[go: up one dir, main page]

TW200841317A - Source driver, electro-optical device, and electronic instrument - Google Patents

Source driver, electro-optical device, and electronic instrument Download PDF

Info

Publication number
TW200841317A
TW200841317A TW096145785A TW96145785A TW200841317A TW 200841317 A TW200841317 A TW 200841317A TW 096145785 A TW096145785 A TW 096145785A TW 96145785 A TW96145785 A TW 96145785A TW 200841317 A TW200841317 A TW 200841317A
Authority
TW
Taiwan
Prior art keywords
voltage
circuit
output
tone
source
Prior art date
Application number
TW096145785A
Other languages
Chinese (zh)
Other versions
TWI386897B (en
Inventor
Katsuhiko Maki
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of TW200841317A publication Critical patent/TW200841317A/en
Application granted granted Critical
Publication of TWI386897B publication Critical patent/TWI386897B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0294Details of sampling or holding circuits arranged for use in a driver for data electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

A source driver that drives a plurality of source lines of an electro-optical device includes a grayscale voltage generation circuit that outputs first and second grayscale voltages corresponding to grayscale data, and a source line driver circuit that drives a source line among the plurality of source lines based on the first and second grayscale voltages. The source line driver circuit includes a flip-around sample/hold circuit that outputs an output grayscale voltage between the first and second grayscale voltages to the source line.

Description

200841317 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種源極驅動器、光電萝 工电屐置及電子機器 等。 【先前技術】 先前用於行動電話等之電子機器的液晶面板(光電裝 置熟知有單純矩陣方式之液晶面板,與使用薄膜電晶 體(Thin Film Transistor ·•以下簡稱為TFT)等之切換元件的 主動矩陣方式之液晶面板。 單純矩陣方式之優點是比主動矩陣方式容易低耗電化, 而缺點是多色化及動晝顯示困難。另外,主動矩陣方式之 優點是適於多色化及動晝顯示,而缺點是低耗電化困難。 而近年來,行動電話等之攜帶式電子機器為了提供高品 質之影像,而加強對多色化及動晝顯示之需求。因而,使 用主動矩陣方式之液晶面板,來取代過去使用之單純矩陣 方式之液晶面板。主動矩陣方式之液晶面板,係藉由在經 閘極線選出之像素中寫入賦予源極線之信號,而使像素之 透過率變化。 近年來,隨著液晶面板之晝面尺寸擴大及像素數增加, 液曰曰面板之源極線數量增大,且要求賦予各源極線之電壓 的同精確度化。再者,隨著要求搭載液晶面板之電池驅動 、電子機器幸二里小型化,亦要求驅動液晶面板之源極線的 源極驅動為低耗電化及該源極驅動器之晶片尺寸的縮小 化。因而,源極驅動器須為結構簡單且高功能者。 127200.doc 200841317 如專利文獻1及專利文獻2中揭示有可進行驅動源極驅動 器之源極線的輸出電路之導軌至導軌動作,並可高精確产 地供給電壓至源極線之結構。 [專利文獻1]曰本特開2005-175811號公報 [專利文獻2]日本特開2005-175812號公報 【發明内容】 [發明所欲解決之問題] 但是,揭示於專利文獻1及專利文獻2之技術,係各輪出 電路藉由搭載輔助電路,控制驅動能力,以實現導轨至導 執動作。因而,需要搭載輔助電路作為附加電路 屯崎,而有源 極驅動器之電路規模變大的問題。此外,為了抑制賦予源 極線之電壓的變動,而導致電晶體之尺寸變大。 再者’為了高精確度地供給電壓至源極線,需要對廉於 色調資料,而不變動地將來自產生色調電壓之DAC的電壓 供給至源極線。因而,色調數增加時,色調電壓信號線之 數量亦須增加,而有晶片尺寸變大之問題。 此外,一般之運算放大器需要考慮輸出電壓之變動。因 而,需要增大構成運算放大器之電晶體的尺寸,來抑制輸 出電壓之變動。 本發明一種態樣係提供電路規模小,藉由導轨至導轨動 作,可高精確度供給電壓至源極線之源極驅動器、 置及電子機器。 ° 電裝 此外,本發明其他態樣提供電路規模小,可抑制輪出電 昼之變動’且高精確度供給電壓至源極線之源極驅動器、 127200.doc 200841317 光電裝置及電子機器。 、=者纟發明其他態樣提供即使色調數增加時,色調電 、、線數里仍4 ’且可㊣精確度供給電屢至源極線之源 極驅動器、光電裝置及電子機器。 [解決問題之技術手段] 為了解決上述問題,本發明之源極驅動器,❹於驅動 光電裝置之源極線,且包含··200841317 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a source driver, a photoelectric power device, an electronic device, and the like. [Prior Art] A liquid crystal panel previously used for an electronic device such as a mobile phone (the photoelectric device is well known as a liquid crystal panel of a simple matrix type, and an active component using a switching element such as a thin film transistor (hereinafter referred to as TFT). Matrix-type liquid crystal panel. The advantage of the simple matrix method is that it is easier to consume than the active matrix method, and the disadvantage is that it is difficult to display multi-color and dynamic display. In addition, the advantage of the active matrix method is that it is suitable for multi-colorization and dynamics. Display, and the disadvantage is that it is difficult to reduce power consumption. In recent years, portable electronic devices such as mobile phones have increased the demand for multi-color and dynamic display in order to provide high-quality images. The liquid crystal panel replaces the liquid crystal panel of the simple matrix method used in the past. The active matrix liquid crystal panel changes the transmittance of the pixel by writing a signal to the source line in the pixel selected through the gate line. In recent years, with the increase in the size of the surface of the liquid crystal panel and the increase in the number of pixels, the number of source lines of the liquid helium panel has increased. In addition, it is required to provide the same accuracy to the voltage of each source line. Further, as the battery drive for mounting the liquid crystal panel and the electronic device are required to be miniaturized, the source driving of the source line for driving the liquid crystal panel is required to be The power consumption is reduced and the size of the wafer of the source driver is reduced. Therefore, the source driver must be simple in structure and high in function. 127200.doc 200841317 As disclosed in Patent Document 1 and Patent Document 2, a driving source can be disclosed. The guide rail of the output line of the source line of the driver is operated by the guide rail, and the voltage is supplied to the source line in a high-precision manner. [Patent Document 1] JP-A-2005-175811 (Patent Document 2) [Invention] [Problems to be Solved by the Invention] However, the techniques disclosed in Patent Document 1 and Patent Document 2 are that the respective turn-off circuits are controlled by driving an auxiliary circuit to realize the guide rails. Therefore, it is necessary to mount an auxiliary circuit as an additional circuit, and the circuit scale of the source driver becomes large. The variation of the voltage of the line causes the size of the transistor to become larger. Furthermore, in order to supply the voltage to the source line with high precision, it is necessary to reduce the voltage from the DAC which generates the tone voltage, which is cheaper than the tone data. Supply to the source line. Therefore, when the number of tones increases, the number of tone voltage signal lines must also increase, and the size of the chip becomes larger. In addition, the general operational amplifier needs to consider the variation of the output voltage. The size of the transistor constituting the operational amplifier is used to suppress the variation of the output voltage. One aspect of the present invention provides a small-scale circuit, and the source driver of the source line can be supplied with high precision by the action of the rail to the rail. In addition, the other aspects of the present invention provide a small-scale circuit that can suppress fluctuations in the power-out and high-precision supply voltage to the source driver of the source line, 127200.doc 200841317 Devices and electronic machines. In other cases, the source device, the photoelectric device, and the electronic device that supply the electric power to the source line with positive accuracy even when the number of tones is increased, is 4" in the number of lines. [Technical means for solving the problem] In order to solve the above problem, the source driver of the present invention is used to drive the source line of the photovoltaic device, and includes

^周電壓產生電路,其係對應於色調資料,而輸出第— 及第二色調電壓之各色調電壓;及 源極線驅動電路,其係依據前述第一及第二色調電壓, 來驅動前述源極線; 别述源極線驅動電路包含翻轉型抽樣保持電路,其係將 雨述第-色調電壓與前述第二色調電壓間之輸出色調電壓 輸出至前述源極線。 此處,源極驅動器亦可輸出與第一色調電壓同電位之電 壓’亦可輸出與第二色調電壓同電位之電壓,作為輸出色 調電壓。 藉由本發明,由於係藉由翻轉型抽樣保持電路產生第一 及第二色調電壓間之輸出色調電壓,因此結構非常簡單, 可以輸出電路產生複數色調電壓。結果可大幅刪減須產生 之色調電壓種類。藉此,可刪減色調電壓信號線數量,且 可大幅刪減色調電壓產生電路之電路規模。一般而士,色 調電壓產生電路為了供給高電壓,需要增大電晶體尺寸, 而色調電壓產生電路之電路規模的刪減,大 、为助於源極驅 127200.doc 200841317 動器之晶片尺寸的縮小化。 此外,藉由翻轉型抽樣保持電路,無需附加輔助電路等 即可進行導軌至導軌動作’且無需為了抑制變動而增大電 晶體之尺寸。因而’有助於源極驅動器之晶片尺寸的縮 小 〇 再者,藉由本發明’無需為了設定賦予源極線之色調電 壓’而將色調電壓產生電路產生之色調電壓輸出至源極 # 、線’可使色調電壓產生電路之結構小型化。此外,藉由本 發明,僅藉由輸出電路即可高精確度地產生色調電壓。結 果可使色調電壓產生電路之結構簡化。 此外’本發明之源極驅動器中, 前述翻轉型抽樣保持電路包含: 運算放大電路;及 複數電合TL件,其係連接其一端於前述運算放大電路之 輸入; ❿ 、在抽樣期間’於電性遮斷前述運算放大電路之輸出與前 述源極線的狀態下,電性連接前述運算放大電路之輸入及 輸出於月述複數電容元件之各電容元件中儲纟對應於前 述第一或第二色調電壓的電荷; ^ 在前述抽樣期間後之保持期間,電性遮斷前述運算放大 電路之輸入及輸出,可供給將儲存於前述複數電容元件之 電何至别述運算放大電路之輸出而獲得之前述運算放大電 路的輸出電壓輸出至前述源極線。 此外,本發明之源極驅動器中, 127200.doc 200841317 前述翻轉型抽樣保持電路包含·· 運开放大電路’其係在非反轉輸人端子上供給所仏 壓; 、口〜电 與其係插入前述運算放大電路之反轉輪入端子 〇刖’l开放大電路之輸出之間; -端連接於前述反轉輸入端子之第一〜第腦 數)電容元件; 轉用開關弟=翻^用=關’其係將第Ρ(1^Ρ幻’p為整數)翻 電路:二广述第P電容元件之另一端與前述運算放大 冤路之輸出之間; :續入開關,其係第p輸入開關的一端連接於第p 令70仵之另一端;及 輸出開關,其将相L ^ 極線之間;…、μ述運算放大電路之輸出與前述源 在别述弟一〜第彳於λ ΒΒ 述第一以 j輪入開關之各輸人開關的另一端供給前 我弟一色調電壓; 在抽樣期間,於齡 & 述反饋開關,並斷門=述第—〜第j翻轉用開關,接通前 〜第』電容元件的另:出開關之狀態下,在前述第-何一個; 、 端供給則述第一及第二色調電壓之任 在前述抽樣期間後之 〜第j翻轉用開關,斷p :月間,可將藉由接通前述第一 關而獲得之前述第一開别述反饋開關,並接通前述輸出開 出色調電壓輪中色凋電壓與前述第二色調電壓間之輸 印主珂述源極線。 ^272〇〇t(j〇c -9. 200841317 採用域任何—個發明時,因為係使儲存於複數電容元 件=電何移動至運算放大電路之輸出側的結構,所以不受 運异放大電路具有之輸人偏移電壓的影響,而可高精確度 產士輸出色調電壓。此外,#由本發明,可以簡單之結構 使第一及第二色調電壓供給至第一〜第』電容元件。 匕外本發明之源極驅動器於前述輸出色調電壓比輸出 至前述源極線之電壓的最低電位電壓接近輸出至該源極線 之電£的最鬲電位電壓時,前述色調電壓產生電路按照電 位网之順序輸出前述第一及第二色調電壓; 刖述輸出色調電壓比前述最高電位電壓接近前述最低電 位電壓時,丽述色調電壓產生電路可按照電位低之順序輸 出前述第一及第二色調電壓。 ,此外,本發明之源極驅動器於前述輸出色調電壓比前述 最低電位電壓接近前述最高電位電壓時,在前述第一及第 一色調電壓中,高電位側之色調電壓供給至前述第一〜第』 電今7L件之任何一個電容元件的狀態下,可以低電位侧之 色凋電壓供給至前述第一〜第j電容元件之任何一個電容元 件之方式,進行前述第一〜第j輸入開關之開關控制。 此外本發明之源極驅動器於前述輸出色調電壓比前述 最同電位電壓接近前述最低電位電壓時,在前述第一及第 一色凋電壓中,低電位侧之色調電壓供給至前述第一〜第j 電谷元件之任何一個電容元件的狀態下,可以高電位側之 色凋電壓供給至前述第一〜第j電容元件之任何一個電容元 件之方式,進行前述第一〜第j輸入開關之開關控制。 127200.doc 200841317 藉由上述任何一個發明 關產生线漏,因此可避…抑制弟一〜弟_轉用開 情況。口此了避免輸出色調電壓之電壓位準變動的 此外,本發明之源極驅動器中, 等亦了㈣弟-’電容元件之各電容元件的電容值相 明’可精確且輕易地產生第一及第二色調電壓 間之輸出色調電壓。 此外,本發明之源極驅動器中, 可包含在一端供給所給 ^丄兩 在另一端連接前述運算 放大電路之反轉輸入端子的辅助電容元件。 精由本發明,可抑制谨瞀 ㈣也* 電路之反轉輸人端子的電 U動’而實現輸出色調電壓進一步之穩定化。 此外,本發明之源極驅動器中, 前述輔助電容元件亦可兼用為形献電容元件形成區域 内之虛擬用的電容元件。 此外,本發明之源極驅動器中, /區動前述光電裝置之各源極線的各源極驅動器區塊包含 :數源極驅動器區塊’其係包含前述色調電壓產生電路及 前述源極線驅動電路; 各源極驅動器區塊在與前述複數源極驅動器區塊之排列 方向交又的方向,具有开彡占今、卞& 外 啕形成則述弟一〜第』電容元件及前述 輔助電容元件的電容元件形成區域; 前述輔助電容元件亦可在前述電容元件形成區域之邊界 127200.doc 200841317 中’沿著在與前述排列方向交叉之方向相對的邊界而形 成。 藉由本發明,可精確形成第一〜第】電容元件之電容值, 另外’不浪費佈局面積而可形成辅助電容元件。 此外,本發明之源極驅動器中, 月丨】述運异放大電路可在前述抽樣期間進行A級放大動 作,在4述保持期間進行AB級放大動作。a weekly voltage generating circuit for outputting respective tone voltages of the first and second tone voltages corresponding to the tone data; and a source line driving circuit for driving the source according to the first and second tone voltages The source line driving circuit includes a flip type sample-and-hold circuit that outputs an output tone voltage between the rain-first color tone voltage and the second color tone voltage to the source line. Here, the source driver may also output a voltage of the same potential as the first tone voltage, and may also output a voltage of the same potential as the second tone voltage as the output tone voltage. According to the present invention, since the output tone voltage between the first and second tone voltages is generated by the flip type sample-and-hold circuit, the structure is very simple, and the output circuit can generate a complex tone voltage. As a result, the type of tone voltage to be produced can be drastically reduced. Thereby, the number of tone voltage signal lines can be reduced, and the circuit scale of the tone voltage generating circuit can be greatly reduced. In general, the tone voltage generating circuit needs to increase the size of the transistor in order to supply a high voltage, and the circuit scale of the tone voltage generating circuit is reduced, which is large, and contributes to the wafer size of the source driver. Reduced. Further, by the flip type sampling and holding circuit, the rail-to-rail operation can be performed without the addition of an auxiliary circuit or the like, and it is not necessary to increase the size of the crystal in order to suppress the variation. Therefore, it contributes to the reduction of the size of the wafer of the source driver. Further, by the present invention, it is not necessary to output the tone voltage generated by the tone voltage generating circuit to the source #, line' in order to set the tone voltage applied to the source line. The structure of the tone voltage generating circuit can be miniaturized. Further, with the present invention, the tone voltage can be generated with high accuracy only by the output circuit. As a result, the structure of the tone voltage generating circuit can be simplified. In addition, in the source driver of the present invention, the flip type sampling and holding circuit includes: an operational amplifier circuit; and a plurality of electrical TL devices connected to one end of the input of the operational amplifier circuit; ❿, during the sampling period In the state in which the output of the operational amplifier circuit and the source line are interrupted, the input and output of the operational amplifier circuit are electrically connected to each of the capacitive elements of the plurality of capacitive elements, corresponding to the first or second a charge of a tone voltage; ^ electrically interrupting the input and output of the operational amplifier circuit during the hold period after the sampling period, and supplying an output of the operational amplifier circuit stored in the complex capacitor element The output voltage of the operational amplifier circuit is output to the source line. Further, in the source driver of the present invention, 127200.doc 200841317 The above-mentioned flip type sample-and-hold circuit includes a large open circuit which supplies a voltage on a non-inverted input terminal; The reverse rotation terminal 〇刖'l of the operational amplifier circuit is open between the outputs of the large circuit; the - terminal is connected to the first to the first brain of the reverse input terminal; the switch is switched to use =Off' is the circuit that turns the third (1^Ρ幻'p is an integer) to the circuit: between the other end of the P-capacitor element and the output of the aforementioned operational amplifier circuit; One end of the p input switch is connected to the other end of the pth command 70仵; and the output switch is connected between the L^ pole lines; ..., the output of the operational amplifier circuit and the aforementioned source are in the other The other end of each input switch of the j-input switch is supplied with a tone voltage before the λ ΒΒ ; ;; during the sampling period, the feedback switch of the age & With the switch, the state of the other: before and after the capacitor is turned on: Next, in the first one, the end supply, the first and second tone voltages are in the first to the jth flip switch after the sampling period, and the p: month may be turned on by the first The first open feedback switch obtained in the above manner is turned on, and the source of the print source between the color-off voltage and the second tone voltage is turned on. ^272〇〇t(j〇c -9. 200841317 When using any domain-invention, because it is stored in a complex capacitive element = electrical structure that moves to the output side of the operational amplifier circuit, it is not affected by the amplifier circuit. With the influence of the input offset voltage, the tone voltage can be output with high precision. In addition, according to the present invention, the first and second tone voltages can be supplied to the first to the sth capacitance elements in a simple structure. In the source driver of the present invention, when the minimum output voltage of the output tone voltage ratio to the voltage of the source line is close to the last potential voltage of the power output to the source line, the tone voltage generating circuit follows the potential network. The first and second tone voltages are sequentially outputted; when the output tone voltage is closer to the lowest potential voltage than the highest potential voltage, the tone color generating circuit can output the first and second tone voltages in order of low potential Further, in the source driver of the present invention, when the output tone voltage is closer to the highest potential voltage than the lowest potential voltage, In the first and first tone voltages, in a state in which the tone voltage on the high potential side is supplied to any one of the first to the seventh magnetic devices, the color voltage on the low potential side can be supplied to the first one. And switching the first to the jth input switches in a manner of any one of the jth capacitive elements. Further, the source driver of the present invention is when the output tone voltage is closer to the lowest potential voltage than the same potential voltage In a state in which the tone voltage on the low potential side is supplied to any one of the first to jth valley elements in the first and first color burst voltages, the color voltage on the high potential side can be supplied to the aforementioned Switching control of the first to jth input switches is performed by any one of the first to jth capacitive elements. 127200.doc 200841317 By any of the above inventions, a line leakage is generated, so that it is possible to prevent... ~ Brother _ switch to open situation. This is to avoid the voltage level change of the output tone voltage, in addition, the source driver of the present invention, etc. The output capacitance of the first and second tone voltages can be accurately and easily generated. The source driver of the present invention can be included at one end of the supply. The auxiliary capacitance element of the inverting input terminal of the operational amplifier circuit is connected to the other end. The invention can suppress the electric U-turn of the input terminal of the reverse polarity of the circuit and realize the output tone voltage. Further, in the source driver of the present invention, the auxiliary capacitance element may also be used as a dummy capacitance element in the formation region of the capacitor element. Further, in the source driver of the present invention, Each of the source driver blocks of each of the source lines of the optoelectronic device includes: a plurality of source driver blocks comprising: the tone voltage generating circuit and the source line driving circuit; each of the source driver blocks is in a plurality of The direction in which the source driver blocks are arranged in the direction of the direction of the opening, the 卞& The capacitive element forming region of the auxiliary capacitive element; the auxiliary capacitive element may also be formed along a boundary of the boundary between the capacitive element forming regions 127200.doc 200841317 along a direction intersecting the direction in which the array direction intersects. According to the present invention, the capacitance values of the first to _th capacitive elements can be accurately formed, and the auxiliary capacitance elements can be formed without wasting the layout area. Further, in the source driver of the present invention, the differential amplifier circuit can perform the A-stage amplification operation during the sampling period and the AB-level amplification operation during the sustain period.

此外’本發明之源極驅動器中, 前述運算放大電路可包含: 運#放大為,其係放大前述運算放大電路之輸入與該運 算放大電路之輸出的差分值; 第一導電型之第一驅動電晶體,其係設於第一電源側, 依據前述運算放大器的輸出節點之電壓,控制其閘極電 極; 第二導電型之第二驅動電晶體’其係與前述第一驅動電 晶體串聯地設於第二電源側; 電各器’其係用於將前述第一驅叙 — 义弟驅動電晶體之閘極電極與 前述第二驅動電晶體之開極電極進行電容輕合,·及’、 電荷供給電路,其係在前述抽樣期間供給電荷至前 二驅動電晶體之閘極電極,在前述保持期間停止 二驅動電晶體之閘極電極供給電荷。 乐 此外,本發明之源極驅動器中, 前述電荷供給電路包含: 電流產生電路;及 127200.doc 12- 200841317 開關電路’其係插入前述 /王土电塔興刖述雷玄 -端及前述第二驅動電晶體之閘極電極之間; 盗之 前述開關電路亦可以在前 你⑴述抽樣期間接通,在前 期間斷開之方式被開關控制。 疋保持 此外,本發明之源極驅動器中, 鈿述電流產生電路包含供心、士 y、、、、口電机至其没極而二極體車 之電流源電晶體; 逆接In addition, in the source driver of the present invention, the operational amplifier circuit may include: an amplification factor that amplifies a difference value between an input of the operational amplifier circuit and an output of the operational amplifier circuit; a first drive of the first conductivity type a transistor, which is disposed on the first power supply side, controls a gate electrode according to a voltage of an output node of the operational amplifier; and a second driving transistor of the second conductivity type is connected in series with the first driving transistor It is disposed on the second power supply side; the electric device is configured to perform capacitance coupling between the gate electrode of the first driving and the second driving transistor and the opening electrode of the second driving transistor, and And a charge supply circuit that supplies electric charge to the gate electrode of the first two driving transistors during the sampling period, and stops supplying the electric charge to the gate electrode of the two driving transistor during the holding period. Further, in the source driver of the present invention, the charge supply circuit includes: a current generating circuit; and 127200.doc 12-200841317 a switching circuit 'inserted into the aforementioned/Wangtu Electric Tower Xingshuo Lei Xuan-End and the aforementioned Between the gate electrodes of the two driving transistors; the aforementioned switching circuit of the pirates can also be turned on during the sampling period before (1), and the mode of disconnection during the previous period is controlled by the switches. In addition, in the source driver of the present invention, the current generating circuit includes a current source transistor for supplying a heart, a y, a, and a port motor to the poleless and diode vehicle;

一前述開關電路亦可插人前述電流源電晶體之閘極電極盘 前述電容器之一端及前述第二驅動電晶體的閑極電極: 間0 此處’-般之翻轉型抽樣保持電路,不論係抽樣期間或 保持期間,㈣負荷均無變化。而上述任何—個發明之源 :驅動器中:在保持期間需要驅動光電裝置之源極線的負 荷。因而,藉由上述任何一個發明,因為翻轉型抽樣保持 :路在抽樣期間驅動低負荷之輸出,在保持期間驅動高負 荷之輸出,所以可使源極驅動器具備最佳之源極線驅動電 路。而不影響翻轉型抽樣保持電路之功能,可大幅縮小翻 轉型抽樣保持電路之電路規模。 此外’本發明之光電裝置包含: 複數掃描線; 複數源極線; 複數像素,其係藉由前述複數掃描線之各掃描線及前述 複數源極線之各源極線而特定各像素;及 驅動如述複數源極線用之上述任何一個源極驅動器。 127200.doc -13- 200841317 猎由本發明’可提供包含電路規模小,藉由導執至導軌 動作可高精確度供給電壓至源極線之源極驅動ϋ的光電裝 置此外,藉由本發明,可提供包含電路規模小,省略輸 入偏移電壓,而可高精確度供給電壓至源極線之源極驅動 器的光電裝置。再者’ ϋ由本發明,可提供包含即使色調 數增加時,仍可以少數色調電壓信號線高精確度供給電壓 至源極線之源極驅動器的光電裝置。 此外本發明之電子機器包含上述任何一個源極驅動 器。 此外’本發明之電子機器包含上述之光電裝置。 藉由上述任何一個發明,可提供可在源極線上高精確度 地設定色調電壓,且輕量小型化之電子機器。 【實施方式】 以下,就本發明之實施形態,使用圖式詳細作說明。另 外’以下說明之實施形態並非不當地限定記載於申請專利 範圍之本發明内容。此外,以下說明之全部結構並非限定 為是本發明之必要構成要件。 1 ·液晶裝置 圖1顯示本實施形態之主動矩陣型之液晶裝置的結構概 要。此處係就主動矩陣型之液晶裝置作說明,不過,即使 其他液晶裝置仍可適用本實施形態之顯示驅動器。 液日日裝置10包含液晶顯不(Liquid Crystal Display: LCD) 面板(廣義而言係顯示面板,更廣義而言係光電裝置)2〇。 LCD面板20係非晶矽液晶面板,如形成於玻璃基板上。在 127200.doc -14- 200841317 該玻璃基板上配置有:在Y方向排列複數且分別延伸於χ 方向之閘極線(掃描線)GL1〜GLM(M為2以上之整數),與在 X方向排列複數且分別延伸於γ方向之源極線(資料 線)SL1〜SLN(N為2以上之整數)。此外,對應於閘極線 GLm(lSmSM,m為整數,以下相同)與源極線 SLn(l gn$N,η為整數,以下相同)之交叉位置而設置像 素區域(像素),並在該像素區域配置有薄膜電晶體(Thin _ Film Transistor :以下簡稱為 TFT)22 mn。 TFT 22 mn之閘極連接於閘極線GLn。TFT 22 mn之源極 連接於源極線SLn。TFT 22 mn之汲極連接於像素電極26 mn。在像素電極26 mn以及與其相對之相對電極28 mni 間岔封液晶(廣義而言為光電裝置),而形成液晶電容(廣義 而言為液晶元件)24 mn。因應像素電極26 mn與相對電極 28 mn間之施加電壓,而像素之透過率變化。相對電極28 mn中供給相對電極電壓Vcom。 • 此種LCD面板20如藉由貼合形成有像素電極及TFT之第 一基板與形成有相對電極之第二基板,並在兩基板之間密 封作為光電材料之液晶而形成。 口此[CD面板20可包含經由作為開關元件之TFT而與 . 源極線連接的像素電極。此外,LCD面板20可包含:複數 源極線、複數開關元件、及各像f電極經由各源極線與各 開關元件而連接之複數像素電極。 液曰日衣置1 0包含驅動LCD面板2〇之顯示驅動器(廣義而 言為驅動電路)90。顯示驅動器90包含源極驅動器3〇。源 127200.doc 15 200841317 極驅動器30依據對應於各源極線之色調資料,驅動lcd面 板20之源極線SL1〜SLN的各源極線。顯示驅動器9〇可包含 閘極驅動器(廣義而言為掃描驅動器)32。閘極驅動器32在工 個垂直掃描期間内掃描LCD面板2〇之閘極線(31^〜〇1%。 • 顯示驅動器90亦可省略源極驅動器30及閘極驅動器32之至 少一方而構成。 液晶裝置10可包含電源電路94。電源電路94於驅動源極 ^ 線時產生必要之電壓,並將此等對源極驅動器30供給。電 源電路94如產生驅動源極驅動器3〇之源極線時需要的電源 電壓VDDH、VSSH及源極驅動器30之邏輯部的電壓。 此外,電源電路94產生掃描閘極線時需要之電壓,並將 其對閘極驅動器32供給。 再者,電源電路94產生相對電極電壓Vc〇m。電源電路 94配合藉由源極驅動器3〇產生之極性反轉信號p〇L的時 序,將週期性重複高電位側電壓¥(:〇]^11與低電位側電壓 • VCOML之相對電極電壓Vc〇m輸出至LCD面板2〇之相對電 極0 液日日衣置1 0可包含顯示控制器3 8。顯示控制器3 8按照藉 - 由無圖示之中央處理裝置(Central Processing Unit :以; . ^為CPU)等的主機(H_)所設定之内容,控制源極驅動 卯30閘極驅動裔32及電源電路94。如顯示控制器38對源 極驅動器30及閘極驅動器32設定動作模式,並供給在内部 產生之垂直同步信號及水平同步信號。 另外,圖1係在液晶裝置1 〇中包含電源電路94或顯示控 127200.doc -16- 200841317 制器38而構成,不過,亦可將此等中之至少一個設於液晶 裝置10之外部而構成。或是亦可在液晶裝置10中包含主機 而構成。 此外,源極驅動器30亦可内藏閘極驅動器32及電源電路 94中之至少一個。 再者,亦可將源極驅動器30、閘極驅動器32、顯示控制 器38及電源電路94之一部分或全部形成於LCD面板20上。 如圖2係在LCD面板20上形成有顯示驅動器9〇(源極驅動器 30及閘極驅動器32)。如此,LCD面板20可包含:複數源 極線、複數閘極線、各開關元件連接於複數閘極線之各閘 極線及複數源極線之各源極線的複數開關元件、及驅動複 數源極線之源極驅動器而構成。在LCD面板20之像素形成 區域80中形成有複數像素。 圖3顯示圖1或圖2之閘極驅動器32的結構例。 閘極驅動器32包含:移位暫存器4〇、位準移位器42及輸 出緩衝器44。 移位暫存器40包含對應於各閘極線而設置各正反器,而 依序連接之複數正反器。該移位暫存器4〇與時脈信號CPV 同步,將啟動脈衝信號STV保持於正反器時,係依序與時 脈信號CPV同步將啟動脈衝信號STV移Μ鄰接之正反 器。此處輸人之時脈信號CPV係水平同步信號,啟動脈衝 信號STV係垂直同步信號。 位準移位器42將來自移位暫在哭 个㈡τ夕1n臀存為40之電壓位準移位成因 應LCD面板20之液晶元件盘丁 ρτ 丨卞” it i之電晶體能力的電壓位 127200.doc -17 - 200841317 準。該電壓位準,如需要20 V〜50 V之高電壓位準。 輸出緩衝器44將藉由位準移位器42而移位之掃描電壓予 乂緩衝而輸出至閘極線’來驅動閘極線。脈衝狀之掃描電 壓的高電位側係選擇電壓,掃描電壓之低電位侧係非選擇 電壓。 另外,閘極驅動器32如圖3所示,亦可不使用移位暫存 器掃描閘極線,而藉由選擇對應於位址解碼器之解碼結果 _ 的閘極線,來掃描複數閘極線。 圖4顯不圖1或圖2之源極驅動器30的結構例之區塊圖。 源極驅動器30包含:1/〇緩衝器5〇、顯示記憶體52、線 閂鎖器54、色調電壓產生電路58、DAC(數位/類比轉換 器)(廣義而言為色調電壓產生電路)6〇及源極線驅動電路 62 〇 源極驅動器30中,如從顯示控制器38輸入色調資料D。 該色凋貝料D係與點時脈信號DCLK同步輸入,並在ι/〇緩 馨衝斋5〇中予以緩衝。點時脈信號DCLK從顯示控制器38供 給0 緩衝器50藉由顯示控制器38或無圖示之主機存取。 . 被U〇緩衝器50緩衝之色調資料寫入顯示記憶體52中。此 , 外攸顯不記憶體52讀取之色調資料被1/〇緩衝器5〇緩衝 後’對顯示控制器38等輸出。 #顯不記憶體52包含對應於與各源極線連接之各輸出線而 设有各記憶胞的複數記憶胞。各記憶胞藉由列位址及行位 址而特定。此外,1條掃描線部分之各記憶胞藉由線位址 127200.doc -18- 200841317 而特定。 位址控制電路66產生特定顯示記憶體52内之記憶胞用的 列位址、行位址及線位址。位址控制電路66在將色調資料 寫入顯不記憶體52時,產生列位址及行位址。亦即,被 I/O緩衝器50緩衝之色調資料寫入藉由列位址及行位址而 特疋之顯示記憶體5 2的記憶胞中。 列位址解碼器68將列位址予以解碼,而選擇對應於該列The foregoing switching circuit may also be inserted into one end of the capacitor of the gate electrode pad of the current source transistor and the idle electrode of the second driving transistor: between 0 and 'the general flip type sampling and holding circuit, regardless of the During the sampling period or during the holding period, (4) there is no change in the load. And any of the above-mentioned sources of invention: in the driver: the load of the source line of the photovoltaic device needs to be driven during the holding period. Thus, with any of the above inventions, since the flip type sample hold: the path drives the output of the low load during the sampling period and drives the output of the high load during the sustain period, the source driver can be provided with the optimum source line driving circuit. Without affecting the function of the flip-type sample-and-hold circuit, the circuit scale of the flip-flop sample-and-hold circuit can be greatly reduced. In addition, the photovoltaic device of the present invention comprises: a plurality of scanning lines; a plurality of source lines; and a plurality of pixels, wherein the pixels are specified by respective scanning lines of the plurality of scanning lines and respective source lines of the plurality of source lines; Driving any of the above-described source drivers for a plurality of source lines. 127200.doc -13- 200841317 The invention can provide an optoelectronic device comprising a small-scale circuit, a source-driven cymbal that can supply a voltage to a source line with high precision by guiding to a rail action, by means of the invention An optoelectronic device comprising a source driver having a small circuit scale, omitting an input offset voltage, and supplying a voltage to a source line with high accuracy is provided. Further, according to the present invention, it is possible to provide an optoelectronic device including a source driver which can supply a voltage to a source line with a high degree of accuracy even when the number of hue numbers is increased. Furthermore, the electronic machine of the present invention comprises any of the above-described source drivers. Further, the electronic apparatus of the present invention comprises the above-described photovoltaic device. According to any of the above inventions, it is possible to provide an electronic device which can set a tone voltage with high accuracy on a source line and which is lightweight and miniaturized. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail using the drawings. Further, the embodiments described below are not intended to unduly limit the scope of the invention described in the claims. Further, all the configurations described below are not limited to the essential constituent elements of the present invention. 1. Liquid crystal device Fig. 1 shows a schematic configuration of an active matrix type liquid crystal device of the present embodiment. Here, the active matrix type liquid crystal device will be described, but the display driver of this embodiment can be applied to other liquid crystal devices. The liquid day device 10 includes a liquid crystal display (LCD) panel (in a broad sense, a display panel, and more generally, an optoelectronic device). The LCD panel 20 is an amorphous germanium liquid crystal panel, for example, formed on a glass substrate. 127200.doc -14- 200841317 The glass substrate is arranged with a plurality of gate lines (scanning lines) GL1 to GLM (M is an integer of 2 or more) which are arranged in the Y direction and extend in the χ direction, respectively, and in the X direction. A plurality of source lines (data lines) SL1 to SLN (N is an integer of 2 or more) extending in the γ direction are arranged. Further, a pixel region (pixel) is provided corresponding to the intersection position of the gate line GLm (1SmSM, m is an integer, the same applies hereinafter) and the source line SLn (l gn$N, η is an integer, the same below). A thin film transistor (Thin_Film Transistor: hereinafter abbreviated as TFT) 22 mn is disposed in the pixel region. The gate of the TFT 22 mn is connected to the gate line GLn. The source of the TFT 22 mn is connected to the source line SLn. The drain of the TFT 22 mn is connected to the pixel electrode 26 mn. A liquid crystal (generally, a photovoltaic device) is formed between the pixel electrode 26 mn and the counter electrode 28 mni opposed thereto to form a liquid crystal capacitor (in a broad sense, a liquid crystal element) 24 mn. The transmittance of the pixel changes depending on the applied voltage between the pixel electrode 26 mn and the counter electrode 28 mn. The counter electrode voltage Vcom is supplied to the counter electrode 28 mn. The LCD panel 20 is formed by laminating a first substrate on which a pixel electrode and a TFT are formed and a second substrate on which a counter electrode is formed, and sealing a liquid crystal as a photovoltaic material between the substrates. The CD panel 20 may include a pixel electrode connected to the source line via a TFT as a switching element. Further, the LCD panel 20 may include a plurality of source lines, a plurality of switching elements, and a plurality of pixel electrodes each of which is connected to each of the switching elements via the respective source lines. The liquid helium coat 10 includes a display driver (broadly speaking, a drive circuit) 90 that drives the LCD panel. Display driver 90 includes a source driver 3〇. Source 127200.doc 15 200841317 The polar driver 30 drives the source lines of the source lines SL1 SLSLN of the lcd panel 20 in accordance with the tone data corresponding to the respective source lines. The display driver 9A can include a gate driver (broadly speaking, a scan driver) 32. The gate driver 32 scans the gate line of the LCD panel 2 for a vertical scanning period (31^~1%). The display driver 90 may be configured by omitting at least one of the source driver 30 and the gate driver 32. The liquid crystal device 10 can include a power supply circuit 94. The power supply circuit 94 generates a necessary voltage when driving the source line, and supplies the source driver 30. The power supply circuit 94 generates a source line that drives the source driver 3 The power supply voltages VDDH, VSSH, and the voltage of the logic portion of the source driver 30 are required. Further, the power supply circuit 94 generates a voltage required for scanning the gate line and supplies it to the gate driver 32. Further, the power supply circuit 94 The counter electrode voltage Vc 〇 m is generated. The power supply circuit 94 periodically repeats the high potential side voltage ¥(:〇]^11 and the low potential side in cooperation with the timing of the polarity inversion signal p〇L generated by the source driver 3〇. Voltage • VCOML's relative electrode voltage Vc〇m is output to the LCD panel 2's opposite electrode 0. The liquid day is set to 1 0. The display controller 38 can be included. The display controller 3 8 is processed by the central unit (not shown). Device (Central Processing Unit: The contents of the host (H_) such as CPU are controlled by the CPU, etc., and the source driver 卯30 gate driver 32 and the power supply circuit 94 are controlled. If the display controller 38 is connected to the source driver 30 and the gate The driver 32 sets the operation mode and supplies the vertical synchronizing signal and the horizontal synchronizing signal generated internally. In addition, FIG. 1 includes the power supply circuit 94 or the display control 127200.doc -16-200841317 controller 38 in the liquid crystal device 1 . However, at least one of these may be provided outside the liquid crystal device 10. Alternatively, the host device may be included in the liquid crystal device 10. In addition, the source driver 30 may also include a gate driver 32. And at least one of the power supply circuits 94. Further, part or all of the source driver 30, the gate driver 32, the display controller 38, and the power supply circuit 94 may be formed on the LCD panel 20. As shown in FIG. The display driver 9 is formed on the panel 20 (the source driver 30 and the gate driver 32). Thus, the LCD panel 20 can include: a plurality of source lines, a plurality of gate lines, and each of the switching elements is connected to each of the plurality of gate lines. Gate The plurality of switching elements of the source lines of the line and the plurality of source lines and the source driver for driving the plurality of source lines are formed. A plurality of pixels are formed in the pixel formation region 80 of the LCD panel 20. FIG. 3 shows FIG. An example of the structure of the gate driver 32 of Fig. 2. The gate driver 32 includes a shift register 4A, a level shifter 42 and an output buffer 44. The shift register 40 includes gate lines corresponding to the gates. And each of the flip-flops is arranged, and the plurality of flip-flops are sequentially connected. The shift register 4〇 is synchronized with the clock signal CPV, and the start pulse signal STV is held in the flip-flop, and is sequentially and clocked. The signal CPV synchronization shifts the start pulse signal STV to the adjacent flip-flop. Here, the input clock signal CPV is a horizontal synchronizing signal, and the start pulse signal STV is a vertical synchronizing signal. The level shifter 42 shifts the voltage level from the shifting moment to the moment of crying (2), and the voltage level of the liquid crystal element corresponding to the liquid crystal element of the LCD panel 20 127200.doc -17 - 200841317. The voltage level requires a high voltage level of 20 V to 50 V. The output buffer 44 buffers the scan voltage shifted by the level shifter 42. The gate line is output to the gate line to drive the gate line. The high potential side of the pulsed scan voltage is selected voltage, and the low potential side of the scan voltage is a non-selected voltage. In addition, the gate driver 32 is not shown in FIG. The shift gate is used to scan the gate line, and the gate line is scanned by selecting the gate line corresponding to the decoding result of the address decoder. Figure 4 shows the source driver of Figure 1 or Figure 2. Block diagram of the configuration example of 30. The source driver 30 includes: 1/〇 buffer 5〇, display memory 52, line latch 54, tone voltage generation circuit 58, DAC (digital/analog converter) (generalized In other words, the tone voltage generating circuit) 6〇 and the source line driving circuit 62 In the actuator 30, for example, the tone data D is input from the display controller 38. The color faded material D is input in synchronization with the dot clock signal DCLK, and is buffered in the ι/〇 馨 冲 〇 。 5 〇. The signal DCLK is supplied from the display controller 38 to the 0 buffer 50 by the display controller 38 or a host not shown. The tone data buffered by the U buffer 50 is written into the display memory 52. The tone data read by the memory 52 is buffered by the 1/〇 buffer 5〇, and is output to the display controller 38. The display memory 52 includes the output lines corresponding to the respective source lines. There are multiple memory cells of each memory cell. Each memory cell is specified by a column address and a row address. In addition, each memory cell of one scan line portion is specified by a line address of 127200.doc -18-200841317. The address control circuit 66 generates a column address, a row address, and a line address for the memory cells in the specific display memory 52. The address control circuit 66 generates a column bit when the tone data is written to the display memory 52. Address and row address, that is, the tone data buffered by the I/O buffer 50 is written by the column And a row address of the display memory and Cloth Laid memory cell 52 in. Column address decoder 68 will be decoded column address, the column corresponding to the selected

位址之顯示記憶體52的記憶胞。行位址解碼器70將行位址 予以解碼,而選擇對應於該行位址之顯示記憶體52的記憶 胞0 自顯示圯彳思體52讀取色調資料而輸出至線閂鎖器54時, 位址控制電路66產生線位址。亦即,線位址解碼器72將線 位址予以解碼,而選擇對應於該線位址之顯示記憶體^的 記憶胞。而後,從藉由線位址而特定之記憶胞讀取之^固 水平掃描部分的色調資料輸出至線閂鎖器54。 位址控制電路66自顯示記憶體52讀取色調資料而輸出至 I/O緩衝器50時,產生列位址及行位址。亦即,保持於藉 由列位址及行位址而特定之顯示記憶體52的記憶胞之色^ 貝料被I/O緩衝器50讀取。被1/0緩衝器5〇讀取之色調資料 藉由顯示控制器3 8或無圖示之主機取出。 , 口此圖4中列位址解碼器68、行位址解碼器7〇及位址 控制電路66作為控制對顯示記憶體52寫入色調資料之寫入 控制電路的功能。另外,圖4中,線位址解碼器Μ、行位 址解碼器7G及位址控制電秘作為控制從顯示記憶體⑵賣 127200.doc -19- 200841317 取色調資料之讀取控制電路的功能。 線閃鎖器54以規定i個水平掃描期間之問鎖脈衝Lp的變 化時序,閂鎖自顯示記憶體52讀取之丨個水平掃描部分的 色調資料。線閃鎖器54包含各暫存器保持丨個點部分之色 凋資料的複數暫存裔。線閂鎖器54之複數暫存器之各暫存 态中放入從顯示記憶體52讀取之!個點部分之色調資料。 色調電壓產生電路58產生各色調電壓(基準電壓)對應於 各色調資料之複數色調電壓。更具體而言,色調電壓產生 電路58依據高電位側電源電壓VDDH與低電位側電源電壓 VSSH,而產生各色調電壓對應於各色調資料的複數色調 電壓。 DAC 60每個源極輸出產生對應於自線閂鎖器“之丨個水 平掃描部分的色調資料之色調電壓。更具體而言,Dac 58從藉由色調電壓產生電路58所產生之複數色調電壓之 中,選擇自線閂鎖器5 4之1條線部分的色調資料中,對應 於與各源極線對應之色調資料的色調電壓,並輸出選擇之 色調電壓。此種DAC 60包含每個源極輸出設置之電壓選 擇電路DECi〜DECN。各電壓選擇電路從來自色調電壓產生 電路5 8之複數色調電壓中輸出對應於各色調資料之i個色 調電壓。 源極線驅動電路62包含輸出電路〇Pi〜〇Pn。輸出電路 ΟΡ^ΟΡν之各輸出電路包含運算放大電路,並使用來自 DAC 60之各電壓選擇電路的輸出色調電壓進行阻抗轉 換,以驅動源極線。 127200.doc -20- 200841317 2 ·源極驅動器之結構例 本實施形態為了縮小每個源極輸出設置之源極驅動器區 塊的電路規模,在源極線驅動電路62之各輸出電路中設置 翻轉型抽樣保持電路。而後,藉由該翻轉型抽樣保持電路 • 供:電[至源極線。更具體而言’接收藉由DAC 60輸出 之第一及第二色調電壓’翻轉型抽樣保持電路將第一色調 電壓與第二色調電壓間之輸出色調電麼輸出至源極線。 此處,說明包含此種翻轉型抽樣保持電路之源極線驅動 電路62的輸出電路。 圖5顯示源極線驅動電路62之輸出電路〇p〗的結構例之電 路圖。 圖5係顯示輸出電路〇Ρι之結構,不過其他之輸出電路 OP2〜〇PN亦具有與輸出電路〇Ρι相同之結構。此外,圖5係 顚示產生第及第二色調電壓間之2種輸出色調電壓之 例,不過就輸出色調電壓之種類,本發明並無限定。 • 圖5係從DAC 60供給第一及第二色調電壓作為輸入電壓 Vin,並將輸出色調電壓¥〇1^供給至源極線。 藉由在輸出電路中產生之輸出色調電壓的種類為數種, • 可刪減色調電壓產生電路58產生之色調電壓的種類。因 - 而,可大幅刪減色調電壓信號線數量,且亦可大幅刪減 DAC60i甩路規模。如源極驅動器3〇依據6位元之色調資 料驅動源極線時,原本色調電壓產生電路需要產生64(=26) 種色調電壓。然而,因為圖5所示之源極線驅動電路_ 各輸出電路可產生2種色調電壓,所以色調電壓產生電路 127200.doc -21 - 200841317 58只須產生32種色調電壓即 量亦只須如為32"P可 〇而’色調電壓信號線數 乃邓為h條即可,而可蔣多 域減半。另外,奋, 、°。仏旎線之布線區 第一及裳 貝際上“施形態因為輸出電路產生分割 條。 色調電壓之電壓,所以色調電壓信號線需要33The memory of the memory 52 is displayed in the address. The row address decoder 70 decodes the row address, and selects the memory cell 0 of the display memory 52 corresponding to the row address to read the tone data from the display body 52 and output it to the line latch 54. The address control circuit 66 generates a line address. That is, the line address decoder 72 decodes the line address and selects the memory cell of the display memory corresponding to the line address. Then, the tone data of the horizontal scanning portion read from the memory cell specified by the line address is output to the line latch 54. When the address control circuit 66 reads the tone data from the display memory 52 and outputs it to the I/O buffer 50, a column address and a row address are generated. That is, the color of the memory cell of the display memory 52, which is held by the column address and the row address, is read by the I/O buffer 50. The tone data read by the 1/0 buffer 5 is taken out by the display controller 38 or a host not shown. The column address decoder 68, the row address decoder 7A, and the address control circuit 66 in FIG. 4 function as a write control circuit for controlling the writing of the tone data to the display memory 52. In addition, in FIG. 4, the line address decoder 行, the row address decoder 7G, and the address control secret function function as a read control circuit for controlling the color tone data from the display memory (2) to sell 127200.doc -19-200841317. . The line locker 54 latches the tone data of the horizontal scanning portions read from the display memory 52 by the timing of the change of the lock pulse Lp during the i horizontal scanning periods. The line locker 54 includes a plurality of temporary storages of the color data of each of the registers. The temporary storage of the plurality of registers of the line latch 54 is read from the display memory 52! The color data of the dots. The tone voltage generating circuit 58 generates a complex tone voltage corresponding to each tone data for each tone voltage (reference voltage). More specifically, the tone voltage generating circuit 58 generates a complex tone voltage corresponding to each tone data for each tone voltage in accordance with the high potential side power supply voltage VDDH and the low potential side power supply voltage VSSH. Each source output of the DAC 60 produces a tone voltage corresponding to the tone data of the "horizontal horizontal scanning portion of the line latch". More specifically, the Dac 58 is derived from the complex tone voltage generated by the tone voltage generating circuit 58. Among them, the tone data of the one line portion selected from the line latcher 54 corresponds to the tone voltage of the tone data corresponding to each source line, and outputs the selected tone voltage. Such DAC 60 includes each The source output sets the voltage selection circuits DECI to DECN. Each of the voltage selection circuits outputs i tone voltages corresponding to the respective tone data from the complex tone voltages from the tone voltage generation circuit 58. The source line driver circuit 62 includes an output circuit. 〇Pi~〇Pn. The output circuits of the output circuit 包含^ΟΡν include an operational amplifier circuit, and impedance conversion is performed using the output tone voltages of the voltage selection circuits of the DAC 60 to drive the source lines. 127200.doc -20- 200841317 2 · Structure example of source driver This embodiment is designed to reduce the circuit scale of the source driver block set for each source output, and drive the source line. A flip-type sample-and-hold circuit is provided in each of the output circuits of the circuit 62. Then, the flip-type sample-and-hold circuit is provided for: [to the source line. More specifically, the first and the first output by the DAC 60 are received. The two-tone voltage 'flip type sample-and-hold circuit outputs the output tone between the first tone voltage and the second tone voltage to the source line. Here, the source line driver circuit 62 including such a flip type sample-and-hold circuit will be described. Figure 5 shows a circuit diagram of a configuration example of the output circuit of the source line driver circuit 62. Figure 5 shows the structure of the output circuit 〇Ρι, but the other output circuits OP2 〇 PN also have an output circuit In addition, FIG. 5 shows an example in which two kinds of output tone voltages between the first and second tone voltages are generated, but the present invention is not limited in terms of the type of output tone voltage. 60 supplies the first and second tone voltages as the input voltage Vin, and supplies the output tone voltage to the source line. The type of the output tone voltage generated in the output circuit is a number • The type of tone voltage generated by the tone voltage generation circuit 58 can be deleted. Because of this, the number of tone voltage signal lines can be greatly reduced, and the scale of the DAC60i can be greatly reduced. For example, the source driver 3 is based on 6 When the tone data of the bit drives the source line, the original tone voltage generating circuit needs to generate 64 (=26) kinds of tone voltages. However, since the source line driving circuit shown in FIG. 5, each output circuit can generate two kinds of tone voltages. Therefore, the tone voltage generation circuit 127200.doc -21 - 200841317 58 only needs to generate 32 kinds of tone voltages, that is, the amount only needs to be 32"P can be 〇 and the tone signal line number is Deng, h can be Jiang Duo domain halved. In addition, Fen, °. The wiring area of the 仏旎 line is the first and the 裳 际 ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ”

持雷跋1出電路包3翻轉型抽樣保持電路。翻轉型抽樣保 抽心之㈣’在設於1個水平掃描㈣(1H)之前半部的 間與設於後半部之保持期間不同。亦即,翻轉型抽 樣保持電路在保持期間,將儲存於抽樣期間之電荷供給至 其輸出側。 此種輸出電路包含··運算放大電路、與-4連接於運算 “路之輸入的複數電容元件。而後,輸出電路於抽樣 期間’在電性遮斷運算放大電路之輸出與源極線的狀態 下,電性連接運算放大電路之輸入及輸出,而在複數電容 一件之各電谷元件中儲存對應於第一或第二色調電壓的電 荷亦即,在抽樣期間不使源極線之電壓變動,而電性遮 斷運算放大電路之輸出與源極線。而後,在複數電容元件 之端儲存對應於第一及第二色調電壓之任何一個電壓的 電荷,亚且藉由運算放大電路之輸出段的驅動部,而在複 數電容元件之另一端供給電荷。 其-人’在其後之保持期間,輸出電路電性遮斷運算放大 電路之輸入及輸出,而將儲存於複數電容元件之電荷供給 至運算放大電路之輪出。此時,電性連接運算放大電路之 輸出與源極線。亦即,在保持期間,為了在源極線上供給 127200.doc -22- 200841317 輸出色調電壓,而電性連接運算放大電路之輸出與源極 線。而後,電性遮斷運算放大電路之輸入與輸出,將儲存 於複數電谷元件之電荷供給至運算放大電路之輸出。如 此,藉由欲將其輸入電壓與輸出電壓相等之運算放大電路 的輸入侧之虛短路功能,進行運算放大電路之驅動部的電 荷充放電,可使輸出色調電壓變化。Thunder 1 out circuit pack 3 flip type sample-and-hold circuit. The flip type sampling guarantee (4)' is different between the first half of the horizontal scanning (four) (1H) and the holding period of the second half. That is, the flip type sample holding circuit supplies the charge stored during the sampling period to the output side thereof during the holding period. The output circuit includes an operational amplifier circuit, and a -4 is connected to the operation of the "complex capacitive element of the input of the circuit. Then, the output circuit is in the sampling period" to electrically interrupt the output of the operational amplifier circuit and the state of the source line. The electrical input is connected to the input and output of the operational amplifier circuit, and the electric charge corresponding to the first or second hue voltage is stored in each of the electric valley elements of the plurality of capacitors, that is, the voltage of the source line is not made during the sampling period. And electrically interrupting the output of the operational amplifier circuit and the source line. Then, the charge corresponding to any one of the first and second tone voltages is stored at the end of the plurality of capacitive elements, and is operated by the operational amplifier circuit. The driving part of the output section is supplied with charge at the other end of the plurality of capacitive elements. During the subsequent holding period, the output circuit electrically blocks the input and output of the operational amplifier circuit, and is stored in the complex capacitive element. The charge is supplied to the rotation of the operational amplifier circuit. At this time, the output of the operational amplifier circuit is electrically connected to the source line, that is, during the hold period, in order to be in the source line. Supply 127200.doc -22- 200841317 output tone voltage, and electrically connected to the output of the operational amplifier circuit and the source line. Then, the input and output of the electrical interrupting operation amplifier circuit will be stored in the charge supply of the complex valley element. The output of the operational amplifier circuit is such that the charge and discharge of the driving portion of the operational amplifier circuit is performed by the virtual short-circuit function of the input side of the operational amplifier circuit whose input voltage and output voltage are equal to each other, so that the output tone voltage can be changed. .

更具體而言,輸出電路0Pl可包含:運算放大電路 opq、第第j(j為2以上之整數)之電容元件cn〜cj、第一 〜第j之翻轉用開關S3 -1〜S3 -j及輸出開關S4。在運算放大電 路OPC!之非反轉輸入端子上供給類比接地agnd(指定之 電壓)。將運算放大電路0PC1之高電位側電源電壓作為 VDD,將低電位側電源電壓作為vss時,類比接地agnd 可為(VDD+VSS)/2。第一〜第j之電容元件C1〜_一端連 接於運算放大電路〇PCli反轉輸入端子。第一〜第j之電容 元件C1〜Cj之電容值相等。p為整數)之翻轉 用開關S3.P插人第p之電容元件以的另—端與運算放大電 路OPCA輸出之間。輸出開關S4插人運算放大電路ο% 之輸出以及與源極線SL1電性連接之輸出線之間。藉由在 第一〜第j之電容元件C1〜cj中供給第一及第二色調電壓, 可產生第-及第二色調電壓之間的2ϋ-υ種輸出色調電壓。 另二,輸出電路0P1進一步可包含第一〜第』之輸入開 關第p(l=p^j’p為整數)之輸入開關的一端連接於第p 之電容元件以的另一端。而後’在第-〜第j輸入開關之各 輸入開關的另一端時間分割地供給第一或第二色調電壓。 127200.doc -23· 200841317 其次’以圖5之情況為例,說明更具體之結構及動作。 圖5顯不』係2之情況。第一輸入開關如藉由開關控制信號 SCO進打開關控制(接通斷開控制第二輸入開關叫由 開關控制信號SC1進行開關控制。反饋開關幻藉由開關控 制信號SC2進行開關控制。第—及第:翻轉用開關叫、 仏2藉由開關控制信號SC3進行開關控制。輸出開關以藉 由開關控㈣f虎SC4進行開關㈣。此種開關控制信^ SCO〜SC4係在無圖示之輸出電路〇Ρι的控制電路中產生。 圖6顯示圖5之輸出電路0Pl的第一動作例之說明圖。 在抽樣期間,時間分割地供給第一色調電壓Vini及第二 色調電壓Vin2。在供給第一色調電壓Vinl之期間,以第一 輸入開關S0接通,其以後之抽樣期間與保持期間斷開之方 式進行開關控制。此外,第二輸入開關S1以至少在供給第 二色調電壓Vin2之期間接通之方式進行開關控制。再者, 第二輸入開關S1以在抽樣期間接通,在保持期間斷開之方 式進行開關控制。 反饋開關S2以在抽樣期間接通,在保持期間斷開之方式 進行開關控制。第一及第二翻轉用開關S3_l、S3-2以在抽 樣期間斷開,在保持期間接通之方式進行開關控制。輪出 開關S4以在抽樣期間斷開,在保持期間接通之方式進行開 關控制。 亦即,於抽樣期間,在斷開第一〜第j之翻轉用開關,接 通反饋開關S2,且斷開輸出開關S4之狀態下,在第一及第 二電容元件Cl、C2之另一端供給第一及第二色調電壓 127200.doc -24- 200841317More specifically, the output circuit OP1 may include: an operational amplifier circuit opq, a jth (j is an integer of 2 or more) capacitive elements cn to cj, and first to jth flip switches S3 -1 to S3 -j And output switch S4. An analog ground agnd (specified voltage) is supplied to the non-inverting input terminal of the operational amplifier circuit OPC!. When the high-potential side power supply voltage of the operational amplifier circuit 0PC1 is VDD and the low-potential side power supply voltage is vss, the analog ground agnd can be (VDD + VSS)/2. The first to jth capacitive elements C1 to _ are connected to an operational amplifier circuit 〇PCli inverting input terminal. The capacitance values of the first to jth capacitor elements C1 to Cj are equal. The p is an integer). The switch S3.P is inserted between the other end of the capacitive element of the pth and the output of the operational amplifier circuit OPCA. The output switch S4 is inserted between the output of the operational amplifier circuit ο% and the output line electrically connected to the source line SL1. By supplying the first and second tone voltages to the first to jth capacitive elements C1 to cj, a 2ϋ-υ output tone voltage between the first and second tone voltages can be generated. Alternatively, the output circuit OP1 may further include an input switch of the first to the ninth input switch p (l = p^j'p is an integer), and one end of the input switch is connected to the other end of the p-th capacitive element. Then, the first or second tone voltage is supplied time-divisionally at the other end of each of the input switches of the first to the jth input switches. 127200.doc -23· 200841317 Next, the more specific structure and operation will be described by taking the case of Fig. 5 as an example. Figure 5 shows the situation of the system 2. The first input switch is controlled by the switch control signal SCO. The second input switch is controlled by the switch control signal SC1. The feedback switch is controlled by the switch control signal SC2. And the first: the flip switch is called, the 仏 2 is controlled by the switch control signal SC3. The output switch is switched by the switch control (four) f tiger SC4 (four). The switch control signal SCO ~ SC4 is output without a picture Fig. 6 is an explanatory diagram showing a first operation example of the output circuit OP1 of Fig. 5. During the sampling period, the first tone voltage Vini and the second tone voltage Vin2 are time-divisionally supplied. During the period of one tone voltage Vin1, the first input switch S0 is turned on, and the subsequent sampling period is switched off from the holding period. Further, the second input switch S1 is at least during the supply of the second tone voltage Vin2. The switching control is performed in a manner of being turned on. Further, the second input switch S1 is switched on during the sampling period and is turned off during the holding period. The feed switch S2 is switched on during the sampling period and is turned off during the hold period. The first and second inversion switches S3_1, S3-2 are turned off during the sampling period and are turned on during the holding period. Controlling. The switch S4 is turned on to switch off during the sampling period, and the switching control is performed in the manner of turning on during the holding period. That is, during the sampling period, the first to the jth turning switches are turned off, and the feedback switch S2 is turned on. And disconnecting the output switch S4, supplying the first and second tone voltages at the other ends of the first and second capacitive elements C1, C2 127200.doc -24 - 200841317

Vinl、Vin2 之其中一個。a μ 個而後,在抽樣期間後之保持期 間,藉由接通第一〜篦丨夕勒結m ' J翻轉用開關,斷開反饋開關S2, 且接通輸出開關S4,而蔣筮 J 而將弟一色調電壓Vinl與前述第二色 調電麼Vin2間之輪出辛端雪廢 ^ <询aj巴碑電壓V〇ut輸出至源極線。 更具體而言,圖6中係在抽樣期間,經由第-輸入開關 so在第電谷70件C1之一端儲存對應於第一色調電壓One of Vinl, Vin2. a μ and then, during the hold period after the sampling period, by turning on the first switch, the feedback switch S2 is turned off, and the output switch S4 is turned on, and The younger one tone voltage Vinl and the second color tone Vin2 are turned out to be the output of the tone voltage V〇ut to the source line. More specifically, in FIG. 6, during sampling, the first tone voltage is stored at one end of the first cell 70 C1 via the first input switch so.

Vml之電荷。此外,經由第二輪入開關si,在第二電容元The charge of Vml. In addition, via the second wheel switch si, in the second capacitor

件C2之一端儲存對應於第二色調電壓vin2之電荷。在該期 間,因為反饋開關S2接通,所以藉由運算放大電路Ο%! 之虛短路功能,運算放大電路㈣丨之反轉輸人端子的節點 NEG的電壓與運算放大電路ο%之輸出電壓成為類比接地 AGND。 因此,在抽樣期間,於節點NEG上儲存以下公式表示之 電荷Qs。此時,因為輸出開關84斷開,所以源極線sli之 電壓不變動。One end of the piece C2 stores a charge corresponding to the second tone voltage vin2. During this period, since the feedback switch S2 is turned on, the voltage of the node NEG of the inverting input terminal of the amplifying circuit (4) is operated and the output voltage of the operational amplifying circuit ο% is operated by the virtual short circuit function of the operational amplifying circuit Ο%! Become analog to ground AGND. Therefore, during sampling, the charge Qs represented by the following formula is stored on the node NEG. At this time, since the output switch 84 is turned off, the voltage of the source line sli does not change.

Qs=Vinl xC+Vin2xC · · · (1) 此處,Vinl為第一色調電壓,vin2為第二色調電壓,第 及弟一電谷元件Cl、C2之各電容元件的電容值為c。 其次,在保持期間,第一及第二輸入開關训、S1及反饋 開關S2斷開,第一及第二翻轉用開關S3-1、S3_2接通。結 果’輸出對應於第一及第二電容元件C1、C2中儲存之電 荷的電壓,作為運算放大電路0PCli輸出色調電壓。此 時,因為第一及第二電容元件Cl、C2之一端短路,所以 輸出色调電壓v〇ut由以下公式表示。 127200.doc -25- 200841317Qs=Vinl xC+Vin2xC · (1) Here, Vinl is the first tone voltage, vin2 is the second tone voltage, and the capacitance values of the capacitance elements of the first and second cell elements C1 and C2 are c. Next, during the hold period, the first and second input switches, S1 and the feedback switch S2 are turned off, and the first and second inversion switches S3-1 and S3_2 are turned on. As a result, the voltage corresponding to the charge stored in the first and second capacitive elements C1, C2 is output, and the tone voltage is output as the operational amplifier circuit 0PCli. At this time, since one ends of the first and second capacitive elements C1, C2 are short-circuited, the output tone voltage v〇ut is expressed by the following formula. 127200.doc -25- 200841317

Vout=(Vinl+Vin2)/2 · . · (2) 圖7中顯示圖5之輸出電路〇Pi的第二動作例之說明圖。 圖6係按照第一及第二色調電壓中電位高之順序供給至 第一及第二電容元件,不過,圖7係按照第—及第二色調 . 電壓中電位低之順序供給至第一及第二電容元件。 該情況亦與圖6同樣地,進行第一及第二輸入開關S0、 S1、反饋開關S2、第一及第二翻轉用開關以」、S3_2及輸 # 出開關S4之開關控制。錢,在保持期間輸出以公式(2) 表示之輸出色調電壓v〇ut。 圖8中顯示圖5之輸出電路Ο。的第三動作例之說明圖。 圖6及圖7係顯示作為第一色調電壓vinl與第二色調電壓 Vm2間之電壓,而輸出輸出色調電壓Vout之例,不過本發 明並非限定於此者。藉由使第一及第二色調電壓Wn J、 Vin2為同電位之電壓,亦可使輸出色調電壓%加為與第一 及苐一色調電壓Vinl、Vin2同電位之電壓。 # 該情況亦與圖6同樣地,進行第一及第二輸入開關S0、 S1、反饋開關S2、第一及第二翻轉用開關83_丨、S3-2及輸 出開關S4之開關控制。結果,按照公式(2),輸出色調電 壓Vout成為與第一及第二色調電壓vinl、vin2同電位之電 . 壓’並在保持期間輸出該輸出色調電壓Vout。 由於係使用以上說明之翻轉型抽樣保持電路來驅動源極 線,因此可以非常簡單之結構,以輸出電路產生複數色調 電壓。結果’可大幅刪減色調電壓產生電路58須產生之色 调電壓種類。藉此,可刪減色調電壓信號線數量,且亦可 127200.doc -26- 200841317 大幅刪減DAC⑽電路規模。ϋ言,因為DAC 60供 給高電壓而需要增大電晶體尺寸,而删減DAC 6()之電路 規模’大有助於源極驅動器30之晶片尺寸的縮小化。 此外,採用上述之翻轉型抽樣保持電料,無需附加輔 助電路等即可進行導執至導軌動作,且無需為了抑制變動 而增大電晶體之尺寸。因而’有助於源極驅動器3〇之晶片 尺寸的縮小。 再者,因為上述之翻轉型抽樣保持電路係使儲存於第一 及第二電容元件Cl、C2之電荷移動於運算放大電路〇pCi 之輸出側的結構,所以不受運算放大電路〇pc】具有之輸入 偏移電壓的影響,可高精確度地產生輸出色調電壓v〇j。 再者,上述之翻轉型抽樣保持電路無需為了高精確度設 定賦予源極線之色調電壓,而將DAC 60產生之色調電壓 輸出至源極線,僅輸出電路即可高精確度產生色調電壓。 因而,無需以DAC 60高精確度地產生色調電壓,可簡化 DAC 60之結構,而刪減DAC 60之電路規模。 2 · 1比較例 再者,具有本實施形態之結構的翻轉型抽樣保持電路, 須使在抽樣期間之第一〜第j輸入開關的開關控制之順序與 輸入各輸入開關之色調電壓的位準如下。亦即,輸出色調 電壓VoiU為比輸出至源極線之電壓的最低電位電壓,接近 輸出至該源極線之電壓的最高電位電壓時,如圖6所示, DAC 60(色調電壓產生電路)須按照電位高之順序輸出第一 及第二色調電壓。此處如64種色調電壓v〇〜V63中,最低 127200.d〇c -27- 200841317 :位電壓為vo時’最高電位電塵則為州,最低電位電歷 為V63時,最高電位電壓則為v〇。 卜輪出色調電壓Vout為比最高電位電壓接近最低電 :電料,DAC 60(色調電壓產生電路)須按照電位低之順 序輸出第一及第二色調電壓。 因此’在第-〜第j輸入開關之各輪入開關的另一端供給 弟一或第二色調電屋情況下,輸出色調電壓偏比最低電 :電屢接近最高電位電遷時,在第_及第二色調電壓中, 高電位側之色調電壓供认5^ . 电变供、·、口至弟一〜第j之電容元件C1〜Cj之 任何一個電容元件的狀態下,須以低電位側之色調電塵供 給至第一〜第j之電容元件C1〜cj之任何一個電容元件之方 式,進行第一〜第j輸入開關之開關控制。 /b外丄在第一〜第j輸入開關之各輸入開關的另一端供給 第或第_色5周電壓情況下,輸出色調電塵比最高電 位電麼接近最低電位電壓時,在第n色調電壓中, 低電位側之色調電屢供給至第一〜第』之電容元件叫之 任何-個電容凡件的狀態下,須以高電位側之色調電壓供 給至第〜第j之電谷70件C1〜Cj之任何一個電容元件之方 式,進行第一〜第j輸入開關之開關控制。 以下’與本實施形態之比較例作對比來說明上述理由。 圖9中顯示本實施形態之比較例中的輸出電路叱之動作 例的說明圖。 圖9中,在與圖6〜圖8相同部分註記相同符號,適當地省 略說明。本比較例係於抽樣期間之前半段’在接通第一輸 -28· 127200.doc 200841317 入開關so,並斷開篦-认 弟—輪入開關S1之狀態下,將第一色蜩Vout=(Vinl+Vin2)/2 (2) FIG. 7 is an explanatory diagram showing a second operation example of the output circuit 〇Pi of FIG. 5. 6 is supplied to the first and second capacitive elements in the order of the high potential of the first and second hue voltages. However, FIG. 7 is supplied to the first and second colors according to the first and second hue. Second capacitive element. Also in this case, similarly to Fig. 6, the first and second input switches S0 and S1, the feedback switch S2, and the first and second inversion switches are controlled by the switches of ", S3_2, and the output switch S4. Money, during the hold period, outputs the output tone voltage v〇ut expressed by the formula (2). The output circuit of Figure 5 is shown in Figure 8. An explanatory diagram of the third operation example. 6 and 7 show an example in which the voltage between the first tone voltage vin1 and the second tone voltage Vm2 is output and the output tone voltage Vout is output, but the present invention is not limited thereto. By setting the first and second tone voltages Wn J and Vin2 to the same potential voltage, the output tone voltage % can be added to the same potential as the first and second tone voltages Vin1 and Vin2. # In this case, similarly to Fig. 6, the first and second input switches S0 and S1, the feedback switch S2, and the first and second inversion switches 83_丨, S3-2 and the output switch S4 are switched. As a result, according to the formula (2), the output tone voltage Vout becomes the electric potential of the same potential as the first and second tone voltages vin1, vin2, and the output tone voltage Vout is output during the sustain period. Since the flip-type sample-and-hold circuit described above is used to drive the source line, it is possible to have a very simple structure to generate a complex tone voltage from the output circuit. As a result, the type of the color voltage to be generated by the tone voltage generating circuit 58 can be greatly reduced. In this way, the number of tone voltage signal lines can be reduced, and the DAC (10) circuit scale can be greatly reduced by 127200.doc -26-200841317. In other words, since the DAC 60 is required to increase the transistor size by supplying a high voltage, the circuit size of the DAC 6() is reduced to greatly contribute to the reduction in the size of the wafer of the source driver 30. Further, by using the above-described flip type sampling and holding electric material, it is possible to carry out the guidance to the guide rail operation without adding an auxiliary circuit or the like, and it is not necessary to increase the size of the transistor in order to suppress the variation. Thus, it contributes to the reduction in the size of the wafer of the source driver 3. Furthermore, since the above-described flip type sample-and-hold circuit moves the charges stored in the first and second capacitive elements C1 and C2 to the output side of the operational amplifier circuit 〇pCi, it is not required to be operated by the operational amplifier circuit. The influence of the input offset voltage can produce an output tone voltage v〇j with high accuracy. Furthermore, the above-described flip type sample-and-hold circuit does not need to output the tone voltage generated by the DAC 60 to the source line for high-precision setting of the tone voltage applied to the source line, and only the output circuit can generate the tone voltage with high precision. Therefore, it is not necessary to generate the tone voltage with high precision by the DAC 60, which simplifies the structure of the DAC 60 and reduces the circuit scale of the DAC 60. 2 · 1 Comparative Example Further, the inverted type sample-and-hold circuit having the configuration of the present embodiment is required to have the order of the switching control of the first to j-th input switches during the sampling period and the level of the tone voltage input to each of the input switches. as follows. That is, the output tone voltage VoiU is the lowest potential voltage than the voltage output to the source line, and is close to the highest potential voltage of the voltage output to the source line, as shown in FIG. 6, the DAC 60 (tone voltage generation circuit) The first and second tone voltages must be output in the order of the high potential. Here, as for 64 kinds of tone voltages v〇~V63, the lowest is 127200.d〇c -27- 200841317: when the bit voltage is vo, the highest potential electric dust is state, and the lowest potential electric power is V63, the highest potential voltage is For v〇. The buzzer tone voltage Vout is close to the lowest potential voltage than the highest potential voltage: the DAC 60 (tone voltage generation circuit) must output the first and second tone voltages in order of low potential. Therefore, in the case where the other end of each of the first to the jth input switches is supplied to the second or second color electric house, the output tone voltage is biased to the lowest electric power: when the electric power is close to the highest potential electromigration, at the And in the second tone voltage, the tone voltage on the high potential side is confessed to 5^. In the state of any one of the capacitor elements C1 to Cj of the electric source, the mouth to the first to the jth, the low potential side is required. The switching of the first to jth input switches is performed in such a manner that the color dust is supplied to any one of the first to the jth capacitive elements C1 to cj. /b external 丄 When the other end of each input switch of the first to jth input switches is supplied with the first or _th color for 5 weeks, the output tone dust is closer to the lowest potential voltage than the highest potential, at the nth tone In the voltage, the tone of the low-potential side is supplied to the first to the ninth capacitive element, and any one of the capacitors is supplied to the first to the jth. The switching control of the first to jth input switches is performed in the manner of any one of the capacitor elements C1 to Cj. The reason described below will be described in comparison with the comparative example of the present embodiment. Fig. 9 is an explanatory view showing an operation example of the output circuit 叱 in the comparative example of the embodiment. In Fig. 9, the same portions as those in Figs. 6 to 8 are denoted by the same reference numerals, and the description will be omitted as appropriate. This comparative example is in the first half of the sampling period, in the state where the first input -28·127200.doc 200841317 is switched on, and the 篦-confident-wheel-in switch S1 is turned off, the first color is set.

電壓Villi供給至第一電宏一 V 谷凡件Cl之一端,而後,於該抽樣 期間之後半段,在斷開證一 ]弟一輸入開關so,並接通第二輸入 開關之狀態下,將第二色 巴调電壓Vm2供給至第二電容元件 C 2之一端。本比較例之紫 > 之弟一色調電壓Vinl的電位,係比第 二色調電壓Vin2之電位低的電位。 圖1〇中顯示本比較例之動作說明圖。The voltage Villi is supplied to one end of the first electric macro-V, and then in the second half of the sampling period, in the state of disconnecting the switch, the input switch so, and the second input switch, The second color bar voltage Vm2 is supplied to one end of the second capacitive element C 2 . The potential of the color tone voltage Vin1 of the purple > of the comparative example is a potential lower than the potential of the second tone voltage Vin2. Fig. 1A shows an operation explanatory diagram of the comparative example.

圖10中與圖5相同之部分註記相同符號,適當地省略說 明。圖10係在抽樣期間顯示第一輸入開關s〇斷開,而第二 輸入開關S1接通之狀態。 如在第一輸入開關so接通,而第二輸入開關S1斷開之狀 悲下,在第一電容元件C1*供給圖9之第一色調電壓 Vml(SQl)。此時,在第一電容元件Cl中儲存對應於第一 色調電壓Vinl之電荷。其次如圖1〇所示,在第一輸入開關 so斷開,而第二輸入開關S1接通之狀態下,在第二電容元 件C2中供給圖9之第二色調電壓vin2(vinl<vin2^SQ2)。此 時,在第二電容元件C2中儲存對應於第二色調電壓MM之 電荷。 此處,伴卩边弟一色調電壓Vin2之施加,儲存對應於第一 色調電壓Vinl之電荷的節點NEG(第二電容元件C2之另一 端)的電壓位準變動。因為電性連接第一電容元件。之另 鈿與第一電容元件C2之另一端,所以傳達節點NEG之電 壓位準的變動,作為電容耦合之第一電容元件^的一端電 壓位準之變動。 127200.doc •29· 200841317 此時,節點NEG之電壓變動經由第一電容元件以傳達, 作為第一翻轉用開關Μ — 1之一端電壓位準的變動,該電壓 位準成為比電源電壓VDD高之電位(SQ4)。這表示因為構 成開關之p型M0S電晶體的源極(汲極)與形成該電晶體之 基板間的二極體連接部分為正方向而產生洩漏。因此,在 保持期間應輸出之輸出色調電壓Vout的電壓位準變動。 因此,本實施形態係以如亦在第二電容元件C2中,最初 七、而阿電位側之第一色調電壓Vin 1後,再將低電位侧之第 一色調電壓Vin2供給至第二電容元件C2之方式進行開關控 制。藉此,可避免第二電容元件(^之電壓位準的變動傳達 至節點NEG的情況。 亦即’輸出色調電壓Vout比最低電位電壓而接近最高電 位電壓時,在第一及第二色調電壓中,高電位側之色調電 壓供給至第一〜第j之電容元件C1〜Cj之任何一個電容元件 的狀態下,以低電位側之色調電壓供給至第一〜第〗之電容 元件C1〜Cj之任何一個電容元件之方式,進行第一〜第】輸 入開關之開關控制。 另外,圖9及圖10係說明輸出色調電壓Vout比最低電位 電壓而接近最高電位電壓之情況,不過,即使就輸出色調 電壓Vout比最高電位電壓而接近最低電位電壓之情況,亦 同樣地產生輸入開關之泡漏。因而’輸出色調電壓V〇ut比 最高電位電壓而接近最低電位電壓時,在第一及第二色調 電壓中,低電位侧之色調電壓供給至第一〜第j之電容元件 C1〜Cj之任何一個電容元件的狀態下,須以高電位側之色 127200.doc -30- 200841317 調電壓供給至第_當. 弟〕之電容元件C1〜Cj之任何一個雷交 元件的方式,谁耔筮 外 j 调電谷 叮弟一〜弟j輸入開關之開關控制。 此處為了以簡單之結構判定輸出色調電 色調電壓之最离雷办+ r 如係接近 巧電位電壓或是接近最低電位電壓,亦可依 據色調資料之最上階位元作判定。 ”依 圖11中顯示本實施形態中色調電壓之輸出順序的說明 圖0The same portions as those in Fig. 5 in Fig. 10 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. Fig. 10 shows a state in which the first input switch s is turned off and the second input switch S1 is turned on during sampling. When the first input switch so is turned on and the second input switch S1 is turned off, the first tone voltage Vml (SQ1) of Fig. 9 is supplied to the first capacitive element C1*. At this time, the electric charge corresponding to the first tone voltage Vin1 is stored in the first capacitive element C1. Next, as shown in FIG. 1A, in a state where the first input switch so is turned off and the second input switch S1 is turned on, the second tone voltage vin2 of FIG. 9 is supplied to the second capacitive element C2 (vinl < vin2^ SQ2). At this time, the electric charge corresponding to the second tone voltage MM is stored in the second capacitive element C2. Here, with the application of the tone voltage Vin2, the voltage level fluctuation of the node NEG (the other end of the second capacitive element C2) corresponding to the charge of the first tone voltage Vin1 is stored. Because the first capacitive element is electrically connected. The other end of the first capacitive element C2 communicates with the fluctuation of the voltage level of the node NEG as a change in the voltage level of the first capacitive element of the capacitive coupling. 127200.doc •29· 200841317 At this time, the voltage fluctuation of the node NEG is transmitted through the first capacitive element as a fluctuation of the voltage level at one end of the first inversion switch Μ-1, which is higher than the power supply voltage VDD. The potential (SQ4). This indicates that leakage occurs because the source (drain) of the p-type MOS transistor forming the switch and the diode connection portion between the substrates forming the transistor are in the positive direction. Therefore, the voltage level of the output tone voltage Vout which should be output during the hold period fluctuates. Therefore, in the present embodiment, the first tone voltage Vin2 on the low potential side is supplied to the second capacitance element after the first tone voltage Vin 1 on the first potential side in the second capacitance element C2. Switching control is performed in the mode of C2. Thereby, it is possible to avoid the case where the fluctuation of the voltage level of the second capacitive element is transmitted to the node NEG. That is, when the output tone voltage Vout is closer to the highest potential voltage than the lowest potential voltage, the first and second tone voltages are In the state in which the tone voltage on the high potential side is supplied to any one of the capacitance elements C1 to Cj of the first to the jth, the color tone voltage on the low potential side is supplied to the first to the sixth capacitive elements C1 to Cj. The switching control of the first to the ninth input switches is performed in any one of the capacitive elements. In addition, FIG. 9 and FIG. 10 illustrate the case where the output tone voltage Vout is closer to the highest potential voltage than the lowest potential voltage, but even if it is output When the tone voltage Vout is closer to the lowest potential voltage than the highest potential voltage, the bubble of the input switch is similarly generated. Therefore, when the output tone voltage V〇ut is closer to the lowest potential voltage than the highest potential voltage, the first and second are In the tone voltage, the tone voltage on the low potential side is supplied to any one of the capacitance elements C1 to Cj of the first to the jth, With the high-potential side color 127200.doc -30- 200841317 voltage supply to the _th. Brother] capacitive element C1 ~ Cj any of the Ray-cross components, who 耔筮 j 调 调 调 叮 叮 〜 〜 The input control of the input switch of the j input switch. Here, in order to judge the output of the hue electric hue voltage with a simple structure, the most close to the thunder device + r, if it is close to the smart potential voltage or close to the lowest potential voltage, it can also be based on the highest order of the tone data. The determination is made by the element." The explanation of the output order of the tone voltage in the present embodiment is shown in Fig. 11.

如對應於色調資料I μ卩比 _ 月貝枓之最上階位兀為Γ 〇」之色調電壓, 係比對應於最上階位元為「Κ色調電壓高電位侧者。 :時,於色調資料之最上階位元為「〇」_,係將第一及 第二色調電壓中高電位側之色調電壓供給至第_電容元件 C1後,將低電位側之色調電壓供給至第二電容元件C2。 此外,於色調資料之最上階位元為Γ1」日寺,係將第一及 第二色調電壓中低電位側之色調電壓供給至第一電容元件 C1後,將高電位側之色調電壓供給至第二電容元件C2 藉此,第一及第二翻轉用開關S3_i、S3_2中不致產生浪 漏’可避免輸出色調電壓Vout無法產生標的電壓的情況。 2.2源極驅動器之重要部分的結構 其次’說明本實施形態中之源極驅動器3〇的重要部分之 結構例。 圖12中顯示本實施形悲中之源極驅動器3〇的源極驅動器 區塊之結構例的區塊圖。圖12中與圖4相同之部分註記相 同符號,適當地省略說明。另外,以下之色調資料係6位 元者。 127200.doc -31 - 200841317 圖12僅顯不驅動源極線SL1之源極驅動器區塊的結構。 驅動源極線SL1用之源極驅動器區塊包含:加法電路8(^、 加法控制邏輯82!、電壓選擇電路DECl及輸出電路〇Ρι。 本實施形恶為了時間分割地將第一及第二色調電壓供給 至輸出電路OPi,而自顯示記憶體52輸出色調資料 D[5:0],並將該色調資料與增量該色調資料之資料供給至 電壓選擇電路DEC!。此時,加法電路8〇1依據來自加法控 制邏輯82〗之加法控制信號ADD—BIT作控制,可輸出增量 色调資料之資料,或是不變動地輸出色調資料。 更具體而言,係將色調資料D[5:〇]之上階5位元的資料 D[5:l]輸入加法電路8〇ι。此外,將色調資料D[5:〇]中最上 階位元D[5]之資料與最下階位元刚之f料輸人加法控制 邏輯82!。加法控制邏輯82ι中輸入在無圖示之控制電路中 產生之加法時序信號AD1、AD2,並依據色調資料d[5]、 D[〇]之資料及加法時序信號八〇1、AD2而產生加法控制信 號 add_bit。 圖13中顯示圖12之加法時序信號AD1、AD2的說明圖。 加法時序信號位準之期間,對應於在輸出電路 〇p丨之第-電容元件C1中供給色調電壓之第一輸入開關s〇 之接通期間。加法時序信號AD2為Η位準之期@,對應於 在輸出電路0?1之第二電容元件^中供給色調電壓之第二 輸入開關S 1之接通期間。 圖14中顯示圖12之加法控制邏輯82ι的動作說明圖。 圖Η中’於色調資料[5:0]為「〇〇〇〇〇〇」時色調電麼為 127200.doc -32- 200841317 最高電位,於色調資料[5:0]為「lllm」時,色調 最低電位。 y 、、控制邏輯821於色調資料之最上階位元D[5]的資料 係「0」瞎,、 、 、、、,以加法時序信號AD2之時序進行加法電路8〇1 厂〇、控制。此時,色調資料之最下階位元D[0]的資料係 夺加法電路8〇1不變動地將色調資料D[5:l]之資料 電壓選擇電路DEC1。此外,於色調資料之最下階 护[〇]的貝料係「lj時,加法電路80!將在增量色調資 ]之資料(在色調資料D[5:1]中加上「1」之資料)輸 出至電壓選擇電路DEC i。 此外,加法控制邏輯82l於色調資料之最上階位元d[5] 的貧料係「1」時’以加法時序信號AD1之時序進行加法 電:叫之加法控制。㈣,色調資料之最下階位元剛 、'科係0」時,加法電路80!不變動地將色調資料 D[5:1]之資料輸出至電壓選擇電路DECi。此外,於色調資 ^之最下階位元D[_資料係日夺,加法電路801將增 里色w周貝料D[5:1]之資料輸出至電壓選擇電路dec!。 圖W ’如此藉由加法控制邏輯821而控制之加法電路 1、的輸出,作為色調資料而輸入電壓選擇電路獄1。電 壓選擇電路DEC τ依撼爽白a+ 1依據來自加法電路80!之色調資料,將藉 由色調電壓產生電路58而產生之色調電壓v〇〜v32的任何 個輸出至輸出電路0Pl。該輸出電路Oh具有圖 構0 2 · 3辅助電容元件 127200.doc -33 - 200841317 本實施形態如圖5所示,節點NEG上須連接辅助電容元 件ccs。該辅助電容元件ccs之一端上如#給接地電源電 壓vss或類比接地AGND,另一端上連接節點刪。藉 此可抑制運异放大電路OPC!之反轉輸入端子的電壓變 動,實現輸出色調電壓Vout進一步之穩定化。 另外,輔助電容元件CCS因為以抑制電位變動為目的, 所以無需比較第一及第二電容元件C1、C2,而精確地形 成電容值。因而,在形成輔助電容元件ccs及第一及第二 電谷元件C1、C2的電容元件形成區域中,輔助電容元件 CCS須形成於比第一及第二電容元件ci、C2,於餘刻等之 形成電容元件時控制困難的區域。因此,辅助電容元件 CCS須兼用為形成於源極驅動器内之電容元件形成區域内 的虛擬用之電容元件。 圖15(A)、圖15(B)中顯示輔助電容元件CCS之說明圖。 圖15(A)顯示源極驅動器30之佈局影像。源極驅動器3〇 係在向源極線之輸出焊墊(Pad)的排列方向上並列源極驅動 器區塊SB 1〜SBN。各源極驅動器區塊包含:色調電壓產生 電路、電壓選擇電路及源極線驅動電路,各源極驅動器區 塊之佈局配置相同。 圖15(B)顯示源極驅動器區塊SBn之電容元件形成區域的 影像。源極驅動器區塊SBn在與源極驅動器區塊SB 1〜SBN 之排列方向(輸出焊墊之排列方向)垂直的方向(交叉的方 向),具有形成第一電容元件C1、第二電容元件C2及輔助 電容元件CCS的電容元件形成區域CEA。此時,輔助電容 127200.doc -34 - 200841317 元件CCS須在電容元件形成區域CEA之邊界中,沿著在與 上述排列方向垂直之方向(交叉之方向)相對之2個邊界部的 其中一個邊界部而形成。一般而言,該邊界部中形成電容 元件形成區域内之虛擬用的電容元件。圖15(B)在將源極 驅動器區塊SB 1〜SBN之排列方向作為DR1時,係沿著構成 在與排列方向DR1垂直之方向DR2相對之源極驅動器區塊 SBn的邊界部之2個邊中的1邊EDn形成辅助電容元件 CCS 〇 藉此,第一及第二電容元件Cl、C2之邊緣(端部)與該源 極驅動器區塊之辅助電容元件CCS的邊緣,及鄰接之源極 驅動器區塊的第一及第二電容元件C1、C2的邊緣鄰接。 因而,因為可以大致相同蝕刻速度形成各邊緣間之間隙 △dl〜Δ(14,所以可高精確度地形成第一及第二電容元件 Cl、C2。另外,輔助電容元件ccs之邊緣不與其他電容元 件之邊緣鄰接。因此,關於輔助電容元件ccs之邊緣,如 從輸出焊墊配置區域側之蝕刻速度,因為從第一及第二電 容元件Cl、C2侧之蝕刻速度不同,所以與第一及第二電 容元件Cl、C2比較,無法精確地形成電容元件。 如圖15(B)所示,藉由形成各電容元件,可精確地形成 第-及第二電容元件C1、〇2之電容值,另外不致浪費佈 局面積,而可形成輔助電容元件CCS。 2.4運算放大電路 本實施形態中之翻轉型抽樣保持電路的電路規模須小。 因此’本實施㈣中之翻轉㈣㈣持電路著眼於在抽樣 127200.doc -35- 200841317 期間與保持期間進行離散性 蚁注之動作,適用於翻轉型抽樣保 持電路之運算放大電路須採用以下說明之結構。 ’、 本實施形態中之翻轉型抽樣保持電路,在抽樣期間斷開 輸出開關S4,驅動低負荷之輸出,在保持期間接通輸出開 關S4,而驅動高負荷之輸出。因❿,本實施形態中之翻轉 型抽樣保持電路的運算放大電路,亦可在抽樣期間進行A 級放大動作,在保持期間進行AB級放大動作。因此,本 貝%形‘L、之運异放大電路OPCi〜〇PCn可採用以下之結構。 圖16中顯示圖5之運算放大電路〇PCi的結構例之電路 圖。 圖16係顯示運算放大電路〇]?(:1之結構例,不過其他運 算放大電路OPC:2〜〇PCN亦具有相同之結構。 運算放大電路opq包含··差動放大器11〇(廣義而言係運 算放大器)、輸出部120、電容器CCP及電荷供給電路13〇。 差動放大器110放大輸入電壓VIN與輸出電壓VOUT之差分 值。輸出部120包含:p型驅動電晶體(第一導電型之第一 驅動電晶體)PTR1,其係依據設於供給類比電源電壓 AVDD之第一電源側的差動放大器11〇的輸出節點NDD之電 壓’控制其閘極電極;及N型驅動電晶體(第二導電型之第 二驅動電晶體)NTR1,其係與p型驅動電晶體pTR1串聯地 設於供給類比接地AGND的第二電源側。電容器CCP係以 電谷||合P型驅動電晶體PTR1之閘極電極與n型驅動電晶 體NTR1之閘極電極的方式設置。 電荷供給電路130在抽樣期間供給電荷至n型驅動電晶體 127200.doc -36- 200841317 NTR1之閘極電極,在保持期間停止對N型驅動電晶體 NTR1之閘極電極供給電荷。藉此,在抽樣期間,依據差 動放大器11 0之輸出節點NDD的電壓,使P型驅動電晶體 PTR1及N型驅動電晶體NTR1動作,可使運算放大電路100 之輸出電壓VOUT不論高電位侧或低電位侧均變化。此 外,在保持期間,取決於P型驅動電晶體PTR1之閘極電極 的電壓,而輸出輸出電壓VOUT。因而,可簡化在抽樣期 間進行A級放大動作,在保持期間進行AB級放大動作之運 算放大電路0卩(:1的結構。 圖17顯示圖16之運算放大電路OPCi的結構例之電路 圖。 不過,圖1 7中與圖16相同之部分註記相同符號,而適當 地省略說明。 差動放大器110包含:電流鏡電路CM1、差動對DIF1及 電流源CS 1。電流鏡電路CM1包含在其源極上供給類比電 源電壓AVDD之P型電晶體PTR10、PTR11。連接P型電晶體 PTR10之閘極電極與P型電晶體PTR11之閘極電極。P型電 晶體PTR11連接其閘極電極與汲極。 差動對DIF1 包含N型電晶體NTR10、NTR11。連接N型 電晶體NTR10之源極與N型電晶體NTR11之源極。N型電晶 體NTR10之汲極連接於P型電晶體PTR10之汲極。N型電晶 體NTR11之汲極連接於P型電晶體PTR11之汲極。在電流源 CS1之一端供給類比接地AGND,電流源CS1之另一端連接 於N型電晶體NTR10、NTR11之源極。 127200.doc -37- 200841317 此種差動放大器110在N型電晶之閘極電極上供 給輸入電壓VIN,在N型電晶體>^11111之閘極電極上供給 輸出電壓νουτ。而後,連接p型電晶體1>丁111〇之汲極與1^ 型電晶體NTR10之汲極的連接節點成為差動放大器11〇之 • 輸出節點NDD。該輸出節點連接於輸出部12 〇之P型驅動電 晶體PTR1的閘極電極。 電荷供給電路13 0包含:供給電流至其汲極之二極體連 _ 接的電流源電晶體CTR ;及在其一端連接電流源電晶體 CTR之閘極電極,其另一端連接電容器cep之一端及1^型 驅動電晶體NTR1的閘極電極之開關電路swT。開關電路 S WT藉由開關控制信號STC進行開關控制。電荷供給電路 130還可包含連接於電流源電晶體ctr之汲極,而產生穩 流之電流源CS2。 圖18中顯示適用圖17之運算放大電路的抽樣保持電路之 開關控制信號的動作說明圖。 • 圖18係與第一及第二輸入開關SO、S1、反饋開關S2、第 一及第一翻轉用開關S3-1、S3-2及輸出開關S4—起顯示圖 17之開關電路SWT的動作例。如圖18所示,圖17之開關電 ' 路SWT藉由無圖示之控制電路產生的開關控制信號STC, - 以在抽樣期間接通,在保持期間斷開之方式進行開關控 制。 圖17之運算放大電路〇PCl係因應經由電容器cep之p型 驅動電晶體PTR1的閘極電極的變化,N型驅動電晶體 NTR1之閘極電極的電壓亦變化。電荷供給電路13〇係在抽 127200.doc -38 - 200841317For example, the hue voltage corresponding to the hue data I μ卩 ratio _ 枓 枓 枓 最 最 , , , , , , , , , , 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调 色调The uppermost bit is "〇"_, and the tone voltage on the high potential side of the first and second tone voltages is supplied to the first capacitance element C1, and the tone voltage on the low potential side is supplied to the second capacitance element C2. In addition, the uppermost bit of the tone data is Γ1" Riji, and the tone voltage on the low potential side of the first and second tone voltages is supplied to the first capacitive element C1, and the tone voltage on the high potential side is supplied to The second capacitive element C2 can thereby prevent the output of the tone voltage Vout from generating the target voltage without causing leakage in the first and second inversion switches S3_i, S3_2. 2.2 Structure of Important Portion of Source Driver Next, a configuration example of an important portion of the source driver 3A in the present embodiment will be described. Fig. 12 is a block diagram showing a configuration example of a source driver block of the source driver 3A in the present embodiment. The same portions as those in Fig. 4 in Fig. 12 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. In addition, the following tone data is 6 bits. 127200.doc -31 - 200841317 Figure 12 shows only the structure of the source driver block of the source line SL1. The source driver block for driving the source line SL1 includes: an adding circuit 8 (^, an addition control logic 82!, a voltage selection circuit DEC1, and an output circuit 〇Ρι. The present embodiment is first and second for time division. The tone voltage is supplied to the output circuit OPi, and the tone data D[5:0] is output from the display memory 52, and the tone data and the data of the tone data are incremented to the voltage selection circuit DEC!. At this time, the addition circuit 8〇1 is controlled according to the addition control signal ADD_BIT from the addition control logic 82, and can output the data of the incremental tone data, or output the tone data without change. More specifically, the tone data D[5] :〇] The upper-order 5-bit data D[5:l] is input to the addition circuit 8〇ι. In addition, the data of the top-order bit D[5] in the tone data D[5:〇] is compared with the lowest order. The bit element just inputs the addition control logic 82. The addition control logic 821 inputs the addition timing signals AD1, AD2 generated in the control circuit not shown, and according to the tone data d[5], D[〇] The data and the addition timing signal 〇1, AD2 generate the addition control signal add Fig. 13 is an explanatory diagram showing the addition timing signals AD1, AD2 of Fig. 12. The period of the addition timing signal level corresponds to the first input switch for supplying the tone voltage in the first capacitance element C1 of the output circuit 〇p丨. During the turn-on period of the s〇, the addition timing signal AD2 is the Η level period @, corresponding to the ON period of the second input switch S 1 for supplying the tone voltage in the second capacitive element ^ of the output circuit 0-1. 14 shows the action description of the addition control logic 82 of Fig. 12. In the figure, when the tone data [5:0] is "〇〇〇〇〇〇", the color tone is 127200.doc -32- 200841317 When the tone data [5:0] is "lllm", the color tone is the lowest potential. y, and the control logic 821 is the data of the topmost bit D[5] of the tone data is "0", , , , , , The addition circuit 8〇1 is controlled and controlled by the timing of the addition timing signal AD2. At this time, the data of the lowest order bit D[0] of the tone data is the addition circuit 8〇1, and the tone data D is unchanged. [5:l] data voltage selection circuit DEC1. In addition, the lowest level of tone data protection [〇] The bedding system "in the case of lj, the addition circuit 80! adds the information of "1" to the tone data D[5:1]) to the voltage selection circuit DEC i. The addition control logic 82l adds the power at the timing of the addition timing signal AD1 when the lean material "1" of the uppermost bit d[5] of the tone data is called the addition control. (4), the lowest order of the tone data. In the case of Yuan Gang and 'Department 0', the addition circuit 80 outputs the data of the tone data D[5:1] to the voltage selection circuit DECI without change. Further, in the lowermost bit D of the color tone, the addition circuit 801 outputs the data of the increased color w week D[5:1] to the voltage selection circuit dec!. The output of the adder circuit 1, which is controlled by the addition control logic 821, is input to the voltage selection circuit prison 1 as tone data. The voltage selection circuit DEC τ outputs any of the tone voltages v 〇 v v32 generated by the tone voltage generating circuit 58 to the output circuit OP1 in accordance with the tone data from the adding circuit 80!. The output circuit Oh has a pattern 0 2 · 3 auxiliary capacitance element 127200.doc -33 - 200841317 In this embodiment, as shown in Fig. 5, the auxiliary capacitance element ccs is connected to the node NEG. One end of the auxiliary capacitive element ccs is connected to the grounding power supply voltage vss or the analog grounding AGND, and the other end is connected to the node. Thereby, the voltage change of the inverting input terminal of the transport amplifier circuit OPC! can be suppressed, and the output tone voltage Vout can be further stabilized. Further, since the auxiliary capacitance element CCS is intended to suppress potential fluctuation, it is not necessary to compare the first and second capacitance elements C1 and C2 to accurately form a capacitance value. Therefore, in the capacitive element forming region where the auxiliary capacitive element ccs and the first and second valley elements C1 and C2 are formed, the auxiliary capacitive element CCS must be formed in the first and second capacitive elements ci, C2, etc. A difficult area to control when forming a capacitive element. Therefore, the auxiliary capacitance element CCS must be used as a dummy capacitance element formed in the capacitance element formation region in the source driver. 15(A) and 15(B) are explanatory views showing the storage capacitor element CCS. FIG. 15(A) shows a layout image of the source driver 30. The source driver 3 aligns the source driver blocks SB 1 to SBN in the direction in which the output pads (Pads) of the source lines are arranged. Each of the source driver blocks includes a tone voltage generating circuit, a voltage selecting circuit, and a source line driving circuit, and the layout configuration of each source driver block is the same. Fig. 15(B) shows an image of the capacitance element forming region of the source driver block SBn. The source driver block SBn has a first capacitive element C1 and a second capacitive element C2 in a direction perpendicular to the direction in which the source driver blocks SB 1 to SBN are arranged (the direction in which the output pads are arranged). The capacitive element of the auxiliary capacitive element CCS forms a region CEA. At this time, the auxiliary capacitor 127200.doc -34 - 200841317 element CCS shall be in the boundary of the capacitive element forming region CEA along one of the two boundary portions opposed to the direction perpendicular to the above-described arrangement direction (the direction of intersection) Formed by the Ministry. In general, a virtual capacitive element in the region where the capacitor element is formed is formed in the boundary portion. 15(B), when the arrangement direction of the source driver blocks SB1 to SBN is referred to as DR1, two of the boundary portions of the source driver block SBn which are opposed to the direction DR2 which is perpendicular to the arrangement direction DR1 are formed. One side of the side EDn forms the auxiliary capacitive element CCS, whereby the edges (ends) of the first and second capacitive elements C1, C2 and the edge of the auxiliary capacitive element CCS of the source driver block, and the adjacent source The edges of the first and second capacitive elements C1, C2 of the pole driver block are adjacent. Therefore, since the gaps Δdl to Δ (14) between the respective edges can be formed at substantially the same etching speed, the first and second capacitive elements C1 and C2 can be formed with high precision. In addition, the edges of the auxiliary capacitive element ccs are not the same as the other The edges of the capacitive element are adjacent to each other. Therefore, regarding the edge of the auxiliary capacitive element ccs, such as the etching speed from the output pad arrangement region side, since the etching speeds from the first and second capacitive elements C1, C2 are different, the first Compared with the second capacitive elements C1 and C2, the capacitive elements cannot be accurately formed. As shown in Fig. 15(B), by forming the respective capacitive elements, the capacitances of the first and second capacitive elements C1 and 〇2 can be accurately formed. The value, in addition, does not waste the layout area, but can form the auxiliary capacitance element CCS. 2.4 Operation and amplification circuit The circuit scale of the flip type sample-and-hold circuit in this embodiment must be small. Therefore, the flip (4) (4) in the present embodiment (4) holds the circuit in focus. Sampling 127200.doc -35- 200841317 During the period and the holding period, the operation of the discrete ant note, the operational amplifier circuit suitable for the flip type sample-and-hold circuit shall be adopted. In the flip-type sample-and-hold circuit of the present embodiment, the output switch S4 is turned off during the sampling period, the output of the low load is driven, and the output switch S4 is turned on during the sustain period to drive the output of the high load. In addition, in the operational amplifier circuit of the flip-type sample-and-hold circuit of the present embodiment, the A-stage amplification operation can be performed during the sampling period, and the AB-level amplification operation can be performed during the sustain period. Therefore, the local-shaped L-shaped differential amplification The circuit OPCI to 〇PCn can adopt the following structure: Fig. 16 is a circuit diagram showing a configuration example of the operational amplifier circuit 〇PCi of Fig. 5. Fig. 16 is a view showing an operational amplifier circuit 〇]? (1), but other operations are enlarged. The circuit OPC: 2 to 〇 PCN has the same configuration. The operational amplifier circuit opq includes a differential amplifier 11 〇 (in general, an operational amplifier), an output unit 120, a capacitor CCP, and a charge supply circuit 13 〇. 110 amplifies a difference value between the input voltage VIN and the output voltage VOUT. The output unit 120 includes: a p-type driving transistor (first driving transistor of the first conductivity type) PTR1, which is According to the voltage of the output node NDD of the differential amplifier 11A provided on the first power supply side of the analog power supply voltage AVDD, the gate electrode is controlled; and the N-type driving transistor (the second driving transistor of the second conductivity type) NTR1 is provided in series with the p-type driving transistor pTR1 on the second power supply side of the analog grounding AGND. The capacitor CCP is connected to the gate electrode and the n-type driving transistor of the P-type driving transistor PTR1. The gate electrode of NTR1 is set in. The charge supply circuit 130 supplies charge to the gate electrode of the n-type driving transistor 127200.doc -36- 200841317 NTR1 during sampling, and stops the gate of the N-type driving transistor NTR1 during the holding period. The pole electrode supplies a charge. Thereby, during the sampling period, the P-type driving transistor PTR1 and the N-type driving transistor NTR1 are operated in accordance with the voltage of the output node NDD of the differential amplifier 110, so that the output voltage VOUT of the operational amplifier circuit 100 can be made to the high potential side. Or the low potential side changes. Further, during the sustain period, the output voltage VOUT is output depending on the voltage of the gate electrode of the P-type driving transistor PTR1. Therefore, the A-stage amplification operation during the sampling period can be simplified, and the operational amplifier circuit 0 of the AB-stage amplification operation is performed during the hold period (:1). Fig. 17 is a circuit diagram showing a configuration example of the operational amplifier circuit OPPi of Fig. 16. The same portions as those in Fig. 16 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. The differential amplifier 110 includes a current mirror circuit CM1, a differential pair DIF1, and a current source CS1. The current mirror circuit CM1 is included in its source. The P-type transistors PTR10 and PTR11 of the analog power supply voltage AVDD are supplied to the pole, and the gate electrode of the P-type transistor PTR10 and the gate electrode of the P-type transistor PTR11 are connected. The P-type transistor PTR11 is connected to the gate electrode and the drain. The differential pair DIF1 includes N-type transistors NTR10 and NTR11. The source of the N-type transistor NTR10 is connected to the source of the N-type transistor NTR11. The drain of the N-type transistor NTR10 is connected to the drain of the P-type transistor PTR10. The drain of the N-type transistor NTR11 is connected to the drain of the P-type transistor PTR11. The analog ground AGND is supplied to one end of the current source CS1, and the other end of the current source CS1 is connected to the source of the N-type transistors NTR10 and NTR11. 127200.doc - 37- 200841317 The differential amplifier 110 supplies an input voltage VIN to the gate electrode of the N-type transistor, and supplies an output voltage νουτ to the gate electrode of the N-type transistor >11111. Then, the p-type transistor is connected. 1> The connection node between the drain of the D1 111 and the drain of the 1^-type transistor NTR10 becomes the output node NDD of the differential amplifier 11. The output node is connected to the P-type drive transistor PTR1 of the output portion 12 The gate electrode 13 includes a current source transistor CTR that supplies a current to the diode of the drain thereof, and a gate electrode that connects the current source transistor CTR at one end thereof, and the other end is connected One end of the capacitor cep and the switch circuit swT of the gate electrode of the type transistor 160. The switch circuit S WT is controlled by the switch control signal STC. The charge supply circuit 130 may further include a current source transistor ctr. The drain current generates a current source CS2 of a constant current. Fig. 18 is a view showing the operation of the switch control signal of the sample-and-hold circuit to which the operational amplifier circuit of Fig. 17 is applied. Fig. 18 is the first and second input switches SO. , S1, feedback switch S2, first and first inversion switches S3-1, S3-2 and output switch S4 together to display the operation example of the switch circuit SWT of Fig. 17. As shown in Fig. 18, the switch of Fig. 17 The switch SWT is controlled by a switch control signal STC generated by a control circuit (not shown) to be turned on during sampling and turned off during the hold period. The operational amplifier circuit 〇PC1 of Fig. 17 changes the gate electrode of the n-type drive transistor NTR1 in response to the change of the gate electrode of the p-type drive transistor PTR1 via the capacitor cep. The charge supply circuit 13 is tied to 127200.doc -38 - 200841317

樣期間接通開關電路SWT,藉由電流源電晶體ctr,在N 型驅動電晶體咖之閘極電極中儲存電荷,同時射型驅 動電晶體PTR1之閘極電極的電 J电缓瓷化傳達至N型驅動電晶 體NTR1之閘極電極。此外,電荷供給電路⑽係在保持期 間斷開開關電路SWT’而射型驅動電晶體㈣之閘極電 極的電壓變化傳達至N型驅動電晶體NTRR閘極電極。 在此種結構之運算放大電路0PCI的差動放大器110中, 考慮輸入電壓VIN比輸出電壓ν〇υτ高之情況。此時,輸 出節點NDD之電壓下降,Ν型電晶體NTR11之汲極電壓提 高。結果,Ρ型驅動電晶體PTR1之閘極電極的電壓下降, P型驅動電晶體PTR1朝向接通之方向。此處,p型驅動電 晶體PTR1之閘極電極的電壓下降時,N型驅動電晶體 NTR1之閘極電極的電壓亦下降。 另外,在差動放大器110中考慮輸入電壓VIN比輸出電壓 VOUT低之情況。此時,輸出節點NDD之電壓上昇,N型 電晶體NTR11之沒極電壓下降。結果,ρ型驅動電晶體 PTR1之閘極電極的電壓上昇,ρ型驅動電晶體PTR1朝向斷 開之方向。此處,P型驅動電晶體PTR1之閘極電極的電壓 上昇時,N型驅動電晶體NTR1之閘極電極的電壓亦上昇。 以上動作之結果,運算放大電路〇?(^轉移成輸入電壓 VIN與輸出電壓VOUT大致相同電位之平衡狀態。 另外,圖16之運算放大電路OPQ並非限定於圖17之結 構者。如圖16中,考慮第一電源係供給類比接地AGND之 電源,第二電源係供給類比電源電壓AVDD之電源,第一 127200.doc •39· 200841317 導電型為N型,第二導電型為P型時,如以下地構成。 圖19中顯示圖16之運算放大電路的其他結構例之電路 圖。 此時,輸出部120包含:N型驅動電晶體NTR2,其係依 據設於第一電源側之差動放大器110的輸出節點之電壓, 控制其閘極電極;及P型驅動電晶體PTR2,其係與N型驅 ^ 動電晶體NTR2串聯地設於第二電源側。 圖19所示之運算放大電路的差動放大器110包含:電流 ^ 鏡電路CM10、差動對DIF10及電流源CS10。電流鏡電路 CM1 0包含在其源極中供給類比接地AGND之N型電晶體 NTR40、NTR41。連接N型電晶體NTR40之閘極電極與N型 電晶體NTR41之閘極電極。並連接N型電晶體NTR41之閘 極電極與汲極。 差動對DIF10包含P型電晶體PTR40、PTR41。連接P型 電晶體PTR40之源極與P型電晶體PTR41之源極。P型電晶 φ 體PTR40之汲極連接於N型電晶體NTR40之汲極。P型電晶 體PTR41之汲極連接於N型電晶體NTR41之汲極。在電流 源CS10之一端供給類比電源電壓AVDD,電流源10之另一 • 端連接於P型電晶體PTR40、PTR41之源極。 . 此種差動放大器110在P型電晶體PTR40之閘極電極上供 給輸入電壓VIN,在P型電晶體PTR41之閘極電極上供給輸 出電壓VOUT。而後,連接N型電晶體NTR40之汲極與P型 電晶體PTR40之汲極的連接節點成為差動放大器110之輸出 節點NDD。該輸出節點連接於輸出部120之N型驅動電晶體 127200.doc -40- 200841317 NTR2的閘極電極。 電荷供給電路130包含:電流源電晶體CTR10,其係在 其汲極上供給電流而二極體連接;及開關電路SWT,其係 其一端連接電流源電晶體CTR10之閘極電極,其另一端連 接電容器CCP之一端及p型驅動電晶體PTR2之閘極電極。 電荷供給電路130還可包含連接於電流源電晶體CTR1 〇之 汲極,而產生穩流的電流源CS20。 因為此種圖19所示之結構的運算放大電路〇pCl之動 作’與圖18所示之運算放大電路0PCl的動作相同,所以省 略說明。 2 _ 5輸出電路之變形例 本實施形態係說明源極線驅動電路62之輸出電路係產生 第一及第二色調電壓間之2種色調電壓者,不過,本實施 形態之變形例係產生第一及第二色調電壓間之4種色調電 壓。亦即,圖5之說明中,j為4時的結構例成為本變形例 之結構。 圖20中顯示本實施形態之變形例的源極線驅動電路62之 輸出電路〇P i的結構例電路圖。 圖20中與圖5相同之部分顯示相同符號,而適當地省略 說明。此外,圖20係設置第一〜第四輸入開關sn〜SI4,並 设置第一〜第四翻轉用開關δ3_υ3-4。第一〜第四電容元 件C1〜C4之電容值相等。 圖21(A)、圖21(B)中顯示圖2〇之輸出電路◦匕的第一動 作例之說明圖。 127200.doc •41 · 200841317 圖21(A)、圖21(B)係顯示輪 御出4.0 v作為色調資料D[5:〇] 之下階2位元的資料〇[1:〇]為「〇 齊 ^ 00」時之第一及第二色調電 間的輸出色調電壓之例。如圖21㈧所示,在抽樣期 :,第-色調電屋係賦予4·0ν,第二色調電歷—係 賦予3·8 V時,經由筮一势 ^ 弟四輸入開關SI1〜SI4,而在第一 〜第四電容元件C1〜C4之全部供认4 〇 ν ^ I 伢、、、口 4.0 v。而後,如圖 21(B) 所示,在保持期間,經由第一 ^ 田弟 弟四翻轉用開關S3-1〜S3·During the sample period, the switching circuit SWT is turned on, and the electric current transistor ctr is used to store the electric charge in the gate electrode of the N-type driving transistor, and the electric energy of the gate electrode of the radiation driving transistor PTR1 is transmitted. To the gate electrode of the N-type driving transistor NTR1. Further, the charge supply circuit (10) disconnects the switch circuit SWT' during the hold period and the voltage change of the gate electrode of the injection drive transistor (4) is transmitted to the N-type drive transistor NTRR gate electrode. In the differential amplifier 110 of the operational amplifier circuit 0PCI having such a configuration, the case where the input voltage VIN is higher than the output voltage ν 〇υ τ is considered. At this time, the voltage of the output node NDD drops, and the drain voltage of the 电-type transistor NTR11 increases. As a result, the voltage of the gate electrode of the 驱动-type driving transistor PTR1 drops, and the P-type driving transistor PTR1 faces the direction of turn-on. Here, when the voltage of the gate electrode of the p-type driving transistor PTR1 drops, the voltage of the gate electrode of the N-type driving transistor NTR1 also drops. Further, the case where the input voltage VIN is lower than the output voltage VOUT is considered in the differential amplifier 110. At this time, the voltage of the output node NDD rises, and the voltage of the N-type transistor NTR11 decreases. As a result, the voltage of the gate electrode of the p-type driving transistor PTR1 rises, and the p-type driving transistor PTR1 faces the direction of the disconnection. Here, when the voltage of the gate electrode of the P-type driving transistor PTR1 rises, the voltage of the gate electrode of the N-type driving transistor NTR1 also rises. As a result of the above operation, the operational amplifier circuit is shifted to an equilibrium state in which the input voltage VIN and the output voltage VOUT are substantially the same potential. The operational amplifier circuit OPQ of FIG. 16 is not limited to the configuration of FIG. Consider that the first power supply is analogous to the power supply of the grounded AGND, and the second power supply is the power supply of the analog power supply voltage AVDD. The first 127200.doc •39· 200841317 conductivity type is N type, and the second conductivity type is P type, such as Fig. 19 is a circuit diagram showing another configuration example of the operational amplifier circuit of Fig. 16. At this time, the output unit 120 includes an N-type drive transistor NTR2, which is based on the differential amplifier 110 provided on the first power supply side. The voltage of the output node controls the gate electrode; and the P-type driving transistor PTR2 is disposed in series with the N-type driving transistor NTR2 on the second power supply side. The difference of the operational amplifier circuit shown in FIG. The dynamic amplifier 110 includes a current mirror circuit CM10, a differential pair DIF10, and a current source CS10. The current mirror circuit CM1 0 includes N-type transistors NTR40 and NTR41 which are supplied with an analog ground AGND in their sources. The gate electrode of the body NTR40 and the gate electrode of the N-type transistor NTR41 are connected to the gate electrode and the drain of the N-type transistor NTR41. The differential pair DIF10 includes the P-type transistor PTR40 and PTR41. The source of PTR40 and the source of P-type transistor PTR41. The drain of P-type transistor φ body PTR40 is connected to the drain of N-type transistor NTR40. The drain of P-type transistor PTR41 is connected to N-type transistor NTR41 The analog terminal supply voltage AVDD is supplied to one end of the current source CS10, and the other end of the current source 10 is connected to the source of the P-type transistors PTR40 and PTR41. The differential amplifier 110 is in the P-type transistor PTR40. The input voltage VIN is supplied to the gate electrode, and the output voltage VOUT is supplied to the gate electrode of the P-type transistor PTR41. Then, the connection node between the drain of the N-type transistor NTR40 and the drain of the P-type transistor PTR40 becomes The output node NDD of the differential amplifier 110. The output node is connected to the gate electrode of the N-type driving transistor 127200.doc -40- 200841317 NTR2 of the output portion 120. The charge supply circuit 130 includes: a current source transistor CTR10, which is Supplying current on its bungee The pole body is connected; and the switch circuit SWT is connected at one end thereof to the gate electrode of the current source transistor CTR10, and the other end thereof is connected to one end of the capacitor CCP and the gate electrode of the p-type drive transistor PTR2. The charge supply circuit 130 can also A current source CS20 is provided which is connected to the drain of the current source transistor CTR1 , to generate a steady current. Since the operation of the operational amplifier circuit 〇pCl of the configuration shown in Fig. 19 is the same as that of the operational amplifier circuit OPC1 shown in Fig. 18, the description will be omitted. 2 _ 5 Output Circuit Modifications In the present embodiment, the output circuit of the source line drive circuit 62 generates two kinds of tone voltages between the first and second tone voltages. However, the variation of the embodiment is generated. Four color tone voltages between one and two tone voltages. That is, in the description of Fig. 5, the configuration example in which j is 4 is the configuration of the present modification. Fig. 20 is a circuit diagram showing an example of the configuration of the output circuit 〇P i of the source line driving circuit 62 according to the modification of the embodiment. The same portions as those in Fig. 5 in Fig. 20 are denoted by the same reference numerals, and the description is omitted as appropriate. Further, Fig. 20 sets the first to fourth input switches sn to SI4, and sets the first to fourth inversion switches δ3_υ3-4. The capacitance values of the first to fourth capacitor elements C1 to C4 are equal. 21(A) and 21(B) are explanatory views showing a first operation example of the output circuit ◦匕 of Fig. 2A. 127200.doc •41 · 200841317 Fig. 21(A) and Fig. 21(B) show the data of the order 2 Bytes as the tone data D[5:〇] 〇[1:〇] is “ An example of the output tone voltage between the first and second tones of 〇 ^ 00 00. As shown in Fig. 21 (A), in the sampling period: the first-tone electric house is given 4·0ν, and the second-tone electric calendar is given to 3·8 V, and the switches SI1 to SI4 are input via the first-in-one four-in-one. All of the first to fourth capacitive elements C1 to C4 are supplied with 4 〇 ν ^ I 伢 , , and port 4.0 v. Then, as shown in Fig. 21(B), during the hold period, the switches S3-1 to S3 are turned over via the first brother.

4 ’藉由供給電荷至輪中命丨 勒出匍可輸出4·〇 V之輸出色調電壓4 ' Output tone voltage of 4·〇 V by supplying charge to the wheel

Vou卜 圖22(A)、圖22(B)中顯示圖2〇之輸出電路〇Ρι的第二動 作例之說明圖。 圖22⑷、圖22(B)係顯示輸出η5 v作為色調資料 D[5:〇]^TPt2^it^ t#D[l:〇]^ r〇lj 色調電[間的輸出色調電壓之例。如圖U⑷所示,在抽 樣期間’第-色調電壓Vinl係賦予4g v,第二色調電壓 」系賦予3·8 V時,經由第一〜第四輸入開關sn〜si4,而 在第帛四電容元件C1〜C4中之3個電容元件供給4〇 v, 在’、餘之1個電容元件中供給3·8 V。而後,如圖22(B)所 :’在保持期間,經由第一〜第四翻轉用開關叫〜⑴, # “電荷至輸出側,按照電荷保存之法則,可輸出 ⑽之輪出色調電壓偏。 輸出 ^ (Α)圖23(B)中顯示圖20之輸出電路的第:私 作例之說明目。 乐-勳 圖23(A)、圖23(B)係顯示輸出3·9〇 V作為色調資料 127200.doc •42- 200841317 之下階2位元的資_]為「1。」時之第一及第- 色調電壓間的輪出色调雷愿之如 ^ 摄期門〜 如圖23(A)所示,在抽 ’弟-色調電壓Ving賦予4.〇 V,第二色調電璧 Vin2係賦予3 8 乂時, 一 ._ 由弟 弟四輪入開關SI1〜SI4,而 ,^第四電谷兀件C1〜C4中之2個電容元件供給4.0 V, 在/、餘之2個電容元件中供給3 8 v。而後,如圖23⑻所 :在保持期間,經由第一〜第四翻轉用開關Μ·】』]],Voub Fig. 22(A) and Fig. 22(B) are diagrams showing a second operation example of the output circuit 〇Ρ of Fig. 2A. 22(4) and 22(B) show an example in which the output η5 v is used as the tone data D[5:〇]^TPt2^it^ t#D[l:〇]^r〇lj tones. As shown in Fig. U(4), during the sampling period, 'the first tone voltage Vin1 is given 4g v, and the second tone voltage is given to 3·8 V, via the first to fourth input switches sn to si4, and the fourth is Three of the capacitive elements C1 to C4 are supplied with 4 〇 v, and 3·8 V is supplied to the remaining one of the capacitive elements. Then, as shown in Fig. 22(B): 'In the holding period, the first to fourth inversion switches are called ~(1), #"charge to the output side, according to the law of charge storage, the output of (10) can be outputted to the tone voltage bias. Output ^ (Α) Figure 23 (B) shows the output circuit of Figure 20: the description of the private example. Le-Xun Figure 23 (A), Figure 23 (B) shows the output 3 · 9 〇 V as Tone data 127200.doc •42- 200841317 The lower-order 2 bits of the capital _] is "1." When the first and the -tone voltages are turned out to be the color of the thunder like ^ shooting period door ~ Figure 23 (A) shows that when the pumping voltage is given to 4. 〇V, and the second tone 璧Vin2 is given 3 8 乂, one._ by the younger brother four rounds into the switches SI1 to SI4, and ^ Two of the four capacitor elements C1 to C4 are supplied with 4.0 V, and 3 8 v is supplied to the remaining two capacitor elements. Then, as shown in Fig. 23 (8): during the holding period, via the first to fourth inversion switches Μ·] 』]],

猎由供給電荷至輸出側,按照電荷保存之法則,可輸出 3·90 V之輸出色調電壓v〇ut。 圖24(A)、圖24(B)中顯示圖20之輸出電路〇Ρι的第四動 作例之說明圖。 Θ 24(A)、圖24(B)係顯示輸出3.85 V作為色調資料 D[5·0]之下階2位元的資料D[1:0]為「11」時之第一及第二 色凋電壓間的輸出色調電壓之例。如圖24(A)所示,在抽 樣期間’第一色調電壓Vinl係賦予4·0 V,第二色調電堡 Vm2係賦予3·8 ^寺,經由第一〜第四輸入開關SI1〜SI4,而 在第一〜第四電容 元件C1〜C4中之1個電容元件供給4.0 V, 在其餘之3個電容元件中供給3.8 V。而後,如圖24(B)所 不’在保持期間,經由第一〜第四翻轉用開關S3-1〜S3-4, 藉由供給電荷至輸出侧,按照電荷保存之法則,可輸出 3·85 V之輸出色調電壓%扒。 3 ·源極驅動器之變形例 本實施形態中之翻轉型抽樣保持電路,亦可適用於所謂 多驅動之源極驅動器的輸出電路。 127200.doc -43 - 200841317 圖25中顯示本實施形態之變形例中的源極驅動器結構例 之區塊圖。圖25中,與圖4相同之部分註記相同符號,而 適當地省略說明。 本變形例中之源極驅動器與圖4所示之本實施形態中之 , 源極驅動器不同之處為設有:多工化電路56及分離電路 64,且在構成DAC60之電壓選擇電路及構成源極線驅動電 路62之輸出電路中,每個源極輸出時間分割地供給色調資 料及色調電壓。 ' 春 圖25中,多工化電路56設於線閂鎖器之間。 分離電路64設於源極線驅動電路62之輸出側。 多工化電路56包含多工器MPXrMPXJk為正整數),各 多工器產生將被線閂鎖器54閂鎖之1個水平掃描部分的色 调貝料,以q(q為正整數,其中,qXk=N)條之每個源極輪 出時間分割而多工化的多 工化資料。 圖26中顯示圖25之多工化電路56的動作說明圖。 • 圖26中之k係24〇者。此時,各多工器產生將對應於各源 極輸出之色調資料以240條之每個源極輸出時間分割多工 的多工化資料。被線閃鎖器54放入之第一〜第24〇源極輸出 . 用之色調資料GDi〜GD24〇,如藉由多工化電路56之多工器 • ΜΡΧι予以多工化。在多工器MPXi〜MpXk之各多工器中輸 入規定時間分割時序之多工控制信號SEL1〜SEL24〇。此種 夕工器控制k號SEL1〜SEL240在源極驅動器3〇之無圖示的 控制電路中產生。該控制電路於丨個水平掃描期間内,如 以多工控制信號SEL1〜SEL240之任何1個多工控制信號依 127200.doc -44 200841317 序成為Η位準之方戎,吝 夕 夕工控制信號SEL1〜SEL240。 在各多工控制信號為Η位準 ^ 平乏期間,輸出對應於該多工控 制信號之源極輸出用的色調資料作為多卫化資料。 此種多工化電路56亦可以各像素具有複數點之複數像素 早位’將色調資料予以時間分割多工,亦可以構成各像素 之同色成分的複數點單位1色調資料單位予以時_ 多工。如像素以刪之3點構成時,可產生將2個像素部分 之各RGB的色調資料予以時間分割多工的多卫化資料。此Hunting supplies charge to the output side, and according to the law of charge preservation, it can output an output tone voltage v〇ut of 3.90 V. 24(A) and 24(B) are explanatory views showing a fourth operation example of the output circuit 图 of Fig. 20. Θ 24(A) and Fig. 24(B) show the first and second when the output D[1:0] of the lower-order 2-bit data of 3.85 V is the tone data D[5·0] is "11" An example of the output tone voltage between color and voltage. As shown in Fig. 24(A), during the sampling period, the first tone voltage Vin1 is given 4·0 V, and the second tone battery Vm2 is given to the 3·8 ^ temple via the first to fourth input switches SI1 to SI4. On the other hand, one of the first to fourth capacitive elements C1 to C4 is supplied with 4.0 V, and the other three of the capacitive elements are supplied with 3.8 V. Then, as shown in FIG. 24(B), during the holding period, the first to fourth inverting switches S3-1 to S3-4 are supplied to the output side via the first to fourth inverting switches S3-1 to S3-4, and can be output according to the law of charge storage. Output tone voltage %扒 of 85 V. 3. Modification of the source driver The flip-type sample-and-hold circuit of the present embodiment can also be applied to an output circuit of a so-called multi-drive source driver. 127200.doc -43 - 200841317 Fig. 25 is a block diagram showing a configuration example of a source driver in a modification of the embodiment. In FIG. 25, the same portions as those in FIG. 4 are denoted by the same reference numerals, and the description thereof will be appropriately omitted. The source driver in the present modification differs from the source driver in the present embodiment shown in FIG. 4 in that a multiplexer circuit 56 and a separation circuit 64 are provided, and a voltage selection circuit and a configuration constituting the DAC 60 are provided. In the output circuit of the source line driving circuit 62, each source output is time-divisionally supplied with tone data and tone voltage. In Fig. 25, the multiplexing circuit 56 is provided between the line latches. The separation circuit 64 is provided on the output side of the source line drive circuit 62. The multiplexer circuit 56 includes a multiplexer MPXrMPXJk which is a positive integer), and each multiplexer generates a tone of a horizontal scanning portion to be latched by the line latch 54 to q (q is a positive integer, wherein qXk=N) Each source of the strip takes turns to divide the time and multiplex the multiplexed data. FIG. 26 is a view showing the operation of the multiplexer circuit 56 of FIG. 25. • The k in Figure 26 is 24〇. At this time, each of the multiplexers generates multiplexed data in which the tone data corresponding to each source output is time-division multiplexed for each of the 240 source outputs. The first to the 24th source outputs are placed by the line locker 54. The tone data GDi to GD24〇 are used, and the multiplexer is multiplexed by the multiplexer circuit 56. The multiplex control signals SEL1 to SE24 are input to the multiplexers of the multiplexers MPXi to MpXk at predetermined time division timings. Such a kiln control k number SEL1 to SEL240 are generated in a control circuit (not shown) of the source driver 3A. The control circuit is in the horizontal scanning period, for example, any one of the multiplex control signals SEL1 to SEL240 is in the order of 127200.doc -44 200841317, and the control signal is SEL1 ~ SEL240. During each multiplex control signal, the gradation data corresponding to the source output of the multiplex control signal is output as the multiplexed data. Such a multiplexing circuit 56 may also have a plurality of pixels of a plurality of pixels in the early position of the plurality of pixels. The color data may be time-division multiplexed, or may constitute a complex point unit of the same color component of each pixel. . When the pixel is composed of three points, it is possible to generate multi-edition data in which the RGB color data of the two pixel portions are time-divided and multiplexed. this

外,如像素以刪之3點構成時,亦可分別產生像素MM 之R成为的色调資料之多工化眘 — 化貝枓、G成分之色調資料的 多工化資料及B成分之色調資料的多卫化資料。 圖25中分離電路64包含多項訊器歸Xl〜DMPXk,各 多工解訊器進行與對應於該多 吻夕工解訊态之多工化電路56的 多工器相反的動作。亦即,夂夕 卩各夕工解汛Is將來自源極線驅 動電路62之各輸出電路的多工化色調電壓分離而輸出至q 條源極輸出。多工解訊器之分離動作時序與多工化電路56 之各多工器的時間分割時序同步。 4.電子機器 圖27中顯示本實施形態中之電子機器的結構例之區塊 圖。此處’電子機器係顯示行動電話之結構例的區塊圖。 _ ’與圖i或圖2相同之部分註記相同符號,而適當地 省略說明。 行動電話900包含相機模組91〇。相機模組9ι〇包含⑽ 相機,以⑽相機攝像之圖像f料以彻格式供給至顯示 127200.doc -45- 200841317 控制器38。 行動電話900包含LCD面板20。LCD面板20藉由源極驅 動器30及閘極驅動器32驅動。LCD面板20包含:複數閘極 線、複數源極線及複數像素。 • 顯示控制器38連接於源極驅動器30及閘極驅動器32,並 對源極驅動器30供給RGB格式之色調資料。 電源電路94連接於源極驅動器30及閘極驅動器32,並對 _ 各驅動器供給驅動用之電源電壓。此外,在LCD面板20之 相對電極上供給相對電極電壓VC0m。 主機940連接於顯示控制器38。主機94〇控制顯示控制器 3 8此外,主機940可將經由天線960而接收之色調資料, 以調變解調部950解調後,供給至顯示控制器38。顯示控 制器38依據該色調資料,藉由源極驅動器3〇及閘極驅動器 32而顯示於LCD面板20。 主機940可指示將相機模組91 〇產生之色調資料以調變解 馨調部950調變後,經由天線96〇對其他通信裝置傳送。 主機940依據來自操作輸入部97〇之操作資訊,進行:色 調資料之傳送接收處理、相機模組91〇之攝像及LCD面板 • 2 0之顯不處理。 . 另外,本發明並非限定於上述之實施形態者,在本發明 之要旨的範圍内可實施各種變形。如本發明不限於適用在 上述之液晶顯示面板的驅動者,還可適用於電致發光、電 漿顯示裝置之驅動。 此外,本發明巾,從屬請求項之發日月+,亦可省略從屬 127200.doc -46- 200841317 子象之明求項的構成要件之一部分而構成。此外,亦可使 本發明之1個獨立請求項的發明之重要部分,從屬於其他 獨立請求項。 【圖式簡單說明】 圖1係顯示本實施形態中之液晶裝置的結構例圖。 圖2係顯示本實施形態中之液晶裝置的其他結構例圖。 圖3係圖丨之源極驅動器的結構例之區塊圖。 圖4係圖1或圖2之源極驅動器的結構例之區塊圖。 圖5係圖4之源極線驅動電路之輸出電路的結構例之電路 圖。 圖6係圖5之輸出電路的第一動作例之說明圖。 圖7係圖5之輸出電路的第二動作例之說明圖。 圖8係圖5之輸出電路的第三動作例之說明圖。 圖9係圖5之輸出電路的第四動作例之說明圖。 圖1 〇係本比較例之動作說明圖。 圖11係本實施形態中之色調電壓的輸出順序之說明圖。 圖12係本實施形態中之源極驅動器的源極驅動器區塊之 結構例的區塊圖。 圖13係圖12之加法時序信號的說明圖。 圖14係圖12之加法控制邏輯的動作說明圖。 圖15(A)、圖15(B)係輔助電容元件CCS之說明圖。 圖16係圖5之運算放大電路的結構例之電路圖。 圖17係圖16之運算放大電路的結構例之電路圖。 圖18係適用圖17之運算放大電路的抽樣保持電路之開關 127200.doc •47· 200841317 控制信號的動作說明圖。 圖19係圖16之運算放大電路的其他結構例之電路圖。 圖20係本實施形態之變形例的源極線驅動電路之輪出電 路的結構例之電路圖。 圖21(A)、圖21(B)係圖20之輸出電路的第一動作例之說 明圖。 圖22(A)、圖22(B)係圖20之輸出電路的第二動作例之說 明圖。 圖23(A)、圖23(B)係圖20之輸出電路的第三動作例之說 明圖。 圖24(A)、圖24(B)係圖20之輸出電路的第四動作例之說 明圖。 圖25係本實施形態之變形例中的源極驅動器之結構例的 區塊圖。 圖26係圖25之多工化電路的動作說明圖。 圖27係本實施形態中之電子機器的結構例之區塊圖。 【主要元件符號說明】 10 液晶裝置 20 LCD面板 30 源極驅動器 32 閘極驅動器 38 顯示控制器 50 I/O緩衝器 52 顯示記憶體 127200.doc -48- 200841317In addition, if the pixel is composed of three points, it is also possible to generate the multiplexed data of the color data of the pixel MM, the multiplexed data of the color data of the G component, and the color data of the B component. Multi-guard data. The separation circuit 64 of Fig. 25 includes a plurality of detectors X1 to DMPXk, and each of the multiplexers performs an operation opposite to the multiplexer of the multiplexer circuit 56 corresponding to the multi-touch state. That is, the multiplexed resolution Is separates the multiplexed tone voltages from the output circuits of the source line driving circuit 62 and outputs them to the q source outputs. The separation operation timing of the multiplexer is synchronized with the time division timing of each of the multiplexers of the multiplexer circuit 56. 4. Electronic device Fig. 27 is a block diagram showing a configuration example of the electronic device in the embodiment. Here, the electronic device system displays a block diagram of a configuration example of a mobile phone. The same portions as those in Fig. 2 or Fig. 2 are denoted by the same reference numerals, and the description is omitted as appropriate. The mobile phone 900 includes a camera module 91A. The camera module 9 〇 includes (10) a camera, and (10) the image captured by the camera is supplied to the display 127200.doc -45- 200841317 controller 38 in a clear format. The mobile phone 900 includes an LCD panel 20. The LCD panel 20 is driven by a source driver 30 and a gate driver 32. The LCD panel 20 includes a plurality of gate lines, a plurality of source lines, and a plurality of pixels. • The display controller 38 is connected to the source driver 30 and the gate driver 32, and supplies the source driver 30 with tone data in RGB format. The power supply circuit 94 is connected to the source driver 30 and the gate driver 32, and supplies a power supply voltage for driving to each of the drivers. Further, a counter electrode voltage VC0m is supplied to the opposite electrode of the LCD panel 20. Host 940 is coupled to display controller 38. The host 94 controls the display controller 38. Further, the host 940 can demodulate the tone data received via the antenna 960, and demodulate it by the modulation/demodulation unit 950, and supply it to the display controller 38. The display controller 38 is displayed on the LCD panel 20 by the source driver 3 and the gate driver 32 in accordance with the tone data. The host 940 can instruct the tone data generated by the camera module 91 to be modulated by the modulation and modulation unit 950, and then transmitted to other communication devices via the antenna 96. The host computer 940 performs transmission and reception processing of color tone data, imaging of the camera module 91, and display processing of the LCD panel based on the operation information from the operation input unit 97. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit and scope of the invention. The present invention is not limited to the driver applied to the liquid crystal display panel described above, and is also applicable to the driving of electroluminescence or a plasma display device. In addition, the present invention towel, the date of issue of the dependent request item, may also omit part of the constituent elements of the dependent item of the 127200.doc -46-200841317 sub-image. In addition, important parts of the invention of one independent claim of the present invention may also be subordinate to other independent claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of the configuration of a liquid crystal device according to this embodiment. Fig. 2 is a view showing another example of the configuration of the liquid crystal device of the embodiment. Fig. 3 is a block diagram showing a configuration example of the source driver of Fig. 。. 4 is a block diagram showing a configuration example of the source driver of FIG. 1 or 2. Fig. 5 is a circuit diagram showing an example of the configuration of an output circuit of the source line driving circuit of Fig. 4. Fig. 6 is an explanatory diagram showing a first operation example of the output circuit of Fig. 5. Fig. 7 is an explanatory diagram showing a second operation example of the output circuit of Fig. 5. Fig. 8 is an explanatory diagram showing a third operation example of the output circuit of Fig. 5. Fig. 9 is an explanatory diagram showing a fourth operation example of the output circuit of Fig. 5. Fig. 1 is a diagram showing the operation of this comparative example. Fig. 11 is an explanatory diagram showing the output order of the tone voltage in the embodiment. Fig. 12 is a block diagram showing a configuration example of a source driver block of a source driver in the embodiment. Figure 13 is an explanatory diagram of the addition timing signal of Figure 12. Fig. 14 is a view showing the operation of the addition control logic of Fig. 12. 15(A) and 15(B) are explanatory views of the auxiliary capacitance element CCS. Fig. 16 is a circuit diagram showing a configuration example of the operational amplifier circuit of Fig. 5. Fig. 17 is a circuit diagram showing a configuration example of the operational amplifier circuit of Fig. 16. Fig. 18 is a diagram showing the operation of the sampling and holding circuit of the operational amplifier circuit of Fig. 17 127200.doc • 47· 200841317. Fig. 19 is a circuit diagram showing another configuration example of the operational amplifier circuit of Fig. 16. Fig. 20 is a circuit diagram showing a configuration example of a wheel circuit of a source line driving circuit according to a modification of the embodiment. 21(A) and 21(B) are explanatory views showing a first operation example of the output circuit of Fig. 20. 22(A) and 22(B) are explanatory views showing a second operation example of the output circuit of Fig. 20. 23(A) and 23(B) are explanatory views showing a third operation example of the output circuit of Fig. 20. 24(A) and 24(B) are explanatory views showing a fourth operation example of the output circuit of Fig. 20. Fig. 25 is a block diagram showing a configuration example of a source driver in a modification of the embodiment. Fig. 26 is a view showing the operation of the multiplexer circuit of Fig. 25. Fig. 27 is a block diagram showing a configuration example of an electronic device in the embodiment. [Main component symbol description] 10 LCD device 20 LCD panel 30 Source driver 32 Gate driver 38 Display controller 50 I/O buffer 52 Display memory 127200.doc -48- 200841317

54 線閂鎖器 58 色調電壓產生電路 60 DAC 62 源極線驅動電路 66 位址控制電路 68 列位址解碼器 70 行位址解碼器 72 線位址解碼器 801 加法電路 821 加法控制邏輯 90 顯示驅動器 94 電源電路 AGND 類比接地 Cl 第一電容元件 C2 第二電容元件 CCS 輔助電容元件 DECi 〜DECn 電壓選擇電路 GL1〜GLM 閘極線 NEG 節點 OP i 〜OPn 輸出電路 opc! 運算放大電路 so 第一輸入開關 SI 第二輸入開關 S2 反饋開關 127200.doc • 49· 200841317 S3-1 第一翻轉用開關 S3-2 第二翻轉用開關 S4 輸出開關 SCO〜SC4 開關控制信號 SL1〜SLN 源極線 Vout 輸出色調電壓54 Line Latch 58 Tone Voltage Generation Circuit 60 DAC 62 Source Line Driver Circuit 66 Address Control Circuit 68 Column Address Decoder 70 Line Address Decoder 72 Line Address Decoder 801 Addition Circuit 821 Addition Control Logic 90 Display Driver 94 Power supply circuit AGND Analog grounding Cl First capacitive element C2 Second capacitive element CCS Secondary capacitive element DECI ~ DECn Voltage selection circuit GL1 ~ GLM Gate line NEG Node OP i ~ OPn Output circuit opc! Operational amplification circuit so first input Switch SI Second input switch S2 Feedback switch 127200.doc • 49· 200841317 S3-1 First flip switch S3-2 Second flip switch S4 Output switch SCO~SC4 Switch control signal SL1~SLN Source line Vout Output tone Voltage

127200.doc 50-127200.doc 50-

Claims (1)

200841317 十、申請專利範圍: 1 ·種源極驅動器,其特徵為··係用於驅動光電裝置之源 極線,且包含: 一色=電塵產生電路,其係對應於色調資料,而輸出第 一及第二色調電壓之各色調電壓;及 源極線驅動電路,其係依據前述第一及第二色調電 t ’來驅動前述源極線; 別述源極線驅動電路包含翻轉(Flip八⑺仙幻型抽樣保 持電路,其係將前述第—色調電壓與前述第二色調電壓 間之輸出色調電壓輸出至前述源極線。 2.如明求項丨之源極驅動器,其中前述翻轉型抽樣保持 路包含: 可电 運算放大電路;及 複數電容元件,其係一端連接於前述運算放大電路之 輸入; ▲在抽樣期間’於電性遮斷前述運算放大電路之輸出與 雨述源極線的狀態下,電性連接前述運算放大電路之輪 :及輪出’於前述複數電容元件之各電容元件中儲存對 應於前述第一或第二色調電壓的電荷; 述抽樣期間後之保持期間,電性遮斷前述運曾放 =輸出’將供給健存於前述複數電容二 大電路的=減大電路之㈣㈣得之前述運算放 的輪出電壓輸出至前述源極線。 •如明求項1之源極驅動器,盆Φ铪, 切裔具中别述翻轉型抽樣保持電 127200.doc 200841317 路包含: 其係在非反轉輸入端子上供給所給之 關,其係插入前述運算放大電路之反轉輪入端 子與珂述運算放大電路之輸出之間; 一端連接於前述反韓輪 “ 汉轉輸入鸲子之第-〜第j(j為2以上之 整數)電容元件;200841317 X. Patent application scope: 1 · Kind of source driver, which is characterized by being used to drive the source line of the optoelectronic device, and includes: a color = electric dust generating circuit, which corresponds to the tone data, and the output And a source line driving circuit for driving the source line according to the first and second tone powers t′; the source line driving circuit includes flipping (Flip eight) (7) a fairy-type sample-and-hold circuit that outputs an output tone voltage between the first tone voltage and the second tone voltage to the source line. 2. The source driver of the present invention, wherein the flip type The sample-and-hold circuit includes: an electric operation amplifying circuit; and a plurality of capacitive elements connected to the input of the operational amplifier circuit at one end; ▲ electrically interrupting the output of the operational amplifier circuit and the rain source line during the sampling period a state in which the wheel of the operational amplifier circuit is electrically connected: and the wheel of the plurality of capacitive elements of the plurality of capacitive elements is stored corresponding to the first or The charge of the two-tone voltage; during the hold period after the sampling period, the current interrupted output = output 'will be supplied to the second circuit of the complex capacitors (4) (4) The output voltage is output to the source line. • If the source driver of the item 1 is specified, the pot Φ 铪, the cutting tool is used for the inverted type sampling and holding power 127200.doc 200841317 Road includes: It is connected to the non-inverting input terminal The supply is turned on, and is inserted between the reverse wheel terminal of the operational amplifier circuit and the output of the operational amplifier circuit; one end is connected to the anti-Korean wheel. (j is an integer of 2 or more) capacitive element; 第一〜第j翻轉用開關,1 八係將弟p(l SpSj,P為整數) 翻轉用開關插入前述第 〗述弟P電谷疋件之另一端與前述運算 放大電路之輸出之間; 弟 第j輸入開關,发在楚·;k/v _ 八係弟P輪入開關的一端連接於第 P電各疋件之另一端;及 輸出開關,其传奸二 源極線之間;… 運算放大電路之輸出與前述The first to the jth flip switch, the 1st eight-series brother p (l SpSj, P is an integer), the flip switch is inserted between the other end of the aforementioned step P electric grid element and the output of the operational amplifier circuit; The jth input switch is issued in Chu; k/v _ eight-phase P-wheel switch is connected at one end of the P-th power switch to the other end; and the output switch is spoofed between the two source lines; ... the output of the operational amplifier circuit and the foregoing 運算放大電路 電壓; 在前述第_ 前述第一或第 在抽樣期間 前述反饋開關 第一〜第j電容 壓之任何一個 第j輸入開關之各輸入開關的另一端供給 二色調電壓; ;斷開如述第一〜第j翻轉用開關,接通 一亚斷開前述輪出開關之狀態下,在前述 π件的另一端供給前述第一及第二色調電 J〜仰像期,日Η芝乏俘炷* 〜第j翻轉用開關 保持期間,將藉由接通前述第一 開關,斷P # 開關而庐得々_ 則迷反饋開關,並接通前述輸出 仅付之前述第一 之輸出色調畲;色調電壓與前述第二色調電壓間 川輪出至前述源極線。 127200.doc >2- 200841317 4.:請求項3之源極驅動器,其中前述 出至前述源極線之電㈣最低電位電麼接近輸出= 歷的最高電位電料,前述色調電生電路 二電位而之順序輸出前述第—及第二色調電壓; 琢述輸出色調電壓比前述最吝 電位雷严“士 ▲ K “電位電壓接近前述最低 電C日守,前述色調電壓產 生電路知照電位低之順序 輸出别述弟一及第二色調電壓。 ”'、項4之源極驅動15,其中前述輸出色調電壓比前 述=低電位電壓接近前述最高電位電㈣,在前述第- 第一·色調電壓中’向電位側之色調電壓供給至前述第 -〜第J電容元件之任何一個電容元件的狀態下,以低電 位侧之色調電壓供給至前述第—〜⑴電容元件之任何— :各7〇件之方式’進行前述第一〜第]輸入開關之 控制。 W ^如請求項4之源極驅動器’其中前述輸出色調電壓比前 述^電位電壓接近前述最低電位電壓時,在前述第一 及第〜一色5周電麼中,低電位侧之色調電麼供給至前述第 一〜第J電容元件之任何-個電容元件的狀態下,以高電 位侧之色調電壓供认$钕、+、+ 电座供ν'口至月U 4第一〜第j電容元件之任何一 個電容元件之方垚, 千之方式進仃可述第一〜第j輸入開關之開關 控制。 7. 如請求項3至6中任-項之源極驅動器,其中前述第一〜 第j電谷元件之各電容元件的電容值相等。 8. 如請求項2至6中任-項之源極驅動器,其中包含在—端 127200.doc 200841317 供。所、、°之電壓,在另-端連接前述運算放大電路之反 轉輸入端子的輔助電容元件。 9·如請求項8之源極驅動器,其中前述輔助電容元件兼用 為形成於電容元件形成區域内之虛擬用的電容元件。 1G.如請求項8之源極驅動器,其中驅動前述光電裝置之各 源極線的各源極驅動器區塊包含複數源極驅動器區塊, 其係包含前述色調電壓產生電路及前述源極線驅動電 路; 各源極驅動器區塊在與前述複數源極驅動器區塊之排 射向交又的方向,具有形成前述第一第j電容元件及 前述輔助電容元件的電容元件形成區域; 前述辅助電容元件在前述電容元件形成區域之邊界 中,沿著在與前述排列方向交又之方向相對的邊界而形 成。 11.如喷求項9之源極驅動器,其中驅動前述光電裝置之各 • 源極線的各祕驅動11區塊包含複數源極驅動II區塊, 其係包含W述色調電壓產生電路及前述源極線驅動電 路; ’ 纟源極驅動器區塊在與前述複數源極驅動器區塊之排 • 2方向交叉的方向,具有形成前述第一〜第j電容元件及 前述輔助電容元件的電容元件形成區域; 前述輔助電容元件在前述電容元件形成區域之邊界 中,沿著在與前述排列方向交叉之方向相對的邊界而形 成0 127200.doc 200841317 12.如請求項2至6中任一項之源極驅動器,其中前述運算放 大電路在前述抽樣期間進行A級放大動作,在前述保持 期間進行AB級放大動作。 13 ·如請求項2至6中任一項之源極驅動器,其中前述運算放 大電路包含: 運算放大器,其係放大前述運算放大電路之輸入與該 運算放大電路之輸出的差分值; 第一導電型之第一驅動電晶體,其係設於第一電源 侧,依據前述運算放大器的輸出節點之電壓,控制其閉 極電極; 第二導電型之第二驅動電晶體,其係與前述第一驅動 電晶體串聯地設於第二電源側; 電容器,其係用於電容耗合前述第一㈣電晶體之閑 極電極與前述第二驅動電晶體之閘極電極;及 fComputing the amplifying circuit voltage; supplying the two-tone voltage to the other end of each of the input switches of any one of the first to jth capacitive voltages of the first to the jth capacitors of the feedback switch during the first or the first sampling period; In the state in which the first to the jth inversion switches are turned on and the above-described turn-off switch is turned on, the first and second color tones J to the image phase are supplied to the other end of the π-piece. During the hold period of the captive*~jth flip switch, the first switch is turned on, the P# switch is turned off, and the feedback switch is turned on, and the output is turned on, and only the first output tone is given. The tone voltage and the aforementioned second tone voltage are pulsed out to the aforementioned source line. 127200.doc >2- 200841317 4. The source driver of claim 3, wherein the aforementioned (4) lowest potential electric power to the aforementioned source line is close to the output of the highest potential electric material, the aforementioned color electric circuit 2 The potentials are sequentially outputted to the first and second tone voltages; the output tone voltage is lower than the last potential potential "±▲ K" potential voltage is close to the minimum power C, and the tone voltage generating circuit has a low potential The sequence outputs the first and second tone voltages. "', the source drive 15 of item 4, wherein the output tone voltage is closer to the highest potential power (four) than the above-mentioned = low potential voltage, and the tone voltage on the potential side is supplied to the aforementioned first in the first first tone voltage - in the state of any one of the J-capacitor elements, the tone voltage on the low potential side is supplied to any of the first -1 (1) capacitive elements - the manner of each of the seven elements is 'the first to the first input' Control of the switch. W ^ The source driver of claim 4, wherein the output tone voltage is closer to the lowest potential voltage than the potential potential voltage, and in the first and the first color 5 weeks, the low potential side In the state in which the tone is supplied to any one of the first to the Jth capacitive elements, the color tone voltage on the high potential side is supplied to the 钕, +, + electric socket for the ν' mouth to the month U 4 first~ The method of any one of the capacitive elements of the jth capacitive element, the switching of the first to the jth input switch can be described as follows. 7. The source driver of any of claims 3 to 6, wherein the foregoing the first~ The capacitance values of the capacitive elements of the j-valley element are equal. 8. The source driver of any of the items 2 to 6 is included in the - terminal 127200.doc 200841317. The voltage of the voltage is in the other The auxiliary capacitor element is connected to the inverting input terminal of the operational amplifier circuit. The source driver of claim 8, wherein the auxiliary capacitor element is used as a dummy capacitor element formed in the capacitor element forming region. The source driver of claim 8, wherein each of the source driver blocks driving the source lines of the optoelectronic device comprises a plurality of source driver blocks, wherein the tone voltage generating circuit and the source line driving circuit are included Each source driver block has a capacitive element forming region forming the first j-th capacitive element and the auxiliary capacitive element in a direction intersecting with the discharge of the plurality of source driver blocks; the auxiliary capacitive element is The boundary between the capacitive element forming regions is formed along a boundary opposite to the direction in which the arrangement direction is intersected. a source driver of the source device, wherein each of the source lines of the respective optoelectronic devices driving the source line 11 comprises a plurality of source driver II blocks, wherein the tone voltage generating circuit and the source line driving circuit are included; The 纟 source driver block has a capacitive element forming region forming the first to jth capacitive elements and the auxiliary capacitive element in a direction intersecting the row 2 direction of the plurality of source driver blocks; the auxiliary capacitive element In the boundary of the aforementioned capacitive element forming region, a source driver is formed along the boundary opposite to the direction in which the foregoing arrangement direction intersects. 12. The source driver according to any one of claims 2 to 6, wherein the aforementioned operation The amplifier circuit performs an A-stage amplification operation during the sampling period, and performs an AB-stage amplification operation during the holding period. The source driver of any one of claims 2 to 6, wherein the operational amplifier circuit comprises: an operational amplifier that amplifies a differential value between an input of the operational amplifier circuit and an output of the operational amplifier circuit; a first driving transistor, which is disposed on the first power supply side, controls the closed electrode according to the voltage of the output node of the operational amplifier; and a second driving transistor of the second conductivity type, which is the first The driving transistor is disposed in series on the second power source side; the capacitor is used for the capacitor to consume the gate electrode of the first (four) transistor and the gate electrode of the second driving transistor; and 14·如請求項13之源極驅動器,14. The source driver of claim 13 電流產生電路;及 開關電路,其係插 ,其係插入前诚Φ、、去女.丨1a current generating circuit; and a switching circuit, which is inserted into the line, and is inserted before the Φ, and goes to the female. 丨 1 可述電容器 間斷開之方式被開關控制。 則述保持期 127200.doc 200841317 15.如請求項14之源極驅動器,其中前述電流產生電路包含 供給電流至其汲極而二極體連接之電流源電晶體; 、、丽述開關電路插入前述電流源電晶體之閘極電極與前 述電容器之-端及前述第二驅動電晶體的閘極電極之 16. —種光電裝置,其特徵為包含: 複數掃描線;The manner in which the capacitors are disconnected can be controlled by switches. 15. The source driver of claim 14, wherein the current generating circuit includes a current source transistor that supplies current to the drain and the diode is connected; and the switch circuit is inserted as described above. An optoelectronic device of the gate electrode of the current source transistor and the terminal of the capacitor and the gate electrode of the second driving transistor, characterized in that: a plurality of scanning lines; 複數源極線; 述複數掃描線之各掃描線及前 而特定各像素;及 之如請求項1至15中任一項的 複數像素,其係藉由前 述複數源極線之各源極線 驅動前述複數源極線用 源極驅動器。a plurality of source lines; each of the plurality of scanning lines of the plurality of source lines; and the plurality of pixels of the plurality of source lines; and the plurality of source lines of the plurality of source lines The source driver for the plurality of source lines is driven. 17· —種電子機器,其特徵為 項之源極驅動器。 18· —種電子機器,其特徵為 置。 包含如清求項1至15中任一 包含如請求項16之光電裝 127200.doc17. An electronic machine characterized by a source driver. 18. An electronic machine characterized by a setting. Contains any of the items 1 to 15 as contained in claim 1 and 127200.doc
TW096145785A 2006-11-30 2007-11-30 Source driver, electro-optical device, and electronic instrument TWI386897B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006323676 2006-11-30
JP2007214299A JP5332150B2 (en) 2006-11-30 2007-08-21 Source driver, electro-optical device and electronic apparatus

Publications (2)

Publication Number Publication Date
TW200841317A true TW200841317A (en) 2008-10-16
TWI386897B TWI386897B (en) 2013-02-21

Family

ID=39487345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145785A TWI386897B (en) 2006-11-30 2007-11-30 Source driver, electro-optical device, and electronic instrument

Country Status (4)

Country Link
JP (1) JP5332150B2 (en)
KR (1) KR100943774B1 (en)
CN (1) CN101192392B (en)
TW (1) TWI386897B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176688B2 (en) * 2007-10-16 2013-04-03 セイコーエプソン株式会社 Data driver, integrated circuit device, and electronic device
JP5176689B2 (en) * 2007-10-16 2013-04-03 セイコーエプソン株式会社 Data driver, integrated circuit device, and electronic device
JP5417762B2 (en) * 2008-08-05 2014-02-19 セイコーエプソン株式会社 Gradation voltage generation circuit, driver, electro-optical device, and electronic apparatus
JP5217771B2 (en) * 2008-08-19 2013-06-19 セイコーエプソン株式会社 Sample hold circuit, driver, electro-optical device, and electronic device
JP5412764B2 (en) * 2008-08-21 2014-02-12 セイコーエプソン株式会社 Sample hold circuit, driver, electro-optical device, and electronic device
KR101057724B1 (en) * 2009-05-13 2011-08-18 주식회사 하이닉스반도체 Semiconductor memory device and driving method thereof
KR101698570B1 (en) 2010-03-25 2017-01-23 삼성디스플레이 주식회사 Display device and driving method thereof
TWI595471B (en) * 2013-03-26 2017-08-11 精工愛普生股份有限公司 Amplification circuit, source driver, electrooptical device, and electronic device
KR102074423B1 (en) * 2013-07-22 2020-02-07 삼성디스플레이 주식회사 Display device and driving method thereof
US10061437B2 (en) * 2015-09-30 2018-08-28 Synaptics Incorporated Active canceling of display noise in simultaneous display and touch sensing using an impulse response
CN108717838B (en) * 2018-04-17 2021-05-25 昀光微电子(上海)有限公司 Silicon-based micro display and driving circuit thereof
CN110164377B (en) * 2018-08-30 2021-01-26 京东方科技集团股份有限公司 Gray scale voltage adjusting device and method and display device
TWI802215B (en) * 2022-01-11 2023-05-11 友達光電股份有限公司 Driving circuit

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200510A (en) * 1983-04-26 1984-11-13 Citizen Watch Co Ltd Amplifier with low power consumption
JPH04248707A (en) * 1991-02-05 1992-09-04 Asahi Kasei Micro Syst Kk Operational amplifier
JP2743683B2 (en) * 1991-04-26 1998-04-22 松下電器産業株式会社 Liquid crystal drive
JP2708007B2 (en) * 1995-03-31 1998-02-04 日本電気株式会社 Sample and hold circuit
KR0148632B1 (en) * 1995-12-20 1998-12-01 양승택 Switched Capacitor Sample-Hold Amplifiers
JP3464599B2 (en) * 1997-10-06 2003-11-10 株式会社 日立ディスプレイズ Liquid crystal display
US5923275A (en) * 1997-10-22 1999-07-13 National Semiconductor Corporation Accurate charge-dividing digital-to-analog converter
JP3418676B2 (en) * 1998-04-13 2003-06-23 シャープ株式会社 LCD drive circuit
JP3718607B2 (en) * 1999-07-21 2005-11-24 株式会社日立製作所 Liquid crystal display device and video signal line driving device
JP3420148B2 (en) * 1999-12-20 2003-06-23 山形日本電気株式会社 Liquid crystal driving method and liquid crystal driving circuit
US6542017B2 (en) * 2001-06-13 2003-04-01 Texas Instruments Incorporated Feed-forward approach for timing skew in interleaved and double-sampled circuits
KR100806903B1 (en) * 2001-09-27 2008-02-22 삼성전자주식회사 Liquid crystal display and driving method thereof
TWI289821B (en) * 2003-02-10 2007-11-11 Himax Tech Ltd Data driver for liquid crystal display panel
JP4179194B2 (en) * 2004-03-08 2008-11-12 セイコーエプソン株式会社 Data driver, display device, and data driver control method
JP4371006B2 (en) * 2004-08-17 2009-11-25 セイコーエプソン株式会社 Source driver and electro-optical device
JP4049140B2 (en) * 2004-09-03 2008-02-20 セイコーエプソン株式会社 Impedance conversion circuit, drive circuit, and control method
KR100613091B1 (en) * 2004-12-24 2006-08-16 삼성에스디아이 주식회사 Data integrated circuit, light emitting display using same and driving method thereof
JP4525343B2 (en) * 2004-12-28 2010-08-18 カシオ計算機株式会社 Display drive device, display device, and drive control method for display drive device
KR20060077156A (en) * 2004-12-30 2006-07-05 매그나칩 반도체 유한회사 Switched capacitor circuit
JP2007189522A (en) * 2006-01-13 2007-07-26 Seiko Epson Corp Operational amplifier circuit, drive circuit, electro-optical device, and electronic equipment

Also Published As

Publication number Publication date
TWI386897B (en) 2013-02-21
KR100943774B1 (en) 2010-02-23
KR20080049664A (en) 2008-06-04
CN101192392A (en) 2008-06-04
JP5332150B2 (en) 2013-11-06
CN101192392B (en) 2010-11-03
JP2008158491A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
TW200841317A (en) Source driver, electro-optical device, and electronic instrument
US10424390B2 (en) Pulse output circuit, shift register and display device
KR100865542B1 (en) Timing generation circuit for display device and display device having same
KR100207299B1 (en) Image display device and scanner circuit
US7030865B2 (en) Operational amplifier circuit, driving circuit and driving method
US6995741B2 (en) Driving circuit and driving method
US7209132B2 (en) Liquid crystal display device, method of controlling the same, and mobile terminal
JP3501939B2 (en) Active matrix type image display
US7006070B2 (en) Operational amplifier circuit, driving circuit, and driving method
US8558852B2 (en) Source driver, electro-optical device, and electronic instrument
JP4826383B2 (en) Power supply circuit, display driver, electro-optical device, and electronic device
JP2008225142A (en) Electrooptical device, driving circuit, and electronic equipment
JP2011239411A (en) Active matrix type display device
JP5780650B2 (en) Level shifter circuit, scanning circuit, display device, and electronic device
US7932901B2 (en) Timing generating circuit, display apparatus, and portable terminal
US11574571B2 (en) Display device having switching signal line between display regions
JP4172472B2 (en) Driving circuit, electro-optical device, electronic apparatus, and driving method
US7321255B2 (en) Voltage generating circuit, data driver and display unit
CN113614819A (en) Display device
JP2007037191A (en) Voltage generation circuit, data driver, and display device
JPH09223948A (en) Shift register circuit and image display device
US8339387B2 (en) Display device and electronic apparatus
JP2005283623A (en) Output circuit and display driving device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees