200822793 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光模組,特別是指一種可投射 光線的發光模組及其對準、組裝方法。 【先前技術】 、 一般光學式輸出裝置如印表機、影印機等,主要是利 用一發光模組投射光線成像於一感光鼓上,使該感光鼓產 生電荷來吸附碳粉,再將所吸附之碳粉轉印至紙張上。而 發光模組所使用的光源有雷射及發光二極體陣列 emitting device array)等。相較於傳統雷射式輸出裝置而言 ,發光二極體陣列式輸出裝置具有體積小、列印速度快且 成本低廉之優點。 參閱圖1、圖2,以一種使用發光二極體陣列為光源的 發光杈組1為例,包含一殼座單元丨丨、一發光單元12及一 透鏡單元13。該殼座單元u具有概呈u型的一外殼ui, 瞻及〜Z軸方向架置在該外殼111上的一基座112。該發光 單兀12是沿該z軸固設在該外殼ln内,並具有沿一 X軸 方向排列的多數發光元件121。該透鏡單元13是嵌置在該 基座112上。藉此,當該等發光元件121產生光線,就可以 透過該透鏡單元13聚焦於一成像位置2(如前述的感光鼓)。 由於該光線成像位置的精確度是決定前述光學式輸出 裝置解析度的首要關鍵’因此,該發光單元12與該透鏡單 7G 13所而要的對準精度要求較高,目前是以人工的方式進 行U幅凋;k的動作,以滿足成像品質的需求,稱為主動對 5 200822793 準(Active Alignment),主要是先將該外殼m、該基座ιΐ2 與該發光單元12預先組合為一體’然後,以外加電源驅動 該等發光兀件121產生光線,再利用感光耦合元件200822793 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting module, and more particularly to a light-emitting module capable of projecting light and an alignment and assembly method thereof. [Prior Art], general optical output devices such as printers, photocopiers, etc., mainly use a light-emitting module to project light onto a photosensitive drum, so that the photosensitive drum generates electric charge to adsorb the toner, and then adsorbs The toner is transferred to the paper. The light source used in the light-emitting module has a laser and a light emitting diode array device. Compared with the conventional laser output device, the LED array output device has the advantages of small size, fast printing speed and low cost. Referring to FIG. 1 and FIG. 2, an example of a light-emitting unit 1 using a light-emitting diode array as a light source includes a housing unit, an illumination unit 12, and a lens unit 13. The housing unit u has a housing ui of a generally u-shaped shape, and a pedestal 112 mounted on the housing 111 in the ~Z-axis direction. The light-emitting unit 12 is fixed in the casing ln along the z-axis and has a plurality of light-emitting elements 121 arranged in an X-axis direction. The lens unit 13 is embedded on the susceptor 112. Thereby, when the light-emitting elements 121 generate light, they can be focused through the lens unit 13 to an image forming position 2 (such as the photosensitive drum described above). Since the accuracy of the position of the light imaging is the primary key to determining the resolution of the optical output device, the alignment accuracy of the illumination unit 12 and the lens unit 7G 13 is relatively high, and is currently in an artificial manner. The operation of the U-frame fader; k to meet the image quality requirements is called Active Pair 5 200822793 (Active Alignment), mainly by first combining the shell m, the base ιΐ2 and the light-emitting unit 12 into one. Then, the external light source is used to drive the light-emitting elements 121 to generate light, and then the photosensitive coupling element is utilized.
Coupled Device,CCD)於該成像位置2,觀察光線經由該透 鏡單元13聚焦投射在該CCD上的光點尺寸(啊㈣,最 後’在該發光單元12與該CCD位置固定不動的情形下以 人工方式沿六個方向的自由度(X、γ、z三軸的位移與旋轉)Coupled Device (CCD) is at the imaging position 2, and observes the size of the light spot projected on the CCD via the lens unit 13 (ah (4), and finally 'in the case where the light-emitting unit 12 and the CCD position are fixed, artificially The degree of freedom in six directions (displacement and rotation of the three axes of X, γ, and z)
調整該發光單元12與該透鏡單元13的相對位置,直到達 到最佳光學品質需求時,以封膠將該透鏡單元13固定於該 基座112’即完成對準與組裝。惟,上述對準與組裝方法具 有下列缺點: 1·該發光模組1目前只能以人工方式進行三次元的對準 對準且縣時高達六個自由度(χ、γ、z三軸的位移與旋 轉),每-發光模組1的組裝與對準費時約2〇〜25分鐘不 但作業相當冗長、耗時且效率不佳,而不符合經濟效益。 由於該透鏡單元13進行六個自由度的對準時,需要 複,轴控制機構,且在測試時,必須配置可驅動該發 2考x冗的控制模組’再加上對量測平台精度與穩定 ^ Γ要求會大幅提昇設備成本,使該發光模組1的成 【發明内容】 作二ΐ發::::二在提供-種可-“動 ^對準&輊的發光模組及其對準、組裝方 200822793 於是,本發明的發光模組,包含一發光單元、一殼座 單兀及一透鏡單几。該發光單元具有沿一光軸產生光線的 至少一光點,及通過該光點至一成像位置的中心且垂直該 光轴的一第一中心線。該殼座單元是設置有該發光單元, 並具有形成在一側且沿該第一中心線延伸的一開口。該透 鏡單元是相對該發光單元架置在該殼座上且顯露在該開口 内,並具有通過中心且重合於該第一中心線的一第二中心 線0The relative position of the light-emitting unit 12 and the lens unit 13 is adjusted until the optimum optical quality requirement is reached, and the lens unit 13 is fixed to the base 112' by the sealant to complete the alignment and assembly. However, the above alignment and assembly method has the following disadvantages: 1. The illumination module 1 can only perform three-dimensional alignment alignment manually and up to six degrees of freedom in the county (χ, γ, z three axes) Displacement and rotation), the assembly and alignment of each-light-emitting module 1 takes about 2 〇 to 25 minutes, which is not only tedious, time-consuming and inefficient, but not economical. Since the lens unit 13 performs the alignment of six degrees of freedom, the axis control mechanism is required, and during the test, it is necessary to configure a control module that can drive the test, and the accuracy of the measurement platform is The stability of the ^ 会 会 大幅 大幅 大幅 大幅 大幅 大幅 大幅 大幅 大幅 大幅 大幅 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The illuminating module of the present invention comprises an illuminating unit, a housing unit and a lens unit. The illuminating unit has at least one spot that generates light along an optical axis, and passes through The spot is centered at an imaging position and perpendicular to a first centerline of the optical axis. The housing unit is provided with the illumination unit and has an opening formed on one side and extending along the first centerline. The lens unit is mounted on the housing relative to the light unit and is exposed in the opening, and has a second center line passing through the center and coincident with the first center line.
本發明發光模組的對準方法,包含下列步驟:步驟工: 沿該光軸方向擷取該發光單元的光點位置,以及預設的一 成像位置,计异出该光點到該成像位置的一總光程。步驟2 •以該總光程的一半,劃分出垂直該光軸的第一中心線。 步驟3:沿該光軸方向獅該透鏡單元的至少_第—端點與 至少-第二端點,計算出—透鏡長度。步驟4 ··以該透鏡長 度的-半,劃分出垂直該光軸的第二中心線。步驟5:組裝 該透鏡單元與該殼座,且使㈣二中(線重合於該第一中 心線。 本务明發光模組的組裝方法,a含下列步輝,上. 將该發光單元安裝在該殼座單元内。步驟2 :沿垂直該光軸 的方向將該透料元由該殼座單元的.穿置人該殼座單 兀内。步驟3··使該透鏡單㈣第二中心線重合於該第一中 心線,並獲得定位。 本發明的功效是能藉由側向組裝的方式,及重合該第 ―、第二中心線的對準方法,降低設備成本,及提昇組裝 7 200822793 、對準效率。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖3、圖4,本發明發光模組的一較佳實施例包含 :一殼座單元3、一發光單元4及一透鏡單元5。 違设座單元3是沿一 X軸方向延伸,並具有概呈u形 的一外设31、架置卡合在该外殼31上的一基座32、貫穿 該外殼31與該基座32二端部的二定位件33,及一蓋板34 。該外殼31具有形成在一側且該X軸方向延伸的一開口 311。δ亥基座32具有相互對合且界定出一插槽321的一第一 對合件322與一第二對合件323,該第二對合件323是由該 外殼31的開口 311可卸離地與該第一對合件322卡合。該 蓋板34是可卸離地封閉該外殼31的開口 311。 該發光單元4是固設在該外殼31内,並具有沿該χ軸 排列且可朝一 ζ軸(即光軸)方向發射光線的多數光點41。 该專光點41在本實施例分別是一發光二極體。 該透鏡單元5是插置在該基座32第一、第二對合件 322、323間的插槽321内,參閱圖5,並具有沿該χ轴排 列的多數柱狀透鏡51。該等柱狀透鏡51具有漸變折射率且 可聚焦光線’可以使該發光單元4入射的光程(物距)l〇相當 於聚焦後折射至一成像位置的光程(像距)Lq。而光線沿z軸 方向通過該等柱狀透鏡51的距離為透鏡長度z〇,藉此,可 8 200822793 知該等光點41沿該Z軸方向的總光程距離TC=2L0+Z0。 首先,在此必須闡明的是,在業界中,該發光模組投 射品質中最重要的性能指標稱為MTF(%),指數愈高,代表 成像品質愈好。因此,參閱圖5並配合圖 6〜圖8之 MTF(Mod\ilation Transfer Function)關係圖(擷取自 SLA 製造 商NSG: NIPPON SHEET GLASS),可以發現,只要物距(成 像位置)改變(如圖6)或該透鏡單元5與該發光單元4的相對 位置改變(如圖7),則MTF(%)指數就會急劇下降,也就是 說,先前技術的主動對準(Active Alignment)作業,只要稍 有偏移,就會影響MTF(%)指數。惟,參閱圖5、圖8,若 能使1/2 Z。在1/2TC的位置,則可允許TC在一定的距離内 ,MTF(%)指數都可以維持在幾近穩定的範圍值内。 以下即針對本發明較佳實施例的對準方法及組裝步驟 說明如下: 步驟61:參閱圖9、圖10,將該發光單元4安裝在該 外殼31内,再將該基座32的第一對合件322卡固在該外 殼31上,使該發光單元4的光點41與該插槽321顯露在 該外殼31的開口 311内。 步驟62:參閱圖9、圖10及圖11,以二感光耦合元件 (Charge Coupled Device,CCD,圖未示)透過該外殼31的開 口 311,沿該Z軸即光軸方向擷取位於二側的二光點41, 及形成在該等定位件33的二成像位置參考點331。由於本 發明是以該等定位件33做為組裝時基準,因此,該等成像 位置參考點331與預設的一成像位置9間具有一預設光程 200822793The aligning method of the illuminating module of the present invention comprises the following steps: stepping: capturing a position of a light spot of the illuminating unit along the optical axis direction, and a preset imaging position, and differentiating the light spot to the imaging position A total optical path. Step 2 • Divide the first centerline perpendicular to the optical axis by half of the total optical path. Step 3: Calculate the lens length along at least the _th-end point and at least the second end point of the lens unit along the optical axis direction. Step 4 • Divide the second center line perpendicular to the optical axis by the half length of the lens. Step 5: Assembling the lens unit and the housing, and making (4) two (the line coincides with the first center line. The assembly method of the light-emitting module of the present invention, a includes the following step, upper. The lighting unit is installed. In the housing unit, step 2: the transmissive element is placed in the housing of the housing by the housing unit in a direction perpendicular to the optical axis. Step 3··Making the lens single (four) second The center line coincides with the first center line and is positioned. The effect of the present invention is to reduce the equipment cost and improve the assembly by means of lateral assembly and overlapping of the first and second center lines. 7 200822793 Alignment efficiency [Embodiment] The foregoing and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. 3. A preferred embodiment of the light-emitting module of the present invention comprises: a housing unit 3, a lighting unit 4 and a lens unit 5. The erecting unit 3 extends in an X-axis direction and has an overview a peripheral device 31 in the shape of a u, the mounting is engaged outside a base 32 on the casing 31, two positioning members 33 extending through the outer end of the outer casing 31 and the base 32, and a cover plate 34. The outer casing 31 has an opening formed on one side and extending in the X-axis direction. 311. The δ hai base 32 has a first mating member 322 and a second mating member 323 that are opposite to each other and define a slot 321 . The second mating member 323 is an opening 311 of the outer casing 31 . Removably engaged with the first mating member 322. The cover plate 34 is an opening 311 for detachably closing the outer casing 31. The light emitting unit 4 is fixed in the outer casing 31 and has along the crucible The plurality of spots 41 that are arranged in the axis and emit light in a direction of a ( axis (ie, the optical axis). The spot 41 is respectively a light emitting diode in the embodiment. The lens unit 5 is interposed on the pedestal 32. The slot 321 between the first and second mating members 322, 323, see Fig. 5, and has a plurality of lenticular lenses 51 arranged along the yoke axis. The lenticular lenses 51 have a graded index of refraction and can focus light. 'The optical path (object distance) l 入射 at which the light-emitting unit 4 can be incident is equivalent to the optical path (image distance) Lq refracted to an imaging position after focusing. The distance of the line passing through the lenticular lenses 51 along the z-axis direction is the lens length z 〇, whereby the total optical path distance TC=2L0+Z0 of the light spots 41 along the Z-axis direction is known from 200822793. First, It must be clarified here that in the industry, the most important performance index of the projection quality of the light-emitting module is called MTF (%), and the higher the index, the better the image quality. Therefore, referring to Figure 5 and Figure 6 The MTF (Mod\ilation Transfer Function) relationship diagram of Figure 8 (taken from the SLA manufacturer NSG: NIPPON SHEET GLASS), it can be found that as long as the object distance (imaging position) changes (as shown in Fig. 6) or the lens unit 5 and the When the relative position of the light-emitting unit 4 changes (as shown in FIG. 7), the MTF (%) index drops sharply, that is, the prior art Active Alignment operation affects the MTF with a slight offset. (%)index. However, referring to Fig. 5 and Fig. 8, if 1/2 Z is enabled. At the 1/2 TC position, the TC can be allowed to stay within a certain distance and the MTF (%) index can be maintained within a nearly stable range. The alignment method and assembly steps for the preferred embodiment of the present invention are as follows: Step 61: Referring to FIG. 9 and FIG. 10, the light-emitting unit 4 is mounted in the outer casing 31, and then the first of the base 32 is The mating member 322 is fastened to the outer casing 31 such that the light spot 41 of the light emitting unit 4 and the slot 321 are exposed in the opening 311 of the outer casing 31. Step 62: Referring to FIG. 9, FIG. 10 and FIG. 11, two photosensitive coupling devices (CCDs, not shown) are transmitted through the opening 311 of the casing 31, and are located on the two sides along the Z-axis, that is, the optical axis direction. The two spots 41 are formed at the two imaging position reference points 331 of the positioning members 33. Since the present invention uses the positioning members 33 as a reference for assembly, a predetermined optical path is established between the imaging position reference point 331 and the preset one imaging position 9 200822793
Zpr ’藉此,可斗瞀山 出該光點41至該成像位置9的總光程距 離TC。 步驟63 :以土丨 乂 1/2TC劃分出垂直該ζ軸的一第一中心緩 L1。 步驟64 · 4 a日r~i •乡閱圖9、圖10,以二感光耦合元件(cllargeBy this, Zpr's total optical path distance from the spot 41 to the imaging position 9 can be TC. Step 63: Divide a first center slow L1 perpendicular to the x-axis by the soil 乂 1/2TC. Step 64 · 4 a day r~i • Township Figure 9, Figure 10, with two photosensitive coupling elements (cllarge
Coupled Device γγτλ 门丄 ee’ CCD,圖未示)沿該ζ軸即光軸方向擷取該 透鏡單元5的-赞 ^ 。 旧一第一端點52與二第二端點53,計算出該透 鏡單疋5的透鏡長度2。。 步驟65 :參閱圖9、圖11及圖12,以1/2Ζ〇劃分出垂 直該Ζ軸的-第二中心線L2。 步驟66 :以一自動化取置機(圖未示)吸取該透鏡單元5 〜一 Υ軸方向通過該外殼31的開口 311穿置入該基座Μ 的插槽321内,使該透鏡單元5的第二中心線L2重合於該 第一中心線L1。 步驟67 :參閱圖9、圖η,以黏膠預先黏結該透鏡單 元5與該基座32第一對合件322。 步驟68 :由該外殼31的開口 311,將該第二對合件 323穿置入該外殼31内,且與該第一對合件322對合,使 該透鏡單元5穩固於該第一、第二對合件322間的插槽321 内。 步驟69 :以該蓋板34封合該外殼31的開口 311,完成 對準及組裝。 參閱圖8、圖11,藉此,本發明可以使1/2 ζ〇在1/2TC 的位置’所以,不管TC的距離如何變化,MTF(%)指數都 10 200822793 可以維持在幾近穩定的範圍值内,也就是說,本發明前述 特殊的對準、組裝方法,容許成像位置9與該發光單元4 間有小幅度的誤差,卻仍然可以維持極佳的成像品質。 據上所述可知,本發明之發光模組及其對準、組裝方 法具有下列優點及功效·· h该透鏡單元5只需進行單純吸取與置放(Pick & Place) 的動作’因此,可以一般電子元件(SMT pick & Place Machine)或晶粒(Die)置放機(SMT)於秒鐘以内完成對準 與組裝作業,不但能大幅減化對準、組裝程序,縮減作業 日守間,且能有效提昇生產效率,而能符合經濟效益。 2.本發明不需要先前技術中主動對準(Active 作業所使用光學品質監控量測平台,且該等光點41也不需 要被點亮,除了可以精簡設備外,更能大幅降低設備成本 ’使本發明整體的成本更符合市場需求。 3·且本發明可以獲得相當接近MTF(%)最高理論值的光 學系統,有效提昇光學特性,使得高解析度的發光模組產 品得以實現。 以上所述只是本發明之較佳實施例而已,當不能以此 限定本發明實施之範圍,即大凡依本發明申請專利範圍及 發明說明内容所作之簡單的等效變化與修飾,皆仍屬本發 明專利涵蓋之範圍内。 11 200822793 【圖式簡單說明】 圖1是一立體分解圖,鉼明 兄月—鮫使用發光二極體陣列 為光源的發光模組; 圖2是一剖視圖,說明前述發光模組的組合情形; 圖3是一立體分解圖’說明本發明-發光模組的一較 佳實施例; 圖4是該較佳實施例的一組合剖視圖;The Coupled Device γγτλ threshold ee' CCD (not shown) captures the -Zan ^ of the lens unit 5 along the axis of the x-axis. The lens length 2 of the lens unit 5 is calculated by the old first end point 52 and the second second end point 53. . Step 65: Referring to Fig. 9, Fig. 11, and Fig. 12, the -second center line L2 perpendicular to the x-axis is divided by 1/2 inch. Step 66: The lens unit 5 is pulled into the slot 321 of the base 301 through the opening 311 of the outer casing 31 by an automatic loading machine (not shown), so that the lens unit 5 is The second center line L2 coincides with the first center line L1. Step 67: Referring to FIG. 9 and FIG. 7 , the lens unit 5 and the first pairing member 322 of the base 32 are pre-bonded with an adhesive. Step 68: The second pairing member 323 is inserted into the outer casing 31 from the opening 311 of the outer casing 31, and is engaged with the first pairing member 322 to stabilize the lens unit 5 in the first Inside the slot 321 between the second pair of members 322. Step 69: sealing the opening 311 of the outer casing 31 with the cover plate 34 to complete alignment and assembly. Referring to Figures 8 and 11, by this, the present invention can make 1/2 ζ〇 at the position of 1/2 TC. Therefore, regardless of the change in the distance of the TC, the MTF (%) index is 10 200822793 can be maintained in a nearly stable state. Within the range of values, that is, the aforementioned special alignment and assembly method of the present invention allows for a small margin of error between the imaging position 9 and the illumination unit 4, while still maintaining excellent imaging quality. As can be seen from the above, the light-emitting module of the present invention and the alignment and assembly method thereof have the following advantages and effects. · The lens unit 5 only needs to perform the action of simply picking and placing (Pick & Place). Alignment and assembly can be completed in less than a second by SMT pick & Place Machine or Die Placer (SMT), which not only greatly reduces alignment and assembly procedures, but also reduces job schedules. And can effectively improve production efficiency, and can meet economic benefits. 2. The present invention does not require active alignment in the prior art (the optical quality monitoring measurement platform used in the active operation, and the light spots 41 need not be illuminated, in addition to being able to streamline the device, the device cost can be greatly reduced. The overall cost of the invention is more in line with the market demand. 3. The invention can obtain an optical system which is relatively close to the highest theoretical value of MTF (%), effectively improving optical characteristics, and enabling high-resolution light-emitting module products to be realized. The present invention is only a preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the present invention and the description of the invention are still the patents of the present invention. 11 200822793 [Simple diagram of the diagram] Fig. 1 is an exploded perspective view of a light-emitting module using a light-emitting diode array as a light source; Fig. 2 is a cross-sectional view showing the light-emitting mode Figure 3 is an exploded perspective view of a preferred embodiment of the present invention - Figure 4 is a set of preferred embodiments of the present invention; Cross-sectional view;
圖5疋该較佳實施例中一總光程距離的示意圖; 圖6是一 MTF關係圖; 圖7是一 MTF關係圖; 圖8是該較佳實施例一 MTF關係圖; 圖9疋該較佳實施例的一對準、組裝流程圖; 圖10是該較佳實施例的一第一組裝立體圖; 圖11是該較佳實施例前述組裝立體圖的一剖視圖; 圖12是該較佳實施例的一第二組裝立體圖;及 圖13是該較佳實施例的一組合立體圖。 12 200822793 【主要元件符號說明】 3…* ……殼座單元 5……·· …透鏡單元 31… ……外殼 51"""* ••柱狀透鏡 311 - ……開口 5 2 ******* …第一端點 32… ……基座 53…·… •,第二端點 321 ^ ……插槽 9 · …成像位置 322 * ……第一對合件 L〇…… -·光程 323 * ……第二對合件 Z〇*…… ••透鏡長度 33〜 ……定位件 TC…… …總光程距離 331 ^ ……成像位置參考點 ZpR "… *·預設光程 34… ……蓋板 L1 · · * *,* ••第一中心線 4、… ……發光單元 L2· ·… ,♦第二中心線 41… ……光點 13Figure 5 is a schematic diagram of a total optical path distance in the preferred embodiment; Figure 6 is an MTF relationship diagram; Figure 7 is an MTF relationship diagram; Figure 8 is an MTF relationship diagram of the preferred embodiment; Figure 9 Figure 1 is a first assembled perspective view of the preferred embodiment; Figure 11 is a cross-sectional view of the assembled perspective view of the preferred embodiment; Figure 12 is a preferred embodiment of the preferred embodiment A second assembled perspective view of the example; and Figure 13 is a combined perspective view of the preferred embodiment. 12 200822793 [Description of main component symbols] 3...* ... housing unit 5...···...lens unit 31......... housing 51"""* •• lenticular lens 311 - ... opening 5 2 ** ***** ...first end point 32... ...... pedestal 53...·... •, second end point 321 ^ ... slot 9 · ... imaging position 322 * ... first pair of parts L〇... -·Light path 323 * ......Second pair of parts Z〇*...... ••Lens length 33~...Positioning part TC...... ...total optical path distance 331 ^...... Imaging position reference point ZpR "... *· Preset optical path 34... ...... cover L1 · · * *,* ••first center line 4,... ......lighting unit L2··...,♦second center line 41... ......light spot 13