[go: up one dir, main page]

TW200824711A - Embedded micellar nanoparticles - Google Patents

Embedded micellar nanoparticles Download PDF

Info

Publication number
TW200824711A
TW200824711A TW096138868A TW96138868A TW200824711A TW 200824711 A TW200824711 A TW 200824711A TW 096138868 A TW096138868 A TW 096138868A TW 96138868 A TW96138868 A TW 96138868A TW 200824711 A TW200824711 A TW 200824711A
Authority
TW
Taiwan
Prior art keywords
composition
peg
poorly soluble
cellulose
solution obtained
Prior art date
Application number
TW096138868A
Other languages
Chinese (zh)
Other versions
TWI392507B (en
Inventor
Jan Peter Moschwitzer
Original Assignee
Solvay Pharm Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Pharm Bv filed Critical Solvay Pharm Bv
Publication of TW200824711A publication Critical patent/TW200824711A/en
Application granted granted Critical
Publication of TWI392507B publication Critical patent/TWI392507B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention is related to a thermostable solid composition comprising nanosized micelles of a poorly soluble chemical substance, such as a biologically active substance, dissolved in an auxiliary material, said micelles being embedded in a water soluble carrier. The invention is further related to a process for preparing said solid composition and to pharmaceutical dosage forms prepared from this composition.

Description

200824711 九、發明說明: 【發明戶斤屬之技術領域】 本發明係為一種嵌入式微胞奈米顆粒。 【先前技術3 5 發明背景 從藥物發現計劃中顯露出來的大部分新藥物分子顯示 出在水性介質中的差的溶解度,或者它們甚至幾乎不溶於 水性介質。因此以可以腸胃外或口服施用的方式來配製這 些活性物質是非常有挑戰性的。溶解速率(根據 10 Noyes_Whitney(Jimio等人,Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug,cilostazol,in beagle dogs,J. of Controlled Release 111(1-2),56-64,2006)提出的定律,低溶解度一般與低溶 解速率有關)以及腸滲透性是關於生物利用率的關鍵決定 I5 因素’特別是對於經口施用的藥物。依照Biopharmaceutics Classification Systein(G. L. Amidon 5 H. Lennernas 5 V. P. Shah,和 J· R. Crison. A theoretical basis for a biopharmaceutics drug classification e. the correlation of in vitro drug product dissolution and in vivo bioavailability. 20 Pharm· Res· 12 ·· 413 - 420(1995)),難溶性藥物屬於BCS II 類或BCS IV類。BCS IV類意指藥物同時顯示差的溶解度和 低的滲透性,而BCV II類藥物的生物利用率通常受到溶出 率(dissolution rate)的限制(Formulation of poorly water-soluble drugs for oral administration ' Physicochemical 5 200824711 and physiological issues and the lipid formulation classification system 5 Colin W. Pouton 5 European Journal of200824711 IX. Description of the invention: [Technical field of invention of genus] The invention is an embedded micro-nanoparticle. [Prior Art 3 5 Background of the Invention Most of the new drug molecules revealed from the drug discovery program show poor solubility in aqueous media, or they are even almost insoluble in aqueous media. It is therefore very challenging to formulate these active substances in a manner which can be administered parenterally or orally. Dissolution rate (according to 10 Noyes_Whitney (Jimio et al., Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs, J. of Controlled Release 111 (1-2), 56-64 , 2006) The proposed law, low solubility is generally associated with low dissolution rates) and intestinal permeability is a key decision about bioavailability of the I5 factor', especially for orally administered drugs. According to Biopharmaceutics Classification Systein (GL Amidon 5 H. Lennernas 5 VP Shah, and J. R. Crison. A theoretical basis for a biopharmaceutics drug classification e. the correlation of in vitro drug product dissolution and in vivo bioavailability. 20 Pharm· Res· 12 ·· 413 - 420 (1995)), poorly soluble drugs belong to BCS class II or BCS class IV. BCS class IV means that the drug shows both poor solubility and low permeability, while the bioavailability of BCV class II drugs is usually limited by the dissolution rate (Formulation of poorly water-soluble drugs for oral administration 'Physicochemical 5 200824711 and physiological issues and the lipid formulation classification system 5 Colin W. Pouton 5 European Journal of

Pharmaceutical Sciences 2006,,278-87) ° 這意指,bcS II類藥物的生物利用率可以通過改善其溶解速率和/或飽和 5 溶解度cs而得到增加。 已應用了各種配製策略以改善難溶性藥物的溶解度和 溶出率。 活性物質與環糊精的包合複合物的形成可以改善藥物 的溶解度(簽見例如公開了使用環糊精來使THC增溶的 10 wo9932107)。環糊精是葡萄糖或葡萄糖衍生物的環狀募聚 物,它可以與難溶性藥物形成可逆的、非共價的締合以使 所述藥物增溶。 基於脂質的系統例如乳狀液、微乳狀液、自乳化藥物 遞送系統(SEDDS)或自微乳化藥物遞送系統(SMEDDS)適 15合於可溶於脂質和油的活性物質。這些脂質製劑包含其中 溶解有活性物質的油或脂質,且它們以乳狀液的形式存在 或它們在用水稀釋後形成乳狀液系統。 在活性物質保持固體形式的情況下,第—種方法是減 少固體無定形或晶狀活性物質的顆粒尺寸以產生具有減少 2〇的顆粒尺寸的固體無定形或晶狀材料。顆粒尺寸減少導致 表面積增加。由於更大的表面積,藥物顆粒具有改善的溶 解速率。 -般而言’在具有減少的顆粒尺寸的材料的生産中, 在自上而下(t〇P-d〇wn)和自下而上(bott〇m哪)技術之間存 6 200824711 在差異。自上而下技術涉及能量輪入以將大顆粒分解成小 顆粒取決於所制的技術,可以獲得平均顆粒尺寸在微 米範圍(例如噴射研磨,錘式研磨)或奈米範圍(例如濕球研 磨和高壓勻質化)内的待研磨物質。對於後者,推薦使用微 5粉化的起始材料(US 5,145,684 ; US 5,858,410)。這些技術 的典型缺點是它們需要巨大的能量來分解起始材料。 自下而上技術用於經由沈澱過程來産生藥物奈米晶 體這種技術在舊藥典中描述爲”經由pamtum ”。將 活性物質溶解於溶劑中,將該溶劑加入至非溶劑或抗溶劑 10 (anti-S〇lvent)(它可與所述溶劑混溶),和活性物質以無定形 或晶狀奈米顆粒的形式沈澱出來,晶狀奈米顆粒也稱爲藥 物奈米晶體。所述顆粒一般通過表面活性劑或聚合物穩定 劑來穩定。這種原則應用於生産所謂的,,水溶膠”(us 5,389,382)。最近描述了這種沈澱原理的某些修改(us專利 15申請20050139144)。然而,很難使沈澱的晶體固定在奈米 級範圍中。奈米微粒結構通常趨向生長以形成微粒或微 晶。解決這個問題的一種方法是立即乾燥製備好的懸浮 液’例如通過束幹(Sucker,H·,Hydrosole-eine Altemative fiir die parenterale Anwendung von schwer wasserloslichen 20 Wirkstoffen,in ·· Mtiller,R· H.,Hildebrand,G. E.,(Hrsg.), Pharmazeutische Technologie : Moderne Arzneiformen,2. Auflage,1998,WVG,Stuttgart)。 更近期開發的涉及超臨界流體或喷霧-冷凍乾燥的顆 粒尺寸減少方法在關於生産固體藥物奈米顆粒的文獻中得 7 200824711 到描述(Jiahui Hu,Keith R Johnston,和 Robert O. Williams III ^ Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs ^ DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY,第 30 5 卷,No· 3,第 233 —245 頁,2004)。 所有顆粒尺寸減少技術具有一個共同的缺點;通常藥 物需要是溶解的以被腸吸收。對於某些極難溶解的藥物, 顆粒尺寸的減少可能不足以改善溶解行爲和增加生物利用 率。 10 改善難溶性活性物質的溶解行爲的另一種方法是將所 述物質摻入無定形系統如固態分散體中。術語,,固態分散 體”定義了包含至少2種組分的固態系統(與液體或氣體系 統相對),其中一種組分大致平均分散在另外一種或多種組 分各處。在化學和物理上始終均勻或同質或者由如熱力學 15中定義的單相組成的固態分散體也可以稱爲固溶體 (W097/044014)。固體基質可以是晶狀或無定形的。藥物可 以分子分散或以無定形顆粒(簇(clusters))以及晶狀顆粒(固 態分散體)的形式存在。此類固態分散體的例子是US 5,281,420中描述的特丁非隆製劑和w〇 2005/053727中描述 20 的生物活性肽製劑。 固悲分散體可以使用各種方法進行製備,例如溶融 法、熱熔擠出法、溶劑蒸發法或超臨界流體法(D.j. vanPharmaceutical Sciences 2006,, 278-87) ° This means that the bioavailability of the bcS class II drug can be increased by improving its dissolution rate and/or saturation 5 solubility cs. Various formulation strategies have been applied to improve the solubility and dissolution rate of poorly soluble drugs. The formation of the inclusion complex of the active substance and the cyclodextrin can improve the solubility of the drug (for example, 10 wo9932107 which uses cyclodextrin to solubilize THC is disclosed). Cyclodextrins are cyclic aggregates of glucose or glucose derivatives that form reversible, non-covalent associations with poorly soluble drugs to solubilize the drug. Lipid-based systems such as emulsions, microemulsions, self-emulsifying drug delivery systems (SEDDS) or self-microemulsifying drug delivery systems (SMEDDS) are suitable for active substances that are soluble in lipids and oils. These lipid preparations contain oils or lipids in which the active substance is dissolved, and they are present in the form of an emulsion or they are diluted with water to form an emulsion system. In the case where the active material remains in a solid form, the first method is to reduce the particle size of the solid amorphous or crystalline active material to produce a solid amorphous or crystalline material having a particle size reduced by 2 Å. A reduction in particle size results in an increase in surface area. The drug particles have an improved dissolution rate due to the larger surface area. In general, in the production of materials with reduced particle size, there is a difference between top-down (t〇P-d〇wn) and bottom-up (bott〇m) technologies. Top-down techniques involving energy rounding to break up large particles into small particles depending on the technique being fabricated, can achieve average particle size in the micron range (eg jet milling, hammer milling) or nano range (eg wet ball milling) And the substance to be ground in the high pressure homogenization). For the latter, it is recommended to use a micronized starting material (US 5,145,684; US 5,858,410). A typical disadvantage of these techniques is that they require enormous energy to break down the starting material. The technique of bottom-up technology for producing drug nanocrystals via a precipitation process is described in the old pharmacopoeia as "via pamtum." Dissolving the active substance in a solvent, adding the solvent to a non-solvent or anti-solvent 10 (which is miscible with the solvent), and the active substance in the form of amorphous or crystalline nanoparticles The form precipitates, and the crystalline nanoparticle is also called a drug nanocrystal. The particles are generally stabilized by surfactants or polymeric stabilizers. This principle applies to the production of so-called, hydrosols (us 5, 389, 382). Some modifications of this precipitation principle have recently been described (us patent application 1550139144). However, it is difficult to immobilize precipitated crystals at the nanometer level. In the range, nanoparticulate structures generally tend to grow to form microparticles or crystallites. One way to solve this problem is to immediately dry the prepared suspension 'for example by beam drying (Sucker, H., Hydrosole-eine Altemative fiir die parenterale Anwendung) Von schwer wasserloslichen 20 Wirkstoffen, in · Mtiller, R. H., Hildebrand, GE, (Hrsg.), Pharmazeutische Technologie : Moderne Arzneiformen, 2. Auflage, 1998, WVG, Stuttgart). More recently developed involving supercritical fluids Or spray-freeze-dried particle size reduction method in the literature on the production of solid drug nanoparticles 7 200824711 to description (Jiahui Hu, Keith R Johnston, and Robert O. Williams III ^ Nanoparticle Engineering Processes for Enhancing the Dissolution Rates Of Poorly Water Soluble Drugs ^ DRUG DEVELOPMENT AND INDUSTRI AL PHARMACY, Vol. 30, No. 3, pp. 233-245, 2004). All particle size reduction techniques have a common disadvantage; usually the drug needs to be dissolved to be absorbed by the intestine. For some very difficult to dissolve Drug, particle size reduction may not be sufficient to improve dissolution behavior and increase bioavailability.10 Another way to improve the dissolution behavior of poorly soluble actives is to incorporate the materials into an amorphous system such as a solid dispersion. A solid dispersion" defines a solid state system (as opposed to a liquid or gas system) comprising at least two components, wherein one component is substantially evenly dispersed throughout the other component or components. A solid dispersion which is chemically and physically uniform or homogeneous or consists of a single phase as defined in Thermodynamics 15 may also be referred to as a solid solution (W097/044014). The solid substrate can be crystalline or amorphous. The drug may be present in molecular dispersion or in the form of amorphous particles (clusters) as well as crystalline particles (solid dispersion). Examples of such solid dispersions are the tert-butylidone formulations described in U.S. Patent 5,281,420 and the bioactive peptide formulations described in WO 2005/053727. The solid dispersion can be prepared by various methods such as melting, hot melt extrusion, solvent evaporation or supercritical fluid (D.j. van

Drooge “Combining the Incompatible”,RijksimiversiteitDrooge "Combining the Incompatible", Rijksimiversiteit

Gnmingen,PhD-Thesis 2006)。固態分散體或固溶體可以包 8 200824711 含表面活性劑或其他賦形劑以增強溶解或穩定藥物。用於 産生固態分散體的幾種技術在美國專利申請 20050266088A1中討論。這個申請還公開了生産親脂化合物 的糖玻璃的方法,其中親脂化合物溶解於助溶劑優選CrC6 5醇中。優選的溶劑具有高蒸氣壓和高熔點。然而,使用建 議的高蒸氣壓、易燃助溶劑可能對大規模生産造成困難, 特別疋“應用贺霧乾録作爲乾燥技術時。爲了保護整個系 統免於爆炸,乾燥空氣中的氧含量必須減少。此外,親脂 化合物在水性助溶劑系統中不夠穩定且趨向沈澱出來。由 10於這個原因,建議快速加工以避免出現”混濁”。 當活性物質是疏水的而不是親脂的,即不溶於脂質和 油時,助溶劑或助溶劑-表面活性劑混合物可以用於使活性 物質增溶。爲了給不同的增溶系統分類,c· Pouton已提出 脂質製劑分類系統(LFCS)。這種方案的新近版本區分4種不 15 同的製劑類型(Formulation of p00rly water_soluble drugs for oral administration : Physicochemical and physiological issues and the lipid formulation classification system ^ Colin W. Pouton ? European Journal of Pharmaceutical Sciences 2006,益,278-87)。LFCS IV型描述了基於表面活性劑-助 20溶劑混合物的無油製劑。通常,將這些表面活性劑-助溶劑 混合物填充到軟明膠膠囊或密封的硬明膠膠囊内。當口服 施用時,藥物在膠囊殼溶解後釋放。由於藥物已溶解在載 體中的原因’所以它可以被快速吸收(LiqUid-Filled and SealGnmingen, PhD-Thesis 2006). Solid dispersions or solid solutions may contain 8 200824711 containing surfactants or other excipients to enhance dissolution or stabilization of the drug. Several techniques for producing solid dispersions are discussed in U.S. Patent Application No. 20050266088 A1. This application also discloses a process for producing a sugar glass of a lipophilic compound in which a lipophilic compound is dissolved in a cosolvent, preferably a CrC6 5 alcohol. Preferred solvents have a high vapor pressure and a high melting point. However, the use of the recommended high vapor pressure, flammable cosolvent may cause difficulties for large-scale production, especially when “application of hemospheres as a drying technique. In order to protect the entire system from explosion, the oxygen content in the dry air must be reduced. In addition, lipophilic compounds are not sufficiently stable and tend to precipitate in aqueous cosolvent systems. For this reason, rapid processing is recommended to avoid "turbidity." When the active substance is hydrophobic rather than lipophilic, it is insoluble. In the case of lipids and oils, a cosolvent or cosolvent-surfactant mixture can be used to solubilize the active substance. In order to classify different solubilizing systems, c. Pouton has proposed the Lipid Formulation System (LFCS). The recent version distinguishes four types of formulation: p 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 LFCS Type IV describes surfactant based - An oil-free formulation of 20 solvent mixtures. Typically, these surfactant-cosolvent mixtures are filled into soft gelatin capsules or sealed hard gelatin capsules. When administered orally, the drug is released after dissolution of the capsule shell. The reason in the carrier 'so it can be absorbed quickly (LiqUid-Filled and Seal

Hard Gelatine Capsule Technologies,Ewart Τ· Cole,in : 9 200824711Hard Gelatine Capsule Technologies, Ewart Τ· Cole, in : 9 200824711

Modified-Release Drug Delivery Technology ^ eds. M.J. Rathbon,J· Hadgmft,M· S· Roberts,Marcel Dekker,Basel, 2003)〇 爲了從液態難溶性藥物生產常規固體劑型,由Spireas 5 等人(Spireas 等人,Powdered solution technology : principles and mechanisms,Pharm. Res. 9 No· 10,1351-1358,1992) 提出了”粉狀溶液(powdered solutions)”的生産。”粉狀溶液” 通過將液態藥物或藥物溶液與所選載體混合來生産。通過 這種技術獲得的產物是藥物/表面活性劑溶液和所選載體 ίο的物理混合物或摻合物。這類製劑的例子在w〇 2005/041929、WO 2006/113631 和WO 2006/135480中公開。 然而’所得到的粉末的通常缺點是其流動性差、其耐熱性 差和壓縮性差。 本發明的目的是提供關於化合物特別是生物學活性化 15合物的進一步且改善的製劑,所述製劑可以通過使用商購 可得的材料以及標準方法和設備來製備。在生物學活性化 合物的情況下,進一步的目標是提供具有良好的生物利用 率的製劑。 【明内3 20發明概要 本發明涉及具有改善的溶解行爲的難溶性化合物的耐 、、、i、、且b物。本發明的新型藥物組合物包含表面活性劑咬 表面活性劑_助溶劑混合物,所述混合物包含難溶性化學物 質’例如藥物,難溶性藥物,其通過乾燥它的膠束水溶液 10 200824711 而包埋在水溶性载體例如藥學上可接受的載體的水溶性基 質中。 在另一方面,本發明涉及製備難溶性化合物的膠束水 /合液’隨後爲乾燥步驟以將這些膠束包埋在載體的水溶性 貝中仗而獲件耐熱型組合物。包含難溶性化合物的朦 t通過使用-種或多種表面活性劑和任選地—種或多種助 溶劑來産生。 圖式簡單說明 第1圖顯現了在藥物用途的情況下,根據本發明的一般 10 方法。 弟囷β出了在給雄性比格獵犬(beagle dog)施用4種不 同的製劑(包括根據本發明的製劑)後獲得的化合物1的血漿 濃度。 C實施方式】 15較佳實施例之詳細說明 ^在第個方面’本發明涉及耐熱型固體組合物,其包 s /合解於辅助材料巾的難溶性化學物質的奈米級膠束,所 述膠束包埋在水溶性載體中。 在另一方面’本發明涉及耐熱型固體藥物組合物,其 匕各/合解=辅助材料中的難溶性生物活性物質的奈米級膠 束所述膠束包埋在水溶性的藥學上可接受的載體的基質 中。 在本發明的範圍内,術語,,财熱型,,意指,當加熱超過 ㈣炫點時製劑仍是自由流動的穩定粉末。這 11 200824711 意指,當加熱超過主要輔助材料的熔點5。、ι〇。、2〇。、3〇。、 40°或50°時製劑仍是物理上穩定的。 例如,維生素E TPGS(d_a •生育酚聚乙二醇1〇〇〇琥珀Modified-Release Drug Delivery Technology ^ eds. MJ Rathbon, J. Hadgmft, M. S. Roberts, Marcel Dekker, Basel, 2003) In order to produce conventional solid dosage forms from liquid poorly soluble drugs, by Spireas 5 et al. (Spireas et al. , Powdered solution technology: principles and mechanisms, Pharm. Res. 9 No. 10, 1351-1358, 1992) The production of "powdered solutions" is proposed. "Powdered solution" is produced by mixing a liquid drug or drug solution with a selected carrier. The product obtained by this technique is a physical mixture or blend of the drug/surfactant solution and the selected carrier. Examples of such formulations are disclosed in WO 2005/041929, WO 2006/113631 and WO 2006/135480. However, the usual disadvantages of the obtained powder are its poor fluidity, poor heat resistance and poor compressibility. It is an object of the present invention to provide further and improved formulations for compounds, particularly biologically active compounds, which can be prepared by using commercially available materials as well as standard methods and equipment. In the case of biologically active compounds, a further goal is to provide formulations with good bioavailability. [Brightness 3 20 SUMMARY OF THE INVENTION The present invention relates to resistance,, i, and b of poorly soluble compounds having improved dissolution behavior. The novel pharmaceutical composition of the present invention comprises a surfactant chelating surfactant-cosolvent mixture comprising a poorly soluble chemical such as a drug, a poorly soluble drug, which is embedded by drying its aqueous micelle solution 10 200824711 A water soluble carrier such as a pharmaceutically acceptable carrier is in a water soluble matrix. In another aspect, the present invention relates to a micellar water/liquid mixture for preparing a poorly soluble compound, followed by a drying step to embed these micelles in a water-soluble shell of a carrier to obtain a heat-resistant composition. The 朦 t containing the poorly soluble compound is produced by using one or more kinds of surfactants and optionally one or more kinds of cosolvents. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a general 10 method in accordance with the present invention in the case of pharmaceutical use. The 囷β gave out the plasma concentration of Compound 1 obtained after administration of four different preparations (including the preparation according to the present invention) to a male beagle dog. C. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first aspect, the present invention relates to a heat-resistant solid composition comprising a nano-sized micelle of a poorly soluble chemical substance of the auxiliary material towel. The micelles are embedded in a water-soluble carrier. In another aspect, the present invention relates to a heat-resistant solid pharmaceutical composition, wherein each of the micelles of the poorly soluble biologically active substance in the auxiliary material is encapsulated in a water-soluble pharmaceutically acceptable substance. Accepted in the matrix of the carrier. Within the scope of the present invention, the term, the term "fever type" means that the formulation is still a free flowing stable powder when heated above (4). This 11 200824711 means that when heated above the melting point of the main auxiliary material 5 . , ι〇. 2〇. 3〇. At 40° or 50°, the formulation is still physically stable. For example, vitamin E TPGS (d_a • tocopherol polyethylene glycol 1 〇〇〇 amber

酸酯)具有36°C 的溶點(參考:Eastman,Material Safety Data 5 Sheet ofVit E TPGS NF Grade)。本領域技術人員將假定, 如果維生素ETPGS是製劑的主要成分,那麼這種製劑當暴 露於遠高於36°C的溫度如80°C時將顯示至少部分熔化。然 而,如果維生素ETPGS用作根據本發明的辅助材料,這意 未著維生素E TPGS(和活性物質)膠束包埋在溶點超過^。匸 10的水溶性基質材料中,那麼所得到的粉末將不會顯示粉末 形態和流動性的顯著變化。即使暴露於超過主要辅助材料 TPGS的熔點5。、10。、20。、3〇。、4〇。或5〇。的溫度時,它仍 是穩定的自由流動的粉末。 在本發明的範圍内,術語,,生物學活性物質,,、”藥學活 15性物質藥物”、”活性化合物”、”活性成分,,可互換地用 於才曰,當施用給人或動物時誘導藥理學效應的化學物質或 化學化合物。 在本务明的範圍内,術語”難溶性化合物,,意指於m 在水中具有小於33 g/L的溶解度的化合物。特別地對於藥學 丨化a物,術语難溶性化合物用於描述在體内位點(例 如’胃、腸、皮下)處的條件特別是?11下具有小於33 g/L的 命解度的化合物,在所述體内位點中化合物預期變得可被 身體利用(特別是化合物溶解以被身體吸收)。因此,例如期 望在胃中溶解的難溶性化合物在胃液(pH約i〜3)中具有低 12 200824711 於33 g/l的溶解度,而待在腸中溶解的難溶性化合物在腸液 (通常高達約pH 7.4)中具有低於33 §八的溶解度。(參考US 005Θ266_ ’ Frijlink)。本發明對於更加難溶的化合物特別 有用’例如在胃腸液中具有低於1〇§几、4§几、1_、1〇〇 5 mg/L、40 mg/L、10 mg/L、4 mg/L、1 mg/L、0.4 mg/L或 0.1 mg/L的溶解度的化合物。 待根據本發明進行加工的難溶性化合物可以是液體、 半固體、固體無定形、液體晶狀或固體晶狀的。 待根據本發明進行加工的難溶性化合物優選是藥學活 10性劑,且可以選自鎮痛藥、抗心律失常藥、平喘藥、抗生 素、抗蠕蟲藥、抗炎劑、抗病毒劑、抗凝劑、抗抑鬱藥、 抗糖尿病藥、抗癲癇藥、抗勃起機能障礙劑、抗真菌劑、 抗痛風藥、抗高血壓藥、抗癦藥、抗偏頭痛藥、抗毒簟鹼 藥、抗腫瘤藥、減肥藥、抗震顫麻痹藥、抗原生動物藥、 15抗甲狀腺藥、鎮咳藥、抗焦慮劑、/5-受體阻斷劑、催眠藥、 免疫抑制劑、精神安定藥、大麻素受體激動劑和拮抗劑、 心臟正性肌力藥(cardie inotropic agent)、細胞枯附抑制劑、 皮質類固醇、細胞因數受體活性調節劑、利尿劑、胃腸藥、 組胺受體拮抗劑、角質層分離劑、脂質調節劑、肌肉鬆 20弛劑、硝酸鹽類及其他抗心絞痛劑、非類固醇平喘藥、阿 片類鎮痛藥、鎮靜藥、性激素和興奮藥。 優選類別的難溶性化合物是難溶性大麻素激動劑、逆 激動劑和拮抗劑。這些化合物的例子是W001/70700、 WO02/076949 、 WO03/026647 、 WO03/026648 、 13 200824711The acid ester) has a melting point of 36 ° C (reference: Eastman, Material Safety Data 5 Sheet of Vit E TPGS NF Grade). Those skilled in the art will assume that if the vitamin ETPGS is the major component of the formulation, such formulation will exhibit at least partial melting when exposed to temperatures well above 36 °C, such as 80 °C. However, if vitamin ETPGS is used as an auxiliary material according to the present invention, this means that the vitamin E TPGS (and active substance) micelles are embedded in the melting point over ^. In the water-soluble matrix material of 匸 10, the resulting powder will not show a significant change in powder morphology and fluidity. Even after exposure to the melting point of the main auxiliary material TPGS 5 . , 10. 20. 3〇. 4〇. Or 5〇. At the temperature, it is still a stable free-flowing powder. Within the scope of the present invention, the terms, biologically active substance, "pharmaceutical substance", "active compound", "active ingredient", are used interchangeably when applied to humans or animals. A chemical substance or chemical compound that induces a pharmacological effect. Within the scope of the present invention, the term "insoluble compound," means a compound having a solubility of less than 33 g/L in water. Particularly for pharmaceutical deuterated substances, the term poorly soluble compounds are used to describe conditions at sites in the body (eg, 'stomach, intestine, subcutaneous), particularly having a degree of resolution of less than 33 g/L at 11 . A compound at which the compound is expected to become available to the body (especially the compound dissolves to be absorbed by the body). Thus, for example, it is desirable that the poorly soluble compound dissolved in the stomach has a solubility in the gastric fluid (pH about i~3) of 12 200824711 at 33 g/l, while the poorly soluble compound to be dissolved in the intestine is in the intestinal fluid (usually up to about Solubility below 33 § 8 in pH 7.4). (Refer to US 005Θ266_ ‘ Frijlink). The invention is particularly useful for more sparingly soluble compounds 'e.g., having less than 1 〇, 4 §, 1 _, 1 〇〇 5 mg/L, 40 mg/L, 10 mg/L, 4 mg in gastrointestinal fluids /L, 1 mg/L, 0.4 mg/L or 0.1 mg/L solubility of the compound. The poorly soluble compound to be processed in accordance with the present invention may be liquid, semi-solid, solid amorphous, liquid crystalline or solid crystalline. The poorly soluble compound to be processed according to the present invention is preferably a pharmaceutical active agent, and may be selected from the group consisting of analgesics, antiarrhythmic drugs, antiasthmatics, antibiotics, anthelmintics, anti-inflammatory agents, antiviral agents, and antibiotics. Coagulant, antidepressant, antidiabetic, antiepileptic, anti-erectile dysfunction, antifungal, anti-gout, antihypertensive, antispasmodic, antimigraine, antimuscarinic, antibiotic Oncology drugs, diet pills, anti-shock palsy drugs, anti-protozoal drugs, 15 anti-thyroid drugs, antitussives, anti-anxiety agents,/5-blockers, hypnotics, immunosuppressants, neuroleptics, cannabinoids Receptor agonists and antagonists, cardie inotropic agents, cell-associated inhibitors, corticosteroids, cytokine receptor activity modulators, diuretics, gastrointestinal drugs, histamine receptor antagonists, Cuticular layer separating agents, lipid regulators, muscle relaxant 20 relaxants, nitrates and other anti-angina drugs, non-steroidal antiasthmatics, opioid analgesics, sedatives, sex hormones and stimulants. Preferred classes of poorly soluble compounds are poorly soluble cannabinoid agonists, inverse agonists and antagonists. Examples of such compounds are W001/70700, WO02/076949, WO03/026647, WO03/026648, 13 200824711

W003/027076、W02005/074920、WO 2005/080345、WO 2005/118553和W02006/087355中公開的化合物,例如w〇 03/026648 中描述的(4S)-3-(4-氯苯基)-4,5-二氫-N-甲基-4- 苯基·Ν’-(1- i °定基-績醯基)-1Η-吼嗤-1-甲脒,以及w〇 5 02/076949中描述的(4S)-3-(4-氯苯基)-N-[(4-氯苯基)磺醯 基]-4,5·二氫-Nf-甲基-4-苯基-1H-σ比嗤-1-甲脒(也稱爲 ibipinabant 或 SLV319)和(4S)-3-(4-氯苯基)-4,5-二氫甲基 -4-苯基况-[[4_(三氟甲基)苯基]磺酿基]-iH-n比嗤小甲脎。 本發明組合物中的難溶性化合物優選具有低於1〇,更 10 優選低於5,更加優選低於2.5的log P,並且可以以組合物 總重量的0.05%w/w—至少50%w/w的量存在,優選以〇.〇5〇/0 — 10°/。或 0.05% —5% 或 0.05% — 1% 的量存在。 在本發明的範圍内,術語”辅助材料,,是當其與水接觸 時使得能夠形成膠束的材料,或當膠束已形成時對其穩定 15性具有正面影響的材料,例如表面活性劑、助溶劑或者表 面活性劑和助溶劑的混合物。 在本發明的範圍内,術語’’膠束,,意指在水溶液中超過 克拉夫特(Krafft)點和臨界膠束化濃度的表面活性劑分子的 締合物(參考Riimpp 〇nline Dicti〇nary)。根據IUPAC,表面 20活性劑在溶液中通常是締合膠體,即,它們趨向形成膠體 大小的聚集物,所述聚集物與分子或離子(由所述分子或離 子形成所述聚集物)相平衡地存在。此類聚集物稱爲膠束。 克拉夫特點意指這樣的溫度(更精確地,窄溫度範圍), 即在該溫度之上表面活性劑在水中的溶解度急劇上升。在 14 200824711 每個溫度處’表面活性劑的溶解度變得等於臨界膠束濃 度。它通過定位溶解度的對數對t*1/T的曲線圖斜率的陡變 來最佳地測定。存在相對較小的表面活性劑濃度範圍,其 隔開了下限和上限,低於所述下限時幾乎檢測不到膠束,Compounds disclosed in W003/027076, WO2005/074920, WO 2005/080345, WO 2005/118553 and WO2006/087355, such as (4S)-3-(4-chlorophenyl)-4 described in WO 03/026648 ,5-dihydro-N-methyl-4-phenyl·Ν'-(1-i °定基-基醯基)-1Η-吼嗤-1-甲脒, and w〇5 02/076949 (4S)-3-(4-chlorophenyl)-N-[(4-chlorophenyl)sulfonyl]-4,5·dihydro-Nf-methyl-4-phenyl-1H-σ嗤-1-甲脒 (also known as ipipinabant or SLV319) and (4S)-3-(4-chlorophenyl)-4,5-dihydromethyl-4-phenyl-[[4_(three Fluoromethyl)phenyl]sulfonyl]-iH-n is smaller than indole. The poorly soluble compound in the composition of the invention preferably has a log P of less than 1 Torr, more preferably less than 5, more preferably less than 2.5, and may range from 0.05% w/w to at least 50% by weight based on the total weight of the composition. The amount of /w is present, preferably 〇.〇5〇/0 - 10°/. Or 0.05% - 5% or 0.05% - 1% of the amount. Within the scope of the present invention, the term "auxiliary material" is a material which, when contacted with water, enables the formation of micelles, or a material which positively affects its stability when the micelles have been formed, such as surfactants a cosolvent or a mixture of a surfactant and a cosolvent. Within the scope of the present invention, the term ''micelle," means a surfactant that exceeds the Krafft point and the critical micellization concentration in an aqueous solution. Molecular associations (see Riimpp 〇nline Dicti〇nary). According to IUPAC, surface 20 active agents are usually associated colloids in solution, ie they tend to form colloid-sized aggregates, molecules or ions (The aggregate formed by the molecules or ions) is present in equilibrium. Such aggregates are called micelles. The Clough feature means such a temperature (more precisely, a narrow temperature range), ie at that temperature The solubility of the upper surfactant in water rises sharply. At 14 200824711, the solubility of the surfactant becomes equal to the critical micelle concentration. It passes the solubility of the solution. The steepness of the slope of the plot of the logarithm versus t*1/T is optimally determined. There is a relatively small range of surfactant concentrations that separate the lower and upper limits, and near the lower limit, almost no micelles are detected. ,

5和高於所述上限時幾乎所有額外的表面活性劑分子形成膠 束。如果針對濃度作圖,那麼表面活性劑溶液的許多性質 看起來在鬲於和低於這個範圍時以不同速率改變。通過外 推此類性質在這個範圍之上和之下的軌迹直至它們相交, 可以獲得稱爲臨界膠束化濃度(臨界膠束濃度)的值(IUPAC 10 Compendium of Chemical Terminology,Goldbook)。 在根據本發明的組合物中的膠束具有小於1〇〇〇 nm的 平均尺寸’優選小於500 nm,或小於200腿,或小於100 nm 〇 在本發明的範圍内,平均尺寸意指通過動態光散射法 15測定的有效平均直徑(例如,光相關光譜法(PCS)、鐳射衍 射(LD)、小角度鐳射散射(LALLS)、中等角度鐳射散射 (MALLS)、光透法(light obscuration methods)(例如庫樂爾特 (Coulter)法)、流變學、或顯微鏡法(光學或電子),在上文 所述範圍内)。’’小於約xnm的有效平均顆粒尺寸,,意指,當 2〇 通過上述技術測量時,至少90%的顆粒具有小於約X nm的 重量平均顆粒尺寸。 根據本發明的組合物可以包含至少10%的表面活性劑 或者至少30%、或至少50%,並且可以包含高達99.95%的表 面活性劑。任選地,組合物還包含一種或多種助溶劑和/或 15 200824711 一種或多種辅助表面活性劑。 對於藥物組合物,可以使用的表面活性劑和任選的辅 助表面活性劑在Μ·Μ· Rieger,"Surfactants”,PharmaceuticalAt and above the upper limit, almost all of the additional surfactant molecules form micelles. If plotted against concentration, many of the properties of the surfactant solution appear to change at different rates when they are below and below this range. By extrapolating the trajectories of such properties above and below this range until they intersect, a value called the critical micellization concentration (critical micelle concentration) can be obtained (IUPAC 10 Compendium of Chemical Terminology, Goldbook). The micelles in the composition according to the invention have an average size of less than 1 〇〇〇 nm 'preferably less than 500 nm, or less than 200 legs, or less than 100 nm 〇 within the scope of the invention, the average size means through dynamics Effective average diameter measured by light scattering method 15 (for example, light correlation spectroscopy (PCS), laser diffraction (LD), small angle laser scattering (LALLS), medium angle laser scattering (MALLS), light obscuration methods (for example, the Coulter method), rheology, or microscopy (optical or electronic), within the ranges described above). An effective average particle size of less than about x nm means that at least 90% of the particles have a weight average particle size of less than about X nm when measured by the above technique. The composition according to the invention may comprise at least 10% of a surfactant or at least 30%, or at least 50%, and may comprise up to 99.95% of a surfactant. Optionally, the composition further comprises one or more co-solvents and/or 15 200824711 one or more co-surfactants. For pharmaceutical compositions, surfactants and optional co-surfactants that can be used are in Μ·Μ· Rieger, "Surfactants", Pharmaceutical

Dosage Forms,Marcel Dekker Inc”(1993)第 8章,第 285-359 5頁中列出。優選的表面活性劑是HLB值大於8的表面活性 劑。最優選的表面活性劑選自聚氧乙烯硬脂酸酯(例如 Solutol®)、水氧乙細山梨聚糖脂肪酸醋(例如Tween®)、聚 氧乙烯蓖麻油衍生物(例如Chremophor®)、維生素E TPGS、 非離子型聚氧乙烯-聚氧丙烯嵌段共聚物(例如 10 P〇l〇xamer®)、水溶性長鏈有機磷酸酯⑽如Arlat〇ne@)、菊 粉月桂基氨基甲酸酯(例如Inutec SP1®)。 對於藥物組合物,使用的任選的助溶劑優選是藥學上 可接受的非揮發性助溶劑,這是於25°C具有小於0.50 mm Hg的蒸氣壓的物質。所述藥物組合物只與脂質製劑分類系 15統(LFCS)的1V型的增溶混合物有關,所述LFCS IV型由 Ponton(參見段落[〇〇 12])定義爲基於表面活性劑和助溶劑的 無油製劑,並因而在本發明中油被特別排除在助溶劑之 外。還排除了 LFCS I型製劑(非散佈的;需要消化)、LFCS π 型製劑(不具有水溶性組分的SEDDS)、LFCS ΙΙΙΑ型製劑(具 20有水溶性組分的SEDDS/SMEDDS)、LFCS ΙΙΙΒ型製劑(具有 水溶性組分和低油含量的SMEDDS)。 非揮發性助溶劑的例子包括但不限於,亞烷基二醇例 如聚乙二醇(PEG)、丙二醇、二乙二醇單乙醚、三乙酸甘油 醋、苯曱醇;多元醇例如甘露醇、山梨糖醇和木糖醇;聚 16 200824711 氧乙烯;線性多元醇例如乙二醇、it己二醇、新戊二醇和 曱氧基聚乙一醇,及其混合物。 特別可用作非揮發性助溶劑的是PEG(其爲環氧乙烷的 聚合物),它一般遵從式(HOCf^CHAOH,其中單元數 5目,這個數目還限定了該聚合物的平均分子量(ΠΜν.)。 在本發明中有用的PEG類型可以通過其物態來分類, 即,所述物質在室内溫度和壓力下是以固體還是液體形式 存在。在本發明的範圍内,”液體PEG”指PEG具有這樣的分 子量(m.w·),從而使得該物質在室内溫度和壓力下是液態。 10 例如’具有小於800道爾頓的平均m.w.的PEG。特別有用的 疋PEG 400(m.w·約 380 —420道爾頓)、PEG 600(m.w.約 570 一 630道爾頓)及其混合物。PEGs從d〇wDosage Forms, Marcel Dekker Inc" (1993) Chapter 8, pages 285-359, page 5. Preferred surfactants are surfactants having an HLB value greater than 8. The most preferred surfactants are selected from the group consisting of polyoxyethylenes. Stearates (eg Solutol®), ethoxylated sorbitan fatty acid vinegar (eg Tween®), polyoxyethylene castor oil derivatives (eg Chremophor®), vitamin E TPGS, nonionic polyoxyethylene-poly Oxypropylene block copolymers (eg 10 P〇l〇xamer®), water-soluble long-chain organophosphates (10) such as Arlat〇ne@), inulin lauryl carbamate (eg Inutec SP1®). Preferably, the optional co-solvent used is a pharmaceutically acceptable non-volatile co-solvent which is a material having a vapor pressure of less than 0.50 mm Hg at 25 ° C. The pharmaceutical composition is only classified with the lipid formulation classification. Related to a solubilized mixture of type 1V (LFCS), which is defined by Ponton (see paragraph [〇〇12]) as an oil-free formulation based on a surfactant and a co-solvent, and thus in the present invention Specially excluded from the cosolvent. LFCS I was also excluded. Formulation (non-dispersive; need to digest), LFCS π type preparation (SEDDS without water-soluble components), LFCS ΙΙΙΑ type preparation (SEDDS/SMEDDS with 20 water-soluble components), LFCS ΙΙΙΒ type preparation (with water-soluble preparation) Sex components and low oil content of SMEDDS. Examples of non-volatile cosolvents include, but are not limited to, alkylene glycols such as polyethylene glycol (PEG), propylene glycol, diethylene glycol monoethyl ether, triacetin vinegar , phenyl sterol; polyhydric alcohols such as mannitol, sorbitol, and xylitol; poly 16 200824711 oxyethylene; linear polyols such as ethylene glycol, it hexane diol, neopentyl diol, and decyloxypolyethylene glycol, and Mixture. Particularly useful as a non-volatile co-solvent is PEG, which is a polymer of ethylene oxide, which generally follows the formula (HOCf^CHAOH, where the number of units is 5 mesh, this number also defines the polymer Average molecular weight (ΠΜν.) The type of PEG useful in the present invention can be classified by its state of matter, that is, whether the substance exists in a solid or liquid form at room temperature and pressure. Within the scope of the present invention, Liquid PEG" refers to PEG There is such a molecular weight (mw·) that the substance is liquid at room temperature and pressure. 10 For example, 'PEG with an average mw of less than 800 Daltons. Particularly useful 疋 PEG 400 (mw·about 380-420 Dalton), PEG 600 (mw about 570-630 Daltons) and mixtures thereof. PEGs from d〇w

Chemical(Danbury,Corni·)商購可得,在 CARBOWAX SENTRY産品線下。 15 在本發明的範圍内,”固體PEG”指PEG具有這樣的分子 量(m.w·),從而使得該物質在室内溫度和壓力下是固態。例 如,平均m.w·爲900 —20,000道爾頓的PEG是固體PEG。特 別有用的固體PEGs是m.w·爲3,350道爾頓(m.w·約3015 —約 3685道爾頓)至8,000道爾頓(m.w·約7,000 — 9,000道爾頓)的 2〇 那些。特別可用作固體PEG的是PEG 3350、PEG 400001 約3,600 — 4,400道爾頓)、?£0 8000及其混合物。 當用固體PEG(例如PEG 4000)替代液體PEG(例如PEG 400)時,所得到的藥物-表面活性劑-助溶劑混合物必須加熱 至80°C。已驚奇地發現,當用PEG 4000替代PEG 400時釋放 17 200824711 行爲並未改變很多,儘管由peg 4000産物的冷凍乾燥產生 的塊狀物比使用PEG 400時更堅硬。 當存在時’製劑包含〇.〇l%w/w 一 99.95%w/w,優選 10.0%W/W-90.0%W/W,最優選2〇.〇%w/w_7〇 〇%w/w的量 5 的助溶劑。Chemical (Danbury, Corni) is commercially available under the CARBOWAX SENTRY product line. 15 Within the scope of the present invention, "solid PEG" means that PEG has such a molecular weight (m.w.) that the material is solid at room temperature and pressure. For example, a PEG having an average m.w. of 900 to 20,000 Daltons is a solid PEG. Particularly useful solid PEGs are those having an m.w. of 3,350 Daltons (m.w. from about 3015 to about 3,685 Daltons) to 8,000 Daltons (m.w. about 7,000 to 9,000 Daltons). Particularly useful as solid PEG is PEG 3350, PEG 400001 about 3,600-4,400 Daltons), ? £0 8000 and its mixture. When a solid PEG (e.g., PEG 4000) is used in place of a liquid PEG (e.g., PEG 400), the resulting drug-surfactant-cosolvent mixture must be heated to 80 °C. It has been surprisingly found that the release of PEG 400 when PEG 400 is substituted 17 200824711 does not change much, although the lumps produced by lyophilization of the peg 4000 product are more rigid than when PEG 400 is used. When present, the formulation comprises 〇.1% w/w to 99.95% w/w, preferably 10.0% W/W-90.0% W/W, most preferably 2 〇.〇%w/w_7〇〇%w/w The amount of 5 cosolvent.

水溶性載體(也稱爲基質)可以是可溶於水的任何聚合 材料。如果至少-份基質材料可以溶解於1Q〜3g份水^ 那麼基質材料可以視爲可溶於水(根據usp 24,第2254頁的 10 對於藥物組合物,水溶性触應當是藥學上可接森 的。藥學上可接受的載體應當優選選自: 又 一烷基纖維素,例如甲基纖維素; 羥乙基纖維 -經烧基纖維素,例如㈣基纖維素 素、羥丙基纖維素和羥丁基纖維素;The water soluble carrier (also referred to as the matrix) can be any polymeric material that is soluble in water. If at least a portion of the matrix material can be dissolved in 1Q to 3g of water, then the matrix material can be considered to be soluble in water (according to usp 24, page 2254, 10 for pharmaceutical compositions, the water-soluble contact should be pharmaceutically acceptable) The pharmaceutically acceptable carrier should preferably be selected from the group consisting of: another alkyl cellulose, such as methyl cellulose; hydroxyethyl fibers - burnt cellulose, such as (tetra) cellulose, hydroxypropyl cellulose, and Hydroxybutyl cellulose;

一羥烷基烷基纖維素,例如羥乙基甲基 基曱基纖維素; & 纖維素和經丙 -叛烧基纖維素,例如基纖維素; —羧烷基纖維素的鹼金屬_ -羧烷基絲纖維f,_ ▲纖維素鈉 20 I㈣竣甲基乙基纖維素· 一繞烧基纖維素酯; ” ’ 一澱粉; —果膠,例如繞甲基支鏈凝粉納; —殼多糖衍生物,例如殼聚糖; 一多糖,例如藻酸、复 兵鹼金屬和銨鹽 18 200824711 -角叉絲糖、半乳甘露紐、黃蓍膠、動旨、阿拉 伯膠、瓜爾膠和黃原膠; 一聚丙烯酸及其鹽; 一聚曱基丙烯酸及其鹽,甲基丙烯酸酯共聚物·, 5 一聚乙烯醇; —聚乙烯吼哈烧酮,聚乙稀吡咯烷酮與乙酸乙婦醋的 共聚物; -聚環氧烧,例如聚環氧乙烧和聚環氧丙烷,以及環 氧乙烷與環氧丙烷的共聚物。 10 藥學上可接受的且具有如上文定義的合適理化性質的 未列舉的聚合物同樣適合於在本發明中作爲藥物組合物的 載體。 15 20 優選的水溶性聚合物是經丙基曱基纖維素或HpMC。 所述HPMC包含足夠的羥丙基和甲氧基以使得其可溶於 水。甲氧基取代程度爲約G.8-約2.5並且經丙基摩爾取代爲 約0.05-約3.0的HPMC-般是水溶性的。f氧基取代程度 指纖維素分子的每-脫水葡萄糖單元巾存在的㈣基團的 平均數目。㈣基摩爾取代指已與纖維素分子的每個脫水 葡萄糖單元反應的環氧丙燒的平均摩爾數目。經丙甲纖維 素咖職ellose)是經丙基甲基纖維素的美國採用的名稱。 根據本發明的组合物可以包含—種或多種其他添加 劑。在藥物組合物的情況下,這些添加劑應當是藥學上可 接受的添加劑,例如調味劑、著色劑1合劑、填_、 填充劑老合劑、潤滑#1、崩解助劑和/或其他藥學上可接為 19 200824711 5 L· • 的添加劑。 根據本發明的組合物的製備涉及製備難溶性化合物的 膠束水溶液,隨後爲乾燥步驟以將這些膠束包埋在載體例 如藥學上可接受的載體的水溶性基質中。包含難溶性化合 物的膠束通過使用一種或多種表面活性劑來産生。必要 時,還可以包括一種或多種助溶劑。 在本發明的另一方面,難溶性化合物的膠束溶液通過 將其溶解於一種或多種表面活性劑中來産生。溶解意指難 溶性化合物基本上是以單分子分散的,即,至少95%,優 10 選至少98%,更優選至少99%,更加優選至少99.5%,和最 優選至少99.9%的難溶性化合物是以單分子分散的。必要 時,可以加入一種或多種助溶劑。可以施加能量以使得能 夠通過加熱、摻合或混合所述組分來達到完全的分子分 散。當所述組分已形成分子分散系統時,將它們與水相一 15 • 起混合以形成膠束溶液。水相可以包含載體例如藥學上可 接受載體的溶解的基質,或後來將載體的水溶性基質溶解 於膠束溶液中。將這種混合物乾燥以獲得固體粉末。粉末 可以就這樣使用,或與其他賦形劑相混合並進一步加工。 在本發明的另一方面,根據本發明的組合物促進難溶 20 性藥物的吸收,因爲當施用時它形成藥物的膠束溶液。 本發明的一個進一步方面是它使製劑生産變得容易, 即使是已知與硬明膠膠囊不相容的賦形劑(例如PEG 400、 甘油、聚氧乙稀(35)蓖麻油(例如Cremophor EL⑧)、丙二醇、 二乙二醇單乙鱗(例如Transcutol P®)、山梨聚糖單油酸酯 20 200824711 (例如Span 80⑧))也可以加工成粉末以用於膠囊填充。 冷凍乾燥對於大規模生産顯然不是優選的生產方法, 且通常只應用於極度不穩定的藥物例如蛋白質。噴霧乾螞 更方便且更適合於大規模生產。因此,噴霧乾燥作爲根據 5本發明的膠束溶液的乾燥方法進行測試,並且發現非常適 a於生產。因爲沒有使用具有高蒸氣壓的易燃助溶劑,所 以噴霧乾燥粉末的生產可以在標準設備上進行而無需針對 爆炸的特別保護。此外,所述膠束溶液在數小時内是穩定 的在某些情況下甚至數日,藥物不會沈澱。溶解測試已 1〇顯不’可以獲得大約相同的溶解速率,與使用的乾燥 無關。 、由 進行使用鐘射衍射的顆粒尺寸分析以便測試乾燥步驟 對膠束顆粒尺寸的影響,並且顯示了,在喷霧乾燥前和在 從噴霧乾燥的粉末再分散後的顆粒尺寸在同一數量級下。 15從這個結果可以得出結論,乾燥過程不改變所得到的膠束 的尺寸。 本發明方法不限於表面活性劑-助溶劑混合物。-旦在 溶解的藥學上可接受載體的存在下可以獲得難溶性化合物 束所得到的膠束溶液就可以根據本發明進行 20 加工。 根據本發明的藥物組合物可以進一步加工成任何固體 J1L 乂用於任何^用途徑。特別感興趣的劑型是粒劑、用 ;服遞达的[制(立gp釋放)片劑、舌下含片或頰含片以及 填充有粉末或顆粒的硬明膠膠囊或囊劑^ 21 200824711 片劑顯然是制藥工業中最優選的固體劑型。然而,到 目前爲止難以由包含增溶(即溶解)形式的難溶性藥物的液 體或半固體製劑生産片劑。一種方式是將液體藥物或藥物 溶液吸收到所選載體上(Spireas等人,powdered solution 5 technology : principles and mechanisms > Pharm. Res. 9 No. 10,1351-1358,1992)。然而,所得到的粉末的通常缺點是 其流動性和壓縮性差。本發明的一個具體目的是提供這個 問題的解決方法。根據本發明生産的粉末,特別是通過喷 霧乾燥生産的粉末顯示出非常良好的流動性。幹粉末可以 10以乾燥狀態與藥學賦形劑混合。所得到的粉末混合物可以 直接填充到膠囊中,然而壓製成片劑也是可以的。獲得的 片劑已顯示出非常快速的藥物釋放,釋放速率相對於類似 組成的粉末的膠囊製劑的釋放速率。特別是當粒狀火成二 氧化矽(例如AEROPERL® 300)用作填充劑時,獲得非常快 15 速的片劑崩解和因此良好的藥物釋放。 根據本發明生産的片劑已顯示出比通過標準方法(例 如溶體擠出或液體填充膠囊)生産的那些好得多的藥物釋 放。 當比車父根據本發明生産的片劑製劑與通過溶體擠出製 20備的製劑的釋放特性譜時,看起來非常難以使通過熔體擠 出獲得的凝固團塊變成粉末;因此只能獲得不均一的片 劑,並且在20分鐘後只有60%的藥物釋放,比較起來當使 用根據本發明的製劑時釋放超過80%。 液體填充膠囊的生産是另一種現有技術。當將熔化的 22 200824711 藥物·表面活性劑-助溶劑(P E G 4000)混合物填充到硬明膠 膠囊中、凝固並提交用於藥物釋放研究時,看起來熔化的 藥物-表面活性劑-助溶劑混合物與膠囊殼相容。然而,這些 膠囊同樣也顯示出相對緩慢的藥物釋放。2〇分鐘後,只有 5 52%的藥物被釋放。因此可以聲明,根據本發明的技術可 以視爲優於現有技術中已知的技術。 儘管冷凍乾燥對於大規模生産使用不是優選的,但它 也可以根據本發明用於生産可壓製成片劑的粉末。當只能 獲得有限量的藥物(例如在早期開發階段中)且需要根據本 H)發明的片劑時,這種方法可以是希望的。看起來冷滚乾燥 的粉末可以成功地壓製成片劑,甚至無需添加任何另外的 赋形劑。這些,,未配製的”片劑在2〇分鐘後顯示出大約62% 的有希望的藥物釋放,這當然可以通過添加標準壓片賦形 劑而得到提高。 15 树明還涉及用於製備本發明組合物的方法。 在第個方面,本發明涉及製備如上所述的固體藥物 組合物的方法,其包括下列步驟·· )將所述雜物貝轉於所述輔助材料或所述辅助材 料的混合物中; 20 b)任選地加入一種或多種另外的辅助材料; 〇將獲得的溶液與水現合以形成奈米級膠束; )將所述基貝$成材料溶解於在〇中獲得的混合物中; e)使所述混合物乾燥。 在一個進一步的方面,本發明涉及製備如上所述的固 23 200824711 體藥物組合物的枝,其包括τ列步驟: 所述輔助材 a) 將所述活性物質溶解於所述辅助 料的混合物中; 4 b) 任選地加入一種或多種另外的辅助材料 C)將所述基質形成材料溶解於水中;, 溶液混合 d) 將在a)或b)中獲得的溶液與在〇中獲得的 以形成奈米級膠束; e) 使所述混合物乾燥。 10 在-個進-步的方面,本發明涉及製傷如 體藥物組合物的方法,其包括下列步驟: “固 a) 將在所师料或所關助材料 述活性物質溶解於水中; 卿T的所 b) 任選地加入—種或多種另外的辅助材料; 15 中 0將所述基質形储料溶解於在a)—中獲得的溶液 d)使所述混合物乾燥 在另一方面 ’本發明涉及製備如上所述的固體藥物級 合物的方法,其包括下列步驟: a) 將所述活性物質溶解於所述輔助材料或所述辅助材 20 料的混合物的水溶液中; b) 任選地加入一種或多種另外的辅助材料; c) 將所述基質形成材料溶解於獲得的溶液中·, d) 使所述混合物乾燥。 上述乾燥步驟可以通過冷柬乾燥、嘴霧乾燥或冷象喷 24 200824711 霧乾燥來進行。最優選的乾燥方法是喷霧乾燥。 通過應用上述方法之一形成的粉末是自由流動的,並 且當加熱超過主要輔助材料的溶化溫度時保持穩定和自由 流動,甚至當基質形成材料的量非常低時,例如低於50〇/〇、 5甚至低於30%、甚至低於20%或甚至低於10%。在該粉末 中,膠束保持如在最初的膠束水溶液中一樣存在,但它們 現在包埋在固體基質中,從而被穩定化。溶解於水中後再 次形成最初的膠束水溶液(參見第1圖)。 乾燥後的產物可以進一步加工成粒劑、壓製片巧 10下含片或頰含片,或者乾燥組合物可以以粉末的形式戈 粒的形式借助於常規方法和裝置填充到膠囊或囊劑内。 本發明的優點是可以獲得難溶性活性化合物的耐熱型 固體組合物,其具有非常高的生物利用率。當對化人物 1(SLV_應用本發明時,看起來,與包含微粉化的活性2 15合物的組合物相比較,根據本發明的組合物在犬類研究中 的相對生物利用率是大約6倍。 儘管本發明基於可以在醫學領域中使用的活性物質而 發展出來,但該原理可以在其中奈米級顆粒具有優勢=其 他技術領域中使用,因此本發明的用途不限於醫學領域:、 20 了列實施例只希望更詳細地進-步舉例朗本發明, 因此這些實施例不視爲以任何方式限制了本發明的 實施例 實施例1·材料和方法。 mill聚乙二醇(例如PEG4⑽和PEG侧)、聚氣乙歸 25 200824711 山梨聚糖單油酸醋(例如p〇lyS〇rbat 80®)、聚乙二醇-15經基 硬脂酸酯(例如Solutol® HS 15)、無水擰檬酸、甘露醇、魏 丙基曱基纖維素(例如HPMC E5®)、d-α-生育酚聚乙二醇 1000(維生素ETPGS)、十二烷基硫酸鈉(SDS)、聚乙烯吡咯 5烷酮(PVp-CL)、硬脂醇富馬酸鈉(例如pruv®)、微晶纖維素 (]\/1€;(1;)和粒狀火成二氧化石夕(例如入61«叩6肛1 300通)從商業來 源獲得。 化合物1 : (4S)-3-(4-氯苯基)-4,5_二氫·Ν-甲基-4-苯基 -N’-(l-孤啶基-磺醯基)_1Η-σ比唑小甲脒如w〇 〇3/〇26648中 10 所述進行製備。 化合物2 :(48)-3-(4-氯苯基)-N-[(4-氯苯基)磺醯基]_4,5_ 二氫从-甲基-本苯基-1H-吼唑-1-甲脒如w〇 02/076949中所 述進行製備。 化合物3 : (4S)-3-(4-氣笨基)_4,5_二氫_N-甲基-4-苯基 15 _N-[[4-(二氟甲基)苯基]磧醯基]]HH1-甲脉如w〇 02/076949中所述進行製備。 方法 企漿樣品根據下列操作過程進行分析。將内部標準(2〇 从L ’ 250 ng/mL)加入解凍的血漿樣品(2〇 #L)中。然後使 20用曱醇(210 #L)對樣品實施蛋白質沈澱。將樣品混合,離 心(5分鐘,3400 rpm,室溫),並將5〇 ^[所得到的上清液 轉移到96孔平板中。將甲酸(〇·2%,15〇 #L)加入每個孔 中。將提取物混合並離心(5分鐘,3400 rpm,標定的4。〇, 隨後提交用於在與Applied Bi〇systems API 4000連接的 26 200824711 5 • Waters Acquity UPLC上進行LC-MS/MS分析。質譜儀操作模 式是 Turbo lonSpray +,分析柱是 Waters Acquity BEH phenyl 1·7 um ’ 100 mm x 2·1 mm(id)。校準標準和QC樣品 中的化合物1的濃度採用二次回歸,用濃度的倒數(1/x)作爲 加權來進行確定。使用Applied Biosystems/MDS Sciex Analyst™軟體1·4·1來收集和加工資料。 實施例2.化合物1製劑(FD PEG 400)的製備。 在玻璃注射瓶中稱重50 mg難溶性藥物化合物1。然後 向這個瓶中加入包含66.34%(w/w)PEG 400 、 10 16.58%(w/w)Polysorbat 80、16.58%(w/w)Solutol® HS 15和 0.5%無水檸檬酸(w/w)的950 mg表面活性劑-助溶劑混合 物。藥物完全溶解後,向瓶中加入4 ml甘露醇水溶液 (10%w/w),並使内含物充分混合。在接下來的5秒鐘内,將 瓶放入液氮浴中以快速冷凍混合物。最後,冷凍的混合物 15 • 在實驗室冷;東乾燥器(Christ Alpha 2-4,Salm and Kipp,The Netherlands)中於-80°C和0.050 mbar下凍幹48小時。獲得鬆 散的塊狀物。 20 實施例3·化合物1製劑(FD PEG 4000)的製備。 在玻璃注射瓶中稱重50 mg難溶性藥物(化合物1)。然後 向這個瓶中加入包含66.34%(w/w)PEG 4000、 16.58%(w/w)P〇lysorbat 80、16.58%(w/w)Solutol® HS 15和 0.5%無水檸檬酸(w/w)的950 mg表面活性劑-助溶劑混合 物。將該混合物貯存於80°C的烘箱中直至藥物完全溶解。 然後向瓶中加入4 ml加熱的(80 °C )甘露醇水溶液 27 200824711 (10%w/w),並使内含物充分混合直至任何固體内含物溶 解。在接下來的5秒鐘内,將瓶放入液氮浴中以快速冷凍混 合物。最後,冷凍的混合物在實驗室冷凍乾燥器(ChristMonohydroxyalkylalkylcellulose, such as hydroxyethylmethyl mercaptocellulose; & cellulose and C-reposted cellulose, such as cellulose; carboxyalkyl cellulose alkali metal _ - carboxyalkyl silk fiber f, _ cellulose sodium 20 I (tetra) 竣 methyl ethyl cellulose · a ketone cellulose ester; " ' a starch; - pectin, such as around the methyl branch condensate; - chitin derivatives, such as chitosan; a polysaccharide such as alginic acid, compound base metal and ammonium salt 18 200824711 - carrageenan, galactomannan, tragacanth, kines, gum arabic, melon And xanthan gum; a polyacrylic acid and its salts; a poly-mercaptoacrylic acid and its salt, a methacrylate copolymer, 5 a polyvinyl alcohol; - a polyethylene halpyrone, a polyvinylpyrrolidone a copolymer of ethyl acetate vinegar; a polyepoxy burn, such as polyethylene oxide and polypropylene oxide, and a copolymer of ethylene oxide and propylene oxide. 10 pharmaceutically acceptable and having the definition as defined above An unlisted polymer of suitable physical and chemical properties is also suitable as a drug group in the present invention. The carrier of the material. 15 20 The preferred water-soluble polymer is propyl mercapto cellulose or HpMC. The HPMC contains sufficient hydroxypropyl and methoxy groups to make it soluble in water. The degree of methoxy substitution is HPMC which is from about G.8 to about 2.5 and which is substituted by propyl moles from about 0.05 to about 3.0 is generally water soluble. The degree of foxy substitution refers to the presence of the (iv) group of the persaccharide unit of the cellulose molecule. The average number. (4) The base molar substitution refers to the average number of moles of propylene oxide that has been reacted with each of the anhydroglucose units of the cellulose molecule. The propofol cellulose ellose is a US adopting propylmethylcellulose. The composition according to the invention may comprise one or more other additives. In the case of pharmaceutical compositions, these additives should be pharmaceutically acceptable additives, such as flavoring agents, coloring agents, filling, filling, filling Agent old mixture, lubrication #1, disintegration aid and/or other additives pharmaceutically acceptable as 19 200824711 5 L· • The preparation of the composition according to the invention involves preparing an aqueous micelle solution of a poorly soluble compound, The drying step is followed by embedding the micelles in a water-soluble matrix of a carrier such as a pharmaceutically acceptable carrier. The micelles comprising the poorly soluble compound are produced by using one or more surfactants, and may also be included if necessary. One or more cosolvents. In another aspect of the invention, a micellar solution of a poorly soluble compound is produced by dissolving it in one or more surfactants. Dissolution means that the poorly soluble compound is substantially monodisperse dispersed. That is, at least 95%, preferably at least 98%, more preferably at least 99%, even more preferably at least 99.5%, and most preferably at least 99.9% of the poorly soluble compound is dispersed in a single molecule. If necessary, one or more may be added. A variety of cosolvents. Energy can be applied to enable complete molecular dispersion by heating, blending or mixing the components. When the components have formed a molecular dispersion system, they are mixed with the aqueous phase to form a micellar solution. The aqueous phase may comprise a carrier such as a dissolved matrix of a pharmaceutically acceptable carrier, or the water soluble matrix of the carrier may later be dissolved in the micellar solution. This mixture was dried to obtain a solid powder. The powder can be used as such or mixed with other excipients and further processed. In another aspect of the invention, the composition according to the invention promotes absorption of a poorly soluble drug because it forms a drugic micellar solution when administered. A further aspect of the invention is that it facilitates the production of formulations, even those known to be incompatible with hard gelatin capsules (e.g., PEG 400, glycerin, polyoxyethylene (35) castor oil (e.g., Cremophor EL8) ), propylene glycol, diethylene glycol monoethyl scale (eg Transcutol P®), sorbitan monooleate 20 200824711 (eg Span 808)) can also be processed into powders for capsule filling. Freeze-drying is clearly not a preferred production method for large-scale production, and is usually applied only to extremely unstable drugs such as proteins. Spray dry grass is more convenient and more suitable for mass production. Therefore, spray drying was tested as a drying method of the micelle solution according to 5 invention, and it was found to be very suitable for production. Since flammable cosolvents with high vapor pressure are not used, the production of spray dried powders can be carried out on standard equipment without special protection against explosion. Furthermore, the micelle solution is stable within a few hours and in some cases even a few days, the drug does not precipitate. The dissolution test has been performed to obtain approximately the same dissolution rate regardless of the drying used. Particle size analysis using chirp diffraction was performed to test the effect of the drying step on the size of the micelle particles, and it was shown that the particle size after spray drying and after redispersion from the spray dried powder was of the same order of magnitude. From this result, it can be concluded that the drying process does not change the size of the obtained micelles. The process of the invention is not limited to surfactant-cosolvent mixtures. The micelle solution obtained by obtaining a poorly soluble compound bundle in the presence of a dissolved pharmaceutically acceptable carrier can be processed according to the present invention. The pharmaceutical composition according to the present invention can be further processed into any solid J1L® for any route of use. The dosage forms of particular interest are granules, for delivery, delivery of tablets, sublingual tablets or buccal tablets, and hard gelatin capsules or capsules filled with powder or granules ^ 21 200824711 The agent is clearly the most preferred solid dosage form in the pharmaceutical industry. However, it has heretofore been difficult to produce tablets from liquid or semi-solid preparations containing solubilized (i.e., dissolved) forms of poorly soluble drugs. One way is to absorb the liquid drug or drug solution onto the selected carrier (Spireas et al., powdered solution 5 technology: principles and mechanisms > Pharm. Res. 9 No. 10, 1351-1358, 1992). However, the usual disadvantage of the obtained powder is its poor fluidity and compressibility. A particular object of the invention is to provide a solution to this problem. The powder produced according to the present invention, particularly the powder produced by spray drying, shows very good fluidity. The dry powder can be mixed with the pharmaceutical excipients in a dry state. The resulting powder mixture can be filled directly into the capsule, however compression into tablets is also possible. The tablets obtained have shown very rapid drug release with a release rate relative to the release rate of capsule formulations of similarly composed powders. Especially when granular igneous cerium oxide (for example AEROPERL® 300) is used as a filler, a very fast 15 speed tablet disintegration and thus good drug release are obtained. Tablets produced in accordance with the present invention have been shown to release much better than those produced by standard methods such as solution extrusion or liquid filled capsules. When it is more difficult to make the solidified mass obtained by melt extrusion into a powder when the release profile of the tablet preparation produced according to the present invention and the preparation prepared by the melt extrusion is turned into a powder; A non-uniform tablet was obtained and only 60% of the drug was released after 20 minutes, compared to more than 80% when using the formulation according to the invention. The production of liquid filled capsules is another prior art. When the melted 22 200824711 drug·surfactant-cosolvent (PEG 4000) mixture was filled into hard gelatin capsules, coagulated and submitted for drug release studies, it appeared that the molten drug-surfactant-cosolvent mixture was The capsule shell is compatible. However, these capsules also showed relatively slow drug release. After 2 minutes, only 5 52% of the drug was released. It can therefore be stated that the technique according to the invention can be considered to be superior to the techniques known in the prior art. Although freeze drying is not preferred for mass production use, it can also be used in accordance with the present invention to produce a powder that can be compressed into tablets. This method may be desirable when only a limited amount of drug can be obtained (e.g., in an early development stage) and a tablet according to this H) invention is required. It appears that the cold-rolled dry powder can be successfully compressed into tablets without even adding any additional excipients. These, unformulated "tablets showed approximately 62% promising drug release after 2 minutes, which of course could be improved by the addition of standard tableting excipients. 15 Shuming also relates to the preparation of this A method of the invention. In a first aspect, the invention relates to a method of preparing a solid pharmaceutical composition as described above, comprising the steps of: • transferring said debris to said auxiliary material or said auxiliary material 20 b) optionally adding one or more additional auxiliary materials; 现 bringing the obtained solution into contact with water to form a nano-sized micelle;) dissolving the base material into the crucible In the obtained mixture; e) drying the mixture. In a further aspect, the present invention relates to the preparation of a solid 23 200824711 pharmaceutical composition as described above, comprising the steps of τ: the auxiliary material a) The active substance is dissolved in the mixture of the auxiliary materials; 4 b) optionally adding one or more additional auxiliary materials C) dissolving the matrix forming material in water; mixing the solution d) will be in a) or b) The solution obtained is obtained in a crucible to form a nano-sized micelle; e) drying the mixture. 10 In an aspect of the invention, the invention relates to a method of injuring a pharmaceutical composition, which comprises The following steps: "solid a" will dissolve the active substance in the material or the auxiliary material in the water; b) of the T is optionally added with one or more additional auxiliary materials; The shaped stock is dissolved in the solution d) obtained in a) - to dry the mixture. In another aspect, the invention relates to a method of preparing a solid pharmaceutical composition as described above, which comprises the steps of: a) Said active substance is dissolved in an aqueous solution of said auxiliary material or a mixture of said auxiliary material; b) optionally adding one or more additional auxiliary materials; c) dissolving said matrix forming material in the obtained solution ·, d) drying the mixture. The above drying step can be carried out by cold drying, mist drying or cold image spraying 24 200824711. The most preferred drying method is spray drying. The powder formed by applying one of the above methods is free-flowing and remains stable and free flowing when heated above the melting temperature of the primary auxiliary material, even when the amount of matrix-forming material is very low, such as below 50 〇/〇, 5 is even less than 30%, even less than 20% or even less than 10%. In the powder, the micelles remain as in the original aqueous micelle solution, but they are now embedded in the solid matrix and thus stabilized. The initial aqueous micelle solution is formed again after dissolving in water (see Figure 1). The dried product may be further processed into a granule, a compressed tablet or a buccal tablet, or the dried composition may be filled into a capsule or capsule in the form of a powder in the form of a powder by means of conventional methods and equipment. An advantage of the present invention is that a heat resistant solid composition of a poorly soluble active compound can be obtained which has a very high bioavailability. When applied to the human character 1 (SLV_, it appears that the relative bioavailability of the composition according to the invention in canine studies is approximately compared to the composition comprising the micronized active 2 15 compound. 6 times. Although the invention has been developed on the basis of active substances which can be used in the medical field, the principle can be used in other technical fields in which nano-sized particles have advantages, and thus the use of the invention is not limited to the medical field: The present invention is only intended to be a more detailed example of the invention, and thus these examples are not to be construed as limiting the embodiment of the invention in any way. Materials and methods. PEG4 (10) and PEG side), polygas B 25 200824711 sorbitan monooleic acid vinegar (such as p〇lyS〇rbat 80®), polyethylene glycol-15 hydroxy stearate (such as Solutol® HS 15), Anhydrous citric acid, mannitol, Weipropyl decyl cellulose (eg HPMC E5®), d-α-tocopherol polyethylene glycol 1000 (vitamin ETPGS), sodium dodecyl sulfate (SDS), polyvinylpyrrole 5 Alkanone (PVp-CL), sodium stearyl fumarate (eg pruv®), microcrystalline cellulose (]\/1 €; (1;) and granular igneous sulphur dioxide (eg into the 61 « 叩 6 anal 1 300 pass) obtained from commercial sources. (4S)-3-(4-chlorophenyl)-4,5-dihydro-indole-methyl-4-phenyl-N'-(l-monopyridyl-sulfonyl)_1Η-σ-pyrazole Small armor is prepared as described in 10 of w〇〇3/〇26648. Compound 2: (48)-3-(4-chlorophenyl)-N-[(4-chlorophenyl)sulfonyl]_4 , 5_ Dihydrogen is prepared as described in the -methyl-p-phenyl-1H-indazole-1-carboxamide as described in WO 02/076949. Compound 3: (4S)-3-(4-Azyl) _4,5-Dihydro-N-methyl-4-phenyl 15 _N-[[4-(difluoromethyl)phenyl]indenyl]]HH1-methyl vein as described in w〇02/076949 The preparation was performed. The method was analyzed according to the following procedure: The internal standard (2 〇 from L '250 ng/mL) was added to the thawed plasma sample (2〇#L). Then 20 was used for sterol (210 # L) Perform protein precipitation on the sample. Mix the sample, centrifuge (5 minutes, 3400 rpm, room temperature), and transfer the resulting supernatant to a 96-well plate. Formic acid (〇·2%) , 15〇#L) is added to each well. Will extract The mixture was mixed and centrifuged (5 min, 3400 rpm, calibrated 4. 〇, then submitted for LC-MS/MS analysis on 26 200824711 5 • Waters Acquity UPLC connected to Applied Bi〇systems API 4000. The mass spectrometer operating mode is Turbo lonSpray + and the analytical column is Waters Acquity BEH phenyl 1·7 um ′ 100 mm x 2·1 mm (id). The calibration standard and the concentration of Compound 1 in the QC sample were determined by quadratic regression using the reciprocal of the concentration (1/x) as a weight. Data was collected and processed using Applied Biosystems/MDS Sciex AnalystTM software 1.4.1. Example 2. Preparation of Compound 1 Formulation (FD PEG 400). 50 mg of the poorly soluble drug compound 1 was weighed in a glass injection bottle. Then add 66.34% (w/w) PEG 400, 10 16.58% (w/w) Polysorbat 80, 16.58% (w/w) Solutol® HS 15 and 0.5% anhydrous citric acid (w/w) to the bottle. 950 mg surfactant-cosolvent mixture. After the drug was completely dissolved, 4 ml of an aqueous mannitol solution (10% w/w) was added to the bottle, and the contents were thoroughly mixed. In the next 5 seconds, the bottle was placed in a liquid nitrogen bath to quickly freeze the mixture. Finally, the frozen mixture 15 • was lyophilized in a laboratory cold; East Dryer (Christ Alpha 2-4, Salm and Kipp, The Netherlands) at -80 ° C and 0.050 mbar for 48 hours. A loose mass is obtained. 20 Example 3 Preparation of Compound 1 Formulation (FD PEG 4000). 50 mg of the poorly soluble drug (Compound 1) was weighed in a glass vial. Then add 66.34% (w/w) PEG 4000, 16.58% (w/w) P〇lysorbat 80, 16.58% (w/w) Solutol® HS 15 and 0.5% anhydrous citric acid (w/w) to this bottle. a 950 mg surfactant-cosolvent mixture. The mixture was stored in an oven at 80 ° C until the drug was completely dissolved. Then 4 ml of heated (80 °C) aqueous mannitol solution 27 200824711 (10% w/w) was added to the bottle and the contents were thoroughly mixed until any solid content dissolved. The bottle was placed in a liquid nitrogen bath for the next 5 seconds to rapidly freeze the mixture. Finally, the frozen mixture is in a laboratory freeze dryer (Christ

Alpha 2-4,Salm and Kipp,The Netherlands)中於-8〇°C 和 5 0.050 mbar下凍幹48小時。獲得可以用刮鏟容易地研成粉末 的塊狀物。 實施例4·化合物1製劑(SDPEG4000)的製備。 在玻璃燒瓶中稱重13.7 g難溶性藥物(化合物1)。然後 向這個燒瓶中加入包含66.34%(w/w)PEG 4000、 10 16.58%(w/w)Polysorbat 80、16.58%(w/w)Solutol® HS 15和 0·5%無水檸檬酸(w/w)的260 g表面活性劑-助溶劑混合物。 將該混合物貯存於80°C的烘箱中直至藥物完全溶解。將lg 這種熔化的溶液與250 ml經丙基甲基纖維素水溶液(HPMC Grad E5,0.016%w/w)混合。然後,使用 Mini Spray Dryer 15 Btichi 191 (Btichi,Switzerland)來噴霧乾燥所得到的溶液。 氣流爲600 1/小時,進口溫度爲150°C,抽吸器設定成80%, 給料流速爲約5.5 g/分鐘,在這些條件下的出口溫度爲約9〇 °C。獲得可自由流動的粉末。 實施例5·化合物1製劑(SDTPGS)的製備。 2〇 在燒瓶中稱重1·〇 g難溶性藥物(化合物1)。然後向這個 燒瓶中加入包含0.5%(w/w)無水檸檬酸的20.0 g加熱的(8〇 °C)維生素E TPGS。將該混合物貯存於8〇°c的烘箱中直至藥 物完全溶解。將1 g這種熔化的溶液與25 ml羥丙基甲基纖維 素水溶液(HPMC Grad E5,0.16o/〇w/w)混合。然後,使用Mini 28 200824711Alpha 2-4, Salm and Kipp, The Netherlands) was lyophilized for 48 hours at -8 ° C and 5 0.050 mbar. A block which can be easily ground into a powder with a spatula is obtained. Example 4 Preparation of Compound 1 Formulation (SDPEG 4000). 13.7 g of a poorly soluble drug (Compound 1) was weighed in a glass flask. Then, 66.34% (w/w) PEG 4000, 10 16.58% (w/w) Polysorbat 80, 16.58% (w/w) Solutol® HS 15 and 0.5% anhydrous citric acid (w/) were added to the flask. w) 260 g surfactant-cosolvent mixture. The mixture was stored in an oven at 80 ° C until the drug was completely dissolved. This molten solution of lg was mixed with 250 ml of an aqueous solution of propylmethylcellulose (HPMC Grad E5, 0.016% w/w). The resulting solution was then spray dried using a Mini Spray Dryer 15 Btichi 191 (Btichi, Switzerland). The gas flow was 600 1 / hour, the inlet temperature was 150 ° C, the aspirator was set to 80%, the feed flow rate was about 5.5 g / min, and the outlet temperature under these conditions was about 9 ° C. A free flowing powder is obtained. Example 5 Preparation of Compound 1 Formulation (SDTPGS). 2〇 Weigh 1·〇 g poorly soluble drug (Compound 1) in a flask. Then 20.0 g of heated (8 ° C) vitamin E TPGS containing 0.5% (w/w) anhydrous citric acid was added to the flask. The mixture was stored in an oven at 8 ° C until the drug was completely dissolved. 1 g of this molten solution was mixed with 25 ml of an aqueous solution of hydroxypropylmethylcellulose (HPMC Grad E5, 0.16o/〇w/w). Then, use Mini 28 200824711

Spray Dryer Btichi 191(Biichi,Switzerland)來喷霧乾燥所得 到的溶液。氣流爲600 V小時,進口溫度爲15(rc,抽吸哭 設定成80%,給料流速爲約5·5 g/分鐘,在這些條件下的出 口溫度爲約90 C。獲得可自由流動的粉末。這個實施例顯 5示,本發明不限於表面活性劑-助溶劑混合物。一旦可以在 溶解的藥學上可接受載體存在下獲得難溶性化合物的膠束 水溶液,所得到的膠束溶液就可以根據本發明進行加工。 實施例6_化合物1製劑的顆粒尺寸(3〇?£〇40〇〇之前 和之後)。 10 使用配備有Coulter Aqueous Liquid Module的鐳射衍射 儀Coulter LS 13 320(Beckman Coulter,Fullerton,CA,USA) 在進行喷霧乾燥之前和之後測定藥物膠束的顆粒尺寸。對 於流體將真實折射率設定爲1.33(水)。對於樣品,將真實折 射率没定爲1.46 ’和將虛折射率設定爲〇·〇 1。在玻璃注射瓶 15中稱重5〇 mg難溶性藥物(化合物1)。然後向這個瓶中加入包 含 66.67%(w/w)PEG 4000、16.67%(w/w)Polysorbat 80 和 16.67%(w/w)Solutol® HS 15的 950 mg加熱的(80°C)表面活 性劑-助溶劑混合物。將該混合物貯存於80°C的烘箱中直至 藥物完全溶解。將lg這種熔化的溶液與250 ml羥丙基甲基 20 纖維素水溶液(HPMC Grad E5,0.016%w/w)混合。所得到 的膠束溶液的顆粒尺寸通過鐳射衍射測定爲體積加權直徑 d 95%,其爲 345 nm。 將1.4g根據實施例3産生的含有藥物的粉末(包含50mg 化合物1)溶解於250 ml水中。所得到的膠束溶液的顆粒尺寸 29 200824711 通過鐳射衍射測定爲體積加權直徑d 95%,其爲254 nm。 實施例7·化合物1的粉末的壓片。 通過使用實驗性水壓機和施加10〇巴的壓緊壓強40 秒,將由實施例3得到的粉末壓製成被認爲標準的直徑12.5 5 mm的兩面片劑。 實施例8·化合物1的SD粉末的壓片。 將325 mg根據實施例4產生的粉末與325 mg粒狀親水 火成二乳化梦(AEROPERL® 300/30,Degussa AG,Germany) 和 125 mg聚乙烯吡咯烷酮(Kollidon® CL,BASF,Germany) 10 混合,並通過使用實驗性水壓機和施加4〇巴的壓緊壓強2秒 而壓製成直徑12.5 mm的兩面片劑。 實施例9·化合物1的PEG 400膠囊(FD)的釋放特性譜。 將根據實施例2産生的粉末填充到硬明膠膠囊内。一個 膠囊中的藥物含量爲25 mg。根據USP II進行溶解測試。於 15 37.5°C,容器裝滿900 mL包含0.5 %w/v十二烧基硫酸鈉的 0.1 N HC1。攪拌槳速度在第一個90分鐘期間設定爲50 rpm,這之後在另外30分鐘内攪拌槳速度增加到150 rpm。 通過0.22 // m篩檢程式過濾在0、5、1〇、20、30、45、60、 90和120分鐘後獲取的10 mL樣品。所有實驗一式三份地進 20行,並將這3次實驗的平均值±協方差作爲時間函數進行繪 圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約95% 的藥物被釋放。 實施例10_化合物1的PEG 4000膠囊(fD)的釋放特性 譜。 30 200824711 將由實施例3得到的粉末填充到硬明膠膠囊内。一個膠 囊中的桌物含里爲25 mg。根據USP II進行溶解測試。於37.5 C,谷态裝滿900 mL包含0.5%w/v十二烷基硫酸鈉的o.in HC1。攪拌槳速度在第一個90分鐘期間設定.5〇rpm,這之 5後在另外3〇分鐘内攪拌槳速度增加到150rpm。通過0.22 // m篩檢程式過濾在〇、5、10、2〇、3〇、45、60、90和120分 鐘後獲取的10 mL樣品。所有實驗一式三份地進行,並將這 3次實驗的平均值土協方差作爲時間函數進行繪圖。樣品中 的藥物含量使用HPLC測定。20分鐘後大約85%的藥物被釋 10 放。 實施例11.化合物1的PEG 4000膠囊(SD)的釋放特性 譜。 將650 mg根據實施例4産生的粉末填充到硬明膠膠囊 内。一個膠囊中的藥物含量爲25 mg。根據USP II進行溶解 15 測試。於37.5°C,容器裝滿900 mL包含0.5 %w/v十二燒基疏 酸鈉的0·1 NHC1。攪拌槳速度在第一個90分鐘期間設定爲 50 rpm,這之後在另外30分鐘内攪拌槳速度增加到ι5〇 rpm。通過〇·22 篩檢程式過濾在〇、5、10、20、30、45、 60、90和120分鐘後獲取的10 mL樣品。所有實驗一式三份 20 地進行,並將這3次實驗的平均值±協方差作爲時間函數進 行繪圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約 85%的藥物被釋放。 實施例12·化合物1的PEG 4000片劑(SD)的釋放特性 譜。 31 200824711 對從根據實施例8生産的片劑中的藥物釋放進行測 試。每個片劑的藥物含量爲25 mg。根據USP Π進行溶解測 試。於37.5°C,容器裝滿900 mL包含〇.5 %w/v十二烧基硫酸 鈉的〇·1 NHC1。攪拌槳速度在第一個9〇分鐘期間設定爲50 5 rpm,這之後在另外30分鐘内攪拌槳速度增加到150 rpm。 通過〇·22 篩檢程式過濾在〇、5、1〇、2〇、3〇、45、6〇、 90和120分鐘後獲取的10 mL樣品。所有實驗一式三份地進 行,並將這3次實驗的平均值±協方差作爲時間函數進行繪 圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約85% 10 的藥物被釋放。 實施例13·沒有進行喷霧乾燥的化合物1的pEG 4000 片劑。 爲了比較根據本發明生産的製劑的釋放特性譜與標準 方法(例如熔體擠出)的那些,生產了其他製劑。因此,在玻 15璃注射瓶中稱重150 mg難溶性藥物(化合物1)。然後向這個 瓶中加入包含 66.67%(w/w)PEG 4000 、16.67% (w/w)Polysorbat 80和 16.67%(w/w)Solutol® HS 15 的 2850 mg加熱的(80°C)表面活性劑·助溶劑混合物。將該混合物貯 存於80°C的烘箱中直至藥物完全溶解。將所得到的溶液倒 2〇 在玻璃板上並冷卻至25°C以進行凝固。然後用刮鏟將固體 團塊壓碎成直徑約2 mm — 5 mm的不規則顆粒。通過使用實 驗性水壓機和施加40巴的壓緊壓強2秒,壓制出3片直徑 12.5 mm的兩面片劑,其由325 mg壓碎的固體團塊(包含12.5 mg藥物)、325 mg粒狀親水火成二氧化石夕(AER〇pERL⑧ 32 200824711 300/30,Degussa AG,Germany)和 125 mg聚乙烯吼11 各烧酮 (Kollidon® CL,BASF,Germany)組成。 實施例14.沒有進行噴霧乾燥的PEG 4000化合物1片 劑的溶解。 5 對從根據實施例13生産的片劑中的藥物釋放進行測 試。每個片劑的藥物含量爲12.5 mg。根據USP II進行溶解 測試。於37.5°C,容器裝滿900 mL包含0.5 %w/v十二烷基硫 酸鈉的0·1 NHC1。攪拌槳速度在第一個90分鐘期間設定爲 50 rpm,這之後在另外30分鐘内攪拌槳速度增加到150 10 rpm。通過0.22 /zm篩檢程式過濾在0、5、10、20、30、45、 60、90和120分鐘後獲取的10 mL樣品。所有實驗一式三份 地進行,並將這3次實驗的平均值±協方差作爲時間函數進 行繪圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約 60%的藥物被釋放。 15 實施例15·基於PEG 4000的化合物1的液體填充膠囊。 爲了比較根據本發明生産的製劑的釋放特性譜與標準 方法(例如液體填充膠囊)的那些,生產了其他樣品。因此, 在玻璃注射瓶中稱重150 mg難溶性藥物(化合物1)。然後向 這個瓶中加入包含66.67°/〇(w/w)PEG 4000 、 20 16.67%(w/w)Polysorbat 80和 16.67%(w/w)Solutol® HS 15 的 2850 mg加熱的(80°C)表面活性劑-助溶劑混合物。將該混合 物貯存於80°C的烘箱中直至藥物完全溶解。將所得到的溶 液填充到硬明膠膠囊(Licaps尺寸0,Capsugel,Belgium)中 並冷卻至25°C以進行凝固。每個膠囊裝入500 mg熔化的團 33 200824711 塊(包含25 mg化合物1)。 實施例16·基於PEG 4000的化合物1的液體填充膠囊 的溶解。 對從根據實施例15生産的膠囊中的藥物釋放進行測 5 試。每個片劑的藥物含量爲25 mg。根據USPII進行溶解測 試。於37.5°C,容器裝滿900 mL包含0·5 %w/v十二烷基硫酸 鈉的0.1 NHC1。攪拌槳速度在第一個90分鐘期間設定爲50 rpm,這之後在另外30分鐘内攪拌槳速度增加到150 rpm。 通過0.22从m篩檢程式過濾在0、5、10、20、30、45、60、 10 9〇和120分鐘後獲取的10 mL樣品。所有實驗一式三份地進 行,並將這3次實驗的平均值±協方差作爲時間函數進行繪 圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約52% 的藥物被釋放。 實施例17.化合物2製劑(SD)的製備。 15 在玻璃燒瓶中稱重250 mg難溶性藥物化合物2。然後向 這個燒瓶中加入包含66.34%(w/w)PEG 4000、 16.58%(w/w)Polysorbat 80、16.58%(w/w)維生素e TPGS和 〇·5%無水檸檬酸(w/w)的9.75 g表面活性劑-助溶劑混合 物。將該混合物貯存於80°C的烘箱中直至藥物完全溶解。 20 將lg這種熔化的溶液與1〇〇 ml經丙基甲基纖維素水溶液 (HPMC Grad E5,0.016%w/w)混合。然後,使用 Mini SpraySpray Dryer Btichi 191 (Biichi, Switzerland) was spray dried to obtain the resulting solution. The gas flow was 600 V hours, the inlet temperature was 15 (rc, the suction cry was set to 80%, the feed flow rate was about 5·5 g/min, and the outlet temperature under these conditions was about 90 C. A free-flowing powder was obtained. This embodiment shows that the present invention is not limited to a surfactant-cosolvent mixture. Once an aqueous micelle solution of a poorly soluble compound can be obtained in the presence of a dissolved pharmaceutically acceptable carrier, the resulting micellar solution can be The invention was processed. Example 6 - Particle size of the formulation of Compound 1 (before and after 3 〇 40 〇〇 40 。) 10 Using a laser diffractometer equipped with a Coulter Aqueous Liquid Module Coulter LS 13 320 (Beckman Coulter, Fullerton) , CA, USA) Determine the particle size of the drug micelle before and after spray drying. Set the true refractive index to 1.33 (water) for the fluid. For the sample, the true refractive index is not set to 1.46 ' and the virtual refraction will be The rate was set to 〇·〇1. 5 〇mg of poorly soluble drug (Compound 1) was weighed in a glass vial 15. Then 66.67% (w/w) PEG 4000, 16.67% (w/w) was added to the bottle. )Polyso Rbat 80 and 16.67% (w/w) 950 mg of heated (80 ° C) surfactant-cosolvent mixture of Solutol® HS 15. Store the mixture in an oven at 80 ° C until the drug is completely dissolved. This molten solution was mixed with 250 ml of aqueous hydroxypropylmethyl 20 cellulose (HPMC Grad E5, 0.016% w/w). The particle size of the obtained micelle solution was determined by laser diffraction to be a volume-weighted diameter d 95%. It is 345 nm. 1.4 g of the drug-containing powder (containing 50 mg of Compound 1) produced according to Example 3 was dissolved in 250 ml of water. The particle size of the obtained micelle solution was 29 200824711, which was determined by laser diffraction to be a volume-weighted diameter. d 95%, which is 254 nm. Example 7·Pressing of powder of Compound 1. The powder obtained in Example 3 was pressed into a press by using an experimental hydraulic press and applying a pressing pressure of 10 Torr for 40 seconds. Standard two-sided tablets with a diameter of 12.5 5 mm. Example 8 · Tableting of SD powder of Compound 1. 325 mg of powder produced according to Example 4 and 325 mg of granular hydrophilic emulsified dream (AEROPERL® 300/ 30, Degussa AG, Germany) and 125 Mg polyvinylpyrrolidone (Kollidon® CL, BASF, Germany) 10 was mixed and compressed into a two-sided tablet having a diameter of 12.5 mm by using an experimental hydraulic press and applying a compression pressure of 4 bar for 2 seconds. Example 9· Release profile of PEG 400 capsule (FD) of Compound 1. The powder produced according to Example 2 was filled into a hard gelatin capsule. The drug content in a capsule is 25 mg. The dissolution test was performed according to USP II. At 15 37.5 ° C, the vessel was filled with 900 mL of 0.1 N HCl containing 0.5% w/v sodium dodecyl sulfate. The paddle speed was set to 50 rpm during the first 90 minutes, after which the paddle speed was increased to 150 rpm in another 30 minutes. The 10 mL sample taken at 0, 5, 1 〇, 20, 30, 45, 60, 90 and 120 minutes was filtered through a 0.22 // m screening program. All experiments were performed in triplicate into 20 rows, and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 95% of the drug was released after 20 minutes. Example 10 - Release profile of PEG 4000 capsule (fD) of Compound 1. 30 200824711 The powder obtained in Example 3 was filled into a hard gelatin capsule. The table in a capsule contains 25 mg. The dissolution test was performed according to USP II. At 37.5 C, the trough is filled with 900 mL of o.in HC1 containing 0.5% w/v sodium lauryl sulfate. The paddle speed was set at .5 rpm during the first 90 minutes, after which the paddle speed was increased to 150 rpm in another 3 minutes. The 10 mL sample taken after 〇, 5, 10, 2 〇, 3 〇, 45, 60, 90 and 120 minutes was filtered through a 0.22 // m screening program. All experiments were performed in triplicate and the mean soil covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 85% of the drug was released after 20 minutes. Example 11. Release profile of Compound 1 PEG 4000 capsules (SD). 650 mg of the powder produced according to Example 4 was filled into hard gelatin capsules. The drug content in a capsule is 25 mg. The dissolution 15 test was performed according to USP II. At 37.5 ° C, the vessel was filled with 900 mL of 0.1 mL NHC1 containing 0.5% w/v sodium dodecyl sulfate. The paddle speed was set to 50 rpm during the first 90 minutes, after which the paddle speed was increased to ι 5 rpm for another 30 minutes. The 10 mL sample taken after 〇, 5, 10, 20, 30, 45, 60, 90 and 120 minutes was filtered through a 〇·22 screening program. All experiments were performed in triplicate and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 85% of the drug was released after 20 minutes. Example 12· Release profile of PEG 4000 tablets (SD) of Compound 1. 31 200824711 A drug release from a tablet produced according to Example 8 was tested. Each tablet has a drug content of 25 mg. Dissolution testing was performed according to USP Π. At 37.5 ° C, the vessel was filled with 900 mL of 〇·1 NHC1 containing 5.5 % w/v sodium dodecyl sulfate. The paddle speed was set to 50 5 rpm during the first 9 minutes, after which the paddle speed was increased to 150 rpm in another 30 minutes. The 10 mL sample taken after 〇, 5, 1 〇, 2 〇, 3 〇, 45, 6 〇, 90, and 120 minutes was filtered through a 〇·22 screening program. All experiments were performed in triplicate and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 85% of the 10 drugs were released after 20 minutes. Example 13 - pEG 4000 tablets of Compound 1 without spray drying. In order to compare the release profile of the formulations produced according to the invention with those of standard methods (e.g. melt extrusion), other formulations were produced. Therefore, 150 mg of the poorly soluble drug (Compound 1) was weighed in a glass bottle. Then, 2850 mg of heated (80 ° C) surface active containing 66.67% (w/w) PEG 4000, 16.67% (w/w) Polysorbat 80 and 16.67% (w/w) Solutol® HS 15 was added to the bottle. Agent and cosolvent mixture. The mixture was stored in an oven at 80 ° C until the drug was completely dissolved. The resulting solution was poured onto a glass plate and cooled to 25 ° C for solidification. The solid mass is then crushed by a spatula into irregular particles having a diameter of about 2 mm to 5 mm. Three tablets of 12.5 mm diameter were pressed by using an experimental hydraulic press and applying a compression pressure of 40 bar for 2 seconds, consisting of 325 mg of crushed solid mass (containing 12.5 mg of drug), 325 mg of granular hydrophilic Pyrochlore dioxide (AER 〇 pERL8 32 200824711 300/30, Degussa AG, Germany) and 125 mg of polyethylene hydrazine 11 each ketone (Kollidon® CL, BASF, Germany). Example 14. Dissolution of a PEG 4000 compound 1 tablet without spray drying. 5 The drug release from the tablets produced according to Example 13 was tested. The drug content per tablet is 12.5 mg. The dissolution test was performed according to USP II. At 37.5 ° C, the vessel was filled with 900 mL of 0.1 mL NHC1 containing 0.5% w/v sodium dodecyl sulfate. The paddle speed was set to 50 rpm during the first 90 minutes, after which the paddle speed was increased to 150 10 rpm over the other 30 minutes. The 10 mL samples taken after 0, 5, 10, 20, 30, 45, 60, 90 and 120 minutes were filtered through a 0.22 /zm screening procedure. All experiments were performed in triplicate and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. About 60% of the drug was released after 20 minutes. 15 Example 15 - Liquid filled capsule of Compound 1 based on PEG 4000. In order to compare the release profile of the formulations produced according to the invention with those of standard methods (e.g. liquid filled capsules), other samples were produced. Therefore, 150 mg of the poorly soluble drug (Compound 1) was weighed in a glass injection bottle. Then, 2850 mg of heated (80 ° C) containing 66.67 ° / 〇 (w / w) PEG 4000, 20 16.67% (w / w) Polysorbat 80 and 16.67% (w / w) Solutol ® HS 15 was added to the bottle. Surfactant-cosolvent mixture. The mixture was stored in an oven at 80 ° C until the drug was completely dissolved. The resulting solution was filled in a hard gelatin capsule (Licaps size 0, Capsugel, Belgium) and cooled to 25 ° C for solidification. Each capsule was filled with 500 mg of molten pellets 33 200824711 (containing 25 mg of Compound 1). Example 16. Dissolution of a liquid filled capsule of Compound 1 based on PEG 4000. A test was conducted on the release of the drug from the capsule produced according to Example 15. Each tablet has a drug content of 25 mg. The dissolution test was carried out according to USPII. At 37.5 ° C, the vessel was filled with 900 mL of 0.1 NHC1 containing 0.5% w/v sodium lauryl sulfate. The paddle speed was set to 50 rpm during the first 90 minutes, after which the paddle speed was increased to 150 rpm in another 30 minutes. A 10 mL sample taken at 0, 5, 10, 20, 30, 45, 60, 10 9 and 120 minutes was filtered from the m screening program by 0.22. All experiments were performed in triplicate and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 52% of the drug was released after 20 minutes. Example 17. Preparation of Compound 2 Formulation (SD). 15 Weigh 250 mg of the poorly soluble drug compound 2 in a glass flask. Then, 66.34% (w/w) PEG 4000, 16.58% (w/w) Polysorbat 80, 16.58% (w/w) vitamin e TPGS and 〇·5% anhydrous citric acid (w/w) were added to the flask. 9.75 g of surfactant-cosolvent mixture. The mixture was stored in an oven at 80 ° C until the drug was completely dissolved. 20 This molten solution of lg was mixed with 1 〇〇 ml of an aqueous solution of propylmethylcellulose (HPMC Grad E5, 0.016% w/w). Then, use Mini Spray

Dryer Biichi 191 (Btichi,Switzerland)來噴霧乾燥所得到的溶 液。氣流爲600 1/小時,進口溫度爲150°C,抽吸器設定成 80%,給料流速爲約5.5 g/分鐘,在這些條件下的出口溫度 34 200824711 爲約90°C。重復這個過程直至全部的藥物-表面活性劑-助溶 劑混合物被加工。獲得可自由流動的粉末。 實施例18·化合物2的SD粉末的壓片。 將650 mg根據實施例17産生的粉末與450 mg粒狀親水 5 火成二氧化碎(AEROPERL® 300/30,Degussa AG,Germany) 和200 mg聚乙烯吡咯烷酮(Kollidon® CL,BASF,Germany) 混合,並通過使用實驗性水壓機和施加40巴的壓緊壓強2秒 而壓製成直徑12.5 mm的兩面片劑。 實施例19·化合物2的PEG 4000膠囊(SD)的釋放特性 10 譜。 對從根據實施例18生産的片劑中的藥物釋放進行測 試。每個片劑的藥物含量爲12.5 mg。根據USP II進行溶解 測試。於37.5°C,容器裝滿900 mL包含0.5 %w/v十二烷基硫 酸鈉的0.1 NHC1。攪拌槳速度在第一個90分鐘期間設定爲 15 50 rPm,這之後在另外30分鐘内攪拌槳速度增加到150 rpm。通過〇·22 篩檢程式過濾在〇、5、10、20、30、45、 60、90和120分鐘後獲取的1〇 mL樣品。所有實驗一式三份 地進行,並將這3次實驗的平均值±協方差作爲時間函數進 行繪圖。樣品中的藥物含量使用HPLC測定。20分鐘後大約 20 92%的藥物被釋放。 實施例20.化合物3製劑(SDTPGS)的製備。 在燒瓶中稱重〇·2 g難溶性藥物(化合物3)。然後向這個 燒瓶中加入包含〇.5%(w/w)無水檸檬酸的1.8 g加熱的(8〇°c) 、准生素E TPGS。將該混合物貯存於80°C的烘箱中直至藥物 35 200824711 完全溶解。將2 g這種熔化的溶液與1〇〇瓜丨羥丙基曱基纖維 素水溶液(HPMC Grad E5,0.6%w/w)混合。然後,使用議ni Spray Dryer Biidii 191(Biidii,Switzerland)來噴霧乾燥所得 到的溶液。氣流爲600 1/小時,進口溫度爲12(Tc,抽吸器 5設定成80%,給料流速爲約5.5 g/分鐘,在這些條件下的出 口溫度爲約80°C。獲得可自由流動的粉末。這個實施例顯 示,本發明不限於表面活性劑_助溶劑混合物。一旦可以在 溶解的藥學上可接受的水溶性載體存在下獲得難溶性化合 物的膠束水溶液,所得到的膠束溶液就可以根據本發明進 10 行加工。 實施例21·化合物1製劑(SDTPGS)的擴大實驗。 在燒瓶中稱重100.0 g難溶性藥物(化合物丨)。然後向這 個燒瓶中加入包含〇.5%(w/w)無水檸檬酸的1900.0 g加熱的 (80°C)維生素E TPGS。將該混合物貯存於8〇°c的烘箱中並 15攪拌直至藥物完全溶解。將2kg這種熔化的溶液(2000.0 g) 與18.0 L經丙基甲基纖維素水溶液(HPMC Grad E5, 3.33%w/w)混合。然後使用喷霧乾燥機術〇 At〇mizer M〇bile Minor(Nii:o Inc.)來噴霧乾燥所得到的膠束溶液。進口溫度 爲250 C,給料流速爲約5〇 g/分鐘,在這些條件下的出口溫 20度爲約80 c。獲得可自由流動的粉末。這個實施例顯示, 擴大至更大設備也是可以的,並且所得到的粉末與以小型 實驗室規模生產的粉末相比較具有相同的性質。 實施例22·測量實施例21(SD TPGS)中獲得的粉末的 溫度穩定性。 36 200824711 將實施例21的產物(大規模生産化合物1 SD TPGS)置 於80 C的烘箱中,並於80°c維持4周。沒有觀察到關於粉末 形態的重大變化。即使在80它貯存4周後仍保持可自由流動 的粉末。與此形成對比,具有相同組成的物理混合物在相 5同烘箱中於80°c貯存1小時後就已經完全熔化了。 實施例23.化合物1的4種不同製劑在雄性比格獵犬中 的比較生物利用率資料。 進行採用交又設計的比較生物利用率研究,以相對於 其他製劑類型測试根據本發明的包含經包埋的膠束的最終 10劑型的生物利用率。給4只雄性比格獵犬施用配製在如表1 中所示組成的幾種劑型中的50 mg化合物1。 表1·所研究的製劑的組成 膠束溶液 微粉化片劑 液體填充膠囊 包埋的膠束片劑 (mg) (%) (mg) (%) (mg) (%) (mg) (%) 化合物1 50 5 25 8.33 25 5 25 1.72 SDS 0.5 0.17 PVP-CL 30 10 400 27.59 HPMC E5® 2.5 0.83 150 10.34 維生素ETPGS 945.25 94.53 472.63 94.53 472.63 32.6 檸檬酸 4.75 0.48 2.37 0.47 2.37 0.16 Pruv® 1.5 0.5 MCC 240.5 80.17 Aeropearl 300® 400 27.59 總計 100 100 300 100 500 100 1450 100Dryer Biichi 191 (Btichi, Switzerland) to spray dry the resulting solution. The gas flow was 600 1 / hour, the inlet temperature was 150 ° C, the aspirator was set to 80%, the feed flow rate was about 5.5 g / min, and the outlet temperature 34 200824711 under these conditions was about 90 ° C. This process is repeated until all of the drug-surfactant-cosolvent mixture is processed. A free flowing powder is obtained. Example 18·Pressing of SD powder of Compound 2. 650 mg of the powder produced according to Example 17 was mixed with 450 mg of granular hydrophilic 5 smoldering sulphur dioxide (AEROPERL® 300/30, Degussa AG, Germany) and 200 mg of polyvinylpyrrolidone (Kollidon® CL, BASF, Germany) And a two-sided tablet having a diameter of 12.5 mm was pressed by using an experimental hydraulic press and applying a compression pressure of 40 bar for 2 seconds. Example 19· Release Characteristics of PEG 4000 Capsules (SD) of Compound 2 10 Spectrum. The drug release from the tablets produced according to Example 18 was tested. The drug content per tablet is 12.5 mg. The dissolution test was performed according to USP II. At 37.5 ° C, the vessel was filled with 900 mL of 0.1 NHC1 containing 0.5% w/v sodium lauryl sulfate. The paddle speed was set to 15 50 rPm during the first 90 minutes, after which the paddle speed was increased to 150 rpm for another 30 minutes. The 1 〇 mL sample taken after 〇, 5, 10, 20, 30, 45, 60, 90 and 120 minutes was filtered by the 〇·22 screening program. All experiments were performed in triplicate and the mean ± covariance of the three experiments was plotted as a function of time. The drug content in the sample was determined using HPLC. Approximately 20 92% of the drug was released after 20 minutes. Example 20. Preparation of Compound 3 Formulation (SDTPGS). The 〇·2 g poorly soluble drug (Compound 3) was weighed in a flask. Then, 1.8 g of heated (8 〇 ° C), biotic E TPGS containing 〇.5% (w/w) anhydrous citric acid was added to the flask. The mixture was stored in an oven at 80 ° C until the drug 35 200824711 was completely dissolved. 2 g of this molten solution was mixed with a solution of 1 guanidine hydroxypropyl decylcellulose (HPMC Grad E5, 0.6% w/w). Then, the resulting solution was spray dried using a Ni spray Dryer Biidii 191 (Biidii, Switzerland). The gas flow was 600 1 / hour, the inlet temperature was 12 (Tc, the aspirator 5 was set to 80%, the feed flow rate was about 5.5 g/min, and the outlet temperature under these conditions was about 80 ° C. Obtaining free flow Powder. This example shows that the invention is not limited to surfactant-cosolvent mixtures. Once the micelle aqueous solution of the poorly soluble compound can be obtained in the presence of a dissolved pharmaceutically acceptable water-soluble carrier, the resulting micellar solution is It can be processed according to the present invention. Example 21: Enlargement experiment of Compound 1 formulation (SDTPGS). 100.0 g of poorly soluble drug (compound oxime) was weighed in a flask, and then 5%. w/w) 1900.0 g of heated citric acid (80 ° C) Vitamin E TPGS. Store the mixture in an oven at 8 ° C and stir until the drug is completely dissolved. 2 kg of this molten solution (2000.0 g) mixed with 18.0 L of propylmethylcellulose aqueous solution (HPMC Grad E5, 3.33% w/w), then sprayed with a spray dryer 〇At〇mizer M〇bile Minor (Nii:o Inc.) Dry the obtained micelle solution. Inlet temperature 250 C, the feed flow rate was about 5 〇g/min, and the outlet temperature under these conditions was 20 ° C. A free-flowing powder was obtained. This example shows that it is also possible to expand to larger equipment, and The obtained powder had the same properties as the powder produced on a small laboratory scale.Example 22·Measure the temperature stability of the powder obtained in Example 21 (SD TPGS). 36 200824711 The product of Example 21 (large Scale production of Compound 1 SD TPGS) was placed in an oven at 80 C and maintained at 80 ° C for 4 weeks. No significant changes in the morphology of the powder were observed. Even at 80 it remained free flowing powder after 4 weeks of storage. In contrast, the physical mixture having the same composition was completely melted after storage in the same oven for 5 hours at 80 ° C. Example 23. Comparison of four different formulations of Compound 1 in male beagle dogs Bioavailability data. A comparative bioavailability study was conducted using cross-over design to test the final 10 dosage forms of the encapsulated micelles according to the present invention relative to other formulation types. Utilization. Four male beagle dogs were administered 50 mg of Compound 1 formulated in several dosage forms as shown in Table 1. Table 1. Composition of the studied formulations Micellar solution Micronized tablets Liquid filled capsules Embeded micelle tablets (mg) (%) (mg) (%) (mg) (%) (mg) (%) Compound 1 50 5 25 8.33 25 5 25 1.72 SDS 0.5 0.17 PVP-CL 30 10 400 27.59 HPMC E5® 2.5 0.83 150 10.34 Vitamin ETPGS 945.25 94.53 472.63 94.53 472.63 32.6 Citric acid 4.75 0.48 2.37 0.47 2.37 0.16 Pruv® 1.5 0.5 MCC 240.5 80.17 Aeropearl 300® 400 27.59 Total 100 100 300 100 500 100 1450 100

15 在所有情況下,施用了 50 mg化合物1,這表示在某些 情況下同時施用2個劑型。根據實施例1中所述方法測量的 在口服施用後的平均血漿水平描述於第2圖中。由這些測量 37 200824711 結果獲得如表2中給出的資料。 表2.在雄性比格獵犬中化合物1的比較生物利用率研究的結果 製劑類型 C最大比率 相對生物利用率 膠束溶液 18 7.6 片劑(微粉化的) 1 1 液體填充膠囊 8 3.5 包埋的膠束片劑 10 5.7 5 【圖式簡單說明】 第1圖顯現了在藥物用途的情況下,根據本發明的一般 方法。 第2圖給出了在給雄性比格獵犬(beagle dog)施用4種不 同的製劑(包括根據本發明的製劑)後獲得的化合物1的血漿 10 濃度。 【主要元件符號說明】 (無)15 In all cases, 50 mg of Compound 1 was administered, which means that in some cases two dosage forms were administered simultaneously. The mean plasma levels after oral administration measured according to the method described in Example 1 are depicted in Figure 2. From these measurements 37 200824711 results obtained the data as given in Table 2. Table 2. Comparison of Compounds 1 in Male Beagle Dogs Results of Bioavailability Study Formulation Type C Maximum Ratio Relative Bioavailability Micellar Solution 18 7.6 Tablets (Micronized) 1 1 Liquid Filled Capsules 8 3.5 Embedded Micellar Tablets 10 5.7 5 [Simple Description of the Drawings] Figure 1 shows the general method according to the invention in the case of pharmaceutical use. Fig. 2 shows the plasma 10 concentration of Compound 1 obtained after administration of four different preparations (including the preparation according to the present invention) to a male beagle dog. [Main component symbol description] (none)

3838

Claims (1)

200824711 十、申請專利範圍: 1·種包含奈米級膠束的耐熱型固體組合物,其中所遂3 束包含/谷解於輔助材料中的難溶性化學物質,和其中4 述膠束包埋在水溶性载體中。 /、所 5200824711 X. Patent application scope: 1. A heat-resistant solid composition comprising nano-sized micelles, wherein the bundle 3 contains/dissolves poorly soluble chemicals in the auxiliary material, and 4 of them are embedded in the micelle In a water soluble carrier. /, 5 10 1510 15 20 2· -種包含奈米級膠相耐熱型固體藥物組合物,其中戶 述膠束包含溶解於辅助材料中的難溶性活性物質,和其 中所述膠束包埋在水溶性的藥學上可接受的载體发、 質中。 基 3·如申請專利範圍第⑷項的組合物,其中所述膠束具 小於約1000 nm的有效平均顆粒尺寸。 、有 4·如申請專利範圍第3項的組合物,其中所述膠束具有 於約500 nm的有效平均顆粒尺寸。 5·如申請專利範圍第1或2項的組合物,其中所述辅助材料 包含至少10% w/w的表面活性劑,以及任選地_種戈夕 種助溶劑和/或一種或多種辅助表面活性劑。 6·如申請專利範圍第1或2項的組合物,其中所述補助柯料 選自聚氧乙烯硬脂酸酯(例如Soiutol®) '聚氧乙婦山$ 聚糖脂肪酸S旨(例如Tween®)、聚氧乙烯f麻油衍生物 (例如Chremophor®)、維生素E TPGS、非離子型聚氧乙 烯-聚氧丙稀嵌段共聚物(例如Poloxamer®)、水溶性^ _ 有機磷酸酯(例如Arlatone⑧)、菊粉月桂基氨基甲酸酉旨 (例如 Inutec SP1 ⑧)。 7·如申請專利範圍第5項的組合物,其中所述辅助材料選 自聚氧乙烯硬脂酸酯(例如Solutol®)、聚氧乙稀山梨聚 39 200824711 糖脂肪酸酯(例如Tween®)、聚氧乙烯蓖麻油衍生物(例 如Chremophor®)、維生素E TPGS、非離子型聚氧乙稀· 聚氧丙烯嵌段共聚物(例如Poloxamer®)、水溶性長鏈有 機磷酸酯(例如Arlatone®)、菊粉月桂基氨基甲酸酯(例 5 如 Inutec SP1®)。 8·如申請專利範圍第5項的組合物,其中所述助溶劑選自 亞烧基二醉例如PEG、丙二醇;多元醉例如甘露醇、山 梨糖醇和木糖醇;聚氧乙烯;線性多元醇例如乙二醇、 1,6-己二醇、新戊二醇和甲氧基聚乙二醇;及其混合物。 10 9·如申請專利範圍第8項的組合物,其中所述助溶劑是分 子量等於或小於800道爾頓的聚乙二醇(PEG)。 10.如申請專利範圍第9項的組合物,其中所述助溶劑選自 PEG 200、PEG 400和 PEG 800。 11·如申·請專利範圍第8項的組合物,其中所述助溶劑是分 15 子量爲950 —20,000道爾頓的聚乙二醇(PEG)。 12·如申請專利範圍第η項的組合物,其中所述助溶劑選自 PEG 2000、PEG 3350、PEG 4000和PEG 8000。 13·如申請專利範圍第2項的組合物,其中所述水溶性的藥 學上可接受的載體選自 20 一烷基纖維素,例如曱基纖維素; 一羥烷基纖維素,例如羥甲基纖維素、羥乙基纖 維素、羥丙基纖維素和羥丁基纖維素; 一备烧基烧基纖維素,例如經乙基甲基纖維素和 羥丙基甲基纖維素; 40 200824711 一羧烷基纖維素,例如羧曱基纖維素; 一羧烷基纖維素的鹼金屬鹽,例如羧甲基纖維素 鈉; 一羧烷基烷基纖維素,例如羧甲基乙基纖維素; 一羧烷基纖維素酯; 一殿粉; 一果膠,例如魏曱基支鍵殿粉納; _殼多糖衍生物,例如殼聚糖;20 2 - a nano-powder phase heat-resistant solid pharmaceutical composition, wherein the household micelle comprises a poorly soluble active substance dissolved in an auxiliary material, and wherein the micelle is embedded in a water-soluble pharmaceutically acceptable substance Accepted carrier hair, quality. The composition of claim 4, wherein the micelle has an effective average particle size of less than about 1000 nm. 4. The composition of claim 3, wherein the micelles have an effective average particle size of about 500 nm. 5. The composition of claim 1 or 2, wherein the auxiliary material comprises at least 10% w/w of a surfactant, and optionally a genus of co-solvent and/or one or more auxiliary Surfactant. 6. The composition of claim 1 or 2, wherein the supplemental material is selected from the group consisting of polyoxyethylene stearate (e.g., Soiutol®) 'polyoxyethylene sulphate, a glycan fatty acid S (e.g., Tween) ®), polyoxyethylene f sesame oil derivatives (eg Chremophor®), vitamin E TPGS, nonionic polyoxyethylene-polyoxypropylene block copolymers (eg Poloxamer®), water soluble ^ _ organophosphates (eg Arlatone 8), inulin lauryl carbamate (eg Inutec SP18). 7. The composition of claim 5, wherein the auxiliary material is selected from the group consisting of polyoxyethylene stearate (e.g., Solutol®), polyoxyethylene sorbitan poly 39 200824711, sugar fatty acid ester (e.g., Tween®). Polyoxyethylene castor oil derivatives (eg Chremophor®), vitamin E TPGS, nonionic polyoxyethylene polyoxypropylene block copolymers (eg Poloxamer®), water soluble long chain organophosphates (eg Arlatone®) ), inulin lauryl carbamate (Example 5 such as Inutec SP1®). 8. The composition of claim 5, wherein the co-solvent is selected from the group consisting of pyridyls such as PEG, propylene glycol; polydextrose such as mannitol, sorbitol, and xylitol; polyoxyethylene; linear polyol For example, ethylene glycol, 1,6-hexanediol, neopentyl glycol, and methoxypolyethylene glycol; and mixtures thereof. The composition of claim 8, wherein the co-solvent is polyethylene glycol (PEG) having a molecular weight of 800 Daltons or less. 10. The composition of claim 9, wherein the co-solvent is selected from the group consisting of PEG 200, PEG 400, and PEG 800. 11. The composition of claim 8, wherein the co-solvent is polyethylene glycol (PEG) in an amount of from 950 to 20,000 Daltons. 12. The composition of claim n, wherein the co-solvent is selected from the group consisting of PEG 2000, PEG 3350, PEG 4000, and PEG 8000. 13. The composition of claim 2, wherein the water-soluble pharmaceutically acceptable carrier is selected from the group consisting of 20-alkyl celluloses, such as mercapto cellulose; monohydroxyalkyl celluloses, such as hydroxyl groups. Cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxybutyl cellulose; a calcined cellulose, such as ethyl methyl cellulose and hydroxypropyl methyl cellulose; 40 200824711 a carboxyalkyl cellulose, such as carboxymethyl cellulose; an alkali metal salt of a carboxyalkyl cellulose, such as sodium carboxymethyl cellulose; a carboxyalkyl alkyl cellulose, such as carboxymethyl ethyl cellulose ; a carboxyalkyl cellulose ester; a temple powder; a pectin, such as the Wei 曱 支 殿 殿 ;; _ chitin derivative, such as chitosan; 一多糖,例如藻酸、其驗金屬和銨鹽; 一角叉菜聚糖、半乳甘露聚糖、黃蓍膠、瓊脂、 阿拉伯膠、瓜爾膠和黃原膠; —聚丙烯酸及其鹽; 一聚甲基丙烯酸及其鹽,甲基丙烯酸酯共聚物; —聚乙稀酵; 15 —聚乙烯吡咯烷酮,聚乙烯吡咯烷酮與乙酸乙烯 酯的共聚物; —聚環氧烧,例如聚環氧乙烧和聚環氧丙烧,以 及環氧乙烷與環氧丙烷的共聚物。 14. 如申請專利範圍第1或2項的組合物,其中所述組合物的 20 形式爲粉劑、粒劑、壓制片劑、舌下含片、頰含片、填 充膠囊或填充囊劑。 15. 如申請專利範圍第2項的組合物,其中所述難溶性活性 物質選自大麻素激動劑、大麻素逆激動劑和大麻素拮抗 劑0 41 200824711 16. 如申請專利範圍第15項的組合物,其中所述難溶性活性 物質是(4S)-3-(4-氯苯基)-4,5-二氫-N-甲基-4-苯基 呱啶基-磺酰基)-1Η-吡唑-1-甲脒。 17. 如申請專利範圍第15項的組合物,其中所述難溶性活性 5 物質是(4S)-3 -(4-氯苯基)-N- [(4·氯苯基)磺酰基]-4,5-二 氫·Ν*·甲基4-苯基_1H_吡唑-1-曱脒。 18. 如申請專利範圍第15項的組合物,其中所述難溶性活性 物質是(4S)-3-(4-氯苯基)-4,5-二氫-N-甲基-4-苯基 -N4[4_(三氟甲基)-苯基]磺酰基]-1H-吼唑-1-曱脒。 10 19. 一種製備如申請專利範圍第2項的固體藥物組合物的方 法,其包括下列步驟: a) 將難溶性活性物質溶解於輔助材料或輔助材料 的混合物中; b) 任選地向在a)中獲得的溶液中加入一種或多種另 15 外的辅助材料; c) 將在a)或b)中獲得的溶液與水混合以形成奈米級 膠束; 、 d) 將基質形成材料溶解於在c)中獲得的混合物中; 和 20 e)使在d)中獲得的混合物乾燥,從而獲得固體藥物 組合物,其中所述膠束包埋在所述基質形成材料中。 20. —種製備如申請專利範圍第2項的固體藥物組合物的方 法,其包括下列步驟: a)將難溶性活性物質溶解於輔助材料或辅助材料 42 的混合物中; b) 任選地向在a)中獲得的溶液中加入一種或多種另 外的輔助材料; c) 將基質形成材料溶解於水中; 5 d)將在a)或b)中獲得的溶液與在c)中獲得的溶液混 合以形成奈米級膠束;和 e)使在d)中獲得的混合物乾燥,從而獲得固體藥物 組合物,其中所述膠束包埋在所述基質形成材料中。 21. —種製備如申請專利範圍第2項的固體藥物組各物的方 10 法,其包括下列步驟: a) 將難溶性活性物質溶解於輔助材料或輔助材料 的混合物中; b) 將在a)中獲得的溶液溶解於水中以形成奈米級膠 束; 15 c)任選地向在b)中獲得的溶液中加入一種或多種另 外的辅助材料; d) 將基質形成材料溶解於在b)或c)中獲得的溶液 中;和 e) 使在d)中獲得的混合物乾燥,從而獲得固體藥物 20 組合物,其中所述膠束包埋在所述基質形成材料中。 2 2. —種製備如申請專利範圍第2項的固體藥物組合物的方 法,其包括下列步驟: a)將辅助材料或輔助材料的混合物溶解於水中以 形成奈米級膠束; 43 200824711 b)將難溶性活性物質溶解於在a)中獲得的溶液中, 其中所獲得的溶液包含含有所述難溶性活性物質的膠 東; C)任選地向在b)中獲得的溶液中加入一種或多種另 5 外的輔助材料; d) 將基質形成材料溶解於在的或幻中獲得的溶液 中;和 e) 使在d)中獲得的混合物乾燥,從而獲得固體藥物 組合物,其中所述膠束包埋在所述基質形成材料中。 23 ·種製備如申請專利範圍第2項的固體藥物組合物的方 法,其包括下列步驟: a) 將輔助材料或輔助材料的混合物溶解於水中; b) 將難溶性活性物質溶解於在a)中獲得的溶液中; i5 C)向在b)中獲得的溶液中加入一種或多種另外的辅 助材料,從而形成包含含有所述難溶性活性物質的膠束 的溶液; d)將基質形成材料溶解於在c)中獲得的包含含有所 逃難溶性活性物質的膠束的溶液中;和 2〇 匀使在d)中獲得的混合物乾燥,從而獲得固體藥物 組合物’其情束包埋麵述基質形成材料中。 24·如申請專利範圍第19-23項的方法,其t所述乾燥步驟 通過冷綠燥、_機、冷;東讀髓、真空乾燥或 其組合來進行。 25·如申請專利範圍第24項的方法,其進一步包括將所述固 44 200824711 體藥物組合物加工成粒劑、壓制片劑、舌下含片或頰含 片。 26.如申請專利範圍第24項的方法,其進一步包括將所述固 體藥物組合物填充入膠囊或嚢劑中。a polysaccharide, such as alginic acid, its metal and ammonium salts; a carrageenan, galactomannan, tragacanth, agar, gum arabic, guar gum and xanthan gum; - polyacrylic acid and its salts ; a polymethacrylic acid and its salts, methacrylate copolymer; - polyethylene glycol; 15 - polyvinylpyrrolidone, a copolymer of polyvinylpyrrolidone and vinyl acetate; - polyepoxy burning, such as polyepoxy Ethylene and polyglycol, and copolymers of ethylene oxide and propylene oxide. 14. The composition of claim 1 or 2, wherein the composition 20 is in the form of a powder, a granule, a compressed tablet, a sublingual tablet, a buccal tablet, a filled capsule or a filled capsule. 15. The composition of claim 2, wherein the poorly soluble active substance is selected from the group consisting of a cannabinoid agonist, a cannabinoid inverse agonist, and a cannabinoid antagonist. 0 41 200824711 16. As claimed in claim 15 a composition wherein the poorly soluble active substance is (4S)-3-(4-chlorophenyl)-4,5-dihydro-N-methyl-4-phenylacridinyl-sulfonyl)-1? -pyrazole-1-carboxamidine. 17. The composition of claim 15 wherein the poorly soluble active 5 material is (4S)-3 -(4-chlorophenyl)-N-[(4.chlorophenyl)sulfonyl]- 4,5-Dihydro-indole*-methyl 4-phenyl_1H-pyrazole-1-indole. 18. The composition of claim 15 wherein the poorly soluble active substance is (4S)-3-(4-chlorophenyl)-4,5-dihydro-N-methyl-4-benzene -N4[4_(Trifluoromethyl)-phenyl]sulfonyl]-1H-indazole-1-indole. 10 19. A method of preparing a solid pharmaceutical composition according to claim 2, comprising the steps of: a) dissolving the poorly soluble active substance in a mixture of auxiliary materials or auxiliary materials; b) optionally Adding one or more auxiliary materials other than 15 to the solution obtained in a); c) mixing the solution obtained in a) or b) with water to form a nano-sized micelle; d) dissolving the matrix-forming material In the mixture obtained in c); and 20 e) drying the mixture obtained in d) to obtain a solid pharmaceutical composition, wherein the micelles are embedded in the matrix forming material. 20. A method of preparing a solid pharmaceutical composition according to claim 2, which comprises the steps of: a) dissolving a poorly soluble active substance in a mixture of an auxiliary material or auxiliary material 42; b) optionally Adding one or more additional auxiliary materials to the solution obtained in a); c) dissolving the matrix forming material in water; 5 d) mixing the solution obtained in a) or b) with the solution obtained in c) To form a nano-sized micelle; and e) to dry the mixture obtained in d) to obtain a solid pharmaceutical composition, wherein the micelle is embedded in the matrix-forming material. 21. A method of preparing a solid pharmaceutical composition according to claim 2, comprising the steps of: a) dissolving a poorly soluble active substance in a mixture of auxiliary materials or auxiliary materials; b) The solution obtained in a) is dissolved in water to form a nano-sized micelle; 15 c) optionally adding one or more additional auxiliary materials to the solution obtained in b); d) dissolving the matrix-forming material in b) or a solution obtained in c); and e) drying the mixture obtained in d) to obtain a solid drug 20 composition, wherein the micelle is embedded in the matrix forming material. 2 2. A method of preparing a solid pharmaceutical composition according to claim 2, comprising the steps of: a) dissolving a mixture of an auxiliary material or an auxiliary material in water to form a nano-sized micelle; 43 200824711 b Dissolving a poorly soluble active substance in a solution obtained in a), wherein the solution obtained comprises a binder containing the poorly soluble active substance; C) optionally adding one or a solution obtained in b) a plurality of additional auxiliary materials; d) dissolving the matrix forming material in the solution obtained in the illusion; and e) drying the mixture obtained in d) to obtain a solid pharmaceutical composition, wherein the gel A beam is embedded in the matrix forming material. A method of preparing a solid pharmaceutical composition according to claim 2, which comprises the steps of: a) dissolving a mixture of an auxiliary material or an auxiliary material in water; b) dissolving the poorly soluble active substance in a) In the solution obtained; i5 C) adding one or more additional auxiliary materials to the solution obtained in b) to form a solution comprising micelles containing the poorly soluble active substance; d) dissolving the matrix forming material In the solution obtained in c), which comprises a micelle containing the insoluble active substance; and 2, the mixture obtained in d) is dried to obtain a solid pharmaceutical composition, which is embedded in the matrix. Formed in the material. 24. The method of claim 19-23, wherein the drying step is carried out by cold green drying, machine cooling, east reading, vacuum drying or a combination thereof. 25. The method of claim 24, further comprising processing the solid pharmaceutical composition into a granule, a compressed tablet, a sublingual tablet or a buccal tablet. 26. The method of claim 24, further comprising filling the solid pharmaceutical composition into a capsule or elixir.
TW096138868A 2006-10-20 2007-10-17 Embedded micellar nanoparticles TWI392507B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06122648 2006-10-20

Publications (2)

Publication Number Publication Date
TW200824711A true TW200824711A (en) 2008-06-16
TWI392507B TWI392507B (en) 2013-04-11

Family

ID=37671256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138868A TWI392507B (en) 2006-10-20 2007-10-17 Embedded micellar nanoparticles

Country Status (8)

Country Link
CN (2) CN101686946A (en)
AR (1) AR063330A1 (en)
BR (1) BRPI0719826A8 (en)
HK (1) HK1199829A1 (en)
MX (1) MX2009004124A (en)
SA (1) SA07280548B1 (en)
TW (1) TWI392507B (en)
UA (1) UA97496C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661841B (en) * 2017-04-19 2019-06-11 三凡生技研發股份有限公司 Carrier for dispersing hydrophobic botanical extract
EP3424493A1 (en) * 2017-07-07 2019-01-09 SolMic Research GmbH Stable cannabinoid compositions
CN110302155B (en) * 2019-07-31 2021-09-21 江南大学 Preparation method and application of xanthan gum copolymer nano micelle
CN112915121A (en) * 2019-12-06 2021-06-08 汉义生物科技(北京)有限公司 Cannabinoid nano micelle preparation and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9700866B2 (en) * 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
WO2003005992A1 (en) * 2001-07-13 2003-01-23 Nanocarrier Co., Ltd. Lyophilizing composition of drug-encapsulating polymer micelle and method for preparation thereof
IL153277A0 (en) * 2002-12-04 2003-07-06 Pharmos Corp High enantiomeric purity dexanabinol for pharmaceutical compositions
WO2005118612A1 (en) * 2004-06-04 2005-12-15 Sonus Pharmaceuticals, Inc. Cholesterol/bile acid/bile acid derivative-modified therapeutic anti-cancer drugs

Also Published As

Publication number Publication date
CN104188926A (en) 2014-12-10
BRPI0719826A8 (en) 2017-04-04
BRPI0719826A2 (en) 2014-05-06
MX2009004124A (en) 2009-07-22
HK1199829A1 (en) 2015-07-24
UA97496C2 (en) 2012-02-27
SA07280548B1 (en) 2011-10-08
AR063330A1 (en) 2009-01-21
CN101686946A (en) 2010-03-31
TWI392507B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5439182B2 (en) Chemical micelle nanoparticles
US7923026B2 (en) Embedded micellar nanoparticles
JP5936705B2 (en) Pharmaceutical compositions with improved bioavailability of high melting point hydrophobic compounds
JP2021178871A (en) Formulations of enzalutamide
AU2016229086B2 (en) Solid dispersions
BRPI0908340A2 (en) pharmaceutical composition for poorly soluble drugs
JP2010509289A (en) Pharmaceutical dosage forms for oral administration of tyrosine kinase inhibitors
US20090263479A1 (en) Formulations for poorly permeable active pharmaceutical ingredients
US20080286373A1 (en) Ziprasidone formulations
TW201113050A (en) 3-cyanoquinoline tablet formulations and uses thereof
TW200824711A (en) Embedded micellar nanoparticles
EP3254699B1 (en) Solid dispersion containing dutasteride, and composition containing same
EP3250188B1 (en) Pharmaceutical composition comprising aprepitant and method for the preparation thereof
CN109260207A (en) The preparation of pyrimidinedione derivative compound
WO2007064083A1 (en) Spray-dried granules and processes for the preparation thereof
HK1138510A (en) Micellar nanoparticles of chemical substances
CN101242813A (en) Nanoparticulate and controlled release compositions comprising aryl-heterocyclic compounds
CN118613254A (en) Granules containing Progerinin and sachets using the same
WO2015106963A1 (en) Pharmaceutical composition comprising aripiprazole or salt thereof
TW201247246A (en) Dronedarone solid dispersion and its preparation method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees