200831942 九、發明說明: 【發明所屬之技術領i或】 —本發明係為—種具有可穿透的表面導電層之低電阻光 衰減抗反射的塗層’尤其射旨—種具有高抗反射特性之塗 層結構。 【先前技術】 通常在液晶顯示器或電漿顯示器之塑膠基板(plastic substrate)玻J每基板(glass substrate)或塑膠網板 (plastic web)上,會加上一抗反射的塗層結構,因此有眾 多的塗層結構已經被揭露。 美國專利U. S· 4, 921,760揭露-種在二氧化鈽和合成數 脂兼具有良好黏著力之多層抗反射的塗層,該多層系統包 括ai2〇3、Zr〇2、Sl〇2、Ti〇2和 Ta2〇5,該多層系統的所 有薄膜層皆為氧化物,該多層系統包括有三到五層的薄 層,在一實施例中,該五層結構的總厚度約為358〇^,該 多層系統的表層的物質為Si〇2’其具有—低折射率,、當= 長為550nm時,折射率為1. 46。 美國專利U.S. 5, 105, 31G揭露-種使用反應式濺錢而配 置於同軸塗佈機器之多層抗反射的塗層,該多層系統包括 Ti〇2、SiO” ZnO、Zr〇2、和Ta2〇5,該多層系統的所有薄膜 層皆為氧化物,該多層系統包括有四到六層的薄層,在」 實施例中,該六層結構的總厚度約為47〇〇埃,該^層系統 的表層的物質為Si〇2,其具有一低折射率,當波長為 時,折射率為1. 46。 200831942 美國專利U· S· 5, 091,244和U· S· 5, 407, 733揭露一種新 型態的具導電性的光衰減抗反射的塗層,其主要主張為由 特定過渡金屬氮化物來組成而提供一具導電性、光衰減、 抗反射的表面,該多層系統包括TiN、NbN、Sn〇2、Si〇2、Ah〇3 和Nb2〇5,該多層系統的所有薄膜層皆為氮化物和氧化物, 該多層系統包括有三到四層的薄層,在一實施例中,該四 層結構的總厚度約為1610埃,該四層系統的可見光的穿透 率低於50% ’該多層系統的表層的物質為Si〇2,其具有一低 折射率,當波長為55〇11111時,折射率為146。 美國專利U· S· 5, 147, 125揭露-種使用氧化鋅而抗波長 小於380nm之紫外線的之多層抗反射的塗層,該多層系統 包,Ti〇2、Si〇2、Zn0和MgF2,該多層系統的所有薄二係 為氧化物和氟化物,該多層系統包括有四到六層的薄層, 在一實施例中,該五層結構的總厚度約為7350 4,該^層 系統的表層的物質為MgF2,其具有一低折射率,'當=二; 550nm時,折射率為1. 38。 田/ 、”、、 ^美國專利U.S. 5, 170,291揭露一四層系统,其具有一光 學效應和高抗反射效果,該多層线可H由高私解、電 漿支撐化學蒸氣佈置、濺鍍或化學佈置等方式來形成,= 多層系統包括 Si〇2、Ti〇2、Al2〇3、ZnS、%〇 和 Bi2〇,在一 實施例中,該四層結構的總厚度約為248〇埃,爷多層系統 k,折射率為1. 46 〇 美國專利U.S· 5, 216, 542揭露一五層塗層,其具有高抗 200831942 反射效果,該多層糸統包令層厚度為1 nm而由N i、Cr或 NiCr構成之黏膜層,其於四層由Sn〇2、Zr〇2、ZnO、Ta2〇5、 NiO、Cr〇2、Ti〇2、Sb2〇3、Iri2〇3、Ah〇3、Si〇2、TiN 和 ZrNn 所構成,在一實施例中,該五層結構的總厚度約為2337埃, 該五層系統的可見光的穿透率低於3〇%,該多層系統的表層 的物質為si〇2,其具有一低折射率,當波長為550nm時, 折射率為1. 46。 美國專利U· S· 5, 541,770揭露一種具有導雷声之弁紊、、志 抗反射的塗層,係為四到五層之多層系統’具^光吸收高 ^率之例如&、此和¥等等,被當作該多層系統 、光效果薄膜,而其他之三到四層係為Ti〇2、、Al2〇3、 簿l0l和Μ ’除了一金屬層被用於當作該多層系統的光效果 每馭外,該多層系統的主要物質為氧化物和氮化物,在一 二,例中,該五層結構的總厚度約為1495埃,該多層系統 =見光的穿透率低於_,該多層系統的表層的物質為 / 2 ’其具有一低折射率,當波長為550nm時,折射率為 化物果1 專利U. S· 5, 362, 552揭露—種具有三層導電金屬氧 之/、層I几反射的塗層,該多層系統包括⑽、IT〇、Nb2〇5 氧^1〇5 ’該塗層包括—總厚度達可見光之波長之導電金屬 ^ ’在-實施例中,該六層結構㈣主要層的物質和 i;r^Sl〇2' 854 ^ITO' 1975 ^^^^^^ :射率其具有一低折射率,當波長為55-時, 200831942 美國專利U· S· 5, 579, 162揭露一種使用於對溫度靈敏之 基板(例如塑膠)之四層抗反射的塗層,其中一層為直流反 應賤鍍之金屬氧化物,其可快速地佈置於基板上,而且不 會傳遞大量的熱量至該基板’該多層系統包括Sn〇2、Si〇2 和ΙΤ0,在一實施例中,該四層結構的兩主要層的物質和厚 度分別為Sn〇2、763埃和Si〇2、940埃,該多層系統的表層 的物質為si〇2,其具有一低折射率,當波長為550nm時, 折射率為1. 46。 美國專利U· S· 5, 728, 456和u· S· 5, 783, 049揭露一種改 良之方法,用於佈置抗反射的塗層於一塑膠薄膜上,該多 層薄膜係用一濺鍍製程塗佈一滾子塗層,該多層系統包括 ΙΤ0、Si〇2和一薄潤滑層,其係為一可溶解之氟聚合物,在 一實施例中,該六層結構的總厚度約為2630埃,該多層系 統的表層的物質為Si〇2,其具有一低折射率,當波長為 550nm時,折射率為1. 46。 以上所揭露的光學多層系統之表面薄層的物質係為 Si〇2或MgF2,其具有一低折射率,當波長為55〇nm時,折 射率分別為1. 46和1. 38。 習知的抗反射光學塗層的多層系統皆利用一通則,該通 則為該光學塗層的表層的物質具有一低折射率,例如s°i〇2, 折射率為1.46,或MgF2,折射率為1.38。然而,當將該抗 反射塗層運用於顯示器工業時,例如具抗靜電效^之電腦 螢2或用於液晶顯示器或電漿顯示器之低反射玻璃時,在 大量生產的過程中,存在一些瓶頸,其原因是該光學塗層 200831942 結構的導電層係由—絕緣層(例如Si〇2或祕)所燒製而成。 μ -抗反^塗層的基本設計規則為,佈置於—基板表面的 第-層為具高折射率之物質所構成(標示為幻,其後接著 -具低折射率之物質所構成(標示為L)的第二層,因此,習 知的抗反射㈣的多層結構之規則為 HLHL 或 HLHLHL,以高 折射率⑻之物f為ITG而低折射率(L)之物質為Si〇2為例 子、亥四層結構分別為Glass/IT〇/Si〇yiT〇/si〇2。因為⑽ 疋透明的物質,該多層結構的塗層的導電性低 平方lGGQ而且當該導電塗層連結至地時,可用於電磁干 擾㈣)頻障或靜電放電。然而,問題是該f知的光學多声 結構的表面物質為Si〇2,且其厚度為麵A,該⑽的^ 質特性為高密度、具有惰性和一良好之電絕緣層,在運用 傳統之抗反射塗層於顯示器工業的過程中,電性接觸由外 =之sw層所隔離之該燒製的ITQ層是_的 屬,該1T〇層的接地過程中,需要使用-超音波焊接; 私打破stSl〇2層,以確保錫球與該ΙΤ0層產生良好接角衣 此-製 ^為大量生產抗反射塗層的瓶頸。 接觸, 超音 1皮一焊方接面制ΛΓ液態锡和超音波的曝露能量的緣故,該 亦會於每t it細的汗染物,此外,該超音波焊接製程 超立波媒姑抓線上產生非持久性的接觸阻抗,這是因為 表曰波4接製程無法保證能夠均勺、疋口為 絕緣層而得I均句的接觸=勾的乂相同的深度打破該 上述之缺點會降低在運用習知的抗 塗層的製程的良率和可靠度-/ ㈣干擾和抗反射 200831942 【發明内容】、 本發明之主要目的是提供一種具有玎穿透的表面導電 層之低電阻光衰減抗反射的塗層,其係包栝八個氧化物 層,而該塗層的表層的物質係為一可穿透的導電層和具有 一介於1· 9到2. 2的高折射率。 ( 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射的塗層,在大量生產該氧化物薄 膜的製程是可靠的,而該低電阻光衰減抗反射的塗層可運 用於半導體、光學頭、液晶顯示器、陰極射線管、建築破 璃、觸控式感測器、螢幕濾波器、塑膠網板塗層等工業。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射的塗層,該低電阻光衰減抗反射 的塗層之多層結構為HL(HL)6H,其係包括八個氧化物層, 而該塗層的表層的物質係為-可穿透的導電層和具有一介 於1. 9到2· 2的焉折射率’該低電阻光衰減抗反射的塗層 之表層的物質為-可穿透的表面導電層。在—實施例中, 本發明之另一目的是提供一種具有可 層之低電阻光衰減抗反射的塗層,料φ牙”衣岭包 的塗層之表層的物質為一可穿透的==織反f 透的表面導電層的光折射率低於〇 ,俏二而忒可牙 反射的塗層_抗條每平枝5Ω^㈣光衰減抗 透率為55%至·。 叫Q•叩之間,而其穿 該具有可穿透的表面 因為该表層有良好的導電特性, 200831942 導電層之低電阻光衰減抗反射的塗層可以降低接地製程所 需的工作負荷和增加大量生產的良率和可靠度,其可運用 於液晶顯示器或電漿顯示器之玻璃基板或塑膠基板上。 在一實施例中,該具有可穿透的表面導電層之低電阻 光衰減抗反射的塗層包括有15層,第一層、第二層、第三 層、…和第十五層依序排列在基板上,每一層將以物理厚 度或光學厚度來描述,光學厚度係為層厚度與折射岸之數 予乘積’而為設計波長的分數,在本發明中,該設計波長 為 520nm。 第一層或稱為表面層是由可穿透的導電氧化物質所構 成,該氧化物為Ζη0:Α1,其僅吸收些微的可見光,當波長 為52〇nm時,該表面層之折射率介於1· 9至2· 2之間,而 物理厚度為2〇nm到40nm。 第一層疋一薄金屬層,該金屬層是銀所構成,其僅吸 收些微的可見光,當波長為52〇nm時,其折射率介於〇·】 至0· 5之間,而物理厚度為8nm到12nm。 第三層是氧化物所構成,該氧化物為Zn〇:A1,其僅吸 收些微的可見光’當波長為52()nm時,該層之折射率介於 1· 9至2· 2之間,而物理厚度為3〇nm到8〇·。 第四層是-薄金屬層,該金屬層是銀所構成,其僅吸 收些微的可見光,當波長為·nm _,其折射率介於〇· ι 至0· 5之間,而物理厚度為8nm到12咖。 第五層是氧化物所構成,該氧化物為驗ai,a僅吸 收些微的可見光’當波長為52Gnra時,.則之折射^介於 11 200831942 L9至2·2之間,而物理厚度為30nm到80nm。 第六層疋一薄金屬層,該金屬層是銀所構成,盆僅吸 收些微的可見光,當波料52_時,其折㈣介於〇 ! 至〇·:之間:,物理厚度為8nm至"2nm。 第七層疋氧化物所構成,該氧化物為Ζη0:Α1,其僅吸 收些微的可見光,當波長為520nm時,該層之折射^介於 1·9至/2=間’而物理厚度為洲⑽到8〇·。 第八層疋-薄金屬層,該金屬層是銀所構成,其僅吸 收些U的可見光,當波長為52Q肖,其折射率介於〇· 1 至〇·5之間,而物理厚度為8nm到12nm。 第九層是氧化物所構成,該氧化物為200831942 IX. Description of the invention: [Technology of the invention] or the present invention is a low-resistance light-attenuation anti-reflection coating having a penetrable surface conductive layer, in particular, having high anti-reflection Characteristic coating structure. [Prior Art] Generally, an anti-reflective coating structure is added to a plastic substrate of a liquid crystal display or a plasma display, such as a glass substrate or a plastic web. Numerous coating structures have been disclosed. U.S. Patent No. 4,921,760 discloses a multilayer anti-reflective coating having a good adhesion to cerium oxide and a synthetic resin comprising ai2〇3, Zr〇2, and Sl〇. 2. Ti〇2 and Ta2〇5, all of the film layers of the multilayer system are oxides, and the multilayer system comprises three to five layers of thin layers. In one embodiment, the total thickness of the five-layer structure is about 358. 。^, the surface layer of the multi-layer system is Si〇2' which has a low refractive index, and when the length is 550 nm, the refractive index is 1.46. U.S. Patent No. 5,105,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5. All of the film layers of the multilayer system are oxides. The multilayer system comprises a thin layer of four to six layers. In the embodiment, the total thickness of the six-layer structure is about 47 angstroms. The surface layer of the system is Si〇2, which has a low refractive index, and when the wavelength is, the refractive index is 1.46. 200831942 U.S. Patent No. 5,091,244 and U.S. Patent No. 5,407, the entire disclosure of each of each of each of each of each of each of each of each of To provide a conductive, light-attenuating, anti-reflective surface, the multilayer system includes TiN, NbN, Sn〇2, Si〇2, Ah〇3, and Nb2〇5, all of which are Nitride and oxide, the multilayer system comprises a thin layer of three to four layers. In one embodiment, the total thickness of the four layer structure is about 1610 angstroms, and the visible light transmittance of the four layer system is less than 50%. The material of the surface layer of the multilayer system is Si〇2, which has a low refractive index and a refractive index of 146 when the wavelength is 55〇11111. US Patent No. 5,147,125 discloses a multilayer anti-reflective coating using zinc oxide against ultraviolet light having a wavelength of less than 380 nm, the multilayer system comprising Ti〇2, Si〇2, Zn0 and MgF2, All of the thin layers of the multilayer system are oxides and fluorides. The multilayer system comprises a thin layer of four to six layers. In one embodiment, the total thickness of the five-layer structure is about 7,350 4, the layer system The surface layer of the material is MgF2, which has a low refractive index, 'when = two; at 550 nm, the refractive index is 1.38. U.S. Patent No. 5,170,291 discloses a four-layer system having an optical effect and a high anti-reflection effect. The multilayer wire can be H-high resolution, plasma-supported chemical vapor arrangement, sputtering or Formed by chemical arrangement, etc., the multilayer system includes Si〇2, Ti〇2, Al2〇3, ZnS, %〇, and Bi2〇. In one embodiment, the total thickness of the four-layer structure is about 248 Å. The multi-layer system k has a refractive index of 1.46 〇 US Patent US 5,216, 542 discloses a five-layer coating having a high resistance to 200831942, which has a layer thickness of 1 nm and is N a mucosal layer composed of i, Cr or NiCr, which is composed of Sn〇2, Zr〇2, ZnO, Ta2〇5, NiO, Cr〇2, Ti〇2, Sb2〇3, Iri2〇3, Ah〇3 in four layers. , Si〇2, TiN and ZrNn, in one embodiment, the total thickness of the five-layer structure is about 2337 angstroms, and the transmittance of visible light of the five-layer system is less than 3%, the surface layer of the multilayer system The material is si〇2, which has a low refractive index, and when the wavelength is 550 nm, the refractive index is 1.46. U.S. Patent 5,541,770 discloses a A coating system having a thundering sound and an anti-reflection coating, which is a four- to five-layer multi-layer system, such as &, and this, etc., is regarded as the multilayer system. a light-effect film, and the other three to four layers are Ti〇2, Al2〇3, Book 10l and Μ' except that a metal layer is used as the light effect of the multilayer system, the multilayer system The main substances are oxides and nitrides. In one or two cases, the total thickness of the five-layer structure is about 1495 angstroms. The multilayer system = sees light transmittance lower than _, the surface layer of the multilayer system It has a low refractive index of / 2 ', and when the wavelength is 550 nm, the refractive index is a compound 1 U.S. 5, 362, 552 discloses a kind of three-layer conductive metal oxygen / layer I Coating, the multilayer system comprises (10), IT〇, Nb2〇5 oxy^1〇5' the coating comprises - a conductive metal having a total thickness of visible light. In the embodiment, the six-layer structure (four) main layer Substance and i;r^Sl〇2' 854 ^ITO' 1975 ^^^^^^ : Rate of incidence with a low refractive index, when the wavelength is 55-, 20083194 2 U.S. Patent No. 5,579,162 discloses a four-layer anti-reflective coating for a temperature-sensitive substrate (e.g., plastic), one of which is a DC-reacted ruthenium-plated metal oxide that can be rapidly Arranged on the substrate and does not transfer a large amount of heat to the substrate. The multilayer system includes Sn 〇 2, Si 〇 2 and ΙΤ 0. In one embodiment, the material and thickness of the two main layers of the four-layer structure are respectively And a refractive index of 1.46. When the wavelength is 550 nm, the refractive index is 1.46. An improved method for arranging an anti-reflective coating on a plastic film using a sputtering process is disclosed in U.S. Patent Nos. 5,728,456 and U.S. Patent No. 5,783,049. Coating a roller coating comprising ΙΤ0, Si〇2 and a thin lubricating layer which is a dissolvable fluoropolymer. In one embodiment, the total thickness of the six-layer structure is about 2630约。 The surface layer of the multi-layer system is Si〇2, which has a low refractive index, when the wavelength is 550nm, the refractive index is 1.46. The refractive index of the surface layer of the optical multilayer system disclosed above is Si〇2 or MgF2, which has a low refractive index, and the refractive index is 1.46 and 1.38, respectively, at a wavelength of 55 〇 nm. A multilayer system of conventional anti-reflective optical coatings utilizes a general rule that the surface layer of the optical coating has a low refractive index, such as s°i 〇 2, a refractive index of 1.46, or MgF 2 , a refractive index. It is 1.38. However, when the anti-reflective coating is applied to the display industry, such as computer anti-static 2 or anti-reflective glass for liquid crystal display or plasma display, there are some bottlenecks in mass production. The reason is that the conductive layer of the optical coating 200831942 structure is fired by an insulating layer (for example, Si〇2 or Mi). The basic design rule for the μ-anti-anti-coating is that the first layer disposed on the surface of the substrate is composed of a substance having a high refractive index (marked as a phantom, followed by a substance having a low refractive index (marked) It is the second layer of L). Therefore, the rule of the multilayer structure of the conventional anti-reflection (4) is HLHL or HLHLHL, and the substance f of the high refractive index (8) is ITG and the substance of the low refractive index (L) is Si〇2. For example, the four-layer structure is Glass/IT〇/Si〇yiT〇/si〇2. Because of (10) transparent material, the coating of the multilayer structure has a low conductivity of lGGQ and when the conductive coating is bonded to the ground When used, it can be used for electromagnetic interference (4)) frequency barrier or electrostatic discharge. However, the problem is that the surface material of the optical multi-acoustic structure is Si〇2, and its thickness is face A, and the (10) is characterized by high density, inertness, and a good electrical insulating layer. The anti-reflective coating is in the process of the display industry, and the electrically-contacted ITQ layer separated by the outer sw layer is a genus of _, and the 1T 〇 layer is grounded, and ultrasonic welding is required. ; privately break the stSl〇2 layer to ensure that the solder ball and the ΙΤ0 layer produce a good angle of clothing. This is a bottleneck for mass production of anti-reflective coatings. Contact, supersonic 1 skin and 1 welding surface to make the liquid tin and ultrasonic exposure energy, it will also be fine per sweat, and in addition, the ultrasonic welding process super wave carrier Non-persistent contact resistance, because the surface chopping process is not guaranteed to be able to be scooped, the mouth is the insulation layer, and the I-sentence contact = the same depth of the hook. The yield and reliability of the conventional anti-coating process - / (4) Interference and anti-reflection 200831942 SUMMARY OF THE INVENTION The main object of the present invention is to provide a low-resistance light-attenuation anti-reflection of a surface conductive layer having a bismuth penetration. The coating of the coating is a layer of eight oxide layers, and the surface layer of the coating is a permeable conductive layer and has a high refractive index of between 1. 9 and 2.2. (It is another object of the present invention to provide a low resistance light attenuating antireflection coating having a permeable surface conductive layer which is reliable in the process of mass producing the oxide film, and the low resistance light attenuating antireflection The coating can be applied to industries such as semiconductors, optical heads, liquid crystal displays, cathode ray tubes, architectural glass, touch sensors, screen filters, plastic screen coatings, etc. Another object of the present invention is to provide a coating a low resistance light attenuating antireflective coating having a permeable surface conductive layer, the low resistance light attenuating antireflective coating having a multilayer structure of HL(HL)6H comprising eight oxide layers The material of the surface layer of the coating is a permeable conductive layer and a substance having a 焉 refractive index of 1.9 to 2.2, which is a surface layer of the low-resistance light-attenuating anti-reflective coating - penetrable Surface conductive layer. In another embodiment, another object of the present invention is to provide a coating having a layer of low-resistance light-attenuation anti-reflection, and the surface layer of the coating of the coating material is a Penetrating == weave anti-f transparent surface guide The photorefractive index of the electric layer is lower than that of 〇, and the coating of the tooth reflex is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The penetrable surface because of the good electrical conductivity of the surface layer, the low-resistance light-attenuation anti-reflective coating of the conductive layer of 200831942 can reduce the workload required for the grounding process and increase the yield and reliability of mass production. It can be applied to a glass substrate or a plastic substrate of a liquid crystal display or a plasma display. In one embodiment, the low resistance light attenuating anti-reflective coating having a penetrable surface conductive layer comprises 15 layers, the first layer The second layer, the third layer, the ... and the fifteenth layer are sequentially arranged on the substrate, and each layer will be described by physical thickness or optical thickness, and the optical thickness is the product of the layer thickness and the number of refraction shores. The fraction of the design wavelength, in the present invention, the design wavelength is 520 nm. The first layer, or surface layer, is composed of a penetrable conductive oxidizing substance, which is Ζη0: Α1, which absorbs only a small amount of visible light. When the wavelength is 52〇 In nm, the surface layer has a refractive index between 1. 9 and 2.2, and a physical thickness of 2 〇 nm to 40 nm. The first layer is a thin metal layer, and the metal layer is composed of silver, which is only Absorbing a slight amount of visible light, when the wavelength is 52 〇 nm, the refractive index is between 〇·] and 0.5, and the physical thickness is 8 nm to 12 nm. The third layer is composed of an oxide, which is Zn. 〇: A1, which absorbs only a small amount of visible light'. When the wavelength is 52 () nm, the refractive index of the layer is between 1.9 and 2.2, and the physical thickness is from 3 〇 nm to 8 〇. The fourth layer is a thin metal layer composed of silver, which absorbs only a small amount of visible light. When the wavelength is · nm _, the refractive index is between 〇· ι and 0.5, and the physical thickness is 8 nm. To 12 coffee. The fifth layer is composed of oxides, which are for ai, a absorbs only a small amount of visible light'. When the wavelength is 52Gnra, the refraction is between 11 200831942 L9 and 2.2, and the physical thickness is 30nm to 80nm. The sixth layer is a thin metal layer, which is made of silver. The basin absorbs only a small amount of visible light. When the wave material is 52_, the fold (four) is between 〇! to 〇·:: the physical thickness is 8 nm. To "2nm. The seventh layer of cerium oxide is composed of Ζη0: Α1, which absorbs only a small amount of visible light. When the wavelength is 520 nm, the refractive index of the layer is between 1·9 and /2=' and the physical thickness is Continent (10) to 8〇·. The eighth layer of tantalum-thin metal layer, the metal layer is made of silver, which absorbs only some of the visible light of U. When the wavelength is 52Q, the refractive index is between 〇·1 and 〇·5, and the physical thickness is 8nm to 12nm. The ninth layer is composed of an oxide, and the oxide is
ZnO:A1,其僅吸 收些被的可見光’當波長為52()nm時,該層之折射率介於 h9至/·2 ^間,而物理厚度為30nm到8〇nm。 、 第十層疋薄金屬層,該金屬層是銀所構成,其僅吸 收t微的可見光’ §波長為52Q·時, 至0.5之間’而物理厚度為_2nm。 ’、0.1 第十一層是氧化物所構成,該氧化物為ZnO:A卜其僅 吸收些U的可見光’當波長為52()nm冑,該層之折射率介 於1.2至2. 2,間,而物理厚度為3Qn__。 弟千一層疋-薄金屬層,該金屬層是銀所構成,盆僅 吸收些微的可歧’當波長為52_時, 於、 至0.5之間,而物理厚度為“到⑽。 丨、0·1 第十三層是氧化物所構成,該氧化物為Ζη〇:Αι,直僅 吸收些微的可見先,當波長為52Qnm肖,制之折射率介 12 200831942 於1. 9至2. 2之間,而物理厚度為3〇nm到8〇nm。 第十四層疋一薄金屬層,該金屬層是銀所構成,其僅 吸收些微的可見光,當波長為52〇nm時,其折射率介於〇 i 至0·5之間’而物理厚度為8服到12nm。 ‘ 第十五層或稱最内層是氧化物所構成,該氧化物為 Ti〇2,其不吸收可見光,當波長& 52Qnm時,該層之折射率 介於2.2至2.4之間,而物理厚度為2〇11111到4〇1^。 為使能更進-步瞭解本發明之特徵及技術内容,請參 閱以下有關本發明之詳細說明與_,然而所附圖式僅提 供參考與說明之用’並非用來對本發明加以限制。 【實施方式】 本發明Lx氧化物為基礎之十五層的抗反射塗 層為單位之物理厚度或光學厚度來描述, 該设计可見光之波長為52Onm。 如第一圖所示,基板17係由 之物質所構成,該基板17之前表面=3錄或其他可看穿 —r . 攸Μ表面16是該基板17面對觀 祭2L,觀看之方向以標號18表示,第十五層15係接 之前表面16,第十四層14置於第十五層15 上’接者者第十三層13、第十二層η、第十―们卜 第十層10、第九層9、第八層8、 五層5、第四層4、第三層;、第弟:= ^ —層2和弟一層1。其中 弟二i 面層或最外層,由此構成本發明之且有 15層之塗層結構。 ^ 第一層 或稱為表面層是ZnO:Ai 層,其僅吸收座微的 13 200831942 .可見光,當波長為520nm時,該表面層之折射率介於l 9 至2· 2之間,而物理厚度為2〇nm到4〇·。第二層2是一銀 層,其僅吸收些微的可見光,當波長為52()nm冑,其折射 率’I於0· 1至〇· 5之間,而物理厚度為8nm到。第三 層3是ZnO.Al層’當波長為52〇nm時,該層之折射率介於 1.9至2.2之間,而物理厚度為3〇11111到8〇_。第四層4是 一銀層,當波長為52〇nm時,其折射率介於〇· !至〇· 5之 間’而物理厚度為8_到12nm。第五層5是触^層,當 波長為52〇nm時,該層之折射率介於19至2·2之間,: 物理厚度為3Gnm到8Gnm。第六層6是—銀層,當波 ,0nm時,其折射率介於〇·丨至〇· 5之間,而物理厚度為 2到12nm。第七層了是驗^層,當波長為卿⑽時: ^之=射率"於h 9至2· 2之間,而物理厚度為別⑽到 八 H 8 tc-銀層’當波長為52Qnm時,其折射率 '於0· 1至〇· 5之間’而物理厚度為—和⑽。第九層 疋Ζη〇··Αΐ層,當波長為52_時,該層之折射率介於" 至2.2之間,而物理厚度為3〇11111到8〇加1。第十層1〇3^ 銀層’當波長為52Gnm時,其折射率介於Q·丨至Q· 厚度為8mn到_。第十一層u是Ζη〇:Αι層,曰當 波長為52〇nm時,該層之折射率介於19至2.2 物理厚度為3〇nm到8〇nm。第 為52。吟其折射率介二:層。丨:;;銀二當錄 ^ , 王U· 3之間’而物理厚度 …H™。弟十三層13是Ζη():Α1層,當波衫MOnm 该層之折料介於丨.9至2.2之間,而物理厚度為3〇腹 14 200831942 =〇nm。第十四層14是—薄金屬層,該金屬層是銀所構成, 其僅吸收些微的可見光,當波長為52Qnm肖,其折射率介 曰1至之間,而物理厚度為8nm到i2nm。第十五層 15疋T1〇2層,其不吸收可見光,當波長為52〇皿時,該層 之斤t干介於2. 2至2. 4之間,而物理厚度為2〇nm到4〇哪。 爲9在一較佳之實施射,該第-層1之厚度為35nm,第二 層2之厚度為1Qnm,第三層3之厚度為75mn ,第四層4之 厚度為1Gnm,第五層5之厚度為55nm,第六層6之厚度為 第七層7之厚度為55nm,第八層8之厚度為咖, 弟九層9之厚度為55nm,第十層1〇之厚度為i〇nm,第十 :層11之厚度為70nm,第十二層12之厚度為胸,第十 二層13之厚度為·’第十四層14之厚度為胸,第十 五層15之厚度為33nm。 在一‘壓力3m Torr (㈣ini=0. 001)下,在存在藏鑛氣 體Ar和-小分壓水的環境下,錢或脈衝錢磁電管滅鍵 法可用來佈置Ζη〇··Α1而形成第一、三、五、七、九、十一 tt三層。在一總壓力4mT〇rr下’在存在雜氣體紅的 辰土兄下,直流或脈衝直流磁電管濺鍍法可用來佈置銀而形 成第一、四、六、八、十、十二和十四層。在一總壓力^T〇rr 下,在存在混和Ar和濺鍍氣體的環境下,一交流反應 式濺鍍法可用來佈置Ti而形成第十五層15之了丨〇2。該磁 電官陰極與基板之距離為丨5公分,並使用一加熱裝置,而 5亥基板之溫度控制於攝氏100度至300度之間。 當然’本發明之塗層結構並不限於15層,只要符合 15 200831942 _ H_n之^計原理者,皆可達到類似之功效。 弟圖為本發明之塗層結構之波長對反射率之曲線 二00 it百分比來表示,其顯示可見光波長棚⑽ =:=由圖中可知,在波長到6_之 間的反射率低於〇· 5 %,苴佟於后丄 塗層結構。 紅於原本以腦L為設計原理之 經由ITO塗層,該導帝矣 斑0 7Ω之門i Λ 之阻抗介於每平方0.5Ω ,、〇. 7Ω之間,在一玻璃薄膜 波長範圍從40〇nm到7〇〇nm門甘寻腰上田對於可見先 的區帶,而產生具有其反射頻譜是-平坦且寬 抗反射之塗層。此電性之高導電性、光衰減 另-方/ ^其生產成本低和適用於大量生產。 當豆運一用λ’將r月之塗層結構其具有高導電性之特性, 光學視角低反:;=:!’其具有電磁干擾屏障、 等優點。例如,本發明之塗;適度的光衰減效應 〇.5⑽表面阻抗介於每平方 MIL-C-48497之耐彻彳試及4足夠硬度去通過軍事標準 透 $二 八折射率介於〗· 9到2· 2之間。 因為該抗反射塗層之表面爲9 式可使切層有導電性,幾㈣單的方 層產生良好電性接觸,本發明之塗層可 16 200831942 使用於電漿顯示II之螢幕濾波器。 生㈣運用上’傳統使用超音波料製稳合產 、,、微之m物之接地製造方法將被取代,日產 “組裝在螢幕濾波器之最後製程將被符^ 射塗 层你如θ 取佤衣枉舸被間化,在隔絕導番ΤΤΛ :錫㈣所形心均自電制的 也製程的良率。此外,該塗層結構亦可運升接 和液晶顯示器工業之基本塗層。期於電水頌示器 本㈣之十五層的塗層結構由—導電 層,其可簡單和經濟地使用 表面 膠薄膜基板上。 残阻抗功__或塑 j·隹以上所述僅為本發明之較佳可行實施例,非因此 =之專侧,因此任何熟悉此項 : ^領域内,所實施之變化或修飾,皆應屬本發明之專= 【圖式簡單說明】 有關本發明之圖式簡單說明如下: =一圖為本發明之塗層結構之示意圖;及 ^圖為本發明之塗層結構之波長對反射率之曲 【主要元件符號說明】 「本發明」 1 第一層 2 弟二層 3 第三層 4 第四層 17 200831942 5 第五層 6 第六層 7 第七層 8 第八層 9 第九層 10第十層 11第十一層 12 第十二層 13 第十三層 14 第十四層 15第十五層 16前表面 17基板 18觀看之方向ZnO: A1, which absorbs only visible light'. When the wavelength is 52 () nm, the refractive index of the layer is between h9 and /·2 ^, and the physical thickness is 30 nm to 8 〇 nm. The tenth thin metal layer is composed of silver, which absorbs only t microscopic visible light's wavelength of 52Q·, to between 0.5 and physical thickness of _2 nm. The first layer of the layer is composed of an oxide, the oxide is ZnO: A, which absorbs only some of the visible light of U. When the wavelength is 52 () nm, the refractive index of the layer is between 1.2 and 2. , and the physical thickness is 3Qn__. The younger brother is a thin layer of metal, which is made of silver. The basin absorbs only a small amount of disparity' when the wavelength is 52_, between 0 and 0.5, and the physical thickness is "to (10). 0·1 The thirteenth layer is composed of an oxide, the oxide is Ζη〇: Αι, which only absorbs a little visible first. When the wavelength is 52Qnm, the refractive index is 12, 200831942 at 1. 9 to 2. Between 2 and a physical thickness of 3 〇 nm to 8 〇 nm. The fourteenth layer is a thin metal layer composed of silver, which absorbs only a small amount of visible light, when the wavelength is 52 〇 nm, The refractive index is between 〇i and 0·5' and the physical thickness is 8 to 12 nm. 'The fifteenth layer or innermost layer is composed of an oxide which is Ti〇2, which does not absorb visible light. When the wavelength is & 52Qnm, the refractive index of the layer is between 2.2 and 2.4, and the physical thickness is 2〇11111 to 4〇1^. To enable further understanding of the features and technical contents of the present invention, please DETAILED DESCRIPTION OF THE INVENTION The following detailed description of the present invention is provided with reference to the accompanying claims [Embodiment] The fifteen-layer anti-reflective coating based on the Lx oxide of the present invention is described by a physical thickness or an optical thickness of the unit, and the wavelength of the visible light is 52 Onm. As shown in the first figure, the substrate 17 is The substrate 17 is composed of the front surface of the substrate 17 = 3 or other visible through - r. The surface 16 is the substrate 17 facing the viewing 2L, the direction of viewing is indicated by the numeral 18, and the fifteenth layer is connected The front surface 16, the fourteenth layer 14 is placed on the fifteenth layer 15 'the thirteenth layer of the receiver 13, the twelfth layer η, the tenth - the tenth layer 10, the ninth layer 9, the eighth Layer 8, five layers 5, fourth layer 4, third layer; first brother: = ^ - layer 2 and brother layer 1. The second layer or the outermost layer, which constitutes the present invention and has 15 layers Coating structure. ^ The first layer, or surface layer, is a ZnO:Ai layer, which only absorbs the micro-slices of 13 200831942. Visible light, when the wavelength is 520 nm, the surface layer has a refractive index of l 9 to 2· Between 2, and the physical thickness is 2〇nm to 4〇·. The second layer 2 is a silver layer, which absorbs only a small amount of visible light, when the wavelength is 52 () nm 胄, the fold The rate 'I is between 0·1 and 〇·5, and the physical thickness is 8 nm to. The third layer 3 is ZnO.Al layer'. When the wavelength is 52 〇nm, the refractive index of the layer is between 1.9 and 2.2. The physical thickness is 3〇11111 to 8〇_. The fourth layer 4 is a silver layer. When the wavelength is 52〇nm, the refractive index is between 〇·! and 〇·5 and the physical thickness is 8_ to 12nm. The fifth layer 5 is a contact layer. When the wavelength is 52〇nm, the refractive index of the layer is between 19 and 2.2, and the physical thickness is from 3Gnm to 8Gnm. The sixth layer 6 is a silver layer, and when the wave is 0 nm, its refractive index is between 〇·丨 and 〇·5, and the physical thickness is 2 to 12 nm. The seventh layer is the inspection layer, when the wavelength is Qing (10): ^ = the rate of incidence " between h 9 to 2 · 2, and the physical thickness is other (10) to eight H 8 tc - silver layer 'when the wavelength When it is 52Qnm, its refractive index 'between 0·1 and 〇·5' and the physical thickness is - and (10). The ninth layer 疋Ζη〇··Αΐ layer, when the wavelength is 52_, the refractive index of the layer is between " to 2.2, and the physical thickness is 3〇11111 to 8〇 plus 1. The tenth layer 1 〇 3 ^ silver layer 'when the wavelength is 52 Gnm, its refractive index is between Q·丨 and Q· and the thickness is 8 mn to _. The eleventh layer u is Ζη〇: Αι layer, and when the wavelength is 52 〇 nm, the layer has a refractive index of 19 to 2.2 and a physical thickness of 3 〇 nm to 8 〇 nm. The number is 52.吟 Its refractive index is two: layer.丨:;; Silver II is recorded ^, between Wang U·3 and physical thickness ... HTM. The thirteenth layer 13 is Ζη(): Α1 layer, when the layer of MOnm is between 丨.9 and 2.2, and the physical thickness is 3〇14 1431 31942 = 〇nm. The fourteenth layer 14 is a thin metal layer composed of silver which absorbs only a small amount of visible light, and has a refractive index ranging from 1 to between and a physical thickness of 8 nm to i2 nm when the wavelength is 52 Qnm. The fifteenth layer of 15 疋 T1 〇 2 layer, which does not absorb visible light, when the wavelength is 52 〇, the layer of the layer is between 2. 2 to 2.4, and the physical thickness is 2 〇 nm to 4〇 where. In a preferred embodiment, the thickness of the first layer 1 is 35 nm, the thickness of the second layer 2 is 1 Qnm, the thickness of the third layer 3 is 75 nm, and the thickness of the fourth layer 4 is 1 Gnm, and the fifth layer 5 The thickness of the sixth layer 6 is 55 nm for the thickness of the seventh layer 7, the thickness of the eighth layer 8 is coffee, the thickness of the nine layers 9 is 55 nm, and the thickness of the tenth layer is 1 〇 nm. Tenth: the thickness of layer 11 is 70 nm, the thickness of the twelfth layer 12 is the chest, the thickness of the twelfth layer 13 is · 'the thickness of the fourteenth layer 14 is the chest, and the thickness of the fifteenth layer 15 is 33 nm. . Under a pressure of 3m Torr ((4) ini = 0.001), in the presence of Tibetan gas Ar and - small partial pressure water, the money or pulse money magnetron deactivation method can be used to arrange Ζη〇··Α1 to form The first, third, fifth, seventh, ninth and eleventh tt three layers. Under a total pressure of 4mT〇rr, in the presence of miscellaneous gas red, DC or pulsed DC magnetron sputtering can be used to arrange silver to form first, fourth, sixth, eighth, ten, twelve and ten. Four floors. At a total pressure ^T rrrr, an alternating reactive sputtering method can be used to arrange Ti to form the fifteenth layer 15 of the enthalpy in the presence of mixed Ar and sputtering gases. The magnetoelectric cathode is at a distance of 丨5 cm from the substrate and a heating device is used, and the temperature of the substrate is controlled between 100 and 300 degrees Celsius. Of course, the coating structure of the present invention is not limited to 15 layers, and similar effects can be achieved as long as the principle of 15 200831942 _ H_n is met. The figure is the wavelength versus reflectance curve of the coating structure of the present invention expressed as a percentage of 200 it, which shows the visible light wavelength shed (10) =:= As can be seen from the figure, the reflectance between the wavelengths to 6_ is lower than 〇 · 5%, 苴佟 丄 丄 coating structure. Red is originally based on the design of the brain L through the ITO coating, the impedance of the door 0 0 0 7 Ω i Λ is between 0.5 Ω, 〇. 7 Ω, in a glass film wavelength range from 40 From 〇nm to 7〇〇nm, the door is looking for the visible zone, and the coating with its reflection spectrum is flat and wide anti-reflection. This electrical conductivity is highly conductive, and the light attenuation is also low-cost and suitable for mass production. When the bean is transported with λ', the coating structure of r is highly conductive, and the optical viewing angle is low:; =:!' which has an electromagnetic interference barrier, and the like. For example, the coating of the present invention; moderate light attenuation effect 〇.5 (10) surface impedance between each square MIL-C-48497 of the resistance test and 4 enough hardness to pass the military standard through the $ 28 refractive index between 〖· 9 Between 2 and 2. Since the surface of the anti-reflective coating is 9-type, the cut layer is electrically conductive, and the square layer of the (four) single layer is in good electrical contact, and the coating of the present invention can be used in the screen filter of the plasma display II. Health (4) using the 'traditional use of ultrasonic materials to stabilize the production, the micro-methane grounding manufacturing method will be replaced, Nissan "assembled in the final process of the screen filter will be coated as you θ take佤 枉舸 枉舸 枉舸 , , , , ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ ΤΤΛ 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡 锡The coating structure of the fifteenth layer of the electro-hydraulic display device (4) consists of a conductive layer, which can be used simply and economically on the surface adhesive film substrate. Residual impedance work __ or plastic j·隹The preferred embodiment of the present invention is not exclusive to the specific side of the present invention, and therefore any familiarity with the present invention: The changes or modifications carried out in the field should be exclusive to the present invention. The drawings are briefly described as follows: = Figure 1 is a schematic view of the coating structure of the present invention; and Figure 2 is a graph of wavelength versus reflectance of the coating structure of the present invention. [Main component symbol description] "Invention" 1 First Layer 2, second layer, third layer, fourth layer, fourth layer, 17 200831942 5 Fifth layer 6 Sixth layer 7 Seventh layer 8 Eighth layer 9 Ninth layer 10 Tenth layer 11 Eleventh layer 12 Twelfth layer 13 Thirteenth layer 14 Fourteenth layer 15 fifteenth layer 16 Front surface 17 substrate 18 viewing direction