200844478 113 :掃描雷射光束(Scanning Beam) 114:顯像雷射光束(Imaging Beam) 12 :微機電擺動式反射鏡(MEMS oscillatory mirror) 123 :擺動旋轉軸 13 :光學控制電路板(control PCB) 2 :前級掃描組(pre-scan module) 21 :準直鏡(collimator lens) 22 :柱面鏡(cylinder lens) 23 :反射鏡(reflection mirror)200844478 113 : Scanning Beam 114: Imaging Beam 12 : MEMS oscillatory mirror 123 : oscillating rotary axis 13 : optical control circuit board (control PCB) 2: pre-scan module 21: collimator lens 22: cylinder lens 23: reflection mirror
3 :後級掃描組(post-scan module) 31 · 鏡片組(第一 ίθ 鏡片)(f0 lens,f irst f θ lens) 32 ·弟二 f Θ 鏡片(second f 0 lens) 4 :外殼(housing) 41 :插槽(solt) 42 ·•承座(pedestal) 5 :目標面(target) 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 益 九、發明說明: 【發明所屬之技術領域】 •本發明係有關一種微機電擺動雷射掃描裝置(MEms iHating、LSU)i其Ϊ裝方法,尤指—種使雷射光源與 : '電擺動式反射鏡係安排於目標面之對面侧的同一侧, 級ί描組之反射鏡逆轉方向,並沿著微 钱電擺動式反射鏡之中心軸與擺動旋轉軸 動’再以對稱於微機電擺動 ^反射鏡中心軸之知描方式進入後級掃描組之^鏡片組 3 200844478 【先前技術】 目别在雷射掃描裝置(LSU,laser scanning unit)大 都使用一旋轉多面鏡(p〇lyg〇n mirror)以高速旋轉來操控 雷射光束的掃描,但由於旋轉多面鏡係用液壓趨動,其轉 ,限制、價格高、聲音大、啟動慢等因素,已漸無法符合 南速且局精度的要求。近年來,轉矩振盪器(torsion oscillators)雖已漸為人所知,但尚未大量應用於影像系 統(imaging system )、掃描器(scanner)或雷射印表機 (laser printer)之雷射掃描裝置(laser scanning Unit),其主要的原因乃是轉矩振盪器尚有共振頻率穩定度 (resonant frequency instability)等問題尚未能完全解 決,但利用轉矩振盪器原理所開發的微機電擺動式反射鏡 (micro electronic mechanic system oscillatory mirror,MEMS oscillatory mirror),其掃描效率(Scanning efficiency)將可高於傳統的旋轉多面鏡;由於微機電擺動 式反射鏡具有輕巧、微小、堅固及快速的共振頻率的優點, 再透過光學與微機電技術結合,以微機電擺動式反射鏡取 代旋轉多面鏡,將是眾所期待的。 在雷射掃描裝置中,一微機電擺動式反射鏡主要係由 〇 電路控制板、轉矩振盪器及反射鏡面構成,藉由共振磁場 趨動一鏡面以γ軸為軸心以X方向來回擺動;當雷射光束 射向微機電擺動式反射鏡的鏡面時,鏡面藉由隨時間變化 的轉動角度,使得入射到微機電擺動式反射鏡的鏡面上的 雷射光束’被反射到Z轴各種不同的角度上。由於微機電 擺動式反射鏡可以忽視光波長的影響,而可達到高解析度 和大轉動角度的特點,故已被廣泛應用如US5, 408, 352、 US5, 867, 297、US6, 947, 189、US7, 190, 499、TW M253133、 JP 2006-201350 等,如圖 1、2 所示。 在入射於旋轉多面鏡或微機電擺動式反射鏡的雷射光 200844478 束有下列二種安排方式,但各有其缺點與限制: (1)、以斜向射入旋轉多面鏡或微機電擺動式反射鏡 如圖卜4 所示:如 TW M253133、US7, 184, 187、US7, 190, 499、 US2006/0050346及US6, 956, 597等,係將雷射光束以斜向 直接聚焦於旋轉多面鏡或微機電擺動式反射鏡上;如 US2006/0033021,雷射光束經由反射鏡後以斜向射入微機 電擺動式反射鏡。對於雷射光束以斜向射入旋轉多面鏡或 微機電擺動式反射鏡,有下列二個原因會造成雷射光束反 射出去時產生偏差:一為雷射光束因組裝時有裝配公差, 將會造成不同入射角度而經由旋轉多面鏡或微機電擺動式 ^ 反射鏡掃描後會產生掃描雷射光束的偏移,習知的方法解 決的方式是要經過極精密與反覆多次的調校,將雷射光源 射出的角度調整為一致,此將耗費很多時間及成本;二為 由於雷射光束經由旋轉多面鏡反射後其掃描角度與時間關 係為線性關係,但雷射光束經由微機電擺動式反射鏡後其 掃描角度與時間關係為非線性關係(non〜iineari& relationship),參考圖1-4所示’雷射光束Pi (可先經 由前級掃描組之反射鏡反射後)係以斜向射入微機電擺動 式反射鏡P2而反射掃描,而其掃描雷射光束P3再進入f θ 〇 鏡片(或f-sin0 ) P4後再投射至目標面P5上以進行線性 掃描,由於掃描雷射光束P3進入f 0鏡片(或f〜sin0 ) P4之中心軸P6的左侧與右侧之入射角度不同,此稱為γ 方向偏移如圖4所示I妾Θ2,習知鏡片常利用不同 曲面去構成左半側與右半侧不同的光學面’以儘量能縮小 偏差,使能設計及製造一個能儘量達到線性化的f0鏡片 來補救之如US6, 330, 524或TW 1250781’但仍會產生歪斜 (Skew)與弓狀(Bow)之情形;再如US6, 232, 991嘗試解決 弓狀(Bow)之現象,但相對增加ίθ鏡片製作的困難度與成 本0 5 200844478 (2)、以正向射入旋轉多面鏡或微機電擺動式反射 鏡:在旋轉多面鏡的LSU的應用上如JP 08-334716,雷射 光線經由反射鏡後正向直射於旋轉多面鏡;如JP 2006-276133、US 6, 690, 498、US 2007/0002446 也以正向 直射方式射入旋轉多面鏡;但由於旋轉多面鏡之多面鏡(通 常為六面鏡)係設在其旋轉軸’心之外緣,如果雷射光線以正 向直射於旋轉多面鏡,旋轉多面鏡是以旋轉中心旋轉’鏡 面每一點距離旋轉中心為不等距,致雷射光線之光束的反 射點將不在同一點上,即造成Y轴向的偏移;另在微機電 雷射掃描裝置的應用上如US2006/0279826,雖將雷射光線 直接聚焦於微機電擺動式反射鏡上,但其微機電擺動式反 射鏡為三角菱鏡,雷射光線之光束為一以光束中心呈高斯 分佈,其射入擺動的三角菱鏡頂點,雷射光線光束被擺動 的三角菱鏡上兩不同角度的反射面反射成兩個光束,但是 三角菱鏡的頂點會隨著反射鏡擺動而有位移,使得其反射 後的光束會重新呈現新的高斯分佈,且反射點及反射後的 光束大小也都隨著反射鏡擺動而有所變化。 由於Y軸向偏移會造成光點在微機電擺動式反射鏡中 心軸之左右兩侧之光點大小不對稱,將造成掃描之左右兩 U 侧解析度不同;若使用ίθ (或sine)鏡片去構成左车3: post-scan module 31 · lens group (first ίθ lens) (f0 lens, f irst f θ lens) 32 · second f lens lens (second f 0 lens) 4 : housing (housing 41: Slot 42 ·•Pedestal 5: Target surface 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: Yi Nine, invention description: TECHNICAL FIELD The present invention relates to a method for mounting a micro-electromechanical oscillating laser scanning device (MEms iHating, LSU), in particular, a laser light source and an 'electric oscillating mirror system arranged on a target surface On the same side of the opposite side, the mirror of the level is reversed, and along the central axis of the micro-powered oscillating mirror and the axis of the oscillating rotation, and then symmetrical to the central axis of the MEMS oscillation mirror Drawing mode enters the post-scanning group of the lens group 3 200844478 [Prior Art] Most of the laser scanning units (LSUs) use a rotating polygon mirror (p〇lyg〇n mirror) to control at high speed Laser beam scanning, but due to Turn polygon-based hydraulic-driven, its turn, limit, high prices, loud, slow startup and other factors, gradually unable to meet the requirements of the South Bureau of speed and accuracy. In recent years, torsion oscillators have become more and more known, but they have not been widely used in laser scanning of imaging systems, scanners or laser printers. The main reason for the laser scanning unit is that the torque oscillator has resonant frequency instability and other problems that have not been fully solved, but the micro-electromechanical oscillating type developed by the torque oscillator principle. Micro electronic mechanic system oscillatory mirror (MEMS oscillatory mirror), its scanning efficiency (Scanning efficiency) will be higher than the traditional rotating polygon mirror; due to the micro-electromechanical oscillating mirror has a light, small, strong and fast resonant frequency The advantages, combined with optics and MEMS technology, with a micro-electromechanical oscillating mirror instead of a rotating polygon mirror, would be expected. In the laser scanning device, a microelectromechanical oscillating mirror is mainly composed of a circuit board, a torque oscillator and a mirror surface. The resonant magnetic field illuminates a mirror surface and swings in the X direction with the γ axis as the axis. When the laser beam is directed at the mirror surface of the microelectromechanical oscillating mirror, the mirror surface is reflected by the time-varying rotation angle so that the laser beam incident on the mirror surface of the MEMS oscillating mirror is reflected to the Z-axis. Different angles. Since the microelectromechanical oscillating mirror can ignore the influence of the wavelength of light and achieve high resolution and large rotation angle, it has been widely used as US5, 408, 352, US5, 867, 297, US6, 947, 189. , US7, 190, 499, TW M253133, JP 2006-201350, etc., as shown in Figure 1, 2. The laser light 200844478 beam incident on a rotating polygon mirror or a microelectromechanical oscillating mirror has the following two arrangements, but each has its own disadvantages and limitations: (1), obliquely injecting a rotating polygon mirror or a microelectromechanical oscillating type The mirrors are shown in Figure 4: TW M253133, US7, 184, 187, US7, 190, 499, US2006/0050346, and US6, 956, 597, etc., focusing the laser beam directly on the rotating polygon mirror in an oblique direction. Or on a microelectromechanical oscillating mirror; as in US 2006/0033021, the laser beam is incident obliquely into the microelectromechanical oscillating mirror via the mirror. For a laser beam to be incident obliquely into a rotating polygon mirror or a microelectromechanical oscillating mirror, there are two reasons for the deviation of the laser beam when it is reflected out: one is that the laser beam has assembly tolerances due to assembly, and will The scanning electron beam is scanned by a rotating polygon mirror or a microelectromechanical oscillating mirror to cause a different angle of incidence. The conventional method is solved by extremely precise and repeated adjustments. The angle of the laser source is adjusted to be consistent, which will take a lot of time and cost. Secondly, since the scanning angle of the laser beam is linearly related to the time after being reflected by the rotating polygon mirror, the laser beam is reflected by the microelectromechanical oscillation. After the mirror, the scan angle and time relationship are nonlinear (non~iineari& relationship). Refer to Figure 1-4 for the 'laser beam Pi (which can be reflected by the mirror of the pre-scan group). Injecting into the microelectromechanical oscillating mirror P2 and reflecting scanning, and scanning the laser beam P3 into the f θ 〇 lens (or f-sin0 ) P4 and then projecting onto the target surface P5 Line linear scanning, because the scanning laser beam P3 enters f 0 lens (or f~sin0) The central axis P6 of P4 has different incident angles on the left side and the right side. This is called γ direction offset as shown in Fig. 4. Θ2, conventional lenses often use different curved surfaces to form different optical surfaces on the left and right halves to minimize the deviation, enabling the design and manufacture of a f0 lens that can be linearized as much as possible to remedy US6, 330. , 524 or TW 1250781' but still produces skew (Boke) and bow (Bow); and as US6, 232, 991 tries to solve the bow phenomenon, but relatively increases the difficulty of lens manufacturing Cost 0 5 200844478 (2), forward injection rotary polygon mirror or microelectromechanical oscillating mirror: In the application of LSU of rotating polygon mirror, such as JP 08-334716, the laser beam is directly forwarded through the mirror Rotating polygon mirrors; for example, JP 2006-276133, US 6, 690, 498, US 2007/0002446 also injecting a rotating polygon mirror in a direct direct manner; however, due to the polygon mirror of a rotating polygon mirror (usually a six-sided mirror) On the outer edge of the 'axis of rotation', if the laser beam is positive Directly rotating the polygon mirror, the rotating polygon mirror rotates at the center of rotation. Each point of the mirror surface is unequal from the center of rotation, and the reflection point of the beam of the laser beam will not be at the same point, which causes the Y-axis to be offset; In the application of the MEMS laser scanning device, such as US2006/0279826, although the laser light is directly focused on the microelectromechanical oscillating mirror, the microelectromechanical oscillating mirror is a triangular prism, and the beam of the laser beam is One has a Gaussian distribution at the center of the beam, which is incident on the apex of the oscillating triangular mirror. The laser beam is reflected by two different angles of the reflecting surface of the triangular mirroscope into two beams, but the apex of the triangular prism will follow The mirror is oscillating and displaced, so that the reflected beam will re-present a new Gaussian distribution, and the reflected point and the reflected beam size will also change with the mirror swing. Since the Y-axis offset causes the spot to be asymmetrical on the left and right sides of the central axis of the microelectromechanical oscillating mirror, the resolution of the left and right U sides of the scan is different; if ίθ (or sine) lens is used To form a left car
元件,如 US2006/0279826 使用二 、紅色(M,Magenta)、黃色 η),需要有四組的掃描光學 二組的雷射光源與二組的微 6 200844478 機電擺動式反射鏡、如TW 1268867使用四組的雷射光源與 =組的微機電擺動式反射鏡,由微機電擺動式反射鏡成本 局’有必要發展能僅使用一個微機電擺動式反射鏡的彩色 雷射掃描裝置。 —再者、’習知的雷射掃描裝置在各光學元件組裝時,需 要經複的权準程序(calibrati〇n process),通常先將 雷射光源裝配後,再利用光學儀器於雷射掃描裝置上,將 準直鏡進行校準後裝配;由於雷射掃描裝置體積小,以光 學儀裔於雷射掃描裝置上進行校準甚為耗時及不便,更在 大量生產時,將造成時間的耗費與生產的瓶頸,實有必要 改善之。 【發明内容】 包含一微機電光學控制模組、 本發明之主要目的乃在於提供一種微機電擺動雷射掃 描裝置(MEMS oscillating iaser scanning 仙衍),主要 、一前級掃描組、一後級掃描Components such as US2006/0279826 use two, red (M, Magenta), yellow η), need four sets of scanning optical two sets of laser light source and two sets of micro 6 200844478 electromechanical oscillating mirror, such as TW 1268867 Four sets of laser light sources and = group of microelectromechanical oscillating mirrors, by the microelectromechanical oscillating mirror cost bureau, it is necessary to develop a color laser scanning device that can use only one microelectromechanical oscillating mirror. - Furthermore, the conventional laser scanning device requires a calibrated procedure for the assembly of the optical components. Usually, the laser source is assembled first, and then the optical device is used for laser scanning. On the device, the collimating mirror is assembled after calibration; because the laser scanning device is small in size, it is time consuming and inconvenient to calibrate the optical instrument on the laser scanning device, and it will cause time consumption in mass production. With the bottleneck of production, it is necessary to improve it. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a MEMS oscillating iaser scanning device, mainly a pre-scanning group and a post-scan.
,而可避免 200844478 習知組裝技術之反覆校準程序,藉以降低組裝該裝置時之 校準時間、提高精度及有效降低成本。 本發明所揭露之微機電擺動式反射鏡之雷射掃描裝置 如圖5-11所示,主要包含一微機電光學控制模組1、一前 級掃描組2、一後級掃描組3及一外殼4,其中,該微機電 光學控制模組1包含一雷射光源11、一微機電擺動式反射 鏡12、感測器14及一光學控制電路板13 ;該前級掃描組 2包含一準直鏡21、一柱面鏡22及一反射鏡23 ;本發明 之主要特徵在於:雷射光源11及微機電擺動式反射鏡12 係安排於目標面5之對面側之同一侧,使雷射光源11射出 雷射光線111後,經過準直鏡23將雷射光線形成平行光 線,再經柱面鏡22聚焦而投射於反射鏡23上如圖5、6所 示;而反射鏡23再將雷射光線111逆轉方向形成雷射光束 112,使雷射光束112沿著微機電擺動式反射鏡12之中心 軸121 ( Z轴)與其擺動旋轉轴123 ( Y軸)所構成之平面 (Y-Z平面)射向並聚焦於微機電擺動式反射鏡12之中心 點122,再由微機電擺動式反射鏡12將雷射光束112掃描 形成掃描雷射光束113以進入後級掃描組3之ίθ鏡片組 31 ( 32)如圖5、7所示。 Q 而上述之逆轉方向,參考圖5、6、7所示,乃是指從 反射鏡23至微機電擺動式反射鏡12中心之雷射光線112 的光軸與從雷射光源11經準直鏡21或柱面鏡22至反射鏡 23之雷射光線111的光軸係位於同一 Υ-Ζ平面上,而不產 生X軸向偏移。 該後級掃描組3包含ίθ鏡片組31 (32)及溢位反射 鏡33 ( 34),其中該鏡片組31 (32)將微機電擺動式 反射鏡12形成之掃描雷射光束導正成掃描角度與時間關 係為線性化關係之顯像雷射光束114,而於目標面5成像; 溢位反射鏡33、34係將超出目標面5成像範圍之光束反射 8 200844478 Γίίϊί;,組^由感測器ΐ4(15)將此反射光 理盥對外彳魂’由微機電光學控制模組1進行信號處 彳^ - Η ί輸;又’該ίθ鏡片組31 (32)可設計為一片 32^如Θ戶^如包括一第一 鏡片31與一第二鏡片 可於钟1厅不)或複數片式結構;該溢位反射鏡組33 ( 34) 二=位及二1式或二片式如包括第一溢位反射鏡33與第 感Ϊ器14射(如圖6、7所示)或複數片式結構;該 i可二呌&(15)為相對於溢位反射鏡組33 ( 34)之數目, Ϊ測^5為式或二片式如包括第—感測器14與第二 拎制杈組1上;外殼4可將各光學元件定位容納, 浐么阻絕,以維持其相對位置與精度;由於上述ίθ Γΐΐ 1 (32)、溢位反射鏡組33 ( 34)、感測器14 (15) 及外设4乃利用習知技術可設計完成者,且又非本發明之 主要技術特徵,故在此不再詳述其内容。 對於微機電擺動式反射鏡的有效半徑(clear f ture)D與入射雷射光線的光束半徑(jgeam size)d的關 係如下: Ο d sin(O) ^ 夾角 其中,Φ為雷射光束112與微機電擺動式反射鏡12的 射光束112係以正面射向微機電擺動 12’即Φ角接近於90。,D接近於d。 機 反射鏡12之反射面可以製造很小。相對於,2 =動式 以斜向入射於微機電擺動式反射鏡12,① 二^光線是 機電擺動式反射鏡12的有效半徑D將大於d,; 〇 ,微 擺動式反射鏡12之反射面將不能縮小。、17,微機電 藉由本發明所揭露之微機電雷射掃描裝置,至小可、 200844478 到下列優點: (1)、因雷射光線111由雷射光源11射出後’經反射 鏡23逆轉方向並以正向沿著微機電擺動式反射鏡12之中 心轴121 (Z軸)與其擺動旋轉軸123 (γ軸)所構成之平 面(Y-Z平面)射入微機電擺動式反射鏡12之中心點122, 其可免除斜向射入微機電擺動式反射鏡12所造成的不對 稱情形,藉以減少因不對稱所造成的光點變大或光學設計 上的困難; ΓIn addition, the repetitive calibration procedure of the 200844478 conventional assembly technology can be avoided, thereby reducing the calibration time, accuracy and cost reduction when assembling the device. The laser scanning device of the microelectromechanical oscillating mirror disclosed in the present invention is shown in FIG. 5-11, and mainly comprises a microelectromechanical optical control module 1, a pre-scanning group 2, a post-scanning group 3 and a The housing 4, wherein the MEMS optical control module 1 comprises a laser source 11, a microelectromechanical oscillating mirror 12, a sensor 14 and an optical control circuit board 13; the pre-scan group 2 comprises a quasi a straight mirror 21, a cylindrical mirror 22 and a mirror 23; the main feature of the present invention is that the laser light source 11 and the microelectromechanical oscillating mirror 12 are arranged on the same side of the opposite side of the target surface 5 to make the laser After the light source 11 emits the laser beam 111, the laser beam is formed into a parallel ray by the collimator lens 23, and then focused by the cylindrical mirror 22 and projected onto the mirror 23 as shown in FIGS. 5 and 6; and the mirror 23 is again The laser beam 111 forms a laser beam 112 in a reverse direction such that the laser beam 112 is along a plane formed by the central axis 121 (Z axis) of the microelectromechanical oscillating mirror 12 and its oscillating rotation axis 123 (Y axis) (YZ plane) Shooting and focusing on the center point 122 of the microelectromechanical oscillating mirror 12, and then The microelectromechanical oscillating mirror 12 scans the laser beam 112 to form a scanning laser beam 113 to enter the ίθ lens group 31 (32) of the subsequent scanning group 3 as shown in Figs. Q, and the reverse direction described above, as shown in FIGS. 5, 6, and 7, refers to the optical axis of the laser beam 112 from the mirror 23 to the center of the microelectromechanical oscillating mirror 12 and the collimation from the laser source 11. The optical axis of the laser beam 111 of the mirror 21 or the cylindrical mirror 22 to the mirror 23 is located on the same Υ-Ζ plane without generating an X-axis offset. The rear scanning group 3 includes a ίθ lens group 31 (32) and an overflow mirror 33 (34), wherein the lens group 31 (32) guides the scanning laser beam formed by the microelectromechanical oscillating mirror 12 into a scanning angle. The laser beam 114 is developed in a linearized relationship with time, and is imaged on the target surface 5; the overflow mirrors 33, 34 reflect the light beam beyond the imaging range of the target surface 5 200844478 Γ ί ί ί; Ϊ́4(15) 将此 反射 反射 ' 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由 由The accountant ^ includes a first lens 31 and a second lens which may be in the hall 1 or a plurality of chip structures; the overflow mirror group 33 (34) has two bits and two types or two pieces such as The first overflow mirror 33 and the first sensor 14 (as shown in FIGS. 6 and 7) or a plurality of chip structures are included; the i can be equal to < (15) relative to the overflow mirror group 33 ( 34) the number, the test ^5 is a two-piece type, including the first sensor 14 and the second set of cymbal 1; the outer casing 4 can position each optical component, what? In order to maintain its relative position and accuracy; since the above ίθ Γΐΐ 1 (32), the overflow mirror group 33 (34), the sensor 14 (15) and the peripheral device 4 can be designed using conventional techniques, Moreover, it is not the main technical feature of the present invention, so its details will not be described in detail herein. The relationship between the effective radius D of the microelectromechanical oscillating mirror and the beam radius d of the incident laser ray is as follows: Ο d sin(O) ^ The angle Φ is the laser beam 112 and The beam 112 of the microelectromechanical oscillating mirror 12 is directed toward the microelectromechanical oscillation 12', i.e., the Φ angle is close to 90. , D is close to d. The reflecting surface of the mirror 12 can be made small. In contrast, 2 = motion is obliquely incident on the microelectromechanical oscillating mirror 12, 1 φ is the effective radius D of the electromechanical oscillating mirror 12 will be greater than d; 〇, the reflection of the micro oscillating mirror 12 The face will not shrink. 17, MEMS by the MEMS laser scanning device disclosed by the present invention, to Xiaoke, 200844478 to the following advantages: (1), because the laser light 111 is emitted by the laser source 11 after the 'reverse direction of the mirror 23 And incident on the center point of the microelectromechanical oscillating mirror 12 in a plane (YZ plane) formed by the central axis 121 (Z axis) of the microelectromechanical oscillating mirror 12 and its oscillating rotation axis 123 (γ axis). 122, which can avoid the asymmetry caused by the oblique injection into the microelectromechanical oscillating mirror 12, thereby reducing the enlargement of the spot caused by the asymmetry or the difficulty in optical design;
(2) 、由於雷射光束112係以正向射向微機電擺動式 反射鏡12,因此該微機電擺動式反射鏡12之有效半徑(D) 可較習知技術從斜面射入之微機電擺動式反射鏡12之有 效半徑(D)更小,藉此可降低微機電擺動式反射鏡12之 製造成本,更由於使用較小的微機電擺動式反射鏡12有效 半徑,其重量減輕更可提高掃瞄頻率; (3) 、因雷射光源11及微機電擺動式反射鏡12或感 剛器14 (15)係安排於同一侧,其可組合於一光學控制電 路板13上,以形成一個完整的微機電光學控制模組1,可 簡化製造、裝配、維修等作業,更可有效地降低成本。 由於微機電光學控制模組1係包含一雷射光源11、一 微機電擺動式反射鏡12、一光學控制電路板13及感測器 U (15)等,因此可將控制電路及受控電路形成一個模組 土安排於同一侧面,故本發明所揭露之微機電擺動式反射 、見之雷射掃描裝置之組裝校準步驟如下:(2) Since the laser beam 112 is directed to the microelectromechanical oscillating mirror 12 in a forward direction, the effective radius (D) of the MEMS oscillating mirror 12 can be injected into the MEMS from the slant surface by conventional techniques. The effective radius (D) of the oscillating mirror 12 is smaller, thereby reducing the manufacturing cost of the microelectromechanical oscillating mirror 12, and further reducing the weight by using the smaller effective radius of the MEMS oscillating mirror 12. Increasing the scanning frequency; (3), because the laser source 11 and the microelectromechanical oscillating mirror 12 or the sensing device 14 (15) are arranged on the same side, they can be combined on an optical control circuit board 13 to form A complete MEMS optical control module 1 simplifies manufacturing, assembly, and maintenance operations, and effectively reduces costs. Since the microelectromechanical optical control module 1 includes a laser light source 11, a microelectromechanical oscillating mirror 12, an optical control circuit board 13, and a sensor U (15), the control circuit and the controlled circuit can be Forming a module soil arranged on the same side, so the assembly and calibration steps of the microelectromechanical oscillating reflection and the laser scanning device disclosed in the present invention are as follows:
If,將光學控制電路板13、雷射光源11、微機電 與準直鏡21以光學儀/ :制電路板13上之雷射光源11 校準作業可不森儀杰权準,形成已校準完成的模組,此 成;、 又义於雷射掃描裝置的體積,可快速方便完 10 200844478 第一一 射於反射鏡23H主面鏡22與準直鏡21進行校準,以對準 第二来 , 方向,並校準射鏡23之反射角度,使雷射光線逆轉 之中心輛121 (/雷射光束能沿著微機電擺動式反射鏡12 之平面(γ〜ζ平f)與其擺動旋轉軸123 (Y軸)所構成 122 ; )射入微機電擺動式反射鏡12之中心點 第四步,調餘 第二f Θ鏡片32 f β鏡片組31 (如第一f Θ鏡片31與 心軸校準,調整f ) ^中心軸與微機電擺動式反射鏡12中 12反射平面校準·θ饒片組31軸面與微機電擺動式反射鏡 弟五步,調馨、、尹 之間的位置校準,=位反射鏡組33 ( 34)與感測器η (15) 上之感測器14 (丨5)1射光線能反射至光學控制電路板13 裝置揭露之微機電擺動式反射鏡之雷射掃插 ’至少可達到下列優點: Ο 其他各光學元件,^制模組1其上有雷射光源11與 電路板13上;再以二原設計之位置安排於光學控制 準;其餘各元件則松二儀器將準直鏡21與雷射光源11校 準,避免習知技術在 控^模組1裝配與校 能達方便與快速。 守的反覆杈準,而予組裝、校準 不受限於雷射触1與準錢23的校準,因 裝置組裝; 此離線元成眺組可快速於雷射掃描 ( 3)、對於彩色雷射掃描裝置,可藉由複數 源(11a〜lid如圖11所示)射出的雷身+ # …、、雷射先 微機電擺動式反射鏡12之安排,可僅使用U轉後射於 文饼j 1重便用一個微機電擺動 200844478 式反射鏡12而能達成四色掃描之目的,有效節省使用光學 元件而達節省成本之目的。 【實施方式】 參考圖5-11所示,本發明微機電擺動雷射掃描裝置包 含一微機電光學控制模組1、一前級掃描組2及一後級掃 描組3,其中該微機電光學控制模組1包含一雷射光源U、 一微機電擺動式反射鏡12及一光學控制電路板13 ;該前 級掃描組2包含一反射鏡片23;該後級掃描組3包含一 f0 鏡片組31 ;為減少雷射掃描裝置的體積,且避免入射於微 p 機電擺動式反射鏡12產生不對稱現象,本發明揭露之主要 特徵在於:使雷射光源11及微機電擺動式反射鏡12佈置 於目標面5之對面同一側,如使雷射光源11與微機電擺動 式反射鏡12設置組裝於同一光學控制電路板13上,藉以 縮小雷射掃描裝置之體積,進一步更能以模組化方式來簡 化組裝的複雜性。 雷射光源11發射出雷射光線111,經由前級掃描組2 之反射鏡片23逆轉方向後如圖5、6所示,以正向入射於 微機電擺動式反射鏡12的中心點122,也就是沿著微機電 擺動式反射鏡12之中心軸121 (Z軸)與擺動旋轉軸123 U (Y軸)所構成之平面(Y-Z平面)射入微機電擺動式反射 鏡12之中心點122如圖5、7、9、10所示;由此,經由微 機電擺動式反射鏡12以Y轴(旋轉轴123)為旋轉轴而在 X軸方向擺動後,可產生掃描雷射光束113如圖7、11所 示;掃描雷射光束113經由後級掃描組3之鏡片組31, 可將掃描雷射光束113轉換成為時間與角度之線性關係之 顯像雷射光束114,而射入目標面5 :該f0鏡片組31可 由不同需求目的,可設計為單件式f0鏡片(single scanning lens),或二片式 f<9 鏡片結構(double scanning lenses ),或多片式 f Θ 鏡片結構(multiple scanning 12 200844478 lenses) 〇 對於本發明之雷射掃描裝置’本發明另揭露其組裝方 法,包括下列步驟: 將雷射光源11與微機電擺動式反射鏡12以預先設計 之位置設置裝配於一光學控制電路板13上; 再校準反射鏡23之反射角度使其雷射光線111可逆轉 方向並沿著微機電擺動式反射鏡12之中心軸121 (z轴) 與其擺動旋轉軸123 (Y軸)所構成之平面(Y-Z平面)射 入微機電擺動式反射鏡12之中心點122 ; 再才父準f Θ鏡片組31,使f Θ鏡片組31之中心轴與 微機電擺動式反射鏡12之中心轴121為同軸,並使微機電 擺動式反射鏡12之掃描平面可入射於鏡片組31。 由此,本發明之微機電雷射掃描裝置構造簡單、組裝 =便二且掃描光點對稱,可應用於單色之雷射掃描裝置^ 巧所示,也可輕易擴展使用於彩色之雷 射押畑叙置如弟二貫施例如圖12所示: <第一實施例> ϋ 口如圖5-11所示,其係本發明用於單色雷射 描^微機電雷射掃描裝置,具有-個精密的外殼4:; f射掃描裝置之微機電光學控制模、组1、前級掃描 掃描組3中各光學元件及其他必要的元件。 Γ, ^ ζ 及弟一感測态15,絀級掃描組2包含一可將 雷ϋ線ill導正成為平行的雷射光、線lu3 =將 平行的雷射光線in聚焦之柱面鏡22 ί;ς 111來焦而投射於反射鏡23上,及—可將个線 逆轉方向並單軸聚焦於微機電擺動式反射 23;後級掃描組3包含-㈠鏡片組31、一 13 200844478 鏡33與一弟二溢位反射鏡34。 如圖8所示,上述之柱面鏡22與反射鏡23在實際應 用時可設計成一組合體之反射柱面鏡(Ref lection Cylinder Lens)24,藉以取代柱面鏡22與反射鏡23兩分 別個體;該反射柱面鏡通常為一凹面柱體鏡片,其一面鍍 有反射膜層,同時具有逆轉入射平行的雷射光線之反射功 能及將該反射的平行雷射光線以單軸聚焦於微機電擺動式 反射鏡上之聚焦功能;也就是,反射柱面鏡於組裝時可校 準雷射光束112沿微機電擺動式反射鏡12中心軸121 ( Z 軸)與其擺動旋轉軸123 (Y軸)所構成之平面(γ_Ζ平面) ί 射入微機電擺動式反射鏡12之中心點122 ;由於反射柱面 鏡具有光學常用的柱面鏡22及反射鏡23的合併功能,在 縮小光程(達成縮小微機電掃描裝置的體積)及減少光學 元件(節省成本),藉由本發明之光程安排,可以一反射柱 面鏡24達成習知技術同時使用柱面鏡22及反射鏡23之功 能。 微機電擺動式反射鏡12之設立位置係安排於與雷射 光源11之位置在同一侧(Χ—Υ平面)的同一高度(Ζ方向之 相同位差)或不同高度(Ζ方向之高低不同位差),可設計成 〇 共同組裝在一微機電光學控制板13上,或設計成在同一侧 的分別不同的控制板上,其中,微機電光學控制板13係包 含有電路、排線、必要的電子元件、微機電擺動式反射鏡 12及感測器14(15);該微機電擺動式反射鏡12係以Υ軸 (旋轉軸123)為軸心而迫一定頻率擺動,以趨動置於其 上的反射鏡,當雷射光束112以正面射入微機電擺動式反 射鏡12時,擺動的微機電擺動式反射鏡12會將雷射光束 112以掃描方式形成掃描雷射光束113 ;由於雷射光束112 係以玉面射向微機電擺動式反射鏡12,其射入方向與機電 擺動式反射鏡12的ζ軸同向.,即入射的雷射光束112係與 14 200844478 ='巧1=射擺r:、x,為垂直,因雷射光 12於}(方向鈣勤 ° 、σ八中、點,機電擺動式反射鏡 軸為對稱如圖^戶^後’反射出之掃描雷射光束113於Ζ 平電面擺身£式1射鏡12反射出的掃描雷射光束 3包含【Θ鎊片亚涇f後級掃描組3;該後級掃描組 時間之間係為掃描雷射光束113之掃描角度與 片式,二片;性關係,鏡片組3可為一片式或二 Γ、為非球面凸^於〉f j組31係由第一 f0鏡片31 (通常 鏡)所組成,於μ弟一 鏡片32 (通常為非球面凸透 性關係的耗1射====掃描角度與時間係為非線 ⑯關係的顯像雷J 成掃描角度與時間係為線 雷射掃描裳’此顯像雷射光束114射出此 光鼓)。置仏运射印表機、掃描器等的目標面5 (如感 超出、4最大掃描區域(例如,對於A4尺寸紙的掃描 可、ί由^!/的i益位掃描雷射光束115/116如圖7所示 r及機電縣反f:鏡33/34反射至與雷射光源模組1 °〜/一片^式反射鏡12同側的第一/二感測器14/15;第 後,-感=14/15接收偏出之左/右侧掃描光線115/11弟6 印表:U内在的光電開關,送出電子信號,以為雷射 猶带ί或知描器之使用,又,第一/二感測器14/15可以單 =¾路板t配於*學控制電路板13上,或可與絲控制電 板13裝配於同側、,即,雷射光源模組丨、機電擺動 、麵12、第一/二感測态14/15可裝配於同一電路板或同 黾路板上,以達成郎省成本及校準之便利。 幾-在微機電雷射掃描裝置設計時,可依據光程對於各光 =元件設計其位置與角度,並將此位置與角度安排於精 、外殼4内;即外殼4已預先設有各光學元件之插槽41或 15 200844478 承座42如圖5所示,其中,該插槽41或承座42已預先經 過光程之計算,其相對位置在容許公差範圍内,因此各光 學元件僅需固定於各承座42·或插槽41中,即可達各光學 元件定位之在容許公差範圍内、且快速組裝要求。 Ο Ο 組I時,可在光學控制電路板13上將各光學元件如雷 射光源11、微機電擺動式反射鏡12及感測器ι4(ι5)依原 設計之各插槽41或承座42裝配固定後,成為一微機電光 學控制模組1 ;在本發明這個實施例中,精密的外殼4已 依據各光學元件位置與角度,預先設計製作各光學"元件的 插槽41或承座42,裝配時各光學元件可容納入各插槽41 或承座42中,以符合各元件預先設計之位置與角度;^發 明第一實施例於組裝校準時,僅需先裝配完成'一彳^機電^ 學控制模組1,再將雷射光源11與準直鏡23先行以光 儀器校準,形成一個校準完成的微機電光學控制模组i, 再裝配於外殼4上即可達成製造與維修之便利;換言 可先將雷射光源11與準直鏡21於光學控制電路板13 光學儀器先行校準,此校準因*受限於Φ射掃 積,、而可快速方便為之,成為預先校準後的模組,此U 完成的模組可快速於微機電雷射掃描裝置纟且穿, 元件則依據原設計之容許公差範圍固定於外殼<4 速且精密之組裝,此為本發明的再一功效。 、 微機電雷射掃描裝置之顯像雷射光束114之 機電擺動式反射鏡12以共振頻率擺動,其共振頻 溫度影響,因此微機電雷射掃描裝置内τθ鏡片組31 的熱量應適當導出;在本發明的實施例中,外殼4 鏡片組31的承座42為熱傳導效能佳的金屬如^ 並與金屬製的外殼4底座固定相連,當鏡片組31產生 的熱量可藉由此鋁金屬之承座42,傳導至外殼4之冬屬 座散熱。 八 离甩 16 200844478 <第二實施例> 如圖12所示,其係本發明用於彩色雷射印表機或掃描 器之微機電雷射掃描裝置,具有一個精密的外殼4,用以 容納雷射掃描裝置之微機電光學控制模組1、前級掃描組 2、後級掃描組3中各光學元件及其他必要的元件。 微機電光學控制模組1包含光學控制電路板13,其一 侧面上裝配有雷射光源11a〜lid、微機電擺動式反射鏡 12 ;前級掃描組2包含準直鏡21a〜21d、柱面鏡22a〜22d 及反射鏡23a〜23d;後級掃描組3包含f 0鏡片組31 a〜31 d; 雷射光源11a〜lid及微機電擺動式反射鏡κ係安排 於目標面5a〜5d之對面侧之同一侧,可分別位於微機電擺 動式反射鏡12之上方或下方;雷射光源Ua〜lld可分別 產生雷射光線11 la〜1 lid,雷射光源ua〜Hd可受微機 電光學模組1之控制發出雷射光線llla〜llld,經前級掃 描組2之各準直鏡21a〜21d可將雷射光線11 ia〜11 id分別 導正成為平行的雷射光線,再經柱面鏡22a〜22d及反射鏡 23a〜23d,並使雷射光束112a〜112d沿著微機電擺動式反 射鏡12中心轴121 (Z軸)與其擺動旋轉軸123 (Y轴)所 構成之平面(Y-Z平面)射入微機電擺動式反射鏡12之中 〇 心點122上。 當雷射光束112a〜112d正向射入微機電擺動式反射 鏡12時,擺動的微機電擺動式反射鏡12會將雷射光束H2a 〜112d分別以掃描方式形成掃描雷射光束U3a〜113d;掃 描雷射光束113a〜113d以掃描平面射出並經過後級掃描 組3 ;該後級掃描組3包含複數ίθ鏡片組31a〜31d,各 f Θ鏡片組31a〜31d可為一片式或二片式所組成,f 0鏡 片組31 a〜31 d係使掃描雷射光束113a〜113d轉換成掃描 角度與時間係為線性關係的顯像雷射光束114a〜114d,此 顯像雷射光束114a〜114d射出達目標面5a〜5d,構成彩 17 200844478 色掃描。 對於更進一步應用此實施例,可在微機電光學控制模 組1上設有感測器14(15)及於後極掃描組3内包含溢位反 ^鏡33(34),可將各色彩之溢位掃描雷射光束轉變成電子 4吕5虎’供各色彩掃描時之控制所需。 在本實施例更可依據光程對於各光學元件設計其位置 與角度,並將此位置與角度安排於一精密的外殼4内;外 殼4已預先設有各光學元件之承座42或插槽41,其各承 座42或插槽41已預先經過光程之計算,其相對位置在容 f), σ午么差範圍内,因此各光學元件僅需固定於各承座或插槽 中,即可達各光學元件定位之在容許公差範圍内、且快 組裝要求。 組裝時,在光學控制電路板13上將各光學元件如雷射 光,11a〜lid、微機電擺動式反射鏡12或感測器34/35(如 果裝设)依原設計之各承座42或插槽41裝配固定後,成 為微機電光學控制模組1 ;再將雷射光源lla〜Ud與準直 叙21a〜21d先行以光學儀器校準,形成一個校準完成的模 組,再裝配於外殼4,而其餘各光學元件則以預先設計位 置與角度的插槽41或承座42裝配固定即可達製造盥維修 U 便利。 …乂 h以上所示僅為本發明之較佳實施例,對本發明而言僅 是說明性的,而非限制性的。本領域專業技術人員理解, 在本發明權利要求所限定的精神和範圍内可對复 改變,修改,甚至等效變更,但都將落入本發明的保^ 圍内。 【圖式簡單說明】 圖1係習知一微機電雷射掃描裝置其雷射光束以斜向射入 Μ機電擺動式反射鏡而反射掃描之俯視示意圖。 圖2係習知另一微機電雷射掃描裝置其雷射光束以斜向射 200844478 入微機電擺匕射鏡而反射掃描之立體 ? 3係習Ίϊίί射掃料置中其雷射光束以斜向射入 微機電擺動式反射鏡之立體示意圖。 圖4係圖3中彳放杜:電擺動式反射镑將兩射本击 掃描雷射光束之立體示意圖料鏡將田射7^祕成不對稱 圖5係本發明第一實施例(單色)之一側視示意圖。 圖6係圖5中局部(上半部)之俯視示意圖。 圖7係圖5中一局部(下半部)之俯視示意圖。 圖8係圖5實施例之立體示意圖。 射鏡If, the optical control circuit board 13, the laser light source 11, the micro-electromechanical and collimating mirror 21 are calibrated by the laser source 11 on the optical circuit board 13 can be calibrated to form a calibrated Module, this;; also suitable for the volume of the laser scanning device, can be quickly and easily finished 10 200844478 The first shot of the mirror 23H main mirror 22 and the collimating mirror 21 for calibration, to align with the second, Direction, and calibrate the reflection angle of the mirror 23, so that the laser beam is reversed by the center 121 (/the laser beam can follow the plane of the microelectromechanical oscillating mirror 12 (γ~ζ flat f) and its oscillating rotation axis 123 ( The Y-axis is formed by 122; ) is injected into the fourth step of the center point of the microelectromechanical oscillating mirror 12, and the second f Θ lens 32 f β lens group 31 is adjusted (for example, the first f Θ lens 31 is aligned with the mandrel, Adjust f) ^Center axis and MEMS oscillating mirror 12 12 reflection plane calibration · θ Rao group 31 axis and micro-electromechanical oscillating mirror brother five steps, position calibration between 调,, 尹, = The mirror group 33 (34) and the sensor 14 (丨5) on the sensor η (15) can reflect light to the light. The laser scanning plug of the microelectromechanical oscillating mirror disclosed by the control circuit board 13 can at least achieve the following advantages: Ο other optical components, the module 1 has the laser light source 11 and the circuit board 13 thereon; The position of the second original design is arranged in the optical control standard; the remaining components are the second instrument to calibrate the collimating mirror 21 and the laser light source 11 to avoid the convenience and speed of the assembly and calibration of the control module 1 . The defensive reconciliation, and the assembly and calibration are not limited to the calibration of the laser touch 1 and the quasi-money 23, due to the device assembly; the offline meta-group can be faster than the laser scan (3), for the color laser The scanning device can be arranged by the plurality of sources (11a~lid as shown in FIG. 11), and the arrangement of the first micro-electromechanical oscillating mirror 12 can be used only after U-turning. j 1 can use a micro-electromechanical swing 200844478 mirror 12 to achieve the purpose of four-color scanning, saving the use of optical components and saving costs. Embodiments Referring to FIGS. 5-11, the microelectromechanical oscillating laser scanning device of the present invention comprises a MEMS optical control module 1, a pre-scanning group 2 and a post-scanning group 3, wherein the MEMS optics The control module 1 includes a laser light source U, a microelectromechanical oscillating mirror 12 and an optical control circuit board 13; the front scanning group 2 includes a reflective lens 23; the rear scanning group 3 includes a f0 lens group 31. In order to reduce the volume of the laser scanning device and avoid the occurrence of asymmetry caused by the micro-p-electromechanical oscillating mirror 12, the main feature of the present invention is that the laser light source 11 and the micro-electromechanical oscillating mirror 12 are arranged. On the same side opposite to the target surface 5, if the laser light source 11 and the microelectromechanical oscillating mirror 12 are disposed on the same optical control circuit board 13, the volume of the laser scanning device can be reduced, and the module can be further modularized. Ways to simplify the complexity of assembly. The laser light source 11 emits the laser beam 111, and after being reversed in the direction of the mirror 23 of the front-stage scanning group 2, as shown in Figs. 5 and 6, it is incident on the center point 122 of the microelectromechanical oscillating mirror 12 in the forward direction. That is, the plane (YZ plane) formed by the central axis 121 (Z axis) of the microelectromechanical oscillating mirror 12 and the oscillating rotation axis 123 U (Y axis) is incident on the center point 122 of the MEMS oscillating mirror 12 as 5, 7, 9, and 10; thus, after the X-axis (rotation axis 123) is rotated in the X-axis direction via the microelectromechanical oscillating mirror 12, the scanning laser beam 113 can be generated as shown in the figure. 7 and 11; the scanning laser beam 113 is converted into the laser beam 114 of the linear relationship between time and angle via the lens group 31 of the post-scan group 3, and is incident on the target surface. 5: The f0 lens group 31 can be designed as a single scanning lens, a two-piece f<9 double scanning lenses, or a multi-piece f Θ lens structure for different needs. Multiple scanning 12 200844478 lenses) 〇 for the laser of the present invention The present invention further discloses the assembly method thereof, comprising the steps of: assembling the laser light source 11 and the microelectromechanical oscillating mirror 12 on an optical control circuit board 13 in a pre-designed position; recalibrating the mirror 23 The angle of reflection causes the laser beam 111 to reverse direction and enter the micro-electromechanical plane along the plane (YZ plane) formed by the central axis 121 (z-axis) of the microelectromechanical oscillating mirror 12 and its oscillating rotational axis 123 (Y-axis) The center point 122 of the oscillating mirror 12; the father f Θ lens group 31, so that the central axis of the f Θ lens group 31 is coaxial with the central axis 121 of the microelectromechanical oscillating mirror 12, and the microelectromechanical oscillating type The scanning plane of the mirror 12 can be incident on the lens group 31. Therefore, the microelectromechanical laser scanning device of the invention has the advantages of simple structure, assembly=seven and scanning spot symmetry, and can be applied to the monochrome laser scanning device, and can also be easily extended for use in color lasers. The second embodiment is shown in FIG. 12: <First Embodiment> The port is shown in Figs. 5-11, which is used for the monochrome laser scanning microelectromechanical laser scanning device. , with a precision housing 4:; micro-electromechanical optical control module of the f-scan device, group 1, optical components in the pre-scan scan group 3 and other necessary components. Γ, ^ ζ 弟 感 感 感 绌 绌 绌 绌 绌 绌 绌 绌 绌 绌 绌 绌 绌 绌 感 感 感 感 感 感 感 感 感 感 感 感 感 15 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描ς 111 is projected onto the mirror 23 by focusing, and - the line can be reversed and uniaxially focused on the microelectromechanical oscillating reflection 23; the rear scanning group 3 includes - (a) lens group 31, a 13 200844478 mirror 33 With a younger two overflow mirror 34. As shown in FIG. 8 , the above-mentioned cylindrical mirror 22 and mirror 23 can be designed as a combined reflection cylindrical mirror (Reflection Cylinder Lens) 24 in place of the cylindrical mirror 22 and the mirror 23 respectively. Individual; the reflective cylindrical mirror is usually a concave cylindrical lens, one side of which is coated with a reflective film layer, and has a reflection function of reversing incident parallel laser light and focusing the reflected parallel laser light on a single axis The focusing function on the electromechanical oscillating mirror; that is, the reflective cylindrical mirror calibrates the laser beam 112 along the central axis 121 (Z axis) of the microelectromechanical oscillating mirror 12 and its oscillating rotational axis 123 (Y axis) The formed plane (γ_Ζ plane) ί is incident on the center point 122 of the microelectromechanical oscillating mirror 12; since the reflecting cylindrical mirror has the combined function of the optical cylindrical mirror 22 and the mirror 23, the optical path is reduced By reducing the volume of the microelectromechanical scanning device and reducing the optical components (cost saving), by the optical path arrangement of the present invention, a cylindrical mirror 24 can be used to achieve the conventional technique while using the cylindrical mirror 22 and the mirror 23 Features. The setting position of the microelectromechanical oscillating mirror 12 is arranged at the same height (the same level difference in the Ζ direction) or different heights as the position of the laser light source 11 (the Χ-Υ plane) (the height of the Ζ direction is different) Poor), can be designed to be assembled together on a microelectromechanical optical control board 13, or designed on separate control boards on the same side, wherein the microelectromechanical optical control board 13 includes circuits, cables, and necessary The electronic component, the microelectromechanical oscillating mirror 12 and the sensor 14 (15); the MEMS oscillating mirror 12 is oscillated at a certain frequency with the Υ axis (the rotating shaft 123) as the axis The mirror on the mirror, when the laser beam 112 is incident on the microelectromechanical oscillating mirror 12, the oscillating microelectromechanical oscillating mirror 12 will form the scanning laser beam 113 in a scanning manner; Since the laser beam 112 is directed toward the microelectromechanical oscillating mirror 12 with its jade surface, its incident direction is the same as the ζ axis of the electromechanical oscillating mirror 12, that is, the incident laser beam 112 is connected with 14 200844478 = ' Qiao 1 = shooting r:, x, vertical, because The illuminating light 12 is in the direction of the calcium °°, σ 八 中, the point, the electromechanical oscillating mirror axis is symmetrical, and the scanning laser beam 113 reflected from the 户 电 电 Ζ £ £ 式 式 式The scanning laser beam 3 reflected by the mirror 12 includes a scanning group 3 of the Θ 片 泾 ; ; ;; the scanning angle of the scanning group is the scanning angle and the slice of the scanning laser beam 113, two pieces; Relationship, lens group 3 can be one-piece or two-inch, aspherical convex ^>fj group 31 is composed of first f0 lens 31 (normal mirror), and μ-one lens 32 (usually aspherical convexity) The consumption of sexual relations 1 ====The scanning angle and the time are the relationship of the non-linear 16 relationship. The scanning angle and time are the line laser scanning. This imaging laser beam 114 emits this light drum. The target surface 5 of the printer, scanner, etc. (if the sense is exceeded, 4 maximum scanning area (for example, scanning for A4 size paper, ί by ^!/ i-bit scanning laser beam 115) /116 as shown in Figure 7, r and electromechanical anti-f: mirror 33/34 reflected to the first / second sensor 14/15 on the same side as the laser light source module 1 ° ~ / a mirror ^ 12 After the first, - sense = 14 / 15 receiving the left / right scanning light 115 / 11 brother 6 printing: U internal photoelectric switch, send an electronic signal, that the laser is still with ί or the use of the scanner In addition, the first/second sensor 14/15 may be disposed on the *control circuit board 13 or may be mounted on the same side as the wire control board 13, that is, the laser source mode. Group 机电, electromechanical oscillating, face 12, first / second sensing state 14/15 can be assembled on the same circuit board or on the same circuit board to achieve Lang's cost and calibration convenience. Several - in the micro-electromechanical laser scanning When the device is designed, the position and angle of each light=component can be designed according to the optical path, and the position and angle are arranged in the precision and the outer casing 4; that is, the outer casing 4 has the slots 41 or 15 of the optical components previously provided. The socket 42 is as shown in FIG. 5, wherein the slot 41 or the socket 42 has been calculated by the optical path in advance, and the relative position is within the tolerance range, so that the optical components need only be fixed to the respective sockets 42. In the slot 41, it is possible to achieve the positioning of each optical component within an allowable tolerance range and quick assembly requirements. Ο Ο Group I, each optical element such as laser light source 11, micro electromechanical oscillating mirror 12 and sensor ι4 (ι5) can be designed on the optical control circuit board 13 according to the original slot 41 or socket After the assembly is fixed, it becomes a microelectromechanical optical control module 1. In this embodiment of the invention, the precision outer casing 4 has been pre-designed to manufacture the slots 41 or the optical components of the optical components according to the positions and angles of the optical components. The seat 42 can be accommodated in each slot 41 or the socket 42 during assembly to conform to the pre-designed position and angle of each component. The first embodiment of the invention is assembled and calibrated only by first assembly.彳^Electrical control module 1, and then the laser source 11 and the collimating mirror 23 are first calibrated by optical instruments to form a calibrated MEMS optical control module i, which is assembled on the outer casing 4 to be manufactured. And the convenience of maintenance; in other words, the laser light source 11 and the collimating mirror 21 can be first calibrated on the optical control circuit board 13 optical instrument, and the calibration is limited by the Φ ray sweep product, and can be quickly and conveniently become Pre-calibrated module, this U completed MEMS can be quickly set in the laser scanning device and Si wearing element according to the original design of the allowable tolerance range is fixed to the housing < 4 speed and precision of assembly, this is another effect of the present invention. The electromechanical oscillating mirror 12 of the developing laser beam 114 of the MEMS laser scanning device is oscillated at a resonance frequency, and its resonance frequency temperature is affected. Therefore, the heat of the τ θ lens group 31 in the MEMS laser scanning device should be appropriately derived; In the embodiment of the present invention, the socket 42 of the lens set 31 of the outer casing 4 is a metal having good heat conduction performance, such as ^, and is fixedly connected to the base of the metal casing 4, and the heat generated by the lens group 31 can be utilized by the aluminum metal The socket 42, which is conducted to the outer casing of the outer casing 4, dissipates heat.八离甩16 200844478 <Second Embodiment> As shown in FIG. 12, it is a microelectromechanical laser scanning device for a color laser printer or scanner, having a precision outer casing 4, To accommodate the optical components of the microelectromechanical optical control module 1, the front scan group 2, the rear scan group 3, and other necessary components of the laser scanning device. The MEMS optical control module 1 includes an optical control circuit board 13 on one side of which is equipped with a laser light source 11a~lid and a microelectromechanical oscillating mirror 12; the front scanning group 2 includes collimating mirrors 21a-21d and a cylinder Mirrors 22a to 22d and mirrors 23a to 23d; rear scanning group 3 includes f 0 lens groups 31 a to 31 d; laser light sources 11a to 11d and microelectromechanical oscillating mirrors κ are arranged on target surfaces 5a to 5d The same side of the opposite side may be located above or below the microelectromechanical oscillating mirror 12; the laser sources Ua lld may respectively generate laser light 11 la~1 lid, and the laser sources ua~Hd may be subjected to MEMS optics. The control of the module 1 emits laser light 111a~llld, and the collimated mirrors 21a-21d of the pre-scan group 2 can respectively guide the laser rays 11 ia 11 11 id into parallel laser rays, and then pass through the column. The mirrors 22a to 22d and the mirrors 23a to 23d are arranged such that the laser beams 112a to 112d are along the plane formed by the central axis 121 (Z axis) of the microelectromechanical oscillating mirror 12 and the oscillating rotary axis 123 (Y axis) ( The YZ plane) is incident on the center point 122 of the microelectromechanical oscillating mirror 12. When the laser beams 112a~112d are forwardly incident into the microelectromechanical oscillating mirror 12, the oscillating microelectromechanical oscillating mirror 12 will form the scanning laser beams U3a~113d in a scanning manner; The scanning laser beams 113a to 113d are emitted at a scanning plane and passed through the subsequent scanning group 3; the subsequent scanning group 3 includes a plurality of ίθ lens groups 31a to 31d, and each of the f lens groups 31a to 31d may be one-piece or two-piece. The f 0 lens groups 31 a to 31 d convert the scanning laser beams 113a to 113d into developing laser beams 114a to 114d whose scanning angles are linear with time, and the developing laser beams 114a to 114d The target surface 5a~5d is emitted to form a color 17 200844478 color scan. For further application of this embodiment, the MEMS optical control module 1 is provided with a sensor 14 (15) and the back-pole scanning group 3 includes an overflow mirror 33 (34) for each color The overflow scanning laser beam is converted into an electronic 4 Lu 5 tiger's for control of each color scan. In this embodiment, the position and angle of each optical component can be designed according to the optical path, and the position and angle are arranged in a precision outer casing 4; the outer casing 4 has a socket 42 or a slot of each optical component previously provided. 41, each of the socket 42 or the slot 41 has been calculated by the optical path in advance, and its relative position is within the range of f), σ, and so that each optical component only needs to be fixed in each socket or slot. It is possible to achieve the positioning of each optical component within the tolerance range and fast assembly requirements. When assembled, each optical component such as laser light, 11a~lid, microelectromechanical oscillating mirror 12 or sensor 34/35 (if installed) is designed on the optical control circuit board 13 according to the original design of each socket 42 or After the slot 41 is assembled and fixed, it becomes the MEMS optical control module 1; the laser light sources 11a~Ud and the collimation 21a~21d are first calibrated by optical instruments to form a calibrated module, which is then assembled in the outer casing 4. The remaining optical components are assembled and fixed with the slot 41 or the socket 42 of the pre-designed position and angle to facilitate the manufacture and maintenance. The above is only the preferred embodiment of the invention, and is merely illustrative and not limiting. It will be appreciated by those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view showing a conventional microelectromechanical laser scanning device in which a laser beam is obliquely incident on a Μ electromechanical oscillating mirror and a reflection scan is performed. FIG. 2 is a conventional microelectromechanical laser scanning device in which a laser beam is obliquely incident on a MEMS mirror and reflected into a micro-electromechanical pendulum mirror. The three-dimensional scanning device is placed in a diagonal direction. A perspective view of a microelectromechanical oscillating mirror. FIG. 4 is a perspective view of the first embodiment of the present invention. FIG. 4 is a perspective view of the first embodiment of the present invention. ) A side view of the schematic. Figure 6 is a top plan view of a portion (upper half) of Figure 5. Figure 7 is a top plan view of a portion (lower half) of Figure 5. Figure 8 is a perspective view of the embodiment of Figure 5. Shot mirror
Ο 圖9係圖5中其雷射光束以正向射入微機電擺動式反 之立體示意圖。 圖10係圖5中微機電擺動式反射鏡將雷射光束形成 描雷射光束之立體示意圖。 冉婦 圖11係圖5本發明第一實施例(單色)使用反射柱面鏡 侧視示意圖。 圖12係本發明第二實施例(彩色)之一側視示意圖。 【主要元件符號說明】 1 :微機電光學控制模組(MEMS Control Module) II、 1 la〜1 Id :雷射光源(Laser Source) III、 111a〜llld :雷射光線(Laser Light) 112、 112a〜112d :雷射光束(Laser Beam) 113、 113a〜113d :掃描雷射光束(Scanning Beam) 114、 114a〜114d :顯像雷射光束(Imaging Beam) 115、 116 :溢位掃描雷射光束(Over-range Beam) 12 :微機電擺動式反射鏡(MEMS Mirror) 121中心軸 122中心點 12 3擺動旋轉轴 13 :光學控制電路板(Control PCB) 19 200844478 14 :感測器(第一感測器)(Sensor,first Sensor) 15 ··第二感測器(Second Sensor) 2 :前級掃描組(Pre-scan Module) 21、 21a〜21d :準直鏡(Collimator Lens) 22、 22a〜22d ··柱面鏡(Cylinder Lens) 23、 23a〜23d :反射鏡(Reflection Mirror) 24、 反射柱面鏡(Reflection Cylinder Lens) 3 :後級掃描組(Post-scan Module) 31、31a〜31d :f0鏡片組(第一 f0鏡片) (ί Θ Lens, First ίθ Lens) 32 ··第二 f<9 鏡片(Second ίθ Lens) 3 3 ·>盈位反射鏡組(第一溢位反射鏡) (Over-range Mirror, First Over-range Mirror) 34 ··第二溢位反射鏡(Second Over-range Mirror) 4 :外殼(Housing) 41 :插槽(solt) 42 :承座(pedestal) 5、5a〜5d :目標面(Target)Ο Figure 9 is a perspective view of the laser beam in the forward direction of the microelectromechanical oscillating type in Fig. 5. Figure 10 is a perspective view showing the microelectromechanical oscillating mirror of Figure 5 forming a laser beam of a laser beam. Fig. 11 is a side view showing the first embodiment (monochrome) of the present invention using a reflecting cylindrical mirror. Figure 12 is a side elevational view of a second embodiment (color) of the present invention. [Main component symbol description] 1 : MEMS Control Module II, 1 la~1 Id: Laser Source III, 111a~llld: Laser Light 112, 112a ~112d: Laser Beam 113, 113a~113d: Scanning Beam 114, 114a~114d: Imaging Beam 115, 116: Overflow Scanning Laser Beam ( Over-range Beam) 12 : Microelectromechanical oscillating mirror (MEMS Mirror) 121 Center axis 122 Center point 12 3 Swinging axis 13 : Optical control board (Control PCB) 19 200844478 14 : Sensor (first sensing (Sensor, first Sensor) 15 · Second Sensor (Second Sensor) 2: Pre-scan Module 21, 21a~21d: Collimator Lens 22, 22a~22d · · Cylinder Lens 23, 23a ~ 23d: Reflection Mirror 24, Reflection Cylinder Lens 3: Post-scan Module 31, 31a ~ 31d: F0 lens group (first f0 lens) (ί Θ Lens, First ίθ Lens) 32 ·· f<9 lens (Second ίθ Lens) 3 3 ·>Over-range Mirror (First Over-range Mirror) 34 ··Second overflow mirror (Second Over-range Mirror) 4 : Housing 41 : Slot 42 : pedestal 5, 5a~5d : Target surface