TW200823823A - Controlling apparatuses for controlling a plurality of LED strings and related light modules - Google Patents
Controlling apparatuses for controlling a plurality of LED strings and related light modules Download PDFInfo
- Publication number
- TW200823823A TW200823823A TW095142453A TW95142453A TW200823823A TW 200823823 A TW200823823 A TW 200823823A TW 095142453 A TW095142453 A TW 095142453A TW 95142453 A TW95142453 A TW 95142453A TW 200823823 A TW200823823 A TW 200823823A
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- transistors
- control device
- voltage
- control
- Prior art date
Links
- 238000003491 array Methods 0.000 claims description 21
- 239000003086 colorant Substances 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 2
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 150000002923 oximes Chemical class 0.000 claims 1
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/40—Details of LED load circuits
- H05B45/44—Details of LED load circuits with an active control inside an LED matrix
- H05B45/46—Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
Landscapes
- Led Devices (AREA)
Abstract
Description
200823823 九、發明說明: 【發明所屬之技術領域】 本發明係有關於控制發光二極體之技術,尤指控制複 數個發光二極體串列之控制裝置與相關之光源模組。 【先前技術】 以發光二極體(LED)作為發光源的應用越來越普遍。 例如,傳統液晶顯示面板之背光模組多半是以冷陰極螢光 燈管(cold cathode fluorescent lamp, CCFL )來作為光源。 如今,隨著發光二極體的發光效率不斷提升且成本日益降 低,發光二極體逐漸有取代冷陰極螢光燈管來作為背光模 組光源的趨勢。 在習知技術中,常會將多顆發光二極體串聯成一串 列’以減少所需的驅動電路數量及降低發光二極體的總驅 動電流大小。然而,由於製程上的偏差,很難確保不同串 列中的所有發光二極體都有完全—致的元件參數。此外, 溫度等環境因素也可能會影響到發光二極體的元件參數。 舉例而δ ’不同發光二極體彼此間的順向電壓(加 * W)經常會有些許的差異。將多顆發光二極體串 聯成一串列的架構,會將同—串列中所有發光二極體的順 200823823 向電壓誤差累加起來,而不同發光二極體串列所累加的總 順向電壓誤差通常會也會有所不同。 在此情況下’即使施加相同的工作電壓予不同的發光 二極體串列,流經個別發光二極體串列的電流也會因每一 發光二極體串列所累加的總順向電壓誤差不同而有所不 同。如此一來,發光二極體串列彼此間將因電流不一致而 鲁有不同的亮度。因此,利用發光二極體串列作為液晶顯示 面板之背光模組的光源時,常會導致液晶顯示面板因背光 源亮度不均勻而有色不均(Mura)的不良現象。 【發明内容】 有,於此’本發明之目的之—在於提供可控制複數個 修解決==列之亮度的控制裝置與相關之光源模組’以 極體供了-種控制裝置,用來控制複數個發光二 、中該複數個發光二極體串列之第— 控制知、一第一端與一第二媸,甘士 — 電性連接於該複數個發光二極體二 端’且該複數個電晶體之第二端係分別透過 200823823 ^ 複數個阻抗元件接地;以及一電晶體控制器,電性連接於 該複數個電晶體之控制端,用以依據每一電晶體之第二端 的電壓來調整該電晶體之控制端的輸入訊號,以控制該電 晶體之第一端的電流。 本發明再提供了一種光源模組,其包含有:複數個發 光二極體串列,皆具有一第一端與一第二端,且該複數個 發光二極體串列之第一端皆電性連接於一工作電壓;複數 ® 個電晶體,皆具有一控制端、一第一端與一第二端,其中 每一電晶體之第一端係電性連接於該複數個發光二極體串 列中一相對應串列之第二端,且該複數個電晶體之第二端 係分別透過複數個阻抗元件接地;一誤差計算電路,電性 連接於該複數個電晶體之第二端,用來分別計算每一電晶 體之第二端的電壓與一對應參考電壓之差;以及一電晶體 控制器,電性連接於該誤差計算電路與該複數個電晶體之 ⑩ 控制端,用以依據該誤差計算電路之計算結果來控制每一 電晶體之第一端的電流。 【實施方式】 請參考第1圖,其所繪示為本發明一實施例之光源模 組100簡化後之示意圖。光源模組100包含有複數個發光 二極體串列110a〜110η,以及用來控制該複數個發光二極體 200823823 串列之一控制裝置120。在本實施例中,發光二極體串列 110a〜11 On之第一端皆電性連接於一工作電壓vin,且發光 二極體串列110a〜110η都具有相同數目的同色發光二極 體。光源模組100中的控制裝置120係用來控制發光二極 體串列110a〜110η’使發光二極體串列u〇a〜ii〇n能具有實 質上相同的亮度。如第1圖所示,控制裝置1 包含有: 複數個電晶體130a〜130η、——誤差計算電路14〇、一電晶體 _ 控制器150以及複數個阻抗元件160a〜160η。在一較佳實 施例中,阻抗元件160a〜160η具有實質上相同之阻抗值, 例如,阻抗元件160a〜160η可分別用電阻值實質上相同之 複數個電阻單元來實現。以下將對控制裝置120的運作方 式做進一步說明。 本實施例之控制裝置120中的電晶體n〇a〜130η皆為 一雙極性接面電晶體(bipolar junction transistor,BJT ), ❿ 且每一電晶體包含一控制端、一第一端與一第二端。在本 實施例中,該控制端係為基極(base) ’該第一端為集極 (collector)而該第二端係為射極(emitter)。如第1圖所 示,電晶體130a〜130η之集極係分別電性連接於發光二極 體串列110a〜110η之第二端,而電晶體130a〜130η之射極 則分別透過阻抗元件160a〜160η接地。實作上,電晶體 130a〜13On宜具有實質上相同之共射極電流增益 (common-emitter current gain ),且皆操作於主動區(active 200823823 ’ region),以提升效能及降低控制上的複雜度,但本發明之 實際實施方式並不侷限於此。 如前所述,製程偏差或溫度等環境因素可能會導致發 光二極體串列ll〇a〜110η個別所累加的總順向電壓誤差有 所不同,進而造成流經發光二極體串列110a〜110η的電流 Icl、Ic2〜Icn大小不一致。在本實施例中,控制裝置120 會利用電晶體13〇a〜13〇n來分別控制發光二極體串列 ® 110a〜110η的電流Icl〜Icn,以使這些發光二極體串列的亮 度能趨於一致。 具體而言,控制裝置120係利用誤差計算電路140來 計算電晶體130a〜130η中每一電晶體之射極電壓VFi與一 對應參考電壓Vref之差。較佳者,誤差計算電路140可放 大每一電晶體之射極電壓VFi與該參考電壓Vref之差,以 φ 提升回授信號的解析度。實作上,誤差計算電路140可用 一個或多個運算放大器來實現。例如,誤差計算電路140 可為一單一運算放大器,用來依序計算電晶體130a〜130η 之射極電壓與該參考電壓Vref之差。或者,誤差計算電路 140亦可利用複數個運算放大器以平行處理的方式,同時 計算電晶體130a〜130η之射極電壓與該參考電壓Vref之 差。舉例而言,誤差計算電路140可利用一第一運算放大 器(圖未示)來計算電晶體130a之射極電壓VF1與該參考 200823823 ‘ 電壓Vref之差,並同時利用一第二運算放大器(圖未示) 來計算電晶體130b之射極電壓¥?2與該參考電壓¥代『之 差,其中該第一與第二運算放大器宜具有實質上相同之增 益(gain) 〇 電晶體控制器150則會依據誤差計算電路140之計算 結果,來調整電晶體130a〜130η中每一電晶體之基極電流 Ibi,以使電晶體130a〜130η之集極電流(亦即流經發光二 _ 極體串列110a〜110η的電流Icl〜Icn)能趨近一預定值。以 下將搭配第2圖來進一步說明電晶體控制器150之運作與 實施方式。 第2圖所繪示為電晶體控制器150之一實施例簡化後 的示意圖。由於電晶體控制器150係以相同的方式與架構 來調整電晶體130 a〜13 On中母一電晶體的基極電流與集極 φ 電流,故以下僅舉電晶體控制器150調整電晶體130a之基 極電流Ibl的例子來進行說明。其中,第2圖中除了電晶 體130a及其對應之發光二極體串列110a與阻抗元件160a 以外,其他的電晶體、發光二極體串列、及阻抗元件皆省 略未顯示。如第2圖所示,本實施例之電晶體控制器150 包含一電壓源210,用來輸出一預定電壓Vd; —可變電阻 220,電性連接於電壓源210與電晶體130a的基極之間; 以及一決定單元230,電性連接於誤差計算電路140與可 12 200823823 ^ 變電阻220,用以依據誤差計算電路140之計算結果來改 變可變電阻220之電阻值,以調整電晶體130a之基極電流 IM 〇 當電晶體130a操作於主動區時,其集極電流Icl與基 極電流Ibl兩者會呈以下的線性關係:200823823 IX. Description of the Invention: [Technical Field] The present invention relates to a technique for controlling a light-emitting diode, and more particularly to a control device for controlling a plurality of light-emitting diodes and a related light source module. [Prior Art] Applications using light-emitting diodes (LEDs) as light-emitting sources are becoming more and more popular. For example, a backlight module of a conventional liquid crystal display panel is mostly a cold cathode fluorescent lamp (CCFL) as a light source. Nowadays, with the increasing luminous efficiency and lower cost of light-emitting diodes, light-emitting diodes have gradually replaced cold cathode fluorescent tubes as a backlight module light source. In the prior art, a plurality of light emitting diodes are often connected in series to reduce the number of driving circuits required and reduce the total driving current of the light emitting diodes. However, due to variations in the process, it is difficult to ensure that all of the light-emitting diodes in different series have completely identical component parameters. In addition, environmental factors such as temperature may also affect the component parameters of the light-emitting diode. For example, the forward voltage (plus * W) of δ 'different light-emitting diodes is often slightly different from each other. The arrangement of a plurality of light-emitting diodes in a series will accumulate the voltage error of all the light-emitting diodes in the same-serial series, and the total forward voltages accumulated by the different light-emitting diodes. The error will usually vary. In this case, 'even if the same operating voltage is applied to different LED series, the current flowing through the individual LED series will be the total forward voltage accumulated by each LED series. The error varies and is different. As a result, the LED arrays will have different brightness due to current inconsistency. Therefore, when the light-emitting diode series is used as the light source of the backlight module of the liquid crystal display panel, the liquid crystal display panel often causes a color unevenness (Mura) due to uneven brightness of the backlight. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a control device and a related light source module that can control a plurality of corrections for the brightness of the == column to provide a control device for the polar body. Controlling a plurality of light-emitting diodes 2, wherein the plurality of light-emitting diodes are in a series - control, a first end and a second turn, and the gem is electrically connected to the two ends of the plurality of light-emitting diodes The second ends of the plurality of transistors are respectively grounded through the 200823823 ^ plurality of impedance elements; and a transistor controller electrically connected to the control ends of the plurality of transistors for using the second of each of the transistors The voltage of the terminal adjusts the input signal of the control terminal of the transistor to control the current of the first end of the transistor. The present invention further provides a light source module, comprising: a plurality of LED arrays, each having a first end and a second end, and the first ends of the plurality of LED arrays are Electrically connected to a working voltage; a plurality of transistors each having a control end, a first end and a second end, wherein the first end of each transistor is electrically connected to the plurality of light emitting diodes a second end of the plurality of transistors in the body string, and the second end of the plurality of transistors is grounded through the plurality of impedance elements respectively; an error calculation circuit electrically connected to the second of the plurality of transistors a terminal for respectively calculating a difference between a voltage of the second end of each transistor and a corresponding reference voltage; and a transistor controller electrically connected to the error calculation circuit and the 10 control terminals of the plurality of transistors, The current at the first end of each transistor is controlled in accordance with the calculation result of the error calculation circuit. [Embodiment] Please refer to FIG. 1 , which is a simplified schematic view of a light source module 100 according to an embodiment of the invention. The light source module 100 includes a plurality of LED arrays 110a to 110n, and a plurality of LEDs 200823823 serial control device 120 for controlling the plurality of LEDs. In this embodiment, the first ends of the LED arrays 110a to 11 On are electrically connected to an operating voltage vin, and the LED arrays 110a to 110η have the same number of same-color LEDs. . The control device 120 in the light source module 100 is for controlling the LED arrays 110a to 110n' so that the LED arrays u〇a to ii〇n can have substantially the same brightness. As shown in Fig. 1, the control device 1 includes a plurality of transistors 130a to 130n, an error calculation circuit 14A, a transistor_controller 150, and a plurality of impedance elements 160a to 160n. In a preferred embodiment, the impedance elements 160a-160n have substantially the same impedance value. For example, the impedance elements 160a-160n can each be implemented with a plurality of resistor elements having substantially the same resistance value. The operation of the control device 120 will be further described below. The transistors n〇a~130η in the control device 120 of the embodiment are all a bipolar junction transistor (BJT), and each transistor includes a control end, a first end and a Second end. In this embodiment, the control terminal is a base. The first end is a collector and the second end is an emitter. As shown in FIG. 1, the collectors of the transistors 130a to 130n are electrically connected to the second ends of the LED arrays 110a to 110n, respectively, and the emitters of the transistors 130a to 130n are respectively transmitted through the impedance elements 160a. ~160η grounded. In practice, the transistors 130a~13On should have substantially the same common-emitter current gain, and both operate in the active region (active 200823823 'region) to improve performance and reduce control complexity. However, the actual embodiment of the present invention is not limited thereto. As mentioned above, environmental factors such as process variation or temperature may cause the total forward voltage error accumulated by the LED series ll〇a~110η to be different, thereby causing a flow through the LED array 110a. The currents Icl and Ic2 to Icn of ~110η are inconsistent in size. In this embodiment, the control device 120 controls the currents Icl~Icn of the LED series 110a~110n by the transistors 13〇a~13〇n, respectively, so that the brightness of the LEDs is serially arranged. Can tend to be consistent. Specifically, the control device 120 uses the error calculation circuit 140 to calculate the difference between the emitter voltage VFi of each of the transistors 130a to 130n and a corresponding reference voltage Vref. Preferably, the error calculation circuit 140 can amplify the difference between the emitter voltage VFi of each transistor and the reference voltage Vref, and increase the resolution of the feedback signal by φ. In practice, error calculation circuit 140 can be implemented with one or more operational amplifiers. For example, the error calculation circuit 140 can be a single operational amplifier for sequentially calculating the difference between the emitter voltage of the transistors 130a to 130n and the reference voltage Vref. Alternatively, the error calculation circuit 140 may simultaneously calculate the difference between the emitter voltages of the transistors 130a to 130n and the reference voltage Vref in a parallel processing manner using a plurality of operational amplifiers. For example, the error calculation circuit 140 can use a first operational amplifier (not shown) to calculate the difference between the emitter voltage VF1 of the transistor 130a and the reference 200823823 'voltage Vref, and simultaneously utilize a second operational amplifier (Fig. Not shown) to calculate the difference between the emitter voltage of the transistor 130b and the reference voltage, wherein the first and second operational amplifiers preferably have substantially the same gain. The transistor controller 150 The base current Ibi of each of the transistors 130a to 130n is adjusted according to the calculation result of the error calculation circuit 140, so that the collector currents of the transistors 130a to 130n (that is, flowing through the light-emitting diode) The currents Icl to Icn of the series 110a to 110n can approach a predetermined value. The operation and implementation of the transistor controller 150 will be further described below in conjunction with FIG. FIG. 2 is a simplified schematic diagram of one embodiment of a transistor controller 150. Since the transistor controller 150 adjusts the base current and the collector φ current of the mother-transistor in the transistors 130 a to 13 On in the same manner and structure, only the transistor controller 150 adjusts the transistor 130a. An example of the base current Ib1 will be described. In addition, in the second figure, except for the transistor 101a and its corresponding LED array 110a and the impedance element 160a, other transistors, LED arrays, and impedance elements are omitted. As shown in FIG. 2, the transistor controller 150 of the present embodiment includes a voltage source 210 for outputting a predetermined voltage Vd. The variable resistor 220 is electrically connected to the voltage source 210 and the base of the transistor 130a. And a determining unit 230 electrically connected to the error calculating circuit 140 and the 12200823823 variable resistor 220 for changing the resistance value of the variable resistor 220 according to the calculation result of the error calculating circuit 140 to adjust the transistor The base current IM of 130a, when the transistor 130a is operated in the active region, the collector current Icl and the base current Ibl have the following linear relationship:
Icl = /3 X Ibl ( 1 ) 其中/5為電晶體130a之共射極電流增益。 誤差計算電路140計算電晶體130a之射極電壓VF1 與該參考電壓Vref間之電壓差Verl的運作可用下式表達:Icl = /3 X Ibl ( 1 ) where /5 is the common emitter current gain of transistor 130a. The operation of the error calculation circuit 140 for calculating the voltage difference Verl between the emitter voltage VF1 of the transistor 130a and the reference voltage Vref can be expressed by the following equation:
Veil -Ax ( Vref - VF1 ) (2) 其中A為誤差計算電路140的增益。 假設可變電阻220之電阻值為R1,則R1與電晶體130a 之基極電流Ibl間的關係如下:Veil - Ax ( Vref - VF1 ) (2) where A is the gain of the error calculation circuit 140. Assuming that the resistance value of the variable resistor 220 is R1, the relationship between R1 and the base current Ibl of the transistor 130a is as follows:
Ibl X Rl-Verl - (VF1 + Vbe) (3) 其中Vbe為電晶體130a之基極與射極間的跨電壓。由 13 (4)200823823 式(3)可知Ibl X Rl-Verl - (VF1 + Vbe) (3) where Vbe is the voltage across the base and emitter of transistor 130a. As known from 13 (4) 200823823 (3)
IblIbl
Verl - (VFl + Vbe)Verl - (VFl + Vbe)
Rl 將式(2)代入式(4)可得Rl can be obtained by substituting equation (2) into equation (4).
Ibl = + ~ R\ 一 + l)xVFl - Vbe — (5) 接著,將式(1)代人式⑸可以得到下列 關係式: icl . jsx^^LziA+ihm—生 Rl ⑹ 、,二K1 /5\八、〖21><(八+1),由於誤差計算電路1 的增盈八通常遠大於卜故K1與K2會很接近。因此, 將式(6 )改寫為下式:Ibl = + ~ R\ a + l) xVFl - Vbe — (5) Next, the following relation can be obtained by substituting equation (1) for human (5): icl . jsx^^LziA+ihm—sheng Rl (6) , , two K1 /5\8, 〖21><(eight+1), since the gain calculation circuit 1's gain eight is usually much larger than the b, K1 and K2 will be very close. Therefore, rewrite equation (6) as:
IclIcl
Rl Rl ⑺ 14 200823823 式(7)中的ΚΙ、Vbe、與々均為固定值,因此,電晶 體控制器、150中之決定單元23〇可依據誤差計算電路14〇 所輸出之計算結果Verl,來改變可變電阻22〇之電阻值 R1 ’以調整電晶體130a之基極電流Ibl。如此,便可達成 控制電晶體130a之集極電流Icl的目的。在本實施例中, 決定單元230會藉由調整可變電阻22〇之電阻值][11的方 _ 式,將電晶體13如之集極電流ici控制於一預定值或預定 範圍内。同樣地,電晶體控制器15〇可用相同的架構來調 整控制裝置120中其他電晶體13〇b〜13〇n的集極電流 Ic2〜Icn。如此一來,流經發光二極體串列n〇a〜ii〇n的電 流Icl、Ic2〜Icn便會趨於一致,故可大幅改善發光二極體 串列110a〜ll〇n彼此間亮度不等的情形。 由上述說明可知,利用前揭的光源模組1〇〇來作為液 •曰曰曰顯示面板之背光模組的光源,便可有效解決液晶顯示面 板的色不均(Mura )現象。 雖然前述光源模組100中每一發光二極體串列所包含 的發光二極體為同色之發光二極體,但此僅係為一實施 例,而非侷限本發明之實際應用範圍。實作上,發光二極 體串列110a〜110η彼此間的顏色亦可不同。例如,發光二 極體串们10a〜ll〇n中可包含一第一顏色之至少一串列以 15 200823823 ’ 及一第二顏色之至少一串列。實作上,不同顏色之發光二 極體串列的總順向電壓值可能有所不同。因此,誤差計算 電路140可使用不同的參考電壓來比較不同顏色之發光二 極體串列所對應的回授電壓VFi。或者,電晶體控制器150 中的決定單元230可為不同顏色的發光二極體串列分別設 定不同的目標電流值,並利用前述的回授控制方式來控制 個別發光二極體串列的亮度表現。 ® 此外,前述控制裝置120中的局部或全部雙極性接面 電晶體(BJT)電晶體13(^〜13〇11可分別替換為複數個絕緣 閘雙極性電晶體(insulated-gate bipolar transistor, IGBT ), 且該等絕緣閘雙極性電晶體宜具有實質上相同之傳導特性 (Transconductance)。對絕緣閘雙極性電晶體而言,其控 制端為閘極(gate ),而其第一端與第二端則與雙極性接 面電晶體相同,分別為集極與射極。在此一架構中,誤差 • 計算電路140會依據每一絕緣閘雙極性電晶體之射極電壓 計算出一誤差值,而電晶體控制器150則會依據誤差計算 電路140之計算結果來調整該絕緣閘雙極性電晶體之閘極 輸入電壓,以控制該絕緣閘雙極性電晶體之集極電流。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範 圍。 16 200823823 【圖式簡單說明】 々第1圖為本發明之光源模組之—實施例簡化後的示意圖。 弟2圖為第i圖中之電晶體控制— 圖。 貝知例簡化後的不思Rl Rl (7) 14 200823823 In the equation (7), ΚΙ, Vbe, and 々 are both fixed values. Therefore, the decision unit 23 of the transistor controller 150 can calculate the result Verl according to the error calculation circuit 14〇. The resistance value R1' of the variable resistor 22A is changed to adjust the base current Ib1 of the transistor 130a. Thus, the purpose of controlling the collector current Icl of the transistor 130a can be achieved. In the present embodiment, the determining unit 230 controls the transistor 13 such as the collector current ici to a predetermined value or a predetermined range by adjusting the resistance value of the variable resistor 22〇 [11]. Similarly, the transistor controller 15 can adjust the collector currents Ic2 to Icn of the other transistors 13〇b to 13〇n in the control device 120 by the same architecture. In this way, the currents Icl and Ic2 to Icn flowing through the LEDs n〇a to ii〇n tend to be uniform, so that the brightness of the LED arrays 110a to 110n can be greatly improved. Unequal situations. As can be seen from the above description, the light source module 1 前 used as the light source of the backlight module of the liquid 曰曰曰 display panel can effectively solve the color unevenness (Mura) phenomenon of the liquid crystal display panel. Although the light-emitting diodes included in each of the light-emitting diodes in the light source module 100 are light-emitting diodes of the same color, this is merely an embodiment and is not intended to limit the practical application scope of the present invention. In practice, the colors of the LED arrays 110a to 110n may be different from each other. For example, the LED strings 10a to 11b may include at least one string of the first color to be at least one string of 15 200823823 ' and a second color. In practice, the total forward voltage values of the LEDs of different colors may vary. Therefore, the error calculation circuit 140 can use different reference voltages to compare the feedback voltage VFi corresponding to the LED arrays of different colors. Alternatively, the determining unit 230 in the transistor controller 150 can respectively set different target current values for the LED arrays of different colors, and control the brightness of the individual LED arrays by using the feedback control method described above. which performed. In addition, some or all of the bipolar junction transistor (BJT) transistors 13 (^~13〇11) in the foregoing control device 120 may be replaced by a plurality of insulated gate bipolar transistors (IGBTs). And the insulating gate bipolar transistors preferably have substantially the same conductivity (Transconductance). For the insulated gate bipolar transistor, the control terminal is a gate, and the first end thereof The two ends are the same as the bipolar junction transistors, which are collector and emitter respectively. In this architecture, the error calculation circuit 140 calculates an error value according to the emitter voltage of each insulation gate bipolar transistor. The transistor controller 150 adjusts the gate input voltage of the insulating gate bipolar transistor according to the calculation result of the error calculating circuit 140 to control the collector current of the insulating gate bipolar transistor. For the preferred embodiment of the present invention, the equivalent changes and modifications made by the scope of the present invention should be within the scope of the present invention. 16 200823823 [Simple description of the drawing] 々 1st The light source module of the present invention - a simplified schematic view of the embodiment of Example 2 Di graph of the i-th transistor in FIG Control - Figures do not think the simplified embodiment of Tony known.
【主要元件符號說明】 100 光源模組 110a、110b〜110η 發光二極體串列 120 控制裝置 130a、130b〜130η 電晶體 140 疾差計算電路 150 電晶體控制器 160a、160b〜160η 阻抗元件 210 電壓源 220 可變電阻 230 決定單元 17[Description of main component symbols] 100 light source modules 110a, 110b to 110n LED series 120 control devices 130a, 130b to 130n transistor 140 difference calculation circuit 150 transistor controllers 160a, 160b to 160n impedance element 210 voltage Source 220 variable resistor 230 decision unit 17
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095142453A TWI349902B (en) | 2006-11-16 | 2006-11-16 | Controlling apparatuses for controlling a plurality of led strings and related light modules |
US11/672,514 US7560981B2 (en) | 2006-11-16 | 2007-02-07 | Controlling apparatus for controlling a plurality of LED strings and related light modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095142453A TWI349902B (en) | 2006-11-16 | 2006-11-16 | Controlling apparatuses for controlling a plurality of led strings and related light modules |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200823823A true TW200823823A (en) | 2008-06-01 |
TWI349902B TWI349902B (en) | 2011-10-01 |
Family
ID=39416249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095142453A TWI349902B (en) | 2006-11-16 | 2006-11-16 | Controlling apparatuses for controlling a plurality of led strings and related light modules |
Country Status (2)
Country | Link |
---|---|
US (1) | US7560981B2 (en) |
TW (1) | TWI349902B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8665188B2 (en) * | 2008-02-04 | 2014-03-04 | National Semiconductor Corporation | Laser diode / LED drive circuit |
KR101531838B1 (en) * | 2008-07-04 | 2015-06-26 | 오스람 게엠베하 | Circuit configuration and method for operating at least one first and one second led |
CN101737643B (en) * | 2008-11-13 | 2012-02-29 | 宇威光电股份有限公司 | light emitting device |
US9000466B1 (en) | 2010-08-23 | 2015-04-07 | Soraa, Inc. | Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening |
US8207554B2 (en) | 2009-09-11 | 2012-06-26 | Soraa, Inc. | System and method for LED packaging |
US8933644B2 (en) | 2009-09-18 | 2015-01-13 | Soraa, Inc. | LED lamps with improved quality of light |
US8575642B1 (en) | 2009-10-30 | 2013-11-05 | Soraa, Inc. | Optical devices having reflection mode wavelength material |
US8905588B2 (en) | 2010-02-03 | 2014-12-09 | Sorra, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
US10147850B1 (en) | 2010-02-03 | 2018-12-04 | Soraa, Inc. | System and method for providing color light sources in proximity to predetermined wavelength conversion structures |
CN101866622A (en) * | 2010-06-22 | 2010-10-20 | 鸿富锦精密工业(深圳)有限公司 | LED display device capable of controlling current balance and control method thereof |
US8541951B1 (en) * | 2010-11-17 | 2013-09-24 | Soraa, Inc. | High temperature LED system using an AC power source |
US8896235B1 (en) | 2010-11-17 | 2014-11-25 | Soraa, Inc. | High temperature LED system using an AC power source |
US8890432B2 (en) | 2010-12-11 | 2014-11-18 | Jae Hong Jeong | Light emitting diode driver |
US8901849B2 (en) | 2010-12-11 | 2014-12-02 | Jae Hong Jeong | Light emitting diode driver |
US8841862B2 (en) | 2011-06-29 | 2014-09-23 | Chong Uk Lee | LED driving system and method for variable voltage input |
US9488324B2 (en) | 2011-09-02 | 2016-11-08 | Soraa, Inc. | Accessories for LED lamp systems |
US8985794B1 (en) | 2012-04-17 | 2015-03-24 | Soraa, Inc. | Providing remote blue phosphors in an LED lamp |
PL2850917T3 (en) * | 2012-05-15 | 2017-08-31 | Philips Lighting Holding B.V. | Light source circuitry |
US9978904B2 (en) | 2012-10-16 | 2018-05-22 | Soraa, Inc. | Indium gallium nitride light emitting devices |
US9761763B2 (en) | 2012-12-21 | 2017-09-12 | Soraa, Inc. | Dense-luminescent-materials-coated violet LEDs |
US8994033B2 (en) | 2013-07-09 | 2015-03-31 | Soraa, Inc. | Contacts for an n-type gallium and nitrogen substrate for optical devices |
US9419189B1 (en) | 2013-11-04 | 2016-08-16 | Soraa, Inc. | Small LED source with high brightness and high efficiency |
EP2933646B1 (en) * | 2014-04-17 | 2019-04-17 | Siemens Aktiengesellschaft | Precision measurement of voltage drop across a semiconductor switching element |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5144117A (en) * | 1990-02-27 | 1992-09-01 | Alps Electric Co., Ltd. | Illumination type optical recorded information reading device |
US5701133A (en) | 1994-10-13 | 1997-12-23 | Lucent Technologies Inc. | Cascaded multiplying current mirror driver for LED's |
DE19930174A1 (en) | 1999-06-30 | 2001-01-04 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Control circuit for LED and associated operating method |
US6556067B2 (en) | 2000-06-13 | 2003-04-29 | Linfinity Microelectronics | Charge pump regulator with load current control |
US6636104B2 (en) | 2000-06-13 | 2003-10-21 | Microsemi Corporation | Multiple output charge pump |
US6636003B2 (en) * | 2000-09-06 | 2003-10-21 | Spectrum Kinetics | Apparatus and method for adjusting the color temperature of white semiconduct or light emitters |
US6577512B2 (en) | 2001-05-25 | 2003-06-10 | Koninklijke Philips Electronics N.V. | Power supply for LEDs |
US6621235B2 (en) | 2001-08-03 | 2003-09-16 | Koninklijke Philips Electronics N.V. | Integrated LED driving device with current sharing for multiple LED strings |
US6933707B2 (en) | 2002-06-27 | 2005-08-23 | Luxidein Limited | FET current regulation of LEDs |
US6864641B2 (en) * | 2003-02-20 | 2005-03-08 | Visteon Global Technologies, Inc. | Method and apparatus for controlling light emitting diodes |
US7038594B2 (en) | 2004-01-08 | 2006-05-02 | Delphi Technologies, Inc. | Led driver current amplifier |
-
2006
- 2006-11-16 TW TW095142453A patent/TWI349902B/en not_active IP Right Cessation
-
2007
- 2007-02-07 US US11/672,514 patent/US7560981B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20080116817A1 (en) | 2008-05-22 |
US7560981B2 (en) | 2009-07-14 |
TWI349902B (en) | 2011-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200823823A (en) | Controlling apparatuses for controlling a plurality of LED strings and related light modules | |
TWI236169B (en) | Driving device for light emitted diode | |
US8786194B2 (en) | Constant current driving apparatus for LEDs | |
CN101902855B (en) | LED drive circuit and backlight module | |
TWI383709B (en) | Light source driving module and circuit | |
US7911441B2 (en) | Current-controlling apparatus for controlling current of light emitting diode string | |
CN102548114B (en) | Light emitting diode driving device | |
CN1885376B (en) | Display apparatus and control method thereof | |
JP2014011466A (en) | Led driving device, led driving method, and computer readable recording medium | |
CN101193476A (en) | Control device for controlling a plurality of light emitting diode strings and related light source module | |
WO2014075341A1 (en) | Method for solving overtemperature of constant current drive chips and led lamp strip drive circuit | |
CN101146387B (en) | A car background optical constant current control drive system and drive control method | |
CN101527988B (en) | Light source driver module and circuit | |
JP2010272763A (en) | Led driving circuit | |
CN114679812A (en) | A kind of LED drive circuit and its drive method, electronic equipment | |
CN100558207C (en) | Current control device | |
TWI420201B (en) | Back-light apparatus | |
TWM405530U (en) | Array-type constant current multiple-driving circuit | |
TW200930154A (en) | LED driving apparatus and a method thereof | |
TWI394126B (en) | Driving circuit for led backlight system | |
KR101814752B1 (en) | Method for controlling brightness of LED light apparatus and System adopting the Method | |
CN112055441B (en) | Drive system and method for LED string | |
CN201733499U (en) | LED driver | |
TWI338274B (en) | Backlight module, backlight brightness adjusting system and method of control | |
CN201752155U (en) | A Light Emitting Diode Current Balance Circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |