200821664 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種液晶顯不器元件及其黎』泛力、去 特別有關於一種整合反射式液晶顯示器及自發光元件的日 示器元件及其製造方法。 【先前技術】 液晶顯示器(liquid crystal display,簡稱LCD)具有’夕 的優點,例如體積小、重量輕、低電力消耗等等。因此 LCD已經廣泛地被應用於手提式電腦、行動電話等+子產200821664 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a liquid crystal display device and a solar display device thereof, and particularly to an integrated reflective liquid crystal display and a self-luminous component And its manufacturing method. [Prior Art] A liquid crystal display (LCD) has advantages such as small size, light weight, low power consumption, and the like. Therefore, LCD has been widely used in portable computers, mobile phones, etc.
品。亦即’液晶顯示器技術正朝向輕、薄、且I 匆於攜帶的 領域。傳統半反穿式(trans-flective LCD)的液@ — 曰,、、、貝不器其用 的影響而變差,此現象稱淡化(washout)效應。繁於 元件的對比度會受到環境光亮度的影響,業界亟霉二 任何環境光條件底下都能有良好對比度的自發先_ 置。 ' 美國第US 2〇〇4/0164292號早期公開專利申靖汽 0949-A21780TWF(N2);P51950084TW;wayne 理即是利用日光下以反射式液晶操作,室内則以穿、秀 晶操作之原理,但傳統半穿半反式液晶顯示器之開=式液 低(例如50%),且具有背光模組重量以及體積之考息 隨著自發光元件技術興起,例如有機發光顯$ (organic light emitting device,簡稱 OLED),使得顯、、凡件 的能量使用效率得以提高,並使得元件可以更輕薄。、元件 發光元件的對比度在周圍光亮度較強時,會受到而’ 影響而變差,此現象稱淡化(washout)教龐。驗w . I先 聲先 脅在 中鵪 200821664 路種結合自發光元件的反射式液晶顯示器元件,利用有 機發光7L件做為反射式液晶顯示器的背光源,改善反射式 液曰日頌不器在較暗的環境光源下的亮度及對比。第1圖係 ’、、、頁示4知技術結合自發光元件的反射式液晶顯示器元件的 剖面不意圖。請參閱第1圖,一反射電極22、一有機發光 層24、一透明電極26依序形成於一基底忉上。反射電極 a 22、有機發光層24、透明電極26構成有機發光元件20做 φ 為反射式液晶顯示器的背光源。一保護層28設置於透明電 極26上。 一液晶顯示器30包括一第一偏光板31設置於一第二 基板32外側。一晝素電極33設置於第二基板32上。一第 二基板36對向於第二基板32。第二偏光板37設置於第三 基板36的外侧。共同電極35設置於第三基板36上。一液 晶層34夾置於第二基板32與第三基板36之間。於穿透模 式時’背光模組所發出的光61穿透液晶顯示器30而顯像。 ⑩ 而於反射模式時,環境光62可穿透液晶顯示器30,被反 射電極22反射63再經液晶顯示器30而顯像。 美國專利早期公開第US· Pub. No. 20〇2/〇196387與US· Pub· No· 2003/0201960號揭露一種反射式液晶在自發光元 件上。然而’在周圍環境光較弱時,自發光元件結構發出 的光需經過液晶結構,且必需結合偏光片與彩色濾光片, 致使自發光的光性質受到改變。另一方面,在周圍環境光 較亮時,雖然外界光可利用自發光元件的反射電極到達液 晶元件,然而仍會造成光的吸收,並且,反射式液晶的亮 0949-A21780TWF(N2);P51950084TW;wayne 6 200821664 態與暗態對外界光的吸收程度不同,所以對比度會有明顯 改變。是故,外界光被自發光元件吸收的問題會大幅影響 影像顯示的表現。 【發明内容】 有鑑於此,本發明係提供一種結合自發光元件與反射 式顯示器元件之堆疊結構,可避免自發光元件在周圍光亮 φ 度較強時,出現淡化(washout)效應,並且,可以改善反射 式液晶在周圍光亮度較弱時對比度不高的缺點。 本發明係結合反射式液晶元件與自發光元件,使成為 一個在任何環境光條件底下都能呈現例如100: 1以上之高 .對比度的顯示裝置。 本發明係提供一種反射式液晶元件與自發光元件之製 造方法,其液晶製程與自發光元件製程分開實施,可避免 製作反射式液晶顯示器之高溫製程使自發光元件產生劣 ⑩ 化,以有效提升整個元件的良率。 本發明提供一種自發光反射式液晶顯示元件,包括一 液晶顯示元件,至少包括一第一基板,及一液晶層位於第 一基板上,其中液晶層係為一液晶包覆層所包覆。一自發 光顯不元件從液晶顯不元件之液晶層侧和液晶顯不兀件結 合,以構成自發光反射式液晶顯示元件。 本發明提供一種自發光反射式液晶顯示元件,包括一 横向電場液晶顯示元件,至少包括一第一基板。一液晶層 位於第一基板上,用以控制液晶層之液晶分子的橫向電場 0949-A21780TWF(N2);P51950084TW; wayne 7 200821664 弟電極和橫向電場筮_ + α 覆層所包覆。—自旅:—電極’其中液晶層係為一液晶包 侧和液晶顯示元件^顯不70件從液晶顯示元件之液晶層 件,其中在穿透成自發光反射式液晶顯示元 而由自發光顯亍寸才買向電場液晶顯示元件係關閉, 示元件係_:=;=心^ 光反射通過液晶層顯液晶顯示元件藉由外部環境 本發明提供一種自私# 法,包括开彡出一^反射式液晶顯示元件之製造方 立士 /成—液晶顯示^件和形成-自發光顯干元# =液晶顯示元件之步驟至少包括:二第:Α 板,形成一透明電極於第一美 土 電極上;形成-液晶包覆層t包覆液二7=層於透明 =牛。形成自發光顯示元件之步驟至少包括以 Ί板’·形成—自發光顯示元件於第 ㈣ :和液曰曰喊不兀件後’係將兩者由内側組合, 成有額外的基板。〃中弟基板和第二基板間不形 【實施方式】 以下將以實施例詳細說明做為本發明之表 ^半隨著圖式制之。在圖式或描述中,相^目= 分係使用相同之圖號。在圖式中,實施例 J ^ 可擴大’以簡化或是方便標示。圖式中各元叙部 09^~A21780TWF(N2);P51950084TW;wayne 8 200821664 分別描述說明之,值得注意料,圖巾未料或描述之元 件,可以具有各種熟習此技藝之人士所知的形式,另外, 特定之實補料揭輯發明使狀蚊方式,其並用以 限定本發明。 請參照第2圖,本發明係將一自發光顯示元件2〇2和 -反,式液晶顯*元件2Θ4結合,以構成—自發光反射式 液晶顯示元件,在本發明之—實施例巾,自發光顯示元件 202係為有機電激發光顯*元件(〇聯_响 de·,以下可簡稱〇LED),有機電激發光顯示元件2〇2 :依序包括一陽極206、一發光層208、一陰極21〇和一保 4層212 ’另外液晶顯示元件綱可依序包括一反射電極 214、一液晶層216、一透明電極218和一配向層22〇。 在本發明之-實施例中將上述自發光顯示元件和反射 式液晶顯示元件組合,即可得到如第3A圖所示之自發光 反射式液晶顯示元件200,請參照第3A圖,在此實施例中, 自發光反射式液晶顯示元件2〇〇依序包括一反射電極 214、一液晶層216、一透明電極218、一保護層η]、一 OLED陰極210、一發光層208、一 〇LED陽極2〇6和一配 向層220。在本發明之較佳實施例中,當週遭環境較暗時, 可使用發光模式(emissive mc)de),在發光模式中,自發光 顯示元件202係開啟,亦即發光層2〇8兩側之陽極2〇/和/ 或陰極210係施加電壓而使發光層208發光222,由自發 光顯示元件202顯示晝面。 當週遭環境較亮時,可使用反射模式(reflective 〇949-A21780TWF(N2);P5l950084TW;wayne 200821664 mode),在反射模式中,如第3B圖所示,自發光顯示元件 202係關閉,利用外部壞境光穿過液晶層216 ’經由反 射電極214反射,而控制液晶層216之液晶分子之方向’ 而使使液晶顯示元件2〇4顯示影像,在此,需注意的是, 自發光顯示元件202之各層’亦即陽極206、發光層208、 陰極210、保護層212和/或其它所必需層的厚度必需相當 薄,以減少反射模式下’對外部環境光之吸收而影響元件 200之亮度。 第4圖係顯示根據本發明實施例的自發光反射式液晶 顯示器的製造方法流蘀圖。第5圖係顯示根據第4圖之流 程圖所製作之自發光反射式液晶顯示元件的示意圖。請注 意,本實施例係先將自發光顯示元件,反射式液晶顯示器 元件分開製作,再將雨者組合。首先,請參閱第4圖並搭 配第5圖,首先製作浪晶顯示器元件592,於步驟S402中, 提供一第一基板502,於步驟S404中,形成一透明電極504 φ 於第一基板502上。接著’於步驟S406中,形成一圖案化 之光阻間隙子506於透明電極504上,於步驟S408中,形 成一配向層(未繪示)於透明電極和間隙子506上。後續, 於步驟S410中,形成一液晶層508於配向層上,接著,於 步驟S412中,形成一液晶包覆層510於液晶層508上。 另外,分開製作自發光顯示元件590,首先,於步驟 S460中,提供一第二基板560,接著,於步驟S462中,形 成一有機發光元件562於第一基板450上,包括形成一透 明陰極(未繪示)於第二基板560上,形成一發光層(未繪示) 0949-A21780TWF(N2);P51950084TW;wayne 10 200821664 於透明陰極上,以及形成一透明陽極(未繪示)於發光層 上。於步驟S464中,形成一保護層564於有機發光元件 562 上。 在完成反射式液晶顯示元件592和自發光顯示元件 590後,於步驟S470中,組合液晶顯示元件592和自發光 顯示元件590,後續,於步驟S480中,形成一反射層或吸 收層584於第一基板之底面上。 φ 以下將以實施範例詳細的描述本發明之自發光反射式 液晶顯示器,需注意的是,在此實施範例中,自發光反射 式液晶顯不裔之反射式液晶顯不元件和自發光顯不元件係 分開製作,最後再進行組合,以避免製作反射式液晶顯示 器之高溫製程使自發光元件產生劣化。 第6圖係顯示本發明一實施例自發光反射式液晶顯示 器600之剖面圖,請注意,本實施例之自發光顯示元件602 和液晶顯示元件604皆為主動式,請參照第6圖,首先製 _ 作反射式液晶顯示元件602,但本發明不限於此,亦可以 先製作自發光顯示元件604,亦即兩者係分開製作,如第6 圖所示,提供一第一基板606,其可以為玻璃基板,較佳 為低鹼或是無驗玻璃基板。接著,形成一液晶層608於第 一基板606上,後續,形成一液晶包覆層610包覆液晶層 608,在本實施例中,液晶包覆層610係可為高分子所組 成,以下將配合圖示詳細說明液晶包覆層610之製作方法。 第7A圖和第7B圖係顯示本發明一實施例形成液晶包 覆層610包覆液晶層608之製程,如第7A圖所示,以一 0949-A21780TWF(N2);P51950084TW;wayne 11 200821664 喷墨裝置702滴注液晶704於第一基板606上,其中液晶 704係包括液晶分子708,且添加有單體706(monomer), 較佳者,此單體706係為可照光產生聚合反應之高分子單 體,例如 Norland [http://www.norlandprod.com/]所生產之 NOA-65。在本發明之一實施例中,可使滴注之液晶704對 應於相對應之晝素或是次畫素。接者,如第7B圖所示, 以紫外光照射裝置710對添加單體706(monomer)之液晶 ^ 704照射紫外(UV)光,使高分子單體聚合而析出於液晶層 608液滴表面,而形成液晶包覆層610。 第8A圖和第8B圖係顯示本發明另一實施例形成液晶 包覆層610包覆液晶層608之製程,請參照第8人圖,首 先,以黃光微影製程形成高分子所組成之間隙子 802(polymerwall)於第一基板606上,進行晝素區隔,接 著,毯覆性的塗佈液晶808於第一基板上606,其中液晶 808係包括液晶分子806,且添加有单體g〇4(monomer), _ 較佳者’此單體804亦為Norland所生產之NOA-65。接者, 請參照第8B圖,以紫外光照射裝置81〇對添加單體 804(monomer)之液晶照射紫外(UV)光,使高分子單體聚合 而析出於液晶層608液滴表面,而形成液晶包覆層61〇於 液晶層608上。 另外,在本發明之又另一實施例中,可利用例如pDMs 離型膜(未緣示)與灑有間隙子的基板貼附後注入含有高分 子單體的液晶,之後照UV光使高分子單體聚合後於邊界 析出,再將離型膜去除即形成單基板之液晶元件。 0949-A21780TWF(N2);P51950084TW;wayne 200821664 請再參照第6圖,接著,進 > 制 一一 _,請注意,在本實施例中自^:乍自/錢示元件 Bs _ η κ Μ九顯不凡件604係為有機 元件。首先,提供1二基板612,第二基Product. That is, 'liquid crystal display technology is facing the light, thin, and I rushed to carry. The traditional trans-flective LCD liquid @—曰,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The contrast of the components is affected by the brightness of the ambient light, and the industry has a good initiality of good contrast under any ambient light conditions. 'US US 2〇〇4/0164292 early public patent Shen Jingqi 0949-A21780TWF (N2); P51950084TW; wayne is the use of sunlight to operate with reflective liquid crystal, indoors to wear, crystal operation principle, However, the traditional half-transflective liquid crystal display has a low liquid (for example, 50%), and has the weight of the backlight module and the volume of the test with the rise of self-luminous element technology, such as organic light emitting device. , referred to as OLED), so that the energy efficiency of the display and the parts can be improved, and the components can be made lighter and thinner. The contrast of the component illuminating element is affected by the influence of the surrounding light, and this phenomenon is called washout. Inspection w. I first sounds first in the middle of the 200821664 road type combined with self-illuminating components of the reflective liquid crystal display components, using organic light 7L as a backlight for reflective liquid crystal display, improve the reflective liquid helium in the future Brightness and contrast under dark ambient light sources. Fig. 1 is a cross-sectional view showing a cross-sectional view of a reflective liquid crystal display device in which a self-luminous element is incorporated. Referring to FIG. 1, a reflective electrode 22, an organic light-emitting layer 24, and a transparent electrode 26 are sequentially formed on a substrate. The reflective electrode a 22, the organic light-emitting layer 24, and the transparent electrode 26 constitute the organic light-emitting element 20 so that φ is a backlight of the reflective liquid crystal display. A protective layer 28 is disposed on the transparent electrode 26. A liquid crystal display 30 includes a first polarizing plate 31 disposed outside a second substrate 32. A halogen electrode 33 is disposed on the second substrate 32. A second substrate 36 is opposed to the second substrate 32. The second polarizing plate 37 is disposed outside the third substrate 36. The common electrode 35 is disposed on the third substrate 36. A liquid crystal layer 34 is interposed between the second substrate 32 and the third substrate 36. In the penetrating mode, the light 61 emitted by the backlight module penetrates the liquid crystal display 30 for development. 10 In the reflective mode, the ambient light 62 can penetrate the liquid crystal display 30, be reflected 63 by the reflective electrode 22, and be developed by the liquid crystal display 30. A reflective liquid crystal is disclosed on a self-luminous element, as disclosed in U.S. Patent Publication No. 20, 2, 196, 196, 387 and U.S. Pub. No. 2003/0201960. However, when the ambient light is weak, the light emitted from the structure of the self-luminous element needs to pass through the liquid crystal structure, and it is necessary to combine the polarizer and the color filter, so that the properties of the self-luminous light are changed. On the other hand, when the ambient light is bright, although the external light can reach the liquid crystal element by using the reflective electrode of the self-luminous element, the absorption of light is still caused, and the reflective liquid crystal is bright 0949-A21780TWF(N2); P51950084TW ;wayne 6 200821664 The state and dark state absorb different degrees of external light, so the contrast will change significantly. Therefore, the problem that external light is absorbed by the self-illuminating element greatly affects the performance of the image display. SUMMARY OF THE INVENTION In view of the above, the present invention provides a stacking structure combining a self-luminous element and a reflective display element, which can prevent a self-lighting element from having a washout effect when the surrounding brightness is strong, and Improve the disadvantage that the reflective liquid crystal does not have high contrast when the ambient light is weak. The present invention combines a reflective liquid crystal element and a self-luminous element to provide a display device which exhibits a high contrast ratio of, for example, 100:1 or higher under any ambient light conditions. The invention provides a method for manufacturing a reflective liquid crystal element and a self-luminous element, wherein the liquid crystal process and the self-luminous component process are separately implemented, and the high-temperature process of the reflective liquid crystal display can be avoided to make the self-luminous component inferior to effectively improve The yield of the entire component. The present invention provides a self-luminous reflective liquid crystal display device comprising a liquid crystal display device comprising at least a first substrate, and a liquid crystal layer on the first substrate, wherein the liquid crystal layer is covered by a liquid crystal coating layer. A spontaneous light-emitting element is bonded from the liquid crystal layer side of the liquid crystal display element to the liquid crystal display element to constitute a self-luminous reflective liquid crystal display element. The present invention provides a self-luminous reflective liquid crystal display device comprising a lateral electric field liquid crystal display element comprising at least a first substrate. A liquid crystal layer is disposed on the first substrate for controlling the transverse electric field of the liquid crystal molecules of the liquid crystal layer 0949-A21780TWF(N2); P51950084TW; wayne 7 200821664 and the transverse electric field 筮_ + α coating is coated. - Self-driving: - Electrode 'where the liquid crystal layer is a liquid crystal package side and the liquid crystal display element ^ is not visible from the liquid crystal display element of the liquid crystal display element, wherein the self-luminous reflection type liquid crystal display element is self-illuminated The display device is closed to the electric field liquid crystal display device, and the display device is _:=;=heart^light reflection through the liquid crystal layer to display the liquid crystal display element. The external environment provides a selfish method, including opening a ^ The manufacturing method of the reflective liquid crystal display element is a method of forming a liquid crystal display element and forming a self-luminous display element. The step of the liquid crystal display element includes at least: a second plate: a transparent electrode is formed on the first earth electrode. Formation - liquid crystal coating layer t coating liquid 2 7 = layer in transparent = cattle. The step of forming the self-luminous display element includes at least forming the self-luminous display element in the (fourth) and liquid-repellent display elements, and combining the two from the inner side to form an additional substrate. The present invention is not described in the following description. In the schema or description, the same number is used for the phase = division. In the drawings, the embodiment J ^ can be expanded to simplify or facilitate labeling. In the drawings, each element is described in the form of 09^~A21780TWF(N2); P51950084TW; wayne 8 200821664, respectively. It should be noted that the elements that are not described or described in the drawings may have various forms known to those skilled in the art. In addition, the specific solid feed discloses the invention of the mosquito-like method, which is used to define the present invention. Referring to FIG. 2, the present invention combines a self-luminous display element 2〇2 and a reverse-type liquid crystal display element 2Θ4 to form a self-luminous reflective liquid crystal display element, in the embodiment of the present invention, The self-luminous display element 202 is an organic electroluminescence display device (hereinafter referred to as 〇LED), and the organic electroluminescence display element 2〇2 includes an anode 206 and a light-emitting layer 208 in sequence. A cathode 21 〇 and a 4 layer 212 ′′ further liquid crystal display elements can sequentially include a reflective electrode 214, a liquid crystal layer 216, a transparent electrode 218, and an alignment layer 22 〇. In the embodiment of the present invention, the self-luminous display element and the reflective liquid crystal display element are combined to obtain the self-luminous reflective liquid crystal display element 200 as shown in FIG. 3A. Referring to FIG. 3A, the implementation is performed here. In an example, the self-luminous reflective liquid crystal display element 2 includes a reflective electrode 214, a liquid crystal layer 216, a transparent electrode 218, a protective layer η], an OLED cathode 210, a light emitting layer 208, and an LED. An anode 2〇6 and an alignment layer 220. In a preferred embodiment of the present invention, when the surrounding environment is dark, an illumination mode (emissive mc) can be used. In the illumination mode, the self-luminous display element 202 is turned on, that is, both sides of the luminescent layer 2 〇 8 The anode 2 〇 / and / or the cathode 210 is applied with a voltage to cause the luminescent layer 208 to emit light 222 , and the self-luminous display element 202 displays the surface. When the surrounding environment is bright, reflective mode (reflective 〇949-A21780TWF(N2); P5l950084TW; wayne 200821664 mode) can be used. In the reflective mode, as shown in FIG. 3B, the self-luminous display element 202 is turned off, using the external The ambient light passes through the liquid crystal layer 216 'reflected by the reflective electrode 214, and controls the direction of the liquid crystal molecules of the liquid crystal layer 216' to cause the liquid crystal display element 2 to display an image. Here, it is noted that the self-luminous display element The thickness of each of the layers 202, that is, the anode 206, the luminescent layer 208, the cathode 210, the protective layer 212, and/or other necessary layers must be relatively thin to reduce the absorption of external ambient light in the reflective mode to affect the brightness of the element 200. . Fig. 4 is a flow chart showing a method of manufacturing a self-luminous reflective liquid crystal display according to an embodiment of the present invention. Fig. 5 is a view showing a self-luminous reflective liquid crystal display element fabricated in accordance with the flow chart of Fig. 4. Please note that in this embodiment, the self-luminous display elements and the reflective liquid crystal display elements are separately fabricated, and the rainers are combined. First, referring to FIG. 4 and FIG. 5, the first wave substrate 592 is first formed. In step S402, a first substrate 502 is provided. In step S404, a transparent electrode 504 φ is formed on the first substrate 502. . Then, in step S406, a patterned photoresist spacer 506 is formed on the transparent electrode 504. In step S408, an alignment layer (not shown) is formed on the transparent electrode and the spacer 506. Subsequently, in step S410, a liquid crystal layer 508 is formed on the alignment layer, and then, in step S412, a liquid crystal cladding layer 510 is formed on the liquid crystal layer 508. In addition, the self-luminous display element 590 is separately fabricated. First, in step S460, a second substrate 560 is provided. Then, in step S462, an organic light-emitting element 562 is formed on the first substrate 450, including forming a transparent cathode ( Not shown in the second substrate 560, forming a light-emitting layer (not shown) 0949-A21780TWF (N2); P51950084TW; wayne 10 200821664 on the transparent cathode, and forming a transparent anode (not shown) in the light-emitting layer on. In step S464, a protective layer 564 is formed on the organic light emitting element 562. After the reflective liquid crystal display element 592 and the self-luminous display element 590 are completed, the liquid crystal display element 592 and the self-luminous display element 590 are combined in step S470, and subsequently, in step S480, a reflective layer or an absorbing layer 584 is formed. On the bottom surface of a substrate. φ Hereinafter, the self-luminous reflective liquid crystal display of the present invention will be described in detail with reference to the embodiments. It should be noted that in this embodiment, the reflective liquid crystal display elements of self-luminous reflective liquid crystal display and self-luminescence are not displayed. The components are fabricated separately and finally combined to avoid degradation of the self-illuminating component by the high temperature process of fabricating the reflective liquid crystal display. 6 is a cross-sectional view showing a self-luminous reflective liquid crystal display 600 according to an embodiment of the present invention. Please note that the self-luminous display element 602 and the liquid crystal display element 604 of the present embodiment are both active, please refer to FIG. The reflective liquid crystal display element 602 is not limited thereto, and the self-luminous display element 604 may be fabricated first, that is, the two are separately fabricated. As shown in FIG. 6, a first substrate 606 is provided. It may be a glass substrate, preferably a low alkali or non-glass substrate. Then, a liquid crystal layer 608 is formed on the first substrate 606, and a liquid crystal cladding layer 610 is formed to cover the liquid crystal layer 608. In this embodiment, the liquid crystal cladding layer 610 can be composed of a polymer. A method of fabricating the liquid crystal cladding layer 610 will be described in detail with reference to the drawings. 7A and 7B are diagrams showing a process for forming a liquid crystal coating layer 610 covering a liquid crystal layer 608 according to an embodiment of the present invention, as shown in FIG. 7A, with a 0949-A21780TWF (N2); P51950084TW; wayne 11 200821664 spray. The ink device 702 drops the liquid crystal 704 onto the first substrate 606, wherein the liquid crystal 704 includes liquid crystal molecules 708 and is added with a monomer 706. Preferably, the monomer 706 is photopolymerizable to produce a high polymerization reaction. Molecular monomers such as NOA-65 produced by Norland [http://www.norlandprod.com/]. In one embodiment of the invention, the instilled liquid crystal 704 can be made to correspond to a corresponding element or sub-pixel. As shown in FIG. 7B, the ultraviolet light (UV) light is applied to the liquid crystal 704 to which the monomer 706 is added by the ultraviolet light irradiation device 710, and the polymer monomer is polymerized to be deposited on the surface of the liquid crystal layer 608. The liquid crystal cladding layer 610 is formed. 8A and 8B are diagrams showing a process for forming a liquid crystal coating layer 610 to cover the liquid crystal layer 608 according to another embodiment of the present invention. Referring to the figure of the eighth person, first, a spacer formed by forming a polymer by a yellow light lithography process. 802 (polymer wall) on the first substrate 606, the pixel region is separated, and then the blanket coating liquid crystal 808 on the first substrate 606, wherein the liquid crystal 808 includes liquid crystal molecules 806, and a monomer 4 (monomer), _ preferred 'This monomer 804 is also NOA-65 produced by Norland. Referring to FIG. 8B, the liquid crystal to which the monomer 804 (monomer) is added is irradiated with ultraviolet (UV) light by the ultraviolet light irradiation device 81, and the polymer monomer is polymerized to be deposited on the surface of the liquid crystal layer 608. A liquid crystal cladding layer 61 is formed on the liquid crystal layer 608. In addition, in still another embodiment of the present invention, a liquid crystal containing a polymer monomer may be injected by, for example, attaching a pDMs release film (not shown) to a substrate sprinkled with a spacer, and then irradiating with UV light. After the molecular monomer is polymerized, it is precipitated at the boundary, and the release film is removed to form a liquid crystal element of a single substrate. 0949-A21780TWF(N2); P51950084TW; wayne 200821664 Please refer to FIG. 6 again, and then, _ _ _ _, please note that in this embodiment from ^: 乍 from / money display element Bs _ η κ Μ Nine obvious parts 604 are organic components. First, a two-substrate 612, a second base is provided.
Hr 板,錄“讀或是無驗玻璃基 614和儲存電容下電極616形成於第 mi 6U。例域㈣或以切之陳介電層618 如多晶㈣是單晶奴半導體層== 二基板612° 一例 之閘極介電層618上,半導體声〔於閘極614上方 一源極奶和1極,“分別形成有 a Γ和源極622/汲極624位 之儲存電容上電極626係形成於儲存電容下電極 =上方,閑極介電層618上,其中儲存電容伽^ 儲二::二極616和兩者間之嶋電層618係構成-子电备·rage capacitor),而上述閘極614 Γ曰:極介電層618、源極622和汲極624係構成一二 包日日體(thin film transistor,以下可簡稱TFT)。 、 ^域化歡保護層628係、覆蓋源極奶、没極624 储存,容上電極626’另外,-例如銦錫氧化物㈣職 二T:,:下之透明電㈣ : ,/、#透明電極63G係分別藉由位於保護層62δ 3 Τ電性連接TFT之汲極624和/或儲存電 谷之储存電容上電極626,在本㈣之—實_中,部 之透明電極630係可供作有機電激發光顯示元件6〇 : 極。 < 陽 0949-A21780TWF(N2);P51950084TW -wayne 13 200821664 後續,形成-發光層636於部份陽極㈣上,在本發 明之-實施例中,發光層636可包括電洞注入層、電洞傳 輸層、有機發光材料層、電子傳輪層和電子注人層(未給 示),接著,形成一陰極㈣於發光層636上,請注音若^ 必要的話,陰極638和發光層636之侧壁係有隔絕層_ 隔絕。其後’形成例如氮化石夕之保護層642於部份陰極㈣ 上,接著,形成-橫向電場第一電極644和一橫向電場第 #二電極646於保護層642上,為增加元件之光的穿透率, 橫向電場第-電極644和橫向電場第二電極祕較佳為透 明材料例如銦錫氧化物(IT0)或是㈣氧化物(mdium _ oxide,以下可_IZ〇)所組成,或是其亦可以由厚度很薄 之金屬所組成(例如厚度可介於10〜3〇nm,以減少影響元件 之光穿透)。 9 在此需注意的是,橫向電場第〜電極644和橫向電場 第二電極646係不穿過發光層636電性連接上述TFr之例 • 如汲極624之電極(此部份為繪示),而由此TFT藉由橫向 電場第一電極644和橫向電場第二電極646控制液晶層之 液晶分子,但本發明不限於此,圖示中之TFT係可用於控 制有機電激發光顯示元件604,而横向電場第一電極64"4 和橫向電場第二電極646係電性連接另一 TFT(未繪示), 而控制液晶層之液晶分子。 最後’將分別製作好之自發光顯示元件604和液晶顯 示元件602由其内侧面接合,並形成一反射電極692於第 一基板606之外侧面,而形成本發明一實施例之自發光反 0949-A21780TWF(N2);P51950084TW;wayne 14 200821664 射式液晶顯示元件600 ’其中當週遭環境較暗時,可使用 發光模式(emissive mode),其中自發光顯示元件604係開 啟,亦即發光層636兩側之陽極630和/或陰極638係施加 電壓而使發光層636發光,使自發光顯示元件604顯示晝 面’而當週遭環境較亮時,可使用反射模式(refjective mode) ’使自發光顯示元件604關閉,利用外部環境光690 穿過液晶層608,·經由反射電極692反射,而藉由控制液 φ 晶層608之液晶分子之方向,使自發光反射式液晶顯示元 件600之液晶顯示元件602顯示影像。 第9A圖係顯示本發明另一實施例自發光反射式液晶 顯示器900之剖面圖,相對於上述實施例,本實施例之自 發光顯示元件904和液晶顯示元件902皆為被動式,請參 照第9A圖,首先製作液晶顯示元件9〇2,但本發明不限於 此’亦可以先製作自發光顯示元件904,亦即兩者係分開 製作,如第9A圖所示,提供一第一基板906,第一基板 ⑩ 906可以為玻璃基板,其較佳為低鹼或是無鹼玻璃基板, 接著,形成一液晶驅動第一電極908於第一基板906上, 為減少影響元件之光的穿透率,液晶驅動第一電極90s較 佳為透明材料例如ITO或是IZO所組成,或是其亦可以由 厚度很薄之金屬所組成(例如厚度可介於1〇〜3〇nm)。 後續,形成一液晶層910於液晶驅動第一電極9〇8 上,並形成一液晶包覆層912包覆液晶層910,在本發明 之較佳實施例中,液晶包覆層912係為高分子單體聚合而 析出於液晶層910表面,其製作方法係類似於上述實施 0949-A21780TWF(N2);P51950084TW;wayne 200821664Hr plate, recorded "read or no glass base 614 and storage capacitor lower electrode 616 formed in the mi 6U. Example domain (four) or cut dielectric layer 618 such as polycrystalline (four) is a single crystal slave semiconductor layer == two On the gate dielectric layer 618 of the substrate 612°, the semiconductor sound [one source of milk and one pole above the gate 614," a storage capacitor upper electrode 626 formed with a Γ and a source 622 / a drain 624, respectively. Formed on the lower side of the storage capacitor lower electrode = on the idle dielectric layer 618, wherein the storage capacitor galvanic storage:: the two poles 616 and the tantalum layer 618 between the two constitute a -rage capacitor) The gate 614 Γ曰: the dielectric layer 618, the source 622 and the drain 624 form a two-film thin film transistor (hereinafter referred to as TFT). , ^ domain Huanhua protective layer 628 system, covering source milk, no pole 624 storage, capping electrode 626 'in addition, - for example, indium tin oxide (four) job two T:,: under the transparent electricity (four): , /, # The transparent electrode 63G is electrically connected to the drain 624 of the TFT and/or the storage capacitor upper electrode 626 of the storage valley, respectively, in the protective layer 62δ 3 ,, and the transparent electrode 630 in the (4)- It is used as an organic electroluminescent display element 6〇: pole. < 阳 0949-A21780TWF(N2); P51950084TW -wayne 13 200821664 Subsequently, the luminescent layer 636 is formed on a portion of the anode (four). In the embodiment of the invention, the luminescent layer 636 may include a hole injection layer, a hole a transport layer, an organic light-emitting material layer, an electron transport layer, and an electron-injecting layer (not shown), and then a cathode (four) is formed on the light-emitting layer 636. If necessary, the cathode 638 and the side of the light-emitting layer 636 are necessary. The wall system has an insulation layer _ isolated. Thereafter, a protective layer 642 such as a nitride is formed on a portion of the cathode (four), and then a transverse electric field first electrode 644 and a transverse electric field second electrode 646 are formed on the protective layer 642 to increase the light of the element. Transmittance, transverse electric field first electrode 644 and transverse electric field second electrode secret are preferably composed of a transparent material such as indium tin oxide (IT0) or (iv) oxide (mdium _ oxide, hereinafter _IZ 〇), or It can also be composed of a thin metal (for example, the thickness can be between 10 and 3 〇 nm to reduce the light penetration of the influencing element). 9 It should be noted that the transverse electric field first electrode 644 and the transverse electric field second electrode 646 are not electrically connected to the TFr through the light emitting layer 636. • The electrode of the bungee 624 (this part is shown) Therefore, the TFT controls the liquid crystal molecules of the liquid crystal layer by the lateral electric field first electrode 644 and the lateral electric field second electrode 646. However, the present invention is not limited thereto, and the TFT in the drawing can be used to control the organic electroluminescent display element 604. The transverse electric field first electrode 64"4 and the transverse electric field second electrode 646 are electrically connected to another TFT (not shown) to control the liquid crystal molecules of the liquid crystal layer. Finally, the separately fabricated self-luminous display element 604 and the liquid crystal display element 602 are bonded from the inner side thereof, and a reflective electrode 692 is formed on the outer side of the first substrate 606 to form a self-luminous anti-zero 949 according to an embodiment of the present invention. -A21780TWF(N2); P51950084TW; wayne 14 200821664 The liquid crystal display element 600' wherein the ambient light environment is dark, an emissive mode can be used, wherein the self-luminous display element 604 is turned on, that is, the light emitting layer 636 The anode 630 and/or the cathode 638 on the side are applied with a voltage to cause the light-emitting layer 636 to emit light, so that the self-luminous display element 604 displays the facet', and when the surrounding environment is bright, the reflective mode can be used to make the self-luminous display The element 604 is turned off, the external ambient light 690 passes through the liquid crystal layer 608, is reflected by the reflective electrode 692, and the liquid crystal display element of the self-luminous reflective liquid crystal display element 600 is controlled by controlling the direction of the liquid crystal molecules of the liquid crystal layer 608. 602 displays the image. FIG. 9A is a cross-sectional view showing a self-luminous reflective liquid crystal display 900 according to another embodiment of the present invention. The self-luminous display element 904 and the liquid crystal display element 902 of the present embodiment are passive with respect to the above embodiment, please refer to section 9A. First, the liquid crystal display element 9〇2 is fabricated, but the present invention is not limited thereto. Alternatively, the self-luminous display element 904 may be fabricated first, that is, the two are separately fabricated. As shown in FIG. 9A, a first substrate 906 is provided. The first substrate 10 906 may be a glass substrate, which is preferably a low-alkali or alkali-free glass substrate, and then a liquid crystal is driven to drive the first electrode 908 on the first substrate 906 to reduce the transmittance of the light that affects the element. The liquid crystal driving first electrode 90s is preferably composed of a transparent material such as ITO or IZO, or it may be composed of a metal having a small thickness (for example, a thickness of 1 〇 to 3 〇 nm). Subsequently, a liquid crystal layer 910 is formed on the liquid crystal driving first electrode 9〇8, and a liquid crystal cladding layer 912 is formed to cover the liquid crystal layer 910. In the preferred embodiment of the present invention, the liquid crystal cladding layer 912 is high. The molecular monomer is polymerized to precipitate on the surface of the liquid crystal layer 910, and the manufacturing method thereof is similar to the above-mentioned implementation 0949-A21780TWF (N2); P51950084TW; wayne 200821664
例,在此不詳細描述D 接著,製作自發光顯示元件904,提供一第二基板 914,第二基板914可以為玻璃基板,其較佳為低鹼或是無 鹼玻璃基板,後續,形成陽極916於第二基板914上,其 後,形成一發光層918於陽極916上,在本發明之一實施 例中,發光層918可包括電洞注入層、電洞傳輸層、有機 發光材料層、電子傳輸層和電子注入層(未繪示),接著, 形成一陰極920於發光層918上,為減少影響元件之光 穿透率’陰極920 *陽極916較佳為透明材料例如汀 是=顺成,或是其亦可以由厚度很薄之金 成= 如厚度可介於H)〜3Gnm),接著,形成例如氮 = 922包覆陰極920、發光層918和陽極916。 呆4層 後續,形成一液晶驅動第_ 或第二基板914上,極924於保護層奶和/ 率,液晶驅動第二電極924較=影響70件之光的穿透 __,或是斗例如IT〇或是 請注意,在此實施例中,液=艮缚之金屬所組成。 第二電極924係為互相垂直之♦迅和08和液晶驅動 (matrix),藉由提供電壓於液^ 形成晝素矩陣 動第二電極924控制查音帝六 弟私極908和液晶驅 排列狀態產生旋轉,:二位於晝素中的液晶分子 像。 /我素之透光度,進而顯示影 最後,將分別製作好之自& 1先顯示元件904和液晶顯 0949-, A21780TWF (N 2) ; P51950084TW ;' wayne 200821664 示元件902由其内侧面接合,並形成一反射電極992於第 一基板906之外侧面,而形成本發明一實施例之自發光反 射式液晶顯示元件900,其中當週遭環境較暗時,可使用 發光模式(emissive mode),自發光顯示元件9〇4係開啟, 亦即餐光層兩側之陽極916和/或陰極920係施加電壓而使 發光層918發:光,使自發光顯示元件顯示904晝面,而當 週k環i兄較梵時’可使用反射模式(re£jective m〇c|e),使自 φ 發光顯不元件904係關閉,利用外部環境光穿過液晶層 910,經由反射電極992反射,而控制液晶層91〇之液晶分 子之方向,而使自發光反射式液晶顯示元件9〇〇之液晶顯 示元件902顯示影像。 請注意,本實施例亦可變化,請參照第9B圖,液晶驅 動第二電極924亦可是在製作液晶顯示元件902時形成於 液晶包覆層上912。 第10A圖係顯示本發明又另一實施例自發光反射式液 馨 曰曰頒示器1 〇⑽之剖面圖’相對於上述實施例,本實施例之 自發光顯示元件1004係為被動式,而液晶顯示元件1〇〇2 係為主動式,請參照第10A圖,首先製作液晶顯示元件 1002,但本發明不限於此,亦可以先製作自發光顯示元件 1004 ’亦即兩者係分開製作’如第1 〇a圖所示,提供一第 一基板1012,第一基板1012可以為玻璃基板,其較佳為 低鹼或是無鹼玻璃基板。 第一基板1012上可以形成有例如Mo之閘極1〇14和 儲存電容下電極1016。一例如氮化石夕或是氧化石夕之閘極介 〇949-A21780TWF(N2);P51950084TW;wayne 17 200821664 電層1018覆蓋閘極ίο〗#、儲存恭& 板㈣’-例如多㈣或是單之下電=6和第-基 於閑極1G14上方之閘極介電層 脰層_形成 上之兩側分別形成有一源極收二上’半導體層腦 源極1022/没極刪位於同一 °,極1024,另外和 係形成於儲存電容下電極1〇16上方子屯谷上電極1026 上’其中儲存電容上電極1026、儲存電層1018For example, D is not described in detail herein. Next, a self-luminous display element 904 is formed to provide a second substrate 914. The second substrate 914 may be a glass substrate, preferably a low alkali or alkali-free glass substrate, and subsequently formed as an anode. 916 is on the second substrate 914, and thereafter, a light-emitting layer 918 is formed on the anode 916. In an embodiment of the invention, the light-emitting layer 918 may include a hole injection layer, a hole transport layer, an organic light-emitting material layer, An electron transport layer and an electron injection layer (not shown), and then a cathode 920 is formed on the light-emitting layer 918, in order to reduce the light transmittance of the influencing element. [Cathode 920 * The anode 916 is preferably a transparent material such as Ting == Alternatively, or it may be formed of a thin thickness of gold = if the thickness may be between H) and 3 Gnm), and then, for example, a nitrogen = 922 coated cathode 920, a light-emitting layer 918, and an anode 916 are formed. After 4 layers, the liquid crystal is driven to the _ or the second substrate 914, the pole 924 is at the protective layer milk and/or the liquid crystal drives the second electrode 924 to affect the penetration of 70 pieces of light __, or For example, IT〇 or please note that in this embodiment, the liquid = the bound metal. The second electrode 924 is perpendicular to each other, and is connected to the liquid crystal drive. The second electrode 924 is controlled by a voltage to form a halogen matrix. The rotation is generated: two liquid crystal molecules in the halogen. / I have the transparency, and then the display finally, will be made separately from & 1 first display component 904 and liquid crystal display 0949-, A21780TWF (N 2); P51950084TW; 'wayne 200821664 display component 902 from its inside Joining and forming a reflective electrode 992 on the outer side of the first substrate 906 to form a self-luminous reflective liquid crystal display element 900 according to an embodiment of the present invention, wherein an emissive mode can be used when the surrounding environment is dark. The self-luminous display element 9〇4 is turned on, that is, the anode 916 and/or the cathode 920 on both sides of the meal light layer are applied with a voltage to cause the light-emitting layer 918 to emit light, so that the self-luminous display element displays 904, and when The weekly k-ring i brother can use the reflection mode (re£jective m〇c|e) to turn off the φ luminescence display element 904, and use external ambient light to pass through the liquid crystal layer 910 and reflect through the reflective electrode 992. Then, the direction of the liquid crystal molecules of the liquid crystal layer 91 is controlled, and the liquid crystal display element 902 of the self-luminous reflective liquid crystal display element 9 is displayed. Please note that this embodiment may also be modified. Referring to FIG. 9B, the liquid crystal driving second electrode 924 may be formed on the liquid crystal cladding layer 912 when the liquid crystal display element 902 is fabricated. FIG. 10A is a cross-sectional view showing a self-luminous reflective liquid enamel certifier 1 〇 (10) according to still another embodiment of the present invention. The self-luminous display element 1004 of the present embodiment is passive with respect to the above embodiment. The liquid crystal display element 1〇〇2 is an active type. Referring to FIG. 10A, the liquid crystal display element 1002 is first produced. However, the present invention is not limited thereto, and the self-luminous display element 1004' may be separately fabricated. As shown in FIG. 1a, a first substrate 1012 is provided. The first substrate 1012 may be a glass substrate, which is preferably a low alkali or alkali-free glass substrate. On the first substrate 1012, for example, a gate electrode 14 of Mo and a storage capacitor lower electrode 1016 may be formed. For example, nitrite or oxidized stone 闸 〇 949-A21780TWF (N2); P51950084TW; wayne 17 200821664 electric layer 1018 cover gate ίο〗 #, storage Gong & board (four) '- for example, more (four) or Single lower electricity = 6 and first - based on the gate dielectric layer above the idle electrode 1G14 layer _ formation on both sides of the formation of a source respectively to receive the upper two 'semiconductor layer brain source 1022 / no pole deleted in the same ° , the pole 1024, the other is formed on the storage capacitor lower electrode 1 〇 16 above the sub-valley upper electrode 1026 'where the storage capacitor upper electrode 1026, the storage electrical layer 1018
兩者間之閘極介電|1018係構成存電二:〇t16和 c—),而上述閘極刪、半 (迦哪 層麵、源極體和没極1024 ;^層⑽3、閘極介電 Γ1十· 舉構成一溥膜電晶體(thin mmtr贿stor,以下可簡稱TFT)。—例如氮早 1028係覆蓋源極1022、汲極〗 ^保瘦層 UZ4和储存電容上電極 另外,-例如ΙΤ0之透明電極咖係形成於保護 層刪上’其中透明電極咖係分別籍由位於保護層 刪中之插塞1032、刪電性連接TFT之沒極難和/ 或儲存電容之儲存電容上電極1026,在本發明之一實施例 中,透明電極1030係包括橫向電'場第一電極1〇3〇&和一樺 向電場第二電極1030b,為減少影響元件之光的穿透率了 橫向電場第一電極1030a和橫向電場第二電極1〇3〇b較佳 為透明材料例如ITO或是IZO所組成,或是其亦可以由厚 度很薄之金屬所組成(例如厚度可介於! 0〜3 〇 n m ),需注音的 是TFTII由橫向電場第-電極刪_橫向電場^;^極 1030b控制後續形成之液晶層之液晶分子。 / 接著,以例如使用喷墨裝置進行滴注的方式,形成一 0949-A21780TWF(N2);P51950084TW;wayne 18 200821664 液晶層1100於橫向電場第—電極1〇3〇a、橫向電場第二電 極1030b和部份保護層1028上,後續,使高分子單體= 而析出於液晶層液滴表面,形成液晶包覆層1102覆莫液曰曰 層1100,此製程係類似於上述實施例,在此不詳細:述: 接著,製作自發光顯示元件1004,提供—美 膽可㈣麵基板,魏佳為低驗二是 無鹼玻璃基板,後績,形成陽極1202於第二基板㈨上, 其後’形成-發光| 1204於陽極上,在本發明之一實施例 中’發光層1204可包括電洞注入層、電洞傳輪層、有機發 光材料層、電子傳輸層和電子注人層(未^),接著,形 成-陰極11G4於發光層上’為減少影響元件之光的穿透 率’陰極1HM和雜12G2較佳紐明㈣例% ιτ〇或是 IZO所組成,或是其亦可以由厚度很薄之金屬所組成(例如 二度於㈣),接著’形成例如氮化石夕之保護層 1206包覆發光層1206、陽極12〇2和陰極11〇4 最後’將分別製作好之自發光顯示元件難和液晶孽 :元件臟由其内側面接合,並形成—反射電極謂於 =基板ΠΠ2之外侧’而形成本發明〜實施例之自發光反 ^式液晶顯示元件麵,其中當週遭壤境較暗時,可使用 發光模式(emissive mode),自發光顯示元件川⑽係開啟, 亦即發光層Π04兩侧之陽極12〇2和/或陰極屬係施加 電壓而使發光層1204發光,使自發光顯示元件1〇〇4顯示 晝面,而當週遭環境較亮時,可使用反射模式㈣⑽潰 mode) ’使自發光顯示元件1004關閉,利用外部環境光穿 0949-A21780TWF(N2);P51950084TW;wayne 19 200821664 過液晶層1100,經由反射電極1900反射,而藉由控制液 晶層1100之液晶分子之方向,而使液晶顯示元件1002顯 示影像。 〜 请〉主意’本實施例亦可變化,請參照第10B圖,自發 ^顯不元件1004之陽極Π04亦可是在製作液晶顯示元件 日守形成於液晶包覆層1206上。 根據上述實施例,本發明結構與傳統半反穿液晶顯示 • 為比較起來’可大幅降低背光模組的體積與重量,並且由 於自^光元件與反射式液晶元件整合於同一製程當中,將 可以避免兩元件產生疊影(parallax)而相互影響影像品質, 此1 ’本設計可補足自發光元件在周圍光亮度較強時影像 被淡化(washout)的缺點,另外,本發明實施例提出的製程 技術係使液晶製程與自發光元件製程分開實施,可避免製 作反射式液晶顯示器之高溫製程使自發光元件產生劣化, 以有效提升整個元件的良率。 _ 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0949-A21780TWF(N 2); P51950084TW ; way ne 20 200821664 【圖式簡單說明】 第1圖係顯示習知技術結合自發光元件的反射式液晶 顯示器元件的剖面示意圖。 第2圖係顯示本發明一實施例將自發光顯示元件和反 射式液晶顯不元件結合之剖面不意圖。 第3A圖係顯示本發明一實施例自發光反射式液晶顯 示元件發光模式下操作示意圖。 第3B圖係顯示本發明一實施例自發光反射式液晶顯 示元件反射模式下操作示意圖。 第4圖係顯示根據本發明實施例的自發光反射式液晶 顯示器的製造方法流程圖。 第5圖係顯示根據第4圖之流程圖所製作的結合自發 光顯示元件的反射式液晶顯示器元件的示意圖。 第6圖係顯示本發明一實施例自發光反射式液晶顯示 元件之剖面示意圖。 第7A〜7B圖係顯示本發明一實施例液晶包覆層包覆液 晶層製程之剖面示意圖。 第8A〜8B圖係顯示本發明另一實施例液晶包覆層包覆 液晶層製程之剖面示意圖。 第9A圖係顯示本發明另一實施例自發光反射式液晶 顯示元件之剖面示意圖。 第9B圖係顯示本發明又另一實施例自發光反射式液 晶顯不兀件之剖面不意圖。 第10A圖係顯示本發明另一實施例自發光反射式液晶 0949-A21780TWF(N2);P51950084TW;wayne 21 200821664 顯示元件之剖面示意圖。 第10B圖係顯示本發明又另一實施例自發光反射式液 晶顯示元件之剖面示意圖。The gate dielectric between the two |1018 constitutes the storage of electricity two: 〇t16 and c-), and the above-mentioned gate is deleted, half (Gallan level, source body and immersed 1024; ^ layer (10) 3, gate Electric Γ 1 · 构成 构成 构成 构成 构成 构成 构成 构成 th th th th th th th th th th th th th th th th th th th th th th th th th th th th — — — — — — — — — — — — — — — — — — — For example, the transparent electrode of ΙΤ0 is formed on the protective layer. The transparent electrode is separated by the plug 1032 located in the protective layer, and the storage capacitor of the storage capacitor is not extremely difficult and/or the storage capacitor. In one embodiment of the invention, the transparent electrode 1030 includes a lateral electric 'field first electrode 1〇3〇& and a birch electric field second electrode 1030b for reducing the transmittance of light affecting the element. The transverse electric field first electrode 1030a and the transverse electric field second electrode 1〇3〇b are preferably composed of a transparent material such as ITO or IZO, or they may be composed of a thin metal (for example, the thickness may be between ! 0~3 〇nm ), the need to note is that TFTII is deleted by the transverse electric field first-electrode _ The liquid crystal molecules of the subsequently formed liquid crystal layer are controlled by the electric field electrode 1030b. / Next, a 0949-A21780TWF (N2); P51950084TW; wayne 18 200821664 liquid crystal layer 1100 is formed by, for example, dripping using an ink jet device. The transverse electric field first electrode 1〇3〇a, the transverse electric field second electrode 1030b and the partial protective layer 1028, and subsequently, the polymer monomer = is deposited on the liquid crystal layer droplet surface to form a liquid crystal coating layer 1102 The liquid helium layer 1100 is similar to the above embodiment, and is not described in detail herein: Next, a self-luminous display element 1004 is prepared, and a (Metal) (four) surface substrate is provided, and Wei Jia is a low test and an alkali-free glass. The substrate, the latter, forms the anode 1202 on the second substrate (9), and then 'forms-lights|1204 on the anode. In an embodiment of the invention, the luminescent layer 1204 may include a hole injection layer and a hole transfer wheel. a layer, an organic light-emitting material layer, an electron transport layer, and an electron-injecting layer (not), and then, a cathode 11G4 is formed on the light-emitting layer to reduce the transmittance of light affecting the element' cathode 1HM and hybrid 12G2 Ming (four) example % ιτ〇 It is composed of IZO, or it may be composed of a metal having a very thin thickness (for example, second degree (4)), and then 'forming a protective layer 1206 such as a nitride layer to cover the light-emitting layer 1206, the anode 12〇2, and the cathode 11 〇4 Finally, it is difficult to separate the self-luminous display elements and the liquid crystal 孽: the dirty parts of the elements are joined by their inner sides, and the reflective electrodes are formed on the outer side of the substrate ΠΠ2 to form the self-luminous anti-reflection of the present invention. The liquid crystal display element surface, wherein when the surrounding soil is dark, an emissive mode can be used, and the self-luminous display element (10) is turned on, that is, the anode 12〇2 and/or the cathode on both sides of the light-emitting layer Π04. The genus applies a voltage to cause the luminescent layer 1204 to emit light, so that the self-luminous display element 1 〇〇 4 displays a kneading surface, and when the surrounding environment is bright, the reflective mode (4) (10) can be used to turn off the self-luminous display element 1004. The external environment light passes through 0949-A21780TWF (N2); P51950084TW; wayne 19 200821664 through the liquid crystal layer 1100, reflected by the reflective electrode 1900, and the liquid crystal molecules are controlled by controlling the direction of the liquid crystal molecules of the liquid crystal layer 1100. Display image element 1002. ~ Please refer to the idea. This embodiment can also be changed. Referring to FIG. 10B, the anode Π04 of the spontaneous component 1004 may be formed on the liquid crystal cladding layer 1206. According to the above embodiment, the structure of the present invention and the conventional semi-transparent liquid crystal display can be greatly reduced in size and weight, and since the self-lighting element and the reflective liquid crystal element are integrated in the same process, The two elements are prevented from creating a parallax and affecting the image quality. The design of the present invention can complement the shortcoming of the image of the self-luminous element when the ambient light brightness is strong. In addition, the process of the embodiment of the present invention The technology system separates the liquid crystal process from the self-luminous component process, which can avoid the high-temperature process of the reflective liquid crystal display to cause deterioration of the self-luminous component, thereby effectively improving the yield of the entire component. The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the invention, and it is obvious to those skilled in the art that the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 0949-A21780TWF(N 2); P51950084TW ; way ne 20 200821664 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a reflective liquid crystal display element of a conventional technique in combination with a self-luminous element. Fig. 2 is a cross-sectional view showing the combination of a self-luminous display element and a reflective liquid crystal display element in an embodiment of the present invention. Fig. 3A is a view showing the operation of the self-luminous reflective liquid crystal display element in the light-emitting mode according to an embodiment of the present invention. Fig. 3B is a view showing the operation of the self-luminous reflective liquid crystal display element in a reflection mode according to an embodiment of the present invention. Fig. 4 is a flow chart showing a method of manufacturing a self-luminous reflective liquid crystal display according to an embodiment of the present invention. Fig. 5 is a view showing a reflective liquid crystal display element incorporating an auto-light display element fabricated in accordance with the flow chart of Fig. 4. Fig. 6 is a schematic cross-sectional view showing a self-luminous reflective liquid crystal display device according to an embodiment of the present invention. 7A to 7B are schematic cross-sectional views showing a process of coating a liquid crystal layer of a liquid crystal coating layer according to an embodiment of the present invention. 8A to 8B are schematic cross-sectional views showing a process of coating a liquid crystal layer with a liquid crystal coating layer according to another embodiment of the present invention. Fig. 9A is a schematic cross-sectional view showing a self-luminous reflective liquid crystal display device according to another embodiment of the present invention. Fig. 9B is a cross-sectional view showing a self-luminous reflective liquid crystal display of still another embodiment of the present invention. Fig. 10A is a cross-sectional view showing a display element of a self-luminous reflective liquid crystal according to another embodiment of the present invention, 0949-A21780TWF (N2); P51950084TW; wayne 21 200821664. Fig. 10B is a schematic cross-sectional view showing still another embodiment of the self-luminous reflective liquid crystal display element of the present invention.
【主要元件符號說明】 10〜基底; 22〜反射電極; 26〜透明電極; 30〜液晶顯不裔, 32〜第二基板; 35〜共同電極; 37〜第二偏光板; 62〜環境光; 202〜自發光顯示元件; 206〜陽極; 210〜陰極; 214〜反射電極; 218〜透明電極; 222〜光; 502〜第一基板; 506〜間隙子; 510〜液晶包覆層; 562〜有機發光層; 584〜反射層或吸收層; 0949-A21780TWF(N2);P51950084TW;wayne 20〜有機發光元件; 24〜有機發光層; 28〜保護層; 31〜第一偏光板; 33〜畫素電極; 3 6〜第三基板; 61〜光; 63〜反射光; 204〜反射式液晶顯示元件; 20 8〜發光層; 212〜保護層; 216〜液晶層; 220〜配向層; 224〜外部環境光; 504〜透明電極; 508〜液晶層, 560〜第二基板; 564〜保護層; 590〜自發光顯示元件; 200821664 592〜液晶顯示器元件; 600〜自發光反射式液晶顯示器; 602〜自發光顯示元件; 604〜液晶顯示元件; 606〜第一基板; 608〜液晶層; 610〜液晶包覆層; 612〜第二基板; 614〜間極; 616〜儲存電容下電極; 618〜閘極介電層; 620〜半導體層; 622〜源極; 624〜汲極; 626〜儲存電容上電極; 628〜保護層; 630〜透明電極; 632〜插塞; 634〜插塞; 63 6〜發光層; 638〜陰極; 640〜隔絕層; 642〜保護層; 644〜橫向電場弟一電極 646〜橫向電場弟二電極, 690〜外部環境光; 692〜反射電極; 702〜喷墨裝置; 704〜液晶, 706〜單體; 708〜液晶分子; 710〜紫外光照射裝置; 802〜間隙子; 8〇4〜單體; 806〜液晶分子; 808〜液晶; 810〜紫外光照射裝置; 600〜自發光反射式液晶顯示元件; 900〜自發光反射式液晶顯示器; 902〜液晶顯示元件; 904〜自發光顯示元件; 906〜第一基板; 908〜液晶驅動第一電極 0949-A21780TWF(N2);P51950084TW;wayne 23 200821664 910〜液晶層; 912〜液晶包覆層; 914〜第二基板; 916〜陽極; 918〜發光層; 920〜陰極; 922〜保護層; 924〜液晶驅動第二電極 1000〜自發光反射式液晶顯示器; 1002〜液晶顯示元件; 1012〜第一基板; 1016〜儲存電容下電極; 1020〜半導體層; 1024〜汲極; 1028〜保護層; 1030a〜橫向電場第一電極; 1030b〜横向電場第二電極; 1032〜插塞; 1100〜液晶層; 1104〜陰極; 1202〜陽極; 1206〜發光層; 1004〜自發光顯示元件; 1014〜閘極; 1018〜閘極介電層; 1022〜源極; 1026〜儲存電容上電極; 1030〜透明電極; 1034〜插塞; 1102〜液晶包覆層; 1200〜第二基板; 1204〜發光層; 1900〜反射電極。 0949-A21780TWF(N2);P51950084TW;wayne[Main component symbol description] 10~ substrate; 22~ reflective electrode; 26~ transparent electrode; 30~ liquid crystal display, 32~ second substrate; 35~ common electrode; 37~ second polarizer; 62~ ambient light; 202~Self-luminous display element; 206~anode; 210~cathode; 214~reflecting electrode; 218~transparent electrode; 222~light; 502~first substrate; 506~gap; 510~liquid crystal coating; Light-emitting layer; 584~reflective layer or absorbing layer; 0949-A21780TWF(N2); P51950084TW; wayne 20~organic light-emitting element; 24~organic light-emitting layer; 28~protective layer; 31~first polarizing plate; ; 3 6 ~ third substrate; 61 ~ light; 63 ~ reflected light; 204 ~ reflective liquid crystal display element; 20 8 ~ light-emitting layer; 212 ~ protective layer; 216 ~ liquid crystal layer; 220 ~ alignment layer; 224 ~ external environment Light; 504~transparent electrode; 508~liquid crystal layer, 560~second substrate; 564~protective layer; 590~ self-luminous display element; 200821664 592~liquid crystal display element; 600~ self-luminous reflective liquid crystal display; 602~ self-luminous Display 604~liquid crystal display element; 606~first substrate; 608~liquid crystal layer; 610~liquid crystal cladding layer; 612~second substrate; 614~interpole; 616~ storage capacitor lower electrode; 618~gate dielectric Layer; 620~ semiconductor layer; 622~source; 624~dip; 626~ storage capacitor upper electrode; 628~protective layer; 630~transparent electrode; 632~plug; 634~plug; 63 6~ luminescent layer; 638~cathode; 640~isolated layer; 642~protective layer; 644~ lateral electric field dipole one electrode 646~ lateral electric field dipole electrode, 690~ external ambient light; 692~reflecting electrode; 702~ inkjet device; 704~liquid crystal, 706~ monomer; 708~liquid crystal molecule; 710~ ultraviolet light irradiation device; 802~gap; 8〇4~ monomer; 806~liquid crystal molecule; 808~liquid crystal; 810~ ultraviolet light irradiation device; 600~ self-luminous reflection Liquid crystal display element; 900~ self-luminous reflective liquid crystal display; 902~ liquid crystal display element; 904~ self-luminous display element; 906~first substrate; 908~ liquid crystal driven first electrode 0949-A21780TWF(N2); P51950 084TW; wayne 23 200821664 910~ liquid crystal layer; 912~ liquid crystal coating layer; 914~ second substrate; 916~ anode; 918~ luminescent layer; 920~ cathode; 922~ protective layer; 924~ liquid crystal driving second electrode 1000~ Self-luminous reflective liquid crystal display; 1002~ liquid crystal display element; 1012~first substrate; 1016~ storage capacitor lower electrode; 1020~ semiconductor layer; 1024~dip; 1028~protective layer; 1030a~transverse electric field first electrode; 1030b ~ transverse electric field second electrode; 1032 ~ plug; 1100 ~ liquid crystal layer; 1104 ~ cathode; 1202 ~ anode; 1206 ~ luminescent layer; 1004 ~ self-luminous display element; 1014 ~ gate; 1018 ~ gate dielectric layer; 1022 ~ source; 1026 ~ storage capacitor upper electrode; 1030 ~ transparent electrode; 1034 ~ plug; 1102 ~ liquid crystal coating; 1200 ~ second substrate; 1204 ~ luminescent layer; 1900 ~ reflective electrode. 0949-A21780TWF(N2); P51950084TW; wayne