TW200827857A - Transparent film, polarizing plate and liquid crystal display device - Google Patents
Transparent film, polarizing plate and liquid crystal display device Download PDFInfo
- Publication number
- TW200827857A TW200827857A TW096142612A TW96142612A TW200827857A TW 200827857 A TW200827857 A TW 200827857A TW 096142612 A TW096142612 A TW 096142612A TW 96142612 A TW96142612 A TW 96142612A TW 200827857 A TW200827857 A TW 200827857A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- liquid crystal
- transparent film
- degrees
- polarizing
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 57
- 230000007423 decrease Effects 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 23
- 210000002858 crystal cell Anatomy 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 11
- 229920006254 polymer film Polymers 0.000 claims description 11
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 6
- 125000002723 alicyclic group Chemical group 0.000 claims description 3
- 239000002952 polymeric resin Substances 0.000 claims description 2
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 195
- 239000010410 layer Substances 0.000 description 44
- 230000010287 polarization Effects 0.000 description 26
- 230000001681 protective effect Effects 0.000 description 23
- 230000008859 change Effects 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 14
- 230000008033 biological extinction Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000007888 film coating Substances 0.000 description 4
- 238000009501 film coating Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000005268 rod-like liquid crystal Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101100329389 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cre-1 gene Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical class C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
200827857 九、發明說明: 【發明所屬之技術領域】 本發明關於可用作爲液晶顯示裝置的光學補償 光板的保護薄膜等的新穎透明薄膜,以及利用該 的偏光板及液晶顯示裝置。 【先前技術】 透過型液晶顯示裝置係具有液晶胞及在其兩 偏光鏡(Polarizer)。該一對偏光鏡的配置一般係以 過軸成正交,即成爲所謂的正交偏光鏡。然而, 表面的法線方向所入射的光而言,正交偏光鏡可 偏光鏡的機能,但是對於自法線方向呈傾斜方向 光而言,由於透過軸的交叉角偏離直角,故不能 偏光鏡的機能。此成爲在透過型液晶顯示裝置中 向發生漏光,依賴於視野角的對比之降低及色調 野角特性降低的原因。 然而,由聚乙烯醇薄膜等所構成的偏光鏡,一 單獨的構件用於液晶顯示裝置,而是在其兩面貼 S蒦偏光鏡的保護薄膜以當作偏光板倂入液晶顯示 因此,嘗試藉由使該保護薄膜具有指定的光學特 視野角化。作爲其之一例,有提案「一種廣視野声 其係由在偏光鏡上重疊具有面內相位差=250〜 Νζ = 〇· 1〜0.4的雙折射特性之二軸性相位差板而成 種廣視野角偏光板,其係由在偏光鏡上重疊具有 差= 250〜300nm、Nz = 0.6〜1·1的雙折射特性之二 薄膜、偏 透明薄膜 側的一對. 互相的透 對於由其 作爲正交 所入射的 作爲正交 ,傾斜方 變化等視 般不是以 合用於保 裝置內。 性,而廣 _偏光板, - 3 0 0nm、 :」、及Γ 一 '面內相位 1軸性相位 200827857 差板而成」(專利文獻1 )。於專利文獻1的實施例中,顯示 將2片該廣視野角偏光板以正交配置而配置在液晶胞的兩 側,使所成的透過型液晶顯示裝置成爲廣視野角化。 於專利文獻1所記載的偏光板之廣視野角化技術中,入 射光必須2次通過上述具有指定雙折射性的二軸性相位差 板。因此,液晶顯示裝置在設計上有限制,或需要精密地 控制指定的光學特性之相位差板的光軸之相互位置關係而 作2片積層的煩雜程序等,從生產性的觀點來看係不佳。 Φ 另一方面,雖然嘗試使入射光僅通過一片相位差板,而. 補償偏光鏡的視野角依賴性,但是於該情況下發生波長依 賴性的問題。此係因爲作爲偏光板的保護薄膜所通常使用 的三乙醯纖維素薄膜等之遲滯値係顯示波長依賴性。例 如,即使就可見光波長範圍 400〜70 Onm的中央波長 5 5 0nm(G)之入射光而言,藉由通過保護薄膜,而轉變成消 光點,調整保護薄膜的光學特性,但就45 0nm(B)及65 0nm(R) 的入射光而言,轉變成偏離消光點的偏光狀態,結果發生 ^ 依賴於視野角的色調變化或對比的降低。 [專利文獻1] 特開200 1 -3 50022號公報 【發明內容】 發明所欲解決的問1 本發明鑒於上述問題點’課題爲解決上述問題點,提供 可對應於全可見光範圍的寬頻帶且廣視野角的新穎偏光 板。 又,本發明的課題爲提供新穎的透明薄膜,其作爲該偏 200827857 光板的保護薄膜,而且作爲液晶顯示裝置的光學補償薄 膜,有助於波長依賴性及視野角依賴性兩者之減輕。 再者,本發明的課題爲提供可減輕依賴於視野角的對比 之降低及色調變化,視野角特性良好的液晶顯示裝置。 解決問穎的手段 解決上述問題的手段係如以下。 [1] 一種透明薄膜,包含薄膜面的法線方向中Nz値在 0〜1單調增加或單調減少的區域,且波長5 5 〇nm的面內遲 滯値Re爲510〜610nm ; 但是 Nz = 0.5 + Rth(5 50)/Re(5 50),式中 Rth(5 50)及 Re(5 5 0) 各自爲在波長5 5 Onm的厚度方向之遲滯値及面內遲滯値。 [2] 如[1]的透明薄膜,其含有醯化纖維素當作主成分。 [3] 如[1 ]的透明薄膜,其含有含脂環式構造的聚合物樹 脂當作主成分。 [4] 一種透明薄膜,其特徵爲在面內具有光學異方向 性,薄膜面的法線方向的圓形遲滯(CRE1)係大約〇,在自薄 膜面的法線方向之極角6 0度,且以薄膜面內的遲相軸當作 方位角0度時,方位角爲45度、135度、225度、及315 度的4個方向所入射的光線之圓形遲滯(CRE2)的絕對値係 大略相等,且不是0。 [5] 如[4]的透明薄膜,其中上述CRE2係0〜20nm。 [6] 如[1]的透明薄膜’其中具有由Nz値互相不同的2 個以上之層所構成的多層構造。 [7]如[6]的透明薄膜,其中具有聚合物薄膜、及其兩面 200827857 上各自由相同或不同的液晶組成物所構成的光學異方向性 層之各至少一層。 [8] —種偏光板,其具有偏光膜及如[1]〜[7]中任一項 之透明薄膜。 [9] 一種液晶顯示裝置,其·具有液晶胞及如[8]的偏光 板。 [1 〇] —種液晶顯示裝置,其係具有液晶胞及至少一個 偏光膜之液晶顯示裝置,其中在上述偏光膜與上述液晶胞 之間具有如[1]〜[7]中任一項之透明薄膜。 發明的效果 依照本發明,可提供寬頻帶且廣視野角的新穎偏光板。 又’依照本發明,可提供新穎的透明薄膜,其作爲該偏光 板的保護薄膜,而且作爲液晶顯示裝置的光學補償薄膜, 有助於波長依賴性及視野角依賴性兩者之減輕。再者,依 /照、本發明’可提供能減輕依賴於視野角的對比之降低及色 調變化’視野角特性良好的液晶顯示裝置。 【實施方式】 發ϋ的霞A形熊 以下詳細說明本發明。再者,於本說明書中,「〜」係 以包含其前後所記載的數値當作下限値及上限値的意思來 使用。 以下說明本發明。再者,於本說明書中,「〜」係以包 含其前後所記載的數値當作下限値及上限値的意思來使 用。又’實質正交或平行係意味嚴密的角度:bio。之範圍。 200827857 另外,於本說明書中,&(λ)、Rth(X)係各自表示波長λ 時面內的遲滯値及厚度方向的遲滯値。Re(X)係於KOBRA 2 1 ADH或WR(王子計測機器(股)製)中將波長ληπι的光入射 到薄膜法線方向而測定者。 所測定的薄膜,於以1軸或2軸的折射率橢圓體表示 時,係藉由以下方法來算出RthQ)。[Technical Field] The present invention relates to a novel transparent film which can be used as a protective film of an optical compensation light plate of a liquid crystal display device, and a polarizing plate and a liquid crystal display device using the same. [Prior Art] A transmissive liquid crystal display device has a liquid crystal cell and two polarizers (Polarizers). The arrangement of the pair of polarizers is generally orthogonal to the axis, i.e., a so-called orthogonal polarizer. However, the orthogonal polarizer can function as a polarizer for the light incident on the normal direction of the surface, but for oblique light from the normal direction, since the crossing angle of the transmission axis deviates from the right angle, the polarizer cannot be used. Function. This causes light leakage to occur in the transmissive liquid crystal display device, which is dependent on a decrease in the contrast of the viewing angle and a decrease in the hue angle characteristics. However, a polarizing mirror composed of a polyvinyl alcohol film or the like, a separate member is used for the liquid crystal display device, but a protective film of a S-polarized mirror is attached to both sides thereof to be used as a polarizing plate to penetrate the liquid crystal display. The protective film is provided with a specified optical field of view. As an example of this, there is a proposal that "a wide-field sound is made up of a biaxial phase difference plate having a birefringence characteristic in which an in-plane retardation = 250 Νζ = 〇 · 1 to 0.4 is superimposed on a polarizer. a viewing angle polarizing plate which is formed by superposing a pair of two films having a birefringence characteristic of difference = 250 to 300 nm and Nz = 0.6 to 1.1 on the polarizing mirror, and a pair of translucent film sides. Orthogonally incident as orthogonal, inclined square change, etc. are not used together to protect the device. Sex, and wide _ polarizing plate, -300 nm, :", and Γ an 'in-plane phase 1 axis phase 200827857 The difference is made" (Patent Document 1). In the embodiment of Patent Document 1, it is shown that two of the wide viewing angle polarizing plates are arranged on both sides of the liquid crystal cell in an orthogonal arrangement, and the resulting transmissive liquid crystal display device has a wide viewing angle. In the wide viewing angle technique of the polarizing plate described in Patent Document 1, the incident light must pass through the biaxial phase difference plate having the specified birefringence twice. Therefore, the liquid crystal display device is limited in design, or requires complicated control of the positional relationship between the optical axes of the phase difference plates of the specified optical characteristics, and is complicated by two layers, from the viewpoint of productivity. good. Φ On the other hand, although it is attempted to pass the incident light only through one phase difference plate, the viewing angle dependence of the polarizer is compensated, but in this case, the problem of wavelength dependence occurs. This is because the hysteresis of a triacetyl cellulose film or the like which is generally used as a protective film for a polarizing plate shows wavelength dependence. For example, even if the incident light having a central wavelength of 550 nm (G) in the visible light wavelength range of 400 to 70 Onm is converted into an extinction point by the protective film, the optical characteristics of the protective film are adjusted, but it is 45 0 nm ( B) and 65 0 nm (R) of incident light are converted into a polarized state that deviates from the extinction point, and as a result, a hue change or a decrease in contrast depending on the viewing angle occurs. [Patent Document 1] JP-A No. 200 1 - 350022 [Invention] The present invention has been made in view of the above problems. In order to solve the above problems, the present invention provides a wide frequency band that can correspond to the entire visible light range. A novel polarizer with a wide viewing angle. Further, an object of the present invention is to provide a novel transparent film which is used as a protective film for the 200827857 light plate and as an optical compensation film for a liquid crystal display device, which contributes to both wavelength dependence and viewing angle dependence. Further, an object of the present invention is to provide a liquid crystal display device which is capable of reducing a decrease in contrast and a change in color tone depending on a viewing angle, and having a good viewing angle characteristic. Means to solve the problem The means to solve the above problems are as follows. [1] A transparent film comprising a region in which the Nz値 monotonously increases or monotonically decreases in the normal direction of the film surface, and the in-plane retardation 値Re of a wavelength of 5 5 〇nm is 510 to 610 nm; but Nz = 0.5 + Rth(5 50)/Re(5 50), where Rth(5 50) and Re(5 5 0) are each a hysteresis 面 and an in-plane hysteresis 厚度 in the thickness direction of a wavelength of 5 5 Onm. [2] A transparent film such as [1] which contains deuterated cellulose as a main component. [3] A transparent film such as [1] which contains a polymer resin having an alicyclic structure as a main component. [4] A transparent film characterized in that it has optical anisotropy in the plane, and a circular hysteresis (CRE1) in the normal direction of the film surface is about 〇, at a polar angle of 60 degrees from the normal direction of the film surface. The absolute value of the circular hysteresis (CRE2) of the light incident in the four directions of the azimuth angles of 45 degrees, 135 degrees, 225 degrees, and 315 degrees is taken as the azimuth angle of 0 degrees in the film plane. The lines are roughly equal and not zero. [5] The transparent film according to [4], wherein the above CRE2 is 0 to 20 nm. [6] The transparent film ' in [1] has a multilayer structure in which two or more layers different in Nz 値 are different from each other. [7] The transparent film according to [6], which has at least one of a polymer film and an optically anisotropic layer each of which is composed of the same or different liquid crystal compositions on both sides of 200827857. [8] A polarizing plate having a polarizing film and a transparent film according to any one of [1] to [7]. [9] A liquid crystal display device comprising a liquid crystal cell and a polarizing plate such as [8]. [1 〇] A liquid crystal display device having a liquid crystal cell and at least one polarizing film, wherein the polarizing film and the liquid crystal cell have any one of [1] to [7] Transparent film. EFFECT OF THE INVENTION According to the present invention, a novel polarizing plate having a wide frequency band and a wide viewing angle can be provided. Further, according to the present invention, a novel transparent film which serves as a protective film for the polarizing plate and which serves as an optical compensation film for a liquid crystal display device contributes to reduction in both wavelength dependency and viewing angle dependence. Further, according to the present invention, it is possible to provide a liquid crystal display device which is capable of reducing the contrast reduction and the color shift change depending on the viewing angle. [Embodiment] The present invention will be described in detail below. In the present specification, "~" is used to mean that the number described before and after is used as the lower limit 値 and the upper limit 値. The invention is described below. In the present specification, "~" is used in the sense that the number recited before and after is used as the lower limit 値 and the upper limit 値. And 'substantially orthogonal or parallel system means a strict angle: bio. The scope. In addition, in the present specification, & (λ) and Rth (X) each indicate a hysteresis 面 in the plane at the wavelength λ and a hysteresis 厚度 in the thickness direction. In the KOBRA 2 1 ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.), the light of the wavelength ληπι is incident on the normal direction of the film. When the film to be measured is represented by a refractive index ellipsoid of one axis or two axes, RthQ) is calculated by the following method.
Rth(X)係以上述Re(X)、面內的遲相軸(藉由 KOBRA 21 ADH或WR來判斷)當作傾斜軸(回轉軸)(無遲相軸時,以 薄膜面內的任意方向當作回轉軸),從相對於薄膜法線方向 的法線方向起到一側5 0度爲止,以1 〇度等級從各個傾斜 的方向將波長ληιη的光作入射而全部作6點測定,以所測定 的遲滯値及平均折射率的假定値和所輸入的膜厚値爲基 礎,藉由KOBRA 21ADH或WR來算出。 上述中,於以自法線方向的面內遲相軸當作回轉軸,在 某一傾斜角度具有遲滯値成爲零的方向之薄膜的情況,將 比該傾斜角度還大的傾斜角度之遲滯値的符號轉變爲負 後,藉由KOBRA2 1ADH或WR來算出。 再者,以遲相軸作爲傾斜軸(回轉軸)(無遲相軸時,以薄 膜面內的任意方向當作回轉軸),自任意傾斜的2個方向來 測定遲滯値,以其値和平均折射率的假定値及所輸入的膜 厚値爲基礎,藉由下式(21)及式(22)亦可算出Rth。 l{nysm(sin ))2 {π2 cos(sin ^ sin (-^) cos {sin (-—)} nx ——式(2 1) 200827857Rth(X) is used as the tilt axis (rotary axis) with the above-mentioned Re(X) and the in-plane slow axis (determined by KOBRA 21 ADH or WR) (when there is no slow phase axis, it is arbitrary in the film plane) The direction is regarded as the rotation axis), and the light of the wavelength ληιη is incident from the direction of the inclination of each of the oblique directions from the normal direction of the normal direction of the film to the side of 50 degrees. It is calculated by KOBRA 21ADH or WR based on the measured hysteresis 値 and the assumed 値 of the average refractive index and the input film thickness 値. In the above, in the case where the in-plane slow axis in the normal direction is regarded as the rotation axis, and the film having the hysteresis 値 in the direction of zero at a certain inclination angle, the retardation of the inclination angle larger than the inclination angle 値After the sign is changed to negative, it is calculated by KOBRA2 1ADH or WR. In addition, the slow phase axis is used as the tilt axis (rotary axis) (when there is no slow phase axis, the arbitrary direction in the film plane is regarded as the rotary axis), and the hysteresis is measured from two directions of arbitrary tilt, and the hysteresis is measured. Based on the assumption of the average refractive index and the film thickness 输入 input, Rth can also be calculated by the following formulas (21) and (22). l{nysm(sin ))2 {π2 cos(sin ^ sin (-^) cos {sin (--)} nx - (2 1) 200827857
Rth={(nx + ny)/2-nz}xd 一 ——式(22) 式中,上述Re(e)表示自法線方向以角度θ傾斜的方向 中之遲滯値。 而且式中,ηχ表示面內的遲相軸方向之折射率,ny表 示面內中與nx正交的方向之折射率,nz表示與ηχ及ny正 交的方向之折射率,d表示膜厚。 於所測定的薄膜無法以1軸或2軸的折射率橢圓體來表 現者,即所謂沒有光學軸(optic axis)的薄膜之情況,係藉 由以下方法來算出RthQ)。Rth={(nx + ny)/2-nz}xd - Equation (22) where Re(e) represents the hysteresis 方向 in the direction inclined from the normal direction by the angle θ. Further, in the formula, η χ represents the refractive index in the direction of the slow axis in the plane, ny represents the refractive index in the direction orthogonal to nx in the plane, nz represents the refractive index in the direction orthogonal to η χ and ny, and d represents the film thickness. . The film to be measured cannot be represented by a one-axis or two-axis refractive index ellipsoid, that is, in the case of a film having no optic axis, RthQ is calculated by the following method.
Rth〇)係以上述Re(X)、面內的遲相軸(藉由 K0BRA 2 1 AD Η或WR來判斷)當作傾斜軸(回轉軸),從相對於薄膜 法線方向自-5 0度到+ 5 0度爲止,以1 〇度等級從各個傾斜的 方向將波長ληηι的光作入射而作1 1點測定,以所測定的遲 滯値及平均折射率的假定値和所輸入的膜厚値爲基礎,藉 由KOBRA 21ADH或WR來算出。 又,於上述測定中,平均折射率的假定値係可使用聚合 物手冊(JOHN WILEY&SONS公司)、各種光學薄膜的型錄 値。於平均折射率的値不是己知的情況下,可使用阿貝折射 計來測卖。以下例示主要的光學薄膜之平均折射率値:醯化 纖維素(1.48)、環烯烴聚合物(1.5 2)、聚碳酸酯(1.5 9)、聚甲 基丙烯酸甲酯(1.49)、聚苯乙烯(1.59)。藉由將這些平均折射 率的假定値及膜厚輸入,KOBRA 21 ADH或WR算出nx、ny、 nz。由所算出的 nx、ny、nz 再算出 Nz = (nx-nz)/(nx-ny)。 200827857 再者,於本說明書中,關於表示光學特性等的數値或數 値範圍,可解釋爲包含液晶顯示裝置或其所用的構件中一 般容許的誤差之數値或數値範圍。 本發明關於透明薄膜,其包含薄膜面的法線方向中Nz 値在0〜1單調增加或單調減少的區域,且波長5 50nm的面 內遲滯値Re爲5 1 0〜6 1 Onm。本發明的透明薄膜係藉由與 偏光鏡組合,配置在偏光鏡與液晶胞之間,而有助於減輕 液晶顯示裝置之傾斜方向的對比降低及色調變化。再者, • 關於「包含薄膜面的法線方向(薄膜的厚度方向)中Nz値在 0〜1單調增加或單調減少的區域」,可藉由如文獻:Y. Takahashi, H. Watanabe and T. Kato5 u Depth-Dependent Determination of Molecular Orientation for WV-Film,,, ID W’04 (2 0 04)第651頁中所述的方法來確認。具體地,測 定薄膜的厚度方向中均等的5點之P 2的X、y及z成分, 使用由其所算出的nx、ny及nz而求得的Nz之値,係在0 〜1的範圍內變化,例如對於各5點而言,意味Nz値以大 ® 約〇、〇·25、0.5、0·75、1方式變化。又,就薄膜的Nz之 「單調增加及單調減少」而言,其增加率及減少率可變動, 而且沒有增減的範圍亦可,但單調增加中沒有最小減少的 範圍,且單調減少中沒有最小增加的範圍。較佳的增加率 爲固定的單調增加,或減少率爲固定的單調減少。 作爲本發明的透明薄膜之一態樣,可舉出具有由N z値 爲互相不同的2個以上之層所構成的多層構造之透明薄 膜。更具體地,具有聚合物薄膜、及其兩面上各自由相同 -1 1 -Rth〇) is the above-mentioned Re(X), the in-plane slow phase axis (determined by K0BRA 2 1 AD Η or WR) as the tilt axis (rotary axis), from -50 to the normal direction of the film. When the degree is up to +50 degrees, the light of the wavelength ληηι is incident from each oblique direction at a 1 degree degree and measured at 1 point, and the measured hysteresis 値 and the average refractive index are assumed and the input film is measured. Based on thick enamel, it is calculated by KOBRA 21ADH or WR. Further, in the above measurement, the assumption of the average refractive index may be a polymer handbook (JOHN WILEY & SONS), and a catalogue of various optical films. In the case where the average refractive index is not known, an Abbe refractometer can be used for the measurement. The average refractive index of the main optical film is exemplified below: deuterated cellulose (1.48), cycloolefin polymer (1.5 2), polycarbonate (1.5 9), polymethyl methacrylate (1.49), polystyrene (1.59). KOBRA 21 ADH or WR calculates nx, ny, and nz by inputting the assumption of the average refractive index and the film thickness. Nz = (nx - nz) / (nx - ny) is calculated from the calculated nx, ny, and nz. Further, in the present specification, the numerical range or the numerical range indicating the optical characteristics and the like can be interpreted as a range of the number or range of errors generally accepted in the liquid crystal display device or the member used therefor. The present invention relates to a transparent film comprising a region in which the Nz 値 in the normal direction of the film surface monotonously increases or monotonically decreases from 0 to 1, and the in-plane retardation 値Re of a wavelength of 50 nm is 5 1 0 to 6 1 Onm. The transparent film of the present invention is disposed between the polarizer and the liquid crystal cell by being combined with the polarizer, and contributes to a reduction in contrast reduction and color tone change of the tilt direction of the liquid crystal display device. Furthermore, "About the area where the normal direction of the film surface (the thickness direction of the film) is monotonically increasing or monotonically decreasing in the range of 0 to 1" can be referred to by the literature: Y. Takahashi, H. Watanabe and T Kato5 u Depth-Dependent Determination of Molecular Orientation for WV-Film,,, ID W'04 (2 0 04), page 651 to confirm. Specifically, the X, y, and z components of P 2 which are equal to five points in the thickness direction of the film are measured, and Nz obtained by using nx, ny, and nz calculated therefrom is used in the range of 0 to 1. The internal variation, for example, for each of the five points, means that Nz値 varies in the manner of large 〇, 〇·25, 0.5, 0·75, and 1. In addition, as for the "monotonous increase and monotonous decrease" of the Nz of the film, the increase rate and the decrease rate may vary, and there is no range of increase or decrease, but there is no minimum decrease range in the monotonous increase, and there is no monotonous decrease. The smallest increase in the range. The preferred rate of increase is a fixed monotonic increase, or a reduction in the rate of a fixed monotonic decrease. As one aspect of the transparent film of the present invention, a transparent film having a multilayer structure in which N z 値 is two or more layers different from each other is exemplified. More specifically, having a polymer film, and each of its faces is identical by -1 1 -
V 200827857 或不同的液晶組成物所構成的光學異方向性層之各至少一 層,一方的光學異方向性層之Nz爲0,聚合物薄膜的Nz 爲0.5,另一方的光學異方向性層之Nz爲1.0的透明薄膜 亦爲本發明的一態樣。若在聚合物薄膜的一面上形成複數 的各Nz爲互相不同的光學異方向性層,及/或對於支持的聚 合物薄膜而言,Nz爲互相不同的聚合物薄膜之多層構造 體,則可製作Nz在0〜1的範圍內之以微小變化率作單調 增加(或單調減少)的透明薄膜。 ® 第1圖顯示本發明之具有透明薄膜的偏光板之一例。第 1圖的偏光板10具有由碘等所染色的聚乙烯醇(PVA)薄膜 等所成的偏光鏡12、及在其表面上由醯化纖維素薄膜等所 成的保護薄膜1 4及1 6。保護薄膜1 6係本發明的透明薄膜, 滿足上述規定的光學特性。於將偏光板1 〇倂入液晶顯示裝 置時,與另一偏光板一起夾持液晶胞,且以本發明的透明 薄膜即保護薄膜1 6當作液晶胞側,使偏光板的互相吸收軸 成正交地配置。 ® 再者,本發明的透明薄膜未必要當作·偏光鏡的保護薄膜 直接貼合於偏光鏡的表面上。例如,本發明的透明薄膜亦 可當作光學補償薄膜配置於偏光鏡與液晶胞之間。於偏光 鏡與本發明的透明薄膜之間,配置偏光鏡的保護薄膜時, 該保護薄膜較佳爲沒有相位差的等方向性薄膜。 其次,參照圖式來說明本發明的透明薄膜及偏光板之作 用。第2圖〜第5圖各係從S2軸的正方向看見龐加萊 (poincare)球的圖。龐加萊球係記載偏光狀態的三次元地 -12- 200827857 圖,球的赤道上表示橢圓率爲0的直線偏光之偏光狀態。 第2圖中的點Ρ表示從傾斜方向所入射的光通過偏光鏡成 爲直線偏光,其偏光狀態。若偏光狀態點Ρ轉變成s 1軸上 的消光點之偏光狀態點Q,則消除正交偏光鏡的視野角依賴 性。因此,可藉由通過配置於偏光鏡的液晶胞側之保護薄 膜’將偏光狀態從點Ρ轉變成點Q,調整保護薄膜的雙折射 性°通過相位差區域所致的偏光狀態之變化,在龐加萊球 上’係按照光學特性來決定而在特定的軸旋轉,以特定角 度的回轉來表示。作爲偏光狀態點Ρ轉變成偏光狀態點Q 之一例,如第3圖所示地,使用當作保護薄膜的1 /2波長板, 以S2軸當作回轉軸,藉由僅π回轉而轉換。再者,回轉角 度係與通過的相位差區域之相位差成比例,且與入射光的 波長之倒數成比例。 然而,醯化纖維素薄膜等之作爲保護薄膜所使用的薄膜 之大多數的折射率(η),對於入射光的波長而言係不一樣, 通常愈長波長則有愈小的傾向,結果就相位差而言,入射 光愈長波長,則有愈小的波長依賴性。由於如此折射率的 波長依賴性之影響,加上如上述地回轉角度與λ的倒數成 比例,龐加萊球上所顯示的偏光狀態之遷移,係愈長波長 的光,回轉角度愈小。因此,藉由一片相位差板,將R光 (65 0nm )、G光(5 5 0nm)、及Β光(4 5 0nm)皆進行第3圖所示 的偏光狀態之轉換係困難的,例如,就中心波長的G光 (5 5 Onm)而言,即便使用可轉換到消光點的保護薄膜,也如 第4圖所示地,R光及B光會發生自消光點的偏移。 -13- 200827857 因此,於本發明中,不是如第3圖所示般僅利用薄膜的 雙折射性之偏光狀態的轉換,而是利用薄膜的雙折射性及 旋光性,轉換偏光狀態’以減輕上述波長依賴性。本發明 的透明薄膜包含薄膜面的法線方向中N z値在〇〜1單調增 加或單調減少的區域。該區域例如是極微小的膜厚之層僅 以無限大的數所積層的積層體,可近似爲在鄰接的層間Nz 僅極微小的增減之積層體。若以入射側的最表層之Nz= 1, 以出射側的最表層之Νζ = 0,表示入射於此假想積層體的光 之偏光狀態的轉換,則第1層LNz = 〇的直線偏光係受到該層 的雙折射性之影響,此時的轉換之軌跡表示以與點P的S2 軸成平行的軸當作回轉軸作回轉。由於在第2層中Nz微小 地減少,回轉軸係成爲從S 1軸上的點P,在S 1 = 0的方向僅 微小偏移的之與S2軸成平行的軸。在第3、第4層· · ·,Nz 係減少,回轉軸係在S 1=0的方向中移動,在Nz = 0.5的層 LNz = 0.5中,回轉軸係成爲S2軸。最後,在出射側的最表層 Lnz^中,回轉軸係成爲與消光點Q的S2軸成平行之軸。V 200827857 or at least one layer of each of the optically anisotropic layers composed of different liquid crystal compositions, the Nz of one of the optically anisotropic layers is 0, the Nz of the polymer film is 0.5, and the other optically isotropic layer A transparent film having a Nz of 1.0 is also an aspect of the present invention. If a plurality of optically anisotropic layers in which Nz are different from each other are formed on one surface of the polymer film, and/or a multilayer structure in which the Nz is a polymer film different from each other for the supported polymer film, A transparent film in which Nz is monotonously increased (or monotonically decreased) at a small rate of change in the range of 0 to 1 is produced. ® Fig. 1 shows an example of a polarizing plate having a transparent film of the present invention. The polarizing plate 10 of Fig. 1 has a polarizing mirror 12 made of a polyvinyl alcohol (PVA) film dyed with iodine or the like, and a protective film 14 and 1 formed of a deuterated cellulose film or the like on the surface thereof. 6. The protective film 16 is a transparent film of the present invention and satisfies the optical characteristics specified above. When the polarizing plate 1 is inserted into the liquid crystal display device, the liquid crystal cell is sandwiched together with the other polarizing plate, and the transparent film of the present invention, that is, the protective film 16 is used as the liquid crystal cell side, so that the polarizing plates are mutually absorbed. Configured orthogonally. Further, the transparent film of the present invention is not necessarily used as a protective film for a polarizer to directly adhere to the surface of the polarizer. For example, the transparent film of the present invention can also be disposed as an optical compensation film between the polarizer and the liquid crystal cell. When a protective film of a polarizer is disposed between the polarizing mirror and the transparent film of the present invention, the protective film is preferably an isotropic film having no phase difference. Next, the effect of the transparent film and the polarizing plate of the present invention will be described with reference to the drawings. Fig. 2 to Fig. 5 are diagrams showing a poincare ball from the positive direction of the S2 axis. The Poincaré ball system describes the three-dimensional land of the polarized state. -12- 200827857 The eccentricity of the ball indicates the polarized state of the linear polarized light with an ellipticity of zero. The point 第 in Fig. 2 indicates that the light incident from the oblique direction is linearly polarized by the polarizing mirror, and its light is in a polarized state. If the polarization state point Ρ is converted to the polarization state point Q of the extinction point on the s 1 axis, the viewing angle dependency of the orthogonal polarizer is eliminated. Therefore, by changing the polarization state from the point 成 to the point Q by the protective film disposed on the liquid crystal cell side of the polarizer, the birefringence of the protective film can be adjusted by the change in the polarization state caused by the phase difference region. The Poincaré ball is rotated on a specific axis depending on the optical characteristics, and is represented by a specific angle of rotation. As an example of the polarization state point Ρ being converted into the polarization state point Q, as shown in Fig. 3, a 1/2 wave plate as a protective film is used, and the S2 axis is used as a rotation axis, and is converted by only π rotation. Furthermore, the angle of rotation is proportional to the phase difference of the phase difference region passing through and is proportional to the reciprocal of the wavelength of the incident light. However, most of the refractive index (η) of a film used as a protective film such as a deuterated cellulose film is different for the wavelength of incident light, and generally the longer the wavelength is, the smaller the tendency is. In terms of phase difference, the longer the wavelength of the incident light, the smaller the wavelength dependence. Due to the influence of the wavelength dependence of the refractive index, and the above-described rotation angle is proportional to the reciprocal of λ, the transition of the polarization state displayed on the Poincare sphere is the longer the wavelength of the light, and the smaller the rotation angle. Therefore, it is difficult to convert the R light (65 0 nm), the G light (550 nm), and the neon light (450 nm) into the polarization state shown in FIG. 3 by one phase difference plate, for example, As for the G-light at the center wavelength (5 5 Onm), even if a protective film that can be switched to the extinction point is used, as shown in Fig. 4, the R light and the B light are shifted from the extinction point. Therefore, in the present invention, instead of the conversion of the birefringence polarization state of the film, as shown in Fig. 3, the birefringence and the optical rotation of the film are used, and the polarization state is switched to reduce The above wavelength dependence. The transparent film of the present invention comprises a region in which the N z 单 in the normal direction of the film surface monotonously increases or monotonously decreases in 〇 〜1. This region is, for example, a laminate in which a layer having a very small film thickness is laminated only in an infinite number, and can be approximated as a laminate having a very small increase or decrease in the adjacent layers Nz. If Nz = 1 on the most surface layer on the incident side and Νζ = 0 on the outermost layer on the exit side, indicating the transition of the polarization state of the light incident on the virtual laminate, the linear polarization of the first layer LNz = 受到 is received. The influence of the birefringence of the layer, the trajectory of the transition at this time means that the axis parallel to the S2 axis of the point P is rotated as a rotary axis. Since the Nz is slightly reduced in the second layer, the rotary axis is an axis which is parallel to the S2 axis from the point P on the S 1 axis and which is slightly shifted in the direction of S 1 = 0. In the third and fourth layers, the Nz system is reduced, and the rotary axis moves in the direction of S 1 = 0. In the layer LNz = 0.5 with Nz = 0.5, the rotary axis becomes the S2 axis. Finally, in the outermost layer Lnz^ on the exit side, the rotary axis becomes an axis parallel to the S2 axis of the extinction point Q.
其間的偏光狀態之轉換軌跡,就鄰接的層間之Nz的增 減ΔΝζ而言,若近似爲ΔΝζ- 0,可如第5圖地表示。第5 圖中所示的偏光狀態之轉換軌跡在第5圖中以虛線表示, 所謂表示旋光性的滾動圓錐,其中心係邊從S 1軸上的點Ρ 向S 1 =0的方向,再朝向負的方向移動,作一回轉而到達消 光點Q,沿著同一軌跡。折射率的波長分散性雖然亦會受到 表示旋光性的滾動圓錐之回轉所影響,但與第4圖所示之 僅利用雙折射性的回轉比較下,於偏光狀態到達消光點Q -14- 200827857 時,R光、G光及B光的分離變小,可減輕波長分散性。再 •者,以透明薄膜的Re(面內遲滯値的總和)當作龐加萊球上 的移動量,使滾動圓錐以3 60。回轉係必要的,560nm左右 成爲必要。實際上,在510〜610nm的範圍內對於習知例而 言係有效果。 i 本發明的透明薄膜,從另一觀點來表現時,可以雖然對 於薄膜的法線方向之入射光而言,不發生旋光性,但對於 傾斜方向的入射光而言,發生旋光性的薄膜來表現。更具 ^ 體地,本發明的透明薄膜,從其它觀點來看,可以對於從 薄膜面的法線方向所入射的光而言所測定的圓形遲滯 (CRE1)爲大約0,對於從對薄膜面互相不同的複數之傾斜方 向所入射的光而言所測定的(CRE2)的絕對値爲大略相等, 且不是〇當作特徴的透明薄膜來表現。在此,對薄膜面互 相不同的複數之傾斜方向,例如可定義爲在自薄膜面的法 線方向之極角6 0度,且以薄膜面內的遲相軸當作方位角0 度時,方位角爲45度、135度、225度、及315度的4個 ^ 方向。此處,就從該4個方向入射時CRE2的絕對値大略相 ' 等而言,於遲相軸方向以單純扭轉的薄膜中係無法滿足, 該薄膜與本發明的透明薄膜係明顯不同。本發明的透明薄 膜在厚度方向中,Nz係成爲不同的分布,結果以薄膜面內 .的遲相軸當作方位角〇度時,在方位角爲45度、135度、 225度、及3 1 5度的4個方向中符號雖然不同,但絕對値成 爲相等。對於從上述4個方向所入射的光而言’ CRE2的絕 對値各自較佳爲32〜3 8nm。再者,所謂的大略相等係指完 -15- 200827857 全相同或値的差異在5 nm以下。 薄膜的CRE(CRE1及CRE2) ’例如可藉由Axometrics公 司的 Mueller Matrix Polarimeter ”AxoScan”來測定。又,關 於 CRE 的詳細,在文獻:S. Y . Lu and R· A· Chipman,J. Opt Soc. Am A. 1 3 (1 996) 1 1 06·中有記載。 本發明的透明薄膜之原料係沒有特別的限制。例如,即 使爲拉伸雙折射聚合物薄膜,藉由將液晶性化合物固定在 特定的配向狀態而形成的光學異方向性層亦可。又,透明 薄膜係不限於單層構、造,亦可爲具有積層複數的層之多層 構造。於多層構造的態樣中,各層的材料可爲同種類或不 同種類。例如,也可爲由聚合物薄膜與液晶組成物所構成 的光學異方向性層之積層體。於多層構造的態樣中,若考 慮厚度,與高分子的拉伸薄膜之積層體比較下,含有經塗 布所形成的層之塗布型層的多層體係較佳的。 藉由選擇所用的原料、其配合量、製造條件等,將此等 値調整在所欲的範圍內,則可製作Nz値滿足上述條件的透 明薄膜。具體地,可藉由:混合波長分散不同的2種類以 上之聚合物(例如互相在主鏈方向的吸收波長不同的複數種 的聚合物);添加在紫外區域或紅外區域有吸收的添加劑, 控制可見光的波長分散;將在紫外區域或紅外區域有吸收 的添加劑,即構造上在薄膜的厚度方向、拉伸方向或非拉 伸方向中配向者,加到薄膜中;藉由塗布或貼合以成爲聚 合物層的多層體(例如互相雙折射率不同的聚合物層之多層 體);藉由在薄膜製程中在厚度方向給予不均勻的溫度分布 -16- 200827857 或紫外線的強度分布’以控制配向性或材料的均一性;等 等’以製作本發明的透明薄膜。作爲本發明的透明薄膜之 製作時所用的材料,並沒有特別的限制,較佳爲使用以醯 化纖維素及含脂環式構造的聚合物樹脂(原冰片烯系聚合物 等)當作主成分者。 又’本發明亦關於具有本發明的透明薄膜之偏光板。本 發明的偏光板較佳爲當作偏光鏡的一面之保護薄膜,即貼 合本發明的透明薄膜,使接觸偏光鏡的表面。於將本發明 的偏光板倂入液晶顯示裝置時,較佳爲將本發明的透明薄 膜配置在液晶胞側。 關於偏光板的特性,可以二色性(雙調作用)向量D或偏 光能力(偏振)向量P來記述。 所謂的二色性(雙調作用)向量D,在龐加萊球上,表示 透過光量成爲最大的偏光狀態,所謂的偏光能力(偏振)向量 P,在龐加萊球上,表示將無偏光入射時的出射偏光狀態。 以二色性向量〇 = (011、045、0〇、偏光能力向量1> = (?11、?45、 P〇所表示的向量。若使用Dua卜Rotate"Retarder方式的偏 光測定器當作計測器,由於可測定偏光膜與雙折射性的聚 合物薄膜之積層體的 D及P,故係較宜。Dual · Rotate · Retarder方式的偏光測定器、測定頭係包含用於作出偏波的 偏光發生器、及用於檢測偏波的偏光分析器’雙方的頭係 以高速回轉的波長板與偏光鏡所構成的偏光測定器。作爲 市售品,有 Axometrics 公司的 Mueller Matrix Polarimeter, 可以使用它。 -17 - 200827857 又,將二色性向量及偏光能力向量的各自 格化成1而作單位向量化,亦可以規格1 D’ = (Dh’、D45’、Dr’)及規格化偏光能力向量F Pr’)來記述。關於此等的詳細,在Y. Ootani p · 2 0 (2 0 0 7)) &S-Y.LuandR.A.Chipman:The transition trajectory of the polarization state therebetween is approximately ΔΝζ-0 when the increase or decrease ΔΝζ of the adjacent Nz between the layers is as shown in Fig. 5. The transition trajectory of the polarization state shown in Fig. 5 is indicated by a broken line in Fig. 5, and the so-called optical rotation rolling cone has a center line side from a point on the S 1 axis to a direction of S 1 =0, and then Moving in a negative direction, making a turn to reach the extinction point Q, along the same trajectory. Although the wavelength dispersion of the refractive index is also affected by the rotation of the rolling cone indicating the optical rotation, it is compared with the rotation using only the birefringence shown in Fig. 4, and reaches the extinction point in the polarized state. Q -14 - 200827857 When the separation of the R light, the G light, and the B light is small, the wavelength dispersion property can be alleviated. Further, the Re of the transparent film (the sum of the in-plane retardation 値) is taken as the amount of movement on the Poincare sphere, so that the rolling cone is 3 60. It is necessary for the rotation system to be around 560 nm. Actually, it is effective for the conventional example in the range of 510 to 610 nm. i When the transparent film of the present invention is expressed from another point of view, although the optical properties of the incident light in the normal direction of the film do not occur, an optically active film is generated for the incident light in the oblique direction. which performed. More specifically, the transparent film of the present invention, from another point of view, can have a circular hysteresis (CRE1) of about 0 for light incident from the normal direction of the film surface, for a pair of films. The absolute enthalpy of (CRE2) measured by the incident light in the oblique direction of the complex numbers different from each other is substantially equal, and is not expressed as a special transparent film. Here, the oblique direction of the plurality of mutually different film faces can be defined, for example, as a polar angle of 60 degrees from the normal direction of the film face, and when the azimuth axis in the film face is taken as an azimuth angle of 0 degrees. The azimuth angles are 4^ directions of 45 degrees, 135 degrees, 225 degrees, and 315 degrees. Here, the absolute 値 of the CRE2 when incident from the four directions is not satisfied in the film which is simply twisted in the direction of the slow axis, and the film is significantly different from the transparent film of the present invention. In the transparent film of the present invention, the Nz system has a different distribution in the thickness direction, and as a result, the azimuth angle is 45 degrees, 135 degrees, 225 degrees, and 3 when the late phase axis of the film is used as the azimuth angle. Although the symbols in the four directions of 1 5 degrees are different, they are absolutely equal. For the light incident from the above four directions, the absolute enthalpy of 'CRE2' is preferably 32 to 38 nm. Furthermore, the so-called roughly equal means that the difference between -15-200827857 is the same or 値 is below 5 nm. The CRE (CRE1 and CRE2)' of the film can be measured, for example, by Axometrics' Mueller Matrix Polarimeter "AxoScan". Further, the details of CRE are described in the literature: S. Y. Lu and R. A. Chipman, J. Opt Soc. Am A. 1 3 (1 996) 1 1 06·. The raw material of the transparent film of the present invention is not particularly limited. For example, even if the birefringent polymer film is stretched, an optically anisotropic layer formed by fixing a liquid crystal compound in a specific alignment state may be used. Further, the transparent film is not limited to a single layer structure, and may have a multilayer structure having a plurality of layers. In the multi-layered construction, the materials of the layers may be of the same type or different types. For example, it may be a laminate of an optically anisotropic layer composed of a polymer film and a liquid crystal composition. In the aspect of the multilayer structure, in consideration of the thickness, a multilayer system containing a coating layer of a layer formed by coating is preferable as compared with a laminate of a polymer stretched film. By selecting the raw materials used, the blending amount, the production conditions, and the like, and adjusting the enthalpy within the desired range, a transparent film having Nz 値 satisfying the above conditions can be produced. Specifically, it is possible to: mix two or more types of polymers having different wavelengths (for example, a plurality of polymers having different absorption wavelengths in the main chain direction); and add an additive having absorption in the ultraviolet region or the infrared region to control Dispersion of wavelength of visible light; an additive that absorbs in the ultraviolet region or the infrared region, that is, an alignment in the thickness direction, the stretching direction, or the non-stretching direction of the film, is added to the film; by coating or laminating a multilayer body that becomes a polymer layer (for example, a multilayer body of polymer layers having different birefringences); controlled by imparting a non-uniform temperature distribution in the thickness direction in the film process - 16 - 200827857 or ultraviolet intensity distribution ' Orientation or uniformity of the material; etc. to make the transparent film of the present invention. The material used in the production of the transparent film of the present invention is not particularly limited, and it is preferred to use a polymerized resin (original borneene-based polymer, etc.) having deuterated cellulose and an alicyclic structure as a main component. Ingredients. Further, the present invention also relates to a polarizing plate having the transparent film of the present invention. The polarizing plate of the present invention is preferably a protective film which is used as one side of the polarizing mirror, i.e., adheres to the transparent film of the present invention to contact the surface of the polarizer. When the polarizing plate of the present invention is incorporated into a liquid crystal display device, it is preferred to arrange the transparent film of the present invention on the liquid crystal cell side. The characteristics of the polarizing plate can be described by a dichroic (double-tuning) vector D or a polarizing power (polarization) vector P. The so-called dichroic (double-tuning) vector D, on the Poincare sphere, indicates the polarization state in which the amount of transmitted light becomes maximum, and the so-called polarization ability (polarization) vector P, on the Poincare sphere, indicates that there will be no polarization. The exiting polarization state at the time of incidence. The vector represented by the dichroic vector 〇 = (011, 045, 0 〇, polarizing power vector 1 > = (?11, ?45, P〇. If using the Dua Bo Rotate" Retarder mode polarizer as the measurement It is preferable to measure the D and P of the laminate of the polarizing film and the birefringent polymer film. The polarizer and the measuring head of the Dual · Rotate · Retarder method include polarized light for making a polarized wave. Both the generator and the polarizing analyzer for detecting the polarization wave are polarized measuring instruments made up of a high-speed rotating wavelength plate and a polarizing mirror. As a commercial product, Axometrics Mueller Matrix Polarimeter can be used. -17 - 200827857 In addition, the dichroism vector and the polarization vector are each made into a unit vectorization, and the specifications 1 D' = (Dh', D45', Dr') and the normalized polarization vector are also available. F Pr') is described. For details of this, in Y. Ootani p · 2 0 (2 0 0 7)) & SY.LuandR.A.Chipman:
Am.A 13 p.ll 06(1996))中有記載。 本發明的偏光板於以P ’來記載其特性時 P45’之絕對値|P45’|顯示0.9以上、較佳0.99 視角偏光板。 本發明的透明薄膜或偏光板可用於各種 示裝置。例如,可用於IPS模式、VA模式、 模式等各種模式的液晶顯示裝置。 關於本發明的透明薄膜之若干例子,以下 確認其效果的結果。 向量之大小規 七二色性向量 〜(Ph,、P45,、 :Ο plus E 29 J. Opt. S o c . ,係偏光板的 以上程度的廣 模式的液晶顯 TN模式、OCB 表中顯示實際It is described in Am. A 13 p.ll 06 (1996)). In the polarizing plate of the present invention, the absolute 値|P45'| of P45' is shown by P ′ to exhibit a viewing angle of 0.9 or more, preferably 0.99. The transparent film or polarizing plate of the present invention can be used in various display devices. For example, it can be used in various modes of liquid crystal display devices such as IPS mode, VA mode, and mode. Regarding some examples of the transparent film of the present invention, the results of the effects are confirmed below. Vector size gauge Seven dichroism vector ~ (Ph,, P45,, :Ο plus E 29 J. Opt. S o c . , is a polarizing plate of the above degree of wide mode liquid crystal display TN mode, OCB table shows the actual
-18- 200827857 [表1 ] Nz 面內 遲滯値 ㈣ CRE1 (nm) CRE2(nm) 的絕對値 @方位角 45度 CRE2(nm) 的絕對値 @方位角 135度 CRE2(nm) 的絕對値 @方位角 225度 CRE2(nm) 的絕對値 @方位角 315度 黒狀態的 透過率 (%) 比較例 〇.5(厚度方向均一) 275 0 0 0 0 0 0.034 例1 在厚度方向於〇〜1變化 510 0 38 38 38 38 0.031 例2 在厚度方向於〇〜1變化 550 0 35 35 35 35 0.021 例3 在厚度方向於〇〜1變化 560 0 35 35 35 35 0.021 例4 在厚度方向於0〜1變化 570 0 35 35 35 35 0.021 例5 在厚度方向於〇〜1變化 600 0 35 35 35 35 0.026 me 在厚度方向於〇〜1變化 610 0 32 32 32 32 0.028 比較例係薄膜的厚度方向之Nz値爲0.5 ·的均勻薄膜, 其爲用於與本發明比較而顯示的例子。例1〜6皆爲厚度方 向中Nz値在0〜1變化的薄膜,且面內遲滯値Re滿足510 〜6 1 Onm,爲本發明的透明薄膜之例子。再者,由表中的數 値可理解於所有的例1〜6中,CRE 1爲0,且對於從4個方 向的入射光而言所測定的CRE2不爲0且相等。 與比較例比較下,可理解例1〜6皆是黑狀態的透過率 (%)低,對比經改善。 同樣地在透明薄膜上積層偏光膜的狀態,即在偏光板的 形態,於自薄膜面的法線方向的極角60度,且以薄膜面內 的遲相軸當作方位角〇度時,在方位角爲45度的方向將光 線入射,及使上述透明薄膜位於偏光膜的出射側,計測規 格化偏光能力向量P’ = (Ph’、P45’、Pr’)。由於P’爲單位向 量,故亦考慮向量的大小之最大値爲1,例1〜6的偏光板 之P4 5’的絕對値| P45,丨,由下表可理解爲0.99以上且小 於1。 -19- 200827857 [表2]-18- 200827857 [Table 1] Nz in-plane retardation 四 (4) CRE1 (nm) CRE2 (nm) absolute 値 @ azimuth angle 45 degrees CRE2 (nm) absolute 値 @ azimuth angle 135 degrees CRE2 (nm) absolute 値 @ Aperture angle 225 degrees CRE2 (nm) Absolute 値 @ azimuth 315 degrees 黒 state transmittance (%) Comparative example 5.5 (thickness in the thickness direction) 275 0 0 0 0 0 0.034 Example 1 in the thickness direction 〇~1 Change 510 0 38 38 38 38 0.031 Example 2 Change in thickness direction from 〇 to 1 550 0 35 35 35 35 0.021 Example 3 Change in thickness direction from 〇 to 1 560 0 35 35 35 35 0.021 Example 4 In the thickness direction at 0~ 1 change 570 0 35 35 35 35 0.021 Example 5 Change in thickness direction from 〇 to 1 600 0 35 35 35 35 0.026 me Change in thickness direction from 〇 to 1 610 0 32 32 32 32 0.028 Comparative example film thickness direction A uniform film having a Nz 値 of 0.5 ·, which is an example for comparison with the present invention. Examples 1 to 6 are films in which the Nz 变化 varies in the thickness direction from 0 to 1, and the in-plane retardation 値Re satisfies 510 to 6 1 Onm, which is an example of the transparent film of the present invention. Further, it can be understood from the numbers in the table that in all of Examples 1 to 6, CRE 1 is 0, and CRE2 measured for incident light from four directions is not 0 and is equal. In comparison with the comparative examples, it can be understood that the transmittances (%) of the examples 1 to 6 are all in the black state, and the contrast is improved. Similarly, in the state in which the polarizing film is laminated on the transparent film, that is, in the form of the polarizing plate, when the polar angle is 60 degrees from the normal direction of the film surface, and the azimuth angle in the film surface is taken as the azimuth angle, The light is incident in a direction in which the azimuth angle is 45 degrees, and the transparent film is placed on the exit side of the polarizing film, and the normalized polarization ability vector P' = (Ph', P45', Pr') is measured. Since P' is a unit vector, the maximum 値 of the magnitude of the vector is also considered to be 1, and the absolute 値| P45 of the P4 5' of the polarizing plate of Examples 1 to 6 is 0.99 or more and less than 1. -19- 200827857 [Table 2]
Nz jPh,| |P455I |Pr,丨 黑狀態的透過率(%) 比較例 0.5(厚度方向均勻) 0.108 0.994 0.000 ^ 0.034 例1 在厚度方向於〇〜1變化 0.138 0.990 0.006 0.031 例2 在厚度方向於0〜1變化 0.107 0.994 0.000 0.021 例3 在厚度方向於〇〜1變化 0.099 0.995 0.001 0.021 例4 在厚度方向於〇〜1變化 0.093 0.996 0.002 0.021 例5 在厚度方向於〇〜1變化 0.075 0.997 0.010 一 0.026 例6 在厚度方向於0〜1變化 0.070 0.997 0.014 0.028 【實施例】 接著,說明實際地分別製作如以下所記載的透明薄膜及 偏光板,用於IPS模式的液晶顯示裝置’確認其效果的實施 例。但是,本發明不受以下的實施例所限定。 [比較例1] <薄膜1的製作> 於長度l〇〇m、寬度180mm、厚度ΙΙΟμπι的Re爲Onm 的聚碳酸酯之兩面上,經由丙烯酸系黏著層來黏著1 65度 的尺寸變化率(MD/TD)爲1.15的聚酯薄膜,在輥拉伸機的 輥速比爲0.97之條件下,且在輥的溫度爲165度的常溫氣 氛下作處理,使聚碳酸酯收縮後,剝離聚酯薄膜。將此薄 膜在溫度1 63度的氣氛下,於寬度方向中拉伸1 . 1倍,得到 薄膜1。 使用自動雙折射率計(K0BRA-21ADH,王子計測機器 (股)公司製),測定Re的光入射角度依賴性,算出此等的光 學特性,結果確認R e爲2 7 5 n m,N z爲0.5,遲相軸在與長 -20- 200827857 度方向成正交的方向。對於薄膜1,使用Ax0metrics公司 的AxoScan,測定波長5 5 0nm的正面之CR1、極角60°的方 位角45度、135度、225度、3 15度之CR2,結果CR1及全 部方位角的CR2皆爲Onm。 <比較例用偏光板1之製作> 將厚度80μηι的捲筒狀聚乙烯醇薄膜在碘水溶液中連續 拉伸5倍,使乾燥而得到偏光膜。聚乙烯醇係使用可樂麗 製的PVA-11 7Η。在該偏光膜的一面重疊黏貼比較例用薄膜 • 1,在另一面重疊黏貼當作保護薄膜的富士軟片公司製Nz jPh,| |P455I |Pr, transmittance in black state (%) Comparative example 0.5 (thickness in thickness direction) 0.108 0.994 0.000 ^ 0.034 Example 1 Change in thickness direction 〇~1 0.138 0.990 0.006 0.031 Example 2 In the thickness direction Change in 0~1 0.107 0.994 0.000 0.021 Example 3 Change in thickness direction 〇~1 0.099 0.995 0.001 0.021 Example 4 Change in thickness direction 〇~1 0.093 0.996 0.002 0.021 Example 5 Change in thickness direction 〇~1 0.075 0.997 0.010 A case of the IPS mode liquid crystal display device of the IPS mode is confirmed to be effective in the actual production of the transparent film and the polarizing plate as described below. An embodiment. However, the invention is not limited by the following examples. [Comparative Example 1] <Production of Film 1> A size change of 1 65 degrees was adhered via an acrylic adhesive layer on both sides of a polycarbonate having a length of 10 mm, a width of 180 mm, and a thickness of ΙΙΟμπι Re of Onm. A polyester film having a ratio (MD/TD) of 1.15, which is treated under the conditions of a roll speed of a roll speed of 0.97 and a normal temperature of 165 degrees at a roll temperature to shrink the polycarbonate. Peel the polyester film. This film was stretched by 1.1 times in the width direction under an atmosphere of a temperature of 1 to 63 ° to obtain a film 1. The optical incident angle dependence of Re was measured using an automatic birefringence meter (K0BRA-21ADH, manufactured by Oji Scientific Instruments Co., Ltd.), and the optical characteristics were calculated. As a result, it was confirmed that R e was 2 7 5 nm, and N z was 0.5, the slow phase axis is in a direction orthogonal to the length -20-200827857 degrees. For the film 1, AxScan of Ax0metrics was used to measure CR1 of the front side of the wavelength of 550 nm, and the azimuth angle of 45 degrees, 135 degrees, 225 degrees, and 3 15 degrees of the CR2 of the polar angle of 60°, and the CR1 and the CR2 of all azimuth angles were obtained. All are Onm. <Preparation of polarizing plate 1 for comparative example> A roll-shaped polyvinyl alcohol film having a thickness of 80 μm was continuously stretched five times in an aqueous iodine solution, and dried to obtain a polarizing film. For the polyvinyl alcohol, PVA-11 7® manufactured by Kuraray was used. The film for the comparative example was laminated on one surface of the polarizing film. 1. The Fujifilm Co., Ltd. was used as a protective film on the other side.
Tackfilm TD8 0U,製作比較例用偏光板1。 以Axo scan來測定該比較例用偏光板1的規格化偏光能 力向量P’。於自薄膜面的法線方向之極角60度,且以薄膜 面內的遲相軸當作方位角0度時,在方位角爲45度的方向 將光線入射,使比較例用薄膜1位於偏光膜的出射側而測 定,規格化偏光能力向量P’的成.分P45’之絕對値爲0.994。 [實施例1] ® 〈透明薄膜10的製作〉 藉由下述方法分別在比較例1所製作的薄膜1的一面上 形成光學異方向性層1,及在另一面上形成光學異方向性層 2,以製作本發明的實施例之透明薄膜10。 <由棒狀液晶組成物所構成的光學異方向性層1之形成> (配向膜的形成) 調製以下組成的配向膜塗布液。 -21 - 200827857 下述的高分子化合物P 4質量份 三乙胺 . 2質量份 D e c ο n a 1 E X - 5 2 1 的 5 % 水溶液 (NAGASE化成工業株式會社的環氧化合物)8.1質量份 水 57質量份 甲醇 29質量份Tackfilm TD8 0U, a polarizing plate 1 for comparative use was produced. The normalized polarization ability vector P' of the polarizing plate 1 for this comparative example was measured by Axo scan. When the polar angle of the normal direction of the film surface is 60 degrees, and the azimuth angle is 0 degree in the film surface, the light is incident in the direction of the azimuth angle of 45 degrees, so that the film 1 of the comparative example is located. The absolute side of the normalized polarizing ability vector P' was found to be 0.994 on the exit side of the polarizing film. [Example 1] ® <Preparation of Transparent Film 10> An optically anisotropic layer 1 was formed on one surface of the film 1 produced in Comparative Example 1 by the following method, and an optically anisotropic layer was formed on the other surface. 2, to produce a transparent film 10 of an embodiment of the present invention. <Formation of optically anisotropic layer 1 composed of a rod-like liquid crystal composition> (Formation of alignment film) An alignment film coating liquid having the following composition was prepared. -21 - 200827857 The following polymer compound P 4 parts by mass of triethylamine. 2 parts by mass of D ec ο na 1 EX - 5 2 1 5% aqueous solution (epoxy compound of NAGASE Chemical Industry Co., Ltd.) 8.1 parts by mass of water 57 parts by mass of methanol 29 parts by mass
高分子化合物P 4-CH2CH)^r4CH2CH^~~(-CH2CH^Polymer Compound P 4-CH2CH)^r4CH2CH^~~(-CH2CH^
將配向膜塗布液塗布在薄膜1的一面,在2 5 °C 3 0秒, 以120 °C的溫風作120秒的乾燥。乾燥後的配向膜之厚度爲 1·5μιη。接著,對所形成的膜,在與透明薄膜1的長度方向 同一方向作摩擦處理。 (光學異方向性層1的形成) 調製下述組成的光學異方向性層用塗布液。 下述的棒狀液晶性化合物(例示化合物IV-2) 38.1質量% 下述的增感劑A 0.3 8質量% 下述的光聚合引發劑B 1 . 1 4質量% 0.1 9質量% 0.0 4質量% 6 0.1 5質量% 下述的配向控制劑C 戊二醛 甲基乙基酮 -22- 200827857The alignment film coating liquid was applied to one surface of the film 1, and dried at 120 ° C for 120 seconds at 25 ° C for 30 seconds. The thickness of the alignment film after drying was 1. 5 μm. Next, the formed film was subjected to a rubbing treatment in the same direction as the longitudinal direction of the transparent film 1. (Formation of Optically Isotropic Layer 1) A coating liquid for an optically anisotropic layer having the following composition was prepared. The following rod-like liquid crystal compound (exemplified compound IV-2) 38.1% by mass The following sensitizer A 0.3 8 mass% The following photopolymerization initiator B 1 .14 mass% 0.1 9 mass% 0.0 4 mass % 6 0.1 5质量% The following alignment control agent C glutaraldehyde methyl ethyl ketone-22- 200827857
光聚合引發劑BPhotopolymerization initiator B
於上述所形成的配向膜之摩擦處理面上,使用桿塗機來 連續塗布所調製的光學異方向性層用塗布液,作乾燥及加 熱(配向熟成),再照射紫外線,將棒狀液晶性分子固定成水 平配向狀態,形成光學異方向性層1(厚度1.1 μπι)。 將所形成的光學異方向性層1轉印到玻璃基板,測定雙 折射特性,結/果Νζ値爲1,Re値爲M3 nm。遲相軸係與薄 膜的長度方向(摩擦方向)成正交的方向。 -23 - 200827857 <由圓盤狀液晶組成物所構成的光學異方向性層2之形成> (配向膜的形成) 於薄膜1的另一面上,用線桿塗布機以20ml/m2來塗布 下述組成的配向膜塗布液。以60 °C的溫風歷60秒,再以 100 °C的溫風歷120秒作乾燥,形成膜。接著,對所形成的 膜,在與薄膜1的遲相軸方向成平行的方向施予摩擦處理, 形成配向膜。On the rubbing treatment surface of the alignment film formed as described above, the coating liquid for the optically anisotropic layer is continuously applied by a bar coater, dried and heated (alignment aging), and then irradiated with ultraviolet rays to obtain a rod-like liquid crystal property. The molecules are fixed in a horizontal alignment state to form an optically anisotropic layer 1 (thickness 1.1 μm). The formed optically anisotropic layer 1 was transferred onto a glass substrate, and the birefringence characteristics were measured, and the knot/fruit Νζ値 was 1, and Re 値 was M3 nm. The retardation axis is oriented in a direction orthogonal to the longitudinal direction (friction direction) of the film. -23 - 200827857 <Formation of optically anisotropic layer 2 composed of discotic liquid crystal composition> (Formation of alignment film) On the other surface of film 1, with a wire coater at 20 ml/m2 An alignment film coating liquid having the following composition was applied. The film was formed by drying at 60 ° C for 60 seconds and then drying at 100 ° C for 120 seconds. Next, the formed film is subjected to a rubbing treatment in a direction parallel to the direction of the slow axis of the film 1 to form an alignment film.
1 〇質量份 3 7 1質量份 1 1 9質量份 0.5質量份 〇. 3質量份 配向膜塗布液的組成 下述的改性聚乙烯醇 水 甲醇 戊二醛 氟化四甲銨 改性聚乙烯醇1 〇 parts by mass 3 7 1 part by mass 1 1 9 parts by mass 0.5 parts by mass 3. 3 parts by mass of the composition of the alignment film coating liquid The following modified polyvinyl alcohol water methanol glutaraldehyde fluorinated tetramethylammonium modified polyethylene alcohol
—^CH2-CH—ί-fcH2-CH-U_CH2_CH—V V 2 I /863V I /12V I IlJ . CH3 OH OCOCHs oconhch2ch2ococ=ch2 (光學異方向性層2的形成) 接著,於配向膜的摩擦處理面上,用#4線桿來塗布由 1 · 8克下述的碟狀液晶性化合物、0.2克環氧乙烷改性三羥 甲基丙烷三丙烯酸酯(v#3 60,大阪有機化學(股)製)、0.06 克光聚合引發劑(Irgacure 907,Ciba-Geigy公司製)、0.02 克增感劑(Kayacure DETX,日本化藥(股)製)、0.01克空氣 界面側垂直配向劑(P-6)溶解在3.9克甲基乙基酮中而成的 -24-—^CH2-CH—ί-fcH2-CH-U_CH2_CH—VV 2 I /863V I /12V I IlJ . CH3 OH OCOCHs oconhch2ch2ococ=ch2 (Formation of optical anisotropic layer 2) Next, on the rubbing treatment surface of the alignment film On the top, use #4 wire rod to coat 1.8 g of the following discotic liquid crystalline compound, 0.2 g of ethylene oxide modified trimethylolpropane triacrylate (v#3 60, Osaka Organic Chemicals Co., Ltd. )), 0.06 g of photopolymerization initiator (Irgacure 907, manufactured by Ciba-Geigy Co., Ltd.), 0.02 g of sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.), and 0.01 g of air interface side vertical alignment agent (P- 6)-24- dissolved in 3.9 g of methyl ethyl ketone
200827857 溶液。將其黏貼在金屬框,於12 5 °c的恒溫槽c 以使碟狀液晶化合物配向。接著’在100°c 高壓水銀燈,照射3 0秒的u V ’以交聯碟狀 然後,放置冷卻到室溫爲止。如此地’形成 層2。 碟狀液晶性化合物 ((H2)4-〇C〇-CH=CH2 戶加熱3分鐘, 使用 120W/cm :液晶化合物。 光學異方向性 空氣界面側垂直配向劑P-6200827857 solution. Paste it in a metal frame at a thermostat c at 12 ° C to align the discotic liquid crystal compound. Then, at a high pressure mercury lamp of 100 ° C, the UVV of 30 seconds was irradiated to cross-link the dish, and then left to cool to room temperature. Layer 2 is formed as such. Disc-like liquid crystalline compound ((H2)4-〇C〇-CH=CH2 household heated for 3 minutes, using 120 W/cm: liquid crystal compound. Optical anisotropy Air interface side vertical alignment agent P-6
f fb3 CO2CH2CH2OH C02C4Hg 0〇2Η a/blA2/b3-33/28/33/6 Mw^OOO 將所形成的光學異方向性層2轉印到玻焉 折射特性,結果Nz値爲0,Re値爲142nm。 係與配向膜的摩擦方向成平行。 如此地製作於薄膜1的一面設有光學異〕 另一面設有光學異方向性層2的透明薄膜10 測定該透明薄膜1 〇的面內遲滯値Re,結果: 該透明薄膜10之厚度方向的Nz値爲在0〜 學異方向性層2爲Νζ = 0,薄膜1爲Nz = 0.5, 層1爲Nz=l),且波長5 5 0nm的面內遲滯値 係本發明的實施例之透明薄膜。 i基板,測定雙 遲相軸的方向 ί向性層1、於 。在波長550nm 焉 5 6 0 n m 0 即, 1單調增加(光 光學異方向性 Re 爲 5 6 Onm, -25- 200827857 對所製作的透明薄膜 10,使用 Axometrics公司的 AxoScan,測定波長5 5 0nm的正面之CR1,結果CRl = 〇。又, 測定極角60°的方位角45度、135度、225度、315度之CR2, 結果方位角45度及225度的CR2 = 3 2nm,方位角1 35度及 3 15度的CR2 = -3 2nm。即,方位角45度、135度、225度、 3 15度的CR2之絕對値係大略相等,爲32nm。 <偏光板1 〇的製作> 將厚度80μιη的捲筒狀聚乙烯醇薄膜在碘水溶液中連續 ^ 拉伸5倍,使乾燥而得到偏光膜。聚乙烯醇係使用可樂麗 製的PVA-11 7Η。在該偏光膜的一面重疊黏貼透明薄膜10, 在另一面重疊黏貼當作保護薄膜的富士軟片公司製 Tackfilm TD8 0U,製作偏光板10。再者,將透明薄膜10重 疊於偏光膜上時,使透明薄膜1 0的光學異方向性層1之面 與偏光膜接觸而重疊。 以Axoscan來測定該偏光板10的規格化偏光能力向量 P’。於自薄膜面的法線方向之極角60度,且以薄膜面內的 ^ 遲相軸當作方位角〇度時,在方位角爲45度的方向將光線 入射,使透明薄膜1 〇位於偏光膜的出射側而測定,規格化 偏光能力向量P’的成分P45’之絕對値爲0.995。 [實施例2] <偏光板1 1的製作> 除了在將透明薄膜1 〇重疊於偏光膜上時,以透明薄膜 1 0的光學異方向性層2之面與偏光膜接觸而貼合以外,藉 由與實施例1完全相同的方法,製作實施例2的偏光板1 1。 -26- 200827857 以Axo scan來測定該偏光板1 1的規格化偏光能力向量 P’。於自薄膜面的法線方向之極角60度,且以薄膜面內的 遲相軸當作方位角0度時,在方位角爲45度的方向將光線 入射,使透明薄膜位於偏光膜的出射側而測定,規格化偏 光能力向量P’的成分P45’之絕對値爲0.995。 [對液晶顯示裝置的封裝及評價] 使用比較例1、實施例1、及實施例2所分別製作的偏 光板1、10及11,分別製作液晶顯示裝置。 具體地,以各偏光板1、1 〇及1 1與習用的偏光板(偏光 板的保護層Tackfilm係使用富軟片公司製的Z-Tack),夾持 IP S型液晶胞,以製作液晶顯示裝置。留意使偏光板1、1 0 及1 1的薄膜1、透明薄膜1 〇及1 1分別成爲液晶胞側而夾 持。又,夾持液晶胞的2個偏光板之面內吸收軸係正交, 且以各偏光板1、1 〇及1 1的面內吸收軸與IP s型液晶胞的 面內遲相軸成平行的方式來夾持。IP S型液晶胞的雙折射爲 3 0 Onm,以電壓施加狀態下成水平配向的方式來製作。液晶 係使用Merck公司的ZLI-4792。 在極角6 0度、方位角4 5度測定如此所製作的液晶顯示 裝置之電壓施加狀態即黑狀態的透過率,相對於使用比較 例1的偏光板1之液晶顯示裝置時的〇 . 〇 3 5 %,使用實施例 1的偏光板1〇之液晶顯示裝置時爲0.02%,使用實施例2 的偏光板1 1之液晶顯示裝置時爲〇 . 〇 2 %。由此可理解’與 比較例1的偏光板1比較下,本發明的實施例之偏光板1 〇 及1 1係黑狀態的透過率小,更改善對比。 -27 - 200827857 【圖式簡單說明】 第1圖係本發明的偏光板之一例的截面模型圖。 第2圖係顯示龐加萊球狀的任意直線偏光狀態點p及_ 消光點Q的模型圖。 第3圖係顯示從龐加萊球狀的任意直線偏光狀態點p胃 其消光點Q的習知轉換例之軌跡的模型圖。 第4圖係關於各R光、G光及B光,顯示從龐加萊球狀 的任意直線偏光狀態點P到其消光點Q的習知轉換例之軌 ® 跡的模型圖。 第5圖係關於各R光、G光及B光’顯示利用本發明的 透明薄膜,從龐加萊球狀的任意直線偏光狀態點P到其消 光點Q的轉換例之軌跡的模型圖。 【主要元件 符 號 說明】 10 偏 光 板 12 偏 光 鏡 14 保 護 薄 膜 16 本 發 明 的透明薄膜 -28-f fb3 CO2CH2CH2OH C02C4Hg 0〇2Η a/blA2/b3-33/28/33/6 Mw^OOO The optically anisotropic layer 2 formed is transferred to the glass iridium refractive index, and the result is Nz値 is 0, and Re値 is 142nm. It is parallel to the rubbing direction of the alignment film. The transparent film 10 having the optically anisotropic layer 2 on the other surface is formed on the one surface of the film 1 as described above. The in-plane retardation 値Re of the transparent film 1 is measured. As a result, the transparent film 10 is in the thickness direction. Nz値 is in the 0~ learning directional layer 2 is Νζ = 0, film 1 is Nz = 0.5, layer 1 is Nz = l), and the in-plane hysteresis of wavelength 550 nm is transparent in the embodiment of the present invention. film. For the i-substrate, measure the direction of the double-latency axis. At a wavelength of 550 nm 焉 5 6 0 nm 0 , 1 monotonically increases (optical optical anisotropy Re is 5 6 Onm, -25-200827857. For the transparent film 10 produced, Axometrics AxoScan is used to measure a wavelength of 550 nm. CR1 on the front, CRl = 〇. In addition, CR2 with azimuth angle of 45°, 135 degrees, 225 degrees, and 315 degrees is measured at a polar angle of 60°, and the azimuth angle is 45 degrees and 225 degrees is CR2 = 3 2 nm. Azimuth angle 1 CR2 = -3 2nm at 35 degrees and 3 15 degrees. That is, the absolute enthalpy of CR2 with azimuth angles of 45 degrees, 135 degrees, 225 degrees, and 3 15 degrees is roughly equal to 32 nm. <Production of polarizing plate 1 & A roll of polyvinyl alcohol film having a thickness of 80 μm was continuously stretched 5 times in an aqueous solution of iodine to obtain a polarizing film by drying. Polyvinyl alcohol was used as PVA-11 7Η manufactured by Kuraray. On one side of the polarizing film The transparent film 10 was superposed on the other surface, and the Tackfilm TD8 0U manufactured by Fujifilm Co., Ltd., which was used as a protective film, was laminated on the other surface to prepare a polarizing plate 10. Further, when the transparent film 10 was superposed on the polarizing film, the optical film of the transparent film 10 was made. The surface of the different directional layer 1 is in contact with the polarizing film and overlaps. With Axoscan The normalized polarizing ability vector P' of the polarizing plate 10 is measured. The polar angle is 60 degrees from the normal direction of the film surface, and the azimuth angle is the azimuth angle when the retardation axis in the film plane is used as the azimuth angle. In the direction of 45 degrees, light is incident, and the transparent film 1 〇 is measured on the exit side of the polarizing film, and the absolute value of the component P45' of the normalized polarizing ability vector P' is 0.995. [Embodiment 2] <Polarizing plate 1 1 Production> When the transparent film 1 〇 is superposed on the polarizing film, the surface of the optically anisotropic layer 2 of the transparent film 10 is brought into contact with the polarizing film and bonded, and the same as in the first embodiment. Method, the polarizing plate 1 of Example 2 was produced. -26- 200827857 The normalized polarizing ability vector P' of the polarizing plate 1 1 was measured by Axo scan, and the polar angle was 60 degrees from the normal direction of the film surface, and When the azimuth angle in the film plane is 0 degree, the light is incident in the direction of the azimuth angle of 45 degrees, and the transparent film is placed on the exit side of the polarizing film, and the component P45 of the normalized polarization ability vector P' is measured. 'The absolute 値 is 0.995. [The seal of the liquid crystal display device Packing and Evaluation] Using the polarizing plates 1, 10, and 11 produced in Comparative Example 1, Example 1, and Example 2, respectively, liquid crystal display devices were produced. Specifically, each of the polarizing plates 1, 1 and 11 was used. A polarizing plate (a protective layer of a polarizing plate, Tackfilm is a Z-Tack manufactured by Fuko Film Co., Ltd.) is used, and an IP S-type liquid crystal cell is sandwiched to produce a liquid crystal display device. Note that the thin film 1 of the polarizing plates 1, 10 and 1 1 and the transparent films 1 and 1 are respectively sandwiched by the liquid crystal cell side. Further, the in-plane absorption axes of the two polarizing plates sandwiching the liquid crystal cell are orthogonal, and the in-plane absorption axes of the respective polarizing plates 1, 1 and 11 are in-plane with the in-plane phase of the IP s type liquid crystal cell. Parallel way to clamp. The IP S type liquid crystal cell has a birefringence of 30 Onm and is formed in a horizontal alignment manner in a voltage application state. The liquid crystal system uses the ZLI-4792 from Merck. The transmittance of the liquid state of the liquid crystal display device thus produced, that is, the black state, was measured at a polar angle of 60 degrees and an azimuth angle of 45 degrees, with respect to the liquid crystal display device of the polarizing plate 1 of Comparative Example 1. 35% is 0.02% when the liquid crystal display device of the polarizing plate of Example 1 is used, and 液晶2% when the liquid crystal display device of the polarizing plate 1 of Example 2 is used. From this, it can be understood that the transmittance of the polarizing plates 1 and 11 in the black state of the embodiment of the present invention is small as compared with the polarizing plate 1 of Comparative Example 1, and the contrast is further improved. -27 - 200827857 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional model view showing an example of a polarizing plate of the present invention. Fig. 2 is a model diagram showing an arbitrary linearly polarized state point p and a _ extinction point Q of a Poincare sphere. Fig. 3 is a model diagram showing a trajectory of a conventional conversion example of the extinction point Q of the stomach from the arbitrary linearly polarized state point p of the Poincare. Fig. 4 is a model diagram showing a track of a conventional conversion example from the arbitrary linearly polarized state point P of the Poincare sphere to the extinction point Q for each of the R light, the G light, and the B light. Fig. 5 is a model diagram showing a trajectory of a conversion example from the arbitrary linearly polarized state point P of the Poincare sphere to the extinction point Q thereof, using the transparent film of the present invention for each of the R light, the G light, and the B light. [Main component symbol description] 10 Polarizing plate 12 Polarizing mirror 14 Protective film 16 Transparent film of the invention -28-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006309949 | 2006-11-16 | ||
JP2007227346A JP5049705B2 (en) | 2006-11-16 | 2007-09-03 | Transparent film, polarizing plate, and liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200827857A true TW200827857A (en) | 2008-07-01 |
TWI408457B TWI408457B (en) | 2013-09-11 |
Family
ID=39606227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096142612A TWI408457B (en) | 2006-11-16 | 2007-11-12 | Transparent film, polarizing plate and liquid crystal display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5049705B2 (en) |
KR (1) | KR101388366B1 (en) |
TW (1) | TWI408457B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5657228B2 (en) * | 2009-09-30 | 2015-01-21 | 富士フイルム株式会社 | Retardation film, method for producing the same, polarizing plate having the same, and liquid crystal display device |
JP7317549B2 (en) * | 2019-04-02 | 2023-07-31 | 日東電工株式会社 | Polarizing plate and image display device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2818983B2 (en) * | 1990-10-24 | 1998-10-30 | 日東電工株式会社 | Method for producing birefringent film |
JP2000273205A (en) * | 1999-03-25 | 2000-10-03 | Sumitomo Chem Co Ltd | Optical anisotropic film and liquid crystal display |
JP4316131B2 (en) * | 2000-11-21 | 2009-08-19 | 富士フイルム株式会社 | Method for producing optical compensation film |
JP4750982B2 (en) * | 2001-09-19 | 2011-08-17 | 株式会社カネカ | Retardation film |
JP2003215341A (en) * | 2002-01-25 | 2003-07-30 | Nippon Oil Corp | Circularly polarizing plate and liquid crystal display |
JP4233431B2 (en) * | 2003-04-01 | 2009-03-04 | 日東電工株式会社 | Optical element, polarizing element, illumination device, and liquid crystal display device |
JP2005062672A (en) * | 2003-08-19 | 2005-03-10 | Fuji Photo Film Co Ltd | Optical anisotropic layer, retardation plate using the same, elliptic polarization plate and liquid crystal display device |
JP4044485B2 (en) * | 2003-05-02 | 2008-02-06 | 日東電工株式会社 | Optical film, method for producing the same, and polarizing plate using the same |
JP2005222013A (en) * | 2004-01-06 | 2005-08-18 | Nitto Denko Corp | Fabrication method for polarizing plate, polarizing plate, optical film and image display apparatus |
JP3815790B1 (en) * | 2004-07-16 | 2006-08-30 | 日東電工株式会社 | Retardation film, optical film, liquid crystal panel, liquid crystal display device, and image display device |
US7527834B2 (en) * | 2004-08-31 | 2009-05-05 | Nitto Denko Corporation | Retardation films for the elimination of leakage of light through cross polarizers in LCD |
US20070253060A1 (en) * | 2004-09-01 | 2007-11-01 | Nitto Denko Corporation | Polarizer, Polarizing Plate,Optical Film, and Image Display |
JP4784972B2 (en) * | 2005-04-26 | 2011-10-05 | 日東電工株式会社 | Optical film, liquid crystal panel, and liquid crystal display device |
-
2007
- 2007-09-03 JP JP2007227346A patent/JP5049705B2/en not_active Expired - Fee Related
- 2007-11-12 TW TW096142612A patent/TWI408457B/en not_active IP Right Cessation
- 2007-11-15 KR KR1020070116437A patent/KR101388366B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TWI408457B (en) | 2013-09-11 |
JP5049705B2 (en) | 2012-10-17 |
KR20080044778A (en) | 2008-05-21 |
KR101388366B1 (en) | 2014-04-22 |
JP2008146020A (en) | 2008-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4538096B2 (en) | Liquid crystal display | |
EP2487536B1 (en) | Liquid-crystal display device | |
TWI245937B (en) | Polarization rotators, articles containing the polarization rotators, and methods of making and using the same | |
JP5000729B2 (en) | Manufacturing method of liquid crystal display device and liquid crystal display device | |
US8179508B2 (en) | Liquid crystal display device having first and second polarizers and first and second birefringent layers | |
WO2015008773A1 (en) | Phase difference film, polarization plate, and liquid crystal display device | |
JP6577979B2 (en) | Laminated body and liquid crystal display device | |
WO2006100901A1 (en) | Liquid crystal panel, liquid crystal television, and liquid crystal display device | |
JP2004326089A (en) | Laminated phase difference layer, its manufacturing method and liquid crystal display device using phase difference layer | |
JP2003114325A (en) | Laminated quarter-wave plate, circularly polarizing plate and liquid crystal display device using the same, and method for manufacturing the same | |
JP2015043073A (en) | Retardation film, polarizing plate, and liquid crystal display device | |
JPWO2010087058A1 (en) | Liquid crystal display | |
JP2015025830A (en) | Liquid crystal display device | |
WO2007129516A1 (en) | Liquid crystal panel and liquid crystal display unit | |
WO2012133137A1 (en) | Liquid crystal display device | |
WO2018151295A1 (en) | Liquid crystal display device | |
JP2015505988A (en) | High transmittance hue adjusting circularly polarizing plate and reflection type liquid crystal display device including the same | |
WO2013172364A1 (en) | Liquid-crystal display device | |
JP2015031790A (en) | Liquid crystal display device | |
JP2010015038A (en) | Liquid crystal display device | |
TW200827857A (en) | Transparent film, polarizing plate and liquid crystal display device | |
US8184246B2 (en) | Transparent film, polarizing plate, and liquid crystal display device | |
JPH04343303A (en) | Polarizing plate and liquid crystal display device | |
JP7145958B2 (en) | liquid crystal display | |
JP6199716B2 (en) | Retardation film and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |