example of this embodiment. Using a 2 inch inch ruler Inch, and has the following parameter values: · Observer distance 2m, pixel spacing is 69 in the vertical, 207μπι in the horizontal, using Burckhardt encoding, and optical wavelength 633nm. Bookhart ( Burckhardt) code is in the vertical direction, with a sub-pixel spacing of 69 qing and a virtual weaver window of η high (vertical period). Ignore the perspective shortening, the vertical prism array spacing is 414μηη, that is, in each full prism There are two space light modulators. Therefore, the horizontal period in the observer plane is 3mm. This is also the width of the virtual observer window. This width is smaller than the ideal pupil of the eye about 4mm in diameter. In another similar example, if the spatial light modulator has a smaller pitch of 50 μm, the virtual observation f will have a width of 25 coffee. 97 200844693 If the adult eye is separated by 65 mm (this is typical), the prism The light must be deflected by 32.5mm, at which point the light will be the same as the plane containing the virtual observer window. More precisely, the intensity package has the maximum value of the sine-squared function. To be skewed by 32.5mm. This is equivalent to the angle of the gentry 93 for the observer distance of 2m. For the prism refractive index η = 1.5, the appropriate prism angle is soil 186. The prism angle is defined as the base and prism oblique The angle between the sides. For the horizontal period in the observer plane of 3 mm, the position of the other eye is at a distance of about 21 diffraction stages (ie 65 mm divided by 3 mm). Higher diffraction by another virtual observer The crosstalk between the virtual observer window in the left eye and the virtual observer window in the right eye is thus negligible. To implement tracking, the light source is tracked as a simple tracking method, meaning to adapt to the position of the light source. If the spatial light modulator is not on the same plane as the prism array, 'between the spatial light modulator pixels and the prism, there will be a disturbing related lateral offset caused by the parallax. This will probably cause disturbing crosstalk. In the above example, the pixel size of the screen may have a fill factor of 70% in the direction perpendicular to the axis formed by the tip of each prism, that is, on each side, the pixel size is 145 μm. 31 Qing has no effect on the area. If the construction area of the prism array is tuned to the spatial light, the separation between the prism array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be 3 丨μιη /丨* 98 200844693 2 m = soil 62 mm. If small crosstalk is tolerable, the range of tracking will be larger. This tracking range is not very large, but it is enough to allow some tracking to occur, so that the viewer will have fewer restrictions, such as limiting the placement of his/her eyes. The parallax between the spatial light modulator and the prism array can be avoided. The better way is to integrate the prism array or directly integrate it into the spatial light modulator (such as refraction, diffraction or hologram). Prism array). This will be a specialized component for the product. Another option is the lateral mechanical movement of the prism array, although this is less recommended because moving the mechanical part can make the device more complicated. Another key issue is the fixed virtual observer window separation determined by the prism angle. This can be confusing for non-standard eye-separated observers or stalkers. One of the solutions is to use a combination comprising encapsulated liquid-crystal domains, as shown in Figure 1-5. Then, the electric field can be folded, and the limbs are skewed. This purchase method can be combined with a prism array to continuously provide variable skew and fixed skew continuously. In another solution, the liquid crystal layer can be used to cover the structural edges of the prism array. The electric field then controls the refractive index, as well as the skew angle. If the virtual observer window has the secret of different eyes and the width of the track, the variable skew combination is not needed. , mouth 99 200844693 The car is noisy solution is to use a controllable prism array, such as e complement (four) prism array (as shown in Figure 27) or fill the liquid crystal prism (Figure 20) . In Fig. 17, the layer having the prism element 159 includes electrodes 1517, 1518 and a cavity filled with two separation liquids 519, 1520. Each liquid fills the prismatic portion of the cavity. As an example, the liquid can be oil or water. The slope of the surface between the liquids 1519 and mo is determined by the voltage applied to the electrodes bi?. If the liquid is drunk, the beam will be biased, and the bias is determined by the voltage applied to the electrodes 1517, 1518. For this reason, the prism element 159 acts as a controllable filament element. For the implementation of the need to track the virtual weaver window to the observer's eye month, the electronic holographic technology is provided, which is an important feature for the method of asking people. The patent application number de 102007G24mG, DE 1G2_24236.2, filed by the applicant, describes the tracking of the virtual observer window with prism elements to the observer's eyes.

這疋一個使用於緊密手持式顯示器的實施例。义说〇 (RTM) Epson (RTM) Corporation of japan已發表單色電子式定址空間光調 變器,例如D4:L3D13U 1.3英吋螢幕尺寸。一個描述的例子是使 用D4:L3D13U液晶顯示器面板作為空間光調變器。它具有HDTV-的解析度(1920 X 1080像素)、15μιη的像素間距與28.8mm X 16-2mm的面板區域。這個面板通常使用在二維圖像投影顯示器。 100 200844693 k個赃是計算關於的施的波長與s()em的觀察員距離。 對於這個擁調變郎_麵是使賊跡相位柄(布克哈特編 碼).需要二個像素來編碼一個複數。這三個關聯像素是垂直排列 的如果棱鏡陣列光束分光鏡是整合在空間光調變器中,棱鏡陣 列的間距會是30μΓη。如果雜光爾器、與棱辦列之間具有分 隔’棱鏡陣列的間距會稍微不同,以處理透視縮短。 71 虛織察員視窗的高度是由3 * 15 μηι = 45 μιη的間距去編碼 -個複數所決定’且為7.Gnim。虛擬觀察員視窗的寬度是由棱鏡 陣列的30,間距所決定,且為1〇.6酿。兩個數值都大於眼睛的 瞳孔。因此’如果虛擬觀察員視窗是在眼睛的位置,每個眼睛都 可以看見全像重建。全像重建是從二維編碼的全像_來,因此 亚沒有上面所述一維編碼中本身存在的閃光問題。這個確保高的 空間視覺品質與高的深度印象(depth impressi〇n)品質。 當眼睛的分隔為65mm時,棱鏡必須偏斜光士 32 5mm。更精 確來說,封裝Sin〇Squared強度函數的強度最大值需要偏斜士 32.5mm。對於0.5 m的觀察員距離,這對應於± 3 72。的角度。對 於折射率n=L5,適當的棱鏡角度為土 744。。棱鏡角度是定義為 基底與棱鏡斜邊之間的角度。 101 200844693 對於在1〇.6麵的觀察員平面中的水平期間,另一眼的位置是 在大約6繞射階級的距離(意即65醜除i〇 6mm)。由較高繞射階 級所導致的串音因而是可以忽略的,因為棱鏡陣列具有高的填充 因子,意即接近於100%。 這疋個使用於大頒示器的實施例。全像顯示器可設計使用 相位調_郎_魏,並射5()μιη的像棚距及2G英对的 螢幕尺寸。對於如電視的朗,螢幕尺柯能相t接近4G英对。 對於這個設計的觀察員距離為2m,波長是633腿。 使用空間光調變n的兩個她調變像素來編碼-個複數。這 兩個關聯的像素是垂直排觸,並且對應難直間距為2 *5〇卿 - 100 μιη。藉由整合棱鏡陣列至空間光調變器中,棱鏡陣列的水 平間距也為2*50 μπι: 1〇〇 _,因為每個棱鏡包含兩個斜面,且 每個斜面疋用於空間光調變器的一個欄位。所產生12 7顏的虛擬 觀察員視S的寬度與高度是比眼睛的瞳孔絲的大。因此,如果 虛擬觀察貞視S是在眼睛的位置,每個眼_可以看見全像重 建。全像重建是從二維編碼的全像圖絲,目此並沒有一維編碼 中本身存在的閃光問題。這個麵高的空_覺品質與高的深度 印象品質。 102 200844693 當眼睛的分隔為65mm時,棱鏡必須偏斜光± 32 5贿。更精 破來說’強度封裝sinc-sqwed函數的最大值需要偏斜± ^切月。 對於2m的觀察員距離,這對應於增3。的角度。對於折射率n = U,適當的棱鏡肢為±謹。。魏纽是絲為基底與棱鏡斜 邊之間的角度。 上面的例子是對於觀察員離空間光調變器的距離為5〇繼與 2m。概括來說,這個實施例可應用至觀察員離空間光調變器為 5〇cm至2m之間的距離。螢幕尺寸可為介於lcm(例如行動電話次 螢幕)至50英对(例如大尺寸電視)之間。 雷射光源 RGB固態雷射光源,例如以石申化銦鎵(GaInAs)或氮石申化姻鎵 (GalnAsN)材料為基礎,對於緊密的全像顯示器可為適合的光源, 因為它們是緊密的’且具有高程度的光定向性。這樣的光源包括 ) 由Novalux (RTM) Inc·,CA,USA所製造的RGB垂直凹面發射雷射 (Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源可提 供為單一雷射或雷射陣列,儘管每個光源可利用繞射光學元件來 產生多個光束。光束可在多模光纖中傳輸,因為如果同調性對於 使用在緊密的全像顯示器中是太高的,這可能會降低同調性階 103 200844693 級,並且不會導致不需要的加工品差生,例如雷射班點圖樣。雷 射光源陣列可為一維或二維的。 - 有機發光二極體材料 紅外線有機發光二極體材料是已提出的。例如,Del Cafto et al· 在以 perylenediimide_doped tris(8-quinolinolato) aluminium 為基礎 _ 的有機發光一極體材料中發表了電致發光(electroluminescence),如 在 Applied Physics Letters vol. 88, 071117 (2006)中所描述的内容。 呑兒明了波長805 nm的電致發光。Domercq et al·在J Phys Chem B vol· 108, 8647-8651 (2004)中發表了近似紅外線有機發光二極體 的材料。在透明基板上的有機發光二極體材料的製備是已說明 的。例如在US7,098,591中,有機發光二極體材料是在透明的氧化 馨 銦錫電極(indium tin oxide electrodes)上製備。電極是製備在透明基 , 板上’透明基板可為删石夕玻璃(|)嶋洲(:拙§1挪)。這些構成要素可 含在具有透喊板的錢發光二極體裝置巾。氧化銦錫層可利 用射頻磁濺鐘法(radio frequency magnetron sputtering tool)賤鐘至 基底之上。氧化銦錫可利用包含氧化銦與氧化錫的目標來濺鍍。 氧化銦錫層可具有在可見範圍中大約85%的光學傳輪。氧化鋼錫 可為平穩的’以避免局部增強電場的產生,局部增強電場可能會 降低有機發光二極體材料的效能。小於大約2nm的均方根粗糙^ 104 200844693 是較好的。一個或數個實用的有機層可設置在圖樣電極表面 (patterned electrode surface)上。有機層的厚度典型介於2nm與 200nm之間。傳導層可依圖樣建構在有機層上,以便在有機層的 二側形成陽極與陰極。裝置可由玻璃層密封,以保護主動層受到 壞境的破壞。 概要製造程序 以下描述製造圖二裝置的程序概要,不過這個程序的許多變 化將可在習用技術中找到。 在製造圖二裝置的程序中,選擇使用透明基板。如此的基板 可為硬式的基板,例如大約200μηι厚的硼矽玻璃片,或是它可為 权式基板’例如聚合物基板㈣黯犯論⑹,例如聚碳酸醋Here is an embodiment for a compact handheld display. RTM Epson (RTM) Corporation of japan has published a monochrome electronic address space optical modulator, such as the D4:L3D13U 1.3 inch screen size. An illustrative example is the use of a D4:L3D13U liquid crystal display panel as a spatial light modulator. It has HDTV-resolution (1920 x 1080 pixels), 15 μm pixel pitch and 28.8 mm X 16-2 mm panel area. This panel is typically used in 2D image projection displays. 100 200844693 k 赃 is the observer distance calculated for the wavelength of the applied s(). For this escaping _ _ face is to make the thief phase handle (Bukhart code). It takes two pixels to encode a complex number. The three associated pixels are vertically aligned. If the prism array beam splitter is integrated into the spatial light modulator, the prism array spacing will be 30 μΓη. If the astigmatism, the spacing between the prism arrays and the edge array is slightly different, the perspective shortening is handled. 71 The height of the virtual weaver window is determined by the spacing of 3 * 15 μηι = 45 μηη - determined by a complex number and is 7.Gnim. The width of the virtual observer window is determined by the spacing of the prism array 30, and is 1〇.6. Both values are greater than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The holographic reconstruction is from the holographic image of the two-dimensional code, so there is no flash problem in the one-dimensional coding described above. This ensures high spatial visual quality and high depth impressi〇n quality. When the separation of the eyes is 65mm, the prism must be deflected by 32 5mm. More precisely, the maximum intensity of the Sin〇Squared intensity function of the package requires a skew of 32.5 mm. For an observer distance of 0.5 m, this corresponds to ± 3 72. Angle. For the refractive index n = L5, the appropriate prism angle is soil 744. . The prism angle is defined as the angle between the base and the bevel of the prism. 101 200844693 For the level in the observer plane of the 1〇.6 face, the position of the other eye is the distance of about 6 diffraction classes (meaning 65 ugly i〇 6mm). The crosstalk caused by the higher diffraction order is therefore negligible because the prism array has a high fill factor, meaning close to 100%. This is an embodiment used in large awards. The holographic display can be designed to use the phase adjustment _ _ _ Wei, and shoot 5 () μ η like the shed distance and 2G English pair of screen size. For a TV like a lang, the screen can be close to 4G. The observer distance for this design is 2m and the wavelength is 633 legs. Two spatially modulated pixels of the spatial light modulation n are used to encode a complex number. The two associated pixels are vertical touches and correspond to a difficult vertical spacing of 2 *5〇卿 - 100 μιη. By integrating the prism array into the spatial light modulator, the horizontal spacing of the prism array is also 2*50 μπι: 1〇〇_, because each prism contains two slopes, and each slope is used for spatial light modulation. A field of the device. The virtual observer that produces 12 7 faces is considered to have a larger width and height than the pupil of the eye. Therefore, if the virtual observation scorns S at the position of the eye, each eye _ can see the hologram reconstruction. The hologram reconstruction is a holographic image from a two-dimensional code, and there is no flash problem in the one-dimensional code itself. This high-level air quality and high depth impression quality. 102 200844693 When the separation of the eyes is 65mm, the prism must deflect light ± 32 5 bribes. More sophisticated, the maximum value of the sinc-sqwed function of the intensity package needs to be skewed by ±^cut. For an observer distance of 2 m, this corresponds to an increase of 3. Angle. For refractive index n = U, the appropriate prism limb is ± 谨. . Wei New is the angle between the base and the bevel of the prism. The above example is for the observer to distance the space modulator from 5 〇 and 2 m. In summary, this embodiment can be applied to an observer distance of 5 〇 cm to 2 m from the spatial light modulator. The screen size can range from 1cm (such as a mobile phone secondary screen) to 50 inches (such as a large TV). Laser source RGB solid-state laser sources, based on, for example, GaInAs or GalnAsN materials, are suitable light sources for compact holographic displays because they are compact 'And has a high degree of light directivity. Such light sources include RGB Vertical Cavity Surface Emitting Lasers (VCSELs) manufactured by Novalux (RTM) Inc., CA, USA. Such a source can be provided as a single laser or laser array, although each source can utilize a diffractive optical element to produce multiple beams. The beam can be transmitted in a multimode fiber because if the coherence is too high for use in a compact hologram display, this may reduce the homology step 103 200844693 and will not cause unwanted processing, such as Laser class pattern. The array of laser sources can be one or two dimensional. - Organic Light Emitting Diode Materials Infrared organic light emitting diode materials have been proposed. For example, Del Cafto et al. published electroluminescence in organic light-emitting polar materials based on perylenediimide_doped tris (8-quinolinolato) aluminium, as in Applied Physics Letters vol. 88, 071117 (2006). What is described in . The children showed the electroluminescence at a wavelength of 805 nm. Domercq et al. published a material for an approximately infrared organic light emitting diode in J Phys Chem B vol 108, 8647-8651 (2004). The preparation of an organic light-emitting diode material on a transparent substrate has been described. For example, in US 7,098,591, organic light-emitting diode materials are prepared on transparent indium tin oxide electrodes. The electrode is prepared on a transparent substrate, and the transparent substrate can be a stone-cut glass (|) Pazhou (: 拙§1). These components may be included in a money-emitting diode device towel having a squeaking plate. The indium tin oxide layer can be applied to the substrate by a radio frequency magnetron sputtering tool. Indium tin oxide can be sputtered using a target containing indium oxide and tin oxide. The indium tin oxide layer can have an optical pass of about 85% in the visible range. Tin oxide steel can be smoothed to avoid localized electric field generation, which may reduce the effectiveness of the organic light-emitting diode material. A root mean square roughness of less than about 2 nm ^ 104 200844693 is preferred. One or several practical organic layers may be disposed on the patterned electrode surface. The thickness of the organic layer is typically between 2 nm and 200 nm. The conductive layer can be constructed on the organic layer in accordance with the pattern to form an anode and a cathode on both sides of the organic layer. The device can be sealed by a layer of glass to protect the active layer from damage. Summary Manufacturing Procedures The following outlines the procedures for making the Figure 2 device, but many variations of this program will be found in the prior art. In the process of manufacturing the device of Fig. 2, a transparent substrate is selected for use. Such a substrate may be a rigid substrate, such as a boron bismuth glass sheet of about 200 μm thick, or it may be a weight substrate [e.g., a polymer substrate (4) 黯 (6), such as polycarbonate.

_yCarb_e)、丙烯酸的(ac_)、聚丙稀 酉曰㈣urethane)、聚苯乙烯_卿職)、聚氯孔烯㈣㈣ 舰>响或是_絲板。如同前—部份·述的,翻電極是繁 ==前一部份所描述的内容,紅外線有機發光二極 使伃像素化有機發光二極體紅外線光的 璃基板可具有提供有機發光二極體像 疋^的。玻 發光二極體材料可㈣、喷 /、.、^ °紅外線有機 ' 衣(soIuii0ni3rocessed)在透明基 105 200844693 板上。分封層,也為電性絕緣層,會接著配置在有機發光二極體 像素層上。如此的分封層可為無機絕緣層〇nOTganie insulatOT layer),i^^^(silie〇n dioxide). |,^(silic〇nnitride) 化矽㈣iconcarbide)或是它可為聚合型層㈣_ 如環氧_Xy)。配置可姻雜或是對於無機絕緣層_化學氣 相沉積(chemical vapour dep〇siti〇n),或是對於聚合型層利用印製或 塗層來執行。分封層’也為電性絕緣層,可具有紐米或是小於 1〇微米的厚度。接著,光學式定址空間_變騎感光層會覆蓋 分封層。感光層對於紅外線感的,對於可見光是透明的,並 且可,、有數微米的厚度。如此的光學特性可由吸收紅外線的染料 來提供。光學式定址空間光調魏接著是#由配置覆蓋在兩個導 電層之間驗晶層來完成。液晶層可針對振幅調變或是相位調變 進行奴’並域型的做為數微米。接著,在裝置上配置紅外 線過濾、層。這可為具有紅外線吸收色素岭red absorbing 吨職_聚合物騎的形式,或者這可為無機層,例如具有紅 外線吸收元㈣離献學氣她積紐^氧财薄層。 在兩個光學式定址㈣光簡器裝置之間的層,必需要是足 夠厚的’以確保在-個光學式定址空縣調魏巾的電場不會影 響另-個光學式定址_麵變^的效能。紅外線碱層可為足 夠厚’以a現&個目標。然而,如果紅外線過濾層是不夠厚的時 106 200844693 候,可利用例如藉由光學黏劑 具充分厚度的玻璃片:二! 光調變器裝置與 如上述e r 置糾的光學透明層,例 光it: 物層來増加層的厚度。無論如何,二個 ;疋1 觸不能相隔太遠,使得光學结射 t音。例如,如果像素寬是1_米,光學式定;:空 式定址⑽树她漸罐;在另一個光學 先_討的液晶層是奴去執行相位調變。 裝置的其它部份可利用上述對於每 们用衣被成早70件,接著結合置第—部份上,_例如一 細以禮保在光學式定址空間 ^如 璃層,使得每-個光學式扣j層之間具有充分分隔的玻 個光學式定址空間光調X:光: 用配置另外的材崎置;;ί作^衣置的其它部份的製備是利 光二極體層的像素與第分上,這具有促進第二有機發 優點。 ¥有機W二極體層的像素的精確排列的 也可能使用塗上傳導 dectrode)(例如氧化銦錫)的薄分 透明電極(conducting transparent 層,來替代使用具有充分厚度的 107 200844693 /刀1 層緊,光學式定址空間光調變器。這個電極扮演兩個液晶層 的^同毛極。再者,作為傳導電極它是一個等電位面 t potemiai) °11此它保護電場’並且防止從—個光學式定址 1光周^到另—個光學式定址空間細變H的電場漏損。 Θ ’、員示了個裝置結構的例子,它可由上述程序或類似的 •程序進行製造。在使用的過程中,表φ 909照射充分同調可見的 2圖九中的衣置結構_,使得離裝置—段距離(與裝置的尺度 關)3在點911的觀看者可看到三維圖像。裝置中的層,從90直到 是3不需要與相互的尺度有關。層90是基底層,例如玻璃層。 :有機發光二極體底板層,提供有機發光二極體電源,並且 1為王或#刀透明。層92是紅外線有機發光二極體陣列。層% :用於至少部分紅外線細準的布拉格過魅全像元件。在一些 • 與中層%疋可以省略的。層94是電性絕緣層。層95是光 、it址二狀峨^感光與電極層。層96 Μ於可見光束振幅 ,2的液晶層。層97是分隔層,特別是薄的分隔層。層98是透 /極層。層99是線性偏光層。層_是紅外線過渡層,可傳送 可見光’但是會阻擔從有機發光二極體陣列%與_的紅外線 =層901疋用於可見光束相位調變的液晶層。層艱是分隔層, =是薄的分隔層。層9G3是光學式定址㈣光調魏感光與曰電 日。層904是電性絕緣層。層9〇5是用於至少部分紅外線光瞄 108 200844693 準的布拉格過濾ϋ全像元件。在—些實施例中,層_是可w、 略的。層906是紅外線有機發光二極體陣列。層9〇7是有機發2 二極體底板層,提供有機發光二極體電源,並且可為全部的八 透明。層908是遮蓋材料的平面,例如玻璃。在製造的過程中: 裝置910的製造可由基底層9〇開始’依次配置每—層,直到最後 -層增加完成。上述的程序會具有促進高精確的結構的層排 列的優點。或者’層的製造可以分成兩個或多個部分,並且具有 充份程度調整的結合在一起。 ^ 對於裝置的製造,將不想要的雙卿轉在最小值是非常重 要的,例如不想要的應力引起雙折射(_s_induced bireMng·)。應力狀雙折财導絲的雜或目職化狀態改 變至光的橢圓偏化狀態。具有光的理想線性或_偏化狀態的裝 置中’光的橢圓偏化狀_存在會減少對比及色雜真度,也因 此會降低裝置的效能。 實作 基於習㈣技術,對於上述實施射的光學式定址空間光調 雙裔’ -個在可見絲J5為透明,但是會吸收紅外線的感光層是 而要的在另一個貫作中,感光層可為圖樣式的,以便能具有能 傳送可見光的透明間隔,例如紅色、綠色及藍色絲,以及會對 109 200844693 仗有機發光-極齡的級感的非透明區域。在這個例子中,咸 光材料對可歧不需要是透_。另外,以綠不需要為紅外 線光。在-㈣作巾,寫人光束能由齡要顯示色雜產生,例 如藉由黃色光有機發光二極體。在兩個光學式纽郎光調變器 之間的過濾、H會目此需要在黃色巾,具能大的光學吸收,使其 能阻擔黃色光,但是為了達龜生有侧的光學顯示器的目的,‘ 在其它的光學波長上健需要有充份的傳輸。在另—個實作中, 寫入光束能由料線錢發光二減來纽。在兩個光學式定址 空間光調變器之_過濾、器會因此需要在紫外線中, 光學吸收’使其能Wt紫外線光,但是為了達啦生有作用的光 學顯示器的目的’在其它的光學波長上仍然需要有総的傳輸。 紫外線有機發光二極體材料已由Qiu et al Applied physies Letters 79, 2276 (2001)及 Wong et aL 0rg. Lett. 7 (23),5131 (2〇〇5)發表。此 外雖然強5周了使用有機發光二極體材料,也是可以使用其它的 發光二極體材料或是其它的顯示技術,例如表面傳導電子發射顯 不态(Surface-conduction Electron-emitter Display, SED)技術。 雖然,在此所描述的實施例是強調振幅與相位在空間光調變 器中的連續編碼,基於習用的技術,振幅與相位的二個不相等組 合的任何連續權重編碼都可使用來編碼全像像素,兩個組合與乘 上任何實數會相等無關,但不是乘上任何複數(實數除外)。這個理 110 200844693 由是像素可能的全像編碼的向量空間,會藉由任何振幅與相位的 兩们不相等組合’在向量m感知巾延伸,任何兩個組合與乘上 任何Λ數會相專無關,但不是乘上任何複數(實數除外)。 在參考圖中,簡示的相關尺寸是不需要按照比例的。 _ 本案所揭露之技術,得由熟習本技術人士據以實施,而其前 所未有之作法亦具備專概,爰依法提出專利之申請。惟上述之 貫施例尚不足以涵蓋本朗欲保護之專利麵,因此,提出申請 專利範圍如附。 111 200844693 【圖式簡單說明】 器及單一有機發光二 圖一為包含單—光學式定址空間光調變 極體陣列的全像顯示I置示意圖; 抑圖為包含一對元件的全像顯示裝置示意圖,每一個 3單光予式疋址空間光調魏及單—有機發光二極體陣列; ®三為移動式三維顯示裝置示意圖;_yCarb_e), Acrylic (ac_), Polypropylene (4) urethane), Polystyrene (Qing), Polychlorinated (Four) (4) Ships > rang or _ silk plate. As described in the previous section, the flip electrode is the content described in the previous section. The infrared organic light emitting diode allows the pixel substrate of the pixelated organic light emitting diode to have an organic light emitting diode. The body image is 疋^. The glass-emitting diode material can be (4), spray /, ., ^ ° infrared organic 'clothes (soIuii0ni3rocessed) on the transparent base 105 200844693 board. The sub-sealing layer, which is also an electrically insulating layer, is then disposed on the organic light-emitting diode pixel layer. Such a sealing layer may be an inorganic insulating layer 〇nOTganie insulatOT layer), i^^^(silie〇n dioxide). |, ^(silic〇nnitride) 矽 (4) iconcarbide) or it may be a polymeric layer (4) _ such as epoxy _Xy). The configuration can be performed either for the inorganic insulating layer or chemical vapor deposition or for the polymeric layer by printing or coating. The encapsulation layer' is also an electrically insulating layer and may have a neon or a thickness of less than 1 micron. Next, the optically addressed space _ rides the photosensitive layer to cover the encapsulation layer. The photosensitive layer is transparent to visible light and has a thickness of several micrometers. Such optical properties can be provided by dyes that absorb infrared light. The optically addressed spatial light tone is then completed by a configuration covering the crystal layer between the two conductive layers. The liquid crystal layer can be made into a few micrometers for amplitude modulation or phase modulation. Next, an infrared line filter and a layer are placed on the device. This can be in the form of an infrared absorbing pigment ridge, or it can be an inorganic layer, for example, with an infrared absorbing element (4). The layer between the two optically-addressed (four) light-splitting devices must be sufficiently thick to ensure that the electric field of the Weibo in the optically-addressed empty county does not affect another optical address. Performance. The infrared base layer can be sufficiently thick to target a & However, if the infrared filter layer is not thick enough, 106 200844693, for example, a glass sheet with sufficient thickness by optical adhesive can be used: two! The light modulator device and the optical transparent layer as described above, It: The layer of matter to add thickness to the layer. In any case, two; 疋1 touch can not be too far apart, so that the optical junction t-tone. For example, if the pixel width is 1 mm, the optical formula is set; the empty address (10) tree is gradually grading; in another optical layer, the liquid crystal layer is slave to perform phase modulation. The other parts of the device can be used to make 70 pieces of each of the clothes, and then combined with the first part, _ for example, a fine in the optically-addressed space, such as the glass layer, so that each optical Between the layers of the j-buttons, there is a fully separated glass-optic address space. The light is adjusted by X: light: the other parts of the device are arranged; the other parts of the device are prepared by the pixels of the light-emitting diode layer. In the first part, this has the advantage of promoting the second organic hair. For the precise alignment of the pixels of the organic W diode layer, it is also possible to use a thin transparent electrode (conducting transparent layer) coated with conductive dectrode (for example, indium tin oxide) instead of using a sufficient thickness of 107 200844693 / knife 1 layer tight Optically-spaced spatial light modulator. This electrode acts as the same hair electrode of the two liquid crystal layers. Furthermore, as a conductive electrode it is an equipotential surface t potemiai) °11 which protects the electric field' and prevents from Optically addressing 1 light cycle ^ to another optically addressed space fine-change H electric field leakage. Θ ', an example of a device structure is shown, which can be manufactured by the above program or a similar program. During use, the table φ 909 illuminates the garment structure _ in Figure 2, which is sufficiently coherent to be visible, such that the distance from the device-segment distance (closed to the scale of the device) 3 at the point 911 allows the viewer to see the three-dimensional image. . The layers in the device, from 90 up to 3, do not need to be related to each other's dimensions. Layer 90 is a base layer, such as a glass layer. : Organic light-emitting diode bottom layer, providing organic light-emitting diode power supply, and 1 is king or #刀 transparent. Layer 92 is an array of infrared organic light emitting diodes. Layer %: Bragged hologram element for at least part of the infrared fineness. In some • with the middle layer %疋 can be omitted. Layer 94 is an electrically insulating layer. Layer 95 is a light, a site, and a photosensitive layer. Layer 96 is aligned with the visible beam amplitude, 2 of the liquid crystal layer. Layer 97 is a separator layer, particularly a thin separator layer. Layer 98 is a transmissive/polar layer. Layer 99 is a linear polarizing layer. Layer _ is an infrared transition layer that transmits visible light but blocks the liquid crystal layer from the organic light-emitting diode array % and _ infrared = layer 901 疋 for visible beam phase modulation. The layer is difficult to separate layers, = is a thin separation layer. Layer 9G3 is optically addressed (4). Layer 904 is an electrically insulating layer. Layer 9〇5 is a Bragg filter hologram element for at least part of the infrared light sighting 108 200844693. In some embodiments, layer _ is w, omitted. Layer 906 is an array of infrared organic light emitting diodes. Layer 9〇7 is an organic hair 2 diode backplane layer that provides an organic light emitting diode power supply and can be all eight transparent. Layer 908 is a plane that covers the material, such as glass. During the manufacturing process: the fabrication of the device 910 can be initiated by the base layer 9', in which each layer is placed in sequence until the final layer is added. The above described procedure has the advantage of facilitating a highly accurate structure of the layer arrangement. Alternatively, the fabrication of the layer can be divided into two or more sections and bonded together with a sufficient degree of adjustment. ^ For the manufacture of the device, it is important to turn the unwanted doubles to a minimum, such as unwanted stress causing birefringence (_s_induced bireMng·). The miscellaneous or objective state of the stress-shaped double-folded guide wire changes to the elliptical polarization state of the light. The presence of the 'elliptic polarization of the light' in the device with ideal linear or _-biased state of light reduces the contrast and color-to-noise, and therefore reduces the performance of the device. The implementation is based on the Xi (4) technique, for the above-mentioned implementation of the optically-addressed spatial light-tuning double-family--a photosensitive layer that is transparent in visible silk J5, but absorbs infrared light is required in another implementation, the photosensitive layer It can be patterned to have a transparent spacing that transmits visible light, such as red, green, and blue filaments, as well as a non-transparent area that would be 109 200844693 仗 organic luminescence-aged. In this case, the salty material does not need to be transparent. In addition, it is not necessary to use infrared light for green. In the - (4) towel, the writing beam can be generated by the age to display color, for example, by a yellow light organic light emitting diode. In the filtration between the two optical New Zealand light modulators, H will need to be in a yellow towel, which has a large optical absorption, so that it can resist yellow light, but in order to reach the turtle, there is a side optical display. The purpose, 'he needs to have sufficient transmission at other optical wavelengths. In another implementation, the write beam can be subtracted from the feed line. In two optically-addressed spatial light modulators, the filter will therefore need to be optically absorbing 'in the ultraviolet light' to enable Wt ultraviolet light, but for the purpose of achieving a useful optical display' in other optics There is still a need for a sinusoidal transmission at the wavelength. Ultraviolet organic light-emitting diode materials have been published by Qiu et al Applied physies Letters 79, 2276 (2001) and Wong et al Lrg. Lett. 7 (23), 5131 (2〇〇5). In addition, although the organic light-emitting diode material is used for 5 weeks, other light-emitting diode materials or other display technologies, such as Surface-conduction Electron-emitter Display (SED), can be used. technology. Although the embodiments described herein emphasize continuous encoding of amplitude and phase in a spatial optical modulator, any continuous weighting of two unequal combinations of amplitude and phase can be used to encode the full encoding based on conventional techniques. Like a pixel, the two combinations are independent of multiplying any real number, but not multiplied by any complex number (except for real numbers). This principle 110 200844693 consists of a vector space that is a possible holographic encoding of the pixel, which is unequal by any combination of amplitude and phase 'in the vector m to sense the extension of the towel. Any two combinations combined with any number of turns will be specialized. Irrelevant, but not multiplied by any plural (except real numbers). In the reference figures, the relative dimensions of the drawings are not necessarily to scale. _ The technology disclosed in this case can be implemented by people familiar with the technology, and its unprecedented practice is also specific, and applications for patents are filed according to law. However, the above-mentioned examples are not sufficient to cover the patents that Ben Lang wants to protect. Therefore, the scope of the application for patents is attached. 111 200844693 [Simple diagram of the diagram] and a single organic light-emitting diagram 1 is a schematic diagram of a full-image display I comprising a single-optical-addressed spatial light-modulating polar body array; the picture is a holographic display device including a pair of components Schematic diagram, each of the three single-light-preserving address space light-modulating Wei and single-organic light-emitting diode arrays; ® three is a schematic diagram of a mobile three-dimensional display device;

圖四為習㈣全像顯示示意圖; 圖五為利用單—有機發光二極體陣列控制兩個光 間光調變ϋ的全糊; Α址空 圖六A為全像顯示示意圖; 圖六B為適合用於實現緊密的全像顯示示意圖; 圖七為包含収減少有瞻高繞概級問題的雜格過渡A 像光學7L件的全像顯示的—個構成元件示意圖; 圖八為包含用以提升有機發光二極體陣列所發射的光的準直 的布拉格過濾、全像光學元件的全像顯示的-個構成元件示意圖; 圖九為全像顯示裝置示意圖; 圖十為包含时連續編碼振幅及相㈣兩個電子式定址空間 光調變器的全像顯示裝置示意圖; 112 200844693 一圖十-為包括單-電子式定址空·器的全像顯示裝置 示意圖; 圖十二為根據實施例,全像顯示的一轉定具體化示意圖; 圖十三為包含絲連續編碼振幅及相位的兩麵子式定址空 間光調變器的全像顯示裝置示意圖; 二 圖十四為制MathCad (_所麟的繞侧擬結果; 圖十五為使用MathCad (_所獲得的繞射模擬結果; 圖十六為使用MathCad (_所獲得的繞射模擬結果; 圖十七為根據實施例,兩個電子式定址㈣光觀器之間具 有透鏡層的排列示意圖; 圖十八為當光從一個電子式定址空間光調變器行進至第二個 電子式疋址空間光調變器時所發生的繞射程序示意圖; 圖十九為兩個電子式定址空間光調變器的結構示意圖,在其 中兩個電子式定址空間光調變器之間具有一個光纖面板; 圖一十為光束指向元件示意圖; 圖二十一為光束指向元件示意圖; 圖二十二為促使3維視覺溝通為可能的系統示意圖; 圖二十三為將二維圖像内容轉換為三維圖像内容的方法示意 113 200844693 圖二十四為根據實施例,全像顯示元件的具體化示意圖; " 為包a—維光源陣列形式的光源、二維透鏡陣列形 式的透鏡、空間光調魏與絲分光鏡的全像顯示示意圖。光束 分光鏡會將_空間細賴的光線分成兩束光 ,分別照射用於 左眼的虛擬觀察員視窗(V0WL)及用於右眼的虛擬觀察員視窗 (V0WR); 圖二十六為包含二維光源陣列中的二個光源、二維透鏡陣列 中的二個透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。 光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射 用於左眼的虛擬觀察員視窗(V0WL)及用於右眼的虛擬觀察員視窗 (V0WR); 圖二十七為棱鏡光束指向元件的剖面示意圖。 ⑩ 【主要元件符號說明】 ‘照明裝置............ 1〇 w 色彩過濾器陣列...............11 紅外線有機發光二極體陣列............ 光學式定址空間光調變器...........13 · . ..................... 緊密全像圖產生器..... 15 照明裝置.............. · · · · 20 114 200844693 色彩過濾器陣列··············· 21 紅外線有機發光二極體陣列·· .....: · 22 光學式定址空間光調變器·········· ·23 點......· · · ........ · · · · 24 緊密全像圖產生器·············· 25 紅外線過濾器· · ..............26 光學式定址空間光調變器...........27Figure 4 is a schematic diagram showing the (4) holographic display; Figure 5 is a diagram of using a single-organic light-emitting diode array to control the full paste of two inter-optical modulating ϋ; Α 空 空 六 6A is a holographic display; Figure 6B It is suitable for the realization of a compact holographic display schematic; Figure 7 is a schematic diagram of the constituent elements of the holographic display of the optical transitional 7L optical element including the reduction and the high-level winding problem; Figure 8 is included A schematic diagram of a constituent element of a holographic display of a collimated Bragg filter and a holographic optical element for enhancing collimation of light emitted from an array of organic light-emitting diodes; FIG. 9 is a schematic diagram of a holographic display device; Amplitude and phase (4) Schematic diagram of the holographic display device of two electronically-positioned spatial light modulators; 112 200844693 Figure 10 - Schematic diagram of a holographic display device including a single-electron addressed empty device; Figure 12 is based on implementation For example, a avatar display shows a schematic diagram of a holographic display; Figure 13 is a schematic diagram of a holographic display device for a two-sided sub-addressed spatial optical modulator comprising a continuous encoding amplitude and phase of the filament; MathCad (the surrounding side of the result; Figure 15 is the diffraction simulation result obtained using MathCad (_; Figure 16 is the diffraction simulation result obtained using MathCad (_; Figure 17 is according to the embodiment) , two electronic addressing (four) between the optometrists with a lens layer arrangement diagram; Figure 18 is when the light travels from an electronically addressed spatial light modulator to a second electronic address spatial light modulator Schematic diagram of the diffraction program that occurs; Figure 19 is a schematic diagram of the structure of two electronically addressed spatial light modulators, in which there is a fiber optic panel between two electronically addressed spatial light modulators; Figure 21 is a schematic diagram of a beam pointing component; Figure 22 is a schematic diagram of a system that facilitates 3D visual communication; Figure 23 is a schematic diagram of a method for converting 2D image content into 3D image content. 113 200844693 FIG. 24 is a schematic diagram of a holographic display element according to an embodiment; " a light source in the form of an a-dimensional light source array, a lens in the form of a two-dimensional lens array, and spatial light Schematic diagram of the hologram of the Wei and silk spectroscope. The beam splitter splits the light of the _ space into two beams, respectively illuminating the virtual observer window (V0WL) for the left eye and the virtual observer window for the right eye ( V0WR); Figure 26 is a schematic diagram showing the holographic display of two light sources in a two-dimensional array of light sources, two lenses in a two-dimensional lens array, a spatial light modulator and a beam splitter. The beam splitter will leave The light of the spatial light modulator is split into two beams, respectively illuminating the virtual observer window (V0WL) for the left eye and the virtual observer window (V0WR) for the right eye; Figure 27 is a schematic cross-sectional view of the prism beam pointing element 10 [Description of main component symbols] 'Lighting device............ 1〇w Color filter array...............11 Infrared organic light II Polar body array............ Optically-spaced spatial light modulator...........13 · . ............. ........ Compact hologram generator..... 15 Lighting device.............. · · · · 20 114 200844693 Color filter array··· ············· 21 Red Line Organic Light Emitting Diode Array··..: · 22 Optical Addressing Space Light Modulator········································· ..... · · · · 24 Tight hologram generator ······································ 26 Optical Addressing Space Light Modulators...........27

紅外線有機發光二極體陣列·· ...... · 28 行動電話..................30 螢幕區域...........······· 31 天線···················· 32 攝影機....... 33 攝影機········ .......... 34 才安Μ...... 35 按鍵··...... ........,· · · · 36 聚焦元件··...... · .........1101 聚焦元件.......... · ...... 1102 聚焦元件..................1103 垂直聚焦系統.......... 1104 第一繞射階級········· .......1105 第零繞射階級·· · .............1106 115 200844693 負一繞射階級............----1107 微透鏡陣列············.····· 50 色彩過濾器陣列··············· 51 紅外線有機發光二極體陣列··........52 光學式定址空間光調變器··········· 53 光學式定址空間光調變器......... · · 54 • 緊密的全像圖產生器·· ...........55 _ 點····················· 56 照明裝置.............. · · · · 57 空間光調變器··..............70 全像光學元件布拉格過濾器·········· 71 單一元件..................73 布拉格平面· · ...... 74 繞射光強度分配··············· 75 ⑩ 光線· · · .................76 ' 有機發光二極體陣列· · · ...... · v · 80 、 全像光學元件布拉格過濾器........ · .81 光學式定址空間光調變器...... 82 單一有機發光二極體············ ·83 布拉格平面.................84 發射的紅外線的分佈.........----85 116 200844693 光射、線................. · · 86 基底層·········· ....... · · 90 有機發光二極體底板層·····.······· 91 紅外線有機發光二極體陣列·········· 92 布拉格過濾器全像元件· · · ....... · · 93 電性絕緣層.......... 94 - 光學式定址空間光調變器感光與電極層····· 95 • 液晶層...................96 分隔層············· ......97 透明電極層.................98 線性偏光層·.....··········· 99 紅外線過濾層................900 液晶層.............--.---901 分隔層·· ..................902 • 光學式定址空間光調變器感光與電極層····· 903 ’ 電性絕緣層· · · · · ...........904 、 布拉格過濾器全像元件·· ...... · · · 905 紅外線有機發光二極體陣列........ · · 906 有機發光二極體底板層·· .....· · · · 907 遮蓋材料的平面..... 098 表面.......············· 909 117 200844693 裝置結構·················· 910 點............ .......——911 微透鏡陣列....... · ......· · 1⑽ 色彩過濾器陣列······*········ 101 電子式定址空間光調變器......... · · 102 電子式定址空間光調變器··········· 103 • 照明裝置............ 104 • 緊密全像圖產生器·············· 105 黑占.....................106 元件·.....·············· ίο? 元件....................108 照明裝置用················· 110 色彩過濾器陣列...............111 電子式定址空間光調變器··········· 112 • 光束分光鏡元件.............. 113 ‘ 點.....················ 114 ^ 緊密全像圖產生器··..... 115 照明裝置······· ...... 130 色彩過濾器陣列...............131 電子式定址空間光調變器...........132 電子式定址空間光調變器........ · · · 133 118 200844693 光束分光鏡元件· · · ......... · · · 134 黑占········ ............. 135 緊密全像圖產生器.............. 136 光束········ ............ 171 光束· · · ........ · ........172 使用者··················· 220 使用者··......· · · · .......221 連線··................ · 222 連線....................223 中間系統..................224 電視傳播公司· · · ............. 2300 中間系統· · · · · .......······ 2301 觀看者...................2302 廣告客戶................ · 2303 二維内容.......... 2304 三維内容··...... ....... · · · 2305 支付費用· · ....... 2306 棱鏡元件..................159 電極·................... 1517 電極............········ 1518 凹洞.................. · · 1519 119 200844693Infrared Organic Light Emitting Diode Array···· 28 Mobile Phone..................30 Screen Area.......... .······· 31 Antenna························································· ......... 34 Μ安Μ...... 35 Buttons··...... ........,···· 36 Focusing elements··... ... · .........1101 Focusing elements.......... ·...... 1102 Focusing elements.............. ....1103 Vertical Focusing System.......... 1104 First Diffraction Class···········1105 The Zeroth Diffraction Class··· . ............1106 115 200844693 Negative one diffraction class............----1107 Microlens array··········· ········ 50 Color Filter Array················ 51 Infrared Organic Light Emitting Diode Array··........52 Optical Addressing Space Light Modulator················································································· ........55 _ 点··········································· · · · 57 Space light modulator··..............70 holographic optical element Bragg filter·········· 71 Single element... ............73 Prague plane··......74 Diffraction of light intensity·································· ................76 'Organic light-emitting diode array · · · · · · · · · 80 · holographic optical element Bragg filter..... ... · .81 Optical Addressing Space Light Modulator... 82 Single Organic Light Emitting Diode ········································ ..........84 Distribution of infrared rays emitted.........----85 116 200844693 Light, line.............. ... · · 86 Base layer ··················································· Organic Light Emitting Diode Array······································································ 94 - Optical Addressing Space Light Modulator Photosensitive and Electrode Layers····· 95 • Liquid Crystal Layer..................96 Separation Layer····· ········ ..... .97 Transparent Electrode Layer....................98 Linear Polarizing Layer·.....··········· 99 Infrared Filter Layer... .............900 Liquid crystal layer..................--.---901 Separation layer··.......... ........902 • Optical Addressing Space Light Modulator Photosensitive and Electrode Layer····· 903 'Electrical Insulation Layer · · · · · ...........904 , Bragg filter hologram components ·· · · · 905 Infrared organic light-emitting diode array........ · · 906 organic light-emitting diode bottom layer ··. .· · · · 907 Covering the plane of the material..... 098 Surface............................... 909 117 200844693 Installation structure········ ············································· .· · 1(10) Color Filter Array················ 101 Electronic Addressing Space Light Modulator......... · · 102 Electronic Address Space Light Tone器··········· 103 • Lighting device............ 104 • Compact hologram generator·············· · 105 黑占........................106 components .....······················································ ············· 110 Color Filter Array...............111 Electronic Address Space Light Modulator········ ··· 112 • Beam splitter element.............. 113 ' Point.....···························· All-image generator··..... 115 Lighting device·······...... 130 Color filter array...............131 Electronics Space-addressed spatial modulators...........132 Electronically-positioned spatial light modulators........ · · · 133 118 200844693 Beam splitter components · · · .. ....... · · · 134 Hezhan········............. 135 Tight hologram generator......... ..... 136 Beam·········............ 171 Light Beam · · · ........ · ........172 User································································ .............. · 222 Connection ....................223 Intermediate System......... .........224 TV Communication Company · · · ............ 2300 Intermediate System · · · · · ................... 2301 Viewers................... 2302 Advertisers... ............. · 2303 Two-dimensional content.......... 2304 Three-dimensional content··.................. · · · 2305 Payment Fee · · ....... 2306 Prism Components..................159 Electrodes·............... .... 1517 Electrode.............................. 1518 Ditch.................. · · 1519 119 200844693

Claims (1)

200844693 十、申請專利範圍: 1·-種全像顯示裝置,包含-第—電子式定址·光調變器斑一 第二電子式纽如光爾ϋ,職猶係能允觸立地調變相 位與振幅,且在其中係可透過一個或多個虛麵察員視窗來看見 一全像重建。 敛 # 2·如中請專利範圍第丨項所述之全像顯示裂置,其中該全像重建 係了、、二由一個或一個虛擬觀察貝視窗來觀察到。 3·如任何上述申請專利範圍所述之全像顯示裝置,其中該顯示器 係利用一背光與微透鏡陣列進行照射。 _ 4·如任何上述申請專利範圍所述之全像顯示裝置,其中一光源係 ι 為一發光二極體。 5·如任何上述申請專利範圍所述之全像顯示裝置,其中一電子式 疋址空間光調變器係調變相位,另一電子式定址空間光調變器係 調變振幅。 6·如任何上述申請專利範圍第1項至第4項所述之全像顯示裝 121 200844693 變相位與振幅的一種纽 相位與振幅的另—種不 置,其中一電子式定址空間光調變器係調 合,另一電子式定址空間光調變器係調變 同組合。 7:::=:=r,, 定利r所述之全軸示裝置,其中該電子式 又止I間摘《係形成具有很小或極相騎相鄰層。 9置如請專利範圍第1項至第7項所述之全像顯示裝 接相2定卿侧s鱗峡增上直接或間 .如任何上射請專娜騎叙全_轉置, 為固定且實體上直蝴接連接至一電蝴址空間光調變器 其中該電子式 的複數個排列 11.如任何上述申料娜麟述之全_示農置, 定址空間_魏魅有隨數健_察員視窗 122 200844693 1'2·如任何上述申請專利範圍所述之全像顯示裝置,其中從該第一 電子式定址空間光調變器至該第二電子式定址空間光調變器的光 的繞射係利用菲涅耳繞射法則(Fresnel diffraction regime), 但疋不包含夫朗和斐(Fraunhofer diffraction regime)繞射法 則0 13·如任何上述申請專利範圍所述之全像顯示裝置,其中考慮在二 維剖面的情況,由該第一電子式定址空間光調變器的每一個像素 斤傳的強度大於係入射在該弟二電子式定址空間光 哭 的對應像素上。 ™ 14.^任何上述申請專利細所述之全像顯稍置,其中一隔離層 係分隔該電子式定址空罐器,以最小化電磁場,防止一電 子式定址郎轴變科良影__電子式纽空耻調變^ 的效能。 以最小化串音 15.如任何上述申請專利範圍第丨項至第6項所述之全像顯示裝 置乂、中-透鏡陣舰設置在該電子式紐空間光調變器之間, 16.如任何上述申請專利範圍第 1項至第11項所述之全像顯示裝 123 200844693 孔 / 中係利用減小該第一電子式定址空間光調變器中的像素 位之方式妹械串音。 、 任何上述中請專利範圍第1項至第6項所述之全像顯示裝 /、中光纖面板係設置在該電子式定址空間光調變器之間, 以最小化串音。 r如任何上述_請專概圍麟之全像齡裝置,其巾複數個虛 擬硯察員視窗係可_空間或時間多工方式舖置拼湊喊。1 19·如任何上述申請專纖顺述之全像顯示裝置,其巾該顯示哭 係=可操作的’以對於—觀察員的左眼接著右眼,在包含全=益 媒介上進行時間序列地重新編碼一全像圖。 的 20.如任何上述申請專利範圍所述之全像顯示裝置,其中讀顯八 係可不需任何的投影透鏡,㈣產生—衫在幕如益 像,且無關於該螢幕離在光學遠,場中之該裝置之距離。、、、回 全像圖 21·如任何上述申請專利範圍所述之全像顯示裝置,其中〜 像係透過一光束分光鏡傳送至/觀察者的每個眼睛。 124 200844693 22·如任何上述申請專利範圍所述之全像顯示裝置,其中該電子式 疋址空間光調變器係設置在〆光源的30mm範圍之内,並且是置於 一可攜式盒中。 ' 23·如任何上述申請專利範圍所述之全像顯示裝置,其中係利用一 光束指向元件進行複數個舰觀察員才見窗追縱,肖光束指向元件 係由一等向主體材料内部的複數個液晶區域所組成,其中,該複 數個區域與矩陣之間的複數個介面係為-棱形,或是-球的部分 形狀’或是-圓柱的部分雜,且該複數健晶的方向係透過外 加電場方式控制,以變化該光束指向元件的局部折射或繞射特性。 24·如任何上述巾請專概圍所述之全像顯示裝置,其巾該電子式 定址空間光調變器、-光源及與該光源排列的—透鏡陣列:铸 ;可“式益内,且在其中,該光源係經由該透鏡陣列擴大1〇 至60倍。 " 25·:種產生—全像重_綠,包含制如购均”專 第1項至第24項所述之全像顯示裝置之步驟。 125200844693 X. Patent application scope: 1·-All-image display device, including - first-electronic address, light modulator, spot one, second electronic type, such as Guanger, and the position of the system With amplitude, and in it through one or more virtual observer windows to see a holographic reconstruction. Convergence # 2· The hologram display split described in the third paragraph of the patent scope, wherein the holographic reconstruction is performed, and the second is observed by one or a virtual observation bay window. 3. The holographic display device of any of the preceding claims, wherein the display is illuminated with a backlight and a microlens array. The holographic display device of any of the above-mentioned patent applications, wherein a light source is a light-emitting diode. 5. The holographic display device of any of the preceding claims, wherein an electronic address space optical modulator is modulated in phase and the other electronic addressed spatial light modulator is modulated in amplitude. 6. The holographic display device 121 according to any of the above-mentioned patent application ranges 1 to 4, 200844693. A phase and amplitude of a phase and amplitude are not set, and an electronic address space optical modulator The system is blended, and the other electronically-positioned space light modulators are modulated and combined. 7:::=:=r,, the full-axis display device described in the definition of R, wherein the electronic type is formed with a small or extreme phase riding adjacent layer. 9 Set as shown in the patent scope range 1 to 7 of the holographic display assembly phase 2 Dingqing side sscale gorge increased directly or between. If any shot, please specialize in riding _ _ _ transposed, Fixed and physically connected to a light-masked space light modulator, wherein the electronic array of multiples 11. If any of the above-mentioned proposals are described by Na Lin, the address space _ Wei Mei has The holographic display device of any of the above-mentioned patent applications, wherein the first electronically addressed spatial light modulator to the second electronically addressed spatial light modulation The diffracting of the light of the device utilizes the Fresnel diffraction regime, but does not include the Fraunhofer diffraction regime. The hologram of any of the above-mentioned patent claims The display device, wherein in the case of the two-dimensional profile, the intensity of each pixel transmitted by the first electronically-positioned spatial light modulator is greater than the corresponding pixel incident on the second electronically-spaced space. TM 14.^ The holographic image of any of the above-mentioned patent applications is slightly disposed, wherein an isolation layer separates the electronically-addressed empty canister to minimize the electromagnetic field and prevent an electronic location from being changed to a good shadow __ The effectiveness of the electronic New Zealand shame change ^. In order to minimize the crosstalk, the holographic display device and the medium-lens array ship according to any of the above-mentioned claims are provided between the electronic-type spatial light modulators. The holographic display device according to any of the above-mentioned patent applications, in the first to eleventh items, wherein the hole/middle system utilizes the method of reducing the pixel position in the first electronically-positioned spatial light modulator. . The holographic display device/semi-fiber panel of any of the above-mentioned patent scopes 1 to 6 is disposed between the electronic address space optical modulators to minimize crosstalk. r If any of the above _ please use the full-aged device of the surrounding lining, the number of virtual inspector windows can be _ space or time multiplexed way to put together. 1 19. The holographic display device of any of the above-mentioned applications, the singular display device of the present invention, the display of the crying system = operable "for the observer's left eye followed by the right eye, in a time series containing the full = benefit medium Recode a hologram. 20. The holographic display device of any of the preceding claims, wherein the reading of the eight-line system does not require any projection lens, (4) the production of the shirt is in the image, and the screen is not far from the optical field. The distance of the device in the middle. The hologram display device of any of the above-mentioned patent applications, wherein the image is transmitted to each eye of the observer through a beam splitter. The holographic display device of any of the above-mentioned patent applications, wherein the electronic address space light modulator is disposed within 30 mm of the xenon source and is placed in a portable box. . The holographic display device of any of the above-mentioned patent applications, wherein a plurality of ship observers are used to perform window tracking using a beam directing element, and the directional beam pointing element is a plurality of elements inside an isotropic body material. a liquid crystal region, wherein the plurality of interfaces between the plurality of regions and the matrix are - prismatic, or - a partial shape of the ball or - a partial impurity of the cylinder, and the direction of the plurality of crystals is transmitted through An electric field is applied to control the local refraction or diffraction characteristics of the beam pointing element. 24. If any of the above-mentioned towels, please refer to the holographic display device described above, the electronic address space optical modulator, the light source and the lens array arranged with the light source: casting; And wherein the light source is expanded by 1 to 60 times via the lens array. " 25·: Generation-total image weight_green, including the system as described in the first item to the 24th item The steps like a display device. 125
TW96140509A 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene TWI406115B (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
GBGB0621360.7A GB0621360D0 (en) 2006-10-26 2006-10-26 Compact three dimensional image display device
GBGB0625838.8A GB0625838D0 (en) 2006-10-26 2006-12-22 Compact three dimensional image display device
GB0705407A GB0705407D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705403A GB0705403D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705408A GB0705408D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705399A GB0705399D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705402.6A GB0705402D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705412A GB0705412D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705411.7A GB0705411D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705404.2A GB0705404D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705398A GB0705398D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705406A GB0705406D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705410A GB0705410D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705401A GB0705401D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705405.9A GB0705405D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705409A GB0705409D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device

Publications (2)

Publication Number Publication Date
TW200844693A true TW200844693A (en) 2008-11-16
TWI406115B TWI406115B (en) 2013-08-21

Family

ID=44771492

Family Applications (6)

Application Number Title Priority Date Filing Date
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device
TW96140509A TWI406115B (en) 2006-10-26 2007-10-26 Holographic display device and method for generating holographic reconstruction of three dimensional scene
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW096140510A TWI454742B (en) 2006-10-26 2007-10-26 Compact three dimensional image display device

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW96140507A TWI432002B (en) 2006-10-26 2007-10-26 Mobile telephone system and method for using the same
TW96140506A TWI421541B (en) 2006-10-26 2007-10-26 Full image display device and method (2)
TW96140505A TWI421540B (en) 2006-10-26 2007-10-26 Universal image display device and method (1)
TW96140508A TWI442763B (en) 2006-10-26 2007-10-26 3d content generation system

Country Status (2)

Country Link
JP (1) JP2014209247A (en)
TW (6) TWI454742B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476731B (en) * 2009-11-27 2015-03-11 Sony Corp Image processing apparatus, image processing method and program
TWI493160B (en) * 2013-05-13 2015-07-21 Global Fiberoptics Inc Method for measuring the color uniformity of a light spot and apparatus for measuring the same
US9116422B2 (en) 2011-04-07 2015-08-25 Delta Electronics, Inc. Display apparatus for displaying multiple images of viewing angles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501053B (en) * 2011-10-28 2015-09-21 Jing Heng Chen Holographic imaging device and method thereof
WO2013136358A1 (en) * 2012-03-12 2013-09-19 Empire Technology Development Llc Holographic image reproduction mechanism using ultraviolet light
TWI508040B (en) * 2013-01-07 2015-11-11 Chunghwa Picture Tubes Ltd Stereoscopic display apparatus and electric apparatus thereof
TWI537605B (en) 2014-08-28 2016-06-11 台達電子工業股份有限公司 Autostereoscopic display device and autostereoscopic display method using the same
CN104463964A (en) * 2014-12-12 2015-03-25 英华达(上海)科技有限公司 Method and equipment for acquiring three-dimensional model of object
TWI670850B (en) * 2019-03-08 2019-09-01 友達光電股份有限公司 Display device
EP3958023A4 (en) * 2019-09-27 2022-05-18 Lg Chem, Ltd. APPARATUS AND METHOD OF MANUFACTURE OF A DISPLAY DEVICE AND HEAD MOUNTED DISPLAY DEVICE HAVING A DISPLAY LENS MADE THEREBY
WO2021230868A1 (en) * 2020-05-14 2021-11-18 Hewlett-Packard Development Company, L.P. Nitrogen vacancy sensor with integrated optics
CN113973198B (en) * 2020-07-22 2024-04-09 中移(苏州)软件技术有限公司 Holographic image generation method, device, equipment and computer readable storage medium
TWI778508B (en) * 2021-01-28 2022-09-21 誠屏科技股份有限公司 Display apparatus
TWI782822B (en) * 2021-12-16 2022-11-01 國立清華大學 Three-dimensional imaging method and system using scanning-type coherent diffraction

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69128103T2 (en) * 1990-04-05 1998-04-02 Seiko Epson Corp Optical device
JP4698831B2 (en) * 1997-12-05 2011-06-08 ダイナミック ディジタル デプス リサーチ プロプライエタリー リミテッド Image conversion and coding technology
JP2000078611A (en) * 1998-08-31 2000-03-14 Toshiba Corp Stereoscopic video image receiver and stereoscopic video image system
GB2350963A (en) * 1999-06-09 2000-12-13 Secr Defence Holographic Displays
GB2350962A (en) * 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
JP2002123688A (en) * 2000-10-16 2002-04-26 Sony Corp Holographic stereogram print order receipt system and its method
US6683665B1 (en) * 2000-11-20 2004-01-27 Sarnoff Corporation Tiled electronic display structure and method for modular repair thereof
JP2002223456A (en) * 2001-01-24 2002-08-09 Univ Nihon Image data distribution method, image distribution device, and recording medium
JP3679744B2 (en) * 2001-09-26 2005-08-03 三洋電機株式会社 Image composition method and apparatus
US6721077B2 (en) * 2001-09-11 2004-04-13 Intel Corporation Light emitting device addressed spatial light modulator
JP2003289552A (en) * 2002-03-28 2003-10-10 Toshiba Corp Image display terminal and stereoscopic image display system
GB2390172A (en) * 2002-06-28 2003-12-31 Sharp Kk Polarising optical element and display
JP2004040445A (en) * 2002-07-03 2004-02-05 Sharp Corp Portable equipment having 3d display function and 3d transformation program
JP4473133B2 (en) * 2002-11-13 2010-06-02 シーリアル、テクノロジーズ、ゲーエムベーハー Image hologram and image hologram reproducing apparatus
GB0307923D0 (en) * 2003-04-05 2003-05-14 Holographic Imaging Llc Spatial light modulator imaging system
GB2406730A (en) * 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
JP4230331B2 (en) * 2003-10-21 2009-02-25 富士フイルム株式会社 Stereoscopic image generation apparatus and image distribution server
WO2006066619A1 (en) * 2004-12-21 2006-06-29 Alpha-Biocare Gmbh Preparation made from diptera larvae for the treatment of wounds
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms
US20060187297A1 (en) * 2005-02-24 2006-08-24 Levent Onural Holographic 3-d television

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476731B (en) * 2009-11-27 2015-03-11 Sony Corp Image processing apparatus, image processing method and program
US9116422B2 (en) 2011-04-07 2015-08-25 Delta Electronics, Inc. Display apparatus for displaying multiple images of viewing angles
TWI493160B (en) * 2013-05-13 2015-07-21 Global Fiberoptics Inc Method for measuring the color uniformity of a light spot and apparatus for measuring the same

Also Published As

Publication number Publication date
TW200845698A (en) 2008-11-16
TW200841042A (en) 2008-10-16
TWI432002B (en) 2014-03-21
TW200839295A (en) 2008-10-01
TWI454742B (en) 2014-10-01
TWI442763B (en) 2014-06-21
TWI406115B (en) 2013-08-21
TW200827771A (en) 2008-07-01
TW200824426A (en) 2008-06-01
TWI421541B (en) 2014-01-01
JP2014209247A (en) 2014-11-06
TWI421540B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
TW200844693A (en) Compact three dimensional image display device
Zhan et al. Multifocal displays: review and prospect
JP5191491B2 (en) Small holographic display device
JP5222300B2 (en) Small holographic display device
CN101568888B (en) Mobile tlephony system comprising holographic display
CN101568889B (en) Holographic display device
Hainich et al. Displays: fundamentals & applications
Geng Three-dimensional display technologies
Benzie et al. A survey of 3DTV displays: techniques and technologies
US8416479B2 (en) Compact holographic display device
JP2010507822A (en) Content generation system
US20140347361A1 (en) 3D Light Field Displays and Methods with Improved Viewing Angle, Depth and Resolution
JP2005062862A (en) Direct-vision type lc display
KR20090094078A (en) Holographic display device
TWI403868B (en) Holographic display device and method
TW201237474A (en) Method for forming a microretarder film
TW200949407A (en) Controllable light modulator
Zhang et al. A 2D/3D convertible integral imaging display with enhanced depth of field
Surman Stereoscopic and autostereoscopic displays
JP2004144800A (en) Three dimensional display device
Tan et al. Near-eye light field display with polarization multiplexing
Huang Liquid Crystal 3D Displays