[go: up one dir, main page]

TW200837392A - Anisotropic diffusing film, display using the same, and liquid crystal display - Google Patents

Anisotropic diffusing film, display using the same, and liquid crystal display Download PDF

Info

Publication number
TW200837392A
TW200837392A TW96140692A TW96140692A TW200837392A TW 200837392 A TW200837392 A TW 200837392A TW 96140692 A TW96140692 A TW 96140692A TW 96140692 A TW96140692 A TW 96140692A TW 200837392 A TW200837392 A TW 200837392A
Authority
TW
Taiwan
Prior art keywords
anisotropic light
light
liquid crystal
diffusing
angle
Prior art date
Application number
TW96140692A
Other languages
Chinese (zh)
Inventor
Kensaku Higashi
Yasuhiko Motoda
Original Assignee
Tomoegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Co Ltd filed Critical Tomoegawa Co Ltd
Publication of TW200837392A publication Critical patent/TW200837392A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides an anisotropic light diffusion film and a display device using thereof, wherein the film is capable of sufficiently enlarging viewing angle in any direction on a liquid crystal display panel. Multiple anisotropic light diffusion layers are laminated in the manner such that the direction of central diffraction axis of anisotropic light diffusion layer is different to each other. The anisotropic light diffusion layers are made from a cured substance of a composition comprising a photo-polymerizable compound, of which each layer has one central diffraction axis; and have transmitting diffusivity of incident light depending on an incident angle which is changed in dependence on the crossing angle formed by central diffractive axis and photo axis of incident light.

Description

200837392 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可擴大視野角之各向異性光擴散薄 膜,及使用它之顯示裝置及液晶顯示裝置。 【先前技術】 能夠使用於顯示裝置之物,例如,可列舉:液晶顯示 面板、電漿顯示面板(PDP)、有機電致發光面板(EL)、 背投影電視、場發射顯示面板等。此等顯示裝置之中,使 用液晶顯示面板之液晶顯示裝置已使用於大多之製品中。 習知之液晶顯示裝置中的液晶顯示面板之構造,其係 於透明電極所形成的一對透明玻璃基板之間,夾持向列型 液晶,於此玻璃基板之兩側,設置一對偏光板。然而,使 用如此構造之液晶顯示裝置中’雖然對液晶顯示面板之法 線方向顯不良好之顯不特性,但是相對於液晶顯示面板之 法線’有關往上下或左右之方向傾斜特定角度以上之方 向,將有顯示特性明顯降低之問題。 此顯示特性明顯降低原因之一,係由於雖然面板法線 方向上之明暗的對比良好,但往相對於法線的上下或左右 之方向傾斜特定角度以上之方向則該對比明顯降低,視情 形而定’會發生畫面明暗顛倒的現象。此現象稱爲畫面的 .調變反轉。 包括上述之調變反轉,針對此等關於顯示特性的問 題,已揭示一種微型透鏡陣列(參照日本特開平6-59102 號公報),其係藉由在透明之聚合物基材中,在複數個領 200837392 域具有由光聚合性單體反應而成的折射率分布型微小透 鏡,可擴大液晶顯示裝置之視野角。另外,有人提案一種 液晶顯示裝置(參照日本特開平6 - 2 5 8 6 2 7號公報),其係 利用使纖維光軸相對於法線纖維扳之法線傾斜成特定角度 的平面來薄薄地切開束縛數條玻璃纖維之物,藉由將此纖 維板作爲射出側之玻璃基板以進行積層,對射出光具有指 向性。 然而,此等技術只不過是一種將往顯示面板法線方向 之射出光朝特定方向之技術,朝液晶顯示裝置中之任意方 向的視野角擴大並不足夠。 另外,因應於入射光之入射角度而使直線透過光量改 變之技術’已揭不一種異方向擴散膜,其係於由含有光聚 合性化合物之組成物的硬化物所構成的樹脂層內部,形成 相對於所有既定方向P而平行延伸的複數個棒狀硬化領域 之集合體(參照日本專利特開2 0 0 5 - 2 6 5 9 1 5號公報)。此 異方向擴散膜係藉由貼附於液晶顯示裝置之觀察面側,得 知能夠稍微改善視野角。以後,於本專利說明書中,將「光 聚合」及「硬化」之意義設爲光聚合性化合物根據光進行 聚合反應,同義地使用二者。 【發明內容】 發明所欲解決之技術問題 如上所述,習知之異方向擴散膜之情形,雖然能夠稍 微改善接近既定之方向P的視野角,但是仍未達到充分改 善視野角。於此,本發明之目的係在於提供一種任意方向 200837392 上均能夠充分擴大顯示面板、尤其是液晶顯示面板之視野 角的各向異性光擴散薄膜,及使用它之液晶顯示裝置。 本發明人等係有鑑於該習用技術,入射光的透過擴散 性係依照具有各向異性光擴散層之散亂中心軸、與往各向 異性光擴散層之入射光光軸交叉的角度而變化之入射角度 相關性,使用一種各向異性光擴散層,其係將投影於各向 異性光擴散層表面之散射中心軸的長邊方向接近於欲使視 野角擴大之方向,藉由積層複數層之此各向異性光擴散 層,使顯示面板、尤其使液晶顯示面板之視野角向任意之 方向充分擴大成爲可能,於是達成本發明申請案。 解決問題之技術手段 因而,本發明之各向異性光擴散薄膜,其特徵在於: 具備複數層的由含光聚合性化合物之組成物的硬化物所構 成之各向異性光擴散層,上述各向異性光擴散層係各自具 有一個散射中心軸,往上述各向異性光擴散層之入射光的 透過擴散性係具有該各向異性光擴散層所具有的散射中心 軸、與該入射光的光軸爲依照父叉的角度而變化之入射角 度相關性,且上述散射中心軸的方向係根據各各向異性光 擴散層而有所不同。 若根據本發明,藉由積層複數層的散射中心軸不同之 各向異性光擴散層,能夠將來自顯示面板、尤其是液晶顯 示面板之射出光分配至以複數個散射中心軸爲中心之方 向,其結果,達成能夠向任意方向充分擴大包含液晶顯示 面板之顯示面板視野角的效果。 200837392 認爲如此之效果係進行如下之方式後而可以得到。首 先,如第2圖所示,本發明之各向異性光擴散薄膜中之各 向異性光擴散層係於各向異性光擴散層1之內部,複數個 棒狀硬化領域3之集合體係使長邊方向與散射中心軸P成 爲平行之方式來形成,由於此複數個棒狀硬化領域3係與 其周邊之折射率不同,將來自顯示面板、尤其是液晶顯示 面板之射出光一部分朝向與欲使視野角擴大之方向,亦 即,與將散射中心軸P投影於各向異性光擴散層表面相平 行的方向之同時,將此射出光擴散至以散射中心軸爲中 心。而且,藉由根據複數層之各向異性光擴散層而進行此 作用,能夠將來自含有液晶顯示面板之顯示面板的射出 光,分配且擴散至以複數個散射中心軸爲中心。再者,分 配至方向不同於將散射中心軸P投影至各向異性光擴散層 表面方向之光,其係根據複數層之各向異性光擴散層進一 步分配至其他方向。其結果,不僅能夠藉由調整散射中心 軸以使含有液晶顯示面板之顯示面板視野角充分擴大至任 意方向,即使方向往不同於分配散射中心軸之方向的視野 角也能夠擴大。 【實施方式】 例如,如第1圖所示,本發明之各向異性光擴散薄膜 的構造,其係藉由黏著劑2以積層複數層之各向異性光擴 散層1。於黏著劑2中,適宜使用一般習知之接著劑或黏 著劑等。本發明中之各向異性光擴散層係由含有光聚合性 化合物之組成物硬化物所構成,於內部,複數個棒狀硬化 200837392 領域之集合體係使其長邊方向成爲平行於散射中心軸之方 式來予以成形。例如,如此之構造係藉由使含有光聚合性 化合物之組成物設置成薄片狀,從光源對薄片照射平行於 所要求之散射中心軸p的光線,使組成物予以硬化而能夠 形成。 於此’所謂棒狀領域集合體之長邊方向與散射中心軸 平行’最好爲符合折射率的法則(Snell法則)之物,並無 嚴密平行之必要。S n e 11法則係光從折射率n i之介質對折 射率Μ之介質界面進行入射之情形,於其入射角θ i與折射 角Θ 2之間’ n i s i η Θ ! = n2 s i η Θ 2之關係將成立。例如,設爲 n i = 1 (空氣)、n2 = 1 · 5 1 (各向異性光擴散層)時,散射 中心軸的傾斜(入射角)爲3〇。之情形,棒狀領域集合體之 長邊方向的指向(折射角)成爲約1 9。,如此方式,即使入 射角與折射角不同,若符合Snell法則的話,於本發明中, 則包含平行之槪念。 還有’本發明所謂的棒狀硬化領域集合體係示意顯示 於第2圖,意指許多棒狀或柱狀之硬化領域係使其長邊方 向成爲平行於散射中心軸的方式所形成之物,另外,所謂 棒狀係意指根據照射光源加以推定,於第2圖中,圓形示 意揭示剖面,平行於散射中心軸而形成棒狀的狀態,其剖 面形狀係圓形、多角形、不定形等,並未予以特別限定。 若作成如第3圖所示之三次元極座標表示的話,將各 向異性光擴散層表面設爲xy平面,將法線設爲z軸時,本 發明中之散射中心軸P能夠根據極角θ與方位角0而加以 200837392 表現。亦即’第3圖中之Pxy能夠指投影於上述之各向異 性光擴散層表面的散射中心軸之長邊方向。於本發明之各 向異性光擴散薄膜中,至少複數層之各向異性光擴散層中 的該方位角0不同的話,能夠充分擴大含有液晶顯示面板 之顯示面板的視野角。 於本發明中,散射中心軸P之極角Θ較宜爲1 〇〜6 0。, 更佳爲30〜45°。若極角Θ低於10°的話,則無法充分擴大 含有液晶顯示面板之顯示面板的視野角。另一方面,若極 角Θ超過60°時,由於在製造過程中,相對於含有設置成薄 片狀之光聚合性化合物的組成物,必須從高度傾斜下照射 光線,因爲照射光之吸收效率差、製造上不利而不佳。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic light-diffusing film which can expand a viewing angle, and a display device and a liquid crystal display device using the same. [Prior Art] The display device can be used, and examples thereof include a liquid crystal display panel, a plasma display panel (PDP), an organic electroluminescence panel (EL), a rear projection television, a field emission display panel, and the like. Among these display devices, a liquid crystal display device using a liquid crystal display panel has been used in most products. The liquid crystal display panel of the conventional liquid crystal display device has a structure in which a pair of transparent glass substrates are formed between the pair of transparent glass substrates, and a pair of polarizing plates are disposed on both sides of the glass substrate. However, in the liquid crystal display device of such a configuration, although the normal direction of the liquid crystal display panel is not excellent, it is inclined to a certain angle or more with respect to the normal line of the liquid crystal display panel in the up-down or left-right direction. Direction, there will be a problem that the display characteristics are significantly reduced. One of the reasons for the significant decrease in display characteristics is that although the contrast between the light and dark in the normal direction of the panel is good, the contrast is significantly reduced by tilting the direction above or below the normal angle with respect to the upper or lower direction of the normal, depending on the situation. It will happen that the picture will be reversed. This phenomenon is called the picture. The modulation is reversed. Including the above-described modulation inversion, a microlens array has been disclosed for the problem of the display characteristics (refer to Japanese Laid-Open Patent Publication No. Hei 6-59102), which is incorporated in a transparent polymer substrate, in plural The collar of the 200837392 domain has a refractive index distribution type microlens formed by reacting a photopolymerizable monomer, thereby expanding the viewing angle of the liquid crystal display device. Further, a liquid crystal display device has been proposed (refer to Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. The glass fiber bundle is cut and bundled, and the fiberboard is used as a glass substrate on the exit side to laminate, and the emitted light has directivity. However, these techniques are merely a technique for directing the light emitted toward the normal direction of the display panel in a specific direction, and it is not sufficient to expand the viewing angle in any direction in the liquid crystal display device. In addition, the technique of changing the amount of linear transmitted light in response to the incident angle of incident light has revealed that a different-direction diffusion film is formed inside a resin layer composed of a cured product containing a composition of a photopolymerizable compound. An aggregate of a plurality of rod-shaped hardened regions extending in parallel with respect to all of the predetermined directions P (refer to Japanese Laid-Open Patent Publication No. Hei 2 0 0 5 - 2 5 5 9 15). This different-direction diffusion film was attached to the observation surface side of the liquid crystal display device, and it was found that the viewing angle can be slightly improved. Hereinafter, in the present specification, the meaning of "photopolymerization" and "hardening" is defined as a photopolymerizable compound which is polymerized according to light, and both are used synonymously. DISCLOSURE OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION As described above, in the case of a conventional diffusion film in a different direction, although the viewing angle close to a predetermined direction P can be slightly improved, the viewing angle is not sufficiently improved. Accordingly, an object of the present invention is to provide an anisotropic light-diffusing film capable of sufficiently enlarging a viewing angle of a display panel, particularly a liquid crystal display panel, in any direction 200837392, and a liquid crystal display device using the same. The present inventors have, in view of the conventional technique, that the transmission diffusibility of incident light varies depending on the scattered central axis having the anisotropic light diffusion layer and the angle of intersection with the incident optical axis of the anisotropic light diffusion layer. The incident angle dependence uses an anisotropic light diffusion layer that approximates the longitudinal direction of the scattering central axis projected on the surface of the anisotropic light diffusion layer to the direction in which the viewing angle is to be enlarged, by stacking multiple layers With this anisotropic light-diffusing layer, it is possible to sufficiently expand the viewing angle of the display panel, in particular, the liquid crystal display panel in an arbitrary direction, and the present invention has been achieved. The anisotropic light-diffusing film of the present invention is characterized in that the anisotropic light-diffusing film of the present invention comprises a plurality of layers of an anisotropic light-diffusing layer composed of a cured product of a composition containing a photopolymerizable compound. Each of the opposite light diffusion layers has a scattering central axis, and the transmission diffusivity of the incident light to the anisotropic light diffusion layer has a scattering central axis of the anisotropic light diffusion layer and an optical axis of the incident light. The incidence angle dependence varies according to the angle of the parent fork, and the direction of the scattering center axis differs depending on the anisotropic light diffusion layers. According to the present invention, the light emitted from the display panel, particularly the liquid crystal display panel, can be distributed to a direction centering on a plurality of scattering central axes by laminating anisotropic light diffusion layers having different scattering central axes of the plurality of layers. As a result, the effect of sufficiently widening the viewing angle of the display panel including the liquid crystal display panel in any direction is achieved. 200837392 It is considered that the effect can be obtained by the following methods. First, as shown in Fig. 2, the anisotropic light-diffusing layer in the anisotropic light-diffusing film of the present invention is inside the anisotropic light-diffusing layer 1, and the plurality of rod-shaped hardened regions 3 are made up of a long system. The side direction is formed in parallel with the scattering central axis P. Since the plurality of rod-shaped hardening regions 3 are different from the refractive index of the periphery thereof, a part of the light emitted from the display panel, particularly the liquid crystal display panel, is directed toward the field of view. The direction in which the angle is enlarged, that is, the direction in which the scattering central axis P is projected parallel to the surface of the anisotropic light-diffusing layer, is diffused to the center of the scattering center axis. Further, by performing this function according to the anisotropic light-diffusing layer of the plurality of layers, the emitted light from the display panel including the liquid crystal display panel can be distributed and diffused to the center of the plurality of scattering central axes. Further, the light distribution to the direction different from the direction in which the scattering central axis P is projected to the surface of the anisotropic light-diffusing layer is further distributed to the other direction according to the anisotropic light-diffusing layer of the plurality of layers. As a result, not only can the viewing axis of the display panel including the liquid crystal display panel be sufficiently expanded to any direction by adjusting the scattering center axis, but the direction can be enlarged even if the direction is different from the viewing angle in the direction in which the scattering central axis is distributed. [Embodiment] For example, as shown in Fig. 1, the structure of the anisotropic light-diffusing film of the present invention is obtained by laminating a plurality of layers of anisotropic light-diffusing layer 1 by an adhesive 2. In the adhesive 2, a conventionally known adhesive or an adhesive or the like is suitably used. The anisotropic light-diffusing layer of the present invention is composed of a cured product of a composition containing a photopolymerizable compound, and internally, a plurality of rod-like hardened 200837392 fields are arranged such that the longitudinal direction thereof is parallel to the scattering central axis. The way to shape it. For example, such a structure is formed by arranging a composition containing a photopolymerizable compound into a sheet shape, irradiating the sheet with light rays parallel to the desired scattering center axis p from the light source, and curing the composition. Here, the term "the longitudinal direction of the aggregate of the rod-like field is parallel to the central axis of the scattering" is preferably a law conforming to the law of the refractive index (Snell's law), and is not necessarily strictly parallel. The law of S ne 11 is the relationship between the incidence of light from the medium of refractive index ni to the interface of the refractive index Μ, and the relationship between the incident angle θ i and the angle of refraction Θ 2 ' nisi η Θ ! = n2 si η Θ 2 Will be established. For example, when n i = 1 (air) and n2 = 1 · 5 1 (anisotropic light diffusion layer), the tilt (incident angle) of the scattering center axis is 3 〇. In the case of the long-side direction of the rod-shaped field assembly (refraction angle), it is about 19. In this way, even if the incident angle is different from the refraction angle, if the Snell's law is satisfied, in the present invention, parallel mourning is included. Further, the term "bar-shaped hardening field assembly system" as used in the present invention is schematically shown in Fig. 2, which means that a plurality of rod-like or columnar hardening fields are formed by a method in which the longitudinal direction thereof is parallel to the scattering central axis. In addition, the rod-shaped system is estimated based on the irradiation light source, and in the second diagram, the circular shape schematically reveals a cross section, and a rod-like state is formed parallel to the scattering central axis, and the cross-sectional shape thereof is circular, polygonal, and amorphous. Etc., there is no particular limitation. When the three-dimensional polar coordinates are shown as shown in Fig. 3, when the surface of the anisotropic light-diffusing layer is the xy plane and the normal is the z-axis, the scattering central axis P in the present invention can be based on the polar angle θ. With azimuth 0 and 200837392 performance. That is, Pxy in Fig. 3 can refer to the longitudinal direction of the scattering central axis projected on the surface of the above-mentioned anisotropic light-diffusing layer. In the anisotropic light-diffusing film of the present invention, when the azimuth angle 0 of at least a plurality of layers of the anisotropic light-diffusing layer is different, the viewing angle of the display panel including the liquid crystal display panel can be sufficiently enlarged. In the present invention, the polar angle Θ of the scattering central axis P is preferably from 1 〇 to 60. More preferably 30~45°. If the polar angle Θ is less than 10°, the viewing angle of the display panel including the liquid crystal display panel cannot be sufficiently enlarged. On the other hand, when the polar angle Θ exceeds 60°, it is necessary to irradiate light from a high inclination with respect to a composition containing a photopolymerizable compound provided in a sheet shape during the manufacturing process because the absorption efficiency of the irradiation light is poor. It is not good for manufacturing.

本發明各向異性光擴散薄膜的形態係積層複數層之由 含有光聚合性化合物之組成物的硬化物所構成的各向異性 光擴散層,也能夠作成在透明基體上積層此積層體之構 造,或是在此積層兩側積層透明基體之構造。於此’透明 基體之透過性越高越好’適宜使用全部光線透過率(JIS K7361-1)爲80%以上,更佳爲85%以上,最好爲90%以 上之物;另外,霧度値(JISK7136)爲3·0以下’更佳爲 1 . 0以下,最好爲〇 . 5以下之物。透明之塑膠薄膜或玻璃板 等爲可使用的,基於薄、輕、難以裂開、具優越生產性之 觀點,塑膠薄膜係適合的。具體而言,可列舉:聚對苯二 甲酸乙二醇酯(PET )、聚萘二甲酸乙二醇酯(PEN )、三 乙醯基纖維素(TAC)、聚碳酸酯(PC)、聚醚楓(PES)、 賽璐玢、聚乙烯(PE)、聚丙烯(PP)、聚乙嫌醇(PVA)、 200837392 、 環烯烴樹脂等。此等塑膠薄膜能夠單獨使用,或使用混合、 甚至積層之物。另外,若考慮用途或生產性時,基體之厚 度爲Ιμιη〜5mm’較宜爲1〇〜500μπι,更佳爲50〜150μιη。 接著’本發明之各向異性光擴散薄膜係含有一種將含 光聚合性化合物之組成物予以硬化的各向異性光擴散層之 物,此組成物可使用如下之組合: (1 )使用後述之單一光聚合性化合物之物; (2 )混合使用後述之複數光聚合性化合物之物; Φ (3)將單一或複數之光聚合性化合物、與不具有光聚 合性之高分子化合物混合後而使用之物。 認爲於任一種組合中,根據光照射而於各向異性光擴 散層中,形成折射率不同的微米等級之微細構造,藉此, 能夠發現本發明所示之特異的各向異性光擴散特性。因 而’於上述(1 )中,光聚合前後之折射率變化越大越好, 另外,於(2 ) 、( 3 )中,較宜組合折射率不同的複數種 材料。還有,於此所謂折射率變化或折射率之差,具體而 ® 言,顯示爲0.01以上,較宜爲0.05以上,更佳爲0.10以 上之變化或差。 針對形成本發明之各向異性光擴散層所必要材料的光 聚合性化合物,其係由具有自由基聚合性或陽離子聚合性 官能基之聚合物、寡聚物、單體所選出之光聚合性化合物 與光起始劑所構成,藉由照射紫外線及可見光以進行聚合 與硬化之材料。 自由基聚σ性化合物係一'種主要於分子中含有一個以 -11- 200837392 % 上不飽和雙鍵之物,具體而言,可列舉:以丙烯酸環氧酯、 丙烯酸胺基甲酸酯、聚酯丙烯酸酯、聚醚丙烯酸酯、聚丁 二烯丙烯酸酯、矽氧烷丙烯酸酯等名稱所謂的丙烯酸寡聚 物·,丙烯酸-2 -乙基己酯、丙烯酸異戊酯、丙烯酸丁氧基乙 酯、丙烯酸乙氧基二乙二醇酯、丙烯酸丁氧基乙酯、丙烯 酸四氫化糠酯、丙烯酸異冰片酯、丙烯酸-2-羥乙酯、丙烯 酸-2-羥丙酯、2-丙烯醯氧基鄰苯二甲酸、丙烯酸二環戊烯 酯、二丙烯酸三乙二醇酯、二丙烯酸新戊二醇酯、二丙烯 ® 酸-1,6-二醇酯、雙酚A之E〇加成物二丙烯酸酯、三羥甲 基丙烷三丙烯酸酯、EO改質三羥甲基丙烷三丙烯酸酯、季 戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、二(三羥甲基 丙烷)四丙烯酸酯、二季戊四醇六丙烯酸酯等之丙烯酸酯 單體。另外,此等化合物可以單獨使用,也可以混合數種 後而使用。還有,同樣也可以使用甲基丙烯酸酯,一般而 言’因爲丙烯酸酯之光聚合速度較甲基丙烯酸酯爲快而較 佳。 I 陽離子聚合性化合物能夠使用於分子中具有一個以上 環氧基或乙烯醚基、環氧丁烷基之化合物。具有環氧基的 化合物可列舉:2-乙基己基二乙二醇環氧丙基醚、雙酚之 環氧丙基醚、雙酚A、氫化雙酚A、雙酚F、雙酚AD、雙 酚S、四甲基雙酚A、四甲基雙酚F、四氯雙酚A、四溴雙 酚A等之雙酚類之二環氧丙基醚類、酚酚醛、甲酚酚醛、 溴化酚酚醛、鄰甲酚酚醛等酚醛樹脂之聚環氧丙基醚類; 乙二醇、聚乙二醇、聚丙二醇、丁二醇、1,6-己二醇、新戊 -12- 200837392 二醇、三羥甲基丙烷、1,4·環己烷二甲醇、雙酚a之EO加 成物、雙酚A之Ρ Ο加成物等伸烷基二醇類之二環氧丙基 醚類;六氫化鄰苯二甲酸之環氧丙酯或二聚體酸之二環氧 丙酯等之環氧丙酯類。 再者,也可列舉:3,4 -環氧環己基甲基- 3,,4,-環氧環己 烷羧酸酯、2 - ( 3,4 -環氧環己基-5,5 -螺· 3,4 -環氧)環己烷間 二噁烷、二(3,4-環氧環己基甲基)己二酸酯、二(3,4-環氧-6-甲基環己基甲基)己二酸酯、3,4 -環氧_6_甲基環己 基-3’,4’-環氧- 6’-甲基環己烷羧酸酯、亞甲基雙(3,4-環氧 環己烷)、二環戊二烯二環氧化物、乙二醇之二(3,4_環 氧環己基甲基)醚、伸乙基雙(3,4 -環氧環己烷羧酸酯)、 內酯改質-3,4-環氧環己基甲基_3’,4’環氧環己烷羧酸酯、 四(3,4-環氧環己基甲基)丁烷四羧酸酯、二(3,4_環氧環 己基甲基)-4,5 -環氧四氫化鄰苯二甲酸酯等之脂環式環氧 化合物,並不受此等化合物所限定。 具有乙烯醚基的化合物,例如,可列舉:二乙二醇二 乙烯醚、三乙二醇二乙烯醚、丁二醇二乙烯醚、己二醇二 乙烯醚、環己烷二甲醇二乙烯醚、羥丁基乙烯醚、乙基乙 烯醚、十二烷基乙烯醚、三羥甲基丙烷三乙烯醚、丙烯醚 伸丙基碳酸酯等,並不受此等化合物所限定。還有,乙烯 醚化合物通常爲陽離子聚合性,藉由與丙烯酸酯之組合以 進行自由基聚合也爲可能的。 另外,具有環氧丁烷基之化合物,能夠使用1,4-雙〔(3-乙基-3-環氧丁基甲氧基)甲基〕苯、3 -乙基- 3-(羥甲基) -13- * 200837392 . 環氧丁院等。 • 還有,以上之陽離子聚合性化合物可以使用各種單 體,也可以混合數種後而使用。另外,該光聚合性化合物 並不受上述所限定。再者,應使充分之折射率差得以產生’ 爲了期望低折射率化,可以將氟原子(F )導入該光聚合性 化合物中,另外,爲了期望高折射率化,也可以導入硫原 子(S )、溴原子(B r )、各種金屬金屬原子。另外,如曰 本專利特表2 0 0 5 - 5 1 4 4 8 7號所揭示,在由氧化鈦(T i Ο 2 )、 # 氧化锆(Zr02 )、氧化錫(SnOx)等之高折射率金屬氧化 物所構成的超微粒表面上,將已導入丙烯基、甲基丙烯基、 環氧基等光聚合性官能基之機能性超微粒添加於該光聚合 性化合物中也爲有效的。 能夠使自由基聚合性化合物予以聚合的光起始劑,可 列舉:二苯甲酮、二苯基乙二酮、米其勒酮、2-氯_卩星、 2,4 -二乙基灿唱、苯偶因乙基醚、苯偶因異丙基醚、苯偶 因異丁基醚、2,2 -二乙氧基苯乙酮、苄基二甲基酮、2,2-_ 二甲氧基-1,2 -二苯基乙院-1-酮、2·經基-2-甲基-1-苯基丙 烷-1 -酮、1 -羥基環己基苯基酮、2 -甲基-1 -〔 4 -(甲硫基) 苯基〕-2-嗎啉基丙酮-1、1-〔 4- ( 2-羥基乙氧基)苯基〕 -2 -羥基-2 -甲基-1-丙烷-1-酮、雙(環戊二烯基)雙(2,6-二氟-3 -(吡咯-1 -基))鈦、2 -苄基-2 -二甲胺基-1 - ( 4 -嗎 啉基苯基)丁酮-1、2,4,6 -三甲基苯甲醯二苯基膦氧化物 等。另外,此等化合物可以單獨使用,也可以數種混合後 而使用。 -14- 200837392 另外,陽離子聚合性化合物之光起始劑,其係根據光 照射後而產生酸,根據此產生的酸而能夠使上述之陽離子 聚合性化合物得以聚合的化合物,一般而言,適合使用鑰 鹽、二茂金屬錯合物。钂鹽使用重氮鐵鹽、鏡鹽、碘鐵鹽、 錢鹽、硒鹽等,此等相對離子中,可使用BF4-、PF6-、 AsF6_、SbF,等之陰離子。具體例,可列舉:4-氯苯重氮 鑰六氟磷酸鹽、三苯基毓六氟銻酸鹽、三苯基銃六氟磷酸 鹽、(4-苯硫基苯基)二苯基毓六氟銻酸鹽、(4-苯硫基 苯基)二苯基毓六氟磷酸鹽、雙〔4-(二苯基亞硫醯基) 苯基〕硫醚雙六氟銻酸鹽、雙〔4-(二苯基亞硫醯基)苯 基〕硫醚雙六氟磷酸鹽、(4-甲氧基苯基)二苯基锍六氟 銻酸鹽、(4 -甲氧基苯基)苯基碘鑰六氟銻酸鹽、雙(4 -第三丁基苯基)碘鑰六氟磷酸鹽、苄基三苯基毓六氟銻酸 t 鹽、三苯基硒六氟磷酸鹽、(η5 -異丙基苯)(η 5-環戊二 烯基)鐵(II )六氟磷酸鹽等,並不受此等具體例所限定, 此等化合物可以單獨使用,也可以數種混合後而使用。 於本發明中,相對於光聚合性化合物1 00重量份,上 述光起始劑約摻合0.01〜1 〇重量份,較宜約爲〇 · 1〜7重量 份,更佳約爲0.1〜5重量份。此係因爲若低於ο · ο 1重量份 的話,光硬化性將降低;超過10重量份而摻合之情形下, 僅表面硬化而內部之硬化性將降低的缺點將顯露。通常此 等光起始劑係將粉體直接溶解於光聚合性化合物中而後予 以使用,溶解性差的情形’也能夠使用預先將光起始劑高 濃度地溶解於極少量的溶劑中之物。如此之溶劑更佳爲光 200837392 , 聚合性的,具體而言,可列舉:碳酸丙烯酯、γ-丁內酯等。 另外,爲了使光聚合性得以改善,添加習知之各種染料或 增感劑也爲可能的。再者,也能夠將能根據加熱而使光聚 合性化合物予以硬化的熱硬化性起始劑與光起始劑一起倂 用。能夠期待於此情形光硬化之後,藉由進行加熱而進一 步加速光聚合性化合物之聚合硬化,形成完全聚合硬化之 物。 於本發明中,能夠單獨使該光聚合性化合物硬化,或 φ 是使混合數種之組成物予以硬化後而形成各向異性光擴散 層。另外,藉由使光聚合性化合物與不具有光硬化性之高 分子樹脂混合物予硬化,形成本發明之各向異性光擴散層 爲可能的。此處,能夠使用的高分子樹脂可列舉:丙烯酸 樹脂、苯乙烯樹脂、苯乙烯-丙烯酸共聚物、聚胺基甲酸酯 樹脂、聚酯樹脂、環氧樹脂、纖維素系樹脂、醋酸乙烯系 樹脂、氯乙烯-醋酸乙烯共聚物、聚乙烯醇縮丁醛樹脂等。 此等之高分子樹脂與光聚合性化合物係於光硬化前必須具 ® 有充分之相溶性,爲了確保此相溶性而使用各種有機溶劑 或可塑劑等也爲可能的。還有,將丙烯酸酯作爲光聚合性 化合物使用的情形,基於相,溶性之觀點,較宜從丙烯酸樹 脂選擇以作爲高分子樹脂。 本發明之各向異性光擴散層係藉由將含有上述光聚合 性化合物之組成物設置成薄片狀,對於薄片,從光源照射 與所要求之散射中心軸ρ平行的光線,使組成物予以硬化 所製造的。於此,在基體上將含有光聚合性化合物之組成 -16- 200837392 物設置成薄片狀之手法,適用通常之塗布方式或印刷方 式。具體而言,能夠使用風管式塗布、桿式塗布、刮板式 塗布、刮刀式塗布、逆輥式塗布、轉送輥式塗布、照相凹 版式塗布、吻合式塗布、澆鑄式塗布、噴霧式塗布、狹縫 孔式塗布、壓延式塗布、折流式塗布、浸漬式塗布、模頭 式塗布等之塗布;或照相凹版印刷等之凹版印刷、網板印 刷等孔版印刷等之印刷等。另外,組成物爲低黏度之情形 也能夠在基體之周圍設置一定高度之堤堰,於此堤堰所包 圍之中進行組成物之澆鑄。 作爲爲了對含有設置成薄片狀之光聚合性化合物之組 成物進行光照射的光源,通常使用短電弧之紫外線發生光 源,具體而言,可以使用高壓水銀燈、低壓水銀燈、金屬 鹵化物燈、氙燈等。還有,於本發明中,具有棒狀發光面 之光源係不適當的。一旦使用如此之棒狀光源時,板狀之 硬化領域將形成,成爲顯示於第6圖之習知光擴散介質。 於本發明中,對於含有薄片狀所形成的光聚合性化合物之 組成物,照射與所要求之散射中心軸P平行之光線爲必要 的,較宜使用光阻曝光所用之曝光裝置。另外,製造小尺 寸之物的情形,使用紫外線點狀光源而從夠遠的距離進行 照射也爲可能的。 對於將含有光聚合性化合物之組成物作成薄片狀之物 進行照射的光線,其必須含有可硬化該光聚合性化合物的 波長,通常利用以水銀燈3 65nm爲中心之波長的光。使用 此波長帶以製作本發明之各向異性光擴散層的情形,照度 200837392 * •較宜爲0·01〜100mW/cm2之範圍,更佳爲0.1〜20mw/cm2 之範圍。若照度爲0.01 mW/cm2以下時,由於硬化需要長時 間,生產效率將變差,若爲1 〇 〇 m W/cm2以上時,光聚合性 化合物之硬化將過快而無法產生構造形成,因而無法發現 設爲目的之入射光的透過擴散性。 關於上述之光照射,雖然直接對含有薄片狀之光聚合 性化合物的組成物進行紫外線照射也爲可能的,但爲了防 止因光聚合性化合物之材質所造成之氧氣阻障,較宜使透 ® 明之玻璃或薄膜緊貼於含有該光聚合性化合物之組成物表 面’透過此等而進行紫外線照射。另外,在含有薄片狀光 聚合性化合物之組成物的表面,緊貼具有透過光強度分布 之光罩,透過此光罩而照射紫外線也爲可能的。透過具有 此透過光強度分布之光罩的紫外線照射之情形,於含有薄 片狀光聚合性化合物之組成物中,由於產生因應於此照射 強度之光聚合反應,容易產生折射率分布,對於本發明之 各向異性光擴散層製作爲有效的。還有,如此之透過光強 ^ 度分布型的光罩能夠根據蒸鍍法或印刷法、塗布法進行製 作。 作爲本發明之其他形態的顯示裝置,只要顯示性能上 具有視野角相關性的話,便可適用。能夠作爲顯示裝置使 用者,可列舉:液晶顯示面板、PDP面板、有機EL面板、 背投影電視、場發射顯示面板等。於此’所謂顯示性能上 具有視野角相關性,意指從正面方向(顯示裝置之觀察面 法線方向、視野角〇 °方向)觀察的情形與從斜向(較視野 -18- 200837392 角0 °爲大之方向)觀察的情形下,對比、調變特性、色度 等之顯示性能不同,或是亮度大幅改變。尤其在液晶顯示 面板之TN模式或STN模式之情形下,如此之視野角相關 性將強烈顯現,藉由將本發明之各向異性光擴散薄膜設置 於此等顯示裝置之觀察面側,能夠使良好之顯示性能得以 向任意方向擴大。 另外,本發明之其他形態的顯示裝置係於液晶顯示面 板之射出光側,設置該各向異性光擴散薄膜之構造,具體 而言’如第4圖或第5圖所示,於形成透明電極之一對透 明玻璃基板1 1、1 2之間夾持向列型液晶1 3,於此玻璃基板 1 1、1 2之兩側設置一對偏光板1 4、1 5的習知液晶顯示面板 中,於偏光板1 4上或玻璃基板1 1與偏光板1 4之間,設置 上述之各向異性光擴散薄膜10的構造。還有,上述之透明 玻璃基板、向列型液晶、偏光板等能夠使用一般習知者。 實施例 接著,利用實施例以具體說明本發明,但是,本發明 並不受此等實施形態所限定。 <實施例1 > ••於7 6x2 6 mm尺寸之玻璃載片的邊緣部整個周圍,使用 定量分料器,利用硬化性樹脂以形成高度0.5 mm之間壁。 將含有下列光聚合性化合物之組成物滴入其中,利用別的 玻璃載片加以覆蓋。 〔光聚合性化合物〕 • 2-(全氟辛基)丙烯酸乙酯(日本共榮社化學製,商品 名:LIGHT-ACRYLATE FA-1 08 ) 5 0 重量份 , · 二丙烯酸-1,9 -壬二酯(日本共榮社化學製, LIGHT-ACRYLATE 1.9ND-A) 50 〔光起始劑〕 • 2 -經基-2 -甲基-1-苯基內院-1·酮(ciba Special 公司製’商品名:Dar o cure 1173)The form of the anisotropic light-diffusing film of the present invention is an anisotropic light-diffusing layer composed of a cured product of a composition containing a photopolymerizable compound in a plurality of layers, and can also be formed by laminating the layered body on a transparent substrate. Or a structure in which a transparent substrate is laminated on both sides of the laminate. The higher the permeability of the transparent substrate, the better the light transmittance (JIS K7361-1) is 80% or more, more preferably 85% or more, and most preferably 90% or more;値 (JISK7136) is below 3·0, more preferably 1.0 or less, and most preferably 〇. 5 or less. A transparent plastic film or glass plate is usable, and a plastic film is suitable from the viewpoints of being thin, light, difficult to crack, and superior in productivity. Specific examples thereof include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), triethylenesulfonated cellulose (TAC), polycarbonate (PC), and poly Ether maple (PES), cellophane, polyethylene (PE), polypropylene (PP), polyethyl alcohol (PVA), 200837392, cycloolefin resin, and the like. These plastic films can be used alone or in mixed or even laminated materials. Further, in consideration of use or productivity, the thickness of the substrate is preferably 〇μηη to 5 mm', preferably from 1 〇 to 500 μm, more preferably from 50 to 150 μm. Next, the anisotropic light-diffusing film of the present invention contains an anisotropic light-diffusing layer which hardens the composition containing the photopolymerizable compound, and the composition can be used as follows: (1) The following description is used. a compound of a single photopolymerizable compound; (2) a mixture of a plurality of photopolymerizable compounds described later; Φ (3) a single or plural photopolymerizable compound mixed with a polymer compound having no photopolymerizable property Use of things. It is considered that in any combination, a micron-scale fine structure having a different refractive index is formed in the anisotropic light-diffusing layer by light irradiation, whereby the specific anisotropic light-diffusing property shown in the present invention can be found. . Therefore, in the above (1), the refractive index change before and after photopolymerization is preferably as large as possible, and in (2) and (3), a plurality of materials having different refractive indices are preferably combined. Further, the difference in refractive index or the difference in refractive index herein is specifically 0.01 or more, more preferably 0.05 or more, and still more preferably 0.10 or more. A photopolymerizable compound which is a material necessary for forming the anisotropic light-diffusing layer of the present invention, which is selected from a polymerizable polymer having a radical polymerizable or cationically polymerizable functional group, an oligomer, and a monomer. A compound composed of a compound and a photoinitiator, which is polymerized and hardened by irradiation of ultraviolet rays and visible light. The radical poly-sigma compound is a species mainly containing an unsaturated double bond of -11-200837392% in the molecule, and specifically, epoxy acrylate, urethane acrylate, Polyester acrylate, polyether acrylate, polybutadiene acrylate, siloxane acrylate, etc., so-called acrylic oligomers, 2-ethylhexyl acrylate, isoamyl acrylate, butoxy acrylate Ethyl ester, ethoxy diethylene glycol acrylate, butoxyethyl acrylate, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-propene醯oxyphthalic acid, dicyclopentenyl acrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate, dipropylene® acid-1,6-diol ester, E bis of bisphenol A Adduct diacrylate, trimethylolpropane triacrylate, EO modified trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, bis(trimethylolpropane) tetraacrylate, Acrylic acid such as dipentaerythritol hexaacrylate Monomers. Further, these compounds may be used singly or in combination of several kinds. Further, it is also possible to use methacrylate, in general, because the photopolymerization speed of the acrylate is faster than that of the methacrylate. I The cationically polymerizable compound can be used in a compound having one or more epoxy groups, vinyl ether groups or butylene oxide groups in the molecule. Examples of the compound having an epoxy group include 2-ethylhexyl diethylene glycol epoxy propyl ether, bisphenol epoxy propyl ether, bisphenol A, hydrogenated bisphenol A, bisphenol F, and bisphenol AD. Di-epoxypropyl ethers of bisphenols such as bisphenol S, tetramethyl bisphenol A, tetramethyl bisphenol F, tetrachlorobisphenol A, tetrabromobisphenol A, etc., phenol novolac, cresol novolac, Polyepoxypropyl ethers of phenolic resins such as brominated phenol novolac and o-cresol novolac; ethylene glycol, polyethylene glycol, polypropylene glycol, butanediol, 1,6-hexanediol, neopenta-12- 200837392 diol, trimethylolpropane, 1,4-cyclohexanedimethanol, bisphenol a EO adduct, bisphenol A Ρ Ο adduct, etc. Ethylene ethers; glycidyl esters of hexahydrophthalic acid epoxidized propyl ester or dimerized acid diglycidyl ester. Further, 3,4-epoxycyclohexylmethyl-3,4,-epoxycyclohexanecarboxylate, 2 - (3,4-epoxycyclohexyl-5,5-spiro) · 3,4-epoxy) cyclohexane meta-dioxane, bis(3,4-epoxycyclohexylmethyl) adipate, bis(3,4-epoxy-6-methylcyclohexyl Adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylene bis (3,4 -epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol bis(3,4-epoxycyclohexylmethyl)ether, ethyl bis(3,4-epoxycyclohexane) Alkyl carboxylate), lactone modified-3,4-epoxycyclohexylmethyl-3',4' epoxycyclohexanecarboxylate, tetrakis(3,4-epoxycyclohexylmethyl)butyl An alicyclic epoxy compound such as an alkyl tetracarboxylate or a bis(3,4-epoxycyclohexylmethyl)-4,5-epoxytetrahydrophthalate, not subject to such compounds limited. Examples of the compound having a vinyl ether group include diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, and cyclohexane dimethanol divinyl ether. And hydroxybutyl vinyl ether, ethyl vinyl ether, lauryl vinyl ether, trimethylolpropane trivinyl ether, propylene ether propyl carbonate, etc., are not limited by such compounds. Further, the vinyl ether compound is usually cationically polymerizable, and radical polymerization is also possible by combination with an acrylate. Further, as the compound having a butylene oxide group, 1,4-bis[(3-ethyl-3-epoxybutylmethoxy)methyl]benzene, 3-ethyl-3-(hydroxymethyl) can be used. -13- * 200837392 . Epoxy Dingyuan and so on. Further, the above cationically polymerizable compound may be used in various monomers, or may be used in combination of several kinds. Further, the photopolymerizable compound is not limited to the above. In addition, a sufficient refractive index difference should be generated. In order to reduce the refractive index, a fluorine atom (F) can be introduced into the photopolymerizable compound, and in order to increase the refractive index, a sulfur atom can be introduced. S), bromine atom (B r ), various metal metal atoms. In addition, as disclosed in the Japanese Patent Laid-Open Publication No. 2 0 0 5 - 5 1 4 4 8 7 , high refraction by titanium oxide (T i Ο 2 ), # zirconia (ZrO 2 ), tin oxide (SnOx), etc. It is also effective to add a functional ultrafine particle to which a photopolymerizable functional group such as a propylene group, a methacryl group or an epoxy group has been introduced to the photopolymerizable compound, on the surface of the ultrafine particles of the metal oxide. Examples of the photoinitiator capable of polymerizing the radically polymerizable compound include benzophenone, diphenylethanedione, mischrone, 2-chloro-oxime, and 2,4-diethylcan. Sing, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-diethoxyacetophenone, benzyl dimethyl ketone, 2,2- _ Methoxy-1,2-diphenylethene-1-one, 2· mercapto-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl -1 -[4-(methylthio)phenyl]-2-morpholinylacetone-1, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl -1-propan-1-one, bis(cyclopentadienyl)bis(2,6-difluoro-3-(pyrrole-1-yl))titanium, 2-benzyl-2-dimethylamino- 1 - ( 4 -morpholinylphenyl)butanone-1, 2,4,6-trimethylbenzimidium diphenylphosphine oxide, and the like. Further, these compounds may be used singly or in combination of several kinds. Further, a photoinitiator of a cationically polymerizable compound, which is an acid which generates an acid after light irradiation, and which is capable of polymerizing the above cationically polymerizable compound based on the acid generated, is generally suitable A key salt, a metallocene complex is used. As the cerium salt, a diazo iron salt, a mirror salt, an iron iodide salt, a money salt, a selenium salt or the like is used, and among these relative ions, an anion such as BF4-, PF6-, AsF6_, SbF, or the like can be used. Specific examples include 4-chlorobenzenediazonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, and (4-phenylthiophenyl)diphenylphosphonium. Hexafluoroantimonate, (4-phenylthiophenyl)diphenylphosphonium hexafluorophosphate, bis[4-(diphenylsulfinyl)phenyl]thioether bishexafluoroantimonate, double [4-(Diphenylsulfinyl)phenyl]thioether bishexafluorophosphate, (4-methoxyphenyl)diphenylphosphonium hexafluoroantimonate, (4-methoxyphenyl) Phenyl iodide hexafluoroantimonate, bis(4-butylbutyl) iodine hexafluorophosphate, benzyltriphenylphosphonium hexafluoroantimonate t salt, triphenylseleno hexafluorophosphate (η5-isopropylbenzene) (η 5-cyclopentadienyl) iron (II) hexafluorophosphate, etc., is not limited by these specific examples, and these compounds may be used singly or in combination. Used after mixing. In the present invention, the photoinitiator is blended in an amount of 0.01 to 1 part by weight, preferably about 1 to 7 parts by weight, more preferably about 0.1 to 5 parts by weight, based on 100 parts by weight of the photopolymerizable compound. Parts by weight. This is because the photocurability is lowered if it is less than 1 part by weight, and when it is blended in excess of 10 parts by weight, the disadvantage that only the surface is hardened and the internal hardenability is lowered will be revealed. In general, such a photoinitiator is used by directly dissolving a powder in a photopolymerizable compound and then using it, and in the case where the solubility is poor, it is also possible to use a material in which a photoinitiator is dissolved in a very small amount in a solvent at a high concentration. More preferably, the solvent is light 200837392, and specific examples thereof include propylene carbonate and γ-butyrolactone. Further, in order to improve the photopolymerizability, it is also possible to add various dyes or sensitizers known in the art. Further, a thermosetting initiator capable of curing the photopolymerizable compound by heating can be used together with a photoinitiator. It is expected that after the photohardening in this case, the polymerization hardening of the photopolymerizable compound is further accelerated by heating to form a completely polymer hardened product. In the present invention, the photopolymerizable compound can be cured alone, or φ can be formed by curing a plurality of compositions to form an anisotropic light-diffusing layer. Further, it is possible to form the anisotropic light-diffusing layer of the present invention by hardening a photopolymerizable compound with a high-molecular-weight resin mixture having no photocurability. Here, examples of the polymer resin that can be used include an acrylic resin, a styrene resin, a styrene-acrylic copolymer, a polyurethane resin, a polyester resin, an epoxy resin, a cellulose resin, and a vinyl acetate system. Resin, vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, and the like. These polymer resins and photopolymerizable compounds must have sufficient compatibility with the photo-curable compound before photohardening, and it is also possible to use various organic solvents or plasticizers to ensure the compatibility. Further, in the case where an acrylate is used as a photopolymerizable compound, it is preferably selected from an acrylic resin as a polymer resin from the viewpoint of phase and solubility. In the anisotropic light-diffusing layer of the present invention, the composition containing the photopolymerizable compound is formed into a sheet shape, and the light is irradiated from the light source in parallel with the desired scattering center axis ρ to harden the composition. Made by. Here, the composition containing the photopolymerizable compound -16-200837392 is formed into a sheet form on the substrate, and a usual coating method or printing method is applied. Specifically, duct coating, rod coating, blade coating, blade coating, reverse roll coating, transfer roll coating, gravure coating, conformal coating, cast coating, spray coating, Coating by slit hole coating, calender coating, baffle coating, dip coating, die coating, etc.; or printing such as gravure printing such as gravure printing or stencil printing such as screen printing. Further, in the case where the composition is in a low viscosity, it is also possible to provide a bank of a certain height around the substrate, and the composition is cast in the periphery of the bank. As a light source for irradiating a composition containing a photopolymerizable compound provided in a sheet shape, a short-arc ultraviolet light generating source is generally used. Specifically, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, or the like can be used. . Further, in the present invention, the light source having the rod-like light-emitting surface is not suitable. When such a rod-shaped light source is used, a plate-like hardening field is formed, which becomes a conventional light diffusion medium shown in Fig. 6. In the present invention, it is necessary to irradiate a composition containing a photopolymerizable compound formed in a sheet form in parallel with a desired scattering central axis P, and it is preferable to use an exposure apparatus for resist exposure. Further, in the case of manufacturing a small-sized object, it is also possible to irradiate from a sufficiently distant distance using an ultraviolet point light source. The light irradiated with the composition containing the photopolymerizable compound in a sheet form must have a wavelength at which the photopolymerizable compound can be cured, and usually a light having a wavelength centering on a mercury lamp of 3 65 nm is used. In the case where the wavelength band of the present invention is used to produce the anisotropic light-diffusing layer of the present invention, the illuminance 200837392 * is preferably in the range of 0. 01 to 100 mW/cm 2 , more preferably in the range of 0.1 to 20 mW/cm 2 . When the illuminance is 0.01 mW/cm2 or less, the production efficiency is deteriorated due to the long time of hardening, and when it is 1 〇〇m W/cm2 or more, the hardening of the photopolymerizable compound is too fast to form a structure. The transmission diffusivity of the incident light set as the destination cannot be found. In the light irradiation described above, it is possible to directly irradiate the composition containing the sheet-like photopolymerizable compound with ultraviolet rays. However, in order to prevent the oxygen barrier caused by the material of the photopolymerizable compound, it is preferable to The glass or film of the bright glass is adhered to the surface of the composition containing the photopolymerizable compound to transmit ultraviolet rays. Further, it is also possible to irradiate the ultraviolet ray through the reticle by adhering to the reticle having the transmitted light intensity distribution on the surface of the composition containing the flaky photopolymerizable compound. In the case of the composition containing the flaky photopolymerizable compound, the refractive index distribution is easily generated in the composition containing the flaky photopolymerizable compound due to the photopolymerization reaction according to the irradiation intensity. The anisotropic light diffusion layer is made effective. Further, such a light-transmitting type of light-shielding type mask can be produced by a vapor deposition method, a printing method, or a coating method. The display device according to another aspect of the present invention can be applied as long as the display performance has a viewing angle dependency. Examples of the display device user include a liquid crystal display panel, a PDP panel, an organic EL panel, a rear projection television, and a field emission display panel. Here, the so-called display performance has a viewing angle dependence, which means that the situation is observed from the front direction (the normal direction of the viewing surface of the display device, the viewing angle 〇° direction) and the oblique direction (the field of view -18-200837392 angle 0) In the case of observation, the display performance of contrast, modulation characteristics, chromaticity, etc. is different, or the brightness is greatly changed. In particular, in the case of the TN mode or the STN mode of the liquid crystal display panel, such a viewing angle dependence will be strongly exhibited, and by providing the anisotropic light-diffusing film of the present invention on the viewing surface side of the display device, it is possible to Good display performance can be expanded in any direction. Further, a display device according to another aspect of the present invention is provided on the light-emitting side of the liquid crystal display panel, and is provided with a structure of the anisotropic light-diffusing film. Specifically, as shown in FIG. 4 or FIG. 5, a transparent electrode is formed. A conventional liquid crystal display panel in which a pair of polarizing plates 14 and 15 are provided on both sides of the glass substrates 1 1 and 1 2 with a pair of nematic liquid crystals 13 sandwiched between the transparent glass substrates 1 1 and 1 2 The structure of the anisotropic light-diffusing film 10 described above is provided on the polarizing plate 14 or between the glass substrate 11 and the polarizing plate 14. Further, the above transparent glass substrate, nematic liquid crystal, polarizing plate, or the like can be used. EXAMPLES Next, the present invention will be specifically described by examples, but the present invention is not limited by the embodiments. <Example 1> • On the entire periphery of the edge portion of the glass slide of a size of 7 6 x 2 6 mm, a quantitative dispenser was used, and a hardening resin was used to form a wall having a height of 0.5 mm. A composition containing the following photopolymerizable compound was dropped thereinto and covered with another glass slide. [Photopolymerizable compound] • 2-(perfluorooctyl)ethyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: LIGHT-ACRYLATE FA-1 08) 5 0 parts by weight, · Diacrylic acid-1,9 - Terpene diester (manufactured by Kyoeisha Chemical Co., Ltd., LIGHT-ACRYLATE 1.9ND-A) 50 [Photoinitiator] • 2 -Phase-2-methyl-1-phenyl inner hospital-1·ketone (ciba Special) Company's product name: Dar o cure 1173)

200837392 相對於利用玻璃載片挾持上述兩面之〇 . 3 m r fe ’使用UV點狀光源(日本浜松photonics製, L2859-01)之落射(Ultrapak)系統,使其距離法 斜之狀態下,進行照射強度8mW7cm2紫外線之 射。然後,卸下兩側之玻璃載片後得到各向異性光 接著,使用黏著劑(商品名·· TD06A、日本 公司製),使積層於液晶顯示面板上之際的方位 成爲〇°及180°之方式來貼合上述2片之各向異性 後而製作實施例1之各向異性光擴散薄膜。 接著,在1 ·8吋彩色STN面板(上下視野角 右視野角40° )之上側,使用上述黏著劑以使方位 成爲面板之〇°及180°之方式來貼合上述之各向異 薄膜,製得本發明之液晶顯示裝置。此時,將方 〇°及180。之方向分別設爲面板之右及左方向。 <比較例1 > 將未積層各向異性光擴散薄膜之1 . 8吋彩色 作成比較例1之液晶顯示裝置。 <比較例2 > 將Lumistry MFZ-2555(日本住友化學公司 霜品名: 重量份 Chemical 4重量份 η厚的液 商品名: 線30°傾 1分鐘照 擴散層。 巴川製紙 角Φ分別 光擴散層 I 40〇 、左 角Φ分別 性光擴散 位角0 = STN面板 )作爲比 -20- 200837392 較例2之液晶顯示裝置以取代實施例1之各向異性光擴散 薄膜’積層於1 .8吋彩色STN面板上而作成比較例2之液 晶顯不裝置。 <比較例3 > 將擴散薄膜BS-03 7 (日本惠和製)作爲比較例3之液 晶顯不裝置以取代實施例1之各向異性光擴散薄膜,積層 於1 · 8吋彩色STN面板上而作成比較例3之液晶顯示裝置。 對於進行如上述方式所製得的實施例1及比較例1〜3 之液晶顯示裝置,確認上下視野角及左右視野角、及以下 說明的調變反轉角。於此所謂的調變反轉角係從相對於畫 面法線傾斜之位置觀察畫面,調變反轉開始發生之角度。 此時之傾斜方向係分別針對位於方位角90。及270。方向之 畫面上下方向、位於方位角45。及235。方向之畫面傾斜方 向、及位於方位角 0°及180°方向之畫面左右方向加以確 認。還有,此測定中之視野角係設爲顯示白亮度與黑亮度 的比所示之對比爲2以上之最大極角。另外,也針對影像 失焦之有無加以確認,將此等之結果顯示於表1。 表1 實施例1 比較例1 比較例2 比較例3 左右 斜向 上下 左右 斜向 上下 左右 斜向 上下 左右 斜向 上下 視野角 55 55 55 40 40 40 65 40 40 50 50 50 階調反轉角 65 65 65 50 50 50 75 50 50 60 60 60 影像失焦 ft y ι\Ν ^Htt? /\\\ >frrr ΗΤΊΤ 無 -21 - 200837392 • 其結果,如表1所示,比較例1之液晶顯示裝置,其 對於上下、斜向及左右方向的視野角爲4 0 ° ;對於上下、斜 向及左右方向的調變反轉角爲5 0 °。比較例2之液晶顯示裝 置,其對於上下及斜向的視野角爲4 0 °、左右方向則爲6 5 ° ; 對於上下及斜向的調變反轉角爲50°、左右方向則爲75°。 比較例3之液晶顯示裝置,其對於上下、斜向及左右方向 的視野角爲5 0 °,對於上下、斜向及左右方向的調變反轉角 爲60°。而且,即使爲50°以內,影像中也將發生失焦,影 • 像之輪廓鮮明度降低。針對於此,本發明實施例之液晶顯 示裝置之情形,上下、斜向及左右方向之視野角爲5 5 °,調 變反轉角對於上下及斜向爲65°。亦即,相較於習知之液晶 顯示裝置,本發明之各向異性光擴散薄膜及液晶顯示裝置 之情形,對於上下、斜向及左右方向之視野角能夠擴大1 5 °。 接著,使用其他實施形態之實施例以具體說明本發明。 <實施例2 > 將65.4重量份之Zr( OP〇 4倒入250ml三口燒瓶中, ^ 於冰浴中加以冷卻。一面進行此物之攪拌,並一面歷時1 5 分鐙慢慢滴入1 7 · 2重量份之甲基丙烯酸(M A A )。滴入全 部量後而進一步攪拌1 0分鐘,之後,從冰浴中取出三口燒 瓶,於25它進一步攪拌10分鐘,調製Zr( OPr ) 4/MAA( 1 : 1 ) ° 接著,藉由混合甲基丙烯醯氧丙基三甲氧基矽烷24.8 重量份、二甲基二乙氧基矽烷14.8重量份、聚乙烯醇縮丁 醛溶液(濃度3 0重量%乙醇溶液)1 3 3.6重量份及三乙二 -22- 200837392 醇二(己酸-2 -乙酯)1 1 〇 . 6重量份,於2 5 °C攪拌1 5分鐘, 而調製光聚合性組成物用混合液。將4.5 0重量份之〇 . 1 N HC1添加於此光聚合性組成物混合液中,到使混濁的反應 混合物成爲透明爲止,於室溫攪拌1 0分鐘。然後,一面攪 拌,並一面使用滴液漏斗,慢慢加入4 1 . 6重量份之上述Zr (OPr ) 4/MAA ( 1 : 1 ),完全添加之後,進一步於室溫下 攪拌4小時。之後,將1 .9重量份之水滴入此光聚合性組 成物混合液中,於室溫下攪拌一整晚。進一步添加6.7 5重 量份之Crodamer UVA 421 (商品名),接著,利用86.3重量 份之異丙醇加以稀釋,再進一步添加 6.5重量份之 Byk3〇6(商品名),直到完全予以均質化爲止進行攪拌,調 製光聚合性組成物。 於厚度1 00 μηι之透明PET薄膜上,塗布如上方式所調 製之光聚合性組成物,設置乾燥膜厚5 0 μιη之塗布膜。進 一步於此塗布膜上積層厚度38μπι之脫模PET薄膜(商品 名:38又、1^1^6(:公司製),從其上方、自入射角30°之方 向照射平行UV光,製作散射中心軸30°之各向異性光擴散 薄膜’。 接著,重疊並載置2片之上述各向異性光擴散薄膜’ 以使上述各向異性光擴散薄膜之散射中心軸的方位角成爲 背光源射出光面之〇。與180。,製得實施例2之各向異性光 擴散薄膜。 <比較例4 > 載置實施例2中之擴散中心軸30。的各向異性光擴散 -23 - 200837392 • 層以使其散射中心軸之方位角與背光源之光射出面〇 °方向 (光射出面之水平右方向)相一致,製得比較例4之各向 異性光擴散薄膜。 將市售背光源垂直直立於其光射出面的狀態下載置於 旋轉桌上,再將亮度計配置於其正面。光射出面之法線方 向設爲〇°,使旋轉桌予以間歇地旋轉,測定各角度之亮度, 測出無任何載置狀態的背光源之亮度分布特性。 接著,以使實施例2之各向異性光擴散薄膜之散射中 • 心軸的方位角成爲背光源之光射出面的〇 °與1 8 0 °之方式來 將此各向異性光擴散薄膜重疊並載置於此背光源上,與上 述同樣地測出亮度分布特性。 進一步將比較例4之各向異性光擴散薄膜載置於背光 源上,以使其散射中心軸之方位角與背光源之射出面0°(光 射出面之水平方向)相一致,與上述同樣地測出亮度分布 特性。 將此等之結果顯示於第7圖。從第7圖可明確得知, ® 若僅與背光源之亮度分布特性作比較時,於使用1片各向 異性光擴散層之比較例4的各向異性光擴散薄膜之情形, 顯示雖然於+ 32°以上之角度區域已大幅提高亮度,但是負 側之角度區域中,其亮度則未完全改善。針對於此,使用 2片各向異性光擴散層之實施例2的各向異性光擴散薄膜 之情形,不僅正側,連同負側之角度區域,也於約3 0。以上 之角度區域,顯示亮度之大幅提高。 還有,第7圖中之各亮度係將背光源〇°方向之亮度設 -24- 200837392 . 爲1 0 0 %後而予以規格化,於表2顯示實際之亮度數據。 若根據此數據,本發明之各向異性光擴散薄膜係顯示:雖 然正面方向之亮度稍微降低,但是散射中心軸方向之亮度 則提高。亦即,本發明之各向異性光擴散薄膜係顯示將正 面方向之光引導至散射中心軸方向。 表2 正面(0°)亮度 45°規格化亮度 薄膜搭載時/背光源 + 45° -45° 僅背光源 100% 0.61 0.60 實施例2 86% 0.74 0.76 比較例4 89% 0.76 0.62 如上所述’若根據本發明,能夠提供一種可以於任意 方向充分擴大顯示裝置、尤其是液晶顯示面板的視野角之 各向異性光擴散薄膜’與使用它之顯示裝置及液晶顯示裝 置。 【圖式簡單說明】 第1圖係示意顯示本發明之各向異性光擴散薄膜一例 的圖形。 第2圖係示意顯示本發明中之各向異性光擴散層的圖 第3圖係說明本發明中之散射中心軸的3次元極座標 表示。 第4圖係示意顯示本發明之液晶顯示裝置一例的圖 形0 -25- 200837392 第5圖係示意顯示本發明之液晶顯示裝置另一例的圖 形。 第6圖係顯示習知之光控制板的示意圖。 第7圖係顯示本發明之各向異性光擴散薄膜向任意方 向擴散背光源亮度的圖形。 【元件符號說明】200837392 Relative to the use of glass slides to hold the above two sides. 3 mr fe 'Ultrapak system using UV point light source (made from Japan's nic松 photonics, L2859-01), so that it is illuminated from the normal state The intensity is 8mW7cm2. Then, the glass slides on both sides were removed to obtain anisotropic light, and then the adhesive layer (trade name: TD06A, manufactured by Nippon Co., Ltd.) was used to make the orientation on the liquid crystal display panel 〇° and 180°. The anisotropic light-diffusing film of Example 1 was produced by laminating the anisotropy of the above two sheets. Next, on the upper side of the 1·8-inch color STN panel (the right and left viewing angles are 40° to the right viewing angle), the above-mentioned adhesive film is applied so that the orientation becomes the 〇° and 180° of the panel. The liquid crystal display device of the present invention was obtained. At this point, the range will be 180 and 180. The directions are set to the right and left directions of the panel. <Comparative Example 1 > A 1.8 吋 color of an unstacked anisotropic light-diffusing film was prepared as a liquid crystal display device of Comparative Example 1. <Comparative Example 2 > Lumistry MFZ-2555 (Sumitomo Chemical Co., Ltd., Japan: Product name: Parts by weight Chemical 4 parts by weight η thick liquid product name: Line 30° tilted for 1 minute as a diffusion layer. Bachuan paper angle Φ, respectively, light diffusion Layer I 40 〇, left angle Φ, respectively, light diffusing angle 0 = STN panel) as a liquid crystal display device of Comparative Example 2, -20-200837392, in place of the anisotropic light-diffusing film of Example 1, layered at 1.8 A liquid crystal display device of Comparative Example 2 was fabricated on a color STN panel. <Comparative Example 3 > A diffusion film BS-03 7 (manufactured by Hybrid Japan Co., Ltd.) was used as the liquid crystal display device of Comparative Example 3 instead of the anisotropic light-diffusing film of Example 1, laminated on a 1.8 Å color STN panel The liquid crystal display device of Comparative Example 3 was fabricated. With respect to the liquid crystal display devices of Example 1 and Comparative Examples 1 to 3 obtained as described above, the vertical viewing angle, the left and right viewing angles, and the modulation inversion angle described below were confirmed. Here, the modulation inversion angle is an angle at which the inversion reversal starts when the screen is viewed from a position inclined with respect to the normal line of the screen. The tilting direction at this time is respectively directed to the azimuth angle 90. And 270. The direction of the screen is in the up and down direction and at the azimuth angle of 45. And 235. The orientation direction of the screen and the left and right direction of the screen in the azimuth angles of 0° and 180° are confirmed. Further, the viewing angle in this measurement is set to show a maximum polar angle of 2 or more in comparison with the ratio of white luminance to black luminance. In addition, the presence or absence of image out of focus is also confirmed, and the results are shown in Table 1. Table 1 Example 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Left and right obliquely up, down, left and right, up, down, left and right, up, down, left, right, left, right, up, down, and down, 55 55 55 40 40 40 65 40 40 50 50 50 Step reverse angle 65 65 65 50 50 50 75 50 50 60 60 60 Image out of focus ft y ι\Ν ^Htt? /\\\ >frrr ΗΤΊΤ No-21 - 200837392 • As a result, as shown in Table 1, the liquid crystal of Comparative Example 1 The display device has a viewing angle of 40° for the up, down, diagonal, and left and right directions, and 50° for the up, down, and left and right directions. The liquid crystal display device of Comparative Example 2 has a viewing angle of 40° for the up and down and the oblique direction and 6 5° for the left and right direction, and a modulation inversion angle of 50° for the up and down and the oblique direction and 75 for the left and right direction. °. In the liquid crystal display device of Comparative Example 3, the viewing angles in the vertical direction, the oblique direction, and the left-right direction were 50°, and the inversion angles in the up-and-down, oblique, and left-right directions were 60°. Moreover, even within 50°, out-of-focus will occur in the image, and the sharpness of the image will be reduced. To this end, in the case of the liquid crystal display device of the embodiment of the present invention, the viewing angles of the up and down, oblique, and left and right directions are 55 °, and the inversion angle of the modulation is 65° for the up and down and the oblique directions. That is, in the case of the anisotropic light-diffusing film and the liquid crystal display device of the present invention, the viewing angles of the vertical, oblique, and left-right directions can be expanded by 15 ° compared with the conventional liquid crystal display device. Next, the present invention will be specifically described using examples of other embodiments. <Example 2 > 65.4 parts by weight of Zr (OP〇4 was poured into a 250 ml three-necked flask, and the mixture was cooled in an ice bath, and the mixture was stirred while being slowly dropped over 15 minutes. 1 7 · 2 parts by weight of methacrylic acid (MAA). After the whole amount was added, the mixture was further stirred for 10 minutes. Thereafter, the three-necked flask was taken out from the ice bath, and further stirred at 25 for 10 minutes to prepare Zr(OPr) 4 /MAA( 1 : 1 ) ° Next, by mixing 24.8 parts by weight of methacrylic methoxypropyltrimethoxy decane, 14.8 parts by weight of dimethyldiethoxy decane, and polyvinyl butyral solution (concentration 3 0 wt% ethanol solution) 1 3 3.6 parts by weight and triethylene di-22-200837392 alcohol di(hexanoic acid-2-ethyl ester) 1 1 〇. 6 parts by weight, stirred at 25 ° C for 15 minutes, and prepared To the mixed solution for the photopolymerizable composition, 4.50 parts by weight of 〇.1 N HCl was added to the photopolymerizable composition mixture until the turbid reaction mixture became transparent, and the mixture was stirred at room temperature for 10 minutes. Then, while stirring, and using a dropping funnel, slowly add 41.6 parts by weight of the above Zr (OPr) 4/MAA (1:1), after completion of the addition, further stirred at room temperature for 4 hours. Thereafter, 0.9 parts by weight of water was dropped into the photopolymerizable composition mixture, and stirred at room temperature. Overnight, 6.7 5 parts by weight of Crodamer UVA 421 (trade name) was further added, followed by dilution with 86.3 parts by weight of isopropyl alcohol, and further 6.5 parts by weight of Byk3〇6 (trade name) was added until completely homogenized. The photopolymerizable composition was prepared by stirring, and the photopolymerizable composition prepared as described above was applied onto a transparent PET film having a thickness of 100 μm, and a coating film having a dry film thickness of 50 μm was provided. A release-coated PET film having a thickness of 38 μm on the film (trade name: 38, 1^1^6 (manufactured by the company) was irradiated with parallel UV light from the direction above the incident angle of 30° to produce a scattering central axis of 30°. An anisotropic light-diffusing film ′. Next, two sheets of the anisotropic light-diffusing film ′ are placed and placed so that the azimuth angle of the scattering central axis of the anisotropic light-diffusing film becomes a backlight emission surface And an anisotropic light-diffusing film of Example 2. [Comparative Example 4 > Placement of the diffusion center axis 30 in Example 2. Anisotropic light diffusion -23 - 200837392 • Layer The anisotropic light-diffusing film of Comparative Example 4 was obtained by aligning the azimuth angle of the scattering central axis with the light exiting surface 〇° direction of the backlight (horizontal right direction of the light exiting surface). The commercially available backlight is vertically erected on its light exit surface and placed on a rotating table, and the luminance meter is placed on the front side. The normal direction of the light exit surface is set to 〇°, the rotating table is intermittently rotated, the brightness of each angle is measured, and the brightness distribution characteristics of the backlight without any mounted state are measured. Next, the anisotropic light-diffusing film was superposed by arranging the azimuth angle of the mandrel in the anisotropic light-diffusing film of Example 2 to be 〇° and 180° of the light-emitting surface of the backlight. And placed on this backlight, the brightness distribution characteristics were measured in the same manner as described above. Further, the anisotropic light-diffusing film of Comparative Example 4 was placed on the backlight such that the azimuth angle of the scattering central axis coincided with the exit surface of the backlight (0° (horizontal direction of the light exit surface), as described above. The brightness distribution characteristics were measured. The results of these are shown in Figure 7. It can be clearly seen from Fig. 7 that, when compared with the luminance distribution characteristic of the backlight, the anisotropic light-diffusing film of Comparative Example 4 using one anisotropic light-diffusing layer is shown in + The angle area above 32° has greatly improved the brightness, but the brightness in the negative side angle area has not been completely improved. In view of this, in the case of the anisotropic light-diffusing film of Example 2 using two anisotropic light-diffusing layers, not only the positive side but also the angular region of the negative side, also about 30. In the above angular area, the display brightness is greatly improved. Further, in each of the brightness levels in Fig. 7, the brightness in the backlight 〇° direction is set to -24-200837392. After normalization, the actual brightness data is shown in Table 2. According to this data, the anisotropic light-diffusing film of the present invention shows that although the brightness in the front direction is slightly lowered, the brightness in the direction of the scattering central axis is improved. That is, the anisotropic light-diffusing film of the present invention exhibits directing light in the front direction to the direction of the scattering central axis. Table 2 Front (0°) Brightness 45° Normalized Brightness Film Mounting / Backlight + 45° -45° Backlight only 100% 0.61 0.60 Example 2 86% 0.74 0.76 Comparative Example 4 89% 0.76 0.62 as described above' According to the present invention, it is possible to provide an anisotropic light-diffusing film which can sufficiently enlarge the viewing angle of a display device, particularly a liquid crystal display panel, in any direction, and a display device and a liquid crystal display device using the same. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view schematically showing an example of an anisotropic light-diffusing film of the present invention. Fig. 2 is a view schematically showing an anisotropic light-diffusing layer in the present invention. Fig. 3 is a view showing a 3-dimensional polar coordinate representation of a scattering central axis in the present invention. Fig. 4 is a view schematically showing an example of a liquid crystal display device of the present invention. Fig. 5 - 25 - 200837392 Fig. 5 is a view schematically showing another example of the liquid crystal display device of the present invention. Figure 6 is a schematic diagram showing a conventional light control panel. Fig. 7 is a graph showing the luminance of the anisotropic light-diffusing film of the present invention diffusing the backlight in an arbitrary direction. [Component Symbol Description]

1 各 向 異 性 光 擴 散 層 2 黏 著 劑 3 棒 狀 硬 化 領 域 10 各 向 異 性 光 擴 散 薄膜 11 玻 璃 基 板 12 玻 璃 基 板 13 向 列 型 液 晶 14 偏 光 板 15 偏 光 板 P 散 射 中 心 軸 -26 -1 anisotropic light diffusion layer 2 adhesive 3 rod hardened domain 10 anisotropic light diffusion film 11 glass substrate 12 glass substrate 13 nematic liquid crystal 14 polarizing plate 15 polarizing plate P scattering center axis -26 -

Claims (1)

200837392 . 十、申請專利範圍: 1. 一種各向異性光擴散薄膜,其特徵在於: 具備複數層的由含光聚合性化合物之組成物的硬化物 所構成之各向異性光擴散層, 上述各向異性光擴散層係各具有一個散射中心軸, 往上述各向異性光擴散層之入射光的透過擴散性係具 有依照該各向異性光擴散層所具有的散射中心軸與該入 射光的光軸相交的角度而變化之入射角度依附性,且 φ 上述散射中心軸的方向係根據各各向異性光擴散層而 不同。 2·如申請專利範圍第1項之各向異性光擴散薄膜,其中上 述散射中心軸的方位角係在每個上述各向異性光擴散層 爲不同的。 3 .如申請專利範圍第1項之各向異性光擴散薄膜,其中上 述散射中心軸的極角係在每個上述各向異性光擴散層爲 不同的。 φ 4.一種顯示裝置,其特徵係在顯示性能上具有視野角依附 性之顯示裝置的觀察面側,配置如申請專利範圍第丨項 之各向異性光擴散薄膜。 5 · —種液晶顯示裝置,係具備液晶顯示面板,該液晶顯示 面板係在形成有透明電極之一對透明基板之間夾持液 晶’且在該透明基板之與該液晶夾持側相反側之兩面上 設置一對偏光板,其特徵在於將如申請專利範圍第1項 之各向異性光擴散薄膜設置於上述液晶面板的射出光 側0 -27-200837392. X. Patent application scope: 1. An anisotropic light-diffusing film comprising: a plurality of anisotropic light-diffusing layers composed of a cured product of a composition containing a photopolymerizable compound, Each of the anisotropic light-diffusing layers has a scattering central axis, and the diffuse transmittance of the incident light to the anisotropic light-diffusing layer has light having a scattering central axis and the incident light according to the anisotropic light-diffusing layer The angle of incidence changes depending on the angle at which the axes intersect, and φ the direction of the scattering center axis differs depending on the anisotropic light diffusion layer. 2. The anisotropic light-diffusing film of claim 1, wherein the azimuth angle of the scattering central axis is different for each of the anisotropic light diffusion layers. 3. The anisotropic light-diffusing film of claim 1, wherein the polar angle of the scattering central axis is different for each of the anisotropic light diffusion layers. φ 4. A display device characterized in that it is an observation surface side of a display device having a viewing angle dependence on display performance, and is disposed as an anisotropic light-diffusing film of the above-mentioned patent application. A liquid crystal display device comprising a liquid crystal display panel that sandwiches liquid crystal between a transparent substrate and a transparent substrate, and on a side opposite to the liquid crystal clamping side of the transparent substrate A pair of polarizing plates are disposed on both sides, and the anisotropic light-diffusing film of the first aspect of the patent application is disposed on the light-emitting side of the liquid crystal panel.
TW96140692A 2006-10-31 2007-10-30 Anisotropic diffusing film, display using the same, and liquid crystal display TW200837392A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296868 2006-10-31

Publications (1)

Publication Number Publication Date
TW200837392A true TW200837392A (en) 2008-09-16

Family

ID=39343945

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140692A TW200837392A (en) 2006-10-31 2007-10-30 Anisotropic diffusing film, display using the same, and liquid crystal display

Country Status (2)

Country Link
TW (1) TW200837392A (en)
WO (1) WO2008053592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651551B (en) * 2014-01-21 2019-02-21 日商巴川製紙所股份有限公司 Anisotropic optical film
TWI693434B (en) * 2017-09-14 2020-05-11 日商日東電工股份有限公司 Optical laminate and reflection-type liquid crystal display apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276682A (en) * 2009-05-26 2010-12-09 Optrex Corp Liquid crystal display device
JP5996183B2 (en) * 2010-12-15 2016-09-21 リンテック株式会社 Anisotropic light diffusion film composition and anisotropic light diffusion film
JP5960979B2 (en) * 2010-12-16 2016-08-02 リンテック株式会社 Light diffusing film and method for producing light diffusing film
JP5749960B2 (en) 2011-03-30 2015-07-15 株式会社ジャパンディスプレイ Display device and electronic device
JP6288672B2 (en) * 2014-03-28 2018-03-07 株式会社巴川製紙所 Anisotropic optical film
KR102310172B1 (en) * 2017-05-25 2021-10-06 엘지디스플레이 주식회사 Organic light emitting display device
US11874481B2 (en) 2018-05-14 2024-01-16 Tomoegawa Co., Ltd. Head-mounted display
JP6581329B1 (en) * 2018-05-14 2019-09-25 株式会社巴川製紙所 Head mounted display

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758361B2 (en) * 1987-06-11 1995-06-21 住友化学工業株式会社 Light control plate and method of manufacturing the same
JP3712833B2 (en) * 1996-12-25 2005-11-02 シャープ株式会社 Reflective liquid crystal display
JP3480260B2 (en) * 1997-09-01 2003-12-15 セイコーエプソン株式会社 Liquid crystal devices and electronic equipment
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflective screen
JP2005265915A (en) * 2004-03-16 2005-09-29 Tomoegawa Paper Co Ltd Anisotropic diffusion medium and method for producing the same
JP4135940B2 (en) * 2004-10-20 2008-08-20 株式会社巴川製紙所 Anisotropic diffusion media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651551B (en) * 2014-01-21 2019-02-21 日商巴川製紙所股份有限公司 Anisotropic optical film
TWI693434B (en) * 2017-09-14 2020-05-11 日商日東電工股份有限公司 Optical laminate and reflection-type liquid crystal display apparatus

Also Published As

Publication number Publication date
WO2008053592A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
CN106133588B (en) Anisotropic optical film
TW200837392A (en) Anisotropic diffusing film, display using the same, and liquid crystal display
TWI651551B (en) Anisotropic optical film
TWI760456B (en) Antiglare film and display device
CN112074771B (en) head mounted display
CN110214286B (en) Light guide laminate using anisotropic optical film and planar light source device using same
CN106003767B (en) The manufacturing method of anisotropic optical film
CN104838292B (en) Anisotropic optical film
CN104854643B (en) Display device
JP6039911B2 (en) Anisotropic optical film for polarizing plate and method for producing the same
JP6093113B2 (en) Anisotropic optical film
JP5947410B2 (en) Display device
JP2010262046A (en) Reflective screen
JP2015222441A (en) Anisotropic optical film
TWI820126B (en) Head-mounted display
JP6581329B1 (en) Head mounted display
JP2007134281A (en) Backlight unit and liquid crystal display device using the same
TW202246860A (en) Anisotropic light diffusing film and display device
TW202202916A (en) Anisotropic light diffusing film and display device