200823554 九、發明說明: 【發明所屬之技術領域】 本發明係為'一種雙模式液晶顯示器,尤指一種、一雙模 式、一單色反射模式與一彩色穿透模式下作用的雙模式液 晶顯示器。 【先前技術】 在各種電子紐件中使用顯示器的比例不斷增加,使得 顯示器製造商必須努力提供更佳效能的組件。效能參數包 括功率消耗、解析度、影像更新率(frame refresh rate)、成 本、以及在日光下的可讀性。顯示器廠商採用各種技術來 提幵這些效能參數的表現。 其中有一種技術是採用半穿透反射式 LCD(transflective LCD),半穿透反射式LCD的每一個像素 (pixel)具有一反射部(reflective part)與一穿透部 (transmissive part),穿透部與反射部同樣包含子像素 (sub_pixel)。每一個像素具有濾光片(c〇i〇r mter),用以將色 彩賦予像素。此外,每一個子像素係以水平地或垂直地配 置,因此在LCD中要呈現一色彩需要三個或更多的子像素。 在上述的方法中,濾光片係被放置在穿透部與反射部 之上。因此’通過滤光片的光會被哀減,使得反射模式备 變得模糊並且不容易閱讀。另外,背光(backlight)在穿透模 式下需要更多的電力以達到尚解析度的顯示。·此外,使用 水平或垂直配置的子像素會造成解析度變低。更有甚之, 在LCD中切換所有的色彩組件需要用到高頻率與高電力消 5 200823554 耗。 綜觀上述的討論,目前仍需要一種技術,能夠製造出 可在曰光下間讀的高解析度LCD。另外,也有、需要開發只 需低電力與低影像更新率(frame rate)的LCD。本發明可達 成上述要求。 • 【發明内容】 本發明的目的為提供一種LCD,與現有LCD相較下可 提供較佳的解析度。 、 本發明的另一目的是降低照射LCD所需的電力。 本發明的另一目的是降低LCD的影像更新率(fraine rate)。 而本發明的另一目的是為LCD提供可於日光閱讀的顯 示器。 本發明係提供一種僅有在一像素的穿透部之上具有濾 _ 光片的LCD,使得在周遭光線下可以讀取。而本發明的另 一型態是省除了在製造濾光片過程中一般會用到的黑色矩 陣光罩(black matrix mask)。另外,本發明提供對角線像素 (dia§〇nal pixel),以便提昇LCD在色彩穿透模式下的lcd ^的解析度。此外,本發明的另一型態讓光在二種色彩間切 換,而第三種色彩(一般為綠色)會一直呈現,藉此降低 LCD甩於混合場序(hybrid field sequential)的方法中所需的 影像更新率。本發明的另一型態是由背光(backlight)產生色 彩,藉此省除了濾光片。本發明的又另一型態是僅在綠光 200823554 像素之上使用濾光片,藉此省除使用額外的光罩來製作濾 光片陣列的需求。 【實施方式】‘ 本發明的各種實施例係與一可以在〆雙模式、一單色 反射模模式與一彩色穿透模式下作用的浪晶顯示器(LCD) • 有關。熟悉此技藝者應可了解對於較佳實施例所作的各種 • 修改,以及在此所述的一般原則和特點。因此,本發明並 不限於所提出的實施例,而應該根據所陳述的原則和特點 •之最廣範圍來定義。 第一圖所示的示意圖說明根據本發明的一實施例之一 LCD的像素100之橫截面。像素1 〇〇包含一液晶材料1 〇4、 一像素電極106、一共用電極108、〆反射部(reflective part)110、穿透部(transmissive part)112、基板 114 與 116、 間隔物(spacer) 118a 與 118b、一第一偏光片(polarizer) 120、 以及一第二偏光片122。在本發明的一實施例中,一光源 102或一周遭光線124照射像素1〇〇。光源102的範例包 鲁括,但不限於發光二極體(LEDs)背光、冷陰極螢光管 (Cold-Cathode Fluorescent Lamp, CCFL)背光,以及其類似 • 者。周遭光線124可為日光或任何外部的光源。在本發明 的一實施例中,液晶材料104為光學主動材料,會旋轉來 自光源102或周遭光線124的光的極化軸。液晶材料1〇4 可]以是扭轉向列型(TN)、電場控制雙折射型(Electrically Controlled Birefringence,ECB),以及其類似者。在本發明 的一實施例中,光的平面是根據施加於像素電極106與共 200823554200823554 IX. Description of the Invention: [Technical Field] The present invention is a dual mode liquid crystal display, especially a dual mode liquid crystal display that operates in a dual mode, a monochrome reflection mode, and a color penetrating mode. . [Prior Art] The increasing use of displays in various electronic buttons has made it necessary for display manufacturers to strive for components that provide better performance. Performance parameters include power consumption, resolution, frame refresh rate, cost, and readability in daylight. Display manufacturers use a variety of techniques to improve the performance of these performance parameters. One of the techniques is to use a transflective LCD. Each pixel of the transflective LCD has a reflective part and a transmissive part. The portion also includes a sub-pixel (sub_pixel) as well as the reflection portion. Each pixel has a filter (c〇i〇r mter) for imparting color to the pixel. Further, each sub-pixel is arranged horizontally or vertically, so that three or more sub-pixels are required to present a color in the LCD. In the above method, the filter is placed over the penetrating portion and the reflecting portion. Therefore, the light passing through the filter is diminished, making the reflection mode obscured and not easy to read. In addition, the backlight requires more power in the penetrating mode to achieve a still resolution display. • In addition, using sub-pixels configured horizontally or vertically will result in lower resolution. What's more, switching all color components in the LCD requires high frequency and high power consumption. Looking at the above discussion, there is still a need for a technology that can produce high-resolution LCDs that can be read in the dark. In addition, there is a need to develop an LCD that requires only low power and a low image frame rate. The present invention achieves the above requirements. SUMMARY OF THE INVENTION It is an object of the present invention to provide an LCD that provides better resolution than existing LCDs. Another object of the invention is to reduce the power required to illuminate the LCD. Another object of the present invention is to reduce the image fran rate of an LCD. Yet another object of the present invention is to provide a display that is readable by daylight for an LCD. SUMMARY OF THE INVENTION The present invention provides an LCD having a filter plate only above the penetration of a pixel so that it can be read under ambient light. Yet another form of the invention eliminates the need for a black matrix mask that is typically used in the manufacture of filters. In addition, the present invention provides diagonal pixels to enhance the resolution of the LCD in the color penetration mode. In addition, another aspect of the present invention allows light to be switched between two colors, while a third color (generally green) is always present, thereby reducing the LCD's approach to hybrid field sequential methods. The required image update rate. Another form of the invention is to produce color from a backlight, thereby eliminating the filter. Yet another version of the present invention uses filters only above the green light 200823554 pixels, thereby eliminating the need to use additional reticle to fabricate the filter array. [Embodiment] Various embodiments of the present invention relate to a liquid crystal display (LCD) that can operate in a dual mode, a monochrome reflection mode, and a color transmission mode. Those skilled in the art will recognize the various modifications and variations of the preferred embodiments and the general principles and features described herein. Therefore, the invention is not limited to the embodiments presented, but should be defined in the broadest scope of the claimed principles and features. The first diagram shows a cross section of a pixel 100 of an LCD in accordance with an embodiment of the present invention. The pixel 1 〇〇 includes a liquid crystal material 1 〇 4, a pixel electrode 106, a common electrode 108, a reflective part 110, a transmissive part 112, substrates 114 and 116, and spacers. 118a and 118b, a first polarizer 120, and a second polarizer 122. In one embodiment of the invention, a light source 102 or a light ray 124 illuminates a pixel 1 一周. Examples of light source 102 include, but are not limited to, LED backlights, Cold-Cathode Fluorescent Lamp (CCFL) backlights, and the like. The ambient light 124 can be daylight or any external source of light. In one embodiment of the invention, liquid crystal material 104 is an optically active material that rotates the polarization axis of light from source 102 or ambient light 124. The liquid crystal material 1 〇 4 can be a twisted nematic (TN), an electrically controlled birefringence (ECB), and the like. In an embodiment of the invention, the plane of the light is based on the application to the pixel electrode 106 and a total of 200823554
用電極108《間的電位差而旋轉。在本發明的一實施例 中,像素電極1〇6與共用電極108可利用氧化___ Tift Oxide,ITO)而製成。此外,每一像素係被提供以一像素 電極,而共用電極108則是由LCD内所有的像素所共用 在本發明的一實施例中,反射部11〇係為可導電的, 並可反射周遭光線124以照射像素100。反射部11〇係由 金屬製成,並以電氣地耦合至像素電極1〇6,藉此提供反 射部110與共用電極1〇8之間的電位差。穿透部112傳送 來自光源102的光以照射像素100。基板114與116圍住液 曰曰材料104、像素電極1 〇6與共用電極1 。在本發明的一 實施例中’像素電極106係被設置於基板114,而共用電 極108係被設置於基板116。此外,基板114包含交換元件 (未顯示於第一圖中)。在本發明的一實施例中,交換元件 可以是薄膜電晶體(Thin Film Transistor, TFT)。另外,一驅 動電路130傳送與像素數值有關的訊號給交換元件。在本 發明的一實施例中,驅動電路130使用低電壓差動訊號 (LVDS)驅動器。在本發明的另一實施例中,同時感測電壓 增加與減少的電晶體邏輯(transistor-transistor logic, TTL) ji面係被應用於驅動電路13〇中。此外’ 0守序控制器(timing controller)140將與像素數值有關的訊號編碼為像素的對角 線穿透部所需的訊號。另外,時序控制器140具有一記憶 體,當與像素有關的訊號係從時·序控制器140被移除時, 可以讓LCD自我更新。 在本發明的一實施例中,間隔物118a與118b係被放 200823554 置於反射部110之上,以 於基板114與116之間維持一均 等的距離。此外,像夸〗 4, μ 199 , ^ "、 包含第一偏光片120與第二偏 九片122。在本發明的一每 · 貝知例中,第一偏光片120的極 性軸(axis of polarity盥箆― 士上丄 厂、乐—偏光片122的極性軸係彼此垂 =在本發明的另-實施例中,第__偏光片12()的極錄 ”弟-偏光片122的極性轴係彼此平行。The electrode 108 is rotated by the potential difference between the electrodes. In an embodiment of the invention, the pixel electrode 1〇6 and the common electrode 108 can be formed using oxidized ___Tift Oxide, ITO). In addition, each pixel is provided with a pixel electrode, and the common electrode 108 is shared by all the pixels in the LCD. In an embodiment of the invention, the reflecting portion 11 is electrically conductive and can reflect the surrounding Light 124 is illuminated to illuminate pixel 100. The reflection portion 11 is made of metal and electrically coupled to the pixel electrode 1?6, thereby providing a potential difference between the reflection portion 110 and the common electrode 1?8. The penetrating portion 112 transmits light from the light source 102 to illuminate the pixel 100. The substrates 114 and 116 enclose the liquid helium material 104, the pixel electrode 1 〇6, and the common electrode 1. In an embodiment of the invention, the pixel electrode 106 is disposed on the substrate 114, and the common electrode 108 is disposed on the substrate 116. In addition, substrate 114 includes switching elements (not shown in the first figure). In an embodiment of the invention, the switching element may be a Thin Film Transistor (TFT). In addition, a drive circuit 130 transmits a signal associated with the pixel value to the switching element. In an embodiment of the invention, drive circuit 130 uses a low voltage differential signaling (LVDS) driver. In another embodiment of the present invention, a transistor-transistor logic (TTL) system that simultaneously senses voltage increase and decrease is applied to the drive circuit 13A. In addition, the ''timing controller'' 140 encodes the signal associated with the pixel value as the signal required for the diagonal penetration of the pixel. In addition, the timing controller 140 has a memory that allows the LCD to self-update when the signal associated with the pixel is removed from the timing controller 140. In one embodiment of the invention, spacers 118a and 118b are placed on top of reflector portion 110 to maintain an equal distance between substrates 114 and 116. In addition, the image of the first polarizer 120 and the second partial film 122 is included. In the peripheral example of the present invention, the polar axis of the first polarizer 120 (the axis of polarity 盥箆 士 丄 、 、 、 、 、 、 偏 偏 偏 的 = = = = = = = = = = = = = = = = = = = = = = = In the embodiment, the polarity axes of the polar recording "polarizer" 122 of the __polarizer 12 () are parallel to each other.
像素100係由光源1〇2或周遭光線124照射。通過像 素1〇〇的光的強度係藉由像素電極106與共用電極1〇8之 間的電位差所決定。在本發明的一實施例中,當像素電極 106與共用電極log之間沒有被施加電位差的時候,液晶 材料104係處於非定向(disoriented)狀態,通過第一偏光片 120的光會被第二偏光片122所阻檔,而當像素電極106 與共用電極108之間有被施加電位差的時候,液晶材料104 係處於定向(oriented)狀態。液晶材料104的方向性會讓光 通過第二偏光片122。The pixel 100 is illuminated by a light source 1〇2 or ambient light 124. The intensity of light passing through the pixel 1 is determined by the potential difference between the pixel electrode 106 and the common electrode 1〇8. In an embodiment of the invention, when no potential difference is applied between the pixel electrode 106 and the common electrode log, the liquid crystal material 104 is in a disoriented state, and the light passing through the first polarizer 120 is second. The polarizer 122 is blocked, and when a potential difference is applied between the pixel electrode 106 and the common electrode 108, the liquid crystal material 104 is in an oriented state. The directivity of the liquid crystal material 104 allows light to pass through the second polarizer 122.
第二圖所示的示意圖說明根據本發明的一實施例, LCD的九個像素丨〇〇的配置。像素1〇〇包含穿透部n2b 與反射部110。在本發明的一實施例中,如果是依循RGB (紅一監一綠)色彩系統的話’穿透部A Uii-c分別賦予綠、 監與紅光成伤以形成一彩色像素。此外’如果選擇不同的 色彩系統的話,穿透部112a-c可賦予不同的色攀条9 ^ ’像疋紅、 縴、藍與白或其他色彩的組洽。更進一步,穿读 11/1 ' 1 1 3 3, 114a賦予綠光,穿透部ii3b與114b賦予藍光 ” 而穿透却 113a與114c賦予紅光給像素。此外,不同厚度 “呌 /慝光片可 200823554 被放置於穿透部112a-c之上,以減少或增加被賦予給像素 的色彩飽和度(saturation)。飽和度係被定義為在可見光光 譜中某一特定層次的色彩的、強度。另外,在本發明的不同 實施例中’無色的濾光片(c〇loriess fiiter)2〇2d可被放置於 反射部110之上。在本發明的不同實施例中,無色的濾光 片202d的厚度可由零變化至其他被放置於穿透部n2a_c 之上的濾光片的厚度不等。在本發明的一實施例中,穿 透部112a代表彩色像素的三種色彩中的一種的對角帶 (diagonal strip)。同樣地,穿透部n2 b與n2c代表彩色像 素的其他兩種色彩的對角帶。使用對角帶可以讓彩色穿透 模式下的解析度接近單色(黑與白)反射模式下的解析度。 彩色穿透模式需要高解析度是因為人類的視覺系統在將影 像視覺化時可偵測水平與垂直線條。在本發明的另一實施 例中,可採用色彩的垂直帶,與使用對角帶相較下,可改 、艾車乂夕水平方向的解析度,而改變較少垂直方向的解析 度。從光源102通過每一穿透部112a-c傳送的光量係由交 換兀件(未顯示於第二圖)所決定。而接著,通過每一穿 透部H2a-C傳送的光量決定彩色像素的色彩。另外,穿透 I5 a e與濾光片的形狀可以是六角形、矩形、八角形、 圓形、或其他等等。此外,反射部11()的形狀可為矩形、 圓形、八角形、以及其類似者。另外,反射部’11〇會阻擋 被傳遞至對角帶的光^而不會傳送至不同色彩的像素,舉 例來況,反射部110會阻擋沿著穿透部112c與U3C的光 、牙透β 11加或112a。替代地,也可使用黑色矩陣光罩 200823554 2 ;像素與像素的光敏區域(light sensitive area)之間 、、“、、I。在本發明的一實施例中,黑色矩陣光罩203係 被省除叫转f較雜。 , 第一圖所示的示意圖說明根據本發明的一實施例,像 素100在單色反射模式下的作用。由於第三圖中僅解釋單 色反射模式,因此圖中僅顯示出反射部11Θ。像素100可 以在有外部光源的情況下使用單色反射模式 ,在本發明的The schematic diagram shown in the second figure illustrates the configuration of nine pixels of the LCD in accordance with an embodiment of the present invention. The pixel 1A includes a penetrating portion n2b and a reflecting portion 110. In an embodiment of the present invention, the penetration portion A Uii-c respectively imparts damage to the green, monitor, and red light to form a color pixel if the RGB (Red One Monitor) color system is followed. Further, if different color systems are selected, the penetrating portions 112a-c can impart different color bars 9^' like blush, fiber, blue and white or other colors. Further, the reading 11/1 '1 1 3 3, 114a gives green light, the penetrating portions ii3b and 114b impart blue light" and the penetration 113a and 114c gives red light to the pixels. In addition, different thicknesses "呌/慝光A sheet 200823554 is placed over the penetrations 112a-c to reduce or increase the color saturation imparted to the pixels. Saturation is defined as the intensity of a particular level of color in the visible light spectrum. Further, in the different embodiments of the present invention, 'colorless filters 2' to 2d can be placed on the reflecting portion 110. In various embodiments of the invention, the thickness of the colorless filter 202d may vary from zero to other thicknesses of the filters placed over the penetrations n2a-c. In an embodiment of the invention, the penetrating portion 112a represents a diagonal strip of one of the three colors of the color pixel. Similarly, the penetrating portions n2b and n2c represent the diagonal bands of the other two colors of the color pixels. The diagonal band allows the resolution in color-penetration mode to be close to the resolution in monochrome (black and white) reflection mode. The color penetration mode requires high resolution because the human visual system can detect horizontal and vertical lines when visualizing the image. In another embodiment of the present invention, the vertical band of color can be used, and the resolution of the horizontal direction of the car can be changed, and the resolution of the less vertical direction can be changed, compared with the use of the diagonal band. The amount of light transmitted from the source 102 through each of the penetrating portions 112a-c is determined by the exchange element (not shown in the second figure). Then, the amount of light transmitted through each of the transmissive portions H2a-C determines the color of the color pixel. In addition, the shape of the penetrating I5 a e and the filter may be hexagonal, rectangular, octagonal, circular, or the like. Further, the shape of the reflecting portion 11 () may be a rectangle, a circle, an octagon, and the like. In addition, the reflecting portion '11' blocks the light transmitted to the diagonal band and does not transmit to the pixels of different colors. For example, the reflecting portion 110 blocks light and tooth penetration along the penetrating portions 112c and U3C. 11 11 plus or 112a. Alternatively, a black matrix reticle 200823554 2; between a pixel and a light sensitive area of a pixel, ", I." may be used. In an embodiment of the invention, the black matrix reticle 203 is omitted. The schematic diagram shown in the first figure illustrates the role of the pixel 100 in the monochrome reflection mode according to an embodiment of the invention. Since only the monochrome reflection mode is explained in the third figure, the figure Only the reflection portion 11A is shown. The pixel 100 can use a monochrome reflection mode with an external light source, in the present invention
貝施例中’周遭光線124通過無色的濾光片202d與液晶 材料104而入射至反射部11〇之上。無色的濾光片2〇2d係 用來將周遭光線124的衰減度(attenuation)和路徑差異(path difference)維持與色彩穿透模式下的衰減度和路徑差異一 樣。像素100的反射部11()將周遭光線124反射至基板 116。在本發明的一實施例中,電位差(v)係被施加於與反射 部110和共用電極1〇8電氣地耦合的像素電極1〇6。液晶 材料104係根據電位差(v)而被定向。因此,液晶材料1〇4 的方向性旋轉周遭光線124的平面,讓光可通過第二偏光 片122。所以液晶材料1 〇4的方向性的角度決定了像素1 〇〇 的亮度(brightness),而因此影響了像素10〇的發光強度。 在本發明的一實施例中,像素1〇〇可採用一般為白的 液晶實施例。在此實施例中,第一偏光片12〇與第二偏光 片122的轴係彼此平行。像素電極1〇6,以及共用電極1〇8 被施加以最大的臨限電壓,以阻擋反射部11〇所反射的 光。因此像素100看起來是黑的。替代地,像素1〇〇玎採 用一般的黑色液晶。在此實施例中,第一偏光片120與第 200823554 二偏光片122的軸係彼此垂直。像素電極1〇6,以及共用 電極108被施加以最大的臨限電壓,以照射像素1〇〇。 第四圖所示的、示意圖說明根據本發明的一實施何,當 使用部份濾光片的方法時,LCD在彩色穿透模式下的作 用。由於先前已說明過彩色穿透實施例,因此在第四圖中 .僅顯示出穿透部112a_c。如第四圖所示,在基板ία上, 渡光片404a、404b與404c係分別針對穿透部112a、112b 與112c而被放置。光源102為標準背光源。來自光源1〇2 的光402可利用準直光導(c〇nimating HgM即丨加)或透鏡加 以對準。在本發明的一實施例中,來自光源1〇2的光4〇2 會通過第一偏光片12〇。而第一偏光片會將光4〇2的平面 校準於一特定平面。在本發明的一實施例中,光4〇2的平 面係被校準於水平的方向。此外,第二偏光片122在垂直 方向具有極化軸(axis 〇fp〇iarizati〇n)。穿透部n2a_c傳送 光402。在本發明的一實施例中,每一個穿透部具 •有個別的交換元件。交換元件控制通過對應的穿透部的光 的強度。另外,光402在傳送通過穿透部n2a_c之後, 會穿過液晶材料104。穿透部112a、112b輿ιΐ2 提供以像素電極106a-c。在像素電極l〇6a-c與共用電極1〇8 之門的龟位差決定了液晶材料1 的方向性。而接著,液 晶材料104的方向性決定了入射於每一濾光片4〇4a-c之上 的光402的瘙度。 · 、★在本發明的一實施例中,綠光濾光片4〇4/係被放置 严牙透邵112a之上,監光濾光片404b係被放置於穿透部 12 200823554 112b之上,而紅光濾光片404c係被放置於穿透部ii2c之 上。每一個濾光片404a-c將對應的色光賦予彩色像素。由 濾光片404a-fc所賦予的光決定了彩色像素的色度數值 (chrominance value)。色度包含了像是一像素的色調(hue) 與飽和度等色彩資訊。另外,如果有周遭光線124的話, 由反射部11 〇 (如第二圖與第三圖所示)所反射的光提供 彩色像素的發光強度。此發光強度會增加在色彩穿透模式 下的解析度。發光強度為像素的亮度之量測準則。 第五圖所示的示意圖說明根據本發明的一實施例,當 使用混合場序的方法時,LCD在彩色穿透模式下的作用。 由於先前已說明過彩色穿透實施例,因此在第五圖中僅顯 示出穿透部112a-c。在本發明的一實施例中,光源102包 含LED帶,像是LED群組1、LED群組2等等(未顯示於 圖中)。在本發明的一實施例中,被水平地配置的LED係 被聚集在一起,一個LED群組接在另一個之下,用以照射 LCD。替代地,被垂直地配置的LED也可被聚集在一起。 LED群組係以序列的方式照射,一 LED群組的照射頻率可 介於每秒30張晝面(frame)至540張晝面之間。在本發明的 一實施例中,每一 LED群組包含紅光LED 506a、白光LED 506b與藍光LED 506c。另外,1^〇群組1的紅光1^:〇 506& 與白光LED 506b係由時間t二0’至t二5導通,而LED群 組2的紅·光LED 506a與白光LED 506b係甶時間t = 1至t « τIn the example of the Bayes, the ambient light 124 is incident on the reflecting portion 11A through the colorless filter 202d and the liquid crystal material 104. The colorless filter 2〇2d is used to maintain the attenuation and path difference of the ambient light 124 as the attenuation and path difference in the color penetration mode. The reflective portion 11() of the pixel 100 reflects the ambient light 124 to the substrate 116. In an embodiment of the invention, the potential difference (v) is applied to the pixel electrode 1〇6 electrically coupled to the reflection portion 110 and the common electrode 1〇8. The liquid crystal material 104 is oriented in accordance with the potential difference (v). Therefore, the directionality of the liquid crystal material 1〇4 is rotated by the plane of the surrounding light 124, allowing light to pass through the second polarizer 122. Therefore, the directivity angle of the liquid crystal material 1 〇 4 determines the brightness of the pixel 1 ,, and thus affects the light-emitting intensity of the pixel 10 。. In an embodiment of the invention, the pixel 1 〇〇 can be a generally white liquid crystal embodiment. In this embodiment, the axes of the first polarizer 12 and the second polarizer 122 are parallel to each other. The pixel electrode 1〇6, and the common electrode 1〇8 are applied with the maximum threshold voltage to block the light reflected by the reflecting portion 11〇. Thus pixel 100 appears to be black. Alternatively, the pixel 1 is a general black liquid crystal. In this embodiment, the axes of the first polarizer 120 and the second polarizer 122 of the 200823554 are perpendicular to each other. The pixel electrode 1〇6, and the common electrode 108 are applied with a maximum threshold voltage to illuminate the pixel 1〇〇. The schematic diagram shown in the fourth diagram illustrates the effect of the LCD in color pass mode when a partial filter method is used in accordance with an implementation of the present invention. Since the color penetrating embodiment has been previously described, in the fourth figure, only the penetrating portions 112a_c are shown. As shown in the fourth figure, on the substrate ία, the light guide sheets 404a, 404b, and 404c are placed for the penetration portions 112a, 112b, and 112c, respectively. Light source 102 is a standard backlight. Light 402 from source 1 〇 2 can be aligned using a collimated light guide (c〇nimating HgM) or a lens. In an embodiment of the invention, light 4〇2 from source 1〇2 passes through first polarizer 12〇. The first polarizer aligns the plane of the light 4〇2 to a specific plane. In an embodiment of the invention, the plane of the light 4〇2 is calibrated in a horizontal direction. Further, the second polarizer 122 has a polarization axis (axis 〇fp〇iarizati〇n) in the vertical direction. The penetration portion n2a_c transmits the light 402. In an embodiment of the invention, each penetration has an individual exchange element. The switching element controls the intensity of light passing through the corresponding penetration. In addition, the light 402 passes through the liquid crystal material 104 after passing through the penetrating portions n2a_c. The penetrating portions 112a, 112b 舆 ΐ 2 are provided with the pixel electrodes 106a-c. The difference in the turtle position at the gates of the pixel electrodes 16a-c and the common electrode 1〇8 determines the directivity of the liquid crystal material 1. Next, the directivity of the liquid crystal material 104 determines the intensity of the light 402 incident on each of the filters 4〇4a-c. In an embodiment of the present invention, the green filter 4〇4/ is placed over the squeezing 112a, and the illuminating filter 404b is placed over the penetrating portion 12 200823554 112b. And the red light filter 404c is placed on the penetration portion ii2c. Each of the filters 404a-c imparts a corresponding color light to the color pixels. The light imparted by the filters 404a-fc determines the chrominance value of the color pixel. Chroma contains color information such as hue and saturation of a pixel. Further, if there is ambient light 124, the light reflected by the reflecting portion 11 〇 (as shown in the second and third figures) provides the luminous intensity of the color pixel. This luminous intensity increases the resolution in the color penetration mode. The luminous intensity is a measure of the brightness of the pixel. The schematic diagram shown in the fifth diagram illustrates the effect of the LCD in the color penetrating mode when using the method of mixing the field sequential according to an embodiment of the present invention. Since the color penetrating embodiment has been previously described, only the penetrating portions 112a-c are shown in the fifth figure. In one embodiment of the invention, light source 102 includes LED strips, such as LED group 1, LED group 2, and the like (not shown). In an embodiment of the invention, the horizontally arranged LEDs are grouped together and one LED group is connected to the other to illuminate the LCD. Alternatively, vertically arranged LEDs can also be brought together. The LED groups are illuminated in a sequence, and the illumination frequency of an LED group can be between 30 frames per second and 540 frames. In an embodiment of the invention, each LED group includes a red LED 506a, a white LED 506b, and a blue LED 506c. In addition, the red light 1^: 〇 506 & and the white light LED 506b of the group 1 are turned on by time t 0' to t 2, and the red light LED 506a and the white light LED 506b of the LED group 2 are甶time t = 1 to t « τ
=6導通。同樣地,其他的LED群組的所有紅光與白光LED 係以序列的方式作用。在本發明的一實施例中,如果LED 13 200823554 群組係以垂直地配置,每一 LED群組會照射LCD的像素 的一水平列。同樣地,Led群組1的藍光LED 506c與白 光LED 506b係由時間卜5至卜10導通,、而LED群組2 的藍光LED 506c與白光LEd 506b係由時間t = 6至t二11=6 is on. Similarly, all red and white LEDs of other LED groups act in a sequential manner. In an embodiment of the invention, if the LED 13 200823554 group is arranged vertically, each LED group illuminates a horizontal column of pixels of the LCD. Similarly, the blue LED 506c and the white LED 506b of the Led group 1 are turned on by time 5 to 10, and the blue LED 506c and white light LEd 506b of the LED group 2 are time t = 6 to t 2
導通。同樣地’其他的LED群組的所有藍光與白光LED 係以序列的方式作用。紅光LEd 506a、白光LED 506b與 監光LED 506c係被配置為紅光lEd 506a與藍光LED 506c 照射穿透部穿透部112&與112c,而白光LED5〇6b照射穿 透部112b。在本發明的另一實施例中,LED群組可包含紅、 綠與監光LED。紅、綠與藍光LED也被配置為綠光LED 5〇6b照射穿透部112b,而紅光lEd 5〇6a與藍光lEd 506c 分別照射穿透部112&與n2c。 斤在本發明的一實施例中,來自光源1〇2的光會通 過第一偏光片120。而第一偏光片12〇會將光5〇2的平面 杈準於一特定平面。在本發明的一實施例中,光502的平 面係被技準於水平的方向。此外,第二偏光片在垂直 2具有極化軸。穿透部U2a_e傳送光皿。在本發明的 貝也例中母一個穿透部112a-c具有個別的交換元件。 ^外’父換元件控制通過穿透每一個穿透部112a_c的光的 ^,,藉此控制色光成份的強度。另外,光502在傳送通 過牙透部112a_c之後,會穿過液晶材料1〇4。每一穿透部 11 =、112b與i12c分別具有自己的像素電極1〇6a-c。在像 素電極l〇6a-c與共用電極1〇8之間的電位差決定了液晶材 料忉4的方向性。在使用紅、白與藍光LED的實施例中, 14 200823554 接著液晶材料104的方向性決定了入射於綠光濾光片 504,以及透明間隔物508a與508b之上的光5〇2的強度。 穿過、綠光濾光片504、以及透明間隔物、5〇8a與5〇8b的光 502的強度決定了彩色像素的色度數值。在本發明的〆實 施例中,綠光濾光片504係對應穿透部112b而被放Ϊ f 透部112a與112c並沒有濾光片。替代地,穿透部112a與 • 112c可分別使用透明間隔物508a與5〇8b。綠光濾光片 504、透明間隔物508a與508b係位於基板116上。在本發 _明的另一實施例中,洋紅色光濾、光片可被放至於透明間降 物508a與5081?之上。在本發明的一實施例中,在時間1:一() 至t = 5之間,當紅光LED 5〇6a與白光LED 5〇6b為導通 時,穿透部112a與112c為紅色的,而綠光渡光片504將 綠光賦予穿透部112b。同樣地,在時間6至t二11之間’ 當藍光LED 506c與白光LED 506b為導通時,穿透部112a 與112c為紅色的,而綠光濾光片504將綠光賦予穿透部 112b。被賦予給彩色像素的顏色係由來自穿透部I12a-c的 • 色光的組合所形成。另外,如果有周遭光線124的話,由 反射部110 (如第二圖與第三圖所示)所反射的光提供彩 • 色像素的發光強度。此發光強度會增加在色彩穿透模式下 • 的解析度。 第六圖所示的示意圖說明根據本發明的一實施例,當 •使用繞射的方法時,LCD在彩色穿透模式下的作用。由於 T. ' 先前已說明過彩色穿透實施例,因此在第六圖中僅顯示出 穿透部112a-c。光源102可為標準背光源。在本發明的一 15 200823554 實施例中,來自光源102的光602可藉由繞射光栅 (diffraction grating)604而被分為綠光成份602a、藍光成份 602b以及紅光成份602c。替代地,、光602可被分為色彩的 光譜,而光譜上不同部分的光可藉由微光學結構 (micro-optical structure)而分別通過穿透部112a_c的每一部 分。在本發明的一實施例中,微光學結構為平面薄膜光學 ‘ 結構(flat film optical structure),其具有小型透鏡組,可被 壓印或引入至薄膜。綠光成份602a、紅光成份602b與藍 • 光成份602c係利用繞射光栅604而被導至穿透部112a、 112b與112c。光602的成份會通過第一偏光片120。而第 一偏光片120會將光的成份602a-c的平面校準於一特定平 面。在本發明的一實施例中,光的成份602a-c的平面係被 校準於水平的方向。此外,第二偏光片122在垂直方向具 有極化軸。穿透部112a-c讓光的成份602a-c可透過它們傳 送。在本發明的一實施例中,每一個穿透部112a-c具有個 別的交換元件。交換元件控制通過對應的穿透部112a-c的 ^ 光的強度’藉此控制色光成份的強度。另外’光成份6〇2a_c 在傳送通過穿透部112a-c之後,會穿過液晶材料104。穿 • 透部112a、112b與112c分別具有像素電極106a-c。在像 ' 素電極l〇6a-c與共用電極108之間的電位差決定了液晶材 料104的方向性。而接著,液晶材料104的方向性決定了 • 穿過第二偏光片122的光成份602a-c的強度。穿過第二偏 t ^ - 光片122的光成份602a-c的強度決定了彩色像素的色度。 另外,如果有周遭光線的話,由反射部110 (如第二圖與 16 200823554 第三圖所示)所反射的光提供彩色像素的發光強度。此發 光強度會增加在色彩穿透模式下的解析度。 ' 如本發明所述,像素的穿遗部係被斜對地配置,而非 如同先前已知的LCD —樣採用垂直或水平的配置。穿透部 採對角線配置,與先前已知的LCD相比可提昇解析度,因 此可提供較佳的顯示功能。 • 此外,有周遭光線可增強在彩色穿透模式下的彩色像 素之發光強度(luminance)。所以,每一像素兼具有發光強 鲁度與色度,這樣會增加LCD的解析度。因此,某一特定解 析度所需的像素數目會低於先前已知的LCD,藉此降低 LCD的電力消耗。另外,以電晶體邏輯(ttl)為主的介面與 、先前已知的LCD所用的介面相較下,可用來降低丄。〇的 電力消耗。此外,因為時序控制器儲存與像素數值有關的 訊號,LCD可達到最佳化的自我更新,藉此也可降低電力 消耗。在本發明的不同實施例中,可以採用較薄的濾光片, 用以傳送較不飽和的色彩與更多的光量。所以,本發明的 各種貫%例在與先前已知的LCD相較下,可達到減少電 力消耗的目的。 另外,在本發明的實施例中(如第五圖所述),在像素 100上永遂可見到綠光或白光,而只有紅光和藍光會被切 換所X泮先^已知的场序顯示器(fWd sequentiaj display) 相#父之下,只需要較低的·影像更新率。 儘官以上已提出本發明的較佳實施例,要注意的是本 發明亚不限於此些實施例。在不達背本發明的精神與範脅 17 200823554 況下’如申請專利範圍所述,熟悉此技 本發明可有各種修正、變化、改變、置換與等效的 【圖式簡單說明】 以下將配合所附的圖表敘述本 中類似的標號代表類似的元件,而其中:種4例’其 第一圖所示的示意圖說明根據本發存 LCD的像素之橫截面; “也例,— 第二圖所示的示意圖說明根據本發明的— LCD的九個像素的配置; 焉也例, 第三圖所示的示意圖說明根據本發明的—每 LCD在單色反射模式下的作用; 汽&列, 第四圖所示的示意圖說明根據本發明的一电 使用部份濾光片的方法時,L c D在彩色穿透模’當 第五圖所示的示意圖說明根據本發明的―、乍用; 使用混合場序的方法時,LCD在彩色 只也列,當 以及 a牙“式下的作用; 第六圖所示的示意圖說明根據本發明的—每 使用繞射的方法時,LCD在彩色穿透模式下的二^例,當 【主要元件符號說明】 像素100 · 光源102 液晶材料104 18 200823554 像素電極106 像素電極106a-c 共用電極10 8 反射部110 * 穿透部112 ‘ 穿透部112a_c • 穿透部113a-c 穿透部114a-c 基板114 基板Π6 間隔物118a 間隔物118b φ 第一偏光片120 第二偏光片122 • 周遭光線124 驅動,電路13〇 時序控制器14Q 無色的濾光片202d 黑色矩陣光罩203 200823554 光402 濾光片404a 濾光片404b 濾光片404c 光502 綠光濾光片504 φ 紅光 LED 506a 白光 LED 506b 藍光 LED 506c 透明間隔物508a 透明間隔物508b 光602 φ 綠光成份602a 藍光成份602b 紅光成份602c 繞射光柵604Turn on. Similarly, all blue and white LEDs of the other LED groups function in a sequential manner. The red light LEd 506a, the white light LED 506b, and the light monitoring LED 506c are configured such that the red light lEd 506a and the blue LED 506c illuminate the penetration portion penetrating portions 112& and 112c, and the white light LEDs 5b6b illuminate the penetrating portion 112b. In another embodiment of the invention, the LED group can include red, green, and illuminating LEDs. The red, green, and blue LEDs are also configured such that the green LEDs 5〇6b illuminate the penetrating portion 112b, and the red lights lEd 5〇6a and blu 1Ed 506c illuminate the penetrating portions 112& and n2c, respectively. In an embodiment of the invention, light from source 1〇2 passes through first polarizer 120. The first polarizer 12 杈 aligns the plane of the light 5 〇 2 to a specific plane. In an embodiment of the invention, the plane of the light 502 is in a horizontal direction. Further, the second polarizer has a polarization axis in the vertical direction 2. The penetrating portion U2a_e transmits the plate. In the case of the present invention, the female one penetration portion 112a-c has individual exchange elements. The outer [father] element controls the intensity of the color light component by controlling the light passing through each of the penetrating portions 112a-c. In addition, the light 502 passes through the liquid crystal material 1〇4 after being transmitted through the tooth-permeable portions 112a-c. Each of the penetrating portions 11 =, 112b and i12c has its own pixel electrode 1〇6a-c. The potential difference between the pixel electrodes 16a-c and the common electrode 1A8 determines the directivity of the liquid crystal material 忉4. In an embodiment using red, white and blue LEDs, 14 200823554 then the directivity of liquid crystal material 104 determines the intensity of light 5 〇 2 incident on green light filter 504 and transparent spacers 508a and 508b. The intensity of light passing through the green filter 504, and the transparent spacers, 5〇8a and 5〇8b, determines the chromaticity values of the color pixels. In the embodiment of the present invention, the green light filter 504 is placed corresponding to the penetrating portion 112b, and the diffusing portions 112a and 112c are provided without a filter. Alternatively, the transparent portions 508a and 5b8b may be used for the penetrating portions 112a and 112c, respectively. Green light filter 504, transparent spacers 508a and 508b are located on substrate 116. In another embodiment of the present invention, a magenta light filter, a light sheet, can be placed over the transparent spacers 508a and 5081?. In an embodiment of the invention, between time 1: one () to t = 5, when the red LED 5〇6a and the white LED 5〇6b are turned on, the penetrating portions 112a and 112c are red, and The green light-passing sheet 504 imparts green light to the penetrating portion 112b. Similarly, between time 6 and time t11, when the blue LED 506c and the white LED 506b are turned on, the penetrating portions 112a and 112c are red, and the green light filter 504 imparts green light to the penetrating portion 112b. . The color imparted to the color pixels is formed by a combination of the color lights from the penetrating portions I12a-c. Further, if there is ambient light 124, the light reflected by the reflecting portion 110 (as shown in the second and third figures) provides the luminous intensity of the color pixels. This luminous intensity increases the resolution of the color penetration mode. The schematic diagram shown in the sixth diagram illustrates the effect of the LCD in the color penetration mode when the method of diffraction is used, according to an embodiment of the present invention. Since T. ' has previously described the color penetrating embodiment, only the penetrating portions 112a-c are shown in the sixth figure. Light source 102 can be a standard backlight. In an embodiment of the invention of 15 200823554, light 602 from source 102 can be divided into green component 602a, blue component 602b, and red component 602c by a diffraction grating 604. Alternatively, light 602 can be divided into a spectrum of colors, while different portions of the spectrum of light can pass through each portion of penetration 112a-c, respectively, by a micro-optical structure. In an embodiment of the invention, the micro-optical structure is a flat film optical structure having a small lens group that can be embossed or introduced into the film. The green light component 602a, the red light component 602b, and the blue light component 602c are guided to the penetrating portions 112a, 112b, and 112c by the diffraction grating 604. The components of the light 602 pass through the first polarizer 120. The first polarizer 120 aligns the plane of the light components 602a-c to a particular plane. In an embodiment of the invention, the plane of the components 602a-c of light is aligned in a horizontal direction. Further, the second polarizer 122 has a polarization axis in the vertical direction. The penetrating portions 112a-c allow light components 602a-c to pass therethrough. In an embodiment of the invention, each of the penetrating portions 112a-c has a separate switching element. The switching element controls the intensity of the light passing through the corresponding penetrating portions 112a-c thereby controlling the intensity of the color component. Further, the light component 6〇2a_c passes through the liquid crystal material 104 after being transmitted through the penetrating portions 112a-c. The transmissive portions 112a, 112b, and 112c have pixel electrodes 106a-c, respectively. The potential difference between the pixel electrodes 16a-c and the common electrode 108 determines the directivity of the liquid crystal material 104. Then, the directivity of the liquid crystal material 104 determines the intensity of the light components 602a-c passing through the second polarizer 122. The intensity of the light components 602a-c passing through the second partial light-receiving sheet 122 determines the chromaticity of the color pixels. In addition, if there is ambient light, the light reflected by the reflecting portion 110 (as shown in the second figure and the third figure of 200823554) provides the luminous intensity of the color pixel. This intensity of light increases the resolution in color penetration mode. As described in the present invention, the wear-through portions of the pixels are arranged diagonally, rather than in a vertical or horizontal configuration as in the previously known LCD. The penetrating section is diagonally arranged to improve resolution compared to previously known LCDs, thus providing better display functionality. • In addition, ambient light enhances the luminance of color pixels in color-through mode. Therefore, each pixel has both luminosity and chromaticity, which increases the resolution of the LCD. Therefore, the number of pixels required for a particular resolution will be lower than previously known LCDs, thereby reducing the power consumption of the LCD. In addition, the interface based on the transistor logic (ttl) can be used to reduce the enthalpy compared to the interface used in previously known LCDs. 〇 Power consumption. In addition, because the timing controller stores signals related to pixel values, the LCD can be optimized for self-renewal, thereby reducing power consumption. In various embodiments of the invention, thinner filters can be employed to deliver less saturated colors and more light. Therefore, various examples of the present invention can achieve the purpose of reducing power consumption as compared with previously known LCDs. In addition, in the embodiment of the present invention (as described in the fifth figure), green light or white light is always visible on the pixel 100, and only red light and blue light are switched. Under the display (fWd sequentiaj display), only the lower image update rate is required. While the preferred embodiment of the present invention has been described above, it should be noted that the present invention is not limited to the embodiments. Without departing from the spirit of the present invention and the scope of the present invention, as described in the scope of the patent application, the present invention may be modified, changed, changed, replaced and equivalent. Similar reference numerals in the accompanying drawings denote similar elements, and wherein: 4 cases of 'the first figure show a cross section of a pixel according to the present invention; "also, - second The schematic diagram shown in the figure illustrates the configuration of nine pixels of an LCD according to the present invention; 焉 also, the schematic diagram shown in the third figure illustrates the effect of each LCD in a monochrome reflection mode according to the present invention; Column, the diagram shown in the fourth figure illustrates a method of electrically using a partial filter according to the present invention, L c D in the color penetrating mode 'When the schematic diagram shown in the fifth figure illustrates the ― according to the present invention When using the method of mixing field sequential, the LCD is only listed in color, and the function of "a" is used; the schematic diagram shown in the sixth figure illustrates the method of using diffraction according to the present invention. Color penetration Example of the following formula, [Description of main component symbols] Pixel 100 · Light source 102 Liquid crystal material 104 18 200823554 Pixel electrode 106 Pixel electrode 106a-c Common electrode 10 8 Reflecting portion 110 * Penetrating portion 112 ' Penetrating portion 112a_c • Penetrating portion 113a-c Penetrating portion 114a-c Substrate 114 Substrate Π6 Spacer 118a Spacer 118b φ First polarizer 120 Second polarizer 122 • Driving by ambient light 124, circuit 13 〇 Timing controller 14Q Colorless filtering Sheet 202d black matrix mask 203 200823554 light 402 filter 404a filter 404b filter 404c light 502 green filter 504 φ red LED 506a white LED 506b blue LED 506c transparent spacer 508a transparent spacer 508b light 602 φ green component 602a blue component 602b red component 602c diffraction grating 604