[go: up one dir, main page]

TW200839192A - Measuring method, measuring device and photographing system - Google Patents

Measuring method, measuring device and photographing system Download PDF

Info

Publication number
TW200839192A
TW200839192A TW96111176A TW96111176A TW200839192A TW 200839192 A TW200839192 A TW 200839192A TW 96111176 A TW96111176 A TW 96111176A TW 96111176 A TW96111176 A TW 96111176A TW 200839192 A TW200839192 A TW 200839192A
Authority
TW
Taiwan
Prior art keywords
distance
points
tested
lens
measuring
Prior art date
Application number
TW96111176A
Other languages
Chinese (zh)
Other versions
TWI318682B (en
Inventor
Chen-Chien Hsu
Ming-Chih Lu
Wei-Yen Wang
Cheng-Chuan Chen
Original Assignee
Ming-Chih Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Chih Lu filed Critical Ming-Chih Lu
Priority to TW96111176A priority Critical patent/TW200839192A/en
Publication of TW200839192A publication Critical patent/TW200839192A/en
Application granted granted Critical
Publication of TWI318682B publication Critical patent/TWI318682B/zh

Links

Landscapes

  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A measuring method is provided to measure the distance between a photographing system and an object under test. The photographing system includes a lens, an image processing device and a display device. The image processing device processes the image captured by the lens so as to show a screen on the display device. First, a horizontal line is shown on the screen wherein the horizontal line simultaneously passes a first under test point and a second under test points in the image. As a first distance is kept between the lens and the object under test, a first pixel value and a second pixel value corresponding to the first under test points and the second under test points on the screen are obtained. When the height between the photographing system and the ground is kept unchanged, the distance between the lens and the object under test is changed. When a second distance is kept between the lens and the object under test, a third pixel value and a fourth pixel value corresponding to the first under test points and the second under test points on the screen are obtained. Based on a distance difference between the first and second distances, the distance between the object under test and photographing system is calculated.

Description

200839192 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種拍攝系統,特別是有關於一種具 有距離量測功能之拍攝系統。 【先前技#?】 習知具有距離量測功能的拍攝系統(如數位相機)係採 用光學設計輔助對焦,其原理係在數位相機的兩固定端安 f' 裝兩個可改變角度的折射鏡。當轉動鏡頭的對焦環(即改變 鏡頭的聚焦點)時,則帶動折射鏡,使其轉動。當折射鏡轉 換到一預設角度時,其所想要對焦的物體就會由兩個影像 (由兩個折射鏡的折射所產生的)重疊為一個影像,鏡頭也 ^ 同時完成對焦動作。 由於上述的數位相機採用兩個具有一定距離的觀測點 為三角量測的參數,並透過轉動兩觀測點處的折射鏡來實 現影像重疊。但影像重疊是依據人眼的觀察來實現的,因 7 而很容易因人眼的感官差異而產生誤差,而得到不準確的 的量測距離。 舉例而言,當人眼先只用右眼觀看眼前一固定物體, 然後再只用左眼觀看該固定物體時,兩次所看到的固定物 體的位置會有些微的差異,因而使得影像無法完全地重疊。 為解決上述問題,習知利用超音波測距或是雷射測距 方式來測量距離。這兩種方式均利用反射原理,因此可在 不必接觸待測物的情況下,測得系統與待測物之間的距 5 200839192 離。然而,當反射面不良時,量測的誤差便隨之增加。 【發明内容】 本發明提供一種量測方法,用以量測一拍攝系統與一 待測物之間的距離。拍攝系統具有一鏡頭、一影像處理裝 置以及一顯示裝置。影像處理裝置處理鏡頭所擷取之影 像,使得顯示裝置呈現一畫面。首先,在該晝面中,呈現 一水平線,其中水平線係同時通過影像中之一第一及第二 待測點。在鏡頭與待測物保持一第一距離時,得知第一及 第二待測點對應於畫面之一第一及第二像素值。在拍攝系 統與地面之間的高度不變的情況下,改變鏡頭與待測物之 間的距離。當鏡頭與待測物保持一第二距離時,得知第一 及第二待測點對應於晝面之一第三及第四像素值。根據第 一與第二距離之間的一距離差值,計算該待測物與拍攝系 統之距離。 本發明另提供一種量測裝置,用以量測一拍攝系統與 一待測物之間的距離。拍攝系統具有一鏡頭、一感光元件、 一處理器以及一顯示裝置。感光元件感應鏡頭所擷取之影 像,以產生一第一影像信號。處理器處理一第二影像信號, 以產生一處理信號。顯示裝置根據處理信號而呈現一晝 面。本發明之量測裝置,包括一設定模組、一彳貞測模組以 及一運算模組。設定模組提供一第一掃描信號,用以在晝 面中,呈現一水平線。水平線同時通過影像之一第一及第 二待測點。偵測模組偵測第一及第二待測點對應晝面之像 素值。運算模組根據偵測模組之偵測結果,計算出拍攝系 6 200839192 統與待測物之間的距離,並處理第一掃描信號以及第一影 像信號,以產生第二影像信號。 本發明亦提供一種拍攝系統,包括一鏡頭、一感光元 件、一量測裝置、一處理器以及一顯示裝置。鏡頭用以擷 取一影像。感光元件感應該影像,以產生一第一影像信號。 量測裝置包括一設定模組、一偵測模組以及一運算模組。 設定模組提供一第一掃描信號,用以在晝面中,呈現一水 平線。水平線同時通過影像之一第一及第二待測點。偵測 〇 模組偵測第一及第二待測點對應晝面之像素值。運算模組 根據偵測模組之偵測結果,計算出拍攝系統與待測物之間 的距離,並處理第一掃描信號以及第一影像信號,以產生 第二影像信號。處理器根據第二影像信號組,產生一處理 信號。顯示裝置根據處理信號而呈現一晝面。 • 為讓本發明之上述和其他目的、特徵、和優點能更明 - 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: I 【實施方式】 第1圖為本發明之量測方法之一流程圖。本發明之量 測方法用以量測一拍攝系統與一待測物之間的距離。拍攝 系統可為具有一鏡頭、一影像處理裝置以及一顯示裝置的 數位相機或是數位攝影機等。影像處理裝置處理鏡頭所擷 取之影像,使得顯示裝置呈現一晝面。 在顯示裝置所呈現的晝面中,呈現一水平線(S110)。 該水平線同時通過影像中之一第一及第二待測點。然後, 7 200839192 在鏡頭與待測物保持第—距離的情況下,得知第 待測點,應於晝面之一第一及第二像素值(S120)。 一 接著,在拍攝系統與地面之間的高度不變的 情況下,得知第一及第二待測點對應於 μ旦面之一第二及第四像素值(S140)。 在本實細例中,該拍攝系統之鏡頭係 Ο Ο 與像之門的距:由5周整鏡頭的位置’便可達到改變鏡頭與 汾像之間的距離。在其它實施 法伸縮時,則需#由改㈣錢」二右拍攝糸統之鏡頭無 以㈣… 攝糸統與待測物之間的距離, 以達到改^鏡頭與待職之間的距離。 接^ ’根據第一與第二距離之間的一距離差值 得知拍,錢與待測物之_輯。在其它實施例中二 將拍攝系統與待測物之間的距離資訊呈現於晝面中。 第2a〜2e圖為本發明之量測方法之示意圖。 例中,拍攝錢係以數位相機為例。在執行完步驟= 後’顯不裝置所呈現的晝面2〇〇中,具有 平線210同時通過待測點211及212。 水 在數位相機上,可設置一調整元件,用以調整 210的位置,使其可同時通過待測點211及212。在兑^ 施例中,水平線2 i 〇亦可被蚊在晝面_的 Ί 調整數位相機與地面的高度,使得水 通=由 點211及212。 亏通過待蜊 8 200839192 、另外’本發0驗不限定制點的取得,在本實施例中, 待測點211及212 #鼻一抓# % π &amp; . ^ y 你局物體的兩端。在其它實施例中, fmil及212亦可分別為兩物體,例如分別 旁的小花。 為I付知待測點211及212在晝面2〇〇中的對應像素 值’可=平線210上設置游標點221及222或是游標線 ,再透過數位相機上的一調整機制,以調整游枳 點221及222或是游標線231及232的位置。 ) 卩下將以游標點221及222為例,將游標點221移動 至待測點211,便可得知待測點211的對應像素值。另外, 將游標點222移動至待測點212,便可得知待測點21 對應像素值。 舉例而言’若水平線210的總像素值為1〇24,游標點 221由像素值1開始往右遞增,而游標點222由像素值 開始往左遞減。當游標點221每移動一次,像素值便自動 加1,而當游標點222每移動一次,像素值便自動減i。在 G 游標點221及222分別重疊於待測點211及212時,便可 得知待測點211及212所對應之像素值。 在數位相機與地面之間的高度不變的情況下,若改變 鏡頭與待測物之間的距離,則晝面200的大小也會隨之變 化。假設,縮短鏡頭與待測物之間的距離,則晝面2〇〇裡 的影像會變大,因此可產生如晝面201所示之影像。 如第2b圖所示,由於數位相機與地面之間的高度不 變,因此水平線210依然會通過待測點211及212,只是 9 200839192200839192 IX. Description of the Invention: [Technical Field] The present invention relates to a photographing system, and more particularly to a photographing system having a distance measuring function. [Previous technique #?] It is known that a shooting system with a distance measurement function (such as a digital camera) uses optical design to assist focusing, and the principle is to mount two angle-reducing mirrors on the two fixed ends of the digital camera. . When the focus ring of the lens is rotated (ie, the focus point of the lens is changed), the refractor is driven to rotate. When the refractor is switched to a preset angle, the object that it wants to focus on is superimposed into two images by the two images (generated by the refraction of the two refractors), and the lens also performs the focusing operation at the same time. Since the above-mentioned digital camera uses two observation points having a certain distance as a triangulation parameter, and by rotating the refractor at the two observation points, the image overlap is achieved. However, image overlap is achieved based on the observation of the human eye. Because of the error, it is easy to produce errors due to the sensory differences of the human eye, and an inaccurate measurement distance is obtained. For example, when the human eye first views the fixed object in front of the eye with only the right eye and then views the fixed object with only the left eye, the position of the fixed object seen twice will be slightly different, thus making the image impossible. Completely overlapping. In order to solve the above problems, it is conventional to measure the distance using ultrasonic ranging or laser ranging. Both of these methods use the reflection principle, so the distance between the system and the object to be tested can be measured without touching the object to be tested. However, when the reflective surface is poor, the measurement error increases. SUMMARY OF THE INVENTION The present invention provides a measurement method for measuring a distance between a photographing system and an object to be tested. The photographing system has a lens, an image processing device, and a display device. The image processing device processes the image captured by the lens such that the display device presents a picture. First, in the facet, a horizontal line is presented, wherein the horizontal line passes through one of the first and second points to be measured in the image at the same time. When the lens and the object to be tested maintain a first distance, it is known that the first and second points to be measured correspond to one of the first and second pixel values of the picture. Change the distance between the lens and the object to be tested with the same height between the shooting system and the ground. When the lens is kept at a second distance from the object to be tested, it is known that the first and second points to be measured correspond to one of the third and fourth pixel values of the facet. The distance between the object to be tested and the photographing system is calculated based on a distance difference between the first and second distances. The present invention further provides a measuring device for measuring the distance between a photographing system and an object to be tested. The photographing system has a lens, a photosensitive element, a processor, and a display device. The photosensitive element senses the image captured by the lens to generate a first image signal. The processor processes a second image signal to generate a processed signal. The display device presents a facet based on the processed signal. The measuring device of the present invention comprises a setting module, a testing module and an operation module. The setting module provides a first scan signal for presenting a horizontal line in the plane. The horizontal line passes through one of the first and second points to be measured simultaneously. The detection module detects the pixel values corresponding to the first and second points to be measured. The computing module calculates the distance between the camera system and the object to be tested according to the detection result of the detection module, and processes the first scan signal and the first image signal to generate a second image signal. The invention also provides a photographing system comprising a lens, a photosensitive element, a measuring device, a processor and a display device. The lens is used to capture an image. The photosensitive element senses the image to generate a first image signal. The measuring device comprises a setting module, a detecting module and an operation module. The setting module provides a first scan signal for presenting a horizontal line in the face. The horizontal line passes through one of the first and second points to be measured simultaneously. The detection 〇 module detects pixel values corresponding to the first and second points to be measured. The computing module calculates the distance between the shooting system and the object to be tested according to the detection result of the detecting module, and processes the first scanning signal and the first image signal to generate a second image signal. The processor generates a processing signal based on the second image signal group. The display device presents a facet according to the processed signal. The above and other objects, features, and advantages of the present invention will become more apparent and understood <RTIgt; 1 is a flow chart of the measuring method of the present invention. The measuring method of the present invention is used to measure the distance between a photographing system and an object to be tested. The photographing system can be a digital camera or a digital camera having a lens, an image processing device, and a display device. The image processing device processes the image captured by the lens such that the display device assumes a face. In the facet presented by the display device, a horizontal line is presented (S110). The horizontal line simultaneously passes through one of the first and second points to be measured in the image. Then, 7 200839192, in the case where the lens and the object to be tested maintain the first distance, it is known that the first point to be measured should be one of the first and second pixel values of the face (S120). First, in the case where the height between the photographing system and the ground is constant, it is known that the first and second points to be measured correspond to one of the second and fourth pixel values of the mu surface (S140). In this embodiment, the lens of the photographing system is the distance between the lens and the image door: the distance between the lens and the image can be changed by the position of the entire lens for 5 weeks. In the case of other implementations, it is necessary to change the distance between the camera and the waiting object by changing the distance between the camera and the object to be tested. . According to a distance difference between the first and second distances, the shot, the money and the object to be tested are known. In other embodiments, the distance information between the photographing system and the object to be tested is presented in the facet. Figures 2a to 2e are schematic views of the measurement method of the present invention. In the example, the money is taken as a digital camera. In the face 2〇〇 presented by the step display device, the flat line 210 passes through the points to be tested 211 and 212 at the same time. Water On a digital camera, an adjustment component can be provided to adjust the position of 210 so that it can pass through points 211 and 212 to be tested simultaneously. In the example, the horizontal line 2 i 〇 can also be adjusted by the mosquitoes in the _ _ Ί to adjust the height of the digital camera to the ground so that the water is passed by points 211 and 212. In the present embodiment, the points to be tested 211 and 212 #鼻一抓# % π &amp; . ^ y Both ends of the object . In other embodiments, fmil and 212 may also be two objects, such as florets next to each other. Adjusting the corresponding pixel value of the to-be-measured points 211 and 212 in the face 2' can be set to the cursor point 221 and 222 or the cursor line on the flat line 210, and then through an adjustment mechanism on the digital camera to adjust The recreation points 221 and 222 or the positions of the cursor lines 231 and 232. The cursor points 221 and 222 are taken as an example, and the cursor point 221 is moved to the point to be measured 211, and the corresponding pixel value of the point to be measured 211 can be known. In addition, moving the cursor point 222 to the point to be tested 212, the pixel value corresponding to the point 21 to be measured can be known. For example, if the total pixel value of the horizontal line 210 is 1〇24, the cursor point 221 is incremented from the pixel value 1 to the right, and the cursor point 222 is decremented from the pixel value to the left. When the cursor point 221 is moved once, the pixel value is automatically incremented by 1, and when the cursor point 222 is moved once, the pixel value is automatically decremented by i. When the G vernier points 221 and 222 are overlapped with the points to be measured 211 and 212, respectively, the pixel values corresponding to the points to be measured 211 and 212 can be known. In the case where the height between the digital camera and the ground is constant, if the distance between the lens and the object to be tested is changed, the size of the face 200 will also change. Assuming that the distance between the lens and the object to be tested is shortened, the image in the face of the face becomes larger, so that an image such as the face 201 can be produced. As shown in Figure 2b, since the height between the digital camera and the ground does not change, the horizontal line 210 will still pass through the points to be tested 211 and 212, just 9 200839192

計算鏡頭位移前後待測點 。藉由控制游標點221 及212所對應的新像 所對應的像素值,便可得知Calculate the point to be measured before and after the lens displacement. By controlling the pixel values corresponding to the new image corresponding to the cursor points 221 and 212, it is known

Γ』211 Α 212所對應之像素值分別為Pa(h2)及Pb(h2)。 數位相機與待測物之間的距離·· 圖。如圖所示,當锫涵士 h(鏡頭位移後)時,待測 ίD{hx) 由於在同一水平線上,待測點211及212之間的距離€ 與所佔的像素值成正比,故在晝面2〇〇中,待測點2ΐι及 212之間的距離{與所佔的像素值之間的關係如下式所示: 其中’ NCh!)為待測點211至212在畫面200所佔的像 素值,亦即像素值Pa(hi)及pb(hi)之間的差值,D(h〇為鏡 〇 頭未位移前影像晝面所能擷取到的最大實際水平距離, ^11^為水平線210的總像素值。 在晝面201中,待測點211及212之間的距離€與所你 的像素值之間的關係如下式所示: 《_D(h2)The pixel values corresponding to 211 Α 212 are Pa(h2) and Pb(h2), respectively. The distance between the digital camera and the object to be tested·· Figure. As shown in the figure, when 锫 士 h (after lens shift), ίD{hx) is measured. Since the distance between the points 211 and 212 to be measured is proportional to the occupied pixel value, In the face 2〇〇, the distance between the points 2ΐ and 212 to be measured {the relationship with the occupied pixel value is as follows: where 'NCh!) is the points to be measured 211 to 212 on the screen 200 The pixel value, that is, the difference between the pixel values Pa(hi) and pb(hi), D(h〇 is the maximum actual horizontal distance that can be captured by the image before the mirror head is not displaced, ^ 11^ is the total pixel value of the horizontal line 210. In the pupil 201, the relationship between the distance between the points 211 and 212 to be measured and your pixel value is as follows: "_D(h2)

其中,N(h2)為待測點211至212在晝面201所佔的像 素值’亦即像素值Pa(h2)及Pb(h2)之間的差值,D(h2)為鏡 頭位移後,影像晝面所能擷取到的最大實際水平距離,NWhere N(h2) is the difference between the pixel values occupied by the points 211 to 212 to be measured 201, that is, the pixel values Pa(h2) and Pb(h2), and D(h2) is the lens displacement. , the maximum actual horizontal distance that can be captured by the image surface, N

Nmax 200839192 為水平線210的總像素值。 由於待測點211及212之間的距離以及水平線21〇的 總像素值Nmax係固定不變,故可得下式: D{hx) = N(h2) ·· _2) 一释 1) ..................() 如第2c圖所示,在鏡頭位移的前後,將有以及 D(h2)為底邊的相似等腰三角形。當等腰三角形以D(hl)為 底邊時,則該等腰三角形的高為hi+hs。當等腰三角形以 ΟNmax 200839192 is the total pixel value of the horizontal line 210. Since the distance between the points to be measured 211 and 212 and the total pixel value Nmax of the horizontal line 21〇 are fixed, the following equation can be obtained: D{hx) = N(h2) ·· _2) one release 1) .. ................() As shown in Figure 2c, before and after the lens shift, there will be a similar isosceles triangle with D(h2) as the base. When the isosceles triangle has D(hl) as the base, the height of the isosceles triangle is hi+hs. When the isosceles triangle is Ο

D(h2)為底邊時,則該等腰三角形的高為h2+hs。因此,可 得下式: hl+hs ^N(h2) h2+hs N{hx) .................. 由於,因此,距離hi及、分別如式⑺及式 (6)如所。 ............(5) h2 --hs ............⑹ 其中,Ah為鏡頭位移前後的距離差值,hs為數位相機 内之感光元件與鏡頭之間的距離。由於hs很小,故可忽略。 由於待測點211至212在畫面200所佔的像素值、待 利2 211至212在畫面201所佔的像素值N(h2)以及鏡頭位 移的距離Δΐχ均為已知,因此,透過式(5)及式(6),便可得 知數位相機與待測物之間的距離。 不同礙牌的數位相機,其内部的感光元件與鏡頭之間 的距離1^並不相同。在上述實施例中,係忽略感光元件與 200839192 鏡頭之間的距離hs。但若想提高距離的量測準確度,亦玎 考慮感光元件與鏡頭之間的距離hs。以下將說明如何求得 感光元件與鏡頭之間的距離hs。 在測量數位相機與影像之間的距離時,可一併考慮感 光元件與鏡頭之間的距離hs。因此,在測量前,就需先得 知感光元件與鏡頭之間的距離h。 第3a圖為測量感光tl件與鏡頭之間的距離的示意圖。 首先,利用垂直量尺310,可使得數位相機33〇與水平量 f)尺320在保持距離hml的情況下,得知鏡頭331所能擷取 到的最大水平距離Dml。然後,移動水平量尺32〇。在數位 相機330與水平f尺320在保持距離hm2的情況下,得知 鏡頭331所能擷取到的最大水平距離Dm2。 如第3a圖所乔’由於圖中具有兩相似等腰三角形,其 分別以寬度Dml及Dm為底,故可得到下式: K + ^m2 _ ^ +When D(h2) is the bottom edge, the height of the isosceles triangle is h2+hs. Therefore, the following formula can be obtained: hl+hs ^N(h2) h2+hs N{hx) .................. Because, therefore, the distance hi and respectively are as Equations (7) and (6) are as follows. ............(5) h2 --hs ............(6) where Ah is the distance difference before and after the lens shift, hs is the digital camera The distance between the photosensitive element and the lens. Since hs is small, it can be ignored. Since the pixel values occupied by the points to be measured 211 to 212 on the screen 200, the pixel value N (h2) occupied by the pixels 2 211 to 212 on the screen 201, and the distance Δΐχ of the lens displacement are all known, the transmission type ( 5) With equation (6), the distance between the digital camera and the object to be tested can be known. For digital cameras with different brands, the distance between the internal photosensitive element and the lens is not the same. In the above embodiment, the distance hs between the photosensitive element and the lens of 200839192 is ignored. However, if you want to improve the measurement accuracy of the distance, consider the distance hs between the photosensitive element and the lens. The following describes how to find the distance hs between the photosensitive element and the lens. When measuring the distance between the digital camera and the image, the distance hs between the sensor and the lens can be considered together. Therefore, before measuring, the distance h between the photosensitive element and the lens needs to be known. Figure 3a is a schematic diagram of measuring the distance between the photosensitive element and the lens. First, by using the vertical scale 310, the digital camera 33 and the horizontal amount f) the ruler 320 can know the maximum horizontal distance Dml that the lens 331 can capture while maintaining the distance hml. Then, move the horizontal ruler 32〇. In the case where the digital camera 330 and the horizontal f-foot 320 are kept at the distance hm2, the maximum horizontal distance Dm2 that the lens 331 can capture is known. As shown in Figure 3a, because there are two similar isosceles triangles in the figure, which are based on the widths Dml and Dm respectively, the following formula can be obtained: K + ^m2 _ ^ +

Dmi .....................(7) 化簡式(7)後,可得下式: U h —hmlDm2-hm2Dm\ 、一―..................(8) 將式(8)代入式(5)及式(6),即可得知數位相機之感光元 件與影像之間的距離hs。 藉由計算兩待測點所對應的像差值的差異,除了可得 知數位相機與待測物之間的距離,亦可求得兩待測點之間 的距離。以下將說明如何求得兩待測點之間的實際距離^。 第3b圖為測量兩待測點之間的實際距離示意圖。第 200839192 3b圖與第2c圖相似 職取影像之角度%。^㈣付絲不。Μ,得知鏡 打错由三条il/齡,ϋ呈nr劣·Dmi .....................(7) After simplifying (7), the following formula can be obtained: U h —hmlDm2-hm2Dm\ , one —.. ................(8) Substituting equation (8) into equations (5) and (6), the distance between the photosensitive element of the digital camera and the image can be known. Hs. By calculating the difference between the aberration values corresponding to the two points to be measured, in addition to knowing the distance between the digital camera and the object to be tested, the distance between the two points to be measured can also be obtained. The following describes how to find the actual distance ^ between two points to be measured. Figure 3b is a schematic diagram showing the actual distance between two points to be measured. The 200839192 3b picture is similar to the 2c picture. ^ (four) pay no. Hey, I know that the mirror is wrong by three il/years, and that it is nr bad.

Y2m) ...................(9) 後,便求得兩待測點之間的實際 cot% 將式(1)代入式(9)化簡 距離為: ^2(/,1+^)|Wtan% ...............Y2m) ...................(9), then the actual cot% between the two points to be measured is obtained. Substituting equation (1) into equation (9) The simple distance is: ^2(/,1+^)|Wtan% ...............

iVmax JiVmax J

由上述可知’藉由得知兩待測點所對應的像素值,便 可求得拍攝糸統與待測物之間的距離,以及在影像中的兩 待測點之間的輯。若影像巾的兩待測點為同—物體之兩 端時,只要再求出該物體另—方向的兩端之間的距離,便 可得知該物體大約的面積。 第4圖為本發明之拍攝系統之一可能實施例。如圖所 示,拍攝糸統400包括,一鏡頭41〇、一感光元件420、一 量測裝置430、一處理器440以及一顯示裝置450。 鏡頭410用以擷取一影像,其可為伸縮鏡頭或是固定 式鏡頭。感光元件420可為一電荷搞合元件(charge Coupled Device ; CCD)或是一互補式的金屬氧化物半導體 (Complementray Metal_Oxide Semiconductor ; CMOS),用 以感應該影像,以產生影像信號組V01。 量測裝置430處理影像信號組V01,以產生影像信號 組V02。處理器440對影像信號組V02進行處理,以產生 處理信號予顯示裝置450(例如液晶顯示器),使其呈現對應 晝面。 13 200839192 在本實施例中,量測裝置430包括,一設定模組431、 一偵測模組432以及一運算模組433。設定模組431提供 一掃描信號VHK,用以在顯示裝置450所呈現的晝面中, 設置一水平線。該水平線同時通過鏡頭410所擷取到的影 像晝面之第一及第二待測點。It can be seen from the above that by knowing the pixel values corresponding to the two points to be measured, the distance between the shooting system and the object to be tested, and the series between the two points to be measured in the image can be obtained. If the two points to be measured of the image towel are the same end of the object, the approximate area of the object can be known by finding the distance between the ends of the object in the other direction. Figure 4 is a possible embodiment of the photographing system of the present invention. As shown, the photographing system 400 includes a lens 41, a photosensitive element 420, a measuring device 430, a processor 440, and a display device 450. The lens 410 is used to capture an image, which may be a telescopic lens or a fixed lens. The photosensitive element 420 can be a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) for sensing the image to generate the image signal group V01. The measuring device 430 processes the image signal group V01 to generate a video signal group V02. The processor 440 processes the image signal group V02 to generate a processing signal to the display device 450 (e.g., a liquid crystal display) to render it corresponding to the face. 13 200839192 In the embodiment, the measuring device 430 includes a setting module 431, a detecting module 432 and an operation module 433. The setting module 431 provides a scan signal VHK for setting a horizontal line in the face of the display device 450. The horizontal line simultaneously passes through the first and second points to be measured of the image captured by the lens 410.

Ο 偵測模組432偵測第一及第二待測點對應晝面之像素 值,用以提供像素值ML、MR。當鏡頭410與第一及第二 待測點之間的距離未被改變時,偵測模組432偵測出第一 及第二待測點對應晝面之像素值Mli、Mri。 當鏡頭410與第一及第二待測點之間的距離被改變 時’則偵測模組432可再偵測出第一及第二待測點對應該 晝面之像素值Ml2、MR2。 若第2a圖為顯示裝置450所呈現的晝面時,則設定模 組431係用以在晝面200中,設定同時通過待測點211及 212的水平線210。而偵測模組432係用以得知鏡頭位移前 後時,待測點211及212所對應之像素值。 在本實施例中,係透過偵測模組432在晝面2〇〇中, 設置游標點221及222,並且藉由游標點227及222 鏡頭位移前後時,待測點211及212 于口 社—虚t 4應 &lt;像素值。在 其匕貫知例中,可透過設定模組432在金品^ 甘置面200中,設罟 游標點221及222。 運算模組433根據偵測模組432之彳貞測社果 ^ ^ 拍攝系統與該第-及第二待測點之_距離; 信號VHK以及影像㈣vG1,料生影像信號^處理㈣ 200839192 當處理裔44〇胳走m 置450時,則在顯示;,影像信號V。2傳送至顯示裝 具有鏡頭410所掏取的^所呈現的晝面細中’除了 游標線23i、说,及所的量=卜’另外還包含水平線2H)、 之間的距離)。 到的距離值(拍攝系統與待測物 在其:::例中,可將拍攝系統_固定在一機座 上。第5圖為機座之示咅同 ^ w w圖。如圖所示,若鏡頭410為固The detection module 432 detects pixel values corresponding to the first and second points to be measured, and provides pixel values ML and MR. When the distance between the lens 410 and the first and second points to be tested is not changed, the detecting module 432 detects the pixel values Mli, Mri corresponding to the first and second points to be measured. When the distance between the lens 410 and the first and second points to be measured is changed, the detection module 432 can detect the pixel values M12 and MR2 corresponding to the first and second points to be measured. If Fig. 2a is a facet of the display device 450, the set mode group 431 is used to set the horizontal line 210 that passes through the points to be measured 211 and 212 simultaneously in the facet 200. The detection module 432 is used to know the pixel values corresponding to the points to be measured 211 and 212 when the lens is shifted forward and backward. In this embodiment, the cursor points 221 and 222 are set in the face 2 through the detection module 432, and the points to be measured 211 and 212 are in the mouth when the lens points are moved by the cursor points 227 and 222. - virtual t 4 should be &lt; pixel value. In the conventional example, the cursor points 221 and 222 can be set in the gold product 200 by the setting module 432. The operation module 433 calculates the distance between the photographing system and the first and second points to be tested according to the detection module 432; the signal VHK and the image (4) vG1, and the raw image signal ^ processing (4) 200839192 When the 44 〇 走 m m is set to 450, it is displayed; the image signal V. 2 Transfer to the display device The facet shown by the lens 410 is displayed in addition to the vernier line 23i, and the amount of the vernier line 23i, and the amount of the splayed line 2b, which also includes the horizontal line 2H). The distance value obtained (the shooting system and the object to be tested are in the ::: example, the shooting system _ can be fixed on a machine base. Figure 5 is the same as the frame of the machine base. As shown in the figure, If the lens 410 is solid

Ο 疋式鏡頭卜、Uit過軸拍攝系統_,以達到位移鏡 頭的目的。 當拍攝糸統400接觸到開關sB時,則可透過债測模組 432得知兩待測點所對應之像素值。#拍攝系統働往右 位移距離Ah時,開關、會被觸發,此時再透過偵測模組 432得知兩待測點所對應之另一像素值。 由於距離Ah係為一固定值,並可事先得知,故可將 距離Ah的數值儲存於運算模組433中,使得運算模組433 根據式(5)及式(6),得知拍攝系統與待測物之間的距離。 第6a圖為設定模組之一可能實施例。如圖所示,設定 模組431具有掃描線設定器611及掃描線控制器612。掃 描線控制器612係根據感光元件420所提供之影像信號 V01,可提供N條掃描信號。掃描設定器611用以致能n 條掃描信號中之一者。掃描控制器612再輸出掃描設定器 611所致能的第k條掃描彳§ 虎Vjjk ’使得晝面中的第k條 掃描線為反白的狀態。 在本實施例中,掃描線設定器611係根據調整信號 15 200839192Ο 疋 lens, Uit over-axis shooting system _, to achieve the purpose of the displacement lens. When the shooting system 400 contacts the switch sB, the pixel value corresponding to the two points to be measured can be known through the debt testing module 432. When the shooting system is shifted to the right by the distance of Ah, the switch will be triggered. At this time, the detection module 432 is used to know the other pixel value corresponding to the two points to be measured. Since the distance Ah is a fixed value and can be known in advance, the value of the distance Ah can be stored in the operation module 433, so that the operation module 433 knows the shooting system according to the formulas (5) and (6). The distance from the object to be tested. Figure 6a is a possible embodiment of one of the setting modules. As shown, the setting module 431 has a scan line setter 611 and a scan line controller 612. The scan line controller 612 can provide N scan signals based on the image signal V01 supplied from the photosensitive element 420. Scan setter 611 is used to enable one of the n scan signals. The scan controller 612 then outputs the kth scan of the scan setter 611 to enable the kth scan line to be reversed. In this embodiment, the scan line setter 611 is based on the adjustment signal 15 200839192

Sav,致能N條掃描信號之一者。在其它實施例中,掃描 線設定器611可固定致能N條掃描信號之一者。舉例而 言,掃描線設定器611固定致能第10條掃描線的信號。 第6b圖為偵測模組之一可能實施例。如圖所示,位置 控制器621及623偵測兩待測點所對應的像素值Ml及 MR。以第2a圖為例,在鏡頭位移前,位置控制器所 偵測到的像素值Ml為第一像素值,而位置控制器623所 偵測到的像素值MR為第二像素值。 〇 在鏡頭位移後,位置控制器621所偵測到的像素值Ml 為第三像素值,而位置控制器⑵所備測到的像素值Mr 為第四像素值。運算模組433再根據第一、第二、第三、 第四像素值及鏡頭位移量M,得知拍攝系統與待測物:間 的距離。 在本實施例中,偵測模組432藉由比較器624及625, 在晝面200中設置游標線231及232,並控制游標線231 及232,使其與水平線210相交於待測點211及212。在其 G 它實施例中,可利用設定模組431產生如第2&amp;圖所示之^ 標點或是游標線,並且可由偵測模組432或是一使用者\ 控制游標點或是游標線的位置。 在每一條掃描線的開始,像素控制器622所輸出之像 素值NP便由0開始往上計數,一直到掃描線結束 (NP=Nmax)。當像素值ML或Mr等於像素控制㈣奶所輸出 之像素值ΝΡ時,則比較器624《奶將致能掃描信號 或vEQ2。因此,會在該條掃描線的像素值為乂及處將 16 200839192 產生「反白」的影像信號。 當所有掃描線都在像素值ML及Mr處產生「反白」的 影像信號時,就會產生兩條垂直第k條掃描線的「反白」 直線’也就是第2a圖中的游標線231及232。 第0C圖為運鼻模組之一可能實施例。如圖所示,運算 模組433包括,減法器631、微處理器632、字元儲存記憶 體633以及處理單元634。減法器631用以得知兩待測點 所對應之像素值ML&amp; MR之間的差值。 Ο 假設,拍攝系統架設在如第5圖所示的機構上時,當 開關sB被觸發時,表示鏡頭尚未移動。由於減法器631所 接收到的像素值ML及MR分別為第一及第二像素值,故微 處理器632先接收減法器63ι的計算結果。 當開關^被觸發時,表示鏡頭已被移動距離Ah。由 於減法器631所接收到的像素值]^1^及]^^分別為第三及第 四像素值’故微處理器632將此時所接收到的計算結果與 上次所接收到的計算結果依第(5)及(6)式作處理,並將處理 〇後的結果儲存於字元儲存記憶體633中,使得顯示裝置45〇 將存放在字70儲存記憶體㈣中的資料呈現於畫面中。因 此使用者便可由畫面得知拍攝系統與待測物之間的距離。 /、、、;本么月已以較佳實施例揭露如上 限^發明,任何所屬技術領域中具有通常知識者在不 田if * ^月之精神和範圍内,當可作些許之更動與潤飾, 發明之保護範圍當視後附之中請專利範圍所界定者 17 200839192 【圖式簡單說明】 第1圖為本發明之量測方法之一流程圖。 第2a〜2c圖為本發明之量測方法之示意圖。 第3a圖為測量感光元件與鏡頭之間距離hs的示意圖。 第3b圖為測量兩待測點之間的實際距離,的示意圖。 第4圖為本發明之拍攝系統之一可能實施例。 第5圖為機座之示意圖。 第6a圖為設定模組之一可能實施例。 〇 第6b圖為偵測模組之一可能實施例。 第6c圖為運算模組之一可能實例。 【主要元件符號說明】 200、201 :畫面; • 210 :水平線; 211、212 :待測點; 221、222 :游標點; ◎ 231、232 :游標線; 310、320 :量尺; 330 :數位相機; 331、 410 :鏡頭; 332、 420 :感光元件; 400 :拍攝系統; 430 :量測裝置; 431 :設定模組; 432 :偵測模組; 18 200839192 433 ·•運算模組; 440 :處理器; 450 :顯示裝置; 611 :掃描線設定器; 612 :掃描線控制器; 621、623 :位置控制器; 622 :像素控制器; 624、625 :比較器; ^ 631 :減法器; 632 ··微處理器; 633 :字元儲存記憶體; 634 :處理單元。 h、h2、hs、Z\h、,:距離; D(h〇、D(h2):最大水平距離;Sav, one of the N scan signals enabled. In other embodiments, scan line setter 611 can be fixed to enable one of the N scan signals. For example, the scan line setter 611 fixes the signal that enables the 10th scan line. Figure 6b is a possible embodiment of a detection module. As shown in the figure, the position controllers 621 and 623 detect the pixel values M1 and MR corresponding to the two points to be measured. Taking Fig. 2a as an example, before the lens shift, the pixel value M1 detected by the position controller is the first pixel value, and the pixel value MR detected by the position controller 623 is the second pixel value. 〇 After the lens is displaced, the pixel value M1 detected by the position controller 621 is the third pixel value, and the pixel value Mr prepared by the position controller (2) is the fourth pixel value. The operation module 433 further knows the distance between the photographing system and the object to be tested based on the first, second, third, and fourth pixel values and the lens shift amount M. In the present embodiment, the detection module 432 sets the vernier lines 231 and 232 in the kneading surface 200 by the comparators 624 and 625, and controls the vernier lines 231 and 232 to intersect the horizontal line 210 at the point to be measured 211. And 212. In its embodiment, the setting module 431 can be used to generate the punctuation point or the vernier line as shown in the second &amp; figure, and the detection module 432 or a user\ can control the cursor point or the vernier line. s position. At the beginning of each scan line, the pixel value NP output by the pixel controller 622 starts counting from 0 until the end of the scan line (NP = Nmax). When the pixel value ML or Mr is equal to the pixel value 输出 output by the pixel control (4) milk, the comparator 624 "milk will enable the scan signal or vEQ2. Therefore, the image signal of "2008" will be generated in the pixel value of the scan line. When all the scan lines produce a "reverse" image signal at the pixel values ML and Mr, a "reverse white" line of two vertical kth scan lines is generated, that is, the cursor line 231 in FIG. 2a. And 232. Figure 0C shows one possible embodiment of the nose module. As shown, the arithmetic module 433 includes a subtractor 631, a microprocessor 632, a character storage memory 633, and a processing unit 634. The subtracter 631 is configured to know the difference between the pixel values ML&amp; MR corresponding to the two points to be measured.假设 Assume that when the shooting system is mounted on the mechanism as shown in Figure 5, when the switch sB is triggered, it indicates that the lens has not moved. Since the pixel values ML and MR received by the subtracter 631 are the first and second pixel values, respectively, the microprocessor 632 first receives the calculation result of the subtracter 63ι. When the switch ^ is triggered, it indicates that the lens has been moved by the distance Ah. Since the pixel values received by the subtracter 631 are the third and fourth pixel values respectively, the microprocessor 632 calculates the calculation result received at this time and the calculation received last time. The result is processed according to the formulas (5) and (6), and the processed result is stored in the character storage memory 633, so that the display device 45 呈现 presents the data stored in the memory 70 (4) of the word 70. In the picture. Therefore, the user can know the distance between the shooting system and the object to be tested from the screen. /,,,; this month has been disclosed in the preferred embodiment as the upper limit ^ invention, any person with ordinary knowledge in the technical field in the spirit and scope of the field, if you can make some changes and retouching The scope of protection of the invention is defined as the scope defined by the scope of the patent. 17 200839192 [Simplified description of the drawings] Fig. 1 is a flow chart of the measurement method of the present invention. 2a to 2c are schematic views of the measuring method of the present invention. Figure 3a is a schematic diagram of measuring the distance hs between the photosensitive element and the lens. Figure 3b is a schematic diagram of measuring the actual distance between two points to be measured. Figure 4 is a possible embodiment of the photographing system of the present invention. Figure 5 is a schematic view of the base. Figure 6a is a possible embodiment of one of the setting modules. 〇 Figure 6b shows a possible embodiment of the detection module. Figure 6c is a possible example of a computing module. [Description of main component symbols] 200, 201: screen; • 210: horizontal line; 211, 212: point to be measured; 221, 222: cursor point; ◎ 231, 232: vernier line; 310, 320: scale; 330: digital Camera; 331, 410: lens; 332, 420: photosensitive element; 400: shooting system; 430: measuring device; 431: setting module; 432: detecting module; 18 200839192 433 ·• computing module; Processor; 450: display device; 611: scan line setter; 612: scan line controller; 621, 623: position controller; 622: pixel controller; 624, 625: comparator; ^ 631: subtractor; · microprocessor; 633: character storage memory; 634: processing unit. h, h2, hs, Z\h,,: distance; D (h〇, D(h2): maximum horizontal distance;

PaOii)、pa(h2)、PbOM)、PdhD :像素值; N(h〇、N(h2):像數差值; 〇 Nmax :總像素值; :角度;PaOii), pa(h2), PbOM), PdhD: pixel value; N(h〇, N(h2): image difference value; 〇 Nmax: total pixel value; : angle;

Claims (1)

200839192 十、甲請專利範圍: 1·一種量測方法,用以量測一姑i 間的距離,該拍攝系统且有一二拍攝糸統與-待測物之 厢系U鏡頭、一影像處理 :顯該影像處理裝置處理該鏡頭所擷取之4 像,使付錢不裝置呈現—晝面,該量測方法,包括· 在該晝面中,呈現一水平線,其中該水 番 該影像中之一第一及第二待測點; 當該鏡頭與該制物保持—第—輯(hl)時,得知200839192 X. A patent scope: 1. A measurement method for measuring the distance between a squad, the shooting system and one or two shooting system and the object to be tested U lens, an image processing Displaying the image processing device to process the 4 images captured by the lens, so that the payment is not presented to the device, the measurement method, including: in the facet, presenting a horizontal line, wherein the water is in the image One of the first and second points to be tested; when the lens is kept with the article - the first (hl), it is known U 一及第二待測點對應於該晝面之一 (Pa(h!)、购); 及弟一像素值 在該拍攝系統與地面之間的高度不變的情況下,改變 該鏡頭與該待測物之間的距離; 當該鏡頭與該待測物保持—第二距離(h2)時 一及第二待測點對應於該書面 (Pa(h2) . Pb(h2)); —之第一及弟四像素值 )根據該第一與第二距離之間的一距離差值(Ah),計算 該拍攝系統與該待測物之距離。 2·如申請專利範圍第1項所述之量測方法,其中該計 鼻步驟包括: 計$該第一及第二像素值之間的一第一差值(N(hi)); 計算該第三及第四像素值之間的一第二差值(N(h2)); °十# °亥第一、弟一差值以及該距離差值,得知該拍攝 系統與該待測物之間的距離。 3·如申請專利範圍第2所述之量測方法,其中該第一 20 200839192 距離⑻)係為释ο x Ah ;其巾NOn)為該第—差值, N(h2)為該第二差值,為該距離差值。 4.如申請專利^2所述之量測方法,其中該第二 距離(h2)係為;其中_)為該第-差值’ N(h2)為該第二差值,Δ1ι為該距離差值。 5·如申請專利範圍第1項所述之量測方法,更包括: 在該水平線上,設置一第一及第二游標點;以及U and the second point to be measured correspond to one of the faces (Pa(h!), purchase); and the pixel value of the brother is changed in the case where the height between the photographing system and the ground is constant, and the lens is changed The distance between the objects to be tested; when the lens is kept with the object to be tested - the second distance (h2), and the second point to be measured corresponds to the written (Pa(h2). Pb(h2)); The first and the fourth four pixel values are calculated according to a distance difference (Ah) between the first and second distances, and the distance between the photographing system and the object to be tested is calculated. 2. The measuring method according to claim 1, wherein the step of measuring the nose comprises: calculating a first difference (N(hi)) between the first and second pixel values; a second difference between the third and fourth pixel values (N(h2)); °10#°H first, the first difference, and the distance difference, and the shooting system and the object to be tested are known the distance between. 3. The measuring method according to claim 2, wherein the first 20 200839192 distance (8) is a release ο x Ah; the towel NOn) is the first difference, and N (h2) is the second The difference is the distance difference. 4. The measuring method according to claim 2, wherein the second distance (h2) is; wherein _) is the first difference 'N(h2) is the second difference, and Δ1ι is the distance Difference. 5. The method of measuring according to item 1 of the patent application, further comprising: setting a first and second cursor point on the horizontal line; 調整該第-及第二游標點,使得該第一及第二游標點 分別位於該第一及第二待測點。 6·如申請專利範圍第丨項所述之量測方法,更包括: 々在該晝面中,設置一第一及第二游標線,其中該第一 及苐一游標線垂直該水平線;以及 凋整该第一及第二游標線,使得該第一及第二游標線 分別與該第一及第二待測點相交。 '' 7·如申請專利範圍第1項所述之量測方法,其中當該 鏡頭與該影像處理裝置之間的距離為一固定值時,則二^ 改變該拍攝系統與該待測物之_距離,使得該鏡頭與該 待測物保持該第二距離。 、 8·如申請專利範圍第7項所述之量測方法,更包括·· 在該拍攝系統與一量尺保持一第三距離時,測量該拍 攝系統所能擷取的第一最大水平距離; 乂 移動該量尺; 在該拍攝系統與該量尺保持一第四距離時,測量該拍 21 200839192 攝系統所能擷取的第二最大水平距離;以及 計算該第一及第二最大水平距離及該第三及第四距 離’用以得知該固定值。 距離,h m2 9·如申請專利範圍第8項所述之量測方法,其中該固 定值(hs)係為&amp;D 2 一h〜;其中hmi為該第’、&quot; Dm\ ^Dml 為該第四距離,Dml為該第一最大水平距離,Dm2為該第二 最大水平距離The first and second cursor points are adjusted such that the first and second cursor points are located at the first and second points to be tested, respectively. 6. The method of measuring according to the scope of claim 2, further comprising: 々 setting a first and second vernier lines in the face, wherein the first and first vernier lines are perpendicular to the horizontal line; The first and second vernier lines are erected such that the first and second vernier lines intersect the first and second points to be tested, respectively. The measuring method according to claim 1, wherein when the distance between the lens and the image processing device is a fixed value, the camera system and the object to be tested are changed. a distance that causes the lens to maintain the second distance from the object to be tested. 8. The method of measuring according to claim 7 of the patent application, further comprising: measuring a first maximum horizontal distance that the photographing system can capture when the photographing system maintains a third distance from a measuring ruler乂 moving the scale; when the photographing system maintains a fourth distance from the scale, measuring the second maximum horizontal distance that the beat 21 200839192 camera system can capture; and calculating the first and second maximum levels The distance and the third and fourth distances ' are used to know the fixed value. Distance, h m2 9 · The measurement method described in claim 8 wherein the fixed value (hs) is &amp; D 2 -h~; wherein hmi is the ', &quot; Dm\ ^Dml For the fourth distance, Dml is the first maximum horizontal distance, and Dm2 is the second maximum horizontal distance (J 10·如申請專利範圍第8項所述之量測方法,更包括: 得知該鏡頭擷取該影像之一角度; 計算該固定值、該第一及第二待測點與該拍攝系統之 間的距離以及該角度,以得知該第—及第二待測點之間的 第一及4)二待測點之間的距離&quot;〕係i 1—加心;其中匕為該第一距離,匕為該固定 11.如申請專利範圍第1〇項所述之量測方法其中該 2{hx +hsy rmax 值,NOn)為該第一及第二像素值之間的一第—差值,n 為該水平線對應該晝面之總像素值,知為該角度。 12 ·如申請專利範圍第i項所述之量測方法^其 一及第二待測點係為該影像所含括之一物體的兩端。Λ 13. 如申請專利範圍第丨項所述之量測方法, 一及第二待測點係為該影像所含括之二物體。 Λ 14. 如申請專利範圍第i項所述之量測n 調整該拍攝系統與地面的距離,使得該水平線同時通^該 22 200839192 第一及第二待測點。 申請專利範圍第1項所述之量測方法,更包括將 该拍攝线,待測物之間的距離呈現於該晝面中。 二種量測裝置,用以量測—拍攝系統與—待測物之 、 雜攝系統具有—鏡頭、-感光元件、-處理 二以、置’該感光元件感應該制所擷取之該影 以生一第一影像信號,該處理器處Ϊ里-第二影像信 Ο Ο U以產生-處理㈣,該顯示裝置根據該處理信號而 呈現一畫面,該量測裝置,包括: -設定模組,提供—第—掃描信號,用以在該晝面中, 呈現-水平線,該水平線同時通過該影像之一第一及第二 待測點; -債測模組’ &gt;ί貞測該第—及第二待測點對應該晝面之 像素值;以及 一運算模組,根據該偵測模組之偵測結果,計算出該 拍攝系統與該待測物之間的距離,並處理該第一掃描信號 以及該第一影像信號,以產生該第二影像信號。 Π.如申請專利範圍第16項所述之量測裝置,其中當 該鏡頭與該第一及第二待測點之間的距離未被改變時,該 偵測模組偵測出該第一及第二待測點對應該晝面之像素值 分別為一第一及第二像素值;當該鏡頭與該第一及第二待 測點之間的距離被改變時,該偵測模組偵測出該第一及第 二待測點對應該畫面之像素值為一第三及第四像素值。 18.如申請專利範圍第17項所述之量測裝置,其中該 23 200839192 運算模組根據該第一至第四像素值以及該鏡頭被改變的距 離,得知該拍攝系統與該待測物之間的距離。 19·如申請專利範圍第18項所述之量測裝置,其中該 鏡頭被改變的距離係為一固定值。 20·如申請專利範圍第19項所述之量測裝置,其中該 固定值儲存於該運算模組中。 21·如申請專利範圍第17項所述之量測裝置,其中該 設定模組提供一第一及第二游標點於該晝面中。 22·如申請專利範圍第17項所述之量測裝置,其中該 偵測模組提供一第一及第二游標點於該畫面中。 23·如申請專利範圍第22項所述之量測裝置,其中該 偵測模組控制該第一及第二游標點,使得該第一及第二游 標點重疊該第一及第二待測點。 24.如申請專利範圍第22項所述之量測裝置,其中一 - 使用者控制該第一及第二游標點,使得該第一及第二游標 點重疊該第一及第二待測點。 〇 25.如申請專利範圍第17項所述之量測裝置,其中該 偵測模組提供一第一及第二游標線於該晝面中。 26. 如申請專利範圍第25項所述之量測裝置,其中該 偵測模組分別控制該第一及第二游標線,使得該第一及第 二游標線分別與該水平線相交於該第一及第二待測點。 27. 如申請專利範圍第25項所述之量測裝置,其中一 使用者分別控制該第一及第二游標線,使得該第一及第二 游標線分別與該水平線相交於該第一及第二待測點。 24 200839192 28·如申凊專利範圍第16項所述之量測裝置,其中該 拍攝系統與該待測物之間的距離呈現於該晝面中。 29·一種拍攝系統,包括: 一鏡頭,用以擷取一影像; 一感光元件,感應該影像,以產生一第一影像信號; 一量測裝置,包括: 一設定模組,提供一第一掃描信號,用以在該畫 ,中,呈現一水平線,該水平線同時通過該影像之一 第一及第二待測點; 一偵測模組,偵測該第一及第二待測點對應該晝 面之像素值;以及 — 一運算模組,根據該偵測模組之偵測結果,得知 该拍攝系統與該第一及第二待測點之間的距離,並處 理該第一掃描信號以及該第一影像信號,以產生一第 一影像信號; 一處理器,根據該第二影像信號組,產生一 以及 , 一顯示裝置,根據該處理信號而呈現一晝面。 ^ 30.如申請專利範圍第29項所述之拍攝系統,其中當 X鏡頭與δ亥弟一及第一待測點之間的距離未被改變時,該 =測拉組偵測出該第一及第二待測點對應該晝面之像素值 分別為一第一及第二像素值;當該鏡頭與該第一及第^待 测點之間的距離被改變時,該偵測模組偵測出該第一及第 二待測點對應該畫面之像素值為一第三及第四像素值。 25 200839192 31. 如申請專利範圍第 運算模喊據該第—至第四像素值以及該其中該 離,得知該拍攝系統與該待測物之間的距^破改變的距 其中該 其中該 其中該 其中該 32. 如申請專利範圍第31項所述之拍攝 鏡頭被改變的距離係為一固定值。 ’、、、先 33·如申請專利範圍第32項所述之 固定值儲存於該運算模組中。 糸、、先 Ο Ο 34. 如申請專利範圍帛30帛所述之拍攝 設定模組提供-第-及第二游標點於該畫面中、、、、 35. 如申請專利範圍帛3〇項所述之拍。 偵測模組提供-第-及第二游標點於該晝面中、、、、 36. 如申請專利範圍第35項所述之拍攝^ 偵測模組控制該第一及第二游標點,使得該第二及第中二 標點重疊該第一及第二待測點。 及弟一游 37. 如申請專職圍第35項所述之拍攝系統,其中一 使用者控制該第-及第二游標點,使得該第 點重疊該第-及第二待測點。 夂弟-游私 38·如申請專利範圍第3〇項所述之拍攝系統, 偵測模組提供一第一及第二游標線於該晝面中。八 39.如申請專利範圍第38項所述之拍攝系統,其 偵測模組器分別控制該第一及第二游標線,使得該第一及^ 弟一游標線分別與該水平線交錯於該第_另笛二 久乐二待測H;。 40·如申請專利範圍第38項所述之拍攝系統,一 使用者分別控制該第一及第二游標線,使得該 一 Α ^ 及第 26 200839192 游標線分別與該水平線交錯於該第一及第二待測點。 41.如申請專利範圍第29項所述之拍攝系統,其中該 拍攝系統與該待測物之間的距離呈現於該晝面中。 42·如申請專利範圍第29項所述之拍攝系統,其中該 顯示裝置為一液晶顯示器。 43·如申請專利範圍第29項所述之拍攝系統,其中該 感光元件為一電荷耦合元件(Charge Coupled Device ; CCD) 或是一互補式的金屬氧化物半導體(Complementray ζ) Metal-Oxide Semiconductor ; CMOS) 〇 u 27(J10) The measuring method of claim 8, further comprising: learning that the lens captures an angle of the image; calculating the fixed value, the first and second points to be measured, and the shooting The distance between the systems and the angle to know the distance between the first and fourth points to be measured between the first and second points to be measured &quot;] is i 1 - centering; The first distance, 匕 is the fixed 11. The measuring method according to the first aspect of the patent application, wherein the 2{hx +hsy rmax value, NOn) is one between the first and second pixel values. The first difference, n is the total pixel value of the horizontal line corresponding to the face, which is known as the angle. 12 • The measurement method described in item i of the patent application is as follows: the first and second points to be measured are the two ends of an object included in the image. Λ 13. For the measurement method described in the scope of patent application, the first and second points to be measured are the two objects included in the image. Λ 14. If the measurement described in item i of the patent application is adjusted, the distance between the camera system and the ground is adjusted so that the horizontal line passes through the first and second points to be tested. The measuring method of claim 1, further comprising presenting the shooting line, the distance between the objects to be tested, in the kneading surface. Two measuring devices for measuring - the shooting system and the object to be tested, the camera system having a lens, a photosensitive element, a processing unit, and a 'photosensitive element sensing the image captured by the system The first image signal is generated, the processor is in the second image signal 以 U to generate-process (4), the display device presents a picture according to the processed signal, and the measuring device comprises: - setting mode a group-providing---scanning signal for presenting a horizontal line in the pupil plane, the horizontal line simultaneously passing through one of the first and second points to be tested of the image; - debt testing module ' &gt; a pixel value corresponding to the first and second points to be measured; and an operation module, calculating a distance between the photographing system and the object to be tested according to the detection result of the detecting module, and processing The first scan signal and the first image signal are used to generate the second image signal. The measuring device of claim 16, wherein the detecting module detects the first when the distance between the lens and the first and second points to be tested is not changed. And the pixel values corresponding to the second point to be measured are respectively a first and second pixel values; when the distance between the lens and the first and second points to be tested is changed, the detecting module The first and second points to be tested are detected to correspond to pixel values of the screen as a third and fourth pixel values. 18. The measuring device according to claim 17, wherein the 23 200839192 computing module knows the photographing system and the object to be tested according to the first to fourth pixel values and the distance that the lens is changed. the distance between. 19. The measuring device of claim 18, wherein the distance at which the lens is changed is a fixed value. 20. The measuring device of claim 19, wherein the fixed value is stored in the computing module. The measuring device of claim 17, wherein the setting module provides a first and second cursor point in the face. The measuring device of claim 17, wherein the detecting module provides a first and second cursor point in the picture. The measuring device of claim 22, wherein the detecting module controls the first and second cursor points such that the first and second cursor points overlap the first and second to be tested point. 24. The measuring device of claim 22, wherein the user controls the first and second cursor points such that the first and second cursor points overlap the first and second points to be tested . The measuring device of claim 17, wherein the detecting module provides a first and second vernier lines in the face. 26. The measuring device of claim 25, wherein the detecting module controls the first and second vernier lines respectively such that the first and second vernier lines respectively intersect the horizontal line at the first One and second points to be tested. 27. The measuring device of claim 25, wherein a user controls the first and second vernier lines respectively such that the first and second vernier lines respectively intersect the horizontal line at the first and The second point to be tested. The measuring device of claim 16, wherein the distance between the photographing system and the object to be tested is present in the kneading surface. A shooting system comprising: a lens for capturing an image; a photosensitive element sensing the image to generate a first image signal; and a measuring device comprising: a setting module providing a first a scanning signal for presenting a horizontal line in the picture, the horizontal line simultaneously passing through one of the first and second points to be tested; and a detecting module detecting the pair of first and second points to be tested The pixel value of the face should be; and - an operation module, according to the detection result of the detection module, the distance between the shooting system and the first and second points to be tested is known, and the first And scanning the signal and the first image signal to generate a first image signal; and a processor, according to the second image signal group, generating a display device, and presenting a face according to the processed signal. ^30. The photographing system of claim 29, wherein when the distance between the X lens and the δHaiyi and the first point to be tested is not changed, the = pull group detects the first The pixel values corresponding to the first and second points to be measured are respectively a first and second pixel values; when the distance between the lens and the first and second points to be measured is changed, the detection mode The group detects that the pixel values of the first and second points to be tested correspond to a third and fourth pixel values. 25 200839192 31. If the operation scope of the patent application scope is based on the first to fourth pixel values and the deviation, the distance between the shooting system and the object to be tested is changed. Wherein the 32. The distance in which the photographing lens described in claim 31 of the patent application is changed is a fixed value. ',, and first 33. The fixed value as described in item 32 of the patent application scope is stored in the arithmetic module.糸, Ο Ο Ο 34. If the shooting setting module described in 申请30申请 application provides - the first and second cursor points in the screen, ,,, 35. If the patent application scope is 帛3〇 Said to shoot. The detection module provides - the first and second cursor points in the face, ,,, 36. The shooting detection module according to claim 35 controls the first and second cursor points, The second and second two punctuation points are overlapped with the first and second points to be tested. A trip to the younger brother 37. In applying for the shooting system described in item 35 of the full-time division, one of the users controls the first and second cursor points such that the first point overlaps the first and second points to be tested.夂弟-私私 38. As claimed in the third aspect of the patent application, the detection module provides a first and second vernier line in the face. VIII. The photographing system of claim 38, wherein the detecting module controls the first and second vernier lines respectively, so that the first and second vernier lines are respectively interlaced with the horizontal line. The first _ another flute two long music two to be tested H; 40. The photographing system of claim 38, wherein a user controls the first and second vernier lines respectively such that the Α^ and 26200839192 vernier lines are respectively interlaced with the horizontal line at the first and The second point to be tested. The photographing system of claim 29, wherein a distance between the photographing system and the object to be tested is present in the kneading surface. 42. The photographing system of claim 29, wherein the display device is a liquid crystal display. 43. The photographing system of claim 29, wherein the photosensitive element is a charge coupled device (CCD) or a complementary metal oxide semiconductor (Complementray®) Metal-Oxide Semiconductor; CMOS) 〇u 27
TW96111176A 2007-03-30 2007-03-30 Measuring method, measuring device and photographing system TW200839192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96111176A TW200839192A (en) 2007-03-30 2007-03-30 Measuring method, measuring device and photographing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96111176A TW200839192A (en) 2007-03-30 2007-03-30 Measuring method, measuring device and photographing system

Publications (2)

Publication Number Publication Date
TW200839192A true TW200839192A (en) 2008-10-01
TWI318682B TWI318682B (en) 2009-12-21

Family

ID=44820764

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96111176A TW200839192A (en) 2007-03-30 2007-03-30 Measuring method, measuring device and photographing system

Country Status (1)

Country Link
TW (1) TW200839192A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407245B (en) * 2008-05-16 2013-09-01 Hon Hai Prec Ind Co Ltd Camera lens length measuring system and measuring method thereof
TWI447355B (en) * 2011-02-16 2014-08-01 Pixart Imaging Inc Distance-measuring system with correction function and method thereof
TWI476373B (en) * 2009-09-23 2015-03-11 Pixart Imaging Inc Distance-measuring device by means of difference of imaging location and calibrating method thereof
US9255795B2 (en) 2009-12-03 2016-02-09 Pixart Imaging Inc. Distance measuring device with increased signal-to-noise ratio and method thereof
US9645681B2 (en) 2009-09-23 2017-05-09 Pixart Imaging Inc. Optical touch display system
CN112782854A (en) * 2019-11-07 2021-05-11 宏达国际电子股份有限公司 Head-mounted display device and distance measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407245B (en) * 2008-05-16 2013-09-01 Hon Hai Prec Ind Co Ltd Camera lens length measuring system and measuring method thereof
TWI476373B (en) * 2009-09-23 2015-03-11 Pixart Imaging Inc Distance-measuring device by means of difference of imaging location and calibrating method thereof
US9645681B2 (en) 2009-09-23 2017-05-09 Pixart Imaging Inc. Optical touch display system
US9255795B2 (en) 2009-12-03 2016-02-09 Pixart Imaging Inc. Distance measuring device with increased signal-to-noise ratio and method thereof
TWI447355B (en) * 2011-02-16 2014-08-01 Pixart Imaging Inc Distance-measuring system with correction function and method thereof
CN112782854A (en) * 2019-11-07 2021-05-11 宏达国际电子股份有限公司 Head-mounted display device and distance measuring device
CN112782854B (en) * 2019-11-07 2023-02-17 宏达国际电子股份有限公司 Head-mounted display device and distance measurer

Also Published As

Publication number Publication date
TWI318682B (en) 2009-12-21

Similar Documents

Publication Publication Date Title
US9826151B2 (en) Image capture system and image capture method
JP6124184B2 (en) Get distances between different points on an imaged subject
WO2018072598A1 (en) Human body height measurement method and device, and smart mirror
US8542279B2 (en) Image capturing apparatus
TW200839192A (en) Measuring method, measuring device and photographing system
US10922795B2 (en) Method and device for measuring distortion parameter of visual reality device, and measuring system
CN101672620A (en) Electronic device and method for measuring size of object
CN110456602A (en) A kind of projection pattern means for correcting of optical projection system, method and system
TWI630377B (en) Thermal image detecting device
TW201044858A (en) Imaging apparatus, imaging control method, and recording medium
US20220417427A1 (en) Image processing apparatus that retouches and displays picked-up image, image processing method, and storage medium
TW201213854A (en) Display device
CN110194173A (en) Occupant&#39;s monitoring arrangement
CN109883360B (en) Angle measuring method and device applied to optical system
JP7271215B2 (en) SYNCHRONIZATION CONTROL DEVICE, SYNCHRONIZATION CONTROL METHOD, AND PROGRAM
WO2019061650A1 (en) Three-dimensional image acquisition apparatus and method
KR20140134043A (en) System and method for providing three dimensional image
US20240185543A1 (en) Head-mounted display apparatus that controls exposure timings of plurality of imaging units
JP2013044827A (en) Imaging apparatus
JP2009299241A (en) Body size measuring device
JP2011217229A (en) Imaging apparatus and display method
JP2014115179A (en) Measuring device, document camera and measuring method
JP7357554B2 (en) Synchronous control device, control method of synchronous control device, system
TWI375787B (en) Electrical device and method for measuring size of object
JP2004363856A (en) Projection type display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees