200822385 九、發明說明: 【發明所屬之技術領域】 =明有關於—種發光二極體(LED),特別是有關於 製造it子晶體結構之高發光效率發光:_結構及其 【先前技術】 近來世界能源的短缺導致油價不斷的飆漲,全球各 國家莫不積極地投人節能產品的開發,例如省電燈3 此:趨勢下的產物。隨著發光二極體(LED)技術的進步疋 白光或其它顏色(例如:藍光)發光二極體的應用也逐漸 開展,其應用包括:液晶顯示器(lcd)背光板、印表機、 用於電腦之光學連接構件(optical interconnects in 、指示燈、地面燈、逃生燈、醫療設備光源、 >飞車儀錶及内裝燈、輔助照明、主照明...等等。簡而言之, 發光二極體係以背光源與照明功能為當前的主要應用。。在 下-世代的照明市場中,將是發光二極體的天下。由於發 光二極體具有輕巧、省電及壽命長等優點,因此,符合; 世界的趨勢潮流。歐、美、日等國皆以舉國之力投入開發 的行列’而我國的發光二極體產業,在全球市場上,無論 研發以及製造均佔有舉1輕重的角色與地位。所以,在發 光二極^領域的下—世代發展中,台灣勢將不會缺席。X 目w,發光二極體在白光市場的應用,已將小型照明 市場,帶人另外—個境界。其中,手機的背光源已經被發 光一極體所取代。攸早期的黃、綠光發光二極體到現在的 200822385 白光或監光發光二極體’已經將手機點綴的五彩繽紛。至 於個人數位助理(personaldigitalassistant : pda)乃至液 晶顯示面板(TFT-LCD)的背光源,也都將成為發光二極 體的天下。其具有㈣省電的優點將使其具有不可取代的 地位。 就現階段200822385 IX. Description of the invention: [Technical field to which the invention pertains] = There are certain kinds of light-emitting diodes (LEDs), in particular, high luminous efficiency luminescence for manufacturing an it-crystal structure: _ structure and [prior art] The recent shortage of energy in the world has led to soaring oil prices. Countries around the world are not actively investing in the development of energy-saving products, such as power-saving lamps. With the advancement of light-emitting diode (LED) technology, the application of white light or other color (for example, blue light) light-emitting diodes has gradually developed, including: liquid crystal display (LCD) backlight, printer, for Computer optical connection components (optical interconnects in, indicator lights, ground lights, escape lights, medical equipment light sources, > speed gauges and interior lights, auxiliary lighting, main lighting, etc. In short, luminous The two-pole system is the main application of backlight and illumination function. In the next-generation lighting market, it will be the world of light-emitting diodes. Because the light-emitting diode has the advantages of light weight, power saving and long life, In line with the trend of the world. Countries such as Europe, the United States, and Japan are all investing in the development of the country. And China's LED industry has a role in both global R&D and manufacturing. And status. Therefore, in the development of the second generation of the field of light-emitting diodes, Taiwan will not be absent. X-m, the application of light-emitting diodes in the white light market, has already been a small lighting city. The field, with people in another state. Among them, the backlight of the mobile phone has been replaced by the light-emitting body. The early yellow and green light-emitting diodes to the present 200822385 white light or the light-emitting diodes have already The color of the mobile phone is colorful. As for the personal digital assistant (pda) and even the backlight of the liquid crystal display panel (TFT-LCD), it will become the world of light-emitting diodes. It has the advantages of (4) power saving will make it impossible. Replacement status
, 祀雕1際進入白光發光二極體照明K 代’尚有-段距離。若白光發光二極體要取代現階段昭麥 =暴’發光效率至少要達到801m/w以上,w 成為各國努力的目標之一。 ^發光二極體的發光機制中,其發光效率取決於内部 =:!:及外部的取光效率,其中内部的量子發光效 要係由發光二極體的組成材料及其結晶性來控制。換 ;二!光:極體的發光效率主要係由蟲晶的結構以及品 係造成光子被吸收的主=結,中的缺陷 效率將會大幅度地降低目此’發先二極體的發光 傳統之發光二極體之發光 . 半導體層與透明導形成之先’在經由?型 二極體之光取出效^喻會產生反射,使得該發光 響。此外,奸光:極㈣extraetiGneffieieney)受到影 樣或是形成光子晶體結:之==縫化表面的圖 …法容易使得發光層被破V:::成層工, 外,由於藍寶石美叔麻命一疋k成兀件知傷。此 —定的困難谇土更度向、耐腐蝕性強,因此加工上有 、又,—般的加工方式主要係利用微影蝕刻f 200822385 ^ 束或雷射加工#方式於藍寶石基板製作特定的圖 案。X限於上述製程之限制,較難得到奈米級的圖樣及進 行大面積元件的製作,並且上述技術之製造過程較繁複且 設備及製作成本相對的較昂貴。, 祀 1 1 into the white light emitting diode lighting K generation 'still has - segment distance. If the white light emitting diode is to replace the current stage of Zhaomai = violent light efficiency of at least 801m / w or more, w has become one of the goals of national efforts. In the luminescence mechanism of the light-emitting diode, the luminous efficiency depends on the internal =:!: and the external light extraction efficiency, wherein the internal quantum luminescence effect is controlled by the constituent materials of the light-emitting diode and its crystallinity. Change; two! Light: The luminous efficiency of the polar body is mainly caused by the structure of the insect crystal and the main = junction of the photon caused by the photon. The efficiency of the defect in the crystal will be greatly reduced. The luminescence of the polar body. The formation of the semiconductor layer and the transparent guide is in the past? The light extraction effect of the type diode will produce a reflection, making the luminescence loud. In addition, the eclipse: pole (four) extraetiGneffieieney) is affected by the formation or formation of photonic crystal knots: == sewed surface of the map ... method is easy to make the luminescent layer is broken V::: layering work, outside, because sapphire beauty uncle k into a piece of knowing injury. This is difficult to make the soil more directional and corrosion-resistant, so the processing, and the general processing method is mainly based on the lithography of the sapphire substrate. pattern. X is limited to the above-mentioned process limitations, it is difficult to obtain a nano-scale pattern and the production of large-area components, and the manufacturing process of the above technology is complicated and the equipment and manufacturing cost are relatively expensive.
騎’由於某些發光二極體之半導體層(例如:GaN 折射率P2.4)與空氣(折射率n約略吐〇)之間的折射係 數差異很大’其全反射臨界角約只有2〇〜3〇度,造成大部 ⑩分發光層所產生的光只能在元件内部全反射,無法有效地 出光,所以即使内部的發光效率提高,外部的取光效率苦 無法改善也是枉然。 因此,基於上述之問題,.以及因應趨勢之需求,從製 程技術來改善發光二極體之取光效率已成為重要的發展^ 向。是故,本發明將提出一種具有高發光政率之發極 體結構與其製造方法,其可以提高發光二極體的光取出效 率(light extraction efficiency )’並可降低發光二極體磊晶 泰層之晶體缺陷,提高發光效率。 【發-内容】 本發明之目的在於提供一種新穎的具有奈米級多孔性 光子晶體結構之發光二極體結構與其製造方法。 本發明之另一目的在於提供一種可以改善磊晶品質以 及增加外部取光效率以有效地提高發光二極體的發光效率 之發光二極體。 本發明之又一目的在於提供一種可以簡化製程以適用 於大面積元件製造之發光二極體。 200822385 一種發光二極體,包括··基板;多孔性光子晶體結構, 开> 成於基板之上,第一型蠢晶層,形成於上述多孔性光子 晶體結構之上;發光層,形成於上述第一型蠢晶層之上; 第二型磊晶層,形成於上述發光層之上,·第一接觸電極, 形成於上述該第一型磊晶層之上;以及,第二接觸電極, 形成於上述第二型磊晶層之上。 種舍光一極體之製造方法,包括··首先,提供一基 板;接著,形成一多孔性光子晶體結構於基板之上;形成 一第一型磊晶層於上述多孔性光子晶體結構之上;之後, 形成一發光層於上述第一型磊晶層之上;隨後,形成一第 二型磊晶層於上述發光層之上;接著,形成一第一接觸電 極於上述第-型蠢晶層之上;之後,形成—第二接觸電= 於上述第二型磊晶層上。 上述多孔性光子晶體結構包括利用純鋁薄膜進行陽極 處理製程所形成之多孔性氧化鋁薄膜。 【實施方式】 本發明的一些實施例會詳細描述如下。然而,除了 =述的實施例外,本發明可以廣泛地在其它的實施例,中 把行並且本發明之保t隻範圍並不受限於下述之實施例, 其係以後述的申請專利範圍為準。 再者,為提供更清楚的描述及更易理解本發明,圖干 2部分並沒有依照其相對尺寸繪圖,不相關之細節部分 也未完全繪出,以求圖示的簡潔。 200822385 。月ί考圖示其中所顯示僅僅是為了說明本發明之較 佳實施例,並非用以限制本發明。一般降低磊晶層之晶格 缺陷的方式係職U基板直接絲㈣加4理,以形 成微米級的凹凸結構。本發明利㈣極處理技術在基板(例 如藍寶石基板)表面製造一層具有(週期性)奈求級孔洞 之二維光子晶體結構’此光子晶體結構不僅可以有效的改 善蟲晶品質,增加内部量子發光效率,對於基板與蟲晶層 •之間光全反射問題以及沿著界面產生的側向漏光情形,亦 能加以控制與減少’目此可以有效提高外部的取光效率。 再者,由於光子晶體效應亦可有效地控制出光波長,發出 較窄頻寬的光源。. “在-實施例中,藉由調整發光層材料,使其發光介於 藍光範圍,利用本發明之多孔性氧化在呂光子晶體結構所產 生光激發光現象,以增加發光二極體之發光強度。 明 > 閱圖一 ’其係根據本發明之發光二極體結構炙截 _面圖。上述發光二極體結構,包括:一基板1〇、多孔性光 .子晶體結構12、第一型磊晶層13、發光層15、第二型磊 晶層16、第-接觸電極14以及第二接觸電極17。舉一實 施例而言’上述基板1G之材質可以為藍寶石(卿咖小 氮化鎵(GaN)、氮化紹(A1N)、碳化石夕(sic)或氮化錄 鋁(GaA1N)。上述基板10經過一粗糙化的製程而將基板 1〇之表面粗糙化而形成粗糙表面。舉一實施例而言,上述 表面粗糙化製程係首先在基板1〇表面形《一層金屬薄 膜,例如為鋁金屬薄膜U,請參考圖一。舉例而古,上述 9 200822385 _呂薄膜Η可以透過蒸錢、賤鑛或熱浸鑛的方式形成。然 ,,再利用,極處理技術在基板丨。U形成奈米級多孔性 氧化至屬;|膜12 ’例如為多孔性氧化紹薄膜12,請參考圖 二,虛線處為形成孔洞之處。 :例而s ’對於上述純鋁薄膜之陽極處理係在0.2〜0.5 '耳展度(M)的草酸(c2H2〇4)溶液,外加2〇〜阶伏特 l屯壓之環i兄下進行。隨著陽極處理之時間的改變, f孔性氧化㈣膜厚度逐漸增加,舉例而言,氧化紹薄膜 /同直徑约3G〜8G奈米,孔洞與孔洞之間的距離(排列週 ί月08 1、= 4G〜52G奈米,孔洞密度約為每平方公分具有 Μ Γ個孔洞。舉例而言,氧化紹薄膜之厚度為0.05〜100 έ般而言’陽極處理(anodization)金屬薄膜後呈: 蝉、r Γ狀“11111奵tUbe)結構。形成此種結構型態的過; 隨著,通電時’鋁陽極表面的某些部位開始溶解 丁 B曰長,鋁溶解量增加,而陽極表面開始呈現凹, :平的粗糙度,時間續增,由於凹凸不平造成溶解速率; =解較快的部位逐漸凹陷’而溶解的_子逐漸开^ =_乳化紹沉積在表面’但是仍留有孔隙以供溶声 ㊁::續進作,一段時間之後,堆積的沉殿即形成管壁 二:、主要成份包含水氧化㈣膠狀氫氧化紹, = 量愈少,愈接近一而接糊; 匕成即輕溶解沉積的區域,沉積愈久則愈緻密。 利用酸性溶液進行陽極處理時,酸性電解質會分解乡 200822385 銘金屬表面,並且開始成長 成細小孔洞的產生,同時I、同麻:。純鋁金屬表面分解造 層與金屬_,當孔洞形::=阻障層使得氧化 率開始成手,开r由* '、知疋時,則將以一定逮 羊開成長’形成類似蜂巢結構的氧化紹層。 ,極處理時操作電屋會影響孔洞田 小,它們之間的關係是成 U胞的大 大,苴孔、、n ¥Ε . 匕的。換言之,施力口的電壓越 大孔距與細胞也相對的較大。 紹金屬陽極處理所倍用 春中每-種” Μ 的電解液可以包括很多種,其 组η不π W主要化學成份不同,經其處理後的薄膜 、’ /、可以形成孔洞週期為45〜50夺 = 液’例如包含〇.3莫耳或草酸 2 电壓為40〜60伏特、電流密度為1〜2A/dm2、 =:广旳、處理時間4〇〜6〇分鐘,其可以形成孔 /S二一 90〜120奈米。(3)磷酸液,例如含1〇%磷酸, 電^為10〜12伏特、環境溫度23〜25。「、處理時間20〜3〇 分釦,其可以形成孔洞週期為48〇〜52〇奈来。 上述四種私解液之成分組成以及其操作條件僅係本發 明舉出之實施例,並非甩以限定本發明。 本毛月之电光—極體可以包括一 N型半導體片13,形 成於多孔性氧化銘薄膜12之上。N型半導體遙晶曰層13可 以透過化學氣相沉積(CVD )、有機金屬化學氣相沉積 11 200822385 (MOCVD)方式形成。另外,一發光層i5,形成於上述 N型半導體層13之上。上述發光層15為一主動層(_ laye〇’其可以由複數個井層如11 her)與複數個阻障 層(barrier layer )交互堆疊而形成。—p型半導體蟲晶層 16,形成於上述發光層15之上,同樣地,p型半導體層 16可以透過化學氣相沉積(谓)、有機金屬化學氣相二 積(MOCVD)方式形成。上述p型半導體層16或^型半 •導體層13 =材質可以選自氮化鎵(GaN )、氮化銦鎵 (InGaN )、氮化鎵系或氮基(nitride-based )半導體蟲晶 之一。 從日日 第一接觸電極14,形成於上述ζ型半導體層13之表 面,其係用以作為Ρ型接點或Ν型接點。另外,一第二接 觸電極17,形成於上述Ν型半導體層16之上,其係用以 作為Ν型接點或Ρ型接點。上述二接觸電極,其^質可以 選自鈦/鋁(TiAl )、鈦/銘/鈦/金(Ti/A1/Ti/ •鎳/金(Ti/A圖Au)合金之一。 此外,本發明亦提供發光二極體之製造方法,其主要 步驟包括:首先,提供一基板1〇。接著,形成一多孔性光 子晶體結構於基板10之上。上述多孔性光子晶體結構 12係透過純鋁薄膜進行陽極處理製程而吝 化_膜。舉-實施例而言,上述基板心 石(sapphire)、氮化鎵(GaN)、氮化鋁(αιν)、碳化矽(Sic) 或氮化鎵鋁(GeAlN) 〇 然後,形成一 N型半導體層13於多孔性光子晶體結 12 200822385 構12之上。之後,形成發光層〗5於上述n型半導體層j 3 之上。上述發光層15為一主動層(active layer),其可以 由複數個井層(well〗ayer)與複數個阻障層(barrier layer) 父互堆$而形成。接著,形成一 p型半導體層16於發光 層15之上。 然後,形成一第一電極14於N型半導體層13之表面, 其係用來作為N型接觸電極。之後,形成一策二電極17 Φ於P型半導體層16上,其係用來作為P型接觸電極。上 述一電極,其材質可以選自氮化鈦、鈦/鋁(丁iA〇、鈦/鋁 /鈦/i (Ti/Al/Ti/Au)及鈦/紹/鎳/金(Ti/A1/Ni/Au)合金之 利用上述多孔性氧化鋁薄膜之特性,使得上述發光^ 15所形成之發光路徑在N型半導體層13與基板W之界淺 3降低反射率’使得A部分激發之光可以輻射至元件戈 #。結果使得本發明之發光二極體之取光效率 extraction efficien )裎古 有效的改以日。1 ^ 光子晶體結構^ D曰口口貝,增加内部量子發光效率。 本發明的主要優點如下: L利用陽極處理製程於(薛 化的效果,士 基板達到表面相 、Μ 除了此有效提昇内部發光效率之外,也 2利用^ ^衣私’避免因製程加工所造成的損害。 . 先子晶體效應,可以有效的改善 側向漏光問 口猫日日口口貝U及 以減少基板心曰:=身週期性㈣^ /、秘日日層之間的全反射情形,增加光的 13 200822385 取出效率。 太^:月之衣Μ易且適合用於大面積元件的製造。 發明=以Γ實施例說明如上,然其並非用以限“ 錢及其㈣❸m凡熟悉此領域之技藝 :屬=離本專利精神或範圍内,所作之更動或潤部, 庫包所揭示精神下所完成之等效改變或設計,且 應匕3在下述之申請專利範圍内。 【圖式簡單說明】 下詳細之描述結合所附圖示,將可輕易的了解 土述内谷及此項發明之諸多優點,其中: 圖-為根據本發明之基板上形成金屬薄膜之戴面圖。 之m =為根據本發明之基板上形成多孔性光子晶體結構 晶體結構之發光 圖二為根據本發明之具有多孔性光子 _二極體之戴面圖。 【主要元件符號說明】 I呂金屬薄膜11 N型半導體層13 發光層15 弟一"電極17 基板10 多孔性氧化鋁薄膜12 第一電極14 P型半導體層16 14Riding 'Because of the difference in refractive index between the semiconductor layer of some light-emitting diodes (for example: GaN refractive index P2.4) and air (refractive index n about spitting), the critical angle of total reflection is only about 2〇 ~3 degrees, causing the light generated by most of the 10 points of the luminescent layer to be totally reflected inside the component, can not effectively emit light, so even if the internal luminous efficiency is improved, the external light extraction efficiency can not be improved. Therefore, based on the above problems, and in response to the trend of demand, it has become an important development trend to improve the light extraction efficiency of light-emitting diodes from process technology. Therefore, the present invention will provide an emitter structure having a high illuminance rate and a method of fabricating the same, which can improve the light extraction efficiency of the light-emitting diode and reduce the epitaxial layer of the light-emitting diode. Crystal defects improve luminous efficiency. [Digital-Contents] An object of the present invention is to provide a novel light-emitting diode structure having a nano-scale porous photonic crystal structure and a method of manufacturing the same. Another object of the present invention is to provide a light-emitting diode which can improve the epitaxial quality and increase the external light extraction efficiency to effectively improve the light-emitting efficiency of the light-emitting diode. It is still another object of the present invention to provide a light-emitting diode which can simplify the process for the manufacture of large-area components. 200822385 A light-emitting diode comprising: a substrate; a porous photonic crystal structure, formed on the substrate, a first type of stray layer formed on the porous photonic crystal structure; and a light-emitting layer formed on a second type epitaxial layer formed on the light emitting layer, a first contact electrode formed on the first type epitaxial layer; and a second contact electrode Formed on the second type epitaxial layer. A method for manufacturing a light-emitting body, comprising: firstly, providing a substrate; then, forming a porous photonic crystal structure on the substrate; forming a first type of epitaxial layer on the porous photonic crystal structure After that, a light-emitting layer is formed on the first type epitaxial layer; then, a second type epitaxial layer is formed on the light-emitting layer; then, a first contact electrode is formed on the first-type amorphous crystal Above the layer; thereafter, forming a second contact current = on the second type epitaxial layer. The above porous photonic crystal structure includes a porous alumina film formed by an anode treatment process using a pure aluminum film. [Embodiment] Some embodiments of the present invention will be described in detail below. However, the present invention is broadly applicable to other embodiments, and the scope of the present invention is not limited to the following embodiments, which are described below. Prevail. Furthermore, in order to provide a clearer description and a more comprehensible understanding of the present invention, the Fig. 2 part is not drawn according to its relative dimensions, and the irrelevant details are not completely drawn for the sake of simplicity of illustration. 200822385. The illustrations are only intended to illustrate preferred embodiments of the invention and are not intended to limit the invention. Generally, the method of reducing the lattice defects of the epitaxial layer is carried out by directing the U substrate directly into the wire (4) to form a micron-sized concave-convex structure. The invention provides a two-dimensional photonic crystal structure having a (periodic) nano-scale hole on the surface of a substrate (for example, a sapphire substrate). The photonic crystal structure can not only effectively improve the quality of the crystallites, but also increase the internal quantum light emission. Efficiency, for the total reflection between the substrate and the insect layer, and the lateral light leakage along the interface, can also be controlled and reduced, which can effectively improve the external light extraction efficiency. Furthermore, since the photonic crystal effect can also effectively control the wavelength of light, a light source of a narrower bandwidth is emitted. "In the embodiment, by adjusting the material of the light-emitting layer such that the light is in the range of the blue light, the light-excited light generated by the crystal structure of the Lu photonic crystal is oxidized by the porous method of the present invention to increase the light emission of the light-emitting diode. The light-emitting diode structure according to the present invention is characterized by: a substrate 1 〇, a porous light, a sub-crystal structure 12, and a first embodiment. A type of epitaxial layer 13, a light-emitting layer 15, a second type of epitaxial layer 16, a first contact electrode 14 and a second contact electrode 17. In one embodiment, the material of the substrate 1G may be sapphire. Gallium nitride (GaN), nitriding (A1N), carbon sic or arsenic aluminum (GaA1N). The substrate 10 is subjected to a roughening process to roughen the surface of the substrate 1 to form a roughness. In one embodiment, the surface roughening process firstly forms a metal film on the surface of the substrate 1 , for example, an aluminum metal film U. Please refer to FIG. 1 . For example, the above 9 200822385 _ _ film Η Can be steamed, simmered or hot dip The form of the ore is formed. However, it is reused, and the polar treatment technique is used in the substrate. U forms a nano-scale porous oxidation to the genus; the film 12' is, for example, a porous oxide film 12, please refer to Figure 2, where the dotted line is Where the hole is formed. Example: s 'The anode treatment of the above pure aluminum film is in the oxalic acid (c2H2〇4) solution of 0.2~0.5' 耳度(M), plus 2〇~级伏特屯压的环Under the sibling process, as the time of the anode treatment changes, the thickness of the f-porous oxidized (four) film gradually increases. For example, the oxide film/same diameter is about 3G~8G nanometer, and the distance between the hole and the hole (arrangement) Zhou Yueyue 08 1. = 4G~52G nanometer, the density of the hole is about Γ 孔 hole per square centimeter. For example, the thickness of the oxidized film is 0.05~100 έ as the case of 'anodization metal' After the film is: 蝉, r Γ "11111 奵 tUbe" structure. This type of structure is formed; along with, when energized, some parts of the surface of the aluminum anode began to dissolve, and the amount of aluminum dissolved increased. The surface of the anode begins to appear concave, : flat roughness, time continues to increase The dissolution rate is caused by unevenness; = the faster part is gradually sagged' while the dissolved _ sub-segment is gradually opened ^ = emulsified deposited on the surface 'but there is still pores for the sound to dissolve 2:: Continue to enter, for a while After that, the stacked temples form the wall 2: the main component contains water oxidation (4) colloidal hydroxide, the smaller the quantity, the closer it is to the same one; the sputum is the area where the deposition is lightly dissolved, and the longer the deposition, the more When using an acidic solution for anodizing, the acidic electrolyte will decompose the surface of the town of 200822385 and begin to grow into small pores, while I, the same hemp: the surface of the pure aluminum metal is decomposed into layers and metal _, when the hole is shaped ::= barrier layer makes the oxidation rate begin to be handed, open r by * ', when knowing, then it will grow with certain claws to form a oxidized layer similar to the honeycomb structure. The operation of the electric house will affect the hole field small, and the relationship between them is the size of the U cell, the pupil, and n ¥Ε. In other words, the larger the voltage of the force application port, the larger the hole pitch and the larger the cell. The electrolyte used in the anodic treatment of the metal can be used in a variety of ways. The electrolytes of the group η are not π W. The main chemical components are different. After treatment, the film can form a hole period of 45~. 50 克 = liquid 'for example, containing 3. 3 mol or oxalic acid 2 voltage is 40~60 volts, current density is 1~2A/dm2, =: 旳, processing time 4 〇~6 〇 minutes, which can form pores / S 2:90~120 nm. (3) Phosphoric acid, for example, containing 1% phosphoric acid, electric 10 10 12 volts, ambient temperature 23 to 25. ", processing time 20~3 〇, which can form The period of the hole is 48 〇 to 52 〇. The composition of the above four kinds of private solution and the operating conditions thereof are merely examples of the present invention, and are not intended to limit the present invention. The electro-optical body of the month can be An N-type semiconductor wafer 13 is formed on the porous oxide film 12. The N-type semiconductor germanium layer 13 can be formed by chemical vapor deposition (CVD) or organometallic chemical vapor deposition 11 200822385 (MOCVD). In addition, an illuminating layer i5 is formed on the N-type semiconductor layer 13 The luminescent layer 15 is formed by an active layer (which may be composed of a plurality of well layers such as 11 her) and a plurality of barrier layers. The p-type semiconductor worm layer 16 is formed. On the above-mentioned light-emitting layer 15, similarly, the p-type semiconductor layer 16 can be formed by chemical vapor deposition (or), metal organic chemical vapor deposition (MOCVD). The above-mentioned p-type semiconductor layer 16 or half-type The conductor layer 13 = material may be selected from one of gallium nitride (GaN), indium gallium nitride (InGaN), gallium nitride or nitride-based semiconductor crystallites. From the first contact electrode 14, Formed on the surface of the above-mentioned ζ-type semiconductor layer 13, which is used as a Ρ-type contact or a Ν-type contact. Further, a second contact electrode 17 is formed on the Ν-type semiconductor layer 16, which is used for As a Ν-type contact or a Ρ-type contact, the above two contact electrodes may be selected from titanium/aluminum (TiAl), titanium/inscription/titanium/gold (Ti/A1/Ti/ • nickel/gold (Ti/) One of the alloys of Fig. Au). In addition, the present invention also provides a method for manufacturing a light emitting diode, the main steps of which include: first, providing Substrate 1 . Next, a porous photonic crystal structure is formed on the substrate 10. The porous photonic crystal structure 12 is subjected to an anodizing process through a pure aluminum film to deuterate the film. In the embodiment, the above Substrate sapphire, gallium nitride (GaN), aluminum nitride (αιν), tantalum carbide (Sic) or gallium aluminum nitride (GeAlN) 〇 then form an N-type semiconductor layer 13 in the porous photonic crystal junction 12 200822385 Above the structure 12. Thereafter, a light-emitting layer 5 is formed over the n-type semiconductor layer j 3 described above. The luminescent layer 15 is an active layer, which can be formed by a plurality of well layers (well ayer) and a plurality of barrier layer parent stacks. Next, a p-type semiconductor layer 16 is formed over the light-emitting layer 15. Then, a first electrode 14 is formed on the surface of the N-type semiconductor layer 13, which is used as an N-type contact electrode. Thereafter, a second electrode 17 Φ is formed on the P-type semiconductor layer 16, which is used as a P-type contact electrode. The above electrode may be made of titanium nitride, titanium/aluminum (butadiene, titanium/aluminum/titanium/i (Ti/Al/Ti/Au), and titanium/sau/nickel/gold (Ti/A1/). The Ni/Au) alloy utilizes the characteristics of the above porous alumina film, so that the light-emitting path formed by the above-mentioned light-emitting layer 15 is shallower at the boundary between the N-type semiconductor layer 13 and the substrate W, and the reflectance is reduced, so that the light excited by the A portion can be Radiation to the component Ge #. The result is that the light extraction efficiency of the light-emitting diode of the present invention is effectively efficient. 1 ^ Photonic crystal structure ^ D曰 口 口, increasing the internal quantum luminous efficiency. The main advantages of the present invention are as follows: L utilizes an anodizing process (the effect of the singularization, the surface of the substrate reaches the surface phase, Μ in addition to effectively improving the internal luminescence efficiency, and also avoids the use of the process) The damage of the first son crystal effect can effectively improve the lateral leakage of the mouth of the cat day and mouth to reduce the heart rate of the substrate: = body periodicity (four) ^ /, the total reflection between the Japanese and Japanese layers , Increase the efficiency of light 13 200822385. Too ^: The clothing of the moon is easy and suitable for the manufacture of large-area components. Invention = The description of the example is as above, but it is not limited to "money and its (four) ❸m where familiar with this Art of the field: genus = within the spirit or scope of this patent, the equivalent of the change or design done by the Department, the scope of the package disclosed in the spirit of the package, and should be within the scope of the following patent application. Brief Description of the Drawings The following detailed description, in conjunction with the accompanying drawings, will readily provide an understanding of the various aspects of the invention and the advantages of the invention, wherein: Figure is a front view of a metal film formed on a substrate in accordance with the present invention. m = The illuminating diagram of the crystal structure of the porous photonic crystal structure formed on the substrate according to the present invention is a wearing diagram of the porous photon-diode according to the present invention. [Main Symbol Description] I Lu Metal Film 11 N-Type Semiconductor Layer 13 Light Emitting Layer 15 Younger " Electrode 17 Substrate 10 Porous Alumina Film 12 First Electrode 14 P-Type Semiconductor Layer 16 14