[go: up one dir, main page]

TW200844576A - Backlight device and transmission type display apparatus - Google Patents

Backlight device and transmission type display apparatus Download PDF

Info

Publication number
TW200844576A
TW200844576A TW97105538A TW97105538A TW200844576A TW 200844576 A TW200844576 A TW 200844576A TW 97105538 A TW97105538 A TW 97105538A TW 97105538 A TW97105538 A TW 97105538A TW 200844576 A TW200844576 A TW 200844576A
Authority
TW
Taiwan
Prior art keywords
light
guide plate
light guide
backlight device
light source
Prior art date
Application number
TW97105538A
Other languages
Chinese (zh)
Inventor
Akimasa Yuuki
Kyoichiro Oda
Naoko Iwasaki
Shin Tahata
Toru Kokogawa
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW200844576A publication Critical patent/TW200844576A/en

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A backlight device includes: a first prism sheet 3 which has a triangular prism row on a major surface thereof; a first light source 2 which emits light having directivity in a slanted direction with respect to a normal line direction of a light outgoing surface of the first prism sheet 3 in opposite side to the triangular prism row side so as to enter into the triangular prism row of the first prism sheet 3; and a second light source 4 which emits light having directivity in the normal line direction of the light outgoing surface of the first prism sheet 3 so as to enter into the triangular prism row of the first prism sheet 3.

Description

200844576 九、發明說明: • 【發明所屬之技術領域】 • 本發明係關於照射特性佳之背光裝置及顯示特性佳的 透過型顯示裝置。 【先前技術】 已揭示一種顯示裝置係在導光板之不同的2個入先端 面分別配置光源,且在上述導光板的出光面侧配置具有二 角形狀稜鏡列及圓筒狀透鏡列的雙面稜鏡透鏡片,在上述 •稜鏡片(prism sheet)的出光面側係配置有.透過型顯示面 板。在該顯示裝置中,將來自上述光源的光以分別與左右 視差相對應的角度由上述透過型顯示面板射出,且與上述 光源同步而使視差像(paral lact ic images)交替顯示於透 過型顯示面板,藉此可作立體顯示(例如參照專利文獻U。 此外,已揭示一種液晶顯示裝置係使用隔著透明層設 置包含液晶層的晝像形成層與視差阻障層(阳『Μ 籲ba^ier iayer)的液晶顯示面板。在該液晶顯示裝置中, 係藉由上述透明層,將晝像形成層與視差阻障層之間的距 離調節成適於雙重影像顯示的距離,形成在上述晝像形成 層之左侧觀察者用的晝像與右側觀察者用的晝像係蓝由已 ^過視差阻障層的透過光而分職導人左側舆右^觀察 專利而文ΙΓ2Γ分別顯示+同晝像的雙重影像顯示(例如參照 (專利文獻丨)國際公開第04/027492號冊(第j頁) (專利文獻2)日本專利特開2〇〇5_258〇16號公報(第1 319877 5 200844576 【發明内容】 (發明所欲解決之課題) …在專利文獻1所示之顯示裝置中,係與分別配置在導 光板之不同的2個入光端面的光源的亮燈切換同步,反覆 不同的2個晝像而重寫在液晶面板,以顯示面的法線方向 為中心,可使由往左们5度之間觀看的使用者、與往右侧 15度之間觀看的使用者分別看到不同的晝像,但是當主要 使用者以人正對顯不面板時,會有在正面方向混合存在 兩個晝像的課題。 …此外,專利文獻2的液晶顯示面板係在晝像形成層顯 不左侧觀察者用晝像與右側觀察者用晝像,以使由^書 像射出的光分別被導入至左側與右侧觀察 差阻障層,因此顯示角度傾斜,在正對顯示面板it 以使用的課題。此外,由於畫像形成層被分 側觀察者用,因此形成一半像 側/、右 視差阻障層來遮蔽透過光的一因 、猎由 課題。1刀因此會有顯示變暗的 本發明係鑑於上述課題所開發者,其目的在獲得一種 功正面方向與左右方向照射的背光裝置。 此外,目的在獲得一種可在正面方 明亮晝像的透過型顯示裝置。右方向頒不 (用以解決課題之手段) 本發明之背光裝置係具備··在一 在面具有三角形狀稜鏡 319877 6 200844576 列的第1稜鏡片;將在相對於該第1稜鏡片之上述三角形 • 狀稜鏡列之相反侧的出射面的法線方向呈斜向的方向具有 、 指向性的光入射至上述第1稜鏡片之三角形狀稜鏡列的第 1光源;以及將在上述第1稜鏡片之出射面之法線方向具 有指向性的光入射至上述第1稜鏡片之三角形狀稜鏡列的 第2光源。 (發明之效果) 在相對於第1稜鏡片之出射面之法線方向呈斜向的方 ⑩向具有指向性的光係入射至第】稜鏡片之三角形狀稜鏡 列’且在上述第1稜鏡片之三角形狀稜鏡列的斜面予以反 射而朝正面方向射出。此外,在上述稜鏡片之出射面的法 線方向具有指向性的光係入射至第1稜鏡片之三角形狀稜 鏡列’在上述稜鏡片折射,而由稜鏡片朝左右方向射出。 藉由以上所述,可照射正面方向與左右方向。 ί實施方式】 φ (實施形態1) 第1圖係本發明實施形態1之背光裝置的斜視圖,第 2圖係顯不第1圖中來自光源之光的透過光路的說明圖, 使用稜鏡片之三角形狀稜鏡列之垂直於稜線方向之面的剖 視圖。 在弟1導光板1之不同的2個端面侧分別配置第1光 源2 ’在第1導光板1之光的取出侧(出射侧)設置第丄棱 ,片3’在第1導光板i之第!稜鏡片3之相反側,係: 者視角调整版5而配置第2光源4。此外,設置光源控制 319877 7 200844576 部6 ’進行來自第1光源2與第2光源4之光的亮度調節 一 或亮滅的切換。 • 以本實施形態之第1光源2而言,一般係使用LED或 燈’由第1光源出射的光係入射至第1導光板1之端面。 此外,以本實施形態之第2光源4而言,除了 LED或燈以 外,使用電激發光(electr〇luminescenge)等面光源,由第 2光源射出的光係入射至第丨導光板i的主面。 其中’第1光源2、第2光源4係至少配置1個即可, •如本實施形態所示’將第」光源2分別配置在第i導光板 1之不同的2個端面侧,或配置複數個第2光源4時,可 使背光面内之亮度的均勻性與照射之配光角度分布相對 稱0 、本實施形態之第1導光板丨之侧面為矩形,以整體而 :為平板狀,在上下面之至少一面形成有由5度以下之平 =傾斜之較小角度的斜面所構成的凹凸稜鏡或顆粒狀微小 犬起,俾以取出光。由_ i光源人射至第1導光板i之端 面的光係一面反覆全反射一面前進’ 一部分抵碰光取出甩 顆粒狀微小突起(以下簡稱為顆粒)的凹凸面而由第i 板1射出。 ' 此外,本實施形態之第!稜鏡片3的三形棱 的稜線方向係與第丨導光板丨之來自=狀稜鏡歹 射糙面大致平行。藉由形成為平行,可將由铲‘ 射出的光輕易地在第1稜鏡片3面内均勻形成。 ' 以本實施形態之視角調整膜5而言 係使用例如住友 319877 8 200844576 3M(股)製之光控制膜,使由第2光源4射出之光的角度分 布變窄’而控制指向性(direct ivity)。在本實施形態中, 係藉由視角調整膜5,吸收由第1導光板〗漏洩在下方的 光,可防止形成為迷光(stray light,非指向光,簡稱為 迷光)。由於迷光減少,因此在第丨光源2亮燈時漏洩在左 右方向的光會變少。 此外’本實施形態之第!稜鏡片3係由例如折射率2 & 的材料所形成,以稜線朝向與第i導光板]的端面平行的 方向延伸的三角形狀稜鏡列朝與紙面正交的方向延伸的方 式配置在其中一面’以與第!導光板i相對向的面侧形成 為二角形狀稜鏡列的方式設置。來自第1、第2光源的光 係入射至上述三角形狀稜鏡列,由與第i棱鏡片3之第1 導光ί1相反侧的面亦即由第1稜鏡片3之出射面3〇射出。 弟3圖係顯示本實施形態之背光裝置之第1稜鏡片3 中來自第卜第2光源之光的透過光路的圖,且由三角形 狀稜鏡列之頂角為6G度的等邊三角形所構成之例。 μ Π3圖所示’來自第1光源2的光係作為由第1導 對於第1稜鏡片3之出射面3。之法線方向(以200844576 IX. Description of the Invention: • Technical Field to Be Invented by the Invention: The present invention relates to a backlight device having excellent illumination characteristics and a transmissive display device having excellent display characteristics. [Prior Art] A display device is provided with light sources respectively disposed on two different front end faces of the light guide plate, and a double-shaped array and a cylindrical lens row are disposed on the light-emitting surface side of the light guide plate. In the facet lens sheet, a transmissive display panel is disposed on the light-emitting surface side of the prism sheet. In the display device, light from the light source is emitted from the transmissive display panel at an angle corresponding to each of the left and right parallaxes, and a parallax image is alternately displayed on the transmissive display in synchronization with the light source. The panel can be stereoscopically displayed (for example, refer to Patent Document U. Further, it has been disclosed that a liquid crystal display device uses an image forming layer including a liquid crystal layer and a parallax barrier layer via a transparent layer (Yang Μ ba ba ^ In the liquid crystal display device, the distance between the anamorphic layer and the parallax barrier layer is adjusted to a distance suitable for dual image display by the transparent layer, and is formed in the above 昼The image used by the observer on the left side of the formation layer and the image system blue used by the observer on the right side are divided into the left side by the transmitted light of the parallax barrier layer, and the patent is displayed on the left side. A double-image display of the same image (for example, refer to (Patent Document No.) International Publication No. 04/027492 (page j) (Patent Document 2) Japanese Patent Laid-Open No. Hei 2_5_258〇16 (No. 1 319 877 5 200844576 [Problem to be Solved by the Invention] In the display device shown in Patent Document 1, the lighting switching of the light sources respectively disposed on the two light-incident end faces of the light guide plates is synchronized. Rewriting over the two different images and rewriting the LCD panel, centering on the normal direction of the display surface, allowing the user to view between 5 degrees to the left and 15 degrees to the right. The user sees a different image, but when the main user is facing the panel, there is a problem that two images are mixed in the front direction. Further, the liquid crystal display panel of Patent Document 2 is The image forming layer is not used by the observer on the left side and the image is used by the observer on the right side, so that the light emitted from the image of the book is introduced into the left and right side of the barrier layer, so that the display angle is inclined. In addition, since the image forming layer is used by the side observer, the half image side/right parallax barrier layer is formed to shield the light transmission and the problem of hunting. There will be a darkening of the display The present invention has been made in view of the above problems, and an object thereof is to obtain a backlight device that emits light in the front direction and the left and right direction. Further, it is an object of the invention to obtain a transmissive display device that can be brightly imaged on the front side. (Means for Solving the Problem) The backlight device of the present invention is provided with a first cymbal having a triangular shape 稜鏡319877 6 200844576 on the surface; the triangular shape corresponding to the first cymbal a direction in which the normal direction of the exit surface on the opposite side of the array has an oblique direction, a first light source in which directivity light is incident on the triangular array of the first cymbal, and a first cymbal in the first cymbal In the normal direction of the exit surface, the directivity light is incident on the second light source of the triangular shape of the first cymbal. (Effect of the Invention) The light having a directivity with respect to the normal direction of the exit surface of the first cymbal 10 is incident on the triangular shape of the cymbal sheet and is in the first The slope of the triangular shape of the cymbal is reflected and is emitted toward the front. Further, the triangular prism array ‘where the light having directivity in the normal direction of the exit surface of the cymbal is incident on the first cymbal is refracted by the cymbal, and is emitted from the cymbal in the left-right direction. By the above, the front direction and the left and right direction can be irradiated.实施 (Embodiment 1) FIG. 1 is a perspective view of a backlight device according to Embodiment 1 of the present invention, and FIG. 2 is an explanatory view showing a transmission light path of light from a light source in FIG. A cross-sectional view of a plane perpendicular to the ridgeline direction of the triangular shape. The first light source 2' is disposed on each of the two different end faces of the light guide plate 1 on the first side, and the second light guide 2' is disposed on the light extraction side (emission side) of the first light guide plate 1. The sheet 3' is on the first light guide plate i. The first! On the opposite side of the cymbal 3, the second light source 4 is disposed by the viewing angle adjustment plate 5. Further, the light source control 319877 7 200844576 portion 6' is set to switch the brightness adjustment of the light from the first light source 2 and the second light source 4 to or from the light source. In the first light source 2 of the present embodiment, the light emitted from the first light source is generally incident on the end surface of the first light guide plate 1 using an LED or a lamp. Further, in the second light source 4 of the present embodiment, in addition to the LED or the lamp, a surface light source such as an electric excitation light is used, and the light emitted from the second light source is incident on the main electrode of the second light guide plate i. surface. In the present embodiment, the first light source 2 and the second light source 4 may be arranged at least one. The first light source 2 is disposed on the two different end faces of the i-th light guide plate 1 or arranged. When the plurality of second light sources 4 are used, the uniformity of the brightness in the backlight surface and the distribution angle of the light distribution of the illumination can be made 0, and the side surface of the first light guide plate 本 of the present embodiment has a rectangular shape, and the whole surface is a flat plate. At least one side of the upper and lower sides is formed with embossed ridges or granular micro-dogs composed of a slope of a lower angle of 5 degrees or less, and the ridges are taken out to extract light. The light system that is incident on the end surface of the first light guide plate i by the _i light source is moved forward while being totally reflected. A part of the contact light is taken out and the uneven surface of the fine particle protrusion (hereinafter simply referred to as a particle) is taken out, and is emitted from the i-th board 1 . ' In addition, the first embodiment of this embodiment! The ridgeline direction of the triangular ridge of the cymbal 3 is substantially parallel to the ridge of the second light guide plate. By being formed in parallel, the light emitted by the shovel can be easily formed uniformly in the plane of the first cymbal 3. In the viewing angle adjustment film 5 of the present embodiment, for example, a light control film made by Sumitomo 319877 8 200844576 3M (share) is used to narrow the angular distribution of the light emitted by the second light source 4 to control directivity (direct Ivity). In the present embodiment, the light is leaked downward by the first light guide plate by the viewing angle adjusting film 5, and it is possible to prevent the formation of stray light (not pointed light, simply referred to as "light"). Since the fog is reduced, the light leaking in the left and right directions becomes less when the second light source 2 is turned on. In addition, the first embodiment of this embodiment! The cymbal sheet 3 is formed of, for example, a material having a refractive index of 2 & a ridge line is disposed in a direction in which a ridge line extends in a direction parallel to an end surface of the i-th light guide plate] in a direction orthogonal to the plane of the paper. One side 'with the first! The opposite side faces of the light guide plate i are formed in a two-corner shape. Light from the first and second light sources is incident on the triangular array, and is emitted from the surface opposite to the first light guide ί1 of the i-th prism sheet 3, that is, from the exit surface 3 of the first wafer 3. . FIG. 3 is a view showing a transmission optical path of light from the second optical source in the first defect 3 of the backlight device of the embodiment, and an equilateral triangle having a vertex angle of 6 G degrees in a triangular shape array. An example of composition. The light system from the first light source 2 is shown as the first light guide surface 3 of the first die 3 as shown in Fig. 3 . Normal direction

Hi 方向)呈斜向的方向具有指向性的光而出 係由第法線t向呈斜向的方向具有指向性的光al 鱼 文’見3之二角形狀稜鏡列的斜面3b入射,在三 角形欢稜鏡列的斜面3 作為在法線方HI 由弟1棱鏡片3之出射面 正面方θ μ 有扣向性的光a2而射出,藉此照射 向。此外,來自第2光源4的光係藉由視角調整膜 319S77 9 200844576 . * « 5來控制指向性,形成為在法線方向具有指向性的光b卜 •該在法線方向具有指向性的_係由第!稜鏡片3之三角 .雜賴列的斜面3a人射,在人射至三角形狀稜鏡列之斜 面^折射,由第i稜鏡片3之虫射面3〇,作為在相對 心線方向呈斜向的方向具有指向性的光^予以 猎此照射左右方向。 入射在第1稜鏡片3内,來自第2光源的光Μ係在 向且/ΛΤ稜制之斜面3a時折射而相對於法線方 :二石的角度。當第!稜鏡片3之三角形狀棱鏡 時,若…,上編並不會在與 左—=::列一相對向一反射,而可朝 第4圖係顯示如第2圖所示, C—_之光線執跡追;;= = 射至第1稜…二at •度刀布、及入射光al由第1 J月 的角度分布時之模擬处果 =士出時之出射光a2 法線方向的角度,在;2圖:=;圖:.:橫轴係相對於 左側為-,右侧為+,縱輛係光的強声,向之 之入射光al的角度分布,罔每 稜鏡片3 第2圖中紙面左側之第二貫線所示之角度分布係藉由 角度分布’彼此成為鏡對稱。亦即:=::: 布’虛線所示之角度分布係藉===度* ,彼此成為鐘斟较先源2所得之 源 319877 10 200844576 一 -= 斤出射的光係由第!導光板,作為在相對於法線 .度刀布的光al,而入射至第i稜鏡片3。 第係顯示入射至第1稜鏡片3之入射光…由 鏡片3射出時之出射光&2之角度分布,在相對於法 打=-2=至2”具有角度分布,且在法線方向聚光。 减不如昂2圖所示,藉由蒙地卡羅法(Μ_ ^ 1 入射至弟1稜鏡片3之人射光bl @ bl由第1稜鏡片3射出時之出射光二:二:::射, 擬結果的特性圖。圖中,橫輛係 沐又刀%之模 在第2圖之紙面中,相對線方向的角度, +,縱軸係氺^ 、 V向之左側為一,右側為 二軸係先的^度,以任意單位表示。 帛5圖(a)係由第2光源4出射 之入射光bi的角度分布,藉由例如視角,4 = >對於法線方向呈_35度至35 =、5’以在相 ^ 5 fflrb ; 5 稜鏡片3之入射光51由第丨稜鏡 的角度分布’在法線方向並不會射出,以在:之出射光b2 向呈-30度以下及30度以上布的二:於法線方 方向而予以射出。 刀布的方式分成左右 第6圖係本實施形態之壯 圖。來自背光F f 1f) 先衣置之照射狀態的說明 者在二先衣置10的出射光係朝觀察者側射出,•觀家 者在正面蚪之左眼8鱼 出田减不 ”右目艮处的距離約為65mm,自f i 319877 11 200844576 . ,鏡片3之出射面30至觀察者為jt的視距離约為3〇〇簡 _時’連結上述出射面30之法線方向9與左眼化或右眼肋 -之直,所成肖9a約為6度。此外,觀察者之左右任-眼在 正面時,另一眼係位在_12度及]2度的方向。 如上所示,本說明書中的正面方向係指以上述出射面 3〇中之法線方向為中心朝左右12度,亦即包含相對於法 線方向呈-12度至+12度之角度範園的角度區域,將錯開上 述正面方向的角度範圍定義為左右方向。 因此,如上所述,在本實施形態中,第4圖(&)所示角 度分布的光藉由第!棱鏡片3以在相對於法線方向呈_2〇 f至20度具有角度分布的方式予以聚光,因此充分包含觀 τ者可在正面方向進行辨識之出射光的角度範圍(相對於 法線方向呈-12度至+ 12度的範圍),可藉由第i光源2照 射正面方向。 、此外,第,5圖(a)所示角:度分布的光藉由帛i棱鏡片3 _以在相對於法線方向呈_3〇度以下與3〇度以上具有角度分 布的方式予以彎曲,因此錯開觀察者可在正面方向進行辨 識之出射光的角度範圍(相對於法線方向呈-12度至+ 12产 的範圍)’而可藉由第2光源4照射左右方向。 又 (實施形態2) 使用三角稜鏡列的頂角分別為?〇度、65度、度或 55度的第1棱鏡片3,作為由第2光源4入射至第」稜鏡 片3的入射光bl而在法線方向具有指向性,使用在相對 於法線方向呈-35度至35度具有角度分布的光,亦即使用 319877 12 200844576 以法線方向為中心而具有70度寬度之角度分布的光,盘每 施形態1相同地,進行來自第卜第2光源的光由上述ς 第1稜鏡片3射出時之各出射光的角度分布的模擬。〜The Hi direction) has directivity in the oblique direction and is incident on the inclined surface 3b of the dihedral shape of the dihedral shape from the normal line t to the oblique direction. The inclined surface 3 of the triangle-shaped column is emitted as the light a2 which is deflected toward the front side θ μ of the exit surface of the prism sheet 3 on the normal side HI, thereby illuminating the direction. Further, the light from the second light source 4 is controlled by the viewing angle adjustment film 319S77 9 200844576. * « 5 is used to control directivity, and is formed to have directivity in the normal direction. b. This has directivity in the normal direction. _ is made by the first! The triangle of the cymbal 3. The slanted surface of the miscellaneous column 3a is shot, and the slanting surface of the slanting surface of the scorpion is refracted by the worm, and the surface of the worm is 3 〇, which is inclined in the direction of the opposite heart. The direction of the direction of the light with directivity is hunted in the left and right direction. The pupil is incident on the first cymbal 3, and the pupil from the second light source is refracted toward the slanted surface 3a and is angled with respect to the normal side: two stones. When the first! When the triangular prism of the cymbal 3 is used, if it is ..., the upper splicing does not reflect in the opposite direction to the left -=:: column, but can be displayed in the fourth figure as shown in Fig. 2, C-_ Light obstruction chase;; = = shot to the first rib... two at • degree knife cloth, and the incident light a is distributed by the angle of the first J month simulation results = the exit light when the light is out a2 normal direction Angle, in; 2Fig.: =; Fig.:: The horizontal axis is - with respect to the left side, and the right side is +, the strong sound of the longitudinal light, the angular distribution of the incident light al to it, 罔 each 3 3 The angular distribution shown by the second line on the left side of the paper in Fig. 2 is mirror symmetrical with each other by the angular distribution '. That is: =::: The angle distribution indicated by the dotted line is by === degree*, which becomes the source of the clock source compared to the source 2 319877 10 200844576 one -= The light system that is emitted by the pound is the first! The light guide plate is incident on the i-th slice 3 as the light a1 with respect to the normal knives. The first system shows the incident light incident on the first cymbal 3...the angular distribution of the outgoing light & 2 when emitted by the lens 3 has an angular distribution with respect to the normal hit =-2= to 2", and is in the normal direction Concentration. As shown in Fig. 2, by Monte Carlo method (Μ_^ 1 incident to the brother of the film 3, the light bl @ bl is emitted by the first film 3 when the light is emitted two: two: :: shot, the characteristic map of the quasi-result. In the figure, the model of the horizontal and the mold is in the plane of the paper in Figure 2, the angle of the line direction, +, the vertical axis is 氺^, and the left side of the V is one. The right side is the first degree of the two-axis system and is expressed in arbitrary units. 帛5 (a) is the angular distribution of the incident light bi emitted by the second light source 4, by, for example, the angle of view, 4 = > for the normal direction _35 degrees to 35 =, 5' to the phase 5 fflrb; 5 the incident light 51 of the cymbal 3 is distributed from the angle of the second '" in the normal direction and is not emitted, so that the outgoing light b2 In the case of a cloth of -30 degrees or less and 30 degrees or more, it is emitted in the direction of the normal direction. The method of the knife cloth is divided into left and right, and the figure of the present embodiment is a strong image. The backlight F f 1f The illuminator of the first dress is placed on the side of the observer at the exit light system of the second dress, and the left eye of the fisherman's eye is reduced to the left eye. 65mm, from fi 319877 11 200844576 . , the exit surface 30 of the lens 3 to the observer's viewing distance of jt is about 3 〇〇 _ _ 'connect the normal direction 9 of the exit surface 30 with the left eye or the right eye rib - Straight, the 9a is about 6 degrees. In addition, when the observer is left-right, the other eye is in the direction of _12 degrees and 2 degrees. As described above, the front direction in the present specification means that the front direction of the above-mentioned exit surface 3〇 is 12 degrees to the left and right, that is, the angle range of -12 degrees to +12 degrees with respect to the normal direction. The angular range of the angle is defined as the left and right direction. Therefore, as described above, in the present embodiment, the light of the angular distribution shown in Fig. 4 (&) is by the first! The prism sheet 3 is condensed so as to have an angular distribution of _2 〇 f to 20 degrees with respect to the normal direction, so that the angular range of the outgoing light that can be recognized in the front direction is sufficiently included (relative to the normal) The direction is in the range of -12 degrees to +12 degrees, and the front direction can be illuminated by the ith light source 2. In addition, the angle shown in Fig. 5 (a): the light of the degree distribution is given by the 帛i prism sheet 3 _ in an angular distribution of _3 以下 or less and 3 〇 or more with respect to the normal direction. Since the bending is performed, the angle range of the emitted light that can be recognized by the observer in the front direction (the range of -12 degrees to +12 with respect to the normal direction) is shifted, and the left and right directions can be irradiated by the second light source 4. (Embodiment 2) What is the top angle of the triangle array? The first prism sheet 3 having a twist, a degree of 65 degrees, or a degree of 55 degrees has directivity in the normal direction as the incident light bl incident on the first wafer 3 by the second light source 4, and is used in the normal direction. Light having an angular distribution of -35 degrees to 35 degrees, that is, light having an angular distribution of 70 degrees wide centered on the normal direction using 319877 12 200844576, the disc is the same as the pattern 1 The simulation of the angular distribution of the emitted light when the light of the light source is emitted by the first cymbal 3 is emitted. ~

第7圖至第1〇圖係當使用具有上述各個不同頂角之二 角稜鏡列之第ί稜鏡片3時’由上述各第」稜鏡片3射: 之各出射光b2之角度分布的模擬結果,亦即本實施形能之 背光裝置之照射光的角度分布。其中,在各圖中,(a)2來 自第1光源2之光之人射至第!镜鏡片3之後射出之出射 光a2之角度分布的模擬結果,(b)係由第2光源&入射至 第1稜鏡片3,之後射出之射出光b2之角度分布的模缺 果0 當稜鏡頂角為70度時,如第7圖(a)所示,朝向正面 方向的照射光係在相對於照射面的法線方向呈—1 〇度至1 〇 度具有角度分布,角度分布寬度變窄,.·如第7圖(]3)所示, 丨朝向左右方向的照射光係在—2〇度以下與2〇度以上分布, #因此_20度至-10度與10度至20度之間係形成為均^以看 到任何光之較暗的角度區域而使觀察者難以使用。 此外’當稜鏡頂角為65度(顯示於第8圖)及6〇度(異頁 示於黎9圖)時,上述較暗之角度區域係相當窄而獲1寻#改 善。但是,當稜鏡頂角為55度(顯示於第10圖)時^奋在 正面方向發生亮度的谷,而在正面方向看到較暗的暗^。 由以上可知,以第1稜鏡片3的稜鏡頂角而言,以⑽ 度至65度為宜。 (實施形態3) 319877 13 200844576 . —在實施形態1中,使用具有頂角為60度三角稜鏡列之 -第1稜鏡片3,由第2光源4入射至第i稜鏡片3之光Μ •係在法線方向具有指向性,在相對於法線方向分別呈_2〇 度至20度、-30度至3〇度、_35度至%度…4〇度至4〇 度、、-45度至45度、或-50度至50度具有角度分布,亦即 以法線方向為中心,具有分別為40度、60度、7〇度、8〇 度、90度、1〇〇度寬度之角度分布時,與實施形態相同地, ,行具有上述各角度分布的人射光bl於第i稜鏡片3出射 %之各出射光b2之角度分布的模擬。 第11圖至第16圖係當具有上述各個不同角度分布的 入射光Μ由第】稜鏡片3射出時之出射光以之角度分布 7模擬結果,在各圖中,⑷係由第2光源4人射至第1 蜱鏡片3之三角形狀稜鏡列之人射* Μ的角度分布,⑻ 係入射至上述第丨稜鏡片3之光Μ由第丨稜鏡片3射出時 之出射光b2的角度分布的模擬結果。 i 籲 如第15圖(在-45度至45度具有角度分布)及第16圖 (在,度至50度具有角度分布)所示,由第2光源*入射 至第1稜鏡片3的入射光^相對於法線方向而使角度分布 擴展成45度至45度之範圍以上時,出射光上2由第!稜 ^片3往正面方向的茂漏會增大。此外,如第11圖所示t 當=第2光源4入射至第i稜鏡片3的入射光bi的角度分 布縮窄為-20度至2G度的範圍以下時,來自第i稜鏡^ 之出射光b2的角度分布範圍亦較窄,而使_6〇度以下、 度以上的斜向壳度降低,因此左右方向的照射量變少,而 319877 14 200844576 且範圍變窄。 H“因此,以由第2光源4入射至第1稜鏡片3之三角形 ^八度具,角度分布)、第13圖(在-35度至35度具有 口,刀布)及第14圖(在一4〇度至4〇度具有角度分布)所示 =知,以法線方向為中心,具有6〇至8〇度寬度的角度分 布的光較為適合。其中,上述角度分布的光係可藉由適當 組合擴散膜與視角調整膜而得。 田 (實施形態4) 、本發明貫施形態4之背光裝置係將來自第2光源的光 作為經由稜鏡片而在法線方向具有指向性的光予以取出 =,來取代在實施形態1中,藉由視角調整膜5,將來自 第2光源4的光作為在法線方向具有指向性的光而使其入 射至第1稜鏡片3 〇 第17圖係本發明實施形態4之背光裝置的構成圖。 在實施形態1之背光裝置中的第丨導光板的第q稜鏡 片的相反側,隔著視角調整膜5及擴散片8設置第2稜鏡 片,且在第2稜鏡片之第1導光板的相反侧設置第2導光 板。第2光源4係配置在第2導光板11的端面侧,且在第 2導光板11之第2稜鏡片13的相反侧配置有反射片9。 在本實施形態之背光裝置中,出自第i光源2的光係 一面反覆全反射一面在第1導光板1之中前進,由第1導 光板1射出,且在第1導光板1之三角形狀稜鏡列的斜面 予以反射而朝正面方向射出。此外,出自第2光源4的光 15 319877 200844576 亦與上述相同地,在第2稜鏡片13之三角形狀稜鏡列的斜 面予以反射而朝正面方向射出,在法線方向具有指向性的 出射光入射至第1稜鏡片3之三角形狀稜鏡列,與實施形 態1相同地’由第1稜鏡片3朝左右方向射出。 其中,本實施形態之背光部中的第1、第2稜鏡片之 三角形狀稜鏡列的頂角均為60度,入射至第1稜鏡片3 之光的角度分布與由第1稜鏡片3出射之光的角度分布的 模擬結果係與第4圖、第5圖相同。 ⑩ 其中’在本實施形態中,由於由第2稜鏡片13射出指 向性在法線方向較高的光,因此被視角調整膜5所吸收的 光車父少’而有亮度效率較高的優點。 (實施形態5 ) “第18圖係本發明實施形態5之背光裝置及與使用該背 光衣置之透過型頭示裝置的斜視圖。而且,第19圖係顯示 丨弟18圖中之背光裝置;之透過光路及透過型顯示裝置之透 #過狀態的說明圖,係使用設在第i導光板之與溝列(^〇〇^ row)之長邊方向呈垂直的面的剖視圖。 、,實施形態之背光裝置1〇係在實施形態1中,第i 、一板1係在第I稜鏡片3之相反側的主面具有溝列1 y, 具有光學向異性的光學構件la係密接於溝列ly之溝面 lz ’除此以外係與實施形態1相同。 、更詳而言之,在本實施形態之第i導光板}之一方主 面連、戈二置溝列1y,該溝列之長邊方向係與第1導光 來自第1光源2之光的入射端面1乂、與第1稜鏡片 319877 16 200844576 · 3之三角形狀稜鏡列之稜線方向大致平行。光學構件1 / 、利用具有光學向異性的液晶材料以填埋溝列ly的方^予 -以填充而形成,因此具有光學向異性而密接於溝列ly ^溝 面lz 〇 例如,本實施形態之第i導光板!係使用丙稀酸樹脂 (j斤射率1.49),本實施形態之光學構件la係具有光學向 異性且可使用紫外線硬化性之液晶材料(長軸方向之:射 ,為1.5、短軸方向之折射率為17)製作成如下所示。但 疋,如上所述,形成光學構件la之液晶材料之一方的折射 率與第1導光板1的折射率大概相等。 、、 首先,使用上述丙烯酸樹脂,藉由射出成形,製作在 一方主面具有長邊方向與來自第1⑽2之光的入射端面 ^大致平行的溝列1y的第1導光板卜視需要而在溝列 ly表面形成配向膜或施行擦磨處理。 接著’以填埋第!導光板!之溝列17的方式,塗佈丨上 述紫外線硬化性液晶材料,照射紫外 具有光學向異性的光學構件la。 猎此形成 Γ圖係顯示本實施形態之具有料向異性之光學 1 a之液晶分子之配向狀態的模式圖。如第20圖所 不,與設在第1導光板丨之料17的長邊方向呈垂直= 面形狀係頂角u 16 壬:置的』 角形狀。如第20巴所_二度左右之頂角較寬的等邊三 叫面A3 ’本貫施形態之光學構件1a係將 二:為二角形狀的溝,將棒狀之液晶 向如導光板i之平坦主面大致垂直地予二= 319877 17 200844576 - : :::亚硬化’而形成為三角形狀稜鏡,因此具有將與 。厂'板1之主面王垂直的方向設為光學軸的光學向異 • 此液刀子40之短軸方向的折射率與第1導光板 1之折射率得,錄方㈣折射率㈣i導光板i之折 射率大致相等。 其中、,如上所述,為了更加敎形成液晶分子之垂直 配向,以塗佈在溝列1 v 巷 y之屢面lz的配向膜50而言,以使 用具有㈣鏈的聚醯亞胺或聚乙稀醇的薄膜較為有效。 、如$ 19圖所*,本實施形態之使用背光裝置1〇的透 過型顯示裝置係在背光裝置1〇上設置透過型顯示面板7, 透過型顯示面板7係在麵基板7a、7b間㈣液晶層7c, 另外以夾持玻增基板7a、7b的方式設置偏光板7d、7e。 一般而言’在透過型顯示裝置中,出自背光裝置10 的光係藉由透過型顯示面板7之偏光板?6而僅選擇直線偏 光成刀’在通過玻璃基板之後到達液晶層^。大多數 •偏光板係呈現吸收二色性,因此在出自f光裝i ]〇的光 中,吸收相當於偏光板7e之吸收軸之光的偏光成分。亦 即,出自背光裝置10之光的一半會平白被吸收,而造成大 幅降低液晶顯示裝置之光利用效率的要因。 因此,本實施形態之背光裝置10如第20阖所示,藉 由在第1導光板1之溝列卜設置具有光學向異性的光學構 件la ’而利用上述變為無用的光,以下就動作加以說明之。 如第19圖所示’出自第1光源2的光係具有:與第! 導光板1之溝列ly之長邊方向呈垂直之亦即在紙面内包含 319877 200844576 有電場成分之直線偏光的p波2p、與第1導光板1之溝列 -iy之長邊方向平行之亦即垂直於紙面之面内包含有電場 - 成分之屬於直線偏光的s波2s,且由端面1χ入射至第i 導光板1。 所入射光之光之内p波2p波係在第1導光板1與光學 構件1 a的界面,按照丙稀酸與液晶材料之折射率差〇 2 予以菲涅耳反射,由透過型顯示面板7側之面放射超過臨 ’1角的光’精由弟1棱鏡片3而在正面方向彎曲,而通過 透過型顯示面板7的偏光板7e。此時,偏光板7e的透過 軸係设定為通過P波的方向,由於在此沒有光損失,因此 光的利用效率較高。 另一方面,由光源2射出,由端面lx入射至第i導光 板1之光之内3波2s及在與光學構件1&之界面未予以反 射的P波’係利用光學構件1 a的底面予以全反射而在第1 導光板1傳播,途中藉由第1導光板〗之丙烯酸所具有的 複折射性,使s波2s亦逐漸改變相位,而發生p波如成 分’與上述相同地用在顯示。 此外,在本實施形態中,如第19圖所示,在第丨導光 板1之與第1光源2相反侧的端面係黏貼有反射板Η與1 / 4波長板5 2。 因此,在第i導光板i傳播而到達第!光源2之相反 側的端面的光係藉由反射板51予以反射,而再次入射至第 1導光年1。此時,藉由1/4波長板52,殘留比例高的s 波2s係變為Μ 2p。再次入射至第!導光板1之p波如 319877 19 200844576 係與上述相同地在鱼。 ”光子構件la的界面予以反射,且盥上 : 述相同地用在顯示。 〃 、“如上所不,在本實施形態之背光裝置10中,將出自第 1光源2之光的大部分作為pUp,而可由第1導光板i ^出’可有效地將第丨光源2的光用在顯示,而可提 度。 此外,即使使用本實施形態之第i導光板U光學構 _件上8亦不冒發生新的迷光,因此如實施形態1所示,來 自第1光源2的光係具有指向性而由第i導光板工射出。 亦即,來自上述第i光源2的光係作為相對於法線方向而 在斜向方向具有指向性的光al而入射至第丨稜鏡片3之三 t形狀稜鏡列’且在三角形狀稜鏡列予以反射,而由第丄 軚鏡片3之出射面3〇作為在法線方向具有指向性的光心 而射出,藉此照射正面方向。 接著考慮由第2光源4入射至第1導光板丨之主面之 馨光Μ的動作。來自第2光源4之光bl係具有通過偏光板 7e之直線偏光4χ、與被吸收的直線偏光4y,但任何光均 使電場成分與第丨導光板丨之平坦主面呈平行。關於與第 1導光板1之主面呈平行的方向,由於在第i導光板】與 光學構件la的界面沒有折射率的差,因此該等直線偏光可 在不進行折射的情形下直接直進。 因此,在實施形態4之背光裝置之第2導光板π,與 本貝%形悲之第1導光板1相同地設置溝列,並且使本實 施形態之具有光學向異性的光學構件密接於該溝列的溝 319877 20 200844576 面^猎此,可將來自第2光源4的光bl設為大量具有通過 偏光板7e之直線偏光之成分的光,且可提高來自第2光源 4之光bl的利用效率,而可更加提升背光裝置1 〇的亮度。 接著,说明將本實施形態的光學構件la以使用圓盤狀 的碟狀液晶分子(discc)tic liquid咖⑷㈤咖㈣ 而形成,來替代以使棒狀的液晶分子配向成如第2〇圖所示 而形成的情形。 第21圖係顯示本實施形態之其他背光裝置之光學構 件la之液晶分子之配向狀態的模式圖。亦即,使用設有第 20圖所示剖面形狀的溝列ly的第i導光板i,使圓盤狀的 碟狀液晶分子41以其徑向與第!導光板^平坦主面呈大 致平行配向的方式將溝列ly予以填充、硬化者。如上所示 ,液晶分子的配㈣可藉㈣#選擇設在第丨導光板之溝 列1y之溝面lz的配向膜50而予·以實現。 ^在此’將第1導光板丨1之丙烯酸樹脂的折射率、與光 學構件la之碟狀液晶分子之徑向的折射率設為大致㈣ 的值’將上述丙埽酸的折射率、舆碟狀液晶分子让之徑向 呈垂直的方向的折射率設為不同的值。藉此,與使用二述 棒狀的液晶分子4〇時相同地,藉由光學構件la反射p波, ^第1導光板1有效地射出?波而可用在顯示,且可提 尚壳度。 在本實施形態中 wyu:K矛α園氧弟21圖所示, ^^板!之溝列ly的長邊方向垂直的方向的剖面^ 政為直線的三㈣’密接於溝列ly之溝面^光學構4 319877 21 200844576 角形狀稜鏡列的情形加 • a呈 構件la的形狀並非限定於此。亦即,如? y及光學 第1導光板1之溝列ly的長邊方向垂直的:所不’與 狀,亦可為斜邊比直線稍微往外側側曲:面形 狀,而非為如第20圖所示之直線。此時上曲曲:角形 傾斜角度W若為與P導光板1之主面方向=大 1〇度之傾斜’即可輕易獲得與本實施形態相同的效果:至 此外,本實施形態中,雖將光學構件la設在 板1之弟1稜鏡月3的相反側,但亦可設在第把 21稜鏡片3側’甚至設在第1導光板1的兩側,亦可 獲得與本實施形態相同的效果。 此外,本實施形態中,係顯示光學構件la且有光學向 異性的情形,但第!導光板i具有光學向異性,或雙方均 為具有光學向異性的材料,均可獲得與本實施形態相同的 I效果。其中’在» 1導光板i與光學構件la之折射率的值 φ中’以存在彼此大致相等之折射率的值的 來 成第!導光板i及光學構件la的材料。Λ ^擇構 在本Λ細开> 悲中,第1稜鏡片3之三角形狀稜鏡列的 ,線=向係與第i導光板伞之來自第1光源2之光的入射 :面呈平行,因此可輕易地在第1稜鏡片3面内將由第1 稜鏡片3射出的光形成為均勻。此外,由於將第i導光板 1之溝列ly的長邊方向形成為與第丨稜鏡片3之三角形狀 ^鏡列的稜線方向呈平行,因此在偏光通過第〗稜鏡片3 打,可防止旋轉。再者,第丨導光板丨之溝列」乂的長邊方 22 319877 200844576 lx平行,因此不容 向係與來自第1光源2的光的入射端面 易發生免度不均。 (實施形態6) 第23圖係顯示本發明實施形態6之背光裝置、與使用 該背光裝置之透過型顯示裝置之透過光路與透過型面板之 透過狀態的說明圖,且使用與設在第】導光板之溝列之長 邊方向呈垂直的面的剖面圖。、 …^貫施形態之背光裝置10係、除了光學構件la為將實 e I先、5中所使用的棒狀液晶分子配向成與實施形態5不 同的方向所得者,其他係與實施形態5相同。 亦即’本實施形態之具有向異性的光學構件la係將棒 狀液晶分子的長軸方向配向成與第1導光板1之溝列ly 之長邊方向呈平行的方向’亦即垂直於紙面的面方向所得 A本貫施形態之第1導光板1係將與上述實施形態_ 的丙婦酸樹腊作為成形材料,例如在與第i導光板i之淳 列ly的長邊方向呈垂直的侧面設置將經熔融的成形材步 ,入模穴(cavity)時的注入口(洗口 (gate)),且藉/ 成形予以製作。 $ 1,著,以填埋第丨導光板丨之溝列i y的方式,與在實 知开 U中所使用者相同地,塗佈紫外線硬化性液 料,照射紫外線而硬化,且使棒狀液晶分子配向成使^ 軸方向與第1導光板1之溝列iy的長邊方向呈平行,而开: 成具有光學向異性的光學構件la。 , 319877 23 200844576 另一方面,在適當製作已形成溝列ly的第i導光板工 之後’利用擦磨劑(rubbing agent)來擦磨溝面lz,之後 即使藉由與上述相同地塗佈紫外線硬化性液晶材料而硬 化,亦可藉由選擇擦磨劑,而使棒狀液晶分子4〇配向成使 其長軸方向與第丨導光板1之溝列ly的長邊方向呈平行, 而形成具有光學向異性的光學構件la。 其中,以上所得之光學構件la的光學軸係與溝列ly 的長邊方向呈平行。 如第23圖所示,由第1光源2射出,且由入射端面 lx、入射至第1導光板1之光之内3波23係在第i導光板i 與光學構件la的界面,按照折射率差〇2予以菲涅耳反 射\由透過型顯示面板7之側的面放射出超過臨界角的 光,错由第1稜鏡片3而在正面方向a2彎曲,而通過透過 型顯示面板7之偏光板7e。此時,偏練&的透過轴係 设定成使s波通過的方向,由於在此沒有光損失,因此光 =利用效率較高。再且,由於s波的菲淫耳反射率比?波 因此容易由導光板取出% ’而具有可提高整體之光的 利用效率的效果。 如以上所示’在本實施形態之背光裝置1〇巾,可將出 2 1光源2的光的大部分作為S波2 S而由第i導光板! 可有效地將第1光源2的光用在顯示且可提高亮度。 杜此外’即使使用本實施形態之第1導光板1及光學構 :1a:、由於不會發生新的迷光,如實施形態 1所示,來自 光源2的光係具有指向性’而由第ι導光板i射出。 319877 24 200844576 ,即’來自上述第!光源2的光係作為相料法 ‘在斜向的方向具有指向性的光al而人射至第!棱鏡= :二角形狀稜鏡列,且在三角形狀稜鏡列的斜面 而由弟1棱鏡片3之出射面3〇作為在法線方向具有指 向性的光a2射出,藉此照射正面方向。 接著考慮由第2光源4入射至第1導光板!之主面之 先來自第2光源4之光μ係具有通過偏光板 e之直線偏光4χ、與被吸收的亩綠#止 第!導光板!之光學構件i t J古電場成分與 传 尤子構件la之長邊方向呈垂直的直線偏光 係在弟1 ¥光板!與溝列ly的界面在折射率方面沒有差 異’因此會通過。另一方面,電場成分與第i導光板^之 溝列ly之長邊方向呈平行的直線偏光係在第i導光板工 與光學構件14界面藉由折射率的差而折射。因此,光學 構件la最好頂.角為17〇至175度之較輕微的角度。 此外,替代本實施形態之光學構件la,即使使光學構 鲁件la配向成使圓盤狀之碟狀液晶分子41的徑向與第1導 ,板1之平坦主面大致平行而形成,亦可獲得與本實施形 悲相同的效果。亦即,有效地由第1導光板1取出出自第 1光源2且由端面lx入射:至第i導光板i之光之内3波2s, 且與上述相同地可有效用在顯示。但是,此時係將第i導 光板1的丙烯酸的折射率與光學構件la的膽固醇型 (cholesteric)液晶之徑向的折射率設為不同的值,而且將 丙烤酸的折射率及與膽固醇型液晶分子的徑向呈垂直的方 向的折射率為大致相等的值。 25 319877 200844576 . (實施形態Ό -第24圖係顯示本發明實施形態7之透過型顯示裝置之 .構造的構成圖,係使用透過型顯示面板7與實施形態工之 背光裝置10者。在透過型顯示面板7係藉由晝像驅動手段 來顯示晝像訊號,且在背光裝置1〇中,由第丨光源2出射 的光係由第1導光板射出,且在第i稜鏡片3的稜鏡面反 射而朝正面方向前進,而且,來自第2光源之在法線方向 具有指向性的光係藉由第i稜鏡片3朝左右方向彎曲,且 春分別照射透過型顯示面板7的正面方向與左右方向。 在本實施形態所使用的背光裝置1〇中’如第4圖(〇 所示,藉由第1光源2所得的光係可相對於法線方向呈_2〇 度至20度予以聚光而朝觀察者出射,且將顯示於透過型顯 示面板7的畫像導向正面方向的觀察者。 另一方面,如第5圖(b)所示,藉由第..2光源4所得的 光係可相對於法線方向呈-30度以下與3〇度以上的左右方 #向彎曲而朝觀察者出射,且將顯示於透過型顯示面板7的 晝像偏離正面方向而導向左右方向的觀察者。 其中,在本實施形態中,藉由光源控制部6獨立調整 正面方向與左右方向,藉此可以寬廣視角照射均勻的光。 (實施形態8 ) 第25圖係本發明實施形態8之透過型顯示裝置之構成 圖,係在實施形態5至7之透過型顯示裝置加上同步驅動 部16者。 在透過型顯示面板7,藉由晝像驅動手段交替顯示2 319877 26 200844576 個不同的晝像訊號,且藉由同步驅動部16使其與上述夂查 像訊號同步,交替切換照射透過型顯示面板7之正面二ς 的第1光源與照射透過型顯示面板7之左右方向的第2 ^ 源。具體而言,使用同步驅動部16,在顯示有正面方向用 晝像的時序使第1光源2亮燈,在顯示有左右方向用晝像 的k序❹2光源4亮燈’當其中-方光源亮燈時,係以 使另方光源滅燈的方式而藉由光源控制部6進行切換。 第26圖係本發明實施形態8之透過型顯示裝置之頻示 畫像的說明圖,第26圖(a)係被導入至正面方向之觀 的晝像與來自背光裝置之照射光的角度分布,f 26&) 係被導入至左右方向之觀察者的晝像與來自背光裝置之照 射光的角度分布。 '' 藉由本實施形態之背光裝置10,如第4圖(1))所示, 由相對於法線方向呈-20度至2q度予.以聚光之角度分布的 光、與如第5圖(b)所示!,相對於法線方向呈._3〇度以下盥 3〇度以上的左右方向之角度分布的光照射透過型顯示面 板7另方面,藉由晝像驅動手段,在液晶面板2 〇交替 顯示正面方向用的A晝像與左右方向用的β畫像的不同晝 像。因此’藉由同步驅動部16,使藉由上述各晝像訊號與 光源控制部6所進行之第1光源2與第2光源4的切換同 步,當以60Hz以上的頻率反覆該切換時,如第26圖所示, 在正向方向的觀察者係明亮視認出A晝像,在左右方向的 觀祭者係視涊出B晝像為連續的明亮晝像。 如上所述,可獲得可對I對面的觀察者顯示易於觀看 319877 27 200844576 …1 漏 的晝像,並且對自左右斜向觀看的周圍人群可顯示不同的 —晝像,且可對周圍的人隱藏正面觀察者所正在觀看的畫像 的效果。 其中’在背光裝置10中’由於在與第i導光板之棱鏡 侧相反的面侧設置視角調整膜5,因此具有由第丨導光板3 吸收在下方漏洩的光,而防止成為迷光的作用。藉由減少 迷光,使當上部第1光源4亮燈時在左右方向漏泡的光變 少,因此會降低被他人由左右窺看到正面的晝像的危險性。 ❿【圖式簡單說明】 第1圖係本發明實施形態〗之背光裝置的斜視圖。 第2圖係顯示f 1圖巾來自光源之光的透過光路的說 明圖。 第3圖係顯示本發明實施形態丨之第i稜鏡片中之透 過光路的圖。 第4圖(a)及(b)係顯示本發明實施形態】中來自第】 ⑩光源之光朝向第1稜鏡片的入射光與出射光之角度分布的 特性圖。 弟5圖(a)及(b)係顯示本發明實施形態1中來自第2 光源之光朝向第1稜鏡片的入射光與出射光之角度分布的 特性圖。 第6圖係本發明實施形態1之背光裝置之照射狀態的 說明圖。 第7圖(a)及(b)係顯示本發明實施形態2之背光裝置 之照射光之角度分布的特性圖。 28 319877 200844576 Γ 第8圖(a)及(b)係顯示本發明實施形態2之背光裝置 . 之知、射光之角度分布的特性圖。 - 第9圖(a)及(b)係顯示本發明實施形態2之背光裝置 之照射光之角度分布的特性圖。 第10圖(a)及(b)係顯示本發明實施形態2之背光裝置 之照射光之角度分布的特性圖。 第Π圖(a)及(b)顯示本發明實施形態3之背光裝置中 來自第2光源之出射光的角度分布的特性圖。 第12圖(a)及(b)顯示本發明實施形態3之背光裝置中 來自第2光源之出射光的角度分布的特性圖。 第13圖(a)及(b)顯示本發明實施形態3之背光裝置中 來自第2光源之出射光的角度分布的特性圖。 第14圖(a)及(b)顯示本發明實施形態3之背光裝置中 來自第2光源之出射光的角度分布的特性圖。 第15圖(a)及(b)顯示本發明實施形態3之背光裝置中 鲁來自第2光源之出射光的角度分布的特性圖。 第16圖(a)及(b)顯示本發明實施形態3之背光裝置中 來自第2光源之出射光的角度分布的特性圖。 第17圖係本發明實施形態4之背光裝置的構成圖。 第18圖係本發明實施形態5之背光裝置及使用該背光 裝置之透過型顯示裝置的斜視圖。 第19圖係顯不第18圖中之背光裝置之透過光路及透 過型顯示裝置之透過狀態的示意圖。 第20圖係顯示本發明實施形態5之光學構件中之液晶 29 319877 200844576 - 分子之配向狀態的模式圖。 . 帛21圖係顯示本發明實施形態5之其他皆#夕 學構件之液晶材料配向狀態的模式圖。 义 一 第22圖係本發明實施形態5之其他第^光板的剖視 第23圖係顯示本發明實施形態6之背光裝置、 該背光裝置之透過型顯示裝置的構成圖。 第24圖係本發明實施形態7之透過型顯示裝置 圖。 霉成 弟25圖係本發明實施形態8之透過型顯示裝置的 ^霉成 第26圖(a)及(b)係本發明 置所得顯示晝像的說明圖。 【主要元件符號說明】 1 第1導光板 丨 la lx 入射端面 ly lz 溝面 2 2s s波 2p 3 第1稜鏡片 3 & 3b 斜面 4 4x 直線偏光 4y 5 視角調整膜 6 7 透過型顯示面板 7a 7c 液晶層 7d 實施形態8之透過型|員示舉 光學構件 溝列 第1光源 P波 斜面〜、 第2光源 直線偏光 光源控制部 、7b玻璃基板 、7 e偏光板 319877 30 200844576 8 擴散片 8a 左眼 8b 右眼 9 法線 9 8i 角 10 背光裝置 11 第2導光板 13 第2稜鏡片 16 同步驅動部 20 液晶面板 30 第1稜鏡片的出射面 40 棒狀液晶分子 41 碟狀液晶分子 50 配向膜 51 反射板 52 1 /4波長板 al、a2 光 a2 正面方向 bl 入射光 b2 出射光 31 319877Fig. 7 to Fig. 1 are diagrams showing the angular distribution of the respective outgoing lights b2 by the above-mentioned respective "images" when the third sheet 3 having the above-mentioned different apex angles is used. The simulation result, that is, the angular distribution of the illumination light of the backlight device of the present embodiment. In each of the figures, (a) 2 people from the light of the first light source 2 are shot to the first! The simulation result of the angular distribution of the emitted light a2 emitted from the mirror lens 3, (b) is the result of the angular distribution of the angle of the second light source & incident on the first cymbal 3, and then the emitted light b2 is emitted. When the apex angle is 70 degrees, as shown in Fig. 7(a), the illuminating light toward the front direction has an angular distribution of -1 至 to 1 相对 with respect to the normal direction of the illuminating surface, and the angular distribution width Narrowing, as shown in Fig. 7 (3), the illuminating light of the 丨 in the left-right direction is distributed below -2 与 and above 2 , degrees, so _20 degrees to -10 degrees and 10 degrees to The relationship between 20 degrees is formed to see any darker angular regions of light and is difficult for the observer to use. In addition, when the apex angle is 65 degrees (shown in Figure 8) and 6 degrees (shown in Figure 9), the darker angle region is quite narrow and improved. However, when the dome angle is 55 degrees (shown in Fig. 10), the valley where the brightness occurs in the front direction and the darkness in the front direction are seen. From the above, it is understood that the dome angle of the first cymbal sheet 3 is preferably from (10) degrees to 65 degrees. (Embodiment 3) 319877 13 200844576. In the first embodiment, the first cymbal 3 having the triangular apex of 60 degrees and the first cymbal 3 is used, and the second light source 4 is incident on the pupil of the ith cymbal 3. • It has directivity in the normal direction, and is _2 to 20 degrees, -30 degrees to 3 degrees, _35 degrees to % degrees, 4 degrees to 4 degrees, respectively, relative to the normal direction. 45 degrees to 45 degrees, or -50 degrees to 50 degrees with an angular distribution, that is, centered on the normal direction, with 40 degrees, 60 degrees, 7 degrees, 8 degrees, 90 degrees, 1 degree In the angular distribution of the width, in the same manner as in the embodiment, a simulation of the angular distribution of the respective outgoing light b2 having the above-described angular distribution of the human light bl to the i-th slice 3 is performed. 11 to 16 are simulation results of the angular distribution of the outgoing light when the incident pupil having the different angle distributions described above is emitted by the first diaphragm 3, and in each of the figures, (4) is the second light source 4 The angular distribution of the human incidence* Μ of the triangular shape of the first lens 3, (8) the angle of the outgoing light b2 when the pupil of the third film 3 is incident by the second die 3 The simulation results of the distribution. i calls the incident of the second light source* incident on the first die 3 as shown in Fig. 15 (angle distribution at -45 degrees to 45 degrees) and Fig. 16 (angle distribution at degree 50 degrees) When the light is spread over the range of 45 degrees to 45 degrees with respect to the normal direction, the light is emitted by the second! The leakage of the ribs 3 in the front direction increases. Further, as shown in Fig. 11, when the angle distribution of the incident light bi of the second light source 4 incident on the i-th slice 3 is narrowed to a range of -20 degrees to 2 G degrees, the The angle distribution of the outgoing light b2 is also narrow, and the oblique shell degree below _6 〇 degrees or more is reduced, so that the amount of irradiation in the left and right direction is reduced, and the range is narrowed by 319877 14 200844576. H "Therefore, the triangle octave with the second light source 4 incident on the first cymbal 3, the angular distribution", the 13th figure (having a mouth at -35 degrees to 35 degrees, the knife cloth) and the 14th figure ( In an angle distribution of 4 to 4 degrees, it is shown that the light having an angular distribution of 6 to 8 degrees wide is suitable centering on the normal direction. In the backlight device according to the fourth aspect of the present invention, the light from the second light source has directivity in the normal direction via the cymbal sheet. In the first embodiment, the light from the second light source 4 is made to have light having directivity in the normal direction and is incident on the first die 3 in the first embodiment. Figure 17 is a view showing a configuration of a backlight device according to a fourth embodiment of the present invention. On the opposite side of the q-th sheet of the second light guide plate in the backlight device of the first embodiment, the viewing angle adjusting film 5 and the diffusion sheet 8 are provided with the second side. a cymbal, and a second guide is provided on the opposite side of the first light guide plate of the second cymbal The second light source 4 is disposed on the end surface side of the second light guide plate 11, and the reflection sheet 9 is disposed on the opposite side of the second diaphragm 13 of the second light guide plate 11. In the backlight device of the present embodiment, The light system of the i-th light source 2 is advanced in the first light guide plate 1 while being totally reflected, and is emitted by the first light guide plate 1 and reflected on the slope of the triangular shape of the first light guide plate 1 to face the front surface. In the same manner as described above, the light from the second light source 4 is reflected by the inclined surface of the triangular shape of the second cymbal 13 and is emitted in the front direction, and has directivity in the normal direction. The emitted light is incident on the triangular shape of the first cymbal 3, and is emitted from the first cymbal 3 in the left-right direction in the same manner as in the first embodiment. The first and second portions of the backlight unit of the present embodiment. The apex angle of the triangular shape of the cymbal is 60 degrees, and the simulation results of the angular distribution of the light incident on the first cymbal 3 and the light emitted by the first cymbal 3 are shown in FIG. 4, Figure 5 is the same. 10 where 'in this embodiment Since the second cymbal 13 emits light having a high directivity in the normal direction, the light-receiving light absorbed by the viewing angle adjusting film 5 is less, and the luminance efficiency is higher. (Embodiment 5) "18th The present invention is a perspective view of a backlight device according to a fifth embodiment of the present invention and a transmissive head device using the backlight. Further, Fig. 19 is a view showing a backlight device in the image of the younger brother 18; an explanatory diagram of the through-state of the transmitted light path and the transmissive display device, using the ditch arranged in the i-th light guide plate (^〇〇^ The longitudinal direction of the row is a cross-sectional view of the vertical plane. In the first embodiment, the i-th and one-plate 1 have a groove 1 y on the main surface opposite to the first die 3, and an optical member having an optical anisotropy The same as in the first embodiment except that the groove surface lz' of the groove row ly is in close contact with each other. More specifically, in the first main surface of the i-th light guide plate of the present embodiment, the two-division groove 1y, the longitudinal direction of the groove and the light from the first light source 2 of the first light guide are The incident end face 1乂 is substantially parallel to the ridgeline direction of the triangular shape of the first die 319877 16 200844576 · 3. The optical member 1 / is formed by filling a groove ly with a liquid crystal material having optical anisotropy, and thus is optically anisotropic and closely adheres to the groove ly groove surface lz. For example, this embodiment The i-th light guide! An acrylic resin (j-yield ratio 1.49) is used, and the optical member la of the present embodiment has an optically anisotropic and ultraviolet curable liquid crystal material (longitudinal direction: emission, 1.5, short axis direction) The refractive index of 17) was produced as follows. However, as described above, the refractive index of one of the liquid crystal materials forming the optical member 1a is approximately equal to the refractive index of the first light guide plate 1. First, by using the above-mentioned acrylic resin, the first light guide plate having the groove line 1y whose longitudinal direction is substantially parallel to the incident end surface of the light from the first (10) 2 is formed by the injection molding, and is formed in the groove. The surface of the column ly forms an alignment film or is subjected to a rubbing treatment. Then 'by landfill! Light guide plate! In the manner of the groove row 17, the ultraviolet curable liquid crystal material described above is applied, and the optical member la having the optical anisotropy is irradiated with ultraviolet rays. This pattern is a schematic view showing the alignment state of the liquid crystal molecules having the anisotropic optical light 1 a of the present embodiment. As shown in Fig. 20, it is perpendicular to the longitudinal direction of the material 17 provided in the first light guide plate = = face shape apex angle u 16 壬: angular shape. For example, in the 20th bar, the apex angle of about 2 degrees is wider, and the equal-sided three-faced surface A3 'the optical member 1a of the present embodiment is two: a groove having a double-angle shape, and the rod-shaped liquid crystal is directed to a light guide plate, for example. The flat main surface of i is roughly perpendicular to the second = 319877 17 200844576 - : ::: sub-hardening 'and formed into a triangular shape 稜鏡, so there will be. The vertical direction of the main surface of the factory's board 1 is set to the optical orientation of the optical axis. • The refractive index of the short axis direction of the liquid knife 40 and the refractive index of the first light guide plate 1 are obtained. The refractive index of the first (four) refractive index (four) i light guide plate The refractive indices of i are approximately equal. Wherein, as described above, in order to further form the vertical alignment of the liquid crystal molecules, the alignment film 50 coated on the surface lz of the groove 1 v is used to use the polyimine or poly group having the (four) chain. The film of ethyl alcohol is more effective. As shown in FIG. 19, in the transmissive display device using the backlight device 1 of the present embodiment, the transmissive display panel 7 is provided on the backlight device 1A, and the transmissive display panel 7 is interposed between the surface substrates 7a and 7b. The liquid crystal layer 7c is provided with polarizing plates 7d and 7e so as to sandwich the glass-increasing substrates 7a and 7b. In general, in a transmissive display device, light from the backlight device 10 is transmitted through a polarizing plate of the transmissive display panel 7. 6 and only the linearly polarized knives are selected to reach the liquid crystal layer ^ after passing through the glass substrate. Most of the polarizing plates exhibit absorption dichroism, and thus absorb light of the light corresponding to the absorption axis of the polarizing plate 7e in the light from the f-light mount i]. That is, half of the light from the backlight unit 10 is absorbed in a flat state, which causes a large decrease in the light utilization efficiency of the liquid crystal display device. Therefore, as shown in the 20th, the backlight device 10 of the present embodiment uses the optical member la' having the optical anisotropy in the groove of the first light guide plate 1 to use the above-described useless light, and the following operation is performed. Explain it. As shown in Fig. 19, the light system from the first light source 2 has: and the first! The longitudinal direction of the groove row ly of the light guide plate 1 is perpendicular, that is, the p-wave 2p having the linear polarization of the electric field component is included in the paper surface, and is parallel to the longitudinal direction of the groove-iy of the first light guide plate 1. That is, the s-wave 2s belonging to the linearly polarized light having the electric field-component in the plane perpendicular to the plane of the paper is incident on the i-th light guide plate 1 from the end face 1χ. The p-wave 2p wave in the light of the incident light is at the interface between the first light guide plate 1 and the optical member 1a, and is subjected to Fresnel reflection according to the refractive index difference 〇2 between the acrylic acid and the liquid crystal material, and is transmitted through the transmissive display panel. The light on the side of the 7 side is radiated in the front direction by the prism 1 of the prism 1 and passes through the polarizing plate 7e of the transmissive display panel 7. At this time, the transmission axis of the polarizing plate 7e is set to the direction through which the P wave passes, and since there is no light loss here, the light utilization efficiency is high. On the other hand, the light source 2 is emitted, and the three waves 2 s in the light incident on the i-th light guide plate 1 from the end surface lx and the P wave 'not reflected at the interface with the optical member 1 & are utilized on the bottom surface of the optical member 1 a. When it is totally reflected and propagated through the first light guide plate 1, the s wave 2s is gradually changed in phase by the birefringence of the acrylic light in the first light guide plate, and the p wave is generated as in the case of the above. On display. Further, in the present embodiment, as shown in Fig. 19, a reflection plate Η and a 1/4 wavelength plate 52 are adhered to the end surface of the second light guide plate 1 opposite to the first light source 2. Therefore, the i-th light guide plate i propagates and reaches the first! The light of the end surface on the opposite side of the light source 2 is reflected by the reflecting plate 51, and is incident on the first light guiding year 1 again. At this time, by the quarter-wavelength plate 52, the s-wave 2s having a high residual ratio becomes Μ 2p. Inject again to the first! The p-wave of the light guide plate 1 is 319877 19 200844576 in the same manner as described above in the fish. The interface of the photon member la is reflected, and the above is used for the same display. 〃 , "In the backlight device 10 of the present embodiment, most of the light from the first light source 2 is used as the pUp. And the first light guide plate can be used to effectively use the light of the second light source 2 for display, and can be extracted. Further, even if the first optical light guide plate U of the present embodiment is used, the new light is not generated. Therefore, as shown in the first embodiment, the light from the first light source 2 has directivity and is made of the first The light guide plate is fired. In other words, the light from the i-th light source 2 is incident on the three t-shaped array ' of the third sheet 3 as the light a1 having directivity in the oblique direction with respect to the normal direction and in the triangular shape The mirror array is reflected, and the exit surface 3A of the second lens 3 is emitted as an optical center having directivity in the normal direction, thereby irradiating the front direction. Next, the operation of the illuminating light incident on the principal surface of the first light guide plate 由 by the second light source 4 will be considered. The light bl from the second light source 4 has a linearly polarized light 4 通过 passing through the polarizing plate 7e and a linearly polarized light 4y which is absorbed, but any light causes the electric field component to be parallel to the flat main surface of the second light guide plate 丨. Regarding the direction parallel to the main surface of the first light guiding plate 1, since there is no difference in refractive index between the i-th light guide plate and the optical member la, the linear polarized light can directly advance without being refracted. Therefore, in the second light guide plate π of the backlight device of the fourth embodiment, a groove array is provided in the same manner as the first light guide plate 1 of the present embodiment, and the optical member having optical anisotropy of the present embodiment is in close contact with the optical member. The groove 319877 20 200844576 of the groove row can set the light b1 from the second light source 4 to a large amount of light having a component of the linearly polarized light passing through the polarizing plate 7e, and can improve the light bl from the second light source 4. By utilizing the efficiency, the brightness of the backlight unit 1 can be further improved. Next, the optical member 1a of the present embodiment will be formed by using a disc-shaped liquid crystal molecule (discc) tic liquid coffee (4) (5) coffee (4) instead of aligning the rod-shaped liquid crystal molecules as shown in the second figure. The situation formed by the display. Fig. 21 is a schematic view showing the alignment state of liquid crystal molecules of the optical member 1a of the other backlight device of the present embodiment. That is, the i-th light guide plate i having the groove row ly having the cross-sectional shape shown in Fig. 20 is used, and the disk-shaped liquid crystal molecules 41 are made in the radial direction and the first! The light guide plate has a flat main surface which is filled and hardened in a manner of substantially parallel alignment. As described above, the arrangement (4) of the liquid crystal molecules can be realized by selecting the alignment film 50 provided on the groove surface lz of the groove 1y of the second light guide plate by (4) #. Here, 'the refractive index of the acrylic resin of the first light guide plate 、1 and the refractive index of the disk-shaped liquid crystal molecules of the optical member la are set to a value of substantially (four)', and the refractive index of the above-mentioned propionate is 舆The refractive index of the discotic liquid crystal molecules is set to a different value in the direction perpendicular to the radial direction. As a result, the p-wave is reflected by the optical member 1a in the same manner as in the case of using the liquid crystal molecules 4 of the bar shape, and the first light guide plate 1 is efficiently emitted. Waves can be used for display and can provide shelliness. In the present embodiment, the wyu:K spear alpha garden oxygen brother 21 shows that the cross section of the longitudinal direction of the groove ly of the ^^ plate is the straight line of the three (four) 'close to the ditch of the ditch. Surface ^ Optical structure 4 319877 21 200844576 In the case of the angular shape array, the shape of the member la is not limited to this. That is, such as? y and the optical first light guide plate 1 are perpendicular to the longitudinal direction of the groove row ly: the shape of the groove may be slightly different from the straight line to the outer side: the surface shape, instead of being as shown in Fig. 20. Straight line. At this time, the upper curve: if the angular inclination angle W is the inclination of the principal surface of the P light guide plate 1 = 1 degree, the same effect as that of the present embodiment can be easily obtained. Further, in the present embodiment, The optical member 1a is provided on the opposite side of the board 1 of the first month, but may be provided on the side of the first 21-sheet 3, even on both sides of the first light guide plate 1, and the present embodiment can also be obtained. The same effect. Further, in the present embodiment, the optical member 1a is displayed and the optical anisotropy is present, but the first! The light guide plate i has an optical anisotropy or a material having optical anisotropy on both sides, and the same I effect as in the present embodiment can be obtained. In the value φ of the refractive index of the light guide plate i and the optical member 1a in the '1', the value of the refractive index which is substantially equal to each other is the first! The material of the light guide plate i and the optical member 1a. Λ ^Selection in the Λ Λ & & 悲 悲 悲 , , , , , 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第Since it is parallel, the light emitted from the first cymbal 3 can be easily formed uniformly in the surface of the first cymbal 3 . Further, since the longitudinal direction of the groove row ly of the i-th light guide plate 1 is formed to be parallel to the ridgeline direction of the triangular shape of the second sheet 3, the polarized light can be prevented from being struck by the first sheet 3 Rotate. Further, the long side of the second light guide plate of the second light guide plate 22 319877 200844576 lx is parallel, so that the entrance end face of the light from the first light source 2 is not easily uneven. (Embodiment 6) FIG. 23 is an explanatory view showing a transmission state of a backlight device of a sixth embodiment of the present invention and a transmission optical path and a transmissive panel of a transmissive display device using the backlight device, and is used in the first embodiment. A cross-sectional view of the longitudinal direction of the groove of the light guide plate in a vertical plane. The backlight device 10 of the embodiment is configured such that the optical member la is a direction in which the rod-like liquid crystal molecules used in the first embodiment and the fifth embodiment are aligned in a direction different from that in the fifth embodiment. the same. In other words, the optical member la having the anisotropy of the present embodiment has a direction in which the major axis direction of the rod-like liquid crystal molecules is aligned in a direction parallel to the longitudinal direction of the groove ly of the first light guide plate 1, that is, perpendicular to the paper surface. In the first light guide plate 1 of the present embodiment, the first light guide plate 1 of the above-described embodiment is used as a molding material, for example, in the longitudinal direction of the row ly of the i-th light guide plate i. The side surface is provided by the molten shaped material step, into the injection port (gate) at the time of cavity, and is produced by borrowing/forming. $1, in the same manner as the user of the U-shaped light guide plate, the ultraviolet curable liquid material is applied, and the ultraviolet light is hardened and hardened by the method of filling the groove iy of the second light guide plate. The liquid crystal molecules are aligned such that the axial direction is parallel to the longitudinal direction of the groove iy of the first light guiding plate 1, and is opened to form an optical member la having optical anisotropy. , 319877 23 200844576 On the other hand, after appropriately preparing the i-th light guide plate in which the groove ly has been formed, 'the rubbing surface lz is rubbed with a rubbing agent, and then the ultraviolet rays are coated by the same as above. The hardening liquid crystal material is hardened, and the rod-shaped liquid crystal molecules 4〇 are aligned such that the long-axis direction thereof is parallel to the longitudinal direction of the groove row ly of the second light-guide plate 1 by selecting a rubbing agent. An optical member la having optical anisotropy. Among them, the optical axis system of the optical member 1a obtained above is parallel to the longitudinal direction of the groove row ly. As shown in Fig. 23, the first light source 2 is emitted, and the three ends 23 of the light incident on the first light guide plate 1 from the incident end surface lx are at the interface between the i-th light guide plate i and the optical member la, and are refracted. The rate difference 〇2 is subjected to Fresnel reflection. The light exceeding the critical angle is emitted from the surface on the side of the transmissive display panel 7, and is deflected by the first cymbal 3 in the front direction a2, and passes through the transmissive display panel 7. Polarizing plate 7e. At this time, the transmission axis of the yaw & is set to the direction in which the s wave passes, and since there is no light loss here, the light utilization efficiency is high. Moreover, because of the s-wave Philippine lust reflectance ratio? Therefore, the wave is easily taken out by the light guide plate and has an effect of improving the utilization efficiency of the entire light. As described above, in the backlight device 1 of the present embodiment, most of the light of the light source 2 can be made of the ith light guide plate as the S wave 2 S! The light of the first light source 2 can be effectively used for display and brightness can be improved. In addition, even if the first light guide plate 1 and the optical structure 1a of the present embodiment are used, since a new fog does not occur, as shown in the first embodiment, the light from the light source 2 has directivity' and is made of the first The light guide plate i is emitted. 319877 24 200844576 , ie 'from the above! The light system of the light source 2 is used as a phase material method ‘the light having the directivity in the oblique direction and the person is shot to the first! The prism =: a double-angled array, and the light-emitting surface 3A of the prism sheet 3 is emitted as the light-emitting surface a2 having the directivity in the normal direction, thereby illuminating the front direction. Next, it is considered that the second light source 4 is incident on the first light guide plate! The main light surface from the second light source 4 has a linear polarized light 4通过 through the polarizing plate e, and the absorbed amber green #! Light guide plate! The optical member i t J ancient electric field component and the linear direction of the longitudinal direction of the sub-component la are vertical. The interface with the groove ly has no difference in refractive index, and therefore passes. On the other hand, the linear polarization in which the electric field component is parallel to the longitudinal direction of the groove row ly of the i-th light guide plate is refracted by the difference in refractive index between the i-th light guide plate and the optical member 14. Therefore, the optical member 1a preferably has a top angle of a slight angle of 17 〇 to 175 degrees. Further, in place of the optical member 1a of the present embodiment, even if the optical constituents la are arranged such that the radial direction of the disk-shaped disk-shaped liquid crystal molecules 41 is substantially parallel to the first guide and the flat main surface of the plate 1, The same effect as the present embodiment can be obtained. In other words, the first light guide plate 1 is efficiently taken out from the first light source 2 and incident on the light from the end surface lx to the light of the i-th light guide plate i by 3 waves for 2 s, and can be effectively used for display in the same manner as described above. However, in this case, the refractive index of acrylic acid of the i-th light guide plate 1 and the refractive index of the cholesteric liquid crystal of the optical member la are set to different values, and the refractive index of the acrylic acid and the cholesterol are The refractive indices of the liquid crystal molecules in the radial direction in the radial direction are substantially equal values. [Embodiment Ό - Fig. 24 is a view showing a configuration of a structure of a transmissive display device according to a seventh embodiment of the present invention, and a transmissive display panel 7 and a backlight device 10 of the embodiment are used. The type display panel 7 displays the imaging signal by the imaging driving means, and in the backlight device 1, the light emitted from the second light source 2 is emitted by the first light guiding plate, and the edge of the i-th film 3 is emitted. The specular reflection advances in the front direction, and the light having directivity in the normal direction from the second light source is curved in the left-right direction by the i-th sheet 3, and the front direction of the transmissive display panel 7 is irradiated with spring. In the backlight device 1A used in the present embodiment, as shown in Fig. 4 (〇, the light system obtained by the first light source 2 can be _2 to 20 degrees with respect to the normal direction) The light is collected toward the observer, and the image displayed on the transmissive display panel 7 is guided to the observer in the front direction. On the other hand, as shown in Fig. 5(b), the light source 4 is obtained by the second light source 4. The light system can be below -30 degrees with respect to the normal direction The left and right sides of the three or more degrees are bent toward the observer, and the image displayed on the transmissive display panel 7 is deflected from the front direction to the observer in the left-right direction. In the present embodiment, The light source control unit 6 independently adjusts the front direction and the left and right direction, thereby illuminating the uniform light at a wide viewing angle. (Embodiment 8) FIG. 25 is a configuration diagram of a transmissive display device according to Embodiment 8 of the present invention. The transmission type display device of the seventh embodiment is provided with the synchronous driving unit 16. On the transmissive display panel 7, 2 319877 26 200844576 different imaging signals are alternately displayed by the imaging driving means, and the synchronous driving unit 16 is used to make them In synchronization with the above-described image signal, the first light source that illuminates the front surface of the transmissive display panel 7 and the second source that illuminates the left and right of the transmissive display panel 7 are alternately switched. Specifically, the synchronous drive unit 16 is used. The first light source 2 is turned on when the image for the front direction is displayed, and the light source 4 is turned on when the left-right direction is used for the image. When the light source is turned on, the other side is turned on. Fig. 26 is an explanatory view showing a frequency image of the transmissive display device according to the eighth embodiment of the present invention, and Fig. 26(a) is introduced into the front direction. The angle distribution of the observed image and the illumination light from the backlight device, f 26 &) is the angular distribution of the image of the observer in the left-right direction and the illumination light from the backlight device. '' Backlighting by the present embodiment The device 10, as shown in Fig. 4 (1)), is lighted at an angle of concentrating from -20 degrees to 2q degrees with respect to the normal direction, and as shown in Fig. 5(b)! The light is transmitted through the transmissive display panel 7 with an angular distribution of the left-right direction of _3 盥 or more in the normal direction with respect to the normal direction. On the other hand, the liquid crystal panel 2 〇 alternately displays the front direction by the anamorphic driving means. The A image is different from the β image used in the left and right direction. Therefore, the synchronous driving unit 16 synchronizes the switching between the first light source 2 and the second light source 4 by the respective imaging signals and the light source control unit 6, and when the switching is repeated at a frequency of 60 Hz or higher, As shown in Fig. 26, the observer in the forward direction recognizes the A 明亮 image in a bright view, and the spectator in the left and right direction views the B 昼 image as a continuous bright 昼 image. As described above, it is possible to obtain an image that can be easily viewed by the observer opposite to I, and can display different images of the surrounding people who are obliquely viewed from the left and right, and can be displayed to the surrounding people. Hide the effect of the portrait that the front observer is watching. In the backlight unit 10, since the viewing angle adjusting film 5 is provided on the surface side opposite to the prism side of the i-th light guide plate, the second light guide plate 3 absorbs light leaking downward, thereby preventing the phenomenon of being lost. By reducing the fogging, the light leaking in the left-right direction when the upper first light source 4 is turned on is reduced, so that the risk of being seen by the other side from the left side is reduced. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a backlight device according to an embodiment of the present invention. Fig. 2 is an explanatory view showing a transmission path of light from a light source of the f 1 towel. Fig. 3 is a view showing the light transmission path in the i-th sheet of the embodiment of the present invention. Fig. 4(a) and Fig. 4(b) are diagrams showing the angular distribution of the incident light and the outgoing light from the light source of the ninth light source toward the first cymbal in the embodiment of the present invention. Fig. 5 (a) and (b) are characteristic diagrams showing the angular distribution of incident light and outgoing light from the second light source toward the first cymbal in the first embodiment of the present invention. Fig. 6 is an explanatory view showing an irradiation state of the backlight device according to the first embodiment of the present invention. Fig. 7 (a) and (b) are characteristic diagrams showing the angular distribution of the illumination light of the backlight device according to the second embodiment of the present invention. 28 319877 200844576 Γ Fig. 8 (a) and (b) are diagrams showing the characteristics of the angular distribution of the light emitted by the backlight device according to the second embodiment of the present invention. - Fig. 9 (a) and (b) are characteristic diagrams showing the angular distribution of the illumination light of the backlight device according to the second embodiment of the present invention. Fig. 10 (a) and (b) are characteristic diagrams showing the angular distribution of the illumination light of the backlight device according to the second embodiment of the present invention. (a) and (b) are characteristic diagrams showing the angular distribution of the outgoing light from the second light source in the backlight device according to the third embodiment of the present invention. Fig. 12 (a) and (b) are characteristic diagrams showing the angular distribution of the outgoing light from the second light source in the backlight device according to the third embodiment of the present invention. Fig. 13 (a) and (b) are characteristic diagrams showing the angular distribution of the outgoing light from the second light source in the backlight device according to the third embodiment of the present invention. Fig. 14 (a) and (b) are characteristic diagrams showing the angular distribution of the outgoing light from the second light source in the backlight device according to the third embodiment of the present invention. Fig. 15 (a) and (b) are diagrams showing the characteristic distribution of the angular distribution of the emitted light from the second light source in the backlight device according to the third embodiment of the present invention. Fig. 16 (a) and (b) are characteristic diagrams showing the angular distribution of the outgoing light from the second light source in the backlight device according to the third embodiment of the present invention. Figure 17 is a configuration diagram of a backlight device according to a fourth embodiment of the present invention. Figure 18 is a perspective view showing a backlight device and a transmissive display device using the same according to a fifth embodiment of the present invention. Fig. 19 is a view showing the transmission state of the transmission path of the backlight device and the transmission type of the transmissive display device in Fig. 18. Fig. 20 is a schematic view showing the liquid crystal in the optical member according to the fifth embodiment of the present invention. 29 319877 200844576 - Pattern of alignment of molecules. Fig. 21 is a schematic view showing the alignment state of the liquid crystal material of the other members of the fifth embodiment of the present invention. Fig. 22 is a cross-sectional view showing another light-emitting panel of the fifth embodiment of the present invention. Fig. 23 is a view showing a configuration of a backlight device according to a sixth embodiment of the present invention and a transmissive display device of the backlight device. Figure 24 is a view showing a transmission type display device according to a seventh embodiment of the present invention. The mold of the transmissive display device of the eighth embodiment of the present invention is shown in Fig. 26. (a) and (b) are explanatory views showing the image of the present invention. [Description of main components] 1 1st light guide 丨la lx Incident end face ly lz Groove surface 2 2s s wave 2p 3 1st slice 3 & 3b Bevel 4 4x Linear polarized light 4y 5 Viewing angle adjustment film 6 7 Transmissive display panel 7a 7c Liquid crystal layer 7d Transmissive type of the eighth embodiment - member showing optical member groove first light source P wave slope ~, second light source linear polarization light source control portion, 7b glass substrate, 7 e polarizing plate 319877 30 200844576 8 diffusion sheet 8a Left eye 8b Right eye 9 Normal line 9 8i Angle 10 Backlighting device 11 Second light guide plate 13 Second cymbal 16 Synchronous driving unit 20 Liquid crystal panel 30 Exit surface of the first cymbal 40 Rod-shaped liquid crystal molecules 41 Discotic liquid crystal molecules 50 alignment film 51 reflector 52 1 / 4 wave plate a1, a2 light a2 front direction bl incident light b2 emitted light 31 319877

Claims (1)

200844576 十、申請專利範圍: —1· 一種背光裝置,其特徵為具備: ‘ 在其一面具有三角形狀稜鏡列的第1稜鏡片;將在 相對於該第1稜鏡片之上述三角形狀稜鏡列之相反侧 的出射面的法線方向呈斜向的方向具有指向性的光入 射至上述第1稜鏡片之三角形狀稜鏡列的第丨光源,·以 及將在上述第1稜鏡片之出射面之法線方向具有指向 m 性的光入射至上述第1棱鏡片之三角形狀稜鏡列的第2 W 光源。 2·如申請專利範圍第1項之背光裝置,其中,具備設在第 1牙文鏡片之二角形狀稜鏡列之面側的第1導光板,第1 光源係設在上述第1導光板之端面侧,第2光源係設在 上述第1導光板之上述第1稜鏡片之相反側。 3·如申請專利範圍第1項之背光裝置,其中,由第2光源 入射至第1稜鏡片之三角形狀稜鏡列的光係以第丨稜鏡 • 片之出射面的法線方向為中心而具有60度至80度寬度 的角度分布。 4.如申請專利範圍第3項之背光裝置,其中,三角形狀稜 鏡列的稜鏡頂角為60度至65度。 5·如申請專利範圍第2項之背光裝置,其中,第2光源係 隔著視角調整膜而設。 6·如申請專利範圍第2項之背光裝置,其中,具備設在第 1 ‘光板之第1稜鏡片之相反侧的第2稜鏡片、及設在 上述第2稜鏡片之上述第1導光板之相反側的第2導光 319877 32 200844576 - 7 L 反申;Γ2光源設在上述第2導光板之端面側。 ' 圍第2項之f光裝置,其中,第1導光板 備:至少在其中一方主面具有長邊方向與。棱鏡 片之二角形狀稜鏡列之稜線方向大致平行而連續設置 的溝列’且密接於該溝列的溝面而具有 光 學構件。 予I、『生的尤 8. Μ請專利範圍第7項之背光裝置,其中,光學構件之 方折射率與第1導光板之折射率大致相等。 9. 專利範圍第7項之背輕置,其中,光學構件係 將知狀液晶分子以使該液晶分子之長轴方向相對於第 1導光板的主面呈大致垂直地予以配向而形成。 青專利範圍第7項之背光裝置’其中,光學構件係 *囫i狀液晶分子以使該液晶分子之徑向相對於第工 導光板的主面呈大致.平行地予以配向而形成。 11.如申請專利範圍第j7項之背光裝置,其中,光學構件係 將棒狀液晶分子以使該液晶分子之長軸方向與第i導 光板之溝列的長邊方向大致平行地予以配向而形成。 •如申請專利範圍第6項之背光I置,其中,第 係具備··至少在其中-方主面具有長邊方向與第= 片之二角形狀稜鏡列之稜線方向大致平行而連續設置 的溝列’且密接於該溝列的溝面而具有光學向里性又的 學構件。 /、 九 13.^申請專利範圍第i項之背光裝置,其中,具備獨立控 4第1、第2光源之動作的光源控制部。 319877 33 200844576 14· 一種透過型顯示裝置,豆 衣呈為具備:透過型顯示面 反及如申请專利範圍第1項之背光裝置。 15· —種透過型顯示裝置,盆 •、、 丨衣1 共和攸為具備:透過型顯示面 以及使藉由該背光裝置之光源控制部所進行之第丨、第 2光源的滅燈與上述各晝像訊號同步交替切換的同步 驅動部。 板’在透過型顯示面板交替顯示不同的2個晝像訊號的 晝像驅動手段;如中請專利範圍第13項之背光裝置° ;200844576 X. Patent Application Range: —1· A backlight device characterized by: 'a first one having a triangular shape on one side thereof; and a triangular shape to be opposite to the first one a direction in which the normal direction of the exit surface on the opposite side of the column is oblique, and the light having directivity is incident on the third light source of the first die, and the first light is emitted from the first die The normal direction of the surface has a second W light source in which light directed to m is incident on the triangular prism array of the first prism sheet. 2. The backlight device according to claim 1, wherein the first light guide is provided on the first light guide plate provided on a surface side of the dihedral shape of the first denture lens. On the end face side, the second light source is provided on the opposite side of the first turn piece of the first light guide plate. 3. The backlight device of claim 1, wherein the light source of the triangular shape array in which the second light source is incident on the first die is centered on a normal direction of the exit surface of the second chip It has an angular distribution of 60 to 80 degrees wide. 4. The backlight device of claim 3, wherein the triangular prism array has a dome angle of 60 to 65 degrees. 5. The backlight device of claim 2, wherein the second light source is provided by a viewing angle adjusting film. 6. The backlight device of claim 2, comprising: a second cymbal provided on a side opposite to the first cymbal of the first 'light plate; and the first light guide plate provided on the second cymbal The second light guide 319877 32 200844576 - 7 L on the opposite side is disposed on the end face side of the second light guide plate. The optical device of the second item, wherein the first light guide plate is provided with at least one of the main faces having a longitudinal direction. The prism sheet has a grooved column in which the ridge line direction of the prism sheet is substantially parallel and is continuously provided, and is in close contact with the groove surface of the groove to have an optical member. In the backlight device of the seventh aspect of the invention, the refractive index of the optical member is substantially equal to the refractive index of the first light guide plate. 9. The back surface of the seventh aspect of the patent is lightly placed, wherein the optical member is formed by aligning the liquid crystal molecules so that the long axis direction of the liquid crystal molecules is substantially perpendicular to the main surface of the first light guide plate. In the backlight device of the seventh aspect of the invention, the optical member is formed such that the liquid crystal molecules are aligned in a substantially parallel direction with respect to the main surface of the liquid crystal substrate. 11. The backlight device of claim j7, wherein the optical member aligns the rod-like liquid crystal molecules such that a long axis direction of the liquid crystal molecules is substantially parallel to a longitudinal direction of the groove of the i-th light guide plate. form. • In the case of the backlight I according to item 6 of the patent application, the first system is provided with at least a continuous arrangement in which at least the main surface has a longitudinal direction which is substantially parallel to the ridge line direction of the second corner of the second sheet. The grooved column is in close contact with the groove surface of the groove and has an optically urinary structure. /, 九 13. The backlight device of claim i, wherein the light source control unit independently controls the operation of the first and second light sources. 319877 33 200844576 14· A transmissive display device having a transmissive display surface and a backlight device as in the first application of the patent application. In the case of the transmissive display device, the basin and the clothing 1 have a transmissive display surface and a turn-off of the second and second light sources by the light source control unit of the backlight device. Each of the image signals is synchronously switched by the synchronous drive unit. The board's image driving means for alternately displaying two different image signals on the transmissive display panel; for example, the backlight device of the thirteenth patent range; 319877 34319877 34
TW97105538A 2007-02-19 2008-02-18 Backlight device and transmission type display apparatus TW200844576A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007038030 2007-02-19
JP2007267800A JP4780081B2 (en) 2007-02-19 2007-10-15 Backlight device and transmissive display device

Publications (1)

Publication Number Publication Date
TW200844576A true TW200844576A (en) 2008-11-16

Family

ID=39907792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105538A TW200844576A (en) 2007-02-19 2008-02-18 Backlight device and transmission type display apparatus

Country Status (3)

Country Link
JP (1) JP4780081B2 (en)
CN (1) CN100585469C (en)
TW (1) TW200844576A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872705B2 (en) 2007-07-29 2011-01-18 Cree, Inc. LED backlight system for LCD displays
EP2107798B1 (en) 2008-04-04 2010-12-08 Sony Corporation Imaging apparatus, image processing apparatus, and exposure control method
CN101672455B (en) * 2008-09-09 2011-06-01 扬升照明股份有限公司 Light source module
JPWO2011067911A1 (en) * 2009-12-02 2013-04-18 三菱電機株式会社 Liquid crystal display
WO2011125479A1 (en) * 2010-03-31 2011-10-13 日本電気株式会社 Polarizing light guide plate, illuminating device, and projection display device
JP2012138222A (en) * 2010-12-25 2012-07-19 Omron Corp Planar light source device and three-dimensional display device
JP4973794B1 (en) * 2011-04-06 2012-07-11 ソニー株式会社 Display device
WO2012144451A1 (en) * 2011-04-22 2012-10-26 シャープ株式会社 Lighting device and display device
WO2014155984A1 (en) * 2013-03-27 2014-10-02 パナソニック株式会社 Image display device
WO2015056046A1 (en) * 2013-10-14 2015-04-23 Continental Automotive Gmbh Dual graphics label for an input area of control device
CN106030388A (en) * 2014-02-17 2016-10-12 矽光学有限公司 Switchable lighting device and use thereof
WO2015183604A1 (en) * 2014-05-30 2015-12-03 3M Innovative Properties Company Temporally multiplexing backlight with asymmetric turning film
TWI573123B (en) * 2015-11-27 2017-03-01 揚昇照明股份有限公司 Backlight module and driving method thereof, and display device having the same
TWI589966B (en) * 2016-05-12 2017-07-01 揚昇照明股份有限公司 Light source module and display device
CN106023801B (en) * 2016-05-31 2019-02-12 京东方科技集团股份有限公司 A kind of display device
CN105911760A (en) * 2016-06-03 2016-08-31 京东方科技集团股份有限公司 Lateral entrance type backlight module and display device
CN106206660B (en) * 2016-08-04 2019-12-13 宣城慧哲生产力促进中心有限公司 Three-dimensional OLED display panel and device
WO2018085497A1 (en) * 2016-11-03 2018-05-11 3M Innovative Properties Company Multiplexing backlight with asymmetric turning film
CN110431347B (en) * 2017-03-14 2021-07-27 昕诺飞控股有限公司 Lighting module, lighting system and lighting method
TWI649592B (en) 2018-01-15 2019-02-01 友達光電股份有限公司 Display device
US11194088B2 (en) 2018-07-28 2021-12-07 Huawei Technologies Co., Ltd. Fill-in light unit, display screen, display apparatus, and terminal
CN110426892B (en) * 2019-07-05 2022-03-04 海信视像科技股份有限公司 Backlight module and display device
CN111176016B (en) * 2020-01-07 2022-10-18 京东方科技集团股份有限公司 Backlight module and display device
WO2022006218A1 (en) * 2020-07-02 2022-01-06 Lumileds Llc Illumination system and illumination method
US11262048B2 (en) 2020-07-02 2022-03-01 Lumileds Llc Integrated optical system for dynamic diffuse and directional lighting
DE102021105595B3 (en) 2021-03-09 2022-05-12 Sioptica Gmbh Lighting device for a screen with at least two operating modes, arrangement with lighting device and use of this
JP2022144629A (en) * 2021-03-19 2022-10-03 株式会社ジャパンディスプレイ lighting equipment
EP4206806A4 (en) 2021-04-21 2024-01-03 BOE Technology Group Co., Ltd. BACKLIGHT MODULE AND DISPLAY DEVICE
CN113204070B (en) * 2021-04-23 2023-11-03 伟时电子股份有限公司 Backlight module and double-vision display device
CN113641042A (en) * 2021-08-13 2021-11-12 武汉华星光电技术有限公司 Display panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006306B2 (en) * 1992-09-16 2000-02-07 インターナショナル・ビジネス・マシーンズ・コーポレイション Optical film and liquid crystal display device using the optical film
JP2000059822A (en) * 1998-08-06 2000-02-25 Toshiba Corp Stereoscopic video display device
US7154570B2 (en) * 2002-09-28 2006-12-26 Samsung Electronics Co., Ltd. Back light assembly, liquid crystal display apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JP4780081B2 (en) 2011-09-28
CN101251674A (en) 2008-08-27
CN100585469C (en) 2010-01-27
JP2008235245A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
TW200844576A (en) Backlight device and transmission type display apparatus
TWI360694B (en) Surface light source apparatus and liquid crystal
JP4861180B2 (en) Backlight for 3D display device
TW521157B (en) Light pipe, plane light source unit and reflection type liquid-crystal display device
US7855763B2 (en) Backlight device and transmission type display apparatus
CN1183407C (en) Illumination system for a flat-panel picture display device
CN113272693B (en) Film-Based Frontlights with Angle-Varying Diffuser Films
KR101290585B1 (en) Transparent display device
US8348490B2 (en) Planar light source device and method of manufacturing divided prism mold
CN104508546A (en) Display apparatus and illuminating apparatus
TW200522720A (en) Waveguide for autostereoscopic display
TW200827872A (en) Illumination system and display device
TW201211628A (en) Display and illumination device
TW201011404A (en) Liquid crystal display, light guide, and display device
KR101243790B1 (en) Three-dimensional Image Display
TW200931086A (en) Optical films
JP4991486B2 (en) Optical sheet, method for manufacturing the same, and display device
CN101939586B (en) Illumination device and liquid crystal display device
WO2008125926A1 (en) Controllable light-guide and display device
TW200925663A (en) Diffuser plate, backlight unit and liquid crystal display having the same
TW200841061A (en) Light guide panel comprising asymmetric front prism for LCD
JP5217747B2 (en) Optical film, method for producing the same, and display device
JP4548628B2 (en) Optical film
JP3432919B2 (en) Liquid crystal display
JP4221070B2 (en) Surface light source element