200834644 P55950076TWC4 22306-4twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光元件’且特別是有關於一種 電子發射式發光元件及其應用。 【先前技術】 目前量產的光源裝置或顯示裝置中主要應用兩大類 的發光結構,包括: 1·氣體放電㈣:應麟例如絲秘或氣體放電燈 上,主要利用陰極與陽極之間的電場,使充滿於放 電腔内的氣體游離,藉由輝光放電(gl〇 w discharge) 的方式使電子撞擊氣體後產生躍遷並發出紫外 光,而同樣位於放電腔内的螢光層,及收紫外光後便 發出可見光。 2·=發射光源:應用於例如奈米碳管場發射顯示器 等,主要是提供一超高真空的環境,並且在陰極上 製作奈米碳材的電子發射端(electr〇n emitter),以 利用電子發射端中而深寬比的微結構幫助電子克 服陰極的功函數(work functi〇n)而脫離陰極。此 外,在銦錫氧化物(ITO)製成的陽極上塗佈螢光 層,以藉由陰極與陽極之間的高電場使電子由陰極 的奈米碳管逸ίϋ。如此,電何在衫環境中撞擊 陽極上的螢光層,以發出可見光。 然而,上述_發統構皆有其缺點。舉例而言,因 考1文到紫外絲射後的衰減問題,因此對於氣體放電光 Ο ο 200834644 P55950076TWC4 22306-4twf.doc/n 要求。此外’因為氣體放電的發 兩運過程才能發出可見光,故能㈣損 大,如果過程中需產生電漿,則更為耗電。另-方面,場 發射光源f要在陰極上成長或塗佈均勻的電子發射端,但 目前大面積生產此類陰極結構的技術尚未成熟,且遇到電 子發射端的均勻度與生產良率不佳的瓶頸。此外,場發射 光源的陰極與陽極關距需控騎確, 困難,也相對增加製作的成本。 /、 ^ m 【發明内容】 本發明是關於-種具有良好發光效率並且易於製作 的顯示畫素結構,由電子發射式發光元件所構成。 本發明還關於-麵示裝置,應、用上述之電子發射式 發光兀件來作為顯示晝素,用以提供良好的顯示品質,並 可降低製作時的成本與複雜度。 、 為具體描述本發明的内容,在此提出一種顯示裝置的 晝素結構包括一第一基板與一第二基板。多個陰極結構 層’位於該第一基板上。第二基板是一光穿透材料。多個 陽極結構層位於第二基板上,其中陽極結構是一光穿透導 電材料。第一基板與第二基板是相面對,使該些陰極結構 層與該些陽極結構層分別對準。一分隔結構位於第一^板 與弟一基板之間,分別將該些陽極結構層與該些陰極纟士構 層對應分隔,以構成多個空間。多個螢光層分別位於^些 陽極結構層與該些陰極結構層之間。一低壓氣體分別填入 該些空間。低壓氣體層有一電子平均自由路徑,允許至少 200834644 P55950076TWC4 22306-4twf.doc/n 足夠數量的電子在一操作電壓下直接撞擊螢光層。 此外,本發明提出一種顯示裝置,具有陣列排列的多 個顯不晝素,其中每一顯示晝素包括一電子發射式發光元 件,該電子發射式發光元件包括一陰極結構層;一陽極結構 層,一螢光層,配置於該陰極結構層與該陽極結構層之間; 以及一低壓氣體,配置於該陰極與該陽極之間,用以誘導 該陰極均勻發出多個電子。其中低麗氣體有一電子平均自 〇 由路徑,允許至少足夠數量的電子在一操作電壓下直接撞 擊該螢光層。 本發明又提出一種顯示裝置,包括一第一基板與一第 =基板。多/固陰極結構層位於第一基板上,構成二維陣列。 第一基板疋一光穿透材料。多個陽極結構層位於該第二基 ,上,其中該些陽極結構層是一光穿透導電材料,其中該 第S基板與該第二基板是相面對,使該些陰極結構層與該 $陽極結構層分騎準。—分隔結構位於該第—基板與該 第一基板之間,分別將該些陽極結構層與該些陰極結構層 u _分隔,以構成多個空間。多個螢光層分別位於該些陽 極結構層與該些陰極結構層之間。一低壓氣體分別填入該 些空間,其中該低壓氣體層有一電子平均自由路徑,允許 f少足夠數量的電子在-操作電壓下直接撞擊該榮光層二 夕個驅動單㈣置於該第-基板與該第二基板至少其一 ^,該用控制該二維陣列的該些晝素,以施加對應的該操 作電壓,而產生輝度灰階。 200834644 P55950076TWC4 22306-4twf.doc/n 基於上述,本發明利用稀薄的氣體將電子由陰極輕易 導出,因此可避免在陰極上製作電子發射端可能產生的問 題。另外,由於所使用的為稀薄的氣體,因此電子的平均 自由路徑(mean free path)較大,還是有大量電子在撞擊氣 體前就可直接與螢光層反應而發出光線,此一過程並不會 產生輝光放電。換言之,本發明的電子發射式發光元件具 〇 有較高的發纽率,域作容易並具有較佳的生產良率Γ “為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作田 明如下。 、、也 【實施方式】200834644 P55950076TWC4 22306-4twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element and particularly relates to an electron-emitting light-emitting element and its use. [Prior Art] Currently, two types of light-emitting structures are mainly used in mass-produced light source devices or display devices, including: 1. Gas discharge (4): Yinglin, for example, silky or gas discharge lamps, mainly using an electric field between the cathode and the anode. The gas filled in the discharge chamber is freed, and the electrons collide with the gas to generate a transition and emit ultraviolet light by means of glow discharge, and the phosphor layer is also located in the discharge chamber, and the ultraviolet light is received. After that, visible light is emitted. 2·=Emission light source: applied to, for example, a carbon nanotube field emission display, etc., mainly to provide an ultra-high vacuum environment, and to fabricate an electron emitter end (electr〇n emitter) of the carbon material on the cathode to utilize The microstructure of the electron-emitting end with an aspect ratio helps the electrons to break away from the cathode against the work function of the cathode. Further, a phosphor layer is coated on the anode made of indium tin oxide (ITO) to cause electrons to escape from the cathode carbon nanotube by a high electric field between the cathode and the anode. In this way, the fluorescent layer on the anode is struck in the environment of the shirt to emit visible light. However, the above-mentioned _ hair structure has its shortcomings. For example, the problem of attenuation after UV-raying is therefore required for gas discharge light 2008 200834644 P55950076TWC4 22306-4twf.doc/n. In addition, because the visible light of the gas discharge can emit visible light, it can (4) damage, and if the plasma is generated in the process, it is more power-consuming. On the other hand, the field emission source f is to grow or coat a uniform electron emission end on the cathode, but the technology for producing such a cathode structure in a large area is not yet mature, and the uniformity of the electron emission end and the production yield are poor. The bottleneck. In addition, the cathode-anode distance of the field emission source needs to be controlled, which is difficult and relatively expensive to manufacture. SUMMARY OF THE INVENTION The present invention relates to a display pixel structure which has good luminous efficiency and is easy to fabricate, and is composed of an electron-emitting light-emitting element. The present invention is also directed to a surface display device which uses the above-described electron emission type light-emitting element as a display element for providing good display quality and reducing cost and complexity in production. To specifically describe the contents of the present invention, a halogen structure of a display device is provided herein including a first substrate and a second substrate. A plurality of cathode structure layers ' are located on the first substrate. The second substrate is a light penetrating material. A plurality of anode structure layers are on the second substrate, wherein the anode structure is a light penetrating conductive material. The first substrate and the second substrate are facing each other, and the cathode structure layers are respectively aligned with the anode structure layers. A partition structure is disposed between the first substrate and the substrate, and the anode structure layers are respectively separated from the cathode gentleman layers to form a plurality of spaces. A plurality of phosphor layers are respectively located between the anode structure layer and the cathode structure layers. A low pressure gas is filled into the spaces. The low pressure gas layer has an electron mean free path that allows at least 200834644 P55950076TWC4 22306-4twf.doc/n a sufficient amount of electrons to directly strike the phosphor layer at an operating voltage. In addition, the present invention provides a display device having a plurality of display elements arranged in an array, wherein each display element includes an electron emission type light-emitting element, the electron-emitting light-emitting element includes a cathode structure layer; and an anode structure layer a phosphor layer disposed between the cathode structure layer and the anode structure layer; and a low pressure gas disposed between the cathode and the anode for inducing the cathode to uniformly emit a plurality of electrons. The low-grade gas has an electron average self-tracking path that allows at least a sufficient amount of electrons to directly strike the phosphor layer at an operating voltage. The invention further provides a display device comprising a first substrate and a =1 substrate. The multi/solid cathode structure layer is on the first substrate to form a two-dimensional array. The first substrate is a light penetrating material. a plurality of anode structure layers are disposed on the second substrate, wherein the anode structure layers are a light transmissive conductive material, wherein the Sth substrate is opposite to the second substrate, and the cathode structure layers are The anode structure layer is divided into rides. a partition structure is disposed between the first substrate and the first substrate, and the anode structure layers are separated from the cathode structure layers u_ to form a plurality of spaces. A plurality of phosphor layers are respectively located between the anode structure layers and the cathode structure layers. a low-pressure gas is respectively filled into the spaces, wherein the low-pressure gas layer has an electron mean free path, allowing f less than a sufficient number of electrons to directly impinge on the glory layer at the operating voltage (the fourth) is placed on the first substrate And at least one of the second substrate, the plurality of pixels of the two-dimensional array are controlled to apply the corresponding operating voltage to generate a luminance gray scale. 200834644 P55950076TWC4 22306-4twf.doc/n Based on the above, the present invention utilizes a thin gas to easily conduct electrons from the cathode, thereby avoiding the problem that the electron-emitting end can be formed on the cathode. In addition, since the thin gas is used, the average free path of the electrons is large, and a large amount of electrons can directly react with the fluorescent layer to emit light before hitting the gas, and the process is not Glow discharge will occur. In other words, the electron-emitting light-emitting device of the present invention has a high rate of incidence, is easy to use, and has a good production yield. "To make the above and other objects, features and advantages of the present invention more obvious It is to be understood that the preferred embodiments are described below, and in conjunction with the drawings, Tian Ming is as follows.
Q 本發明所提出的電子發射式發光元件兼具傳統氣體 放電光源與場發射光_優點,且克服了這兩 結構的缺點。請參照圖1所—壯述_傳統發光 與本,明之電子魏式發光元件的發光機佩㈣。更詳 j說’胃知的氣轉紐電光源_陰極與陽極之間的 电% ’使充滿於放電腔内的氣體游離,藉由氣體導電的方 =使電子縣其他氣體分子後產生料光,㈣光層吸收 5外光,發*可見光。此外,習知的場發射光源是在超高 一空的環境中’藉由陰極上之^ 來幫助電子克服陰極的功函數舰離陰極。其彳 與陽極之_高電場自陰極的電子發射端逸出,^ 里擊陳上的#光層,叫出可見光。也就是說,螢光層 200834644 P55950076TWC4 22306-4twf.doc/n 的材料依照設計機制的需要可以採用可發出可見光、紅外 光、或是紫外光等的材料。 ν 與上述兩種習知發光機制不同的是,本發明的電子發 射式發光兀件不需形成電子發射端,而是利用稀薄的氣體 將電子由陰極輕易導出,並使電子直接與螢光層反應而發 出光線。 Γ ο 相較於習知的氣體輝光放電光源,本發明之電子發射 式發光元件内所填充之氣體的量僅需要能將電子由陰4導 出即可,不會產生輝光放電,且並非利用紫外光照射榮光 層,產生光線,因此不需擔心元件内的材料被紫外光照射 的衰減問題。由實驗與理論驗證我們得知,本發明之電子 發射式發光元件内的氣體較為稀薄,因此電子^平均=由 路控可以達到約5mm或5mm以上。換言之,大部分的電 子在撞擊氣體的分子前便會直接撞擊到榮光層,而發出光 線:此外,本發明之電子發射式發光元件不需經由^道過 私“產生光線,因此發光效率較高,也可減少能量損耗。 另一方面,相較於習知的場發射光源,需要在陰極上 難電子的微結構,此微結構在大面積的製程 控^難。q使關的微結構是奈米碳管㈣杨 ϋ ϋίΐΓ塗佈上有碳管長短不—與聚集成叢的 ,使传其發光面有暗點存在,發光均勾性不佳 f發射光源的技術_與縣來源。 發光元件可以藉由氣體來將電子由陰極均勾導出= 9 200834644 P55950076TWC4 22306-4twf.doc/n 簡單的陰極平面結構就可使4,,電子發射式發光面板的發 光均勻性達到75%的程度,解決傳統場發射發光裝置的 發光均勻性難以提升的瓶頸。因此可以大幅節省製作成 本,製程上也較為簡單。此外,本發明之電子發射式發光 兀件内填充稀薄的氣體,因此不需超高真空度環境,可避 免進行超高真空度封裝時所遇到的困難。另外,經由實驗 獲知,本發明之電子發射式發光元件藉由氣體的幫助,可 、 以使啟始電壓(turn 〇n voltage)降至約〇·4ν/μιη,遠低於一 般%發射光源高達1〜3ν/μιη的啟始電壓值。 再者,依據已知的Child-Langmuir方程式,將本發明 之迅子發射式發光元件的實際相關數據代入計算,可以得 出本發明之電子發射式發光元件的陰極暗區分佈範圍約在 10 25公分(cm)之間,遠大於陽極與陰極的間距。換言之, 在陽極與陰極之間的幾乎不會產生電漿狀態的氣體,因此 可以確定本發明之電子發射式發光元件並非利用電漿機制 發光,而是利用氣體導電的方式導出陰極的電子,再由電 J 子直接與螢光層作用而發光。 請參考圖2,其繪示本發明之電子發射式發光元件的 基本架構。如圖2所示,電子發射式發光元件2〇〇主要包 括陽極210、陰極220、氣體230以及螢光層240,其中氣 ,23〇位於陽極210與陰極22〇之間,且氣體23〇受到電 %作用後會產生適量的帶正電離子2〇4,用以誘導陰極no 發出多個電子202。值得注意的是,本發明之氣體23〇所 存在之環境的氣壓介於8XUT1托爾(torr)至1〇·3托爾(t〇rr), 200834644 P55950076TWC4 22306-4twf.doc/n 較佳者,此氣壓例如介於2xl(T2托爾(torr)至1(T3牦爾(t〇rr) 或是2乂102托爾(1:〇11')至1.5\1〇-1托爾(1〇11*)。此外,榮光層 240配置於電子202的移動路徑上,以與電子2〇2作用: 發出光線L。 在本實施例中,螢光層240例如是被塗佈在陽極21〇 的表面。此外,陽極210例如是由一透明導電氧化物The electron-emitting type light-emitting element proposed by the present invention combines the advantages of a conventional gas discharge source and field emission light, and overcomes the disadvantages of the two structures. Please refer to Figure 1 for a detailed description of the traditional illuminator and the illuminator of the electron-type illuminating element of the Ming (4). More specifically, j says that the gas-to-new light source _ cathode-anode between the gas and the anode frees the gas filled in the discharge chamber, and the gas is electrically conductive. (4) The light layer absorbs 5 external light and emits * visible light. In addition, conventional field emission sources are used in an ultra-high-altitude environment to help electrons overcome the cathode's work function from the cathode. The 高 and the high electric field of the anode escape from the electron-emitting end of the cathode, and the light layer on the Chen is called the visible light. That is to say, the material of the phosphor layer 200834644 P55950076TWC4 22306-4twf.doc/n can be made of materials capable of emitting visible light, infrared light, or ultraviolet light according to the design mechanism. ν Different from the above two conventional illuminating mechanisms, the electron-emitting luminescent element of the present invention does not need to form an electron-emitting end, but uses a thin gas to easily lead electrons from the cathode and directly direct the electrons to the luminescent layer. The reaction emits light. ο ο Compared with the conventional gas glow discharge source, the amount of gas filled in the electron-emitting light-emitting device of the present invention only needs to be able to derive electrons from the cathode 4, does not generate glow discharge, and does not utilize ultraviolet light. The light illuminates the glory layer to generate light, so there is no need to worry about the attenuation of the material inside the component by ultraviolet light. It has been experimentally and theoretically verified that the gas in the electron-emitting light-emitting device of the present invention is relatively thin, so that the electron average = can be about 5 mm or more by the road control. In other words, most of the electrons directly hit the glory layer before hitting the molecules of the gas, and emit light. In addition, the electron-emitting illuminating element of the present invention does not need to pass through the "passing light" to generate light, so the luminous efficiency is high. On the other hand, compared with the conventional field emission light source, a microstructure which is difficult to electron on the cathode is required, and the microstructure is difficult to control in a large area. Nano carbon tube (4) Yang ϋ ϋ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ ΐΓ The component can be used to decoup the electrons from the cathode by gas = 9 200834644 P55950076TWC4 22306-4twf.doc/n The simple cathode planar structure can make the luminous uniformity of the 4, electron-emitting luminescent panel reach 75%. The invention solves the bottleneck that the uniformity of illumination of the conventional field emission illuminating device is difficult to be improved. Therefore, the manufacturing cost can be greatly saved, and the process is also relatively simple. In addition, the electron emission illuminating device of the present invention The inside is filled with a thin gas, so that an ultra-high vacuum environment is not required, and the difficulty encountered in ultra-high vacuum packaging can be avoided. Moreover, it is known through experiments that the electron-emitting light-emitting element of the present invention is assisted by a gas. It can be used to reduce the starting voltage (turn 〇n voltage) to about 〇·4ν/μιη, which is much lower than the starting voltage value of the general % emission source up to 1~3ν/μιη. Furthermore, according to the known Child- The Langmuir equation, by substituting the actual relevant data of the fast-emission illuminating element of the present invention into the calculation, it can be concluded that the distribution range of the cathode dark region of the electron-emitting illuminating element of the present invention is about 10 25 cm (cm), which is much larger than The distance between the anode and the cathode. In other words, a gas in a plasma state is hardly generated between the anode and the cathode, and therefore it can be confirmed that the electron-emitting light-emitting element of the present invention does not emit light by a plasma mechanism, but uses a gas conductive method. The electrons of the cathode are derived, and then the electric light directly acts on the fluorescent layer to emit light. Referring to FIG. 2, the basic frame of the electron-emitting light-emitting element of the present invention is illustrated. As shown in FIG. 2, the electron-emitting light-emitting element 2 〇〇 mainly includes an anode 210, a cathode 220, a gas 230, and a phosphor layer 240, wherein a gas, 23 〇 is located between the anode 210 and the cathode 22, and the gas 23〇 After receiving the electricity, an appropriate amount of positively charged ions 2〇4 is generated to induce the cathode to emit a plurality of electrons 202. It is worth noting that the atmosphere of the gas of the present invention is at a pressure of 8XUT1 Thor. (torr) to 1〇·3 托尔 (t〇rr), 200834644 P55950076TWC4 22306-4twf.doc/n Preferably, this pressure is, for example, between 2xl (T2 tor (torr) to 1 (T3 牦 (t) 〇rr) or 2乂102 Torr (1:〇11') to 1.5\1〇-1 Torr (1〇11*). Further, the glory layer 240 is disposed on the moving path of the electrons 202 to interact with the electrons 2: 2 to emit light L. In the present embodiment, the phosphor layer 240 is coated, for example, on the surface of the anode 21A. In addition, the anode 210 is, for example, a transparent conductive oxide
(Transparent Conductive Oxide,TC0)所製成,以使光線 L D 穿過陽極210射出電子發射式發光元件2〇〇,其中可以選 用的透明導電氧化物例如是銦錫氧化物(IT〇)、氟摻雜氧化 錫(FTO)或銦鋅氧化物(ΙΖ0)等常見的材質。當然,在其他 實施例中,陽極210或陰極220也可以是由金屬或其他具 有良好導電性的材質製作而成。 本發明所使用的氣體230可以是氮(Ν2)、氦(He)、氖 (Ne)、氬(Ar)、氪(Kr)、氤(Xe)等惰性氣體,或是氫氣既)、 二氧化碳(C〇2)等解離後具有良好導電性能的氣體,或是氧 r (〇2)、空氣(Air)等一般氣體。此外,藉由選擇螢光層24〇 U 的種類,可以使電子發射式發光元件200發出可見光、紅 外線或紫外線等不同類型的光線。 除了圖2所緣示的實施例之外,本發明為了提高發光 效率’更可以在陰極上形成容易產生電子的材料,用以提 供額外的電子源。如圖3所繪示的本發明另一實施例的電 子發射式备光元件300 ’其陰極320上例如形成有二次電 子源材料層(secondary electron source material layer)322 〇 此二次電子源材料層322的材質可以為氧化鎂(Mg〇)、三 11 200834644 P55950076TWC4 22306-4twf.doc/n 氧化二铽(Tb2〇3)、三氧化二鑭(La2〇3)或二氧化鈽。 由於導電氣體330會產生游離的離子304,且離子3〇4帶 正電荷,會遠離陽極310而朝向陰極32〇移動,因此者離 子304撞擊陰極320上的二次電子源材料層奶 產生額外的二次電子302’。較多的電子(包括原有的電子 302與一次電子302’)與螢光層340作用,便有助於增加發 光效率。值得注意的是,此二次電子源材料層322不僅有 助於產生二次電子,更可以保護陰極320避免受到離子3〇4 1 ' 的過度轟擊。 此外,本發明亦可以選擇在陽極或陰極其中之一或同 時在陽極與陰極上形成類似場發射光源之電子發射端的結 構,用以降低電極上的工作電壓,更容易產生電子。圖 4A〜4C即分別繪示本發明多種具有誘發放電結構的電子 發射式發光元件,其中以相同的標號表示類似的構件,而 對於這些構件不會重複說明。 如圖4A所示,電子發射式發光元件4〇〇a的陰極420 〇 上形成有一誘發放電結構452,其例如是金屬材、奈米破 管(carbon nanotube)、奈米碳壁(carbon nano wall)、奈米孔 隙碳材(carbon nanoporous)、柱狀氧化鋅(ZnO)、氧化鋅 (ZnO)材等所構成的微結構。又、誘發放電結構452也可以 再結合增加前述的二次電子源材料層。此外,氣體430位 於陽極410與陰極420之間,而螢光層440配置於陽極41〇 表面。藉由誘發放電結構452可以降低陽極410與陰極420 之間工作電壓,更容易產生電子402。電子402與營光層 12 200834644 P55950076TWC4 22306-4twf.doc/n 440作用,便可以產生光線l。 圖4B所緣示的電子發射式發光元件4〇〇b與圖4A所 繪示者類似,較明顯的差異處乃是改為在陽極410上配置 誘發放電結構454,而此誘發放電結構454如同前述,可 為金屬材、奈米碳管(carbon nanotube)、奈米碳壁(carbon nanowall)、奈米孔隙碳材(carbon nanoporous)、柱狀氧化辞 (ZnO)、氧化鋅(ZnO)材等所構成的微結構。又、誘發放電 0 結構452也可以再結合增加前述的二次電子源材料層。此 ’ 外,螢光層440則是配置於誘發放電結構454上。 圖4C則是繪示兼具誘發放電結構454與452的一種 電子發射式發光元件400c,其中誘發放電結構454配置於 陽極410上,螢光層440配置於誘發放電結構454上,而 誘發放電結構452配置於陰極420上。氣體430則位於陽 極410與陰極420之間。 上述之多種具有誘發放電結構452與/或454的電子發 射式發光元件400a、400b或400c更可以整合如圖3所缘 G 示之二次電子源材料層322的設計,而在陰極420上形成 二次電子源材料層,若陰極420上已形成有誘發放電結構 454,則可以使二次電子源材料層覆蓋誘發放電結構454。 如此,不僅可以降低陽極410與陰極420之間的工作電壓, 使電子402的產生更為容易,也可以藉由二次電子源材料 層增加電子402的數量,提高發光效率。 本發明所提出的電子發射式發光元件作為發光結 構,可以具有不同的型態。圖5〜圖6分別繪示應用本發明 13 200834644 P55950076TWC4 22306-4twf.doc/n 之電子發射式發光元件的幾種不同外型的發光結構。 Ο Ο 圖5所示為另一種水平發射式(in_plane emissi〇n type) 的發光結構600,主要是將陽極61〇、陰極62〇以及螢光層 640配置在一基Msubstrate)68〇上,此基板68〇例如是一 玻璃基板,而陽極610與陰極620的材質例如是金屬、銦 錫氧化物或銦鋅氧化物等常見的透明導電氧化物或其他具 有良好導電性的材質製作而成。螢光層640位於陽極61’0 與陰極620之間,藉由氣體63〇所誘發的電子6〇2會穿過 榮=層640,使其發出光'線L。本發明之氣體63〇所存在 之壤境的氣壓如同前述,可介於8χ1〇-1托爾(㈣至1〇_3托 爾_) ’較佳者,此氣壓介於2χ1().2托爾細)至妒托爾 (to)與1.5Χ10·1托爾(t〇rr)。實際的氣體壓力與操作電壓依 陰陽極距離、氣體種類與結構不同而異。另外,本發明所 使用的氣體㈣可以是馬(氮)、氣(He)、氖_、氬(Ar)、 ,(Kr)KXe)等惰性氣體’妓氫氣㈣、二氧化 的氣體,或是氧(0°、空氣㈣ 出可見光、紅外線或紫二 技術達成、ju7,持封閉的氣體環境例如可以藉由一般的 技術達成,其細卽於此不予詳述。 再重件的相關說明請參照前述實施例,在此不 ,得注意的是’上述圖5的發光 並非用以限定本發明所能應用之發光結構的外上^他 200834644 P55950076TWC4 22306-4twf.doc/n 貝方e例中,例如更可依據不同的考量,將上述之發光結構 結合圖3的二次電子源材料層322或4A〜4C的誘發放電結 構452與454,以滿足不同的需求。 Ο ο 本發明之電子發射式發光元件更可用於製作一光源 裝置,其例如是由前述多個實施例中的任一種電子發射式 發光元件所組成,用以提供一光源。圖6緣示為依據本發 明之一實施例的一種光源裝置。如圖6所示,光源裝置8〇〇 包括陣列排列的多個電子發射式發光元件8〇〇a,用以提供 一面光源s。本實施例所選用的電子發射式發光元件8〇〇a j設計例如包括前述多個實施例中的任何一種。舉例而 f,光源裝置800可以採用類似圖5之發光結構600的設 十而在基板880上製作多組陽極81〇、陰極82〇以及 螢光1 840的結構,以達到大型化的目的。 當然,上述所提出的各種電子發射式發光錯亦可應 °圖7緣示為依據本發明之—實施例的一 9〇2 θ " 圖7所不,顯示裝置900的每一顯示晝素 佥专^〇7 έ Γ子魏式發光轉所構成,以藉纟多個顯示 顯示圖框,顯示靜態或動態晝面。由於是 式;=畫素,因此電子發射 綠色顯示晝素G以及藍色顯 另一種顯-梦罢到全杉的顯示效果。另外,如圖8所示, 種,員不裝置900 ’的红伞 ^ 排可依實際的設計而定二光的晝素陣列的安 以達到色彩灰階的顯示。又,依 15 200834644 P55950076TWC4 22306-4twf.doc/n 設計需要,其也可以再增加一色光,例如是橙色(〇range,〇) 光的畫素,配合紅、綠、藍晝素,構成一畫素單元的結構。 圖9繪不為依據本發明之一實施例的一種顯示裝置的 晝素結構。參閱圖9,一般而言,顏色是由紅、綠、藍的 三個原色,依照相對的亮度灰階達成。實施例是以三個畫 素對應紅、綠、藍的晝素為例做說明。 利用前述的技術來設計,晝素結構例如可以包括第一 P 基板1000與一第二基板1002。多個陰極結構層1〇〇4,位 於第一基板1000上。第二基板10〇2是一光穿透材料。多 個陽極結構層1010位於第二基板1〇〇2上,其中陽極結構 1010疋一光牙透導電材料。第一基板10Q0與第二基板⑽ 是相面對,使陰極結構層1004與陽極結構層1〇1〇分別對 準。一分隔結構1012位於第一基板1〇〇〇與第二基板1Q02 之間,分別將陽極結構層1010與陰極結構層1004對應分 隔’以構成多個空間。多個螢光層1008a、1008b、議8e 分別位於陽極結構層1010與陰極結構層1004之間。一低 J 壓氣體1006分別填入那些空間。低壓氣體1〇〇6有一電子 平均自由路徑,允許至少足夠數量的電子在一操作電壓下 直接撞擊螢光層l〇〇8a、1008b、1008c。 於此,螢光層1008a、螢光層1008b與螢光層i〇〇8c 例如分別不同的材料,經激發後發出紅光、綠光、藍光。 至於分別晝素的氣體的氣壓值,可以是都相同或是分別不 同,其是設計上以及實際操作的變化。當然,如果顯示器 僅是要求單一顏色的顯示,則螢光層的材料配置也可以有 16 200834644 P55950076TWC4 22306-4twf.doc/n 不同安排。 圖10繪示為依據本發明之另一實施例的一種顯示裝 置的晝素結構。參閱圖1〇,例如採用圖6的設計原則,配 合圖9的結構達成顯示裝置的設計,但是不是唯一的選 擇。在圖9的顯示裝置,其二個電極結構1〇〇4、1〇1〇是分 別在不同的下基板1〇〇〇與上基板1〇〇2。在圖1〇中,二個 電極結構1004’、1〇1〇’以及在電極之間的螢光層1〇〇8a,、 1008b’、1008c’是同側,例如位於基板1〇〇〇上。基板1〇〇〇 例如具有光反射的功能。依照螢光材料的選擇可以發出不 同顏色的可見光,產生所要的混合色彩。 由於圖像舄要利用輝度灰階的變化來顯示。所需要的 色彩是由紅光、綠光、藍光的相對輝度灰階來決定。因此 每個晝素的灰階需要一些機制來調整。圖n〜12.示為依 據本發明之一實施例的輝度灰階控制機制。參閱圖u,依 照氣體的氣壓與施加電壓的不同,會產生不同反應的電 流。一般而言,以2xl(T2torr的氣壓而言,其電流與施加 電壓大致上是成線性關係。另外啟始電壓也會因氣壓不同 而有變化。另外參閱12,施加電壓的大小也意味撞擊螢光 層的電子的數量多少以及撞擊的能量。單位面積的輝度也 與施加電壓大致上是成線性關係,可藉由改變施加的電壓 來改變灰階值,以組合出所要的色彩。 基於氣體的反應,對於選定的氣壓值下,可以得到實 際施加電壓與灰階的關係,做為灰階修正的資料。 、 例如取圖9或圖10的紅綠藍三個晝素做為一晝素單 17 200834644 P55950076TWC4 22306-4twf.doc/n 兀,其對應灰階的電壓可藉由驅動器來驅動。 顯示裝置1300以二維陣列的驅動方式為基礎,包含有多個 驅動器1302、1306在對應的基板上^m二個 制畫素的陽極結構與陰極結構。驅動器㈣有多條二 路1304例如麵接到對應行(c〇lumn)的多個晝条工: ’驅動器13〇6有多條控制電路13〇8例:麵接到對(: 2(卿)的多個晝素的陰極(或陽極)。藉由控删 Ο Ο 與控制電路1308選擇交叉的蚩去4 值的電壓。I擇乂又的晝素131G,以施加對應灰階 就被動式的驅動機制而t,例如時 =線的圖框單位,依序顯示掃描線。由二= =象’在—定咖内依序顯示所有的掃描線組成 =於由於第一條掃描顯線與最後一條掃描線仍由 二咖===度差易’可以安排第-條掃 土述的驅動機制是以被動方式來調整。另外也可以採 動方式來驅動。參閱圖14,顯示震置14〇〇以 =的驅動方式為基礎,包含有多個驅動器刚彻在對 j基板上’分別以二個方向來控制晝素的陽極結構郎 驅動器有多條控制電路例如純到對應二 二固旦素的陽極(或陰極),驅動器譲有多條控制電 =接到對應列❹個晝素的陰極(或陽極)。藉由控制電 選擇交又的晝素,以施加對應灰階值的電壓。盘被動 驅動機制的不同是每個晝素丨條除了包含發光單元 18 200834644 P55950076TWC4 22306-4twf.doc/n 外還有開關控制單元1408。開關控制單元1408例如可以 有薄膜電晶體(TFT,Thin Film Transistor)單元,接受驅動器 的控制,來開啟或關閉晝素,以及其發光亮度的控制。 前述的驅動機制的細節,應可為一般習此技藝者可了 解,利用本發明的晝素結構與發光機制做實際的設計規 劃,其細節不於此描述。 另外,所舉的多個實施例,可相互做適當組合,不限 八 於特定的實施方式。 〇 . 綜上所述,本發明所提出的電子發射式發光元件及應 用此元件的光源裝置與顯示裝置具有節省能源、發光效率 咼、響應時間(response time)短、容易製造且環保(不含汞) 等特色,因此可以提供市場另一種光源裝置與顯示裝置的 選擇。與習知的發光結構相較,本發明所提出的電子發射 式發光元件結構簡單,陰極只需為平面結構便可正常運 作,相關的二次電子源材料層或誘發放電結構只是選擇性 的,並非必要元件。此外,本發明之電子發射式發光元件 〇 不需要進行超高真空封裝,可簡化生產製程並有利於大面 積生產。 另一方面,本發明之電子發射式發光元件的陰極可為 金屬,因此可提高反射率並增加亮度與發光效率。此外, 電子發射式發光元件所發出的光波長視螢光層種類而定, 玎因應光源裝置或顯示裝置等不同用途,而設計不同波長 範圍的光源。另外,本發明之電子發射式發光元件可設計 為平面(planar)光源、線型(iinear)光源或點(sp〇t)光源,可 19 200834644 P55950076TWC4 22306.4twf.doc/n 符合顯示裝置、 同用途的需求。 光源裝置(例如背光模組或照明燈具)等不 定明已以較佳實施例揭露如上,然其並非用以 神具有妙知識者’在不脫離 太:日日 當可作些許之更動與潤飾,因此 U之保濩_當視後附之申請專利範圍所界定者為 【圖式簡單說明】 一圖1所繪示傳統發光結構與本發明之電子發射式發夯 元件的發光機制比較圖。 x 圖2繪示本發明之電子發射式發光元件的基本架構。 圖3繪示本發明另一實施例的電子發射式發光元件。 圖4A〜4C分別綠示本發明多種具有誘發放電結構的 電子發射式發光元件。 圖5繪示應用本發明之電子發射式發光元件的幾種不 同外型的發光結構。 圖6繪示為依據本發明之一實施例的一種光源裝置。 圖7〜8繪示為依據本發明之實施例的顯示裝置。 圖9〜10繪示為依據本發明之實施例的顯示裝置的晝 素結構。 一 圖11〜12繪示為依據本發明之一實施例的輝度灰階控 制機制。 圖13〜14繪示為依據本發明之一實施例的種顯示裝 置。 20 200834644 P55950076TWC4 22306-4twf.doc/n 【主要元件符號說明】 200、300、400a、400b、400c ··電子發射式發光元件 202、302、402、502、602、702 :電子 204、304、504、704 :離子 210、310、410、510、610、710、810 :陽極 220、320、420、520、620、720、820 :陰極 230、330、430、530、630、730 ··氣體 240、340、440、540、640、740、840 :螢光層 Θ 322 :二次電子源材料層 452、454 ··誘發放電結構 500、600、700 :發光結構 560 :間隙物 570 :密閉空間 680、880 ··基板 800 :光源裝置 800a :電子發射式發光元件 Ο 900 :顯示裝置 902:顯示畫素 1000··第一基板 1002··第二基板 1004、1004’:陰極結構層 1006:低壓氣體 1008a、1008b、1008c :螢光層 1008a’、1008b’、1008c’ :榮光層 21 200834644 P55950076TWC4 22306-4twf.doc/n 1010、1010’:陽極結構 1012:分隔結構 1300、1400 :顯示裝置 1302、1306、1402、1404 :驅動器 1304、1308 :控制電路 1310、1406 : 晝素 1410 :發光單元 1408 :開關控制單元L :光線 S :面光源 R:紅色顯示晝素 G·綠色顯不晝素 B:藍色顯示畫素 0:橙色顯示晝素(Transparent Conductive Oxide, TC0) is formed so that the light LD passes through the anode 210 to emit the electron-emitting light-emitting element 2, wherein an optional transparent conductive oxide such as indium tin oxide (IT〇), fluorine doping is used. Common materials such as tin oxide (FTO) or indium zinc oxide (ΙΖ0). Of course, in other embodiments, the anode 210 or the cathode 220 may also be made of metal or other material having good electrical conductivity. The gas 230 used in the present invention may be an inert gas such as nitrogen (Ν2), helium (He), neon (Ne), argon (Ar), krypton (Kr) or xenon (Xe), or hydrogen (both hydrogen) (carbon dioxide). C〇2) A gas having good electrical conductivity after dissociation, or a general gas such as oxygen r (〇2) or air (Air). Further, by selecting the type of the phosphor layer 24 〇 U, the electron-emitting light-emitting element 200 can emit different types of light such as visible light, infrared light or ultraviolet light. In addition to the embodiment shown in Fig. 2, the present invention can form a material which is easy to generate electrons on the cathode in order to improve the luminous efficiency, and to provide an additional electron source. As shown in FIG. 3, the electron-emitting light-receiving element 300' of the other embodiment of the present invention has a secondary electron source material layer 322 formed thereon, for example, a secondary electron source material. The material of the layer 322 may be magnesium oxide (Mg〇), three 11 200834644 P55950076TWC4 22306-4twf.doc/n bismuth oxide (Tb2〇3), antimony trioxide (La2〇3) or cerium oxide. Since the conductive gas 330 generates free ions 304, and the ions 3〇4 are positively charged, they move away from the anode 310 toward the cathode 32〇, so that the ions 304 strike the secondary electron source material layer on the cathode 320 to generate additional milk. Secondary electron 302'. More electrons (including the original electron 302 and the primary electron 302') interact with the phosphor layer 340 to help increase the luminous efficiency. It is worth noting that this secondary electron source material layer 322 not only helps to generate secondary electrons, but also protects the cathode 320 from excessive bombardment by the ions 3〇4 1 '. Furthermore, the present invention may alternatively form a structure similar to one of the anode or the cathode or the electron-emitting end of the field-emitting source on the anode and the cathode to lower the operating voltage on the electrode and to generate electrons more easily. 4A to 4C are respectively a plurality of electron-emitting type light-emitting elements having an induced discharge structure of the present invention, wherein like members are denoted by the same reference numerals, and the description thereof will not be repeated. As shown in FIG. 4A, an evoked discharge structure 452 is formed on the cathode 420 of the electron-emitting light-emitting element 4A, which is, for example, a metal material, a carbon nanotube, or a carbon nano wall. ), a microstructure of carbon nanoporous, columnar zinc oxide (ZnO), or zinc oxide (ZnO). Further, the induced discharge structure 452 may be combined with the addition of the aforementioned secondary electron source material layer. Further, the gas 430 is located between the anode 410 and the cathode 420, and the phosphor layer 440 is disposed on the surface of the anode 41. By inducing the discharge structure 452, the operating voltage between the anode 410 and the cathode 420 can be lowered, and the electrons 402 are more easily generated. The electrons 402 and the camping layer 12 200834644 P55950076TWC4 22306-4twf.doc/n 440 function to generate light l. The electron-emitting light-emitting element 4〇〇b shown in FIG. 4B is similar to that shown in FIG. 4A, and the obvious difference is that the induced discharge structure 454 is disposed on the anode 410, and the induced discharge structure 454 is the same. The foregoing may be a metal material, a carbon nanotube, a carbon nanowall, a carbon nanoporous, a columnar oxidized metal (ZnO), a zinc oxide (ZnO) material, or the like. The microstructure formed. Further, the induced discharge 0 structure 452 may be combined with the addition of the aforementioned secondary electron source material layer. In addition, the phosphor layer 440 is disposed on the induced discharge structure 454. 4C shows an electron-emitting light-emitting device 400c having both induced discharge structures 454 and 452, wherein the induced discharge structure 454 is disposed on the anode 410, and the phosphor layer 440 is disposed on the induced discharge structure 454 to induce a discharge structure. 452 is disposed on the cathode 420. Gas 430 is located between anode 410 and cathode 420. The above-described plurality of electron-emitting light-emitting elements 400a, 400b or 400c having induced discharge structures 452 and/or 454 may further integrate the design of the secondary electron source material layer 322 as shown in FIG. 3 to form a cathode 420. In the secondary electron source material layer, if the induced discharge structure 454 has been formed on the cathode 420, the secondary electron source material layer may be covered with the induced discharge structure 454. Thus, not only the operating voltage between the anode 410 and the cathode 420 can be lowered, but the generation of the electrons 402 can be made easier, and the number of electrons 402 can be increased by the secondary electron source material layer to improve the luminous efficiency. The electron-emitting type light-emitting element proposed by the present invention can have different types as a light-emitting structure. 5 to 6 respectively show light-emitting structures of several different shapes of an electron-emitting type light-emitting element to which the present invention 13 200834644 P55950076TWC4 22306-4twf.doc/n is applied. Ο Ο FIG. 5 shows another horizontal emission type (in_plane emissi〇n type) light-emitting structure 600, mainly including an anode 61 〇, a cathode 62 〇, and a phosphor layer 640 disposed on a base Ms. The substrate 68 is, for example, a glass substrate, and the material of the anode 610 and the cathode 620 is made of a common transparent conductive oxide such as metal, indium tin oxide or indium zinc oxide, or other material having good conductivity. The phosphor layer 640 is located between the anode 61'0 and the cathode 620, and the electrons 6〇2 induced by the gas 63〇 pass through the rong=layer 640, causing it to emit a light 'line L. The gas pressure of the soil in which the gas 63〇 of the present invention exists is as described above, and may be between 8χ1〇-1 Torr ((4) to 1〇_3 托尔_) 'better, the pressure is between 2χ1().2 Tol fine) to 妒tor (to) and 1.5 Χ10·1 Torr (t〇rr). The actual gas pressure and operating voltage will vary depending on the anode-anode distance, gas type and structure. In addition, the gas (4) used in the present invention may be an inert gas such as horse (nitrogen), gas (He), helium _, argon (Ar), or (Kr)KXe), hydrogen gas (tetra), a gas of oxidation, or Oxygen (0°, air (4) visible light, infrared or violet technology, ju7, closed gas environment can be achieved, for example, by general techniques, and details are not detailed here. Referring to the foregoing embodiments, it should be noted here that the above-mentioned illuminating light of FIG. 5 is not used to define the illuminating structure to which the present invention can be applied. In the case of the above-mentioned illuminating structure, 200834644 P55950076TWC4 22306-4twf.doc/n For example, the above-mentioned light-emitting structure may be combined with the secondary electron source material layer 322 of FIG. 3 or the induced discharge structures 452 and 454 of 4A to 4C to meet different needs, depending on various considerations. ο ο The electron emission of the present invention The light-emitting element can be further used to fabricate a light source device, which is composed, for example, of any one of the foregoing embodiments, for providing a light source. FIG. 6 is a diagram showing an embodiment according to the present invention. A light source device. As shown in Fig. 6, the light source device 8A includes a plurality of electron-emitting light-emitting elements 8a arranged in an array to provide a light source s. The electron-emitting light-emitting element 8〇〇aj selected for the present embodiment is designed, for example. Including any of the foregoing various embodiments. For example, the light source device 800 can be formed on the substrate 880 by using a plurality of sets of the anode 81 〇, the cathode 82 〇, and the fluorescent 1 840 on the substrate 880. The structure is designed to achieve the purpose of large-scale. Of course, the various electron-emitting illuminating errors proposed above may also be shown as a 9〇2 θ " in accordance with the present invention. Each display of the display device 900 is composed of a 魏 佥 魏 魏 魏 魏 魏 魏 魏 , , , , , , , , , , , , , , , 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 = = = = = = Therefore, the electron emission green shows that the alizarin G and the blue color show another display effect of the dream-to-Fushan. In addition, as shown in Fig. 8, the red umbrella of the 900' can be installed according to the actual design. And the color of the two-dimensional halogen array is achieved. The display of the grayscale. In addition, according to the design requirements of 15 200834644 P55950076TWC4 22306-4twf.doc/n, it can also add a color of light, such as orange (〇range, 〇) light, with red, green, blue The structure of the pixel unit is not shown in Fig. 9. In general, the color is three by red, green and blue. The primary colors are achieved according to the relative brightness gray scale. The embodiment is exemplified by three pixels corresponding to red, green and blue halogen. Using the foregoing techniques, the halogen structure may include, for example, a first P substrate. 1000 and a second substrate 1002. A plurality of cathode structure layers 1 〇〇 4 are located on the first substrate 1000. The second substrate 10〇2 is a light transmissive material. A plurality of anode structure layers 1010 are located on the second substrate 1〇〇2, wherein the anode structure 1010 is a light-transmissive conductive material. The first substrate 10Q0 and the second substrate (10) face each other, and the cathode structure layer 1004 and the anode structure layer 1〇1 are respectively aligned. A partition structure 1012 is located between the first substrate 1A and the second substrate 1Q02, and the anode structure layer 1010 and the cathode structure layer 1004 are respectively spaced apart to form a plurality of spaces. A plurality of phosphor layers 1008a, 1008b, and 8e are located between the anode structure layer 1010 and the cathode structure layer 1004, respectively. A low J pressure gas 1006 fills in those spaces, respectively. The low pressure gas 1〇〇6 has an electron mean free path that allows at least a sufficient amount of electrons to directly strike the phosphor layers l8a, 1008b, 1008c at an operating voltage. Here, the phosphor layer 1008a, the phosphor layer 1008b, and the phosphor layer i 8c are, for example, different materials, and are excited to emit red light, green light, and blue light. As for the gas pressure values of the respective halogen gases, they may all be the same or different, which are design and actual operation changes. Of course, if the display is only required to display a single color, the material configuration of the phosphor layer can also be different. 16 200834644 P55950076TWC4 22306-4twf.doc/n Different arrangements. Figure 10 is a diagram showing the structure of a pixel device of a display device in accordance with another embodiment of the present invention. Referring to Figure 1, for example, using the design principles of Figure 6, the configuration of Figure 9 is used to achieve the design of the display device, but is not the only option. In the display device of Fig. 9, the two electrode structures 1〇〇4, 1〇1〇 are different from the lower substrate 1〇〇〇 and the upper substrate 1〇〇2, respectively. In FIG. 1A, the two electrode structures 1004', 1〇1〇' and the phosphor layers 1〇〇8a, 1008b', 1008c' between the electrodes are on the same side, for example, on the substrate 1 . The substrate 1 〇〇〇 has a function of light reflection, for example. Depending on the choice of fluorescent material, visible light of different colors can be emitted to produce the desired mixed color. Since the image is to be displayed using the change in luminance grayscale. The required color is determined by the relative luminance gray scale of red, green, and blue light. Therefore, the gray level of each element requires some mechanism to adjust. Figures n through 12 are shown as luminance gray scale control mechanisms in accordance with an embodiment of the present invention. Referring to Figure u, depending on the gas pressure and the applied voltage, different reactive currents are generated. In general, in the case of 2xl (T2torr gas pressure, the current is approximately linear with the applied voltage. In addition, the starting voltage will also vary depending on the gas pressure. See also 12, the magnitude of the applied voltage also means the impact of the fire The number of electrons in the light layer and the energy of the impact. The luminance per unit area is also substantially linear with the applied voltage, and the gray scale value can be changed by changing the applied voltage to combine the desired color. Reaction, for the selected barometric pressure value, the relationship between the actual applied voltage and the gray scale can be obtained as the gray scale correction data. For example, take the red, green and blue three elements of Fig. 9 or Fig. 10 as a single element. 17 200834644 P55950076TWC4 22306-4twf.doc/n 兀, the voltage corresponding to the gray scale can be driven by the driver. The display device 1300 is based on a two-dimensional array driving method, and includes a plurality of drivers 1302, 1306 on the corresponding substrate. The anode structure and the cathode structure of the two pixels are on the top of the screen. The driver (4) has a plurality of two-way 1304, for example, a plurality of rafters that are connected to the corresponding row (c〇lumn): 'Drive 13〇6 A plurality of control circuits 13 〇 8 cases: face-to-face (: 2 (clear) of a plurality of halogen cathodes (or anodes). By control Ο Ο and control circuit 1308 select crossed 蚩 4 value voltage I select the other element 131G to apply the corresponding gray-scale passive driving mechanism, and t, for example, the frame unit of the line = line, sequentially display the scanning line. By two = = like 'in--- The sequence shows all the scan line components = because the first scan line and the last scan line are still divided by the second coffee === degree difference, the drive mechanism of the first sweep can be arranged in a passive manner. In addition, it can also be driven by the driving method. Referring to Fig. 14, the display is based on the driving mode of the 〇〇 14〇〇, including a plurality of drivers, which are respectively arranged on the j substrate to control the pixels in two directions. The anode structure lang driver has a plurality of control circuits, for example, pure to the anode (or cathode) corresponding to the di-two-solid, and the driver has a plurality of control electric=connected to the cathode (or anode) corresponding to the individual halogens. Controlling the electricity to select another element to apply a voltage corresponding to the gray level value. The difference in the mechanism is that each of the elements includes a light-emitting unit 18 200834644 P55950076TWC4 22306-4twf.doc/n and a switch control unit 1408. The switch control unit 1408 can have, for example, a thin film transistor (TFT). The unit accepts the control of the driver to turn on or off the halogen, and the control of the brightness of the light. The details of the foregoing driving mechanism should be understood by those skilled in the art, using the structure and illumination mechanism of the present invention. The actual design plan is not described in detail. In addition, the various embodiments may be combined with each other as appropriate, and are not limited to a specific embodiment. In summary, the electron-emitting type light-emitting element and the light source device and the display device using the same according to the present invention have energy saving, luminous efficiency, short response time, easy manufacture, and environmental protection (excluding Mercury) and other features, so it can provide another choice of light source devices and display devices in the market. Compared with the conventional light-emitting structure, the electron-emitting light-emitting element proposed by the invention has a simple structure, and the cathode only needs to be a planar structure to operate normally, and the related secondary electron source material layer or the induced discharge structure is only selective. Not a necessary component. Further, the electron-emitting type light-emitting element of the present invention does not require an ultra-high vacuum package, which simplifies the production process and facilitates large-area production. On the other hand, the cathode of the electron-emitting type light-emitting element of the present invention can be a metal, so that the reflectance can be improved and the luminance and luminous efficiency can be increased. Further, the wavelength of light emitted by the electron-emitting type light-emitting element depends on the type of the phosphor layer, and the light source of different wavelength ranges is designed depending on the use of the light source device or the display device. In addition, the electron-emitting light-emitting device of the present invention can be designed as a planar light source, an iinear light source or a spot light source, and can be used in accordance with a display device and the same purpose. demand. The light source device (such as a backlight module or a lighting fixture) and the like have been disclosed as above in the preferred embodiment, but it is not intended to be a wonderful knowledge of the person's ability to make a few changes and refinements. Therefore, the warranty of U is defined as the following description of the patent application scope of the present invention. FIG. 1 is a comparison diagram of the illumination mechanism of the conventional light-emitting structure and the electron-emitting hair-producing element of the present invention. x Fig. 2 is a view showing the basic structure of the electron-emitting light-emitting element of the present invention. 3 is a diagram showing an electron emission type light-emitting element according to another embodiment of the present invention. 4A to 4C respectively show various electron-emitting light-emitting elements of the present invention having an induced discharge structure. Fig. 5 is a view showing a plurality of different types of light-emitting structures of an electron-emitting type light-emitting element to which the present invention is applied. FIG. 6 illustrates a light source device in accordance with an embodiment of the present invention. 7 to 8 illustrate a display device in accordance with an embodiment of the present invention. 9 to 10 are diagrams showing the structure of a display device in accordance with an embodiment of the present invention. 11 to 12 illustrate a luminance gray scale control mechanism in accordance with an embodiment of the present invention. 13-14 illustrate a display device in accordance with an embodiment of the present invention. 20 200834644 P55950076TWC4 22306-4twf.doc/n [Description of main component symbols] 200, 300, 400a, 400b, 400c · Electron emission type light-emitting elements 202, 302, 402, 502, 602, 702: Electronics 204, 304, 504 704: ions 210, 310, 410, 510, 610, 710, 810: anodes 220, 320, 420, 520, 620, 720, 820: cathodes 230, 330, 430, 530, 630, 730 · gas 240, 340, 440, 540, 640, 740, 840: phosphor layer 322: secondary electron source material layer 452, 454 · induced discharge structure 500, 600, 700: light-emitting structure 560: spacer 570: sealed space 680, 880 · · Substrate 800 : Light source device 800a : Electron emission type light emitting element Ο 900 : Display device 902 : Display pixel 1000 · First substrate 1002 · Second substrate 1004, 1004': Cathode structure layer 1006: Low pressure gas 1008a 1008b, 1008c: fluorescent layers 1008a', 1008b', 1008c': glory layer 21 200834644 P55950076TWC4 22306-4twf.doc/n 1010, 1010': anode structure 1012: partition structure 1300, 1400: display devices 1302, 1306, 1402, 1404: drivers 1304, 1308: control circuits 1310, 14 06 : Alizarin 1410 : Illumination unit 1408 : Switch control unit L : Light S : Surface light source R: Red display halogen G · Green display element B: Blue display pixel 0: Orange display element
U 22U 22