[go: up one dir, main page]

TW200820426A - Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states - Google Patents

Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states Download PDF

Info

Publication number
TW200820426A
TW200820426A TW95139867A TW95139867A TW200820426A TW 200820426 A TW200820426 A TW 200820426A TW 95139867 A TW95139867 A TW 95139867A TW 95139867 A TW95139867 A TW 95139867A TW 200820426 A TW200820426 A TW 200820426A
Authority
TW
Taiwan
Prior art keywords
random access
access memory
resistive random
state
logic state
Prior art date
Application number
TW95139867A
Other languages
Chinese (zh)
Other versions
TWI310237B (en
Inventor
Chia-Hua Ho
Erh-Kun Lai
Kuang-Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95139867A priority Critical patent/TWI310237B/en
Publication of TW200820426A publication Critical patent/TW200820426A/en
Application granted granted Critical
Publication of TWI310237B publication Critical patent/TWI310237B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A method is described for operating a bistable resistance random access memory having two memory layer stacks that are aligned in series is disclosed. The bistable resistance random access memory comprises two memory layer stacks per memory cell, the bistable resistance random access memory operates in four logic states, a logic ''00'' state, a logic ''01'' state, a logic ''10'' state and a logic ''11'' state. The relationship between the four different logic states can be represented mathematically by the two variables n and f and a resistance R. The logic ''0'' is represented by a mathematical expression (1+f)R. The logic ''1'' state is represented by a mathematical expression (n+f)R. The logic ''2'' state is represented by a mathematical expression (1+nf)R. The logic ''3'' state is represented by a mathematical expression n(1+f)R.

Description

200820426200820426

^ 二违福 m . nVMMPA w 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種基於可程式電阻式記憶體材料 的高密度記憶體裝置,包含金屬氧化基材及其他材料,以 及此裝置製造之方法。 【先前技術】 讀/寫光碟廣泛使用相變化為主之記憶體材料。而此 參 材料至少含有兩種固體相,舉例來說包含一般之非晶質固 體相及一般之晶質固定相。雷射脈衝可使讀/寫光碟之在 相位的切換以及在相位改變之後讀取之光學特性的材料。 相變化基本記憶體材料,如硫屬化物基本素材及相似 的材料’可藉由應用適合電流位準施加於積體電路使得相 位改變。一般非晶質狀態較一般晶質固定相具有高電阻係 數的特徵,而可立即地去感應及指出資料。因這些特性而 φ 產生了使用可程式電阻的材料來形成非揮發性電路的興 趣,可以隨機存取來讀取與寫入。 一般是以一低電流操作而使非晶質狀態改變至晶質 狀態。從晶質改變至非晶質,在此處被稱為重置(reset), 一般是以一高電流來操作,其包含了一瞬時高密度電流脈 衝來熔化或打斷晶質結構,而其相變化材料經冷卻相變化 程序可快速冷卻’且至少有一部份相變化結構以非晶質狀 態穩定。想要將引起相變化材料從晶質狀態變成非晶質狀 態的重置電流強度減至最低。減少重置動作所需的重置電 200820426The invention relates to a high-density memory device based on a programmable resistive memory material, comprising a metal oxide substrate and other materials, wherein the invention relates to a high-density memory device based on a programmable resistive memory material. And the method of manufacturing the device. [Prior Art] A read/write optical disc is widely used as a memory material in which phase change is dominant. The ginseng material contains at least two solid phases, for example, a general amorphous solid phase and a generally crystalline stationary phase. The laser pulse enables the reading/writing of the optical disc to be phase-switched and the material of the optical characteristic read after the phase change. Phase change basic memory materials, such as chalcogenide base materials and similar materials, can be phase changed by applying a suitable current level to the integrated circuit. Generally, the amorphous state has a higher resistance coefficient than the general crystalline stationary phase, and can immediately sense and indicate the data. Because of these characteristics, φ creates the interest of using a programmable resistor material to form a non-volatile circuit that can be read and written with random access. The amorphous state is generally changed to a crystalline state by a low current operation. Changing from crystalline to amorphous, referred to herein as reset, is typically operated at a high current that includes an instantaneous high-density current pulse to melt or break the crystalline structure, while The phase change material can be rapidly cooled by a cooling phase change procedure and at least a portion of the phase change structure is stabilized in an amorphous state. It is desirable to minimize the reset current intensity that causes the phase change material to change from a crystalline state to an amorphous state. Reduce the reset power required for the reset action 200820426

衊 —- TW2958PA / 流強度可藉由減少相變化材料及電極之尺寸以及相變化 材料與電極之間的接觸面積來達成,籍由相變化材料而以 小絕對電流值達至更高的電流密度。 一種發展方向係在積體電路裡形成小孔洞,以及使用 小量的可程式電阻式材料來填補此小孔洞。而指出朝向小 孔洞發展的專利包含:〇vshinsky於1997年n月U日發 表之美國專利案號Ν〇· 5, 687, 112”具有尖細接觸點之多 位元單記憶胞記憶元件(MuiHbit Single Cell Memory ⑩ Element Having Tapered Contact) ; Zahorik 等人於 1998 年8月4日發表之美國專利案號^0. 5, 789, 277”硫化合物 記憶體裝置製造之方法(Method of Making Chalogenide [sic] Memory Device” ; Doan 等人於 2000 年 11 月 21 日 發表之美國專利案號No. 6,150,253”可控制之雙向相變 化半導電記憶體裝置及製造方法(Control 1 able Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same)” 。 ® 製造此種裝置所產生的問題例如裝置需要非常小的 尺寸,以及要符合大尺寸記億體裝置嚴謹的規格需要改變 製程。如同追尋更大的記體容量,需要相變化記憶體的每 一記憶層儲存多位元^ 【發明内容】 一雙穩態隨機存取記憶體描述中包含多個可程式電 阻式隨機存取記憶胞,此處每一個可程式電阻式隨機存取蔑— TW2958PA / Flow intensity can be achieved by reducing the size of the phase change material and the electrode and the contact area between the phase change material and the electrode. The phase change material achieves a higher current density with a small absolute current value. . One direction of development is to create small holes in the integrated circuit and to fill the small holes with a small amount of programmable resistive material. The patents that point to the development of small holes include: U.S. Patent No. 5, 687, 112 published by 〇vshinsky on U.S., 1997. Multi-bit single memory cell memory element with sharp contact points (MuiHbit) Single Cell Memory 10 Element Having Tapered Contact); Method of Making Chalogenide [sic] in U.S. Patent No. 5, 789, 277, issued on August 4, 1998, by Zahorik et al. A memory-controlled two-way phase-change semi-conducting memory device and method of manufacture (Control 1 able Ovonic Phase-Change Semiconductor Memory Device, US Patent No. 6,150,253, issued November 21, 2000). And Methods of Fabricating the Same)”. The problems caused by the manufacture of such devices, such as the need for very small sizes of devices, and the need to adapt to the rigorous specifications of large-sized devices, require changes to the process. , each memory layer that needs phase change memory stores multiple bits ^ [Summary] A bistable random access memory Contains a plurality of programmable resistive random access memory cells, where each programmable resistive random access

PW2958PA 200820426 記憶體胞具有多層的記憶層堆疊。每一記憶層堆疊包含一 導電層覆於一可程式電阻式隨機存取記憶層。根據本發明 之第一方面,一第一記憶層堆疊覆蓋一第二記憶層堆疊, 以及第二記憶層堆疊覆蓋一第三記憶層堆疊。此第一記憶 層堆疊包含一第一導電層覆蓋於一第一可程式電阻式隨 機記憶層。此第二記憶層堆疊包含一第二導電層覆蓋於第 二可程式電阻式隨機存取記憶層。第三記憶層堆疊包含一 第三導電層覆蓋於一第三可程式電阻式隨機記憶層。此第 ⑩ 三可程式電阻式隨機存取記憶層具有一記憶面積且大於 第二可程式隨機存取憶體層的記憶面積。此第二可程式隨 機存取記憶層具有一記憶面積且大於此第一可程式隨機 存取記憶層的記憶面積。 每一可程式電阻式隨機存取記憶層具有多階的記憶 狀態,例如··第一位元用以儲存第一狀態及第二位元用以 儲存第二狀態。第一記憶堆疊與第二記憶堆疊串連,且第 二記憶堆疊與第三記憶堆疊串聯。記憶胞具有三個記憶堆 胃 疊而提供八個邏輯狀態(2k),此處的k代表記憶層或記憶 堆疊的數量。舉例來說,記億堆疊的數量可減少為每一記 憶胞裡兩個記憶堆疊,或增加為每一記憶胞裡為四個記憶 體堆疊,端看記憶體的設計。 做為第一可程式電阻式機記億層、第二可程式電阻式 隨機記憶層或第三可程式電阻式隨機記憶層的適當材 料,可包括但不限定於金屬氧化物、巨磁阻材料(Colossal magnetoresistance,CMR)、三元氧化物(three-elementPW2958PA 200820426 Memory cells have multiple layers of memory layers. Each memory layer stack includes a conductive layer overlying a programmable resistive random access memory layer. According to a first aspect of the invention, a first memory layer stack covers a second memory layer stack, and a second memory layer stack covers a third memory layer stack. The first memory layer stack includes a first conductive layer overlying a first programmable resistive memory layer. The second memory layer stack includes a second conductive layer overlying the second programmable resistive random access memory layer. The third memory layer stack includes a third conductive layer overlying a third programmable resistive random memory layer. The 10th programmable resistive random access memory layer has a memory area and is larger than a memory area of the second programmable random access memory layer. The second programmable random access memory layer has a memory area and is larger than the memory area of the first programmable random access memory layer. Each programmable resistive random access memory layer has a multi-level memory state, for example, the first bit is used to store the first state and the second bit to store the second state. The first memory stack is connected in series with the second memory stack, and the second memory stack is in series with the third memory stack. The memory cell has three memory stacks and provides eight logic states (2k), where k represents the number of memory layers or memory stacks. For example, the number of billions of stacks can be reduced to two memory stacks per cell, or to four memory stacks per cell, looking at the memory design. Suitable materials for the first programmable resistive device, the second programmable resistive random memory layer or the third programmable resistive random memory layer may include, but are not limited to, metal oxides and giant magnetoresistance materials. (Colossal magnetoresistance, CMR), ternary oxide (three-element

rW2958PA 200820426rW2958PA 200820426

oxide)、相變化材料以及高分子材料。電阻式隨機存取記 憶體(RRAM)用於第一可程式電阻式隨機存取記憶層與第 一可程式電阻式隨機存取記憶層的材料可相同或不同。電 阻式隨機存取記憶體(RRAM)用於第三可程式電阻式隨機 存取記憶層與第一可程式電阻式隨機存取記憶層的材料 可相同或不同。電阻式隨機存取記憶體(RRAM)甩於第三可 程式電阻式隨機存取記憶層與第二可程式電阻式隨機存Oxide), phase change materials and polymer materials. The resistive random access memory (RRAM) may be the same or different material used for the first programmable resistive random access memory layer and the first programmable resistive random access memory layer. The resistive random access memory (RRAM) is used for the third programmable resistive random access memory layer and the material of the first programmable resistive random access memory layer may be the same or different. Resistive random access memory (RRAM) is in the third programmable resistive random access memory layer and the second programmable resistive random access memory

取§己憶層的材料可相同或不同。而在第一、第二及第三可 程式電阻式隨機存取記憶體之間的厚度例如為大約丨奈米 (nm)至 200 奈米(nm) 〇 廣泛來説’記憶體裝置包含一第一導電構件覆蓋於一 第一可程式電阻式隨機存取記憶體構件,第一可程式電阻 機存取記憶體構件具有一表示第一電阻值之面積,第 電構件及第一可程式電阻式隨機存取記憶體具有側 邊;以及-第二導電構件覆蓋於—第二可程式電阻&隨機 存,記,構件,第_可程式電阻式隨機存取記憶體構件 €盍於第二導電構件’第—可程式電阻式隨機存取記憶體 構件與第二可料電阻式隨機存取記憶體構件串聯,且第 二可程式電阻式隨機存取記憶體具一表示一第二電卩且值 之面積’而第二可程式隨機存取記憶體構件的面積大於第 一可程式隨機存取記憶體構件的面積。 、 在此描述製造一雙穩態電阻式隨機存取記憶體且| 有多重記憶層堆疊之方法。-第-記憶層堆疊,包含Ί -導電層覆蓋於—第一可程式電阻式隨機存取記憶體木The materials of the layer may be the same or different. The thickness between the first, second, and third programmable resistive random access memories is, for example, about 丨 nanometers (nm) to 200 nanometers (nm). 〇 Broadly speaking, the memory device includes a first a conductive member covers a first programmable resistive random access memory device, and the first programmable resistor access memory member has an area representing a first resistance value, the first electrical component and the first programmable resistor The random access memory has a side; and the second conductive member covers the second programmable resistor & random, memory, member, and the first programmable resistance random access memory component The component 'the first programmable resistive random access memory component is connected in series with the second resistive random access memory component, and the second programmable resistive random access memory has a second electrical The area of the value 'and the area of the second programmable random access memory component is greater than the area of the first programmable random access memory component. A method of fabricating a bistable resistive random access memory and having multiple memory layer stacks is described herein. - a first-memory layer stack comprising Ί - a conductive layer overlying - a first programmable resistive random access memory

200820426TW2958PA ▲ 料上,以及第二記憶層堆疊包含了一第二導電層覆蓋於一 m 第二可程式電阻式隨機存取記憶層,而第一記憶層堆疊係 堆積於一第二記憶層堆疊上。一遮罩(mask)以乾式或濕式 蝕刻化學設置於部分第一導電層上。此第一導電層及第一 可程式電阻式隨機存取記憶層的左侧及右側蝕刻至第二 導電層的頂面,由此產生一第一導電構件以及一第一可程 式電阻式隨機存取記憶體構件。一介電侧壁子設置於第一 導電構件及第一可程式電阻式隨機存取記憶體構件的左 •右兩侧。 此介電侧壁子的厚度影響第二導電構件及第二可程 式電阻式隨機存取記憶體構件兩者的面積尺寸。舉例來 說,如假設遮罩的臨界尺寸(critical dimension, CD)大 約為0. 15微米(/z m),而介電侧壁子的厚度大約可選擇為 31奈米(nm),即代表第二可程式電阻式隨機存取記憶體構 件的面積大約為第一可程式電阻式隨機存取記憶體構件 的面積二倍。此面積與電阻值成反比,而以一數學關係式 ® ΟΛ4)表示,此處J代表可程式電阻式隨機存取記憶 體構件的長度,以及4代表可程式電阻式隨機存取記憶體 構件的面積。在這個例子中,第二可程式電阻式隨機存取 記憶體構件的電阻大約為第一可程式電阻式隨機存取記 憶體構件的電阻的二分之一。界於第一及第二可程式電阻 . . . ... , 式隨機存取記憶體構件間理想的電阻差值是取決於此可 程式電阻式隨機存取記憶體構件的SET/RESET電阻窗 (resistance window)(其以一狀態至另一狀態的電阻比值 200820426歷猶 秦· 來定義)。將第二導電層及第二可程式電阻式隨機存取記 m' 憶層的左右兩侧蝕刻,產生一第二導電構件以及一第二可 程式電阻式隨機存取記憶體構件。對第二導電層及第二可 程式電阻式隨機存取記憶層的左右兩侧蝕刻至下一層或 穿過下一層為止。而一接觸孔(via plug)則置於下一層的 下方。 根據本發明之第二方面,揭露一用以操作串聯排列的 二個記憶層堆疊之電阻式隨機存取記憶體。此第一記憶體 ⑩ 堆疊包含一第一導電層覆蓋於一第一可程式電阻式隨機 存取記憶層上,以及第二記憶層堆疊包含一第二導電層覆 蓋於第二可程式電阻式隨機存取記憶層上。一第一位元線 電壓Vw與第一導電層的頂面連接以及一第二位元線電壓 Vb2與第二可程式電阻式隨機存取記憶體的底面連接。一可 程式電阻式隨機存取電壓VmM具有一第一端與第一導電 構件連接以及一第二端與第一可程式電阻式隨機存取記 憶層構件連接。第二可程式電阻式隨機存取電壓VmAM—般 w 以一第一端與第一可程式電阻式隨機存取記憶體構件連 接以及一第二端與第二可程式電阻式隨機存取記憶體槔 件連接。 有兩個重要的變數影響雙穩態可程式電阻式隨機存 取記憶建如何從一邏輯狀態變化至另一邏輯狀態。第一個 變數以符號/2來代表,用以表示所選擇的記憶體材料特 性。第二個變數以符號/來代表,用以表示介電側壁子的 厚度(或寬度)。此變數f可選擇或調整來與電阻的改變符200820426TW2958PA ▲ The material and the second memory layer stack comprise a second conductive layer covering a m second programmable resistive random access memory layer, and the first memory layer stack is stacked on a second memory layer stack. . A mask is disposed on a portion of the first conductive layer in a dry or wet etch chemistry. The first conductive layer and the left side and the right side of the first programmable resistive random access memory layer are etched to the top surface of the second conductive layer, thereby generating a first conductive member and a first programmable resistive memory Take the memory component. A dielectric sidewall is disposed on the left and right sides of the first conductive member and the first programmable resistive random access memory device. The thickness of the dielectric sidewalls affects the area dimensions of both the second conductive member and the second programmable resistive random access memory device. For example, if the critical dimension (CD) of the mask is assumed to be about 0.15 micrometers (/zm), and the thickness of the dielectric sidewalls is about 31 nanometers (nm), that is, The area of the two programmable resistive random access memory components is approximately twice the area of the first programmable resistive random access memory component. This area is inversely proportional to the resistance value and is expressed in a mathematical relationship of ΟΛ4), where J represents the length of the programmable resistive random access memory component and 4 represents the programmable resistive random access memory component. area. In this example, the resistance of the second programmable resistive random access memory component is approximately one-half the resistance of the first programmable resistive random access memory component. The ideal resistance difference between the first and second programmable resistors . . . , the random access memory components is determined by the SET/RESET resistance window of the programmable resistive random access memory component. (resistance window) (which is defined by the resistance ratio of one state to another state 200820426). The left and right sides of the second conductive layer and the second programmable resistive random access memory m' layer are etched to form a second conductive member and a second programmable resistive random access memory device. The left and right sides of the second conductive layer and the second programmable resistive random access memory layer are etched to the next layer or through the next layer. A via plug is placed below the next layer. According to a second aspect of the present invention, a resistive random access memory for operating a stack of two memory layers arranged in series is disclosed. The first memory 10 stack includes a first conductive layer overlying a first programmable resistive random access memory layer, and the second memory layer stack includes a second conductive layer overlying the second programmable resistive random Access to the memory layer. A first bit line voltage Vw is coupled to the top surface of the first conductive layer and a second bit line voltage Vb2 is coupled to the bottom surface of the second programmable resistive random access memory. A programmable resistive random access voltage VmM has a first end coupled to the first conductive member and a second end coupled to the first programmable resistive random access memory layer member. The second programmable resistance random access voltage VmAM is generally connected to the first programmable resistive random access memory device by a first end and the second and second programmable resistive random access memory Connect the pieces. There are two important variables that affect how a bistable programmable resistive random access memory changes from one logic state to another. The first variable is represented by the symbol/2 to indicate the selected memory material characteristics. The second variable is represented by the symbol / to indicate the thickness (or width) of the dielectric sidewall. This variable f can be selected or adjusted to change with the resistance

200820426TW2958PA m • 合,而有足夠大的操作窗去執行一多重位元電阻式隨機存 取記憶體(resistive random access memory,RRAM)。在 一雙穩態隨機存取記憶體中每一個記憶體單元具有雨個 記憶層堆疊,雙穩態電阻式隨機存取記憶體以四個邏輯狀 態操作,邏輯狀態「〇〇」(或邏輯狀態「〇」)、邏輯狀態 「01」(或邏輯狀態「1」)、邏輯狀態「ίο」(或邏輯狀 態「2」)以及邏輯狀態「n」(或邏輯狀態「3」)。而這 四個不同的邏輯狀態之間的關係可藉由兩個變數/3、/及 _ 電阻值i?以數學來表示。邏輯狀態,,〇”以數學式 表示。邏輯狀態” Γ以數學式表示。邏輯狀 態’’ 2”以數學式表示。邏輯狀態,,3”以數學式 乃表示。 本發明的優點為藉由使用每一記憶體單元以多重j 憶層堆疊增加一雙穩態電阻式隨機存取記憶體的整體孩 I 度。本發明也提供一三維的雙穩態隨機存取記憶體設计及 _ 製造方案。本發明更能減少於雙穩態式電P旦式隨機存取記 憶體的電阻改變。 本發明中的結構與方法於之後詳細敘述揭露。此處之 發明内容不意圖去定義本發明。而本發明以專利$申請範圍 i 進行定羲。為讓這些以及其他技術的實施例、特徵、方面 以及優點能更明顯易懂,下文特舉一較佳實施例’並配合 所附圖式,作詳細說明如下: 12200820426TW2958PA m • There is a large enough operation window to perform a multi-bit resistive random access memory (RRAM). In a bistable random access memory, each memory cell has a rain memory layer stack, and the bistable resistive random access memory operates in four logic states, and the logic state is "〇〇" (or logic state) "〇"), logic state "01" (or logic state "1"), logic state "ίο" (or logic state "2"), and logic state "n" (or logic state "3"). The relationship between these four different logic states can be mathematically represented by two variables /3, / and _ resistance value i?. The logic state, 〇" is expressed in mathematical form. Logic state" Γ is expressed in mathematical form. The logical state '' 2 ' is expressed in a mathematical expression. The logical state, 3' is represented by a mathematical expression. An advantage of the present invention is to increase the overall childhood of a bistable resistive random access memory by using multiple memory layers for each memory cell. The present invention also provides a three-dimensional bistable random access memory design and manufacturing scheme. The present invention is more capable of reducing the resistance change of the bistable electric P-type random access memory. The structures and methods of the present invention are disclosed in detail later. The summary herein is not intended to define the invention. The invention is defined by the patent application range i. To make the embodiments, features, aspects and advantages of these and other techniques more apparent, the following description of the preferred embodiment and the accompanying drawings are set forth in detail below:

rW2958PA 200820426 【實施方式】 描述本發明之結構實施例及方法請參照所提供之第i 至第17圖。可瞭解到具體揭露之本發明實施例並不用以 限縮範圍並且本發明也可使用其他特徵、元件、方法及以 實施例來實施。在不同實施例中相同元件共用相同標號。 第1圖為一概要圖用以說明一記憶體陣列1〇〇,以如 此處描述之方式實施。在第!圖申所示,一共源線(c〇m㈣^ source line)128、一字元線(word line)123 以及一字元 線12 4 —般以Y軸方向平行排列。一位元線141及142一 f以X轴方向平行排列。因此,γ一解碼器及一字元線驅動 器(word line driver)145在裡與字元線123及124耦接。 X-解碼器及一組感應放大器(sense amplifier) 146與位 疋線141及142耦接。此共源線128與存取電晶體15〇、 151、152及153的源極端(source terminal)搞接。存取 電晶體150的閘極(gate)與字元線123耦接。存取電晶體 151的閘極與字元線124耦接。存取電晶體152的閘極與 字元線123耦接。存取電晶體153的閘極與字元線124耦 接。此存取電晶體150之汲極以側壁接腳記憶胞(sidewaU Pin memory Cell)135與下部電極構件132轉揍,且側壁 接腳s己憶胞135具有上部電極構件134及下部電極構件 132。此上部電極構件134與仿分線141耦接。而共源線 128可視為由兩列記憶體元件所分享,此處所指的列是指 不思圖的Y方向。在其他的實施例中,可以二極體取代此 存取電晶體,或選擇裝置用以控制電流流量之其他結構於rW2958PA 200820426 [Embodiment] For describing the structural embodiments and methods of the present invention, please refer to the provided i-th to 17th. It is to be understood that the specific embodiments of the present invention are not to be construed as limited. The same elements are shared by the same reference numerals in the different embodiments. Figure 1 is a schematic diagram showing a memory array 1 实施 implemented in the manner described herein. In the first! As shown in Fig., a common source line (c〇m(4)^ source line) 128, a word line 123, and a word line 12 4 are generally arranged in parallel in the Y-axis direction. One bit line 141 and 142-f are arranged in parallel in the X-axis direction. Thus, a gamma-decoder and a word line driver 145 are coupled to word lines 123 and 124. An X-decoder and a set of sense amplifiers 146 are coupled to bit lines 141 and 142. The common source line 128 is coupled to the source terminals of the access transistors 15A, 151, 152, and 153. A gate of the access transistor 150 is coupled to the word line 123. The gate of the access transistor 151 is coupled to the word line 124. The gate of the access transistor 152 is coupled to the word line 123. The gate of the access transistor 153 is coupled to the word line 124. The drain of the access transistor 150 is turned by the sidewaU pin memory cell 135 and the lower electrode member 132, and the sidewall pin 135 has the upper electrode member 134 and the lower electrode member 132. This upper electrode member 134 is coupled to the split line 141. The common source line 128 can be viewed as being shared by two columns of memory elements, and the column referred to herein refers to the unintended Y direction. In other embodiments, the access transistor may be replaced by a diode, or other means for selecting a device to control current flow may be

TW2958PA 200820426 陣列中用以讀取及寫出資料。 第2圖緣示根據本發明一較佳實施例之一電阻式隨 機存取記憶體構造的積體電路2〇〇之簡單方塊圖。此積體 包路275包含一記憶體陣列,係應用側邊主動接腳雙穩態 電阻式Ik機存取記憶胞於一半導電基板。一列解碼器26^ 與數條子元線262耦接,且沿著記憶體陣列260的列排 列。接腳解碼器263與數條位元線264搞接並延著記憶 體陣列260的接腳排列,用以讀取及程式化記憶體陣列 内之侧邊接腳記憶體元件資料。由一匯流排265所提供之 位址至接腳解碼器263及列解碼器261。感應放大器及資 料輸入結構266通過一資料匯排流267與接腳解瑪器263 耦接。資料的提供係經由從位於積體電路275之輸入/輸 出埠或從位於積體電路275内部或外部的其他資料來源經 由資料輸入線(data-in line)271流入至位於感應放大器 及資料輸入結構266之資料輸入結構。在此實施例說明 中,其他的電路圖也包含於積體電路裡,如一般用途處理 器(genera卜purpose processor)或特殊用途應用電路系 統(special purpose application circuitry),或藉由 薄膜雙穩態電阻式隨機存取記憶胞陣列提供功能性之系 統晶片(system-on-a chip)之模組組合。資料藉由資料 輸出線(data-out line)272提供,從位於感應放大器及資 料輸入結構266之感應放大器至積體電路275上輸入/輸 出接口,或者至其他内部的資料目的單元或外部的積體電 路 275 〇 200820426漏祖 此例中控制器利用偏壓排列狀態機(bias arrangement state machine)269控制偏壓排列供應電壓 (bis arrangement supply voltage)268,如讀取、程式 化、抹除、抹除驗證以及程式驗證電壓。此控制器可使用 習知之特殊目的邏輯電路實施。在替代實施例中,此控制 器包含一多種用途的多重處理器,其可以執行相同的積體 電路,也可執行一電腦程式去控制裝置的操作。另一實施 例中’合併特殊用途邏輯電路及多種用途的多重處理器也 • 可利用於控制器的實施。 第3圖%示根據本發明製造雙穩態電阻式隨機存取 記憶層之兩可程式電阻式隨機存取記憶層之沈積及微影 技術的參考步驟之簡單示意圖。此雙穩態電阻式隨機存取 記憶體300包含一第一可程式電阻式隨機存取記憶層31〇 與一第二可程式電阻式隨機存取記憶層320串連。每一個 第一可程式電阻式隨機存取記憶層310和第二可程式電阻 式随機存取記憶層320提供儲存兩組資訊狀態的容量。第 一及第二可程式電阻式隨機存取記憶層310、320於雙穩 態電阻式隨機存取記憶體300提供總計四組邏輯狀態:第 一邏輯狀怨「00」(或「〇」)、第二邏輯狀態「01 j (或「1」)、 第三邏輯狀態「1〇」(或「2」)以及第四邏輯狀態「11」(或 「3」)、 . · · * . - . ^ * • , , 在一實施例中,第一可程式電阻式隨機存取記憶層 310與第二可程式電阻式隨機存取記憶層320係為相同的 材料。在另一實施例中,第一可程式電阻式隨機存取記憶 15TW2958PA 200820426 Array used to read and write data. Fig. 2 is a block diagram showing an integrated circuit 2 of a resistive random access memory structure in accordance with a preferred embodiment of the present invention. The integrated package 275 includes a memory array that uses a side active pin bistable resistive Ik to access the memory cells to one half of the conductive substrate. A column of decoders 26^ is coupled to the plurality of sub-element lines 262 and arranged along the columns of the memory array 260. The pin decoder 263 is coupled to the plurality of bit lines 264 and extends over the pin arrangement of the memory array 260 for reading and programming the side pin memory element data in the memory array. The address provided by a bus 265 is provided to the pin decoder 263 and the column decoder 261. The sense amplifier and data input structure 266 is coupled to the pin hopper 263 via a data sink 267. The data is supplied from the input/output port located at the integrated circuit 275 or from another data source located inside or outside the integrated circuit 275 via the data-in line 271 to the sense amplifier and data input structure. 266 data input structure. In the description of this embodiment, other circuit diagrams are also included in the integrated circuit, such as a general purpose processor (genera) or a special purpose application circuitry, or by a thin film bistable resistor. A random access memory cell array provides a modular system-on-a chip module combination. The data is provided by a data-out line 272, from the sense amplifiers located in the sense amplifier and data input structure 266 to the input/output interface on the integrated circuit 275, or to other internal data destination units or external products. The body circuit 275 〇 200820426 祖 此 in this example the controller uses a bias arrangement state machine 269 to control the bis arrangement supply voltage 268, such as reading, stylizing, erasing, wiping In addition to verification and program verification voltage. This controller can be implemented using conventional special purpose logic circuits. In an alternate embodiment, the controller includes a multi-purpose multi-processor that can execute the same integrated circuit and can also execute a computer program to control the operation of the device. In another embodiment, a combination of special purpose logic circuits and multiple processors for multiple uses is also available for controller implementation. Figure 3 is a simplified schematic diagram showing the steps of the deposition and lithography techniques for fabricating two programmable resistive random access memory layers of a bistable resistive random access memory layer in accordance with the present invention. The bistable resistive random access memory 300 includes a first programmable resistive random access memory layer 31 and a second programmable resistive random access memory layer 320. Each of the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320 provides a capacity to store two sets of information states. The first and second programmable resistive random access memory layers 310, 320 provide a total of four sets of logic states in the bistable resistive random access memory 300: the first logic replies "00" (or "〇") The second logic state "01 j (or "1"), the third logic state "1" (or "2"), and the fourth logic state "11" (or "3"), . · · * . In an embodiment, the first programmable resistive random access memory layer 310 and the second programmable resistive random access memory layer 320 are the same material. In another embodiment, the first programmable resistive random access memory 15

rW2958PA 200820426 第二:程式電阻式隨機存取記憶層32Μ传為不 同的材=而弟-可程式電阻式隨機存取記憶層_ = 一 β耘式電阻式隨機存取記憶層310戋第 :=(電,存取記㈣ k 1不未(nm)至200奈米(nm)。 以同-材料所形成之各可程式電阻式記憶層 310、320rW2958PA 200820426 Second: the program resistive random access memory layer 32 is transmitted as a different material = the brother-programmable resistive random access memory layer _ = a β-type resistive random access memory layer 310戋:= (Electricity, access record (4) k 1 not (nm) to 200 nm (nm). Each of the programmable resistive memory layers 310, 320 formed by the same material

至少包含兩個穩態電阻位準,意即電阻式隨機存取記憶體 材料。在後續敘賴__材料规造式隨機存取 記憶體有益。 項次”雙穩態電阻式隨機存取記憶體,,意指控制一 電阻位準而有下述的意義:電壓振幅、電流振幅或電極 性。相變化記憶體的狀態係藉由電壓振幅、電流振幅或脈 衝時間來進行控制。此雙穩態電阻式隨機存取記憶體3〇〇 的電極性並不會影響雙穩態電阻式隨機存取記憶體3〇〇的 程式化。 接下來為簡短摘要敘述四種型式電阻式記憶體材料 適合做為電阻式隨機存取記憶體。第一種適合用於實施例 的記憶體材料為巨磁阻(CMR)材料,如镨-鈣-錳氧化物 (PrxCayMn〇3)其中 x:y=〇· 5:0· 5 或者是 x:〇〜1 ; y ··〇〜1 來組 成CMR’其中氧化猛(版〇xide)可選擇性的使用。 一種形成CMR材料的方法例如為使用物理氣相沉積 (physical vapor deposition, PVD)濺鍍或磁控濺鍍方法 (magnetro-sputtering method),並使用氬氣(Ar)、氮氣 16There are at least two steady state resistance levels, meaning resistive random access memory materials. In subsequent follow-up __material-regulated random access memory is beneficial. The term "bistable resistive random access memory" means the control of a resistance level and has the following meanings: voltage amplitude, current amplitude or polarity. The state of the phase change memory is by voltage amplitude, Current amplitude or pulse time is controlled. The polarity of the bistable resistive random access memory does not affect the stylization of the bistable resistive random access memory. The short summary describes four types of resistive memory materials suitable for resistive random access memory. The first memory material suitable for use in the examples is a giant magnetoresistance (CMR) material such as barium-calcium-manganese oxide. (PrxCayMn〇3) wherein x:y=〇·5:0· 5 or x:〇~1; y ··〇~1 to form CMR' wherein oxidized (optional xide) can be selectively used. A method of forming a CMR material is, for example, using a physical vapor deposition (PVD) sputtering or a magnetro-sputtering method, and using argon (Ar), nitrogen 16

200820426一A200820426一A

一TW2958PA (N2)、氧氣(〇2)以及或者氦氣(1^)做為來源氣體,其麗为 位於1〜100毫托爾(mTorr)之間。而其沉積溫度其範圍從 室溫至600°C,取決於後續沉積處理的條件。一具有縱橫 比1〜5的準直儀(collimator)可以用來改善填補表現 (fill-in performance)。為了改善填補表現,直流式偏 壓由數十倍的電壓至數百倍的電壓均可使用。另一方面, 可同時結合直流偏壓及準直儀來使用。一磁場由數十倍高 斯(Gauss)到一特斯拉(Tesla=10, OOOGauss)也可應用於 • 改善磁結晶相。 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善CMR材料的結晶狀態。其退 火溫度位於400°C至600°C之間,且其退火時間至少小於2 小時。 CMR材料的厚度取決於記憶胞結構的設計。例如可使 用厚度為10~200奈米(nm)的CMR做為核心材料。一釔一鋇 鲁-銅氧化物(YBaCu〇3為一種高溫度超導體材料)緩衝層 (buffer layer)也常使用於改善CMR材料的結晶狀態。二 YBC0係沉積於CMR材料前,且YBC0的厚度範圍為3〇〜2〇〇 奈米(nm) 〇 第一種§己憶體材料型式為兩種元素的化合物,如鎳氧 化物(ΝιΑ)、鈦氧化物(Tix〇y)、鋁氡化物以丨办八鎢氧化 物⑽y)、鋅氧化物(Znx0y) ' #氧化物(Zrx〇y)、銅氧化物 (CuA)等’其中 x:y=〇. 5:0. 5 或是 X:(M ; y:(M …形成 方法例如為使用PVD賤鐘或磁控濺錄方法與反應性氣 17A TW2958PA (N2), oxygen (〇2), and either helium (1^) are used as source gases, and the enthalpy is between 1 and 100 millitorres (mTorr). The deposition temperature ranges from room temperature to 600 ° C depending on the conditions of the subsequent deposition process. A collimator with an aspect ratio of 1 to 5 can be used to improve fill-in performance. In order to improve the filling performance, the DC bias voltage can be used from tens of times the voltage to hundreds of times. On the other hand, it can be used in combination with a DC bias and a collimator. A magnetic field from tens of times Gauss to a Tesla (10, OOOGauss) can also be applied to • Improve the magnetic crystalline phase. A post-deposition annealing treatment can be selected for use in a vacuum or in a nitrogen or nitrogen/oxygen mixed environment to improve the crystalline state of the CMR material. The annealing temperature is between 400 ° C and 600 ° C and the annealing time is at least 2 hours. The thickness of the CMR material depends on the design of the memory cell structure. For example, a CMR having a thickness of 10 to 200 nanometers (nm) can be used as a core material. A buffer layer of Lu-Cu oxide (YBaCu〇3 is a high temperature superconductor material) is also commonly used to improve the crystallization state of CMR materials. The second YBC0 system is deposited in front of the CMR material, and the thickness of YBC0 ranges from 3〇2 to 2 nanometers (nm). The first type of compound is a compound of two elements, such as nickel oxide (ΝιΑ). Titanium oxide (Tix〇y), aluminum telluride to do octa tungsten oxide (10) y), zinc oxide (Znx0y) '# oxide (Zrx〇y), copper oxide (CuA), etc. 'where x: y=〇. 5:0. 5 or X:(M ; y:(M ... formation method is, for example, using PVD 贱 clock or magnetron splatter method and reactive gas 17

TW2958PA 200820426 氣(Ar)、氮氮(N2)、氧氣(〇2)以及或者氦氣(He)等,壓力 位於1〜100毫托爾(mT〇rr)之間,使用氧化金屬做為乾材, 如鎳氧化物(Nix〇y)、鈦氧化物(Tix〇y)、鋁氧化物(Aix〇y)、 鎢氧化物(Wx〇y)、鋅氧化物(Znx〇y)、鍅氧化物(zrx〇y)、銅 氧化物(Cux〇y)等。而沉積通常於室溫中形成。一具有縱棒 比1〜5的準直儀可以用來改善填褚表現。為了改善填補表 現’直流偏壓由數十倍至數百倍的電壓均可使用。假如需 要,直流偏壓也可同時與準直儀同時使用。 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善金屬氧化物的氧氣分佈。其 退火溫度位於400°C至600°C之間,其退火時間小於2小 時。 一替代性形成方法可使用PVD濺鍍或磁控濺鍍方法 與反應性氣體氬/氧(Ar/〇2)、氬/氮/氧(Αγ/Ν2/〇2)、純氧 (〇2)、氦/氧(He/〇2)、氦/氮/氧(He/N2/〇2)等氣體,其壓力 為1〜100毫托爾(mTorr),使用金屬耙材如鎳(Ni)、鈦 (Ti)、銘(A1)、鎢(W)、鋅(Zn)、锆(Zr)、銅(Cu)等。其 沉積通常於室溫執行。一具有縱橫比卜5的準直儀可以用 來改善填補表現。為了改善填補表現,直流偏壓由數十倍 至數百倍的電壓均可使用。假如需要,直流偏壓也可同時 與準直儀同時使用。 ^ 一沉積後退火處理可選擇使用於真空或於氮氣或氮 氣/氧氣混合的環境中來改善金屬氧化物的氧氣分佈。其 退火溫度位於4〇〇。〇至600°C之間,其退火時間小於2小TW2958PA 200820426 Gas (Ar), nitrogen nitrogen (N2), oxygen (〇2) and or helium (He), etc., pressure between 1~100 mTorr (mT〇rr), using oxidized metal as dry material , such as nickel oxide (Nix〇y), titanium oxide (Tix〇y), aluminum oxide (Aix〇y), tungsten oxide (Wx〇y), zinc oxide (Znx〇y), tantalum oxide (zrx〇y), copper oxide (Cux〇y), and the like. The deposition is usually formed at room temperature. A collimator having a longitudinal rod ratio of 1 to 5 can be used to improve the filling performance. In order to improve the filling performance, the DC bias voltage can be used from tens to hundreds of times. The DC bias can also be used simultaneously with the collimator if required. A post-deposition annealing treatment can be selected to be used in a vacuum or in a nitrogen or nitrogen/oxygen mixed environment to improve the oxygen distribution of the metal oxide. The annealing temperature is between 400 ° C and 600 ° C and the annealing time is less than 2 hours. An alternative formation method can use PVD sputtering or magnetron sputtering methods with reactive gases argon/oxygen (Ar/〇2), argon/nitrogen/oxygen (Αγ/Ν2/〇2), pure oxygen (〇2) a gas such as helium/oxygen (He/〇2), helium/nitrogen/oxygen (He/N2/〇2), having a pressure of 1 to 100 milliTorr (mTorr), using a metal tantalum such as nickel (Ni), Titanium (Ti), Ming (A1), tungsten (W), zinc (Zn), zirconium (Zr), copper (Cu), and the like. Its deposition is usually performed at room temperature. A collimator with aspect ratio 5 can be used to improve fill performance. In order to improve the filling performance, a DC bias voltage of tens to hundreds of times can be used. The DC bias can also be used simultaneously with the collimator if required. ^ A post-deposition annealing treatment can be used to improve the oxygen distribution of the metal oxide in a vacuum or in a nitrogen or nitrogen/oxygen mixed environment. Its annealing temperature is at 4 〇〇. 〇 to 600 ° C, the annealing time is less than 2 small

TW2958PA 200820426 時0 另一個形成方法為藉由高溫度氧化系統進行氧化,如 熔爐或快速熱火處理(rapid thermal pulse, RTP)系統。 其溫度為200〜7〇(Tc以及純氧(〇2)及氮合氣 體其壓力為數毫托爾(mT〇rr)至1大氣壓(atm)。而時間範 圍為數分鐘至數小時。另一氧化方法為電漿氧化。一射頻 或一直流來源電漿為以純氧(〇2)、氬混合氣體 或氬/氮/氧(Ar/〇2/〇2)混合氣體於壓力卜1〇〇毫托爾 _ (mTorr)用於氧化金屬表面,金屬例如為鎳(Ni)、鈦(Ti)、 鋁(A1)、鎢(W)、鋅(Zn)、鉛(Zr)、銅(Cu)等。其氧化時 間從數秒至數分鐘。其氧化溫度範圍由室溫至3〇〇。(:其, 視電漿氧化的程度決定。 弟二種§己憶體型式材料為一聚合材料,如氰基對g昆二 曱烧錯合物(tetracyquinodimethane,TCNQ)摻雜銅 (Cu)、碳 60(C6。)、銀(Ag)等或苯基 C61 丁酸曱脂(phenyl C61-butyric acid methyl ester,PCBM)-氰基對醌二曱烷 ® 錯合物(TCNQ)混合聚合物。形成方法可藉由熱蒸鍍 (thermal evaportation)、電子束蒸鍍(e-beam evaportation)或分子束蠢晶成長(m〇iecuiar beam epitaxy, MBE)系統等進行蒸鍍。固體狀態的TCNQ與摻雜 粒狀物於一单槽裡共蒸(co-evap〇rated)。固體狀態的,, TCNQ與粒狀物摻雜放入一鎢舟(w—boat)或一组舟 (Ta-boat)或一陶舟。一高電流或電子束應用於熔解來源 材料以便材料混合及沉積於晶圓上〇沒有反應性的化學物 19TW2958PA 200820426 Time 0 Another method of formation is oxidation by a high temperature oxidation system, such as a furnace or a rapid thermal pulse (RTP) system. The temperature is 200~7〇 (Tc and pure oxygen (〇2) and the nitrogen gas has a pressure of several millitorr (mT〇rr) to 1 atmosphere (atm), and the time ranges from several minutes to several hours. Another oxidation The method is plasma oxidation. The RF or DC source plasma is a mixture of pure oxygen (〇2), argon mixed gas or argon/nitrogen/oxygen (Ar/〇2/〇2) at a pressure of 1 Torr. (mTorr) is used to oxidize a metal surface, and the metal is, for example, nickel (Ni), titanium (Ti), aluminum (A1), tungsten (W), zinc (Zn), lead (Zr), copper (Cu), or the like. The oxidation time ranges from a few seconds to a few minutes. The oxidation temperature ranges from room temperature to 3 〇〇. (: It depends on the degree of plasma oxidation. The two types of materials are a polymeric material such as cyano. For the tetracyquinodimethane (TCNQ) doped copper (Cu), carbon 60 (C6.), silver (Ag), etc. or phenyl C61-butyric acid methyl ester (phenyl C61-butyric acid methyl ester, PCBM)-Cyano-p-dioxane® complex (TCNQ) mixed polymer. It can be formed by thermal evaporation, electron beam evaporation (e-beam evaportation). ) or vapor deposition by a m〇iecuiar beam epitaxy (MBE) system, etc. The solid state TCNQ and the doped granules are co-evaprated in a single tank. , TCNQ and granular doping are placed in a tungsten boat (w-boat) or a group of boats (Ta-boat) or a pottery boat. A high current or electron beam is applied to the melting source material for material mixing and deposition. Non-reactive chemicals on the wafer 19

TW2958PA 200820426 質及氣體。而沉積則是於壓力1(Γ4〜1(T1Q托爾(70汀)進疒。 晶圓的溫度範圍由室溫至2⑽。〇。 沉積後退火處理可選擇使用於真空或於氣氣⑽ 壞境中來改善聚合物㈣的組成分佈。錢火溫度位 溫至300°C,其退火時間小於1小時。 另一技術用以形成一聚合物為主的記憶體材料為 用摻雜TCNQ的溶液以小於1〇〇〇rpm的轉速旋轉塗佈。在 旋轉塗佈後,此晶圓會擺置一段時間直至形成固體狀態 (一般在室溫或低於2〇(rc中進行)。此擺置時間範圍從^ 分鐘至數天,視其溫度以及形成狀態。 第四種型式為硫化物(chalcogenide)材料,如鍺一銻一 碲(GexSbyTez)其中 x:y:z=2:2:5 或以 χ:〇〜5、y:〇〜5、ζ:〇〜ι〇 所組成。GeSbTe可以摻雜氮(N—)、矽(si〇、銻(Sb—)或選 擇性的推雜其他的元素。 、 一形成硫化物材料之方法例如可使用PVD賤鍍或磁 控濺鑛方法與來源氣體氬(紅)、氮(NO及/或氦(以)等氣 體於貌力為1〜100笔托爾(inTorr)。沉積通常於室溫下 形成。一具有縱橫比丨〜5的準直儀可以用來改善填補表 現。為了改善填補表現,直流偏壓由數十倍至數百倍的電 壓均可使用。假如需要,直流偏壓也可同時與準直儀同時 使用。 一沉積後退火處理可選擇使用於真空或於氮氣的環 境中來改善硫化物的晶體狀態。其退火溫度一般位於1〇〇 C至400°C之間,其退火時間小於30分鐘。該硫化材料的 20TW2958PA 200820426 Quality and gas. The deposition is at pressure 1 (Γ4~1 (T1Q Toll (70 ti)). The temperature of the wafer ranges from room temperature to 2 (10). 后. Post-deposition annealing can be used for vacuum or gas (10) In the environment to improve the composition of the polymer (4). The temperature of the fire is 300 ° C, and the annealing time is less than 1 hour. Another technique used to form a polymer-based memory material is a solution doped with TCNQ. Spin coating at a speed of less than 1 rpm. After spin coating, the wafer is placed for a period of time until a solid state is formed (typically at room temperature or below 2 〇 (in rc). The time range is from ^ minutes to several days, depending on the temperature and formation state. The fourth type is a chalcogenide material such as GexSbyTez where x:y:z=2:2:5 or It is composed of χ:〇~5, y:〇~5, ζ:〇~ι〇. GeSbTe can be doped with nitrogen (N-), 矽 (si〇, 锑(Sb-) or selective 杂 other The method for forming a sulfide material can be, for example, a PVD ruthenium plating or a magnetron sputtering method with a source gas of argon (red), nitrogen (NO). / or 氦 (以) and other gases in the appearance of 1 to 100 torr (inTorr). Deposition is usually formed at room temperature. A collimator with an aspect ratio 丨 ~ 5 can be used to improve the filling performance. To fill the performance, the DC bias voltage can be used from tens to hundreds of times. If necessary, the DC bias can also be used simultaneously with the collimator. A post-deposition annealing treatment can be used for vacuum or nitrogen. The environment is used to improve the crystal state of sulfides. The annealing temperature is generally between 1 ° C and 400 ° C, and the annealing time is less than 30 minutes.

TW2958PA 200820426 厚度高於8奈米(nm)而可具有一相變化特性以使材料展現 出兩種穩定的電阻狀態。 實施例中於雙穩態電阻式隨機存取記憶體300之記 憶胞可能包括相變化為主之記憶體材料,包含硫化物為主 之材料以及其他材料,做為第一可程式電阻式隨機存取記 憶層310以及第二可程式電阻式隨機存取記憶層320。硫 族元素包含週期表的第六族以及任何有這四種元素氧 (Oxygen)、硫(Sulfer)、硒(Selenium)以及碌 _ (Tellurium)。硫化物包含具有更趨正電性 (electropositive element)或自由基(radical)的硫屬元 素化合物。硫屬合金包含硫屬化合物及如過渡金屬等其他 材料。硫屬合金通常包含一或多個元素從週期表元素的第 六攔如鍺(germanium)及錫(Tin)。通常硫屬合金包含包含 銻(antimony)、鎵(gallium)、銦(indium)及銀(sliver) 中的一個或多個之組合。許多相變化基本記憶體材料已敘 ^ 述於科技出版品内,包含合金··鎵/銻(Ga/Sb)、銦/銻 (In/Sb)、銦/硒(In/Se)、銻/碲(Sb/Te)、鍺/碲(Ge/Te)、 鍺/銻 /蹄(Ge/Sb/Te)、銦/銻/碲(In/Sb/Te)、鎵/硒/碲 (Ga/Se/Te)、錫 / 銻 / 碲(Sn/Sb/Te)、銦/銻/碲 (In/SbMe)、銀/銦/銻/碲(Ag/In/Sb/Te)、鍺/錫/銻/碲 (Ge/Sn/Sb/Te)、鍺/銻/硒/碲丨仏/邰/和/以彡及碲/鍺/銻/ 硫(Te/Ge/Sb/S)。於鍺/銻/碲(Ge/Sb/Te)合金家族裡,可 使用的合金組成範圍很大。而其組成可以蹄-錯-録化合物 (TeaGebStMOiMa+lO)做為特徵。一研究員曾描述最有用的合金 21 200820426一 ^ 其沉積材料裡的碲(Te)平均濃度最好是少於70%,一般為 低於60%,一般範圍最低從23%至58%Te,以及較佳地大约 為48%〜58%Te。鍺(Ge)的濃度大約超過5%以及平均在材料 中從最低的大約從8%至平均30%的範圍,一般低於50%。 在此化合物中剩餘主要組成元素為銻(Sb)。這些百分比為 原子百分比,其組成元素原子的總量為100%。 (Ovshinsky,,112patent,cols 10-11·)。另一研究者評 估之特殊合金包含碲-銻-鎵化合物(GeaSbzTes、GeSb2Te4以 ⑩及 GeSbVTe? )(Noboru Yamada,” 以鎵-銻-碲(Ge-Sb-Te) 做為南速率資料記錄的相變化光碟的可能性”,Sp IE ν· 3109 ’ ρρ· 28-37(1997))。更廣泛性的來說,一過渡金 屬如鉻(chromium,Cr)、鐵(iron,Fe)、鎳(nickel, Ni)、 銳(niobium,Nb)、鈀(palladium,Pd)、鉑(platinum,Pt) 以及其混合物或其合金也可以與鍺/銻/碲(Ge/sb/Te)相 互合併來形成一相變化合金,以具有可程式電阻的特性。 赢 由 Ovshinsky 112 patent at columns 11 -13 所提供之 記憶體材料的特殊例子也可能有用,此處的例子包含在參 考資料内。 相變化合金可切換於第一結構狀態及第二結構狀態 之間,第一結構狀恶是材料位於一般非晶質固體相以及第 二結.構狀態是材科位於一般晶質固體相,也就是記憶跑的 活動通道區域内的局部秩序(local order)。此些合金至 少為雙穩態。非晶質是指相對來說較無秩序的結構,較單 一晶體較無致序,比起結晶態具有具有可偵測特性如較高 22 200820426TW2958PA 200820426 has a thickness greater than 8 nanometers (nm) and can have a phase change characteristic to allow the material to exhibit two stable resistance states. In the embodiment, the memory cell of the bistable resistive random access memory 300 may include a phase change-based memory material, including a sulfide-based material and other materials, as the first programmable resistance random memory. The memory layer 310 and the second programmable resistive random access memory layer 320 are taken. The chalcogen element contains the sixth group of the periodic table and any of the four elements oxygen (Oxygen), sulfur (Sulfer), selenium (Selenium) and ti (Tellurium). The sulfide contains a chalcogen element compound having a more electropositive element or radical. Chalcogenide alloys contain chalcogenides and other materials such as transition metals. Chalcogenide alloys usually contain one or more elements from the sixth block of the periodic table elements such as germanium and tin. Typically, the chalcogenide alloy comprises a combination comprising one or more of antimony, gallium, indium, and silver. Many phase change basic memory materials have been described in scientific publications, including alloys · gallium / germanium (Ga / Sb), indium / germanium (In / Sb), indium / selenium (In / Se), 锑 /碲(Sb/Te), 锗/碲 (Ge/Te), 锗/锑/hoof (Ge/Sb/Te), indium/锑/碲 (In/Sb/Te), gallium/selenium/碲 (Ga/ Se/Te), tin / 锑 / 碲 (Sn / Sb / Te), indium / 锑 / 碲 (In / SbMe), silver / indium / 锑 / 碲 (Ag / In / Sb / Te), 锗 / tin /锑/碲 (Ge/Sn/Sb/Te), 锗/锑/Selenium/碲丨仏/邰/and/彡 and 碲/锗/锑/Sulphur (Te/Ge/Sb/S). In the family of 锗/锑/碲 (Ge/Sb/Te) alloys, the range of alloys that can be used is large. The composition can be characterized by a hoof-missing compound (TeaGebStMOiMa+lO). A researcher has described the most useful alloy 21 200820426. The average concentration of strontium (Te) in the deposited material is preferably less than 70%, generally less than 60%, and the general range is from 23% to 58% Te, and Preferably it is about 48% to 58% Te. The concentration of germanium (Ge) is greater than about 5% and averages from about 8% to an average of 30% in the material, typically less than 50%. The main constituent element remaining in this compound is bismuth (Sb). These percentages are atomic percentages, and the total amount of constituent element atoms is 100%. (Ovshinsky,, 112patent, cols 10-11·). The special alloys evaluated by another investigator include 碲-锑-gallium compounds (GeaSbzTes, GeSb2Te4 with 10 and GeSbVTe?) (Noboru Yamada," with gallium-germanium-germanium (Ge-Sb-Te) as the south rate data. The possibility of phase change disc", Sp IE ν· 3109 ' ρρ· 28-37 (1997)). More broadly, a transition metal such as chromium (Cr), iron (iron), nickel (nickel, Ni), sharp (niobium, Nb), palladium (Pd), platinum (platinum, Pt) and mixtures thereof or alloys thereof may also be combined with 锗/锑/碲 (Ge/sb/Te) to form a phase change alloy to have programmable resistance characteristics. Winning Ovshinsky 112 patent at columns 11 -13 Special examples of memory materials may also be useful, examples of which are included in the reference material. The phase change alloy can be switched between the first structural state and the second structural state, wherein the first structural state is that the material is located in the general amorphous solid phase and the second structure is in the general crystalline solid phase. It is the local order in the active channel area of the memory run. These alloys are at least bistable. Amorphous refers to a relatively disordered structure that is less ordered than a single crystal and has detectable properties compared to crystalline states such as higher 22 200820426

. —:麵〇几-[W2958PA -的電阻係數。結晶態是指其相對來說其較為有序的結構 (較非晶質結構有致序),其具有可铺測特性例如其電阻係 數較非晶質相低。-般來說’相變化材料可於局部秩序的 完全的非晶質及晶質狀態的範圍間的可偵測狀態中相互 電切換。其他材料特性也會被相位在非晶質與晶質變化時 影響,包含原子序、自由電子密度以及活化能。材料可以 切換為不同的固體相’或是兩個或更多之固體混合相,以 _提供—個介於完全非晶質及完全晶質狀態的灰階。在材料 裡的電子特性會對應產生改變。 相變化合金藉由電子脈衝的應用可從一相位改變至 另一相位。而可觀察出一較短、較高振幅的脈衝傾向於改 動目變化材料至-般非晶質狀態…較長、較低的振幅的 脈衝傾向於改變相變化材料至一般晶赁狀態^一較短、較 高振幅的脈衝的能量夠高而使晶體鍵結被打斷,也因為脈 衝夠短而可避免原子重新排列為晶體狀態。不必經由過度 鲁實驗即可決定適用於特殊相變化合金的適當脈衝波形。= 後續的章節中所揭露的相變化材料是指鍺_銻_碲(GST), 而且可以了解的是其他的相變化材料也可以被使用。在此 所描述對完成相變化隨機存取記憶體(phase chage random access memory,PCRAM)有幫助的材料為錯-録一碑 化合物(GezSbzTes)。 其他的可程式電阻式記憶體材料也可使用於本發明 的其他實施例,包含鍺-銻-碲(GST)摻雜氮氣(仏)、鍺一録 化合物(GexSby)、或其他材料使用不同晶體相的變化來決 23. —: 〇 〇 - [W2958PA - resistivity. The crystalline state refers to its relatively ordered structure (ordered compared to the amorphous structure), which has a spreadable property such as a lower electrical resistance coefficient than the amorphous phase. In general, the phase change material can be electrically switched to each other in a detectable state between the range of completely amorphous and crystalline states of the local order. Other material properties are also affected by the phase changes in amorphous and crystalline, including atomic order, free electron density, and activation energy. The material can be switched to a different solid phase or two or more solid mixed phases to provide a gray scale between completely amorphous and fully crystalline states. The electronic properties in the material will change accordingly. Phase change alloys can be changed from one phase to another by the application of electronic pulses. It can be observed that a shorter, higher amplitude pulse tends to change the apparent material to a general amorphous state... longer, lower amplitude pulses tend to change the phase change material to the general crystal state. The energy of the short, higher amplitude pulses is high enough to cause the crystal bonds to be broken, and because the pulses are short enough to avoid rearranging the atoms into a crystalline state. It is not necessary to go through an excessive experiment to determine the appropriate pulse waveform for a particular phase change alloy. = The phase change material disclosed in the following sections refers to 锗_锑_碲 (GST), and it can be understood that other phase change materials can also be used. The material described herein that is useful for completing the phase chage random access memory (PCRAM) is the GezSbzTes. Other programmable resistive memory materials can also be used in other embodiments of the invention, including different crystals of yttrium-niobium-tellurium (GST) doped nitrogen (仏), 锗1 (GexSby), or other materials. The change of phase depends on 23

200820426TW2958PA 定其電阻;镨H巍氧化物(PrxCayMn〇3)、镨-銘-鐘氧化物 (PrSrMnO3)、鍅氧化物(ZrOx)、鎢氧化物(WOx)、鈦氧化物 (Ti〇x)、鋁氧化物(Al〇x)或其他材料使用電子脈衝來改變 其電阻狀態;7, 7, 8, 8-氰基對醌二甲烧錯合物 (7, 7, 8,8-tetracyanoquinodimethane, TCNQ) methanofullerene 6,6-phenyl C61-butyric acid ester, PCBM、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、CtTCNQ、 摻雜其他金屬的TCNQ、或者任何其他可被電子脈衝控制且 ⑩具有雙穩態或多重穩態電阻的狀態的聚合物材料。 第一導電層312覆於第一可程式電阻式隨機存取記 憶層310上,係為一導電元件。第二導電層322則是被設 置於第一可程式電阻式隨機存取記憶層31〇和第二可程式 電阻式隨機存取記憶層320之間。此第一導電層312係為 與第一可程式電阻式隨機存取記憶層31〇有連接之導電元 件。此第二導電層322係為與第二可程式電阻式隨機存取 麟 記憶層320有連接之導電元件。適合做為第一導電層312 和第二導電層322的材料包含:鈦(Ti)、氮北鈦(1^1^)、 氣化欽/鎢/氮化鈦(TiN/W/TiN)、氮化鈦/鈦/鋁/氮化鈦 (141^/14/八1/141^)、11+多晶石夕(11切〇13^11[〇:〇11)、氮氧化欽 (Tl0N)、组(Ta)、氮化鈕(TaN)、氮氧化组(TaON)以及其 他材料。 於一實施例裡,第一導電層312和第二導電層322為 相同的材料。但在另一實施例裡,第一導電層312與第二 導電層322則是不同的材料。第一導電層312與第二導電 24 200820426一 ,層322的厚度可以相同或是相異。第-導電層312或是第 二導電層322的厚度範圍例如大約為1〇至2〇奈米之 間。 一遮罩330形成於第一導電層312上。此遮罩33〇包 含光阻、硬遮罩(hardmask),如矽氡化物(以仏)、矽氮化 物(Sil)、矽氮氧化物(Si0xNy)。此遮罩可以藉由挑選適合 遮罩的技術來修整出臨界尺寸(CD)。假如遮罩33〇為光 組,以氯(CL)及溴化氫(HBr)為主的反應離子蝕刻機用以 ⑩修整光阻。假如遮罩330為一硬遮罩,以濕修整搭配適常 的溶劑可用以修整此硬遮罩。尤其是,一稀釋的氟化氫 (dilute HF,DHF)可使用於以氧化石夕(Si〇x)製作的硬遮 罩。熱磷酸(Hot phosphoric acid,ΗΡΑ)則使用於以氧化 氮(SiNx)製作的硬遮罩。 第4圖繪示根據本發明製造雙穩態電阻式隨機存取 記憶體300之下一步驟之示意圖,蝕刻至第二導電層,第 二導電層有鄰近於第一導電構件412及第一可程式電阻式 隨機存取記憶體構件410沈積之介電側壁子。如第3圖所 示,第一導電層312及第一可程式電阻式隨機存取記憶層 310被蝕刻至第二導電層322的頂面,以形成第一導電構 件412及第一可程式電阻式隨機存取記憶體構件410。用 二於第一導電層312及第一可程式電阻式隨機存取記憶層 310之蝕刻程序可以是單一非等相性蝕刻,或者以兩階段 程序,第一,以第一蝕刻化學物蝕刻第一導電層312 ;第 二’以第二次蝕刻化學物蝕刻第一可程式電阻式隨機存取 25200820426TW2958PA determines its resistance; 镨H巍 oxide (PrxCayMn〇3), 镨-Ming-Chal oxide (PrSrMnO3), yttrium oxide (ZrOx), tungsten oxide (WOx), titanium oxide (Ti〇x), Aluminium oxide (Al〇x) or other materials use electronic pulses to change their resistance state; 7, 7, 8, 8-cyano-p-dimethyl cyanomethane, TCNQ Methanofullerene 6,6-phenyl C61-butyric acid ester, PCBM, TCNQ-PCBM, Cu-TCNQ, Ag-TCNQ, CtTCNQ, TCNQ doped with other metals, or any other that can be controlled by electronic pulses and has bistable Or a polymer material in the state of multiple steady state resistance. The first conductive layer 312 is overlying the first programmable resistive random access memory layer 310 and is a conductive element. The second conductive layer 322 is disposed between the first programmable resistive random access memory layer 31 and the second programmable resistive random access memory layer 320. The first conductive layer 312 is a conductive element connected to the first programmable resistive random access memory layer 31. The second conductive layer 322 is a conductive element connected to the second programmable resistive random access memory layer 320. Suitable materials for the first conductive layer 312 and the second conductive layer 322 include: titanium (Ti), nitrogen north titanium (1^1^), gasification/tungsten/titanium nitride (TiN/W/TiN), Titanium nitride/titanium/aluminum/titanium nitride (141^/14/eight-1/141^), 11+ polycrystalline stone eve (11 〇 13^11 [〇: 〇11), nitrous oxide (Tl0N) , group (Ta), nitride button (TaN), nitrogen oxide group (TaON) and other materials. In one embodiment, the first conductive layer 312 and the second conductive layer 322 are the same material. In yet another embodiment, the first conductive layer 312 and the second conductive layer 322 are different materials. The first conductive layer 312 and the second conductive layer 200820426 may have the same or different thicknesses. The thickness of the first conductive layer 312 or the second conductive layer 322 ranges, for example, from about 1 Å to about 2 Å. A mask 330 is formed on the first conductive layer 312. This mask 33 contains a photoresist, a hard mask such as a telluride (salt), a tantalum nitride (Sil), and a tantalum oxynitride (Si0xNy). This mask can be trimmed to a critical dimension (CD) by picking a technique that is suitable for the mask. If the mask 33 is a light group, a reactive ion etching machine mainly composed of chlorine (CL) and hydrogen bromide (HBr) is used to trim the photoresist. If the mask 330 is a hard mask, wet trimming with a suitable solvent can be used to trim the hard mask. In particular, a dilute hydrogen fluoride (dilute HF, DHF) can be used for a hard mask made of oxidized stone (Si〇x). Hot phosphoric acid (ΗΡΑ) is used for hard masks made of nitrogen oxide (SiNx). 4 is a schematic diagram showing a step of fabricating a bistable resistive random access memory 300 according to the present invention, etching to a second conductive layer having a second conductive layer adjacent to the first conductive member 412 and the first A dielectric sidewall is deposited by the resistive random access memory device 410. As shown in FIG. 3, the first conductive layer 312 and the first programmable resistive random access memory layer 310 are etched to the top surface of the second conductive layer 322 to form the first conductive member 412 and the first programmable resistor. Random access memory component 410. The etching process using the first conductive layer 312 and the first programmable resistive random access memory layer 310 may be a single non-isotropic etching, or a two-stage process, first, etching the first etching chemistry first Conductive layer 312; second 'etching first programmable resistive random access 25 with a second etching chemistry

TW2958PA 200820426 二”广:。蝕刻化學物可依據單-材料或複數材料來選 列來既.假如第一導電構件412使用氮化鈦(TiN) 以及-電喊隨機麵記憶體構件41 ⑽),則兩階段侧航^ “τ職用乳化鶴 成第刻步驟是以氯(cl2)完 二;以及第二賴步驟是以氣化硫⑽來 〆 可私式電阻式隨機存取記憶層31〇。第一介電側 壁子430沉積於第一可程式電阻々 410材料和第-導電構二=,&機存取記憶趙構件 „ 43〇:::::« 繁一入…w 7 分頂面上。而適合用於 (S.N; Ί 430的材料包含氧化矽⑽0和氮化矽 Γ30的厚度會影響第二導電構件512(如第5圖示)以^ 弟二可程式電阻式隨機存取記憶體構件51q(如第5干 的面積。舉例來說:假如遮罩咖具有—臨界尺寸大約為 0.15微来㈣,而較之介電側壁子的厚度大約可為^ 奈米(nm) ’以使第二可程式電阻式隨機存取記憶體構件 510的面積大約為第—可程式電阻式隨機存取記情體構件 二Γ;也就是說,在相同的邏輯狀態(如SET或 RESET),第二可程式電阻式隨機存取記憶體構件51〇的 阻大約為第-可程式電阻式隨機存取記憶體構件彻的電 ,的二+ :第-可程式電阻式隨機存取記憶體構件4in愈 弟-可私式電阻式隨機存取記憶體構件51()的電阻差值θ 依據-電阻式隨機存取記,隨材料之SET/R咖 疋 假設SET/RESET窗大約為1G倍—個數量級(⑽ 26 200820426TW2958PA 200820426 ii: The etching chemistry can be selected according to a single-material or a plurality of materials. If the first conductive member 412 uses titanium nitride (TiN) and - electrically shunt random surface memory member 41 (10), Then the two-stage side navigation ^ "the first step of the embossing crane is to complete the chlorine (cl2); and the second step is to vaporize the sulfur (10) to the private resistive random access memory layer 31〇 . The first dielectric sidewall 430 is deposited on the first programmable resistor 410 material and the first conductive structure II, & machine access memory Zhao component „ 43〇:::::« 繁繁...w 7 The surface is suitable for (SN; Ί 430 material comprising yttrium oxide (10) 0 and the thickness of tantalum nitride 30 affects the second conductive member 512 (as shown in Figure 5) with the second programmable resistance random access The memory member 51q (such as the area of the fifth dry. For example: if the mask has a critical dimension of about 0.15 microseconds (four), and the thickness of the dielectric sidewall can be about ^ nanometer (nm)' So that the area of the second programmable resistive random access memory component 510 is approximately the same as the first programmable resistive random access memory component; that is, in the same logic state (such as SET or RESET). The second programmable resistive random access memory device 51 has a resistance of approximately the first programmable resistance random access memory component, and the second +: the first programmable resistive random access memory The resistance difference θ of the component 4in is a private-resistive random access memory component 51() According to the resistance-based random access memory, the SET/R 窗 window of the material assumes that the SET/RESET window is approximately 1G times an order of magnitude ((10) 26 200820426

一霸「TW2958PA 一 肋叩HMe),則第一可程式電阻式隨機存取記憶體構件 410及第二可程式電阻式隨機存取記憶體構件51〇的恭阳 差值大約兩倍是適當的。兒阻 第5圖為繪示根據本發明製造雙穩態電阻式隨機 取記憶體下一步驟之結構圖500,蝕刻穿過第二電=式= 機存取記憶層。此第二導電層322和第二可程式電阻^二 機存取記憶層320(如第3圖示),藉由一反應離子蝕 蝕刻至底層的頂面或是蝕刻穿過一底層61〇(如第6圖^示 _來產生第二導電構件512和第二可程式電阻式隨機存取記 憶體構件510。此姓刻程序可對第二導電層322及第一可 程式電阻式隨機存取記憶層320以一單一非等相性兹刻咬 一兩階段程序,第一,第一蝕刻化學物蝕财第二導電層 322 ;第二,以第二蝕刻化學物蝕刻第二可程式電阻式& 機存取記憶層320。蝕刻化學物可依據材料或材料選擇。 舉例來說,假如第二導電構件512使用氮化鈦(TiN)以及 第二可程式電阻式隨機存取記憶體構件510使用鎢氡化物 (W〇x),則兩階段蝕刻程序之以氯(C12)對第二導電層512 進行第一次蝕刻,以及以氟化硫(SR)對第二可程式電阻式 隨機存取記憶體構件510進行第二次#刻。 第6圖為繪示根據本發明雙穩態可程式電阻式隨機 存取記憶體的電阻式隨機存取記億胞結構600之簡單示意 圖。此胞結構600繪示底層610已被蝕刻穿過,如上述第 5圖之描述。雙穩態可程式電阻式隨機存取記憶體600包 含底層610係設置於第二可程式電阻式隨機存取記憶體構 27For the "TW2958PA ribs HMe", the difference between the first programmable resistive random access memory component 410 and the second programmable resistive random access memory component 51 is approximately twice as appropriate. Figure 5 is a block diagram 500 showing the next step of fabricating a bistable resistive random access memory in accordance with the present invention, etched through a second electrical mode to access the memory layer. 322 and the second programmable resistor 2 memory access memory layer 320 (as shown in FIG. 3) is etched to the top surface of the underlying layer by a reactive ion etch or etched through a bottom layer 61 〇 (eg, FIG. 6 The second conductive member 512 and the second programmable resistive random access memory device 510 are formed. The last program can be used to the second conductive layer 322 and the first programmable resistive random access memory layer 320. A single non-isotropic phase bites a two-stage procedure, first, the first etch chemistry etches the second conductive layer 322; second, the second etch etch etches the second programmable resist & machine access memory Layer 320. The etch chemistry can be selected based on the material or material. For example, if The second conductive member 512 uses titanium nitride (TiN) and the second programmable resistive random access memory member 510 uses tungsten germanium (W〇x), and the two-stage etching process uses chlorine (C12) to the second. The conductive layer 512 performs the first etching, and the second programmable resistive random access memory device 510 is etched with the sulfur fluoride (SR). FIG. 6 is a diagram showing the bistable according to the present invention. A simplified schematic diagram of a resistive random access memory of a programmable resistive random access memory. The cell structure 600 illustrates that the bottom layer 610 has been etched through, as described in Figure 5 above. The program resistive random access memory 600 includes a bottom layer 610 disposed on the second programmable resistive random access memory structure.

200820426TW2958pA 件510下。底層610的蝕刻程序於中間介電層630的頂面 即停止。底層610則與接觸孔620連接,係設置於底層610 之下以及由中間介電層630圍繞。接觸孔620的實施例包 含鎢栓塞(W_plug)或多晶矽栓塞(poly—si plug)。而多晶 矽栓塞則可由多晶矽兩極體(p〇ly-Si diode)或NP二極體 (NP diode)所構成。 第7圖為繪示根據本發明具有一電阻式隨機存記憶 層之雙穩態電阻式隨機存取記憶體的電流-電壓曲線之範 • 例700,其X軸為電壓710而y軸為電流720。在一重置 (RESET)狀態730,此電阻式隨機存取記憶層為低電阻。在 一設定(SET)狀態740,此電阻式隨機存取記憶層於一高電 阻。在此例子中,此電阻式隨機存取記憶層的設定/重置 窗大約為一個數量級之讀取電壓750。此讀取電壓,圖示 為一虛線752,表現展示高電流狀態(高邏輯狀態)以及低 電流狀態(低邏輯狀態)之間具有一顯著間隙。從重置狀態 730,在電壓應力之後,重置狀態730内的電流昇高至高 * 電流。從設定狀態740,設定狀態内的電流降低。電流停 止時的大幅擺蘯,由低狀態至高狀態或由高狀態至一低狀 態,以電壓控制不同邏輯多重狀態會變得困難。因此,以 不同電阻式隨機存取記憶層以串連相互連接,而此處每一 電阻式隨機存取記憶體具有各自妁面積或自己的電阻,用 於雙穩態電阻式隨機存取記憶體實現不同邏輯狀態。 第8A圖為繪示根據本發明具有兩個均位於重置 (RESET)狀態之電阻式隨機存取記憶體構件之雙穩態可程 28 ΓΨ2958ΡΑ 200820426 式電阻式隨機存取記憶體600之簡單示意圖。當第一苛程 式電阻式隨機存取記憶體構件410和第二可程式電阻式隨 機存取記憶體構件510均於重置狀態,此雙穩態可程式電 阻式隨機存取記憶體600操作於邏輯狀態,,〇〇,,。第二可 程式電阻式隨機存取記憶體構件510具有一電阻i?810而 第一可程式電阻式隨機存取記憶體構件41〇具有一電障 /]?820。此處變數ί大於1,因為第一可程式電阻式隨機存 取記憶體構件410的面積小於第二可程式電阻式隨機存取 • 記憶體構件510之面積。此雙穩態可程式電阻式隨機存取 記憶體600的總電阻大約為(1 + /)尺。舉例來說,假設變數 /等於2,而總電阻可計算為數學式表示為(1+2/〇=3i?。 第8B圖繪示根據本發明之具有兩個位於設定(SET〉 及重置(RESET)狀態電阻式隨機存取構件的雙穩態可程式 電阻式隨機存取記憶體600之簡單示意圖。當第一可程式 電阻式隨機存取記憶體構件410於一設定狀態以及第二可 程式電阻式隨機存取記憶體構件510於一重置狀態,此雙 鲁穩態可程式電阻式隨機存取記憶體600操作於一邏輯狀 態” 01” ,而此處的第二可程式電阻式隨機存取記憶體構 件510仍然於處於重置狀態或未充電。第二可程式電阻式 隨機存取記憶體構件510具有一電阻肋1〇以及第一可程 〜式電阻式隨機存取記憶體構件410具有一電随;7 fj?8 3 0,此 處的變數/3比1大。而雙穩態可程式電阻式隨機存取記憶 體600的總電阻大約為(i+j3/)i?。舉例來說,假如變數f 等於2以及變數等於1〇,而總電阻經計算為21i?,其數 29200820426TW2958pA piece 510. The etching process of the bottom layer 610 is stopped at the top surface of the intermediate dielectric layer 630. The bottom layer 610 is connected to the contact hole 620 and is disposed under the bottom layer 610 and surrounded by the intermediate dielectric layer 630. Embodiments of the contact hole 620 include a tungsten plug (W_plug) or a poly-si plug. The polycrystalline germanium plug can be composed of a polycrystalline germanium (p〇ly-Si diode) or an NP diode. Figure 7 is a diagram showing a current-voltage curve of a bistable resistive random access memory having a resistive random memory layer according to the present invention. The X-axis is voltage 710 and the y-axis is current. 720. In a RESET state 730, the resistive random access memory layer is low. In a set (SET) state 740, the resistive random access memory layer is at a high resistance. In this example, the set/reset window of the resistive random access memory layer is approximately one order of magnitude of read voltage 750. This read voltage, shown as a dashed line 752, exhibits a significant gap between the high current state (high logic state) and the low current state (low logic state). From reset state 730, after the voltage stress, the current in reset state 730 rises to a high current. From the set state 740, the current in the set state is lowered. When the current stops, the large swing from low state to high state or from high state to low state makes it difficult to control different logic multiple states with voltage. Therefore, the different resistive random access memory layers are connected in series, and each of the resistive random access memories has its own area or its own resistance for the bistable resistive random access memory. Implement different logic states. FIG. 8A is a simplified diagram showing a bistable process 28 ΓΨ 2958 ΡΑ 200820426 type resistive random access memory 600 having two resistive random access memory devices each located in a RESET state according to the present invention. . When the first critical resistive random access memory component 410 and the second programmable resistive random access memory component 510 are in a reset state, the bistable programmable resistive random access memory 600 operates on Logic state, 〇〇,,. The second programmable resistive random access memory device 510 has a resistor i? 810 and the first programmable resistive random access memory device 41 has an electrical barrier /?? Here, the variable ί is greater than 1, because the area of the first programmable resistive random access memory member 410 is smaller than the area of the second programmable resistive random access memory member 510. The total resistance of this bistable programmable resistive random access memory 600 is approximately (1 + /) feet. For example, assume that the variable / is equal to 2, and the total resistance can be calculated as a mathematical expression as (1 + 2 / 〇 = 3i?. Figure 8B shows two settings (SET > and reset according to the present invention) A simple schematic diagram of a bistable programmable resistive random access memory 600 of a (RESET) state resistive random access device. When the first programmable resistive random access memory component 410 is in a set state and a second The program resistive random access memory device 510 is in a reset state, and the dual Rustable programmable resistive random access memory 600 operates in a logic state "01", and the second programmable resistance type here The random access memory component 510 is still in a reset state or is not charged. The second programmable resistive random access memory component 510 has a resistive rib 1 and a first programmable resistive random access memory. The member 410 has an electrical; 7 fj? 8 3 0, where the variable /3 is greater than 1. The total resistance of the bistable programmable resistive random access memory 600 is approximately (i + j3 /) i For example, if the variable f is equal to 2 and the variable is equal to 1〇 While the total resistance was calculated to be the number 21i ?, 29

20082Pi26TW2958PA 學式表示如(l〇+2i)i^3i丑。 第8C圖繪示根據本發明具有兩個位於設定(SET)及 重置(RESE1T)狀態之電阻式隨機存取記憶體構件的雙穩態 可程式電I1 且式隨機存取記憶體6〇〇之簡單示意圖。當第一 電阻式隨機存取記憶體材料構件410於一重置狀態以及第 二可程式電阻式隨機存取記憶體構件51〇於一設定狀態, 此雙穩態可程式電阻式隨機存取記憶體600操作於邏輯狀 態’’ 10” ’而此處第一可程式電卩且式隨機存取記憶體構件 _ 仍於重置狀態或充電。第二可程式電阻式隨機存取記 憶體構件510具有一電阻以及第一可程式電阻式隨 機存取記憶體構件410具有一電阻//?86〇,此處變數/2大 於1。此雙穩態可程式電阻式隨機存取記憶體6〇〇的總電 阻大約為舉例來說,假設變數/等於2且變數η 等於10 ’總電阻可計算為l2i?,其數學式表示為 (10+2)i?=12i?。 .第8D圖繪示根據本發明之具有兩個位於設定(SET) 狀態之電阻式隨機存取記憶體構件的雙穩態可程式電阻 式隨機存取記憶體600之簡單示意圖。當第一可程式電阻 式隨機存取記憶體構件410於一設定狀態以及第二可程式 電阻式隨機存取記憶體構件51〇於一設定狀態,則此雙穩 態可程式電弍隨機存取記憶體600操作於一邏輯狀 態” 1Γ 。第二可程式電阻式隨機存取記憶體構件510 具有一電阻以及第一電阻式隨機存取記憶體41〇具 有一電阻ii/i?880。此雙穩態可程式電阻式隨機存取記憶體 3020082Pi26TW2958PA The expression is as ugly as (l〇+2i)i^3i. FIG. 8C is a diagram showing a bistable programmable electrical I1 and a random access memory device having two resistive random access memory components in a set (SET) and reset (RESE1T) state according to the present invention. A simple schematic. When the first resistive random access memory material component 410 is in a reset state and the second programmable resistive random access memory component 51 is in a set state, the bistable programmable resistive random access memory The body 600 operates in a logic state ''10'' where the first programmable memory random access memory component is still in a reset state or charged. The second programmable resistive random access memory component 510 The resistor and the first programmable resistive random access memory device 410 have a resistor / / 86 〇, where the variable /2 is greater than 1. The bistable programmable resist random access memory 6 〇〇 The total resistance is approximately for example, assuming that the variable / is equal to 2 and the variable η is equal to 10 'the total resistance can be calculated as l2i?, and its mathematical expression is expressed as (10 + 2) i? = 12i?. Figure 8D A simplified schematic diagram of a bistable programmable resistive random access memory 600 having two resistive random access memory components in a set (SET) state in accordance with the present invention. When the first programmable resistive random access is performed The memory member 410 is in a set state The second programmable resistive random access memory 51〇 member in a set state, then the bistable electrically programmable random access memory 600 Er operating state "1Γ in a logic. The second programmable resistive random access memory device 510 has a resistor and the first resistive random access memory 41 has a resistor ii/i?880. The bistable programmable resistive random access memory 30

FW2958PA 200820426 600的總電阻大約為/2(1 + /)]?。舉例來說,假設變數/等 於2以及變數/]等於10,總電阻可以計算為30i?,而數學 式表示為 10(l+2)i?=30i?。 第9圖繪示根據本發明以串聯方式連接之兩個電阻 式隨機存取記憶體構件以提供四種邏輯狀態的雙穩態可 程式電阻式隨機存取記憶體600之四種邏輯狀態之數學關 係,且每記憶胞儲存兩位元。三個變數i?、/]以及ί使用 電阻關係的方程式,此處變數i?表示一記憶體構件的重置 • 電組、變數/2與電阻式隨機存取記憶體材料的特性有關, 且變數/與介電側壁子的厚度有關。換句話說,變數Ώ隨 材料特性相關而定。變數f可以藉由介電側壁子厚度來控 制。在邏輯狀態「0」910,雙穩態可程式電阻式隨機存取 記憶體600的總電阻大約為(l+/)i?。在邏輯狀態「1」920, 雙穩態可程式電阻式隨機存取記憶體600的總電阻大約為 (n+/)i?。在邏輯狀態「2」930,雙穩態可程式電阻式隨機 存取記憶體600的總電阻大約為(l+/3/)i?。在邏輯狀態「3」 胃 940,雙穩態可程式電阻式隨機存取記憶體600的總電阻 大約為調整變數f來符合電阻變換,以便有充 足之操作窗在雙穩態可程式電阻式隨機存取記憶體600中 進行二位元操作。舉例來說,上述二位元操作窗在以下列 之電阻表示:3i?、至30i?。假如變數/2=100,以 及變數P2,而二位元操作窗將被計算為3i?、102i?、201i? 及 300i?〇 第10圖繪示根據本發明以串聯方式連接多重電阻式 31 200820426 TW2958pa 隨機存取記憶體構件以使每一記憶體單元提供多重位元 之雙穩態電阻式隨機存取記憶體1000的示意圖。多重電 阻隨機存取記憶體構件以串聯連接每一記憶胞以提供多 重位元。雙穩態電阻式隨機存取記憶體1000包含以串連 連接的多重電阻式隨機存取記憶層,換言之即為一第一可 程式電阻式隨機存取記憶層310與第二可程式電阻式隨機 存取記憶層320串聯,第二可程式電阻式隨機存取記憶層 320與第三可程式電阻式隨機存取記憶層1〇1〇串聯,…, • 第(n-l)th可程式電阻式隨機記憶層1020與第nth可程式電 阻式隨機存取記憶層1030串聯。於實施例中,每個第一、 第二、第三…(η-1广、Z可程式電阻式隨機存取記憶層 310、320 '1010、1〇2〇、1030分別提供儲存兩邏輯狀態的 能力。在另一實施例中,每個第一、第二、第三…(η - l)th、 nth可程式電阻式隨機存取記憶層310、320、1010、1020、 1030分別提供儲存大於兩位元的資訊的能力。在其他的實 施例中,每個第一、第二、第三…(n-l)th、nth可程式電阻 馨 式隨機存取記憶層310、320、1010、1020、1030分別提 供儲存兩個或多於兩位元的資訊能力,其中每位元具有儲 存多重的資訊的能力。雙穩態電阻式隨機存取記憶體1000 的總邏輯狀態數量藉由各電阻式隨機存取記憶層的X數目 … : - 以及每位元的層數y來決定,以數學式ZX*y表示,符號Z 表示總電阻式隨機存取記憶層的總數量。舉例來說,假如 雙穩態電阻式隨機存取記憶體⑽具有八個電阻式隨機 存取記憶層,此處每電阻式存取記憶層可儲存i元位的資 32 2〇〇82mw· 訊以及母一位元儲存兩邏輯狀態或電流位準,而邏輯狀態 的總數目可計算為81*2或64種邏輯狀態。 每個第一、第二、第三…(n-l)th、nth可程式電阻式 隨機存取記憶層310、320、1010、1〇20、1030材料分別 可為相同或相異,或是某一些電阻式隨機存取記憶層使甩 相同的材料,部分結合其他電阻式隨機存取記憶層使用另 一材料。此外,第一、第二、第三…(n-l)th、nth可程式 電阻式隨機存取記憶層310、320、1010、1020、1030厚 度可彼此相同或相異,或者某一些電阻式隨機存取記憶體 使用相同的厚度,部分其他電阻式隨機存取記憶層的使用 不同的厚度。第一、第二、第三…(n-l)th、可程式電阻 式隨機存取記憶層310、320、1010、1020、1030的厚度 範圍例如大約從1奈米(nm)至2〇〇奈米(nm)之間。 每一電阻式隨機存取記憶層均會與一導電層相連。除 上述描述的第一及第二導電層312、322,第三導電層1Q?12 設置於第三電阻式隨機存取記憶層1〇1〇上。第(n—丨广 導電層1022設置於第(n-l)th電阻式隨機存取記憶層上。 第nth導電層1032設置於第一可程式電阻式隨機存取記憶 層1030上。 第11圖繪示根據本發明具有蝕刻程序於第一及第二 可程式電阻式隨機存取記憶體構件41〇、510以及沈積第 一、第二介電侧壁子430、liio的雙穩態電阻式隨機存取 記憶體1000之示意圖。蝕刻程序可以更進一步的執行於 第一及第二可程式電阻式隨機存取記憶體構件410、51〇 33The total resistance of the FW2958PA 200820426 600 is approximately /2 (1 + /)]?. For example, assuming the variable / is equal to 2 and the variable /] is equal to 10, the total resistance can be calculated as 30i?, and the mathematical expression is expressed as 10(l+2)i?=30i?. FIG. 9 is a diagram showing the mathematics of four logic states of the bistable programmable resistive random access memory 600 connected in series by two resistive random access memory components connected in series according to the present invention. Relationship, and each memory cell stores two dollars. The three variables i?, /] and ί use the equation of the resistance relationship, where the variable i? represents the reset of a memory component, the electrical group, the variable/2 is related to the characteristics of the resistive random access memory material, and The variable is related to the thickness of the dielectric sidewall. In other words, the variable Ώ depends on the material properties. The variable f can be controlled by the thickness of the dielectric sidewalls. In logic state "0" 910, the total resistance of the bistable programmable resistive random access memory 600 is approximately (l+/)i?. In logic state "1" 920, the total resistance of the bistable programmable resistive random access memory 600 is approximately (n + /) i?. In logic state "2" 930, the total resistance of the bistable programmable resistive random access memory 600 is approximately (l+/3/)i?. In the logic state "3" stomach 940, the total resistance of the bistable programmable resistive random access memory 600 is approximately the adjustment variable f to conform to the resistance transformation, so that there is sufficient operation window in the bistable programmable resistance random The two-bit operation is performed in the access memory 600. For example, the above two-bit operation window is represented by the following resistances: 3i?, to 30i?. If the variable /2 = 100, and the variable P2, and the two-bit operation window will be calculated as 3i?, 102i?, 201i? and 300i? Figure 10 shows the multiple resistance type 31 connected in series according to the present invention. TW2958pa A schematic diagram of a bistable resistive random access memory 1000 that provides random access memory components such that each memory cell provides multiple bits. Multiple Resistive Random Access Memory Components connect each memory cell in series to provide multiple bits. The bistable resistive random access memory 1000 includes a multi-resistive random access memory layer connected in series, in other words, a first programmable resistive random access memory layer 310 and a second programmable resistive random access The access memory layer 320 is connected in series, and the second programmable resistive random access memory layer 320 is connected in series with the third programmable resistive random access memory layer 1〇1〇,..., • (nl)th programmable resistive random The memory layer 1020 is connected in series with the nth programmable resistive random access memory layer 1030. In the embodiment, each of the first, second, third, ... (n-1 wide, Z programmable resistive random access memory layers 310, 320 '1010, 1〇2, 1030 respectively provides storage of two logic states In another embodiment, each of the first, second, third, (η - l)th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 provides storage, respectively. The ability to be greater than two bits of information. In other embodiments, each of the first, second, third (nl)th, nth programmable resistance singular random access memory layers 310, 320, 1010, 1020 1030 provides information capabilities for storing two or more bits, each of which has the ability to store multiple pieces of information. The total number of logic states of the bistable resistive random access memory 1000 is determined by resistors. The number of Xs of the random access memory layer is determined by: - and the number of layers y per bit, expressed as the mathematical formula ZX*y, and the symbol Z represents the total number of total resistive random access memory layers. For example, if The bistable resistive random access memory (10) has eight resistive random memories The memory layer, where each resistive access memory layer can store the i-bits of 32 2 〇〇 82 mw · and the mother bit stores two logic states or current levels, and the total number of logic states can be calculated as 81 *2 or 64 kinds of logic states. Each of the first, second, third... (nl)th, nth programmable resistive random access memory layers 310, 320, 1010, 1〇20, 1030 materials may be the same respectively Or different, or some resistive random access memory layer makes the same material, part of the other resistive random access memory layer uses another material. In addition, the first, second, third... (nl) Th, nth programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 thickness may be the same or different from each other, or some resistive random access memory uses the same thickness, some other resistive random memory Taking different thicknesses of the memory layer, the first, second, third, ... (nl)th, programmable resistive random access memory layers 310, 320, 1010, 1020, 1030 have a thickness ranging, for example, from about 1 nm. Between (nm) and 2 nanometers (nm). The resistive random access memory layers are all connected to a conductive layer. In addition to the first and second conductive layers 312, 322 described above, the third conductive layer 1Q? 12 is disposed on the third resistive random access memory layer 1 The nth conductive layer 1022 is disposed on the (nl)th resistive random access memory layer. The nth conductive layer 1032 is disposed on the first programmable resistive random access memory layer 1030. 11 is a diagram showing an etch process for the first and second programmable resistive random access memory devices 41, 510 and the first and second dielectric sidewalls 430, lio bistable according to the present invention. Schematic diagram of resistive random access memory 1000. The etching process can be further performed on the first and second programmable resistive random access memory components 410, 51〇 33

200820426 XW2958PA ♦ 以及後續的電阻式隨機存取記憶層,如第三電阻式隨機存 ~ 取記憶層1010。在此例子中,第三導電層1012在第三電 阻式隨機存取記憶層1010同時被蝕刻。相同的介電侧壁 子也設置於後續的的導電層及電阻式隨機存取記憶層 上。於實施例中,第二可程式電阻式隨機存取記憶體構件 510的面積主要是藉由第一介電側壁子430來決定的。相 同地,第三電阻式隨機存取記憶體構件1010的面積主要 也是藉由第二介電侧壁子1110來決定的。因此,每一電 • 阻式隨機存取記憶層具有其各別的面積,且主要是由介電 侧壁子的厚度所定義的,如此,電阻式隨機存取記憶層具 有其各自的電阻。 第12圖繪示根據本發明去除介電侧壁子後具有多重 電阻式隨機存取記憶體構件及多重導電構件的雙穩態電 阻式隨機存取記憶體1200之示意圖。雙穩態電阻式隨機 存取記憶體1200包含第一導電構件412設置於第一可裎 式電阻式隨機存取記憶體構件410上、第一可程式電阻式 ® 隨機存取記憶體構件410設置於第二導電構件512上、第 二導電構件512設置於第二可程式電阻式隨機存取記憶體 構件510上、第二可程式電阻式隨機存取記憶體構件510 設置於第三導電構件1220上、第三導電構件1220設置於 第三可程式電阻弍隨機存取記憶體構件1210···,以及第 nth導電構件1040設置於第nth可程式電阻式隨機存取記憶 體層1030上。於實施例中,第一導電構件412與第一可 程式電阻式隨機存取記憶體構件410具有相同的寬度,且 34200820426 XW2958PA ♦ and subsequent resistive random access memory layers, such as the third resistive random access memory layer 1010. In this example, the third conductive layer 1012 is simultaneously etched in the third resistive random access memory layer 1010. The same dielectric sidewalls are also disposed on the subsequent conductive layer and the resistive random access memory layer. In an embodiment, the area of the second programmable resistive random access memory device 510 is primarily determined by the first dielectric sidewall 430. Similarly, the area of the third resistive random access memory device 1010 is also primarily determined by the second dielectric sidewall 1110. Therefore, each of the resistive random access memory layers has its own respective area and is mainly defined by the thickness of the dielectric sidewalls. Thus, the resistive random access memory layers have their respective resistances. 12 is a schematic diagram of a bistable resistive random access memory 1200 having multiple resistive random access memory components and multiple conductive members after removing dielectric sidewalls in accordance with the present invention. The bistable resistive random access memory 1200 includes a first conductive member 412 disposed on the first removable resistive random access memory component 410, and a first programmable resistive random access memory component 410 disposed. On the second conductive member 512, the second conductive member 512 is disposed on the second programmable resistive random access memory device 510, and the second programmable resistive random access memory member 510 is disposed on the third conductive member 1220. The upper and third conductive members 1220 are disposed on the third programmable resistance random access memory device 1210 . . . , and the nth conductive member 1040 is disposed on the nth programmable resistive random access memory layer 1030. In an embodiment, the first conductive member 412 has the same width as the first programmable resistive random access memory member 410, and 34

TW2958PA 200820426 小於第二導電構件512及第二可程式電阻式隨機存取記憶 體構件510的寬度。第二導電構件512與第二可程式電阻 式隨機存取記憶體構件510具有相同的寬度,且小於第三 導電構件1220及第三可程式電阻式隨機存取記憶體構件 1210的寬度。第/導電構件1〇4〇及第nth可程式電阻式 隨機存取記憶體層1030的寬度會較前一個電阻式隨機存 取記憶體構件及導電構件的寬度為寬。 如第12及第13圖所示,位元線電壓施加於雙穩態可 程式電阻式隨機存取記憶體600使其達到不同的邏輯狀 態。如第5圖的結構500可以第13圖以祖同電路圖希意。 在此實:施例中,描述兩可程式電阻式隨機存取記憶;|,、以 及額外附加記憶層及相對應的位元線電壓。此電路1300 之第一電阻器Rd310表示第一可程式電阻式隨機存取記 憶體構件410的電阻,以及第二電阻器H312表示第二可 程式電阻式隨機存取記憶體構件510的電阻,而與具有第 一位元線電壓VmI320的第一位元線BLd340與具有第二位 元線電壓Vb21330的第二位元線BL21342相連。第一位元線 電壓Vm1320與連接於第一導電層構件412的頂面以及第 二位元線電壓Vb2l330與第二可程式電阻式隨機存取記憶 體構件510的底面相連。在此實施例中,雙穩態電阻式隨 機存取記憶體500包含兩可4s式電阻式隨機存取記憶層’ 其具有兩個分別與第一可程式電阻式隨機存取記憶體構 件410和第二可程式電阻式隨機存取記憶體構件510相連 的電壓,其中第一電壓至第一可程式電阻式隨機存取記憶 35 ΓΨ295δΡΑ 200820426 體構件410,以符號v1rram1312表示而第二電壓至第二電阻 式隨機存取構件510 ’以符號表示。此第一可程 式電阻式隨機存取電壓11313具有一第一^端斑第^一導 電構件412相連’以及一第二端與第一可程式電阻式隨機 存取記憶體構件410相連。第二可程式電阻式隨機存取記 憶體電壓VmM 1314具有一第一端一般與第一可程式電阻 式隨機存取記憶體構件410及第一可程式電阻式隨機存取 電壓Vi_l 313相連,以及以一第二端與第二可程式電阻式 • 隨機存取記憶體構件510相連,另外的可程式電阻式隨機 存取記憶體電壓’如V3m»il316與第三可程式電阻式隨機存 取記憶體1210相連,且可施加於於後績的可程式電阻式 隨機存取記憶體構件。 當雙穩態電阻式隨機存取記憶體500為重置狀態 時,也就是重置狀態,此雙穩態可程式電阻式隨機存取記 憶體600由邏輯狀態「〇」(或狀態「00」)設定。此雙穩 態可程式電阻式隨機存取記憶體600可從邏輯狀態「〇」程 B 式化至邏輯狀態「1」(或狀態「01」)、或是從邏輯狀態 「0」至邏輯狀悲「2」(或狀態「10」)、或是從邏輯狀態 「〇」至邏輯狀態「3」(或狀態「11」)。 在可程式雙穩態電阻式隨機存取記憶體500從邏輯 , 狀態「〇〇」至邏輯狀態「10」過程中,-第--電壓施加於第 一位元線達到第一位元線電壓Vbil320以及一第二電壓施 加於第二位元線達當第二位元線電壓1^1330。施加達到第 一位元線電壓U320的電壓可為〇電壓或者是小的負電 36TW2958PA 200820426 is smaller than the width of the second conductive member 512 and the second programmable resistive random access memory member 510. The second conductive member 512 has the same width as the second programmable resistive random access memory member 510 and is smaller than the width of the third conductive member 1220 and the third programmable resistive random access memory member 1210. The width of the first/conductive member 1〇4〇 and the nth programmable resistive random access memory layer 1030 is wider than the width of the previous resistive random access memory member and the conductive member. As shown in Figures 12 and 13, the bit line voltage is applied to the bistable programmable resistive random access memory 600 to achieve different logic states. The structure 500 as shown in Fig. 5 can be imagined in Fig. 13 with the same circuit diagram. In this case, in the embodiment, two programmable resistive random access memories are described; |, , and additional additional memory layers and corresponding bit line voltages. The first resistor Rd310 of the circuit 1300 represents the resistance of the first programmable resistive random access memory component 410, and the second resistor H312 represents the resistance of the second programmable resistive random access memory component 510. The first bit line BLd340 having the first bit line voltage VmI320 is connected to the second bit line BL21342 having the second bit line voltage Vb21330. The first bit line voltage Vm1320 is connected to the top surface of the first conductive layer member 412 and the second bit line voltage Vb2l330 to the bottom surface of the second programmable resistive random access memory device 510. In this embodiment, the bistable resistive random access memory 500 includes two 4s resistive random access memory layers having two separate and first programmable resistive random access memory components 410 and The second programmable resistive random access memory component 510 is connected to the voltage, wherein the first voltage to the first programmable resistive random access memory 35 ΓΨ 295 δ ΡΑ 200820426 body member 410, represented by the symbol v1rram 1312 and the second voltage to the second The resistive random access member 510' is represented by a symbol. The first programmable resistive random access voltage 11313 has a first end spot electrically connected to the conductive member 412 and a second end connected to the first programmable resistive random access memory member 410. The second programmable resistive random access memory voltage VmM 1314 has a first end generally connected to the first programmable resistive random access memory component 410 and the first programmable resistive random access voltage Vi_l 313, and A second end is connected to the second programmable resistive random access memory component 510, and another programmable resistive random access memory voltage such as V3m»il316 and a third programmable resistive random access memory The bodies 1210 are connected and can be applied to the programmable resistive random access memory components of the subsequent performance. When the bistable resistive random access memory 500 is in a reset state, that is, a reset state, the bistable programmable resistive random access memory 600 has a logic state of "〇" (or state "00" )set up. The bistable programmable resistive random access memory 600 can be programmed from a logic state "B" to a logic state "1" (or state "01"), or from a logic state "0" to a logic state. Sad "2" (or state "10"), or logical state "〇" to logic state "3" (or state "11"). In the process of programmable bistable resistive random access memory 500 from logic, state "〇〇" to logic state "10", the -th voltage is applied to the first bit line to reach the first bit line voltage Vbil 320 and a second voltage are applied to the second bit line up to the second bit line voltage 1^1330. The voltage applied to the first bit line voltage U320 can be a chirp voltage or a small negative voltage.

200820426TW7O200820426TW7O

,,…—TW2958PA • 壓。施加於第一元位線Vbil320及第二位元線電壓U330 間的電壓差值與第一電阻式隨槪存取記憶體電壓 1_1313及第二電阻式隨機存取記憶體電壓V2_13u的 總合相等,若以數學表示即為:Vb2-Vbi=V2mM+V1R_=:VK第 一可程式電阻式隨機存取記憶體構件410和第二可程式電 阻式隨機存取記憶體構51〇兩者的初始狀態為重置狀態, 也就是一低電阻的狀態。在此實施例中,第一可程式電阻 式隨機存取記憶體構件410的面積較第二可程式電阻式隨 ⑩ 機存取記憶體構510的面積小。因此,第一可程式電阻式 隨機存取記憶體構件410的電阻較第二可程式電阻式隨機 存取記憶體構510的電阻高。這意義即為第一電阻式隨機 存取記憶體電壓VuRAM1313的值較第二電阻式隨機存取記 憶體電壓V2miil314大,若以數學關係式表示即為 VlRRAM&gt;V2RRAM。假設第一電阻式隨機存取記憶體電壓 1313比一重置電壓大(VurAVset),則第一可程式電阻式隨 機存取記憶體構件410由一重置狀態改變為一設定狀態 鲁(也就是高電阻)。假如第二電阻式隨機存取記憶體電壓 V2RRAM1 314小於設定電壓(V2RRAM〈VsET),則第二可程式電阻式 隨機存取記憶體構件510保持於重置狀態下。此第一可程 式電阻式隨機存取記憶體構件410的電阻具有(1+/)允的電 阻值從屬轉狀態「0」(或狀態「00」)改變至具亦電降 的遢輯狀態「2」(或狀態「10」)。舉例來說’假 如變數/=2,變數,及第二可程式電阻式隨機存取記 憶體構件510的重置電阻等於[而總電阻就會從3]?改變 37,,...—TW2958PA • Pressure. The voltage difference applied between the first bit line Vbil320 and the second bit line voltage U330 is equal to the sum of the first resistive access memory voltage 1_1313 and the second resistive random access memory voltage V2_13u If expressed mathematically: Vb2-Vbi=V2mM+V1R_=: VK initial programmable resistive random access memory component 410 and second programmable resistive random access memory structure 51〇 initial The state is a reset state, that is, a low resistance state. In this embodiment, the area of the first programmable resistive random access memory component 410 is smaller than the area of the second programmable resistive memory access memory 510. Therefore, the resistance of the first programmable resistive random access memory component 410 is higher than the resistance of the second programmable resistive random access memory structure 510. This means that the value of the first resistive random access memory voltage VuRAM 1313 is larger than the second resistive random access memory voltage V2miil 314, and if expressed in a mathematical relationship, it is VlRRAM &gt; V2RRAM. Assuming that the first resistive random access memory voltage 1313 is greater than a reset voltage (VurAVset), the first programmable resistive random access memory component 410 is changed from a reset state to a set state (ie, High resistance). If the second resistive random access memory voltage V2RRAM1 314 is less than the set voltage (V2RRAM < VsET), the second programmable resistive random access memory component 510 remains in the reset state. The resistance of the first programmable resistive random access memory component 410 has a (1+/) allowable resistance value dependent state "0" (or state "00") changed to a state with an electrical drop. 2" (or status "10"). For example, if the variable /=2, the variable, and the second programmable resistive random access memory member 510 have a reset resistance equal to [and the total resistance will change from 3]?

TW2958PA 200820426 至 21i?〇 在雙穩態可程式電阻式隨 狀態「0」(或狀態「00」)程式1存取記憶體600從邏輯 態「11」)的過程中,第一電2 ^至邏輯狀態「3」(或狀 一位元線電壓Vm1320,而第二f =加於第一位兀線達到第 第二位元線電壓Vbd330。施加遠加於第二位兀線達當 的電壓可以為零電壓或是小的^第—位元線電壓^1320 隨機存取記憶體構件41G和第二二髮。第—可程式電阻式 憶體構件51〇的初始狀態為;阻式隨機存取記 狀態。介於第-位元線電壓v ^&quot;也就疋一低電阻 V 1QQO ^ ^ Vbll32〇和第二位元線電壓TW2958PA 200820426 to 21i? In the process of bistable programmable resistance with state "0" (or state "00") program 1 access memory 600 from logic state "11"), the first power 2 ^ to Logic state "3" (or a bit line voltage Vm1320, and the second f = applied to the first bit line reaches the second bit line voltage Vbd330. Apply a voltage that is farther than the second bit line The memory device 41G and the second second can be randomly connected to a zero voltage or a small ^-bit line voltage ^1320. The initial state of the first-programmable resistive memory member 51 is: resistive random storage Take the state. Between the first bit line voltage v ^ &quot; also a low resistance V 1QQO ^ ^ Vbll32 〇 and the second bit line voltage

Vb2l330的電壓差值夠高(v 、,、 免说从;r )足以使第二^電阻式隨機存 取構件電壓V_m1313及第-雷阳4Λ &gt; 广 ΤΓ 10_ 禾一节阻式隨機存取記憶體電壓 ν_1314均較第一可程式電阻式隨機存取記憶體構件41〇 =第二可程式電阻式隨機存取記憶體構件51() &amp;細高。 第-可程式電阻式隨機存取記憶體構件則及第二可程式 電阻式隨機存取記憶體構件510的電阻狀態從重置狀態改 變至設定狀態。第一及第二可程式電阻式隨機存取記憶體 構件410、510的電阻從電阻值(1 + f)i?的邏輯狀態「〇」(狀 態「00」)變化至電阻值的邏輯狀態「3」(狀態 「11」)。舉例來說,假如變數严2,變數/2=10及第二可 程式電阻式隨機存取記憶體構件51〇的重置電阻等於芡, 則總電阻會從3i?改鍵至30J?。 在雙穩態可程式電阻式隨機存取記憶體6_從邏輯 狀態「〇」(或狀態「00」)程式化至邏輯狀態「!」(或狀 38 200820426Vb2l330 voltage difference is high enough (v,,, exempt from; r) enough to make the second ^ resistive random access device voltage V_m1313 and the first - Leiyang 4 Λ &gt; 广ΤΓ 10_ 禾 resistance random access The memory voltage ν_1314 is higher than the first programmable resistive random access memory component 41 〇 = the second programmable resistive random access memory component 51 () &amp; The resistance state of the first programmable resistive random access memory component and the second programmable resistive random access memory component 510 is changed from a reset state to a set state. The resistances of the first and second programmable resistive random access memory components 410, 510 are changed from the logic state "〇" (state "00") of the resistance value (1 + f) i? to the logic state of the resistance value. 3" (status "11"). For example, if the variable is 2, the variable /2 = 10, and the reset resistance of the second programmable resistive random access memory device 51 is equal to 芡, the total resistance is changed from 3i? to 30J?. In the bistable programmable resistive random access memory 6_ from the logic state "〇" (or state "00") to the logic state "!" (or shape 38 200820426

餐 FW2958PA • 態「01」)的過程中,此雙穩態可程式電阻式隨機存取記 憶體600首先依序從邏輯狀態「〇」(或狀態「〇〇」)改變 至逛輯狀態「3」(或狀態「η」),且第一及第二可糕式 電阻式卩逍機存取§己憶體構件41 〇、51 〇也從重置狀態改變 為設定狀態。提供給第二位元線電壓Vb2133〇的電壓可以 為零電Μ或一小負電壓,以數學式表示為: vb2-Vf Vw&lt;o。第一位元線電壓Vbll32()提供一正電壓。 在設定狀態,第一可程式電阻式隨機存取記憶體構件的面 •積較第二可程式電阻式隨機存取記憶體構510的面積小, 以便第一可程式電阻式隨機存取記憶體構件具有較第 二可程式電阻式隨機存取記憶體構件51〇高的電阻。這代 表發生一高電壓洩降通過第一可程式電阻式隨機存取記 憶體構件410 ’以數學式表示為丨v1R_|〉|^細丨。假如第一 電阻式k機存取§己憶體電壓V1RRAM1 3的絕對值大於重置 電壓(丨ViR_ | &gt;VRESET),則第一可程式電阻式隨機存取記憶:體 構件410改變至重置狀態(低電阻)。假如第二電阻式隨機 存取記憶體電壓VmAMl 314之絕對值少於重置電壓 (丨Vmu | &lt;VRESET),此第二可程式電阻式隨機存取記憶體構件 510仍維持於設定狀態。在第一和第二可程式電阻式隨機 存取記憶體構件410、510的電阻從電阻值〆1+/)及的邏 輯狀悲3 (或狀態” 11”)改、變至,電阻值(加/从的邏輯 狀態1 (或狀態” 〇1”)。舉例來說,假如變數/=2, 變數/3-10以及第二可程式電阻式隨機存取記憶體構件51〇 的重置電阻等於友,當從邏輯狀態,,0”變至,,3”時,總 39During the meal FW2958PA (state "01"), the bistable programmable resistive random access memory 600 firstly changes from the logic state "〇" (or the state "〇〇") to the browse state "3". (or state "η"), and the first and second squeezing resistors § 己, 51 〇 are also changed from the reset state to the set state. The voltage supplied to the second bit line voltage Vb2133〇 may be zero power or a small negative voltage, expressed mathematically as: vb2-Vf Vw&lt;o. The first bit line voltage Vbll32() provides a positive voltage. In the set state, the surface area of the first programmable resistive random access memory component is smaller than the area of the second programmable resistive random access memory structure 510, so that the first programmable resistive random access memory The member has a higher resistance than the second programmable resistive random access memory member 51. This represents a high voltage drop through the first programmable resistive random access memory member 410' which is mathematically represented as 丨v1R_|>| If the absolute value of the first resistive k-machine access § memory voltage V1RRAM1 3 is greater than the reset voltage (丨ViR_ | &gt; VRESET), then the first programmable resistive random access memory: body member 410 changes to heavy Set state (low resistance). If the absolute value of the second resistive random access memory voltage VmAM1 314 is less than the reset voltage (丨Vmu | &lt; VRESET), the second programmable resistive random access memory device 510 remains in the set state. The resistances of the first and second programmable resistive random access memory components 410, 510 are changed from the resistance value 〆1+/) and the logic sorrow 3 (or state "11") to the resistance value ( Add/Leave logic state 1 (or state "〇1"). For example, if the variable /=2, the variable /3-10 and the second programmable resistive random access memory component 51〇 reset resistance Equal to friend, when from logic state, 0" to, 3", total 39

200820426TW2958PA 電阻從3i?變至30i?,當邏輯狀態從” 3”變至” 1”時,總 電阻從30i?變至12i?。 兩電阻M310和R21312串連於兩位元線BL1I34O和 BLd342之間。供給於位元線之電壓分別表示為Vw 1320和 Vd21342,以及跨越兩電阻之電壓洩降分別為Vimd313和 V^RAIll 3 1 4 ’兩位元線間的電壓泡降為Vb2~ Vbl相等於VlRRAM + V2HM。如第5圖、第6圖、第8A〜8B圖、及第12圖圖示所 繪,第一可程式電阻式隨機存取記憶體構件410的面積較 • 第二可程式電阻式隨機存取記憶體構件510的面積小,因 此電阻Ri大於。 結合電阻式隨機存取記憶體的狀態,及其造成的胞值 (cell value)如第1表所示。此胞值對應於相對之整體電 阻值。 第1表狀態/值200820426TW2958PA The resistance changed from 3i? to 30i?, when the logic state changed from "3" to "1", the total resistance changed from 30i? to 12i?. Two resistors M310 and R21312 are connected in series between the two bit lines BL1I34O and BLd342. The voltages supplied to the bit lines are denoted as Vw 1320 and Vd21342, respectively, and the voltage drops across the two resistors are respectively Vimd 313 and V^RAIll 3 1 4 'The voltage bubble drop between the two lines is Vb2~ Vbl equal to VlRRAM + V2HM. As shown in FIG. 5, FIG. 6, FIG. 8A to FIG. 8B, and FIG. 12, the area of the first programmable resistive random access memory device 410 is larger than that of the second programmable resistive random access. The area of the memory member 510 is small, and thus the resistance Ri is larger. The state of the combined resistive random access memory and the resulting cell value are shown in Table 1. This cell value corresponds to the relative overall resistance value. Table 1 status / value

Ri r2 胞值 重置 重置 0(“00”) 重置 設定 Κ “or ) 設定 重置 2( “10” ) 設定 δ又疋 3( “11” ) 值得注意是第1表之實施例係依循一小尾序 (small-endian)之結構表示。也就是說,最後一個元件係 為最小有效數元(least significant digit, LSD)及最大 40Ri r2 cell reset reset 0 ("00") reset setting Κ "or ) set reset 2 ("10") set δ again 疋 3 ("11") It is worth noting that the embodiment of the first table According to the structure of a small-endian (that is, the last component is the least significant digit (LSD) and the maximum 40

rW2958PA 200820426 有效數元(most significant digit,MSD)。其他實施例 係依循大尾序(big-endian)模式,亦即數元係被保存,且 開始之程序係為同樣之程序,但兩個記憶單元係為顛倒。 如第8A至8D圖描述呈現各記憶胞狀態的數學式推導 之關係。第8A圖繪示具有第一記憶體元件Μι之記憶胞包 含第一可程式電阻式隨機存取記憶體構件41〇以及第一導 電構件420。以及第二記憶體元件吣,包含第二可程式電 阻式Ik機存取記憶體構51〇和第二導電構件52〇。此處, ⑩兩構件於一重置狀態均具有低電阻。假如R可以被當作較 大第二可程式電阻式隨機存取記憶體構51()的電阻,然後 其他的第一可程式電阻式隨機存取記憶體構件41〇的電阻 值與第二可程式電阻式隨機存取記憶體構510之一定值/ 相關。此實施例表示,此第一可程式電阻式隨機存取讀取 記憶體構件410的電阻較第二可程式電阻式隨機存取記憶 體構510的電阻高,因此常數f已知大於丨,但其他實施 例於語義上係為與上述顛倒之描述。 _ 如圖不’此實施例的第8A至第8D圖表現出的電阻的 差值係由於兩電阻式隨機存取記憶體構件不同的尺寸。較 小的電阻式隨機存取記憶體構件具有一較高的電阻值。在 另一實施例中(未繪示),藉由兩元件使用不同的材料以取 得相同的操作電阻差值。在此兩實施例結構上的差距,並 獲付在此灵%例中,兩電阻式隨機存取記憶體構件大約 為相同的厚度(以下提出詳細說明),但是其寬度不同因而 產生電阻差異。 41rW2958PA 200820426 Most significant digit (MSD). Other embodiments follow the big-endian mode, that is, the number system is saved, and the starting program is the same program, but the two memory units are reversed. The relationship of the mathematical derivation showing the state of each memory cell is described as shown in Figs. 8A to 8D. FIG. 8A illustrates that the memory cell having the first memory component 包1 includes the first programmable resistive random access memory component 41A and the first conductive member 420. And the second memory component 吣 includes a second programmable resistive Ik machine access memory structure 51〇 and a second conductive member 52〇. Here, both components have a low resistance in a reset state. If R can be regarded as the resistance of the larger second programmable resistive random access memory 51 (), then the resistance of the other first programmable resistive random access memory component 41 is the second The fixed value/correlation of the program resistive random access memory structure 510. This embodiment shows that the resistance of the first programmable resistive random access memory device 410 is higher than that of the second programmable resistive random access memory structure 510, so the constant f is known to be greater than 丨, but Other embodiments are semantically described as being reversed from the above. The difference in resistance exhibited by the 8A to 8D drawings of this embodiment is due to the different sizes of the two-resistance random access memory members. The smaller resistive random access memory device has a higher resistance value. In another embodiment (not shown), different materials are used by the two components to achieve the same operating resistance difference. The difference in structure between the two embodiments is obtained in the % of the case, and the two resistive random access memory members have approximately the same thickness (described in detail below), but the widths thereof are different to cause a difference in resistance. 41

200820426 TW2958PA 此兩電阻式隨機存取記憶體構件以串聯排列,以及因 此記憶胞的電阻可全部以或來表示。轉換 較低次序元件M2至設定狀態,其具有一相對高電阻位準, 如第8B圖所示。電阻位準與常數/]成比例升高。不同的 材料存在不同的常數,依據特定化合物的特性或准予挑 選,但是一給定材料其重置及設定狀態之間的關係可藉由 一關係式R+nR如第8B圖所示。如此,於第8B圖所繪示 的狀態可以藉由數學式或描述。 • 相似的,第8C圖繪示轉換電阻式隨機存取記憶體元 件河2至設定狀態的結果,保留Μ!於重置狀態。在此實施 例中,以相同村料形成兩構件,此常數/2可描述介於設定 與重置之間的差值,且允許以jl/i?來描述電阻值。推導出 完整的數學式來描述記憶胞的電阻值。最後,於 第8D圖繪示轉換rram構件Mi、M2至一設定狀態,產生過 渡以及//?+/]伙(|〇1%)的過渡狀態。此狀態 可表示為 或 /2(1+/)/?。 肇 .四個胞值語意上的關係可以第2表做一整澤如下。 第2表胞值關係 關係 胞值 0(“00”) 1( “01” ) 2( “10” ) 3( “11” ) 42 2〇〇82〇426_ _ 一感應操作窗的例子可以藉由設定參數值、/及及 實現。假^ 、β=1〇及/=2,四狀態的電阻值可表 示為 3χ104Ω、ι·2χΐ〇5Ω、2· 1&gt;&lt;1〇5〇及 3x1〇5q。一偵測 電壓(讀取電壓)為120mV,此四狀態的感應電流分別為4 //A、1/z A、0.6# A及0.4# A。甩以多重位準操作的區別 電壓可設定為2.5/ζΑ、0·8/ζΑ及0.5/U。對於高於2·5 μΑ的感應電流,一最低電阻狀態可被定義為狀態「〇」(或 狀恝「00」)。對於少於〇· 5以a的感應電流,一最高電阻 _狀態可被疋義為狀態「3」(或狀態「11」)。對於高於0.8 //A但少於2· 5/z A的感應電流,一低電阻狀態可被定義為 狀態「1」(或狀態「01」)。對於偵測高於0.5# a但小 於0·8μ A的感應電流,一高電阻狀態可被定義為狀態「2」 (或狀態「10」)。感應電流的變化係依據製造程序的變化 以及材料本質的變化。舉例來說,介電側壁子的厚度(或 寬度)的變化決定第二可程式電阻式隨機存取記憶體構件 鲁 的面積,其厚度及面積決定第二可程式電阻式隨機存取記 憶體構件的電阻。因此,一高品質的多重位元電阻式隨機 存取記憶體的操作需要一寬廣操作窗。一較高的常數Π以 及較高的係數/可以提供一寬廣操作窗,因此來避免產品 發生狀態確認錯誤。 藉由跨越位元線BLi和BL2施加電壓於以設定記憶體 於期望值。四電壓的總值足以完成所有如第1表所示之可 能值。在此技藝領域中之技術人員可了解存在一些可用之 實際電壓。在一實施例中,使用兩正電壓(此處的正是在 43 2〇〇82^^6TW2958pa f 了2測量)及兩则’此結果電整標記為v_、 的。特性。施加電壓的絕對值取決於記憶體構件 k I括材料及尺寸。在此實施例中表示, 。㈣及-低電壓值為 取^體H序.般的重置’也就是驅動電阻式隨機存 ==件至重置狀態’來產生〇胞值。此程序如下方 馨 第3表整體重置過渡過程 二(Vb2-Vbl )= — Vhigh)200820426 TW2958PA The two resistive random access memory components are arranged in series, and thus the resistance of the memory cells can be expressed in all or. The lower order component M2 is switched to a set state having a relatively high resistance level as shown in Fig. 8B. The resistance level increases in proportion to the constant /]. Different materials have different constants depending on the characteristics or approval of a particular compound, but the relationship between the reset and set states of a given material can be represented by a relationship R + nR as shown in Figure 8B. Thus, the state illustrated in Fig. 8B can be mathematically or described. • Similarly, Figure 8C shows the result of switching the resistive random access memory device 2 to the set state, leaving it in the reset state. In this embodiment, two members are formed in the same village material. This constant/2 describes the difference between the setting and the reset, and allows the resistance value to be described in jl/i?. Derived a complete mathematical formula to describe the resistance of the memory cell. Finally, in Fig. 8D, the transition rram components Mi, M2 are set to a set state, and a transient state of transition and //?+/](|〇1%) is generated. This state can be expressed as or /2(1+/)/?.肇. The semantic relationship of the four cell values can be as follows in the second table. The second table cell value relationship cell value 0 ("00") 1 ("01") 2 ("10") 3 ("11") 42 2〇〇82〇426_ _ An example of a sensing operation window can be Set parameter values, / and implementation. False^, β=1〇 and /=2, the resistance values of the four states can be expressed as 3χ104Ω, ι·2χΐ〇5Ω, 2·1&gt;&lt;1〇5〇 and 3x1〇5q. A detection voltage (read voltage) is 120 mV, and the induced currents of the four states are 4 //A, 1/z A, 0.6# A, and 0.4# A, respectively.区别 The difference between multiple levels of operation can be set to 2.5/ζΑ, 0·8/ζΑ and 0.5/U. For induced currents above 2·5 μΑ, a minimum resistance state can be defined as the state “〇” (or “00”). For an induced current less than 〇·5 with a, a maximum resistance _ state can be degraded to state "3" (or state "11"). For an induced current above 0.8 //A but less than 2·5/z A, a low resistance state can be defined as state "1" (or state "01"). For detecting an induced current greater than 0.5# a but less than 0·8μ A, a high resistance state can be defined as state "2" (or state "10"). The change in induced current is based on changes in the manufacturing process and changes in the nature of the material. For example, the change in the thickness (or width) of the dielectric sidewall determines the area of the second programmable resistive random access memory device, and the thickness and area determine the second programmable resistive random access memory component. The resistance. Therefore, the operation of a high quality multi-bit resistive random access memory requires a wide operating window. A higher constant Π and a higher coefficient / can provide a wide operating window, thus avoiding product status confirmation errors. A voltage is applied across the bit lines BLi and BL2 to set the memory to a desired value. The total value of the four voltages is sufficient to complete all possible values as shown in Table 1. Those skilled in the art will recognize that there are some actual voltages available. In one embodiment, two positive voltages are used (here exactly 2 measurements at 43 2〇〇82^^6TW2958paf) and two results are shown as v_,. characteristic. The absolute value of the applied voltage depends on the memory component k I including the material and size. In this embodiment, it is indicated. (4) and - the low voltage value is the reset of the body H-order. That is, the drive resistance is stored randomly == the piece to the reset state' to generate the cell value. This procedure is as follows: Table 3 overall reset transition process 2 (Vb2-Vbl) = — Vhigh)

一如上示’適當的過渡區電壓為_1,如電壓浅降的每 ^對值V_# V2_均超過重置值。隨著兩電阻式隨機 子魏體構件於重置狀態’記憶胞的整體的值則為〇。 重置狀態是進-步的操作的起始點。因為不可預知的 能發生財耻g的過渡,較佳地在純相變化操 ‘Τ T以降低單位至重置狀態做為第一步。 其相反的狀態,-胞值為3,如下方第4表中所示。 44As indicated above, the appropriate transition region voltage is _1, and the value of each of the pair of values V_#V2_, such as a shallow drop in voltage, exceeds the reset value. The value of the whole of the memory cell is 〇 as the two-resistance random sub-body member is in the reset state. The reset state is the starting point of the in-step operation. Because the unpredictable transition of the financial shame g, it is better to use the pure phase change operation Τ 以 T to lower the unit to the reset state as the first step. In its opposite state, the -cell value is 3, as shown in Table 4 below. 44

200820426 TW2958PA 第4表0-3的過渡 (Vb2~Vbl )=Vhigh 元件狀態 胞值 動作 元件狀態 胞值 Μι 0 0 Vi&lt;Vset 1 3 M2 0 ¥2&gt;VsET 1 施加一 VhUh高壓,足以產生超過兩構件之VSET的電壓 洩降。隨著兩構件於設定狀態,此胞值為二進位的11或3。 要產生一胞值2,其程序如下方第5表所示。 第5表0-2的過渡 (Vb2-Ybl)=Vlow 元件狀態 胞值 動作 元件狀態 胞值 Μι 0 0 Vl&gt;VsET 1 2 M2 0 Y2&lt;YsET 0 此設定中,此電壓洩降Vi大於產生一設定狀態的需 求,所以Ri為設定狀態,但此電壓洩降V2小於設定需求。 此結果使匕位於一設定狀態,且R2於重置狀態,而造成一 胞值為二位元01或2。 產生一胞值1的方式第6表所示。到達1值較其他過 渡轉換更加的困難,可明顯的觀察到假如兩構件從重置狀 態開始,在V2施加一足以產生設定狀態之電壓也必然會在 V!設定,而造成之值為3而非1。而此解決方法為首先讓 記憶胞全部為設定狀態,如前第3表所示。然後,從一胞 45 2〇〇82^£g6TW29舰 值3設定,施加-v_電壓足夠於I而非R產生重置狀態 而產生二位元的胞值01或1。 第6表3-1的過渡 (Vb2 - Vbl)= - Vlow 元件狀態 胞值 動作 元件狀態 胞值 Μι 1 3 I Vl | &gt;Vreset 0 1 Ϊ2 1 1 V2 1 &gt;Vreset 1 第14圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600從邏輯狀態「〇〇」至其他三個邏輯狀態, 邏輯狀態「01」、邏輯狀態「10」以及邏輯狀態「11」之 流程圖1400。在步驟1410,雙穩態可程式電阻式隨機存 取記憶體600可程式從邏輯狀態「〇〇」至三邏輯狀態、邏 輯狀態「01」、邏輯狀態「10」及邏輯狀態「11」。在步驟 1410中,雙穩態可程式電阻式隨機存取記憶體600於邏輯 狀態「00」。假如,雙穩態可程式電阻式隨機存取記憶體 600從邏輯狀態「00」程式化至邏輯狀態「〇1」,在步驟 1420中此雙穩態可程式電阻式隨機存取記憶體600首先從 邏輯狀態「00」程式化至邏輯狀態「11」,以及其次在步 驟1430中從邏輯狀態「11」程式化至邏輯狀態「01」。在 步驟142 0中此雙穩態可程:式電阻式隨機存取記憶體6 0 0 由邏輯狀態「00」程式化至邏輯狀態「11」,其第一位元 線電壓Vm1320及第二位元線電壓—1330間之差值電壓相 等於&quot;局電廢Vhigh ’以數學式表示為Vbl-Vb2:=Vhigh,此弟 46200820426 TW2958PA Transition of Table 4-3 (Vb2~Vbl)=Vhigh Component Status Cell Value Action Element Status Cell Value Μι 0 0 Vi&lt;Vset 1 3 M2 0 ¥2&gt;VsET 1 Apply a VhUh high voltage, enough to generate more than two The voltage drop of the VSET of the component. This cell value is 11 or 3 of the binary as the two components are in the set state. To generate a cell value of 2, the procedure is as shown in Table 5 below. Transition of Table 5-2 (Vb2-Ybl)=Vlow Element State Cell Value Action Element State Cell Value Μι 0 0 Vl&gt;VsET 1 2 M2 0 Y2&lt;YsET 0 In this setting, this voltage bleed Vi is greater than one Set the state of demand, so Ri is the set state, but this voltage drop V2 is less than the set demand. This result causes the 匕 to be in a set state and R2 to be in the reset state, resulting in a cell value of two bits 01 or 2. The way to generate a cell value of 1 is shown in Table 6. It is more difficult to reach the value of 1 than other transitions. Obviously, if the two components start from the reset state, applying a voltage sufficient to generate the set state at V2 will inevitably be set at V!, resulting in a value of 3. Not 1. The solution is to first make the memory cells all set, as shown in the previous table. Then, from a value of 45 2〇〇82^£g6TW29, the application of the -v_ voltage is sufficient for I instead of R to generate a reset state to produce a binary value of 01 or 1. Transition of Table 6 3-1 (Vb2 - Vbl) = - Vlow Component Status Cell Value Action Element Status Cell Value Μι 1 3 I Vl | &gt; Vreset 0 1 Ϊ 2 1 1 V2 1 &gt; Vreset 1 Figure 14 According to the present invention, the flow of the bistable programmable resistive random access memory 600 from the logic state "〇〇" to the other three logic states, the logic state "01", the logic state "10", and the logic state "11" is illustrated. Figure 1400. In step 1410, the bistable programmable resistive random access memory 600 can be programmed from a logic state "〇〇" to a three logic state, a logic state "01", a logic state "10", and a logic state "11". In step 1410, the bistable programmable resist random access memory 600 is in a logic state "00". If the bistable programmable resistive random access memory 600 is programmed from the logic state "00" to the logic state "〇1", in step 1420 the bistable programmable resistive random access memory 600 first The logic state "00" is programmed to the logic state "11", and then the logic state "11" is programmed to the logic state "01" in step 1430. In step 142 0, the bistable process: the resistive random access memory 600 is programmed from the logic state "00" to the logic state "11", and the first bit line voltage Vm1320 and the second bit The voltage of the line voltage - the difference between the voltages of 1330 is equal to &quot;the power of the waste Vhigh' is expressed in the mathematical form as Vbl-Vb2:=Vhigh, this brother 46

200820426TW2958PA ▲ 電阻式隨機存取記憶體電壓V2mM1314大於Vset電壓,且第 一電阻式隨機存取記憶體電壓V1RRAM 1313大於VSET電壓。 於步驟1430中雙穩態可程式電阻式隨機存取記憶體6〇〇 從邏輯狀態「11」程式化至邏輯狀態「〇1」,其第一元位 線電壓Vm1320和第二位元線電壓Vb21330間的電壓差值相 專於一負低電壓-VlQW ’以數學式表示為Vb2_Vbi=-Vi〇w,其第 一電阻式隨機存取憶體電壓V2miil3l4的絕對值小於Vreset 電壓的絕對值,以及第一電阻式隨機存取記憶體電壓 ⑩ Virram1313大於Vreset電壓的絕對值。 於步驟1440中雙穩態可程式電阻式隨機存取記憶體 600由邏輯软態「〇〇」程式化至邏輯狀態「10」,在第一位 元線電壓Vm1320和第二位元線電壓Vb2l330間的電壓差值 等於一低電壓Vb,而以數學式表示為Vb2-Vbl=Vw,第二電 阻式隨機存取記憶體電壓V2R_1314小於Vsn電壓,且第一 電阻式隨機存取記憶體電壓V1RRAM 1313大於Vsn電壓。於 步驟1450中雙穩態可程式電阻式隨機存取記憶體600由 胃 邏輯狀態「〇〇」程式化至邏輯狀態「11」,其第一位元線 電壓Vbil320和第二位元線電壓Vb2l330間的電壓差值等於 高電壓Vhigh,由數學式表示為Vbl-Vl&gt;2 = Vhigh,此第二電阻式 隨機存取記憶體電壓V2MAM 1314大於Vset電壓,且第一電 ,•… 阻式隨機存取記憶體電壓1313九終vsn電壓。 第15圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600從邏輯狀態「〇1」至其他三個邏輯狀態, 邏輯狀態「00」、邏輯狀態「10」以及邏輯狀態「11」之 47200820426TW2958PA ▲ The resistive random access memory voltage V2mM1314 is greater than the Vset voltage, and the first resistive random access memory voltage V1RRAM 1313 is greater than the VSET voltage. In step 1430, the bistable programmable resistive random access memory 6 is programmed from the logic state "11" to the logic state "〇1", and the first bit line voltage Vm1320 and the second bit line voltage The voltage difference between Vb21330 is specific to a negative low voltage -VlQW 'calculated as Vb2_Vbi=-Vi〇w, and the absolute value of the first resistive random access memory voltage V2miil3l4 is less than the absolute value of the Vreset voltage. And the first resistive random access memory voltage 10 Virram 1313 is greater than the absolute value of the Vreset voltage. In step 1440, the bistable programmable resistive random access memory 600 is programmed from a logic soft state "〇〇" to a logic state "10" at a first bit line voltage Vm1320 and a second bit line voltage Vb2l330. The voltage difference between the two is equal to a low voltage Vb, and is expressed by the mathematical expression as Vb2-Vbl=Vw, the second resistive random access memory voltage V2R_1314 is smaller than the Vsn voltage, and the first resistive random access memory voltage V1RRAM 1313 is greater than the Vsn voltage. In step 1450, the bistable programmable resistive random access memory 600 is programmed from the gastric logic state "〇〇" to the logic state "11", and the first bit line voltage Vbil320 and the second bit line voltage Vb2l330 The voltage difference between them is equal to the high voltage Vhigh, which is expressed by the mathematical expression as Vbl-Vl&gt; 2 = Vhigh, the second resistive random access memory voltage V2MAM 1314 is greater than the Vset voltage, and the first electric, .... resistive random Access memory voltage 1313 nine final vsn voltage. 15 is a diagram showing the bistable programmable resistive random access memory 600 from a logic state "〇1" to three other logic states, a logic state "00", a logic state "10", and a logic state according to the present invention. 47 of "11"

TW2958PA 200820426 流程圖1500。於步驟1510,雙穩態可程式電阻式隨機存 取記憶體600位於邏輯狀態「01」。於步驟1520,雙穩態 電阻式隨機存取記憶體600由邏輯狀態「〇1」程式化至邏 輯狀態「00」’第一位元線電壓Vbi 1320和第二位元線電塵 Vb21330間的電壓差值相等於一負高電壓-Vhuh,由數學式 表示為VM_Vb2=-Vhigh,且第二電阻式隨機存取記憶體電壓 V2R_1314的絕對值大於Vresh電壓,以及第一電阻式隨機 存取記憶體電壓VurAM1313的絕對值大於Vreset電壓。 假如雙穩態可程式電阻式隨機存取記憶體600從邏 輯狀態「01」程式化至邏輯狀態「10」,此雙穩態可程式 電阻式隨機存取記憶體300於步驟1530中首先由邏輯狀 態「01」程式化至邏輯狀態「〇〇」,其次於步驟1540中由 邏輯狀態「00」程式化至邏輯狀態「1〇」。於步驟1530中 雙穩態可程式電阻式隨機存取記憶體600由邏輯狀態「01」 程式化至邏輯狀態「00」,其第一位元線電壓Vbl1320及第 二位元線電壓Vb21330間的電壓差值相等於一負高電壓 -Vhigh,以數學式表示為Vm-Vb2=-Vhigh,其第二電阻式隨機 存取記憶體電塵VmAiil314的絕對值大於Vreset電廢’且弟 一電阻式隨機存取記憶體Vi_d313的絕對值大於VRESET電 壓。於步驟1540中雙穩態可程式電阻式隨機存取記憶體 600虫邏輯狀態「〇〇」程式化至邏輯狀態「10」,其第一位 元線電壓Vm1320及第二位元線電壓^330間的電壓差值 相等於一低電壓Vw,以數學式表示為Vbl-Vb2=Vi。,’第二電 阻式隨機存取記憶體電壓V2RRAMi314大於Vreset電壓,且第 48TW2958PA 200820426 Flowchart 1500. In step 1510, the bistable programmable resistive random access memory 600 is in a logic state "01". In step 1520, the bistable resistive random access memory 600 is programmed from a logic state "〇1" to a logic state "00" between the first bit line voltage Vbi 1320 and the second bit line electric dust Vb21330. The voltage difference is equal to a negative high voltage -Vhuh, expressed by the mathematical expression as VM_Vb2=-Vhigh, and the absolute value of the second resistive random access memory voltage V2R_1314 is greater than the Vresh voltage, and the first resistive random access memory The absolute value of the bulk voltage VurAM1313 is greater than the Vreset voltage. If the bistable programmable resistive random access memory 600 is programmed from the logic state "01" to the logic state "10", the bistable programmable resistive random access memory 300 is first logiced in step 1530. The state "01" is programmed to the logic state "〇〇", followed by the logic state "00" to the logic state "1" in step 1540. In step 1530, the bistable programmable resistive random access memory 600 is programmed from a logic state "01" to a logic state "00", between the first bit line voltage Vbl1320 and the second bit line voltage Vb21330. The voltage difference is equal to a negative high voltage -Vhigh, expressed as Vm-Vb2=-Vhigh in mathematical expression, and the absolute value of the second resistive random access memory dust VmAiil314 is greater than Vreset electric waste' and the first one is resistive The absolute value of the random access memory Vi_d313 is greater than the VRESET voltage. In step 1540, the bistable programmable resistive random access memory 600 worm logic state "〇〇" is programmed to a logic state "10", and the first bit line voltage Vm1320 and the second bit line voltage ^330 The voltage difference between them is equal to a low voltage Vw, expressed as Vbl-Vb2=Vi in mathematical expression. , 'the second resistive random access memory voltage V2RRAMi314 is greater than the Vreset voltage, and the 48th

TW2958PA 200820426 一電阻式隨機存取記憶體電壓Virram1313小於Vreset電壓。 於步驟1550中,雙穩態可程式電阻式隨機存取記憶 體600從邏輯狀態「〇1」程式化至邏輯狀態「11」,其第 一位元線電壓Vbl1320及第二位元線電壓Vt&gt;21330間的電壓 差值相等於一高電壓Vhuh,以數學式表示為Vbi-VfVhuh ’ 第二電阻式隨機存取記憶體電壓VmAiil314大於Vset電壓, 且第一電阻式隨機存取記憶體電壓ViRRAM1313大於Vset電 壓。 ❿ 第16圖繪示根據本發明說明雙穩態可程式電阻式隨 機存取記憶體600從邏輯狀態「1〇」程式化至其他三個邏 輯狀態,邏輯狀態「⑽」、邏輯狀態「〇1』以及邏輯狀態 「11」之流程圖1600。於步驟1610,雙穩態可程式電阻 式隨機存取記憶體600於邏輯狀態「10」。於步驟1620中 雙穩態可程式電阻式隨機存取記憶體600由邏輯狀態「10」 程式化至邏輯狀態「00」,其第一位元線電壓Vbl1320及第 二位元線電壓Vb21330間的電壓差值相等於一負高電壓 • -Vhuh,以數學式表示為Vm-V^-Vhigh,其第二電阻式隨機 存取記憶體電壓1314的絕對值大於WmT電壓,及第 一電阻式隨機存取記憶體電壓ν1Κω1313的絕對值大於 Vreset 電壓。 假如雙穩態可廣式電阻式隨機存取記憶體600由邏 ΐ i 輯狀態「10」程式化至邏輯狀態「01」,於步驟1630中此 雙穩態可程式電阻式隨機存取記憶體600首先由邏輯狀態 「10j程式化至邏輯狀態「11」,其次於步驟1640中由邏 49TW2958PA 200820426 A resistive random access memory voltage Virram1313 is less than the Vreset voltage. In step 1550, the bistable programmable resistive random access memory 600 is programmed from a logic state "〇1" to a logic state "11", and the first bit line voltage Vbl1320 and the second bit line voltage Vt&gt The voltage difference between 21330 is equal to a high voltage Vhuh, expressed as Vbi-VfVhuh in the mathematical expression. The second resistive random access memory voltage VmAiil314 is greater than the Vset voltage, and the first resistive random access memory voltage ViRRAM1313 Greater than the Vset voltage. Figure 16 is a diagram showing a bistable programmable resistive random access memory 600 programmed from a logic state "1" to three other logic states, a logic state "(10)", a logic state "〇1" according to the present invention. And the flow chart 1600 of the logic state "11". In step 1610, the bistable programmable resist random access memory 600 is in a logic state "10". In step 1620, the bistable programmable resistive random access memory 600 is programmed from a logic state "10" to a logic state "00", between the first bit line voltage Vbl1320 and the second bit line voltage Vb21330. The voltage difference is equal to a negative high voltage • -Vhuh, expressed in the mathematical form as Vm-V^-Vhigh, the absolute value of the second resistive random access memory voltage 1314 is greater than the WmT voltage, and the first resistive random The absolute value of the access memory voltage ν1 Κ ω1313 is greater than the Vreset voltage. If the bistable wide resistive random access memory 600 is programmed from the logic state "10" to the logic state "01", the bistable programmable resistive random access memory is accessed in step 1630. 600 is first programmed from the logic state "10j to the logic state "11", followed by the logic in step 1640.

200820426 TW2958PA 麝 _ 輯狀態’’ n”程式化至邏輯狀態「01」。在步驟1630中雙 穩態可程式電阻式隨機存取記憶體6〇〇從邏輯狀態「10」 程式化至邏輯狀態「11」,其第一位元線電壓Vm1320及第 二位元線電壓Vb21330間的電壓差值相等於高電壓巩⑽, 以數學式表示為Vb2=Vhigh,第二電阻式隨機存取記憶體 電壓V2md314大於Vsn電壓,且第一電阻式隨機存取記憶 體電壓Virram1313大於Vset電壓。於步驟1640中,雙穩悲 可程式電阻式隨機存取記憶體600由邏輯狀態「11」程式 參 化至邏輯狀態「10」,其第一位元線電壓Vbl1320及第二位 元線電壓VmI330的電壓差值相等於負低電壓- 以數學 式表示為Vbl-VfVlmr,第二電阻式隨機存取記憶體零壓 VmAM 1314的絕對值大於Vreset電壓的絕對值,且第一電阻 式隨機存取記憶體電壓V1R_1313的絕對值小於Vresh電壓 的絕對值。 於步驟1650中,雙穩態可程式電阻式隨機存取記憶 馨 體6〇〇由邏輯狀態「10」程式化至邏輯狀態「11」,其第 一位元線電壓Vbl1320及第二位元線電壓vbd330的電壓差 值相等於高電壓vhigh,以數學式表示為vbl-Vb2=Vhigh,第二 電阻式隨機存取記憶體電壓V2RRAM1314大於Vsrr電壓,且第 一電阻式隨機存取記憶體電壓Virram1312大於Vsn電壓。 第17圖繪示根據本發明說明:雙穩態可程式電阻式隨 機存取記憶體600之從邏輯狀態「1」程式化至其他三個 邏輯狀態,邏輯狀態「〇〇J、邏輯狀態「〇1」以及邏輯狀 態「10」之流程圖1700。於步驟ΠΙΟ中雙穩態可程式電 50200820426 TW2958PA 麝 _ Status ’ n” is programmed to logic state “01”. In step 1630, the bistable programmable resistive random access memory 6 is programmed from a logic state "10" to a logic state "11", and the first bit line voltage Vm1320 and the second bit line voltage Vb21330 The voltage difference is equal to the high voltage (10), expressed as Vb2=Vhigh in the mathematical expression, the second resistive random access memory voltage V2md314 is greater than the Vsn voltage, and the first resistive random access memory voltage Virram1313 is greater than Vset Voltage. In step 1640, the bistable sorrow-stable resistive random access memory 600 is programmed from the logic state "11" to the logic state "10", and the first bit line voltage Vbl1320 and the second bit line voltage VmI330 The voltage difference is equal to the negative low voltage - expressed as Vbl-VfVlmr in the mathematical expression, the absolute value of the second resistive random access memory zero voltage VmAM 1314 is greater than the absolute value of the Vreset voltage, and the first resistive random access The absolute value of the memory voltage V1R_1313 is less than the absolute value of the Vresh voltage. In step 1650, the bistable programmable resistive random access memory card 6 is programmed from a logic state "10" to a logic state "11", and the first bit line voltage Vbl1320 and the second bit line The voltage difference of the voltage vbd330 is equal to the high voltage vhigh, expressed as vbl-Vb2=Vhigh in the mathematical expression, the second resistive random access memory voltage V2RRAM1314 is greater than the Vsrr voltage, and the first resistive random access memory voltage Virram1312 Greater than Vsn voltage. Figure 17 is a diagram illustrating the bistable programmable resistive random access memory 600 from the logic state "1" to the other three logic states, the logic state "〇〇J, logic state" Flowchart 1700 for 1" and logic state "10". In the step ΠΙΟ bistable programmable power 50

2〇〇82〇426TW2958PA 阻式隨機存取記憶體600由邏輯狀態「11」程式化至邏輯 狀態「00」,其介於第一位元線電壓Vbil320及第二位元線 電壓Vb21330的電壓差值相等於負高電壓-Vhigh,以數學式 表示為Vbl-VbZ111-Vhigh ’第二電阻式隨機存取記憶體電壓 1找議1314的絕對值大於Vresh電壓,且第一電阻式隨機存 取記憶體電壓VimMl313的絕對值大於Vreset電壓。 於步驟1730中雙穩態可程式電阻式隨機存取記憶體 600由邏輯狀態「11」程式化至邏輯狀態「〇1」,其第一位 _ 元線電壓Vbl1320及第二位元線電壓Vbd330之間的電壓差 值相等於負低電壓-View,以數學式表示為Vbl-Vb2=-Vi。胃,第 二電阻式隨機存取記憶體電壓hmd 314的絕對值大於 Vresh電壓的絕對值,且第一電阻式隨機存取記體體電壓 Virram1313的絕對值小於Vreset電壓的絕對值。 假如雙穩態可程式電阻式隨機存取記憶體600由邏 輯狀態「11」程式化至邏輯狀態「10」,於步驟Π40雙穩 態可程式電阻式隨機存取記憶體600首先由邏輯狀態「11」 _ 程式化至邏輯狀態「00」,其次於步驟Π50中由邏輯狀態 「00」程式化至邏輯狀態「1〇」。於步驟Π40中雙穩態可 程式電阻式隨機存取記憶體600由邏輯狀態「11」程式化 至邏輯狀態「〇〇」,其第一位元線電壓Vbl1320及第二位元 。線電壓Vb2l330之間的電壓差值相等於負高電壓-Vhigh,以 數學式表示為VM-VbF-Vhigh ’第二電阻式隨機存取記憶體 電壓V2_1314的絕對值大於V_T電壓,且第一電阻式隨 機存取記憶體電壓V1RRAM1313的絕對值大於Vreset電塵。於 512〇〇82〇426TW2958PA Resistive random access memory 600 is programmed from logic state "11" to logic state "00", which is the voltage difference between the first bit line voltage Vbil320 and the second bit line voltage Vb21330 The value is equal to the negative high voltage -Vhigh, expressed as Vbl-VbZ111-Vhigh in the mathematical formula. 'The second resistive random access memory voltage 1 finds that the absolute value of 1314 is greater than the Vresh voltage, and the first resistive random access memory The absolute value of the bulk voltage VimMl313 is greater than the Vreset voltage. In step 1730, the bistable programmable resistive random access memory 600 is programmed from a logic state "11" to a logic state "〇1", and its first bit_yuan line voltage Vbl1320 and second bit line voltage Vbd330 The voltage difference between them is equal to the negative low voltage -View, expressed as Vbl-Vb2=-Vi in mathematical form. The absolute value of the second resistive random access memory voltage hmd 314 is greater than the absolute value of the Vresh voltage, and the absolute value of the first resistive random access memory voltage Virram 1313 is less than the absolute value of the Vreset voltage. If the bistable programmable resistive random access memory 600 is programmed from the logic state "11" to the logic state "10", in step Π40 the bistable programmable resistive random access memory 600 is first determined by the logic state. 11" _ is programmed to the logic state "00", followed by the logic state "00" in the step Π50 to the logic state "1". In step Π40, the bistable programmable resistive random access memory 600 is programmed from a logic state "11" to a logic state "〇〇", the first bit line voltage Vbl1320 and the second bit. The voltage difference between the line voltages Vb2l330 is equal to the negative high voltage -Vhigh, expressed as a mathematical expression of VM-VbF-Vhigh. The absolute value of the second resistive random access memory voltage V2_1314 is greater than the V_T voltage, and the first resistance The absolute value of the random access memory voltage V1RRAM 1313 is greater than the Vreset dust. At 51

200820426 TW2958pA » 步驟1750中,其雙穩態可程式電阻式隨機存取記憶體600 由邏輯狀態「00」程式化至邏輯狀態「10」,其第一位元 線電壓Vbd320及第二位元線電壓Vb21330之間的電廢差值 相專於負低電壓-Vlow,以數學式表不為Vbl-Vb2=: —,第二 電阻式隨機存取記憶體電壓V2md314大於Vset電壓,且第 一電阻式隨機存取記憶體電壓\^謹1313小於VSET電;1。200820426 TW2958pA » In step 1750, the bistable programmable resistive random access memory 600 is programmed from a logic state "00" to a logic state "10", the first bit line voltage Vbd320 and the second bit line The electrical waste difference between the voltages Vb21330 is specific to the negative low voltage -Vlow, and the mathematical expression is Vbl-Vb2=: -, the second resistive random access memory voltage V2md314 is greater than the Vset voltage, and the first resistor The random access memory voltage is less than VSET;

關於相變化隨機存取記憶體裝置的製造、材料組成、 使用及操作的其他資訊,請見美國專利案號 No. 11/155, 067&quot; Thin Film Fuse Phase Chang RAM andFor additional information on the fabrication, material composition, use, and operation of phase change random access memory devices, see U.S. Patent No. 11/155, 067 &quot; Thin Film Fuse Phase Chang RAM and

Manufacturing Method· ”,此專利於 2005 年 6 月 17 號 申請並為此應用的受讓人所擁有,包括在在此提出之參考 文獻中。 练上所述,雖然本發明已以較佳實施例揭露如上, 其並非甩以限定本發明。本發明所屬技術領域中具有通 知識者,在㈣縣發明之精神和範#可作各種 更動與潤飾。因此,本判之保護範圍當視後附之申請 利範圍所界定者為準。 52 200820426Manufactured by the assignee of the application, which is hereby incorporated by reference in its entirety in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire As disclosed above, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains may have various modifications and refinements in the spirit and scope of the invention in the (four) county. Therefore, the scope of protection of this judgment is deemed to be attached to the application. The scope is defined as the finale. 52 200820426

二:¾綱m · TW2958PA 二 【圖式簡單說明】 第1圖繪示根據本發明之雙穩態電阻式隨機存取記 憶體陣列之示意圖。 第2圖繪示根據本發明一較佳實施例之一電阻式隨 機存取記憶體構造的積體電路圖之簡單方塊圖。 第3圖繪示根據本發明製造雙穩態電阻式隨機存取 記憶暑之兩可程式電阻式隨機存取記憶層之沈積及微影 技術的參考步驟之簡單示意圖。 • 第4圖繪示根據本發明製造雙穩態電阻式隨機存取 記憶體之下一步驟的示意圖,蝕刻至第二導電層,第二導 電層沈積鄰近於第一導電構件及第一可程式電阻式隨機 存取記憶體構件之介電側壁子。 第5圖為繪示根據本發明製造雙穩態電阻式隨機存 取記憶體之下一步驟的結構圖,蝕刻穿過第二電阻式隨機 存取記憶層。 第6圖為繪示根據本發明雙穩態電阻式隨機存取記 憶體的電阻式隨機存取記憶體胞結構之簡單示意圖。 第7圖為繪示根據本發明具有一電阻式隨機存取記 憶層之雙穩態電阻式隨機存取記憶體的電流-電壓(I-V) 曲線之範例。 第8A圖為繪示根據本發明具有兩個均位於重置 (RESET)狀態之電阻式隨機存取記憶體構件之雙穩態電阻 式隨機存取記憶體之簡單示意圖。 第8B圖繪示根據本發明之具有兩個位於設定(SET) 532: 3⁄4 class m · TW2958PA 2 [Simple description of the drawing] Fig. 1 is a schematic view showing a bistable resistive random access memory array according to the present invention. 2 is a simplified block diagram of an integrated circuit diagram of a resistive random access memory structure in accordance with a preferred embodiment of the present invention. Figure 3 is a simplified diagram showing the steps of the deposition and lithography techniques for fabricating a two-program resistive random access memory layer of a bistable resistive random access memory. Figure 4 is a schematic diagram showing a step under the fabrication of a bistable resistive random access memory according to the present invention, etching to a second conductive layer, the second conductive layer being deposited adjacent to the first conductive member and the first programmable A dielectric sidewall of a resistive random access memory device. Figure 5 is a block diagram showing a step under the fabrication of a bistable resistive random access memory in accordance with the present invention, etched through a second resistive random access memory layer. Figure 6 is a simplified schematic diagram showing the structure of a resistive random access memory cell in accordance with the bistable resistive random access memory of the present invention. Figure 7 is a diagram showing an example of a current-voltage (I-V) curve of a bistable resistive random access memory having a resistive random access memory layer in accordance with the present invention. Figure 8A is a simplified schematic diagram showing a bistable resistive random access memory having two resistive random access memory components each located in a RESET state in accordance with the present invention. Figure 8B illustrates two settings (SET) 53 in accordance with the present invention.

2〇〇82_0426TW2958PA 及重置(RESET)狀態電阻式隨機存取構件的雙穩態電阻式 ^ 隨機存取記憶體之簡單示意圖。 第8C圖繪示根據本發明之具有兩個位於設定(set) 及重置(RESET)狀態之電阻式隨機存取記憶體構件的雙穩 態電阻式隨機存取記憶體之簡單示意圖。 第8D圖繪示根據本發明之具有兩個位於設定(SET) 狀態之電阻式隨機存取記憶體構件的雙穩態電阻式隨機 存取記憶體之簡單示意圖。 Φ 第9圖繪示根據本發明之以串聯方式連接兩個電阻 式隨機存取記憶體構件以提供四種邏輯狀態的雙穩態電 阻式隨機存取記憶體之四種邏輯狀態的數學關係。 第10圖繪示根據本發明以串聯方式連接多重電阻式 隨機存取記憶體構件以使每一記憶體單元提供多重位元 之雙穩態隨機存取記憶體的示意圖。 第11圖繪示根據本發明具有蝕刻程序於第一及第二 電阻式隨機存取記憶層以及沈積介電侧壁子的雙穩態電 • 阻式隨機存取記憶體之示意圖。 第12圖繪示根據本發明去除介電侧壁子後具有多重 電阻式隨機存取記憶體構件及多重導電構件的雙穩態電 阻式隨機存取記憶體之示意圖。 第13圖繪示根據本發明用以施用電壓以程式具有二 -έ * · - 電阻式隨機存取記憶體構件之雙穩態電阻式隨機存取記 憶體。 第14圖繪示根據本發明說明雙穩態電阻式隨機存取 54 200820426T W295 8Ρ Α 記憶體從邏輯狀態「00」程式化至其他三個邏輯狀態,邏 ' 輯狀態「01」、邏輯狀態「10」以及邏輯狀態「11」之流 程圖。 第15圖繪示根據本發明說明雙穩態電阻式隨機存取 記憶體從邏輯狀態「01」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「10」以及邏輯狀態「11」之流 程圖^ 第16圖繪示根據本發明說明雙穩態電阻式隨機存取 • 記憶體從邏輯狀態「10」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「01」以及邏輯狀態「11」之流 程圖。 第17圖繪示根據本發明說明雙穩態電阻式隨機存取 記憶體從邏輯狀態「11」程式化至其他三個邏輯狀態,邏 輯狀態「00」、邏輯狀態「01」以及邏輯狀態「10」之流 程圖。 • 【主要元件符號說明】 100 :記憶體陣列 123、124、262 :字元線 128 :共源線 . 132、133 :下部電極構件 , 134 :上部電極構件 135 :侧壁接腳記憶體胞 141、142、264 :位元線 552〇〇82_0426TW2958PA and reset (RESET) state resistive random access device bistable resistive ^ random access memory simple schematic. Figure 8C is a simplified schematic diagram of a bistable resistive random access memory having two resistive random access memory components in a set and reset state in accordance with the present invention. Figure 8D is a simplified schematic diagram of a bistable resistive random access memory having two resistive random access memory components in a set (SET) state in accordance with the present invention. Φ Figure 9 is a diagram showing the mathematical relationship of four logic states of a bistable resistive random access memory in which two resistive random access memory components are connected in series to provide four logic states in accordance with the present invention. Figure 10 is a schematic illustration of a bistable random access memory in which multiple resistive random access memory components are connected in series to provide multiple bits per memory cell in accordance with the present invention. 11 is a schematic diagram of a bistable resistive random access memory having an etch process on the first and second resistive random access memory layers and a deposited dielectric sidewall according to the present invention. Figure 12 is a schematic diagram showing a bistable resistive random access memory having a multi-resistive random access memory device and a plurality of conductive members after removing the dielectric sidewalls according to the present invention. Figure 13 is a diagram showing a bistable resistive random access memory device for applying a voltage in accordance with the present invention to have a resistive random access memory device. Figure 14 is a diagram showing the bistable resistive random access 54 200820426T W295 8Ρ 记忆 memory is programmed from the logic state "00" to the other three logic states, the logic state "01", the logic state" according to the present invention. 10" and the flow chart of the logic state "11". Figure 15 is a diagram showing the bistable resistive random access memory from the logic state "01" to the other three logic states, the logic state "00", the logic state "10", and the logic state "11" according to the present invention. Flowchart ^ Figure 16 illustrates the bistable resistive random access memory from the logic state "10" to the other three logic states, logic state "00", logic state "01" according to the present invention. And the flow chart of the logic state "11". Figure 17 is a diagram showing the bistable resistive random access memory from the logic state "11" to the other three logic states, the logic state "00", the logic state "01", and the logic state "10" according to the present invention. Flow chart. • [Main component symbol description] 100: Memory array 123, 124, 262: Word line 128: Common source line. 132, 133: Lower electrode member, 134: Upper electrode member 135: Side wall pin memory cell 141 , 142, 264: bit line 55

rW2958PA 200820426 145 : Y-解碼器及一字元線驅動器 146 : X-解碼器及一組感應放大器 150、151、152、153 ::存取電晶體 200、275 :積體電路 260 :記憶體陣列 261:列解碼器 263 :接腳解碼器 2 6 5 ·匯流排 266 :感應放大器及資料輸入結構 267 :資料匯排流 268 :偏壓排列供應電壓 269:偏壓排列狀態機 271 :資料輸入線 272 :資料輸出線 274:其他電路 ® 300、1000、500 :雙穩態電阻式隨機存取記憶體 310:第一可程式電阻式隨機存取記憶層 312:第一導電層 320 :第二可程式電阻式隨機存取記憶層 322:第二導電層 330 :遮罩 410 :第一可程式電阻式隨機存取記憶體構件 412、420 :第一導電構件 56rW2958PA 200820426 145: Y-decoder and a word line driver 146: X-decoder and a set of sense amplifiers 150, 151, 152, 153 :: access transistor 200, 275: integrated circuit 260: memory array 261: column decoder 263: pin decoder 2 6 5 · bus bar 266: sense amplifier and data input structure 267: data sink drain 268: bias arrangement supply voltage 269: bias arrangement state machine 271: data input line 272: data output line 274: other circuits® 300, 1000, 500: bistable resistive random access memory 310: first programmable resistive random access memory layer 312: first conductive layer 320: second Program resistive random access memory layer 322: second conductive layer 330: mask 410: first programmable resistive random access memory device 412, 420: first conductive member 56

200820426TW2958PA 430 ·•第一介電侧壁子 r 510 ·•第二可程式電阻式隨機存取記憶體構件 512、520 :第二導電構件 600 :雙穩態可程式電阻式隨機存取記憶體 610 :底層 620 :接觸孔 630:中間介電層 700 :電流-電壓曲線範例圖 • 710 :電壓 720 :電流 730 :重置狀態 740:設定狀態 750 :讀取電壓 752 :虛線 810 :電阻i? 820、860 ··電阻 /i? _ 830、880 :電阻/]伙 850、870 :電阻/li? 910 :邏輯狀態「0」 920 :邏輯狀態「1」 930 :邏輯狀態「2」&lt; : -· .* * ' 940 :邏輯狀態「3」 1010 :第三電阻式隨機存取記憶層 1012 :第三導電層 57 20082〇426_ 1020:第(η-l)th可程式電阻式隨機記憶層 1022 :第(n-l)th導電層 1030 :第nth可程式電阻式隨機存取記憶層 1032 :第nih導電層 1110 :第二介電側壁子 1200 :雙穩態可程式電阻式隨機存取記憶體 1210 :第三可程式電阻式隨機存取記憶構件 1220 :第三導電構件 13 0 0 :電路糸統 1310 :第一電阻器Ri 1312 :第二電阻器R2、 1313 :第一可程式電阻式隨機存取電壓Vmam 1314 :第二可程式電阻式隨機存取記憶體電壓V2Rrm 1316:附加的可程式電阻式隨機存取記憶體電壓 1320 :第一位元線電壓Vm 1330 :第二位元線電壓Vb2 • 1340 :第-位元線 1342 :第二位元線BL2 1400、1500、1600、1700 :流程圖 58200820426TW2958PA 430 ·• First dielectric sidewall r 510 ·•Second programmable resistive random access memory component 512, 520: second conductive member 600: bistable programmable resistive random access memory 610 : bottom layer 620: contact hole 630: intermediate dielectric layer 700: current-voltage curve example diagram • 710: voltage 720: current 730: reset state 740: set state 750: read voltage 752: dashed line 810: resistance i? 820 860 ··Resistance/i? _ 830,880: Resistor/] 850, 870: Resistor/li? 910: Logic state "0" 920: Logic state "1" 930: Logic state "2" &lt; : - · .* * ' 940 : Logic state "3" 1010 : Third resistive random access memory layer 1012 : Third conductive layer 57 20082 〇 426_ 1020: (η - 1)th programmable resistive random memory layer 1022 : (nl)th conductive layer 1030: nth programmable resistive random access memory layer 1032: nih conductive layer 1110: second dielectric sidewall 1200: bistable programmable resistive random access memory 1210 : third programmable resistance random access memory member 1220 : third conductive member 13 0 0 : circuit system 1310: A resistor Ri 1312: second resistor R2, 1313: first programmable resistance random access voltage Vmam 1314: second programmable resistance random access memory voltage V2Rrm 1316: additional programmable resistance random memory Taking the memory voltage 1320: the first bit line voltage Vm 1330: the second bit line voltage Vb2 • 1340: the first bit line 1342: the second bit line BL2 1400, 1500, 1600, 1700: flowchart 58

Claims (1)

200820426窗祖 十、申請專利範圍: 1. 一種操作一電阻式隨機存取記憶體裝置之方法, 具有一第一導電構件,係位於一第一可程式電阻式隨機存 取記憶體構件上,該第一可程式電阻式隨機存取記憶體構 件係位於一第二導電構件上,該第二導電構件則是位於一 第二可程式電阻式隨機存取記憶體構件上,該方法至少包 含: 該第一可程式電阻式隨機存取記憶體構件與該第二 • 可程式電阻式隨機存取記憶體構件以串聯連接,該第一可 程式電阻式隨機存取記憶體構件具有一表示一第一電阻 值之面積,該第二可程式電阻式隨機存取記憶徽構件具有 一表示一第二電阻值R之面積,該第二可程式電阻式隨機 存取記憶體構件其所具有該面積大於該第一可程式電阻 式隨機存取記憶體構件,該第一可程式電阻式隨機存取記 憶體構件具有一第一邏輯狀態(“00”狀態)以及一第二 邏輯狀態(“0Γ狀態),該第二可程式電阻式隨機存取記 * 憶體構件具有一第三邏輯狀態(“10”狀態)以及一第四 邏輯狀態(“11”狀態); 沈積一介電側壁子於該第一導電構件以及該第一可 程式電阻式隨機存取記憶體構件兩側以及在該第二導電 構件妁h表面,該第二可程式電阻式隨機存取記憶體構件 具有一面積,該面積為該第一介電侧壁子之厚度的函數; 以及 改變該第一及該第二可程式電阻式隨機存取記憶體 59 fW2958PA 200820426 係為材料係數 構件之邏輯狀態至另一邏輯狀態,邏輯狀態 η及介電侧壁子之厚度f的函數。 其中該第一 其中該第二 其中該第三 2·如申請專利範圍第1項所述之方法, 邏輯狀態依據數學式(1+/)友操作。 3·如申請專利範圍第1項所述之方法, 邏輯狀態依據數學式(糾/)]?操作。200820426 祖祖10, the scope of application for patents: 1. A method of operating a resistive random access memory device, having a first conductive member, located on a first programmable resistive random access memory device, The first programmable resistive random access memory component is located on a second conductive member, and the second conductive component is located on a second programmable resistive random access memory component. The method comprises at least: The first programmable resistive random access memory component is connected in series with the second programmable resistive random access memory component, and the first programmable resistive random access memory component has a first representation The area of the resistance value, the second programmable resistive random access memory module has an area representing a second resistance value R, and the second programmable resistive random access memory component has the area larger than the area a first programmable resistive random access memory component, the first programmable resistive random access memory component having a first logic state ("00" shape And a second logic state ("0 state"), the second programmable resistive random access memory member has a third logic state ("10" state) and a fourth logic state ("11") a second dielectrically resistive random pattern is deposited on both sides of the first conductive member and the first programmable resistive random access memory device and on the surface of the second conductive member 妁h The access memory member has an area which is a function of the thickness of the first dielectric sidewall; and the first and second programmable resistive random access memory 59 fW2958PA 200820426 is changed to a material coefficient a function of the logic state of the component to another logic state, the logic state η and the thickness f of the dielectric sidewall. wherein the first one of the second ones of the third one is as described in claim 1 The logic state is based on the mathematical formula (1+/) friend operation. 3. The method described in claim 1 of the patent scope, the logic state is operated according to the mathematical formula (correction/)]. 4·如申請專利範圍第1項所述之方法, 邏輯狀態依據數學式(1+/2/)及操作。 5.如申請專利範圍第}項所述之方法,其中該第四 邏輯狀態依據數學式操作。 6·如申請專利範圍第i項所述之方法,更包括、: 連接一第一位元線電壓Vbl至該第一導電雇的一頂 面; 連接一第二位元線電壓Vm至該第二可程式電阻式隨 機存取記憶體構件的底面; 產生一第一電阻式隨機存取記憶體電壓於該第 一導電構件及該第一可程式電阻式隨機存取記憶體構件 之間;以及 產生一第二電阻式隨機存取記憶體電壓V2RRAJ{於該第 一可程式電阻式隨機存取記憶體構件及該第二可程式電 阻式隨機存取記憶體構件之間。 7·如申請專利範圍第6項所述之電阻式隨機存取記 憶體裝置操作方法,其中該第一及第二可程式電阻式隨機 存取記憶體構件在一重置(RESET)狀態。 60 TW2958PA 200820426 8·如申請專利範圍第6項所述之方法,其中該記憶 體裝置從該第一邏輯狀態經由一過渡狀態至該第二邏輯 狀態,如此從該第一邏輯狀態改變至該過渡狀態時,設定 Vbl-Vb2=Vhigh,V2RRAM&gt;VsET 及 Vu_&gt;VsET,以及從該過渡狀態改 變至該第一邏輯狀態時’設定Vb2 — Vbl = -Vlow〈0, I VmAM I &lt; I Vseset I 且丨 V1RRAM 丨 &gt; I Vreset I。 9·如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定Vb2-Vm=Vi〇w,V2r_&lt;VW跟Vl&amp;_&gt;vSET由該第 • 一邏輯狀態改變至該第三邏輯狀態。 10·如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定Vbi-Vb2=Vhigh,V2R_&gt;Vsrr跟V^AVsn由該第 一邏輯狀態改變至該第四邏輯狀態。 11. 如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置藉由設定Vbi-Vb2:-Vhigh,|V2rram|&gt;Vreset且 | VlRRAM丨〉VrESET由該第二邏輯狀態改變至該第一狀態。 12. 如申請專利範圍第6項所述之方法,其中該記憶 ® 體裝置從該第二邏輯狀態經由一過渡狀態至該第三狀 態,如此從該第一狀態改變至該過渡狀態時,設定 Vt&gt;rVb2=-Vhigh,|V2_(|&gt;VRESET且丨 Vi_H&gt;V_T,以及從該過渡 狀態改變至第三狀態時,設定Vbl-Vb2=Vi〇w ’ V2mM&gt;Vsn跟 VlRRA«〈VsET。 13·如申請專利範圍第6頊所述之操作方法,其中該 記憶體裝置藉由設定,h_&gt;Vsn且V1R_&gt;VSn從 該第二邏輯狀態改變至該第四邏輯狀態。 61 TW2958PA 200820426 14·如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置藉由設定vbl-vb2二-Vhigh,|V2_|&gt;Vreset且 丨VlRRAM I &gt;VrESH從該第三邏輯狀態改變至該第一邏輯狀態。 15·如申請專利範圍第6項所述之操作方法,其中該 記憶體裝置從該第三邏輯狀態經由一過渡狀態改變至該 第二邏輯狀態,如此從該第三邏輯狀態改變至該過渡狀態 時,設定 Vbi-Vb2=Vhigh,72_&gt;1^且 Vi_&gt;Vsn,以及從該第 三邏輯狀癌改變至該第二邏輯狀態時’設定Vbl-Vb2 = -Vlow ’ | V2RRAM 丨〉丨 VrESET 丨且丨 VlRRAM 丨 &gt; | VrESET 丨。 16·如申請專利範圍第6項所述之方法,其中該記憶 體裝置:從該第三邏輯狀態至該第四邏輯狀態時, VbleVb2:=Vhigh J V2RRAM&gt;VsET JL VlRRAM&lt;VsET 0 17·如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定 Vm-VbF-Vhigh,丨 V2RRAM 丨 &gt;VrESET 且丨 VlRRAM I &gt;VrESET 從該第四邏輯狀態改變至該第一邏輯狀態。 18·如申請專利範圍第6項所述之方法,其中該記憶 體裝置藉由設定 Vbl-Vb2 = - Viow,|V2RRAm|&gt;|VrESEt| 且 丨| &lt; | Vreset I從該第四邏輯狀態改變至該第二邏輯狀態。 19·如申請專利範圍第6項所述之方法,其中該記憶 體裝置從該第四邏輯狀態經由一過渡狀態改變至該第一 邏輯狀態,如此從該第四邏輯狀態改變至激過渡狀態時, 設定11^1-?&amp;2 = -¥咖,|¥21^丨&gt;1^挪£1'且|^_1〉1^咖*1’以及從該 過渡狀態改變至該第四邏輯狀態時,設定VbrVb2=Vb, V2R_&gt;VsET 且 VlRRAM&lt;VsET。 624. If the method described in claim 1 is applied, the logic state is based on the mathematical formula (1+/2/) and the operation. 5. The method of claim 1, wherein the fourth logic state operates according to a mathematical formula. 6. The method of claim i, further comprising: connecting a first bit line voltage Vbl to a top surface of the first conductive hiring; connecting a second bit line voltage Vm to the first a bottom surface of the second programmable resistive random access memory device; generating a first resistive random access memory voltage between the first conductive member and the first programmable resistive random access memory device; A second resistive random access memory voltage V2RRAJ is generated between the first programmable resistive random access memory component and the second programmable resistive random access memory component. 7. The method of operating a resistive random access memory device according to claim 6, wherein the first and second programmable resistive random access memory components are in a RESET state. The method of claim 6, wherein the memory device changes from the first logic state to the second logic state from the first logic state, such that the transition from the first logic state to the transition In the state, Vbl-Vb2=Vhigh, V2RRAM&gt;VsET and Vu_&gt;VsET, and when changing from the transition state to the first logic state, 'set Vb2 — Vbl = -Vlow<0, I VmAM I &lt; I Vseset I And 丨V1RRAM 丨&gt; I Vreset I. 9. The method of claim 6, wherein the memory device is changed from the first logic state to the first by setting Vb2-Vm=Vi〇w, V2r_&lt;VW and Vl&_&gt;vSET Three logic states. 10. The method of claim 6, wherein the memory device changes from the first logic state to the fourth logic state by setting Vbi-Vb2 = Vhigh, V2R_&gt; Vsrr and V^AVsn. 11. The method of operation of claim 6, wherein the memory device is changed from the second logic state by setting Vbi-Vb2: -Vhigh, |V2rram|&gt;Vreset and |VlRRAM丨>VrESET The first state. 12. The method of claim 6, wherein the memory device device is set from the second logic state to the third state, such that when the first state is changed to the transition state, the setting is Vt&gt;rVb2=-Vhigh,|V2_(|&gt;VRESET and 丨Vi_H&gt;V_T, and when changing from the transition state to the third state, Vbl-Vb2=Vi〇w 'V2mM&gt;Vsn and VlRRA«<VsET are set. 13. The method of operation of claim 6, wherein the memory device changes from the second logic state to the fourth logic state by setting h_&gt;Vsn and V1R_&gt;VSn. 61 TW2958PA 200820426 14· The operating method of claim 6, wherein the memory device changes from the third logic state to the v3 by setting vbl-vb2 bis-Vhigh, |V2_|&gt;Vreset and 丨VlRRAM I &gt;VrESH The operating method of claim 6, wherein the memory device changes from the third logic state to the second logic state via the transition state, such that the third logic state Change to the transition In the state, Vbi-Vb2=Vhigh, 72_&gt;1^ and Vi_&gt;Vsn, and when changing from the third logical cancer to the second logic state, 'set Vbl-Vb2 = -Vlow ' | V2RRAM 丨>丨VrESET The method of claim 6, wherein the memory device: from the third logic state to the fourth logic state, VbleVb2:=Vhigh J The method of claim 6, wherein the memory device is set by Vm-VbF-Vhigh, 丨V2RRAM 丨&gt;VrESET and 丨VlRRAM I &gt;VrESET The method of claim 6, wherein the memory device is set by Vbl-Vb2 = - Viow, |V2RRAm|&gt;|VrESEt| And 丨||Vreset I changes from the fourth logic state to the second logic state. The method of claim 6, wherein the memory device transitions from the fourth logic state The state changes to the first logic state, so When the fourth logic state is changed to the excited state transition, setting 11 ^ 1-? &2 = -¥咖, |¥21^丨&gt;1^°£1' and |^_1>1^咖*1' and when changing from the transition state to the fourth logic state, setting VbrVb2=Vb , V2R_&gt;VsET and VlRRAM&lt;VsET. 62
TW95139867A 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states TWI310237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Publications (2)

Publication Number Publication Date
TW200820426A true TW200820426A (en) 2008-05-01
TWI310237B TWI310237B (en) 2009-05-21

Family

ID=44770156

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95139867A TWI310237B (en) 2006-10-27 2006-10-27 Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states

Country Status (1)

Country Link
TW (1) TWI310237B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402840B (en) * 2004-11-17 2013-07-21 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
TWI422025B (en) * 2008-05-06 2014-01-01 Macronix Int Co Ltd Operating method of electrical pulse voltage for rram application
TWI779482B (en) * 2020-02-18 2022-10-01 美商應用材料股份有限公司 Soft reset for multi-level programming of memory cells in non-von neumann architectures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402840B (en) * 2004-11-17 2013-07-21 Spansion Llc Diode array architecture for addressing nanoscale resistive memory arrays
TWI422025B (en) * 2008-05-06 2014-01-01 Macronix Int Co Ltd Operating method of electrical pulse voltage for rram application
TWI779482B (en) * 2020-02-18 2022-10-01 美商應用材料股份有限公司 Soft reset for multi-level programming of memory cells in non-von neumann architectures
US11790989B2 (en) 2020-02-18 2023-10-17 Applied Materials, Inc. Soft reset for multi-level programming of memory cells in non-von neumann architectures

Also Published As

Publication number Publication date
TWI310237B (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7924600B2 (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
US8111541B2 (en) Method of a multi-level cell resistance random access memory with metal oxides
US8315088B2 (en) Multiple phase change materials in an integrated circuit for system on a chip application
CN100555653C (en) Programmable resistance random access memory and its manufacturing method
US8084760B2 (en) Ring-shaped electrode and manufacturing method for same
US7932506B2 (en) Fully self-aligned pore-type memory cell having diode access device
US8067762B2 (en) Resistance random access memory structure for enhanced retention
CN101226771B (en) Multi-layer cell memory structure using multiple memory layers and method of manufacturing the same
US7616472B2 (en) Method and apparatus for non-volatile multi-bit memory
US8084842B2 (en) Thermally stabilized electrode structure
US7527985B2 (en) Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas
US20080094885A1 (en) Bistable Resistance Random Access Memory Structures with Multiple Memory Layers and Multilevel Memory States
CN101127386A (en) Self-aligned structure and method for limiting melting point of resistance random access memory
CN101728483B (en) Columnar storage device sandwiched by dielectric layer
TWI310237B (en) Methods of operating a bistable resistance random access memory with multiple memory layers and multilevel memory states
TWI322993B (en) Programmable resistance random access memory and method of forming the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees