TW200827459A - A steel excellent in high toughness at weld heat-affect zone - Google Patents
A steel excellent in high toughness at weld heat-affect zone Download PDFInfo
- Publication number
- TW200827459A TW200827459A TW95147888A TW95147888A TW200827459A TW 200827459 A TW200827459 A TW 200827459A TW 95147888 A TW95147888 A TW 95147888A TW 95147888 A TW95147888 A TW 95147888A TW 200827459 A TW200827459 A TW 200827459A
- Authority
- TW
- Taiwan
- Prior art keywords
- steel
- less
- ceh
- toughness
- heat
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 78
- 239000010959 steel Substances 0.000 claims abstract description 78
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract 3
- 238000004519 manufacturing process Methods 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000004927 fusion Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 239000010955 niobium Substances 0.000 description 13
- 238000001816 cooling Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 238000003490 calendering Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000010953 base metal Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 101100231513 Caenorhabditis elegans ceh-10 gene Proteins 0.000 description 1
- 101100231508 Caenorhabditis elegans ceh-5 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- KTLYLYLLQPDENY-UHFFFAOYSA-N [O-2].C(CCC)[La+2] Chemical compound [O-2].C(CCC)[La+2] KTLYLYLLQPDENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
200827459 九、發明說明: L發明所屬之技術領域3 技術領域 本發明係有關於一種小熱輸入量熔接至中熱輸入量熔 5 接之熔接熱影響區(HAZ)具有優異韌性的鋼及其製造法。 C先前技術3 背景技術 低合金鋼之HAZ韌性係由以下各種因素所控制:(1)結 晶粒大小;(2)高碳量麻田散鐵(M*)、上變韌鋼(Bu)及側板 10 條肥粒鐵(FSP : Ferrite Side Plate)等硬化相的分散狀態;(3) 析出硬化狀態;(4)晶粒界脆化之有無;以及(5)元素之顯微 偏析等。吾人已知上述因素會對韋刃性產生極大影響,且已 有諸多用以改善HAZ韌性之實用化技術。 上述妨害韌性之要素可以說是由添加元素所引起的, 15故藉著減低合金元素的含有量可以提昇韌性。然而,構造 用鋼必須追求高強度化,因此必須添加合金元素。亦即, 要求強度與要求韌性兩者從合金元素含有量之觀點來看恰 好是完全相反的,因此需要一種無須取決於合金元素的提 昇韌性技術。 20 一種特別優異的習知技術係對於實質上不含八丨的鋼 使用Ti氧化物將顯微組織細微化,除此之外,還調整丁丨、〇 N之平衡,抑制Tic的析出、減少析出硬化而提高韌性者(特 開平5-247531號公報)。在前述情況下,熔接熱影響區之韌 性將由顯微組織的影響與含有Μ *之硬化層的$響所、、夫 5 200827459 定,以解決習知技術中由Ni等來提昇母材基質韌性的問 題。然而,大量添加為了實現該技術而不可或缺的Cu、Ni 等昂貴合金元素,會導致製造成本增加,而成為製造 CTOD(Crack Tip Opening Displacement ··裂缝尖端開口 位移) 5 特性優異之高強度鋼的障礙。 雖然本發明也活用了前述發明之鋼實質上不含有A1、 Nb之方式,但在前述發明中,並未解決c含有量高而增加 Μη含有量時韌性變差的問題。又,雜質之Nb、V對韌性產 生的不良影響也令人擔心。 10 又’在特開2003-147484號公報中,承襲了特開平 5-247531號公報的思想,使用Ή氧化物、添加Nb,且提高 Μη含有置。藉此,可降低沃斯田鐵-肥粒鐵變態開始溫度, Ρ制更化相的產生,同時得到適合的顯微組織,而可滿足 、 〇D特性。然而,該特開2003-147484號公報之發明200827459 IX. INSTRUCTIONS: TECHNICAL FIELD OF THE INVENTION The present invention relates to a steel having excellent toughness in a fusion heat affected zone (HAZ) with a small heat input amount welded to a medium heat input amount, and its manufacture law. C Prior Art 3 Background Art The HAZ toughness of low alloy steel is controlled by various factors: (1) crystal grain size; (2) high carbon amount of granita iron (M*), upper toughened steel (Bu) and side plates. 10 pieces of fermented iron (FSP: Ferrite Side Plate) and other hardened phases; (3) precipitation hardening state; (4) presence or absence of grain boundary embrittlement; and (5) microsegregation of elements. We know that the above factors will have a great impact on the edge of the blade, and there are many practical techniques for improving the toughness of the HAZ. The above-mentioned factors of hindrance toughness can be said to be caused by the addition of elements, so that the toughness can be improved by reducing the content of the alloying elements. However, structural steel must be high in strength, so alloying elements must be added. That is, both the required strength and the required toughness are exactly the opposite from the viewpoint of the alloying element content, and therefore a technique for improving the toughness which does not depend on the alloying elements is required. 20 A particularly excellent conventional technique is to use a Ti oxide to refine the microstructure of a steel substantially free of gossip, in addition to adjusting the balance of Ding and N, suppressing the precipitation and reduction of Tic. In the case of precipitation hardening and improvement of toughness (JP-A No. 5-247531). In the above case, the toughness of the fusion heat affected zone will be determined by the influence of the microstructure and the hardening layer containing Μ*, and Fu 5 200827459, in order to solve the toughness of the matrix matrix by Ni, etc. in the prior art. The problem. However, the addition of expensive alloying elements such as Cu and Ni, which are indispensable for realizing this technology, leads to an increase in manufacturing cost, and becomes a high-strength steel excellent in the manufacture of CTOD (Crack Tip Opening Displacement). Obstacles. In the present invention, the steel of the above invention does not substantially contain A1 and Nb. However, in the above invention, the problem that the toughness is deteriorated when the content of c is increased and the content of Μ is increased is not solved. Further, the adverse effects of Nb and V of impurities on toughness are also worrying. In the Japanese Patent Laid-Open No. Hei 5-247531, the use of niobium oxide, addition of Nb, and improvement of the content of Μη are employed. Thereby, the Welstian iron-fertilizer iron metamorphic onset temperature can be reduced, and the production of the nucleation phase can be reduced, and at the same time, a suitable microstructure can be obtained, which can satisfy the characteristics of 〇D. However, the invention of Japanese Laid-Open Patent Publication No. 2003-147484
15並無法滿足、炫接接頭所要求之更嚴苛的-40。〇以下之CT0D 特性。 【發明内容】 發明揭示 20 ,發明係提供—種可⑽廉成本製造出在小〜中輸入 样接中具有優_性的高強度鋼之技術者。藉由 小〜 合接…衫響區之早刃性中,特別是 之要旨=熱之多聽接部的CT0D特性極為良好。本發明 鋼,以質量% 6 200827459 計,該鋼包含有:C ·· 0·02〜〇·〇6% ; Si: 0.05〜0.30% ; Μη : 1.7〜2·7% ; P : 0.015%以下;S : 〇·〇ι〇〇/^以下;: 0 005 〜0.015% ; Ο ·· 0.0010〜0.0045% ;及N : 〇·0020〜0·0060%, 且剩餘部分由鐵及不可避免之雜質所構成,並且雜質之混 5 入量限制為Α1: 0.004%以下、Nb: 0.003%以下、及V ·· 0.030% 以下,且以下列(A)式所表示之CeH為0.04以下之範圍, CeH=C+l/4Si-l/24Mn+l/48Cu+l/32Ni+l/0.4Nb+l/2V ··· (A) 又,C、Si、Μη、Cu、Ni、Nb、及V分別表示鋼成分(質量 %)。 10 (2)如(1)之熔接熱影響區具有優異韌性之鋼,其中前述15 can not meet, the more stringent -40 required for the joint. CTThe following CT0D features. DISCLOSURE OF THE INVENTION The present invention provides a technique for producing high-strength steel having excellent properties in a small to medium input sample at a low cost. By the small ~ joint...the early edge of the shirting area, especially the keynote = the CT0 characteristics of the heat-healing part is extremely good. The steel of the present invention is based on mass % 6 200827459, and the steel contains: C ·· 0·02~〇·〇6%; Si: 0.05~0.30%; Μη: 1.7~2·7%; P: 0.015% or less ;S : 〇·〇ι〇〇/^以下;: 0 005 〜0.015% ; Ο ·· 0.0010~0.0045% ; and N : 〇·0020~0·0060%, and the remainder consists of iron and inevitable impurities In this case, the amount of impurities mixed is limited to Α1: 0.004% or less, Nb: 0.003% or less, and V··0.030% or less, and CeH represented by the following formula (A) is 0.04 or less, CeH. =C+l/4Si-l/24Mn+l/48Cu+l/32Ni+l/0.4Nb+l/2V ··· (A) Again, C, Si, Μη, Cu, Ni, Nb, and V respectively Indicates steel composition (% by mass). 10 (2) Steel having excellent toughness as in the fusion heat affected zone of (1), wherein the aforementioned
CeH為0.01以下之範圍。 (3)如(1)或(2)之熔接熱影響區具有優異韌性之鋼,以質 量%計,更含有:Cu : 0.25%以下、及Ni : 0.50%以下之一 種或兩種。 15 (4) 一種熔接熱影響區具有優異韌性之鋼的製造方法, 係將滿足(1)之鋼成分與CeH的鋼片,加熱至ll〇〇°C以下之 溫度後,進行加工熱處理。 (5) —種熔接熱影響區具有優異韌性之鋼的製造方法, 係將滿足(3)之鋼成分與ceH的鋼片,加熱至1100°C以下之 20溫度後’進行加工熱處理。 圖式簡單說明 第1圖係顯示800〜5〇〇。〇之冷卻時間與M*分率之關 係的圖。 第2圖係顯示CeH與CTOD特性之關係的圖。 7 200827459CeH is in the range of 0.01 or less. (3) The steel having excellent toughness in the heat-affected zone of the fusion of (1) or (2), in terms of mass%, further contains one or two of Cu: 0.25% or less and Ni: 0.50% or less. (4) A method for producing a steel having excellent toughness in a heat-affected zone, wherein a steel sheet satisfying the steel component of (1) and a steel sheet of CeH is heated to a temperature of ll 〇〇 ° C or less, and then subjected to a processing heat treatment. (5) A method for producing a steel having excellent toughness in a heat-affected zone, wherein the steel component satisfying the steel component of (3) and the steel sheet of ceH are heated to a temperature of 1100 ° C or lower and then subjected to processing heat treatment. Brief Description of the Drawings Figure 1 shows 800 to 5 inches. A diagram of the relationship between cooling time and M* rate. Figure 2 is a graph showing the relationship between CeH and CTOD characteristics. 7 200827459
t實施方式]J 實施發明之最佳型態 根據本發明人的研究,對於小〜中熱輸入量(板厚 50mm、1·5〜6.0kJ/mm)熔接時之HAZ的CTOD特性(-40°C 以 5下溫度的CT〇D特性),極為局部區域的韌性具有很大的影 響力,控制該部分之顯微組織以及減低脆化元素係極為重 要之事。換吕之’ CTOD特性不是由材料的平均特性、而是 由局部的脆化區域所控制,即使鋼材中僅有極小部份為造 成脆化的區域,也會明顯地有損鋼板的CT〇D特性。 10 具體而言,會對CTOD特性帶來最大影響的局部區域係 M*、側板條肥粒鐵(FSP)等硬化相。為了抑制上述硬化相 的產生,習知技術係將鋼之淬火性抑制為較低,而成為妨 礙南強度化的主要原因。 本發明之特徵可得知以下各事項,本發明係可實現一 15 種HAZ韋刃性高的鋼。亦即: 1)在小〜中熱輸入量熔接HAZ中,一般而言炼接後之 冷卻時間為60sec以内,本發明人發現在上述冷卻條件下, 若C含有量非常低,藉由適當地控制其他脆化元素,即使添 加Μη至2.7%左右,也不會產生對韌性帶來不良影響的m 20 *。第1圖中顯示以0.05%C —0.15%Si將Μη從1.7¾變化至 2.7%時的M*分率,可看出:即使%11量產生變化,8〇〇〜 500 C之冷卻時間若在6〇sec以内,則M*分率極少。結果, 可以提高過去因為會使韌性變差而無法多量添加的^^^含 有量。 8 200827459 2) 發現可將無A1基質鋼調整成適當的鋼成分。 3) 藉由將存在於鋼中之雜質八卜Nb、V限制在一定界 限以下,可除去無法預期的韌性低落因素。 亦即,藉由採用無A1基質鋼,可確實地產生Ti〇而有效 5 地提昇韋刃性。 藉由組合上述3點,可實現過去無法達成之小〜中熱輸 入里炼接HAZ中_20 C以下的嚴苛溫度條件下的良好ctod 特性。 即使在產生極少M*的情況下,也必須控制脆化元素 10如C、Si、Ni、Nb、V等之量。具體而言,必須將 C+l/4Si-l/24Mn+l/48Cu+l/32Ni+l/0.4Nb+l/2V 之值(CeH) 控制在預定範圍内。 第2圖係顯示以2〇kg之真空熔解熔製 0.05%C-0.15%Si-1.7〜2·7%Μη之鋼成分的鋼,以再現熱循 15環裝置賦予上述鋼所製成之鋼板實際熔接接頭之3次熱歷 程而實施CTOD試驗者。t EMBODIMENT] J. BEST MODE FOR CARRYING OUT THE INVENTION According to the study of the present inventors, the CTOD characteristics of HAZ at the time of fusion of small to medium heat input (plate thickness 50 mm, 1-5 to 6.0 kJ/mm) (-40 °C has a CT 〇D characteristic at a temperature of 5°), and the toughness of an extremely local region has a great influence. It is extremely important to control the microstructure of this part and to reduce the embrittlement element system. The CTOD characteristic of Lu's is not controlled by the average characteristics of the material, but by the local embrittlement area. Even if only a small part of the steel is the area that causes embrittlement, it will obviously damage the CT〇D of the steel plate. characteristic. 10 Specifically, the local area that has the greatest impact on CTOD characteristics is the hardened phase such as M* and side slab ferrite (FSP). In order to suppress the generation of the hardened phase described above, the conventional technique suppresses the hardenability of steel to a low level, which is a factor that hinders the south strength. The following matters can be known from the features of the present invention, and the present invention can realize a steel having a high HAZ blade. That is: 1) In the small to medium heat input amount welding HAZ, generally the cooling time after refining is within 60 sec, the inventors have found that under the above cooling conditions, if the C content is very low, by appropriately Control of other embrittlement elements, even if Μη is added to about 2.7%, does not produce m 20 * which adversely affects toughness. Figure 1 shows the M* fraction when Μη is changed from 1.73⁄4 to 2.7% with 0.05% C - 0.15% Si. It can be seen that even if the amount of %11 changes, the cooling time of 8〇〇~500 C is Within 6 sec, the M* fraction is extremely small. As a result, it is possible to increase the amount of the ^^^ which cannot be added in a large amount in the past because the toughness is deteriorated. 8 200827459 2) It was found that the A1-free matrix steel can be adjusted to an appropriate steel composition. 3) Undesirable toughness reduction factors can be removed by limiting the impurities Nb, V present in the steel below a certain limit. That is, by using the A1-free matrix steel, Ti crucible can be surely produced to effectively improve the blade edge. By combining the above three points, it is possible to achieve good ctod characteristics under severe temperature conditions of less than _20 C in the HAZ in the small to medium heat input that cannot be achieved in the past. Even in the case where very little M* is generated, it is necessary to control the amount of the embrittlement element 10 such as C, Si, Ni, Nb, V, and the like. Specifically, the value (CeH) of C+l/4Si-1/24Mn+l/48Cu+l/32Ni+l/0.4Nb+l/2V must be controlled within a predetermined range. Fig. 2 is a view showing a steel having a steel composition of 0.05% C-0.15% Si-1.7 to 2·7% Μη in a vacuum melting of 2 〇kg to reproduce a steel plate made of the above-mentioned steel by a heat-cycle 15-ring device. Those who performed the CTOD test on the thermal history of the actual fusion joint.
T5c0.1(670.9CeH-67.6)係在各試驗溫度下,3條CT〇D 試驗值之最低值顯示〇.lmm的溫度,已知CeH降低而略成直 線,mo.1(CTOD特性)愈趨良好。當CeH降低至〇 〇1左右 20 時,ΤδοΟ.Ι可以達到-6(Tc。 亦即,藉由滿足本發明鋼之要素、控制CeH,可得到 所須之CTOD特性。在本發明中,因應所要求之ct〇d特性 而控制CeH之值係發明的特徵之一。除了控制⑽值之外, 還必須使其他合金元素含有量為適當量,才能實現兼具高 9 200827459 強度與優異CTOD特性的鋼。以下詳述其限定範圍與理由。 為了彳牙到足夠的強度,C量須在〇·〇2%以上,但超過 0.06%則會使炼接HAZ的勃性變差,而無法滿足良好的 CTOD特性,因此將上限設為0.〇6%。 5 由於Si會妨礙HAZ_,因此為了得到良好的HAZ韋刃 性,以較少量為佳。但,由於本發明鋼不添加八!,故為了 去氧,必須添加Si0.05%以上。可是當以含有量超過〇.3〇%, 則會損害HAZ韌性,故以0.30%為上限。 Μη係可有效地調整顯微級織的廉價元素,且可降低 1〇 CeH,添加Μη也無損於小〜中熱輸入量之ΗΑΖ動性,故為 了使鋼咼強度化,且增加Μη含有量。但若超過2·7%則會助 長板鋼的偏析,而容易產生有害於韌性的Bu,因此將含有 量上限設為2.7%。又,如果小於17%則效果較小,故將下 限設為1.7%。另外,從韌性的觀點來看,以大於2 〇%為佳。 15 P、S雖從母材韌性、HAZ韌性的觀點來看,都以較少 為佳,但過度降低該等含有量也會限制工業生產性,故將 上限分別没為· 0.015%、0.010%,以〇 〇〇8〇/〇、〇 005%更佳。 A1在本發明中雖非刻意添加之元素,但無法避免其成 為雜質而化入鋼中。A1會形成A1氧化物而妨礙丁丨氧化物的 20產生,故以少量為佳,但過度降低含量會限制工業生產性, 故以0.004%為上限。 Τι雖可藉由產生Τι氧化物而使顯微組織細微化、大幅提 升韌性,但含有ΐ過多時會產生Tie,而使ΗΑΖ韌性變差, 故以0.005〜0.015%為適當範圍。 10 200827459 0為大量生成Ti氧化物的必要元素,若含量小於 0.0010%則效果較小,另一方面,若大於0 0045%則會產生 粗大的Ti氧化物,而使得韌性極端惡化,故將含有範圍設 為 0.0010〜0.0045%。 5 N會形成細微的Ti氮化物而改善母材韌性或HAZ韌 性,為必要之元素,但含量小於0 002%則效果較小,大於 0.006%又會在製造鋼片時產生表面瑕疵,故將上限設為 0.006%。 又’ Nb、V本質上為脆化元素,如(A)式中所示,具有 10較大的係數,因該等之存在會大幅提高CeH,而使得HAZ 韌性明顯變差,因此在本發明中不刻意添加。在Nb、V作 為雜質混入鋼中之情況下,為了確保韌性也必須將Nb量限 制為0.003%以下。又,必須將V含量限制於0.030%以下, 更以0.020%以下為佳。 15 添加Cu、Ni可不讓HAZ勃性變差,並且可提升母材強 度,更可有效地提昇特性,但卻會增加製造成本,因此, 需要添加時將含有量的上限分別設為Cu : 0.25%、Ni : 0-50%。 即使將鋼成分限定如上所述’右不使用恰當的製造法 20 來形成適當的組織,也無法發揮期望達到的效果。因此, 也必須考慮到製造條件。 本發明之鋼在工業性上宜採用連續鑄造法來製造。其 理由在於熔鋼之凝固冷卻速度較快,可在板鋼中生成多量 的細微Ti氧化物與Ti氮化物。而在壓延板鋼時,必須使其之 11 200827459 再加熱溫度為1100 C以下。當再加熱溫度大於η⑻。◦時, 會使Ti氮化物粗大且母材韌性變差,而無法達到改善haz 韌性的效果。 接著’再加熱後之製造法必須使用加工熱處理。其理 5由在於即使得到優異的HAZ韌性,若母材韌性不良,便無 法作為良好鋼材。加工熱處理之方法可列舉如·· U控制壓 延;2)控制壓延-加速冷卻;3)壓延後直接淬火_回火等,適 宜之方法為控制壓延-加速冷卻法以及壓延後直接淬火-回 火法。 10 另外,製造上述鋼之後,即使因去氫等目的而再加熱 至Ar3變態點以下之溫度,也無損本發明之特徵。 又,上述方法係本發明鋼之製造方法的一例,本發明 鋼之製造方法非限定於上述方法。 實施例 15 以轉爐_連續鑄造-厚板步驟製造各種鋼成分的厚鋼T5c0.1 (670.9CeH-67.6) is the lowest value of the three CT〇D test values at each test temperature, which shows a temperature of 〇.lmm. It is known that CeH decreases and is slightly straight, and the mo.1 (CTOD characteristic) is more It is getting better. When CeH is reduced to about 20 〇〇1, ΤδοΟ.Ι can reach -6 (Tc. That is, by satisfying the elements of the steel of the present invention and controlling CeH, the required CTOD characteristics can be obtained. In the present invention, The value of CeH required to control the value of CeH is one of the characteristics of the invention. In addition to controlling the value of (10), it is necessary to make other alloying elements contain an appropriate amount in order to achieve both high strength and excellent CTOD characteristics. Steel. The scope and reason for the detailed description are as follows. For the tooth decay to a sufficient strength, the amount of C must be more than 2% of 〇·〇, but if it exceeds 0.06%, the boring property of the refining HAZ will be deteriorated and it will not be satisfied. Good CTOD characteristics, so the upper limit is set to 0. 〇 6%. 5 Since Si hinders HAZ_, it is preferable to obtain a good HAZ edge, but it is preferable to use less. Therefore, in order to remove oxygen, it is necessary to add more than 0.05% of Si. However, when the content exceeds 〇.3〇%, the HAZ toughness is impaired, so 0.30% is the upper limit. The Μη system can effectively adjust the micro-scale weaving. Cheap elements, and can reduce 1〇CeH, adding Μη also does not harm small In order to increase the strength of the steel enthalpy, the amount of Μη is increased. However, if it exceeds 2.7%, segregation of the steel sheet is promoted, and Bu which is harmful to toughness is likely to be generated, so it will contain The upper limit is set to 2.7%, and if it is less than 17%, the effect is small, so the lower limit is set to 1.7%. In addition, from the viewpoint of toughness, it is preferably more than 2%. 15 P, S from the mother From the viewpoint of material toughness and HAZ toughness, it is preferable to use less, but excessive reduction of these contents will also limit industrial productivity, so the upper limit is not 0.015%, 0.010%, respectively. 〇 〇, 〇 005% is more preferable. In the present invention, although the element is not intentionally added, it cannot be prevented from being an impurity and is incorporated into the steel. A1 forms an A1 oxide and hinders the generation of butyl lanthanum oxide 20, so It is preferable to use a small amount, but excessively lowering the content limits industrial productivity, so the upper limit is 0.004%. Although Τι can make the microstructure finer and greatly improve the toughness by producing Τ1 oxide, it is generated when too much yttrium is contained. Tie, which makes the toughness of the crucible worse, so it is appropriate to use 0.005~0.015%. 10 200827459 0 is a necessary element for the formation of a large amount of Ti oxide. If the content is less than 0.0010%, the effect is small. On the other hand, if it is more than 0 0045%, coarse Ti oxide is formed, and the toughness is extremely deteriorated. The content range is set to 0.0010 to 0.0045%. 5 N will form fine Ti nitride and improve the toughness of the base material or HAZ toughness. It is an essential element, but the content is less than 0 002%, the effect is small, and more than 0.006% will be When the steel sheet was produced, surface flaws were generated, so the upper limit was set to 0.006%. Further, 'Nb, V is an embrittlement element in nature, as shown in the formula (A), having a large coefficient of 10, since the presence of such a large increase in CeH, the HAZ toughness is significantly deteriorated, and thus the present invention Not deliberately added. When Nb and V are mixed as impurities in the steel, the amount of Nb must be limited to 0.003% or less in order to ensure the toughness. Further, it is necessary to limit the V content to 0.030% or less, more preferably 0.020% or less. 15 Adding Cu and Ni can prevent HAZ from being deteriorated, and can improve the strength of the base metal, and can effectively improve the characteristics, but it will increase the manufacturing cost. Therefore, when adding, the upper limit of the content is set to Cu: 0.25. %, Ni: 0-50%. Even if the steel component is limited as described above, the right structure is not formed by using the appropriate manufacturing method 20, and the desired effect cannot be achieved. Therefore, manufacturing conditions must also be considered. The steel of the present invention is industrially preferably produced by a continuous casting method. The reason is that the solidification cooling rate of the molten steel is fast, and a large amount of fine Ti oxide and Ti nitride can be formed in the steel sheet. When rolling the sheet steel, it must be reheated to a temperature of 1100 C or less. When the reheating temperature is greater than η (8). In the case of ruthenium, the Ti nitride is coarsened and the base material toughness is deteriorated, and the effect of improving the haz toughness cannot be achieved. Then, the manufacturing method after reheating must use a processing heat treatment. The reason for this is that even if excellent HAZ toughness is obtained, if the base material has poor toughness, it cannot be used as a good steel. The method of processing heat treatment may be as follows: · · · U control rolling; 2) control calendering - accelerated cooling; 3) direct quenching after calendering _ tempering, etc., suitable method is controlled rolling - accelerated cooling method and direct quenching - tempering after rolling law. Further, after the steel is produced, even if it is heated to a temperature lower than the transformation point of Ar3 by the purpose of dehydrogenation or the like, the characteristics of the present invention are not impaired. Further, the above method is an example of the method for producing steel of the present invention, and the method for producing the steel of the present invention is not limited to the above method. Example 15 Thick steel of various steel compositions was produced in a converter_continuous casting-thick plate step
板,再實施母材強度或_接頭的CT〇D試驗。雜係使用 -般試驗熔接所使用的潛弧_(SAW)法,無接渗透線 (FL)垂直地產生K斜角,並且以4·5〜5•㈣/麵的炼接熱輸 入量來實施試驗。而CTOD試驗以t(板厚)x2t之大小,在FL 20位置導入50%疲勞裂痕而實施切痕試驗。第(表顯示本發明 之實施例及比較例。The plate is then subjected to a CT〇D test of the strength of the base metal or the joint. The hybrid system uses the submerged arc _ (SAW) method used for the general test fusion. The non-connected permeation line (FL) produces a K-angle perpendicularly, and the heat input amount of 4·5~5•(4)/face is used. Conduct the test. The CTOD test was carried out by introducing a 50% fatigue crack at the position of FL 20 at a size of t (thickness) x 2t. (Table shows the examples and comparative examples of the present invention.
本發明所製造的鋼板(本發明鋼卜加)顯示出降伏強度 (YS)都在430N/mm2以上,且_2(rc、_4(rc、_6(rC2CT〇D 值皆為0.27mm以上的良好破壞韋刃性。 12 200827459 相對於此,比較鋼21〜26之強度或CTOD皆較本發明鋼 為差,並未具有可使用於嚴苛環境下之鋼板的必要特性。 由於比較鋼21添加了 Nb使鋼板之Nb含有量太多,而提高了 CeH值,故其CTOD值較低。比較鋼22則含有太多C,CeH 5 也太高,因此CTOD值為較低值。比較鋼23、24之CeH雖然 較低,但A1含有量太高,所以Ti氧化物產生不足而使顯微 組織無法充分細微化。比較鋼25之CeH雖與發明鋼為同樣 程度,但C太少、Ό又太多,因此母材強度較低,CTOD值 也較低。而比較鋼26由於雜質Nb混入的量過多,就算CeH 10 較低,母材強度及CTOD值也都為較低值。 13 200827459 第1表 鋼 區 分 C Si Μη Ρ S Cu Ni Nb V Ti A1 N 0 CeH 本 發 明 例 1 0.021 0.13 2.65 0.005 0.002 0.24 0.42 <0.001 <0.001 0.010 0.003 0.0042 0.0023 -0.039 2 0.023 0.10 2.57 0.006 0.003 0.001 <0.001 0.009 0.004 0.0035 0.0025 -0.057 3 0.025 0.11 2.47 0.004 0.003 0.003 <0.001 0.011 0.003 0.0043 0.0026 -0.043 4 0.025 0.15 2.39 0.005 0.002 0.15 0.24 <0.001 <0.001 0.011 0.002 0.0035 0.0023 -0.026 5 0.031 0.08 2.38 0.005 0.008 0.15 0.30 0.002 <0.001 0.009 0.003 0.0033 0.0031 -0.031 6 0.032 0.09 2.30 0.006 0.002 <0.001 0.020 0.009 0.003 0.0036 0.0027 -0.031 7 0.036 0.11 2.27 0.012 0.003 0.35 0.001 <0.001 0.011 0.004 0.0040 0.0022 -0.018 8 0.037 0.12 2.28 0.005 0.004 0.23 0.001 <0.001 0.009 0.003 0.0044 0.0033 -0.021 9 0.038 0.12 2.16 0.006 0.005 <0.001 <0.001 0.011 0.002 0.0038 0.0018 -0.022 10 0.040 0.15 2.13 0.009 0.003 0.002 0.025 0.011 0.003 0.0041 0.0020 0.006 11 0.040 0.08 2.06 0.005 0.007 <0.001 <0.001 0.012 0.003 0.0043 0.0028 -0.026 12 0.043 0.11 2.03 0.010 0.002 0.002 <0.001 0.010 0.002 0.0033 0.0032 -0.009 13 0.044 0.10 1.94 0.007 0.001 0.003 <0.001 0.013 0.003 0.0035 0.0021 -0.004 14 0.045 0.14 1.99 0.006 0.002 <0.001 0.020 0.008 0.003 0.0025 0.0038 0.007 15 0.048 0.11 1.87 0.004 0.001 0.001 <0.001 0.010 0.004 0.0031 0.0025 0.000 16 0.048 0.09 1.85 0.006 0.002 0.002 <0.001 0.009 0.003 0.0040 0.0024 -0.002 17 0.050 0.12 1.80 0.006 0.003 <0.001 <0.001 0.011 0.002 0.0036 0.0017 0.005 18 0.054 0.11 1.76 0.005 0.008 0.003 0.027 0.010 0.003 0.0030 0.0023 0.029 19 0.057 0.10 1.78 0.006 0.002 0.001 0.015 0.009 0.003 0.0033 0.0026 0.018 20 0.059 0.13 1.73 0.006 0.003 0.13 0.15 <0.001 <0.001 0.010 0.002 0.0042 0.0022 0.027 比 較 例 21 0.051 0.14 1.85 0.006 0.003 0.042 0.010 0.002 0.0041 0.0030 0.114 22 0.094 0.12 1.88 0.008 0.004 0.026 0.023 0.011 0.003 0.0038 0.0032 0.122 23 0.045 0.16 2.18 0.007 0.004 0.015 0.013 0.024 0.0036 0.0010 0.032 24 0.043 0.11 2.11 0.006 0.002 0.018 0.009 0.031 0.0033 0.0038 0.028 25 0.016 0.13 2.20 0.009 0.004 0.017 0.010 0.003 0.0031 0.0008 -0.001 26 0.048 0.14 2.00 0.008 0.004 0.004 0.010 0.003 0.0031 0.0024 0.010 14 200827459 第2表 鋼區分 製造條件 母材特性 溶接接頭韌性、 dc (mm) 板鋼再加 熱溫度 ΓΟ 加工熱 處理法 板厚 (mm) 降伏強度 (MPa) 拉伸強度 (MPa) -40°C -60°C 本發 明例 1 1050 ACC 45 531 610 0.83 2 1050 ACC 50 454 543 0.78 3 1100 DO 50 452 543 0.51 4 1100 ACC 65 448 541 0.48 5 1050 ACC 60 493 570 0.56 6 1050 ACC 50 465 553 0.43 7 1100 ACC 50 495 568 0.49 8 1050 ACC 60 471 562 0.58 9 1100 ACC 55 467 559 0.56 10 1100 ACC 60 450 552 0.41 11 1050 ACC 65 442 530 0.46 12 1050 CR 50 451 545 0.31 13 1100 ACC 55 479 565 0.62 14 1050 ACC 60 464 567 0.49 15 1050 ACC 55 495 582 0.53 16 1000 ACC 60 496 594 0.67 17 1050 DO 50 538 619 0.57 18 1100 ACC 60 437 528 0.30 19 1050 ACC 60 455 551 0.35 20 1100 ACC 60 446 547 0.42 比 較 例 21 1150 ACC 50 463 567 0.04 22 1100 ACC 50 540 646 0.03 23 1100 ACC 60 435 542 0.06 24 1150 ACC 60 421 513 0.08 25 1100 ACC 60 379 469 0.09 26 1100 ACC 50 433 521 0.06 加工熱處理法 CR 控制壓延(在最適合強度、韌性之溫度區域内壓延) ACC 加速冷卻(控制壓延後水冷至400〜600°C之溫度區 5 域) DQ 壓延後直接淬火-回火處理 15 200827459 產業上利用之可能性 藉由本發明所製造之鋼,在以高強度熔接時韌性最容 易變差之FL部,展現出極良好的CTOD特性以及極優異的 韌性。藉此,可製造出可使用於海洋構造物、耐震性建築 5 物等嚴苛環境下的高強度鋼材。 【圖式簡單說明1 第1圖係顯示800〜500°c之冷卻時間與M*分率之關 係的圖。 第2圖係顯示CeH與CTOD特性之關係的圖。 10 【主要元件符號說明】 無0 16The steel sheet produced by the present invention (the steel sheet of the present invention) exhibits a drop strength (YS) of 430 N/mm 2 or more, and _2 (rc, _4 (rc, _6 (rC2CT〇D values are all good for 0.27 mm or more). 12 200827459 In contrast, the strength or CTOD of comparative steels 21 to 26 is worse than that of the steel of the present invention, and does not have the necessary characteristics that can be used for steel plates in severe environments. Nb makes the Nb content of the steel plate too much, and increases the CeH value, so its CTOD value is lower. Comparative steel 22 contains too much C, and CeH 5 is too high, so the CTOD value is lower. Compare steel 23 Although the CeH of 24 is low, the content of A1 is too high, so the formation of Ti oxide is insufficient and the microstructure cannot be sufficiently fined. Although the CeH of the comparative steel 25 is the same level as the inventive steel, the C is too small, and the C is too small. Too much, so the strength of the base metal is low, and the CTOD value is also low. However, compared with the excessive amount of impurities Nb in the comparative steel 26, even if CeH 10 is low, the base metal strength and CTOD value are also low. 13 200827459 1 Table steel distinguishes C Si Μ Ρ Ρ S Cu Ni Nb V Ti A1 N 0 CeH Inventive Example 1 0.021 0.13 2.65 0.00 5 0.002 0.24 0.42 < 0.001 < 0.001 0.010 0.003 0.0042 0.0023 -0.039 2 0.023 0.10 2.57 0.006 0.003 0.001 <0.001 0.009 0.004 0.0035 0.0025 -0.057 3 0.025 0.11 2.47 0.004 0.003 0.003 <0.001 0.011 0.003 0.0043 0.0026 -0.043 4 0.025 0.15 2.39 0.005 0.002 0.15 0.24 <0.001 <0.001 0.011 0.002 0.0035 0.0023 -0.026 5 0.031 0.08 2.38 0.005 0.008 0.15 0.30 0.002 <0.001 0.009 0.003 0.0033 0.0031 -0.031 6 0.032 0.09 2.30 0.006 0.002 <0.001 0.020 0.009 0.003 0.0036 0.0027 -0.031 7 0.036 0.11 2.27 0.012 0.003 0.35 0.001 <0.001 0.011 0.004 0.0040 0.0022 -0.018 8 0.037 0.12 2.28 0.005 0.004 0.23 0.001 <0.001 0.009 0.003 0.0044 0.0033 -0.021 9 0.038 0.12 2.16 0.006 0.005 <0.001 <0.001 0.011 0.002 0.0038 0.0018 -0.022 10 0.040 0.15 2.13 0.009 0.003 0.002 0.025 0.011 0.003 0.0041 0.0020 0.006 11 0.040 0.08 2.06 0.005 0.007 <0.001 <0.001 0.012 0.003 0.0043 0.0028 -0.026 12 0.043 0.11 2.03 0.010 0.002 0.002 <0.001 0.010 0.002 0.0033 0.0032 -0.009 13 0.044 0.10 1.94 0.007 0.001 0.003 <0.001 0.013 0.003 0.0035 0.0021 -0.004 14 0.045 0.14 1.99 0.006 0.002 <0.001 0.020 0.008 0.003 0.0025 0.0038 0.007 15 0.048 0.11 1.87 0.004 0.001 0.001 <0.001 0.010 0.004 0.0031 0.0025 0.000 16 0.048 0.09 1.85 0.006 0.002 0.002 <0.001 0.009 0.003 0.0040 0.0024 -0.002 17 0.050 0.12 1.80 0.006 0.003 <0.001 <0.001 0.011 0.002 0.0036 0.0017 0.005 18 0.054 0.11 1.76 0.005 0.008 0.003 0.027 0.010 0.003 0.0030 0.0023 0.029 19 0.057 0.10 1.78 0.006 0.002 0.001 0.015 0.009 0.003 0.0033 0.0026 0.018 20 0.059 0.13 1.73 0.006 0.003 0.13 0.15 <0.001 <0.001 0.010 0.002 0.0042 0.0022 0.027 Comparative Example 21 0.051 0.14 1.85 0.006 0.003 0.042 0.010 0.002 0.0041 0.0030 0.114 22 0.094 0.12 1.88 0.008 0.004 0.026 0.023 0.011 0.003 0.0038 0.0032 0.122 23 0.045 0.16 2.18 0.007 0.004 0.015 0.013 0.024 0.0036 0.0010 0.032 24 0.043 0.11 2.11 0.006 0.002 0.018 0.009 0.031 0.0033 0.0038 0.028 25 0.016 0.13 2.2 0 0.009 0.004 0.017 0.010 0.003 0.0031 0.0008 -0.001 26 0.048 0.14 2.00 0.008 0.004 0.004 0.010 0.003 0.0031 0.0024 0.010 14 200827459 Section 2 Steel Manufacturing Conditions Base Material Properties Molding Joint Toughness, dc (mm) Sheet Steel Reheating Temperature 加工 Processing Heat Treatment Plate thickness (mm) Depth strength (MPa) Tensile strength (MPa) -40 ° C -60 ° C Inventive example 1 1050 ACC 45 531 610 0.83 2 1050 ACC 50 454 543 0.78 3 1100 DO 50 452 543 0.51 4 1100 ACC 65 448 541 0.48 5 1050 ACC 60 493 570 0.56 6 1050 ACC 50 465 553 0.43 7 1100 ACC 50 495 568 0.49 8 1050 ACC 60 471 562 0.58 9 1100 ACC 55 467 559 0.56 10 1100 ACC 60 450 552 0.41 11 1050 ACC 65 442 530 0.46 12 1050 CR 50 451 545 0.31 13 1100 ACC 55 479 565 0.62 14 1050 ACC 60 464 567 0.49 15 1050 ACC 55 495 582 0.53 16 1000 ACC 60 496 594 0.67 17 1050 DO 50 538 619 0.57 18 1100 ACC 60 437 528 0.30 19 1050 ACC 60 455 551 0.35 20 1100 ACC 60 446 547 0.42 Comparative Example 21 1150 ACC 50 463 567 0.04 22 1100 ACC 50 540 646 0 .03 23 1100 ACC 60 435 542 0.06 24 1150 ACC 60 421 513 0.08 25 1100 ACC 60 379 469 0.09 26 1100 ACC 50 433 521 0.06 Machining heat treatment CR Controlled calendering (calendering in the most suitable temperature range for strength and toughness) ACC Accelerated cooling (controlling the water zone after calendering to a temperature of 5 to 600 °C in the temperature zone 5) DQ Direct quenching-tempering after calendering 15 200827459 Industrial use of the steel produced by the present invention, when welded at a high strength The FL part, which is most susceptible to deterioration, exhibits excellent CTOD characteristics and excellent toughness. This makes it possible to manufacture high-strength steels that can be used in harsh environments such as marine structures and earthquake-resistant buildings. [Simple diagram of the drawing 1 Fig. 1 shows a graph showing the relationship between the cooling time of 800 to 500 ° C and the M* fraction. Figure 2 is a graph showing the relationship between CeH and CTOD characteristics. 10 [Main component symbol description] None 0 16
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005180441A JP4303703B2 (en) | 2005-06-21 | 2005-06-21 | Steel excellent in fracture toughness of weld heat affected zone and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200827459A true TW200827459A (en) | 2008-07-01 |
TWI357933B TWI357933B (en) | 2012-02-11 |
Family
ID=37688144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95147888A TWI357933B (en) | 2005-06-21 | 2006-12-20 | A steel excellent in high toughness at weld heat-a |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4303703B2 (en) |
TW (1) | TWI357933B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075443A1 (en) * | 2006-12-20 | 2008-06-26 | Nippon Steel Corporation | Steel excelling in toughness at region affected by welding heat |
JP4751341B2 (en) * | 2007-01-11 | 2011-08-17 | 新日本製鐵株式会社 | Steel excellent in CTOD of weld heat affected zone and method for producing the same |
KR101142185B1 (en) * | 2007-12-07 | 2012-05-04 | 신닛뽄세이테쯔 카부시키카이샤 | Steel being excellent in ctod characteristic in welding heat affected zone and a method of producing the same |
TWI419983B (en) | 2009-05-19 | 2013-12-21 | Nippon Steel & Sumitomo Metal Corp | Steel for a welded structure and producing method therefor |
TWI365915B (en) | 2009-05-21 | 2012-06-11 | Nippon Steel Corp | Steel for welded structure and producing method thereof |
US9403242B2 (en) | 2011-03-24 | 2016-08-02 | Nippon Steel & Sumitomo Metal Corporation | Steel for welding |
CN105750760B (en) | 2011-11-25 | 2018-06-08 | 新日铁住金株式会社 | Steel material for welding |
-
2005
- 2005-06-21 JP JP2005180441A patent/JP4303703B2/en active Active
-
2006
- 2006-12-20 TW TW95147888A patent/TWI357933B/en active
Also Published As
Publication number | Publication date |
---|---|
JP4303703B2 (en) | 2009-07-29 |
TWI357933B (en) | 2012-02-11 |
JP2007002271A (en) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5177310B2 (en) | High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same | |
TWI641706B (en) | High manganese steel and manufacturing method thereof | |
JP5950045B2 (en) | Steel sheet and manufacturing method thereof | |
JP5846311B2 (en) | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same | |
JP5217385B2 (en) | Steel sheet for high toughness line pipe and method for producing the same | |
TW200827459A (en) | A steel excellent in high toughness at weld heat-affect zone | |
JP6245352B2 (en) | High-tensile steel plate and manufacturing method thereof | |
CN102197154A (en) | Steel material for welding and method for producing same | |
WO2004022807A1 (en) | Steel product for high heat input welding and method for production thereof | |
WO2014199488A1 (en) | Ultrahigh-tensile-strength steel plate for welding | |
CN100594250C (en) | Steel with great toughness for welding heat affected zone | |
JP4949210B2 (en) | Steel excellent in toughness of weld heat-affected zone and method for producing the same | |
JP4358898B1 (en) | Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness | |
JP5515954B2 (en) | Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness | |
JP2005213534A (en) | Method for producing steel material excellent in toughness at welding heat affected zone | |
JP4959402B2 (en) | High strength welded structural steel with excellent surface cracking resistance and its manufacturing method | |
JP6226163B2 (en) | High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method | |
JP6299676B2 (en) | High-tensile steel plate and manufacturing method thereof | |
JP2002371338A (en) | Steel with excellent toughness in laser welds | |
JP4174041B2 (en) | Method for producing welding steel having a tensile strength of 1150 MPa or more | |
JPH04346636A (en) | High manganese ultrahigh tensile strength steel excellent in toughness in weld heat affected zone | |
JPH07252586A (en) | Multi-pass welded heat affected zone CTOD and high heat input welded heat affected zone welded structural steel with excellent toughness | |
JP4959401B2 (en) | High strength welded structural steel with excellent surface cracking resistance and its manufacturing method | |
JP3719053B2 (en) | Non-tempered low temperature steel with excellent heat input weldability | |
JP5445061B2 (en) | Manufacturing method of steel with excellent CTOD characteristics of weld heat affected zone |