[go: up one dir, main page]

TW200817445A - Hyperbranched polymers or compounds and methods of making same - Google Patents

Hyperbranched polymers or compounds and methods of making same Download PDF

Info

Publication number
TW200817445A
TW200817445A TW95136489A TW95136489A TW200817445A TW 200817445 A TW200817445 A TW 200817445A TW 95136489 A TW95136489 A TW 95136489A TW 95136489 A TW95136489 A TW 95136489A TW 200817445 A TW200817445 A TW 200817445A
Authority
TW
Taiwan
Prior art keywords
compound
group
bond
monomer
functional groups
Prior art date
Application number
TW95136489A
Other languages
Chinese (zh)
Inventor
Kuo-Chung Cheng
Original Assignee
Kuo-Chung Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuo-Chung Cheng filed Critical Kuo-Chung Cheng
Priority to TW95136489A priority Critical patent/TW200817445A/en
Publication of TW200817445A publication Critical patent/TW200817445A/en

Links

Landscapes

  • Polyethers (AREA)

Abstract

Hyperbranched polymers or compounds are prepared by a simple polymerization of monomers or compounds A2 with difunctional groups of type A, and Bf having f-functional groups B, and AR or A'R with mono-functional group A or A', wherein f equals 3 or is larger than 3. The groups A, A', and B can not react with themselves, but group B can react with A or A'.

Description

200817445 九、發明說明: 【發明所屬之技術領域】 產物本關t製造具多分枝結構之高分子献合物的新製備方法及龙 劑、流變性改質劑、藥物輸送材料、非線性光學材料、螯為= 奈米粒子等用途。 力月匕1±微/ 【先前技術】200817445 IX. Description of the invention: [Technical field to which the invention belongs] Product preparation method for the preparation of a polymer compound having a multi-branched structure and a dragon agent, a rheology modifier, a drug delivery material, a nonlinear optical material , chelation = use of nanoparticles and other uses.力月匕1±微/ 【Prior Art】

有別於高分子傳統線性、分枝及網狀結構分類,近年來許多新 士高分子陸續被開發合成,例如星狀、梯狀、梳狀、樹枝狀'超分枝^ 高分子,均受到極大的重視,以樹枝狀高分子(dendrimer)為例,因其結構 殊,具有低黏度、高溶解性及官能基密度高,預期可以作為增韌去蠻 性改f劑、藥物輸送材料、非線性光學材料及奈米自組裝結構等。但=樹 枝狀高分子合成步驟繁複,難以使用一鍋式(one-pot)製備,因此無法大量生 產。 “、 反觀,另一具多分枝結構之高分子:超分枝高分子(hyperbranehed polymer),雖然其結構不如樹枝狀高分子規則單一,而且仍然具有許多樹枝 狀高分子所擁有之特殊性質,超分枝高分子很容易利用AB,型單體合成,其 中ABf型單體包括單官能基a,和2個或2個以上官能基B,其中官能σ基A與B 可以形成鍵結,且官能基A與A不形成鍵結,且官能基B與B不形成鍵結Γ進 行一銷式(one-pot)逐步聚合反應(step-wise polymerization)製備產生超分枝 結構之鬲分子,American Chemical Society,Polymer Preprints,Division of Polymer Chemistry 29,1988 (310-311 頁)揭示利用 AB,型單體合成 polyphenylene超分枝狀高分子,引起廣泛之注意。 美國專利5,514,764揭示利用AB2型單體法合成超分枝結構聚酯及聚醯 胺,美國專利6525170揭示利用含環氧基與醯氣之ABf型單體法合成超分枝 聚醋,美國專利6,979,737揭示利用AB2型單體法合成超分枝結構聚醚酮。雖 然AB/型單體法可以很容易製備出多種超分枝高分子,但是受限於大多數 AB/單體尚未商業化量產,多止於實驗室小量合成,而難以推廣,並且大量 生產。 此外,Macromolecules,32,1999 (6380-6382頁)揭示A2與B3雙單體溶 在大量溶劑下製備出超分枝狀聚醚。但是此一成策略仍然面臨多項挑戰, 200817445 必須使用大量溶劑,而且反應時間 例如為避免凝膠化而形成網狀結構物,$ 過長,而增加製造成本,仍然難以量產。 【發明内容】Different from traditional linear, branched and reticular structure classification of polymers, in recent years, many new polymers have been developed and synthesized, such as star-shaped, ladder-like, comb-like, dendritic 'super-branched ^ polymers, all of which are subject to Great attention is paid to the dendrimer as an example. Due to its special structure, it has low viscosity, high solubility and high functional density. It is expected to be used as a toughening agent, a drug delivery material, and a non-material. Linear optical materials and nano self-assembled structures. However, the = tree dendrimer synthesis step is complicated, and it is difficult to use one-pot preparation, so that it cannot be produced in large quantities. "In contrast, another polymer with a multi-branched structure: hyperbranehed polymer, although its structure is not as simple as a dendrimer, and still has the special properties of many dendrimers, super Branched polymers are easily synthesized using AB, a type of monomer including a monofunctional group a, and two or more functional groups B, wherein the functional sigma groups A and B can form a bond and function The bases A and A do not form a bond, and the functional groups B and B do not form a bond. A one-pot step-wise polymerization is carried out to prepare a ruthenium molecule which produces a super-branched structure, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 29, 1988 (310-311) discloses the use of AB, a monomer to synthesize polyphenylene super-branched polymers, which has attracted extensive attention. U.S. Patent 5,514,764 discloses the use of the AB2 type monomer synthesis. Super-branched structure polyesters and polyamines, U.S. Patent 6,525,170 discloses the use of an epoxy group-containing oxime-containing ABf-type monomer to synthesize a super-branched polyester. U.S. Patent No. 6,979,737 discloses the use of the AB2 type. Monomer synthesis of super-branched polyether ketone. Although the AB/type monomer method can easily prepare a variety of super-branched polymers, it is limited by the fact that most AB/monomers have not yet been mass-produced. The laboratory is small-scale synthesis, difficult to generalize, and mass-produced. In addition, Macromolecules, 32, 1999 (p. 6380-6382) reveals that the A2 and B3 bi-monomers are dissolved in a large amount of solvent to prepare a super-branched polyether. The 10% strategy still faces many challenges. 200817445 A large amount of solvent must be used, and the reaction time is, for example, to avoid gelation to form a network structure, which is too long, and the manufacturing cost is increased, and it is still difficult to mass-produce.

’:广-種含*官能基錢A,之化合物⑽m)產生分枝狀高 :S °、、中官能基八細可以形成鍵結,JL官能基A,與B可以形成 且官能基A與A不形成鍵結,且官能基A,與A,不形成鍵結,且官能基 A與A不職鍵結,藉由本發·成程賴造之分枝狀高分子或化合物,可 以作為增糊、流變性改_、藥物輸送材料、非線性光學㈣、螯合劑、 j性微奈綠子等賤。其中,添加適#量含單官能基絲A,之化合物在 聚a反應時與㈣能基化合物,爭相與官能結合,因此會在分子末端形 $吊鏈’而避免其形成三維網狀結構而凝膠化,可以藉此製造出超分枝 同刀子或化合物,本發明之優點為一鍋式聚合反應,在少量溶劑或無溶劑 條件下進行反應,因此可以縮短反應時間,並且大量生產。': Wide-species containing * functional group A, the compound (10) m) produces a branched high: S °, a medium functional group VIII can form a bond, JL functional group A, and B can form and a functional group A A does not form a bond, and the functional group A, and A, do not form a bond, and the functional group A and A are not bonded, and the branched polymer or compound produced by the present invention can be used as an increase. Paste, rheology change _, drug delivery materials, nonlinear optics (4), chelating agents, j-like micro-negative green, etc. Wherein, the addition of a suitable amount of the monofunctional group-containing filament A, the compound in the poly a reaction, competes with the (iv) energy-based compound, and competes with the functional group, thereby forming a chain at the end of the molecule to avoid formation of a three-dimensional network structure. By gelation, it is possible to produce a super-branched knife or a compound. The advantage of the present invention is a one-pot polymerization reaction in which a reaction is carried out in a small amount of solvent or solvent-free conditions, thereby shortening the reaction time and mass production.

_本發明之另一特徵為本發明可以利用大部分已商業化之含雙官能基A 之單體或化合物(八2),和至少一種含3個或3個以上官能基B之單體或化合物 (Bf),和至少一種含單官能基A或A,與之化合物(AR或A,R)產生分枝狀高分子 或,合物,其中官能基八與3可以形成鍵結,且官能基A,與B可以形成鍵結, 且官能基A與A不形成鍵結,且官能基A,與A,不形成鍵結,且官能基a與a, 不形成鍵結,此外,反應時會形成特定官能基,本發明之優點為可以藉此 方法而製造具特定官能基之分枝狀高分子或化合物,例如,A為環氧基,B 為胺基,環氧基開環後形成羥基,可以藉此方法製造多羥基分枝狀高分子 或化合物。 本發明之另一特徵為本發明可以利用大部分已商業化之含雙官能基A 之單體或化合物(八2),和至少一種含3個或3個以上官能基B之單體或化合物 (Bf),和至少一種含單官能基八或八,之化合物(AR或A,R)產生分枝狀高分子 或化合物,其中官能基A與B可以形成鍵結,且官能基A,與B可以形成鍵結, 且官能基A與A不形成鍵結,且官能基A,與A,不形成鍵結,且官能基A與A, 不形成鍵結,其中含雙官能基A之單體或化合物(A)、或含多官能基B之單 體或化合物(Bf)、或含單官能基A(或A,)之化合物(AR或A,R)中另外具有官能 基D ’且官能基D不參與反應或反應性較小,本發明之優點為可以藉此方 200817445 或對乳本硫紛(4_chlorobenzenethiol)、l,3-dimercaptopropane、 1-naphthalenemethanethiol。 以上列舉之原料與以下實施範例係為清楚說明本發明之特徵鱼優點, 非限定本發明之申請專利範圍。 、· 實施例1 : 己二酸(adipic acid,A2),與丙三醇(giycero卜 b3),與正己酸(n-Hexan〇icAnother feature of the present invention is that the present invention can utilize most of the commercially available difunctional A-containing monomers or compounds (VIII), and at least one monomer having 3 or more functional groups B or The compound (Bf), and at least one monofunctional group A or A, and the compound (AR or A, R) produce a branched polymer or a compound in which the functional groups VIII and 3 can form a bond and function. The base A, and B can form a bond, and the functional group A and A do not form a bond, and the functional group A, and A, do not form a bond, and the functional groups a and a do not form a bond, and further, when reacted A specific functional group is formed, and an advantage of the present invention is that a branched polymer or compound having a specific functional group can be produced by this method, for example, A is an epoxy group, B is an amine group, and an epoxy group is formed after ring opening. A hydroxyl group can be used to produce a polyhydroxy branched polymer or compound by this method. Another feature of the invention is that the invention can utilize most of the commercially available difunctional A containing monomers or compounds (VIII), and at least one monomer or compound containing 3 or more functional groups B. (Bf), and at least one compound containing a monofunctional group of eight or eight (AR or A, R) to produce a branched polymer or compound, wherein the functional groups A and B can form a bond, and the functional group A, B can form a bond, and the functional group A and A do not form a bond, and the functional group A, and A, do not form a bond, and the functional groups A and A, do not form a bond, wherein the double functional group A The compound or compound (A), or the monomer or compound (Bf) containing polyfunctional B, or the compound (AR or A, R) containing monofunctional A (or A) additionally has a functional group D' The functional group D does not participate in the reaction or the reactivity is small, and the advantage of the present invention is that it can be used as the side of 200817445 or 4_chlorobenzenethiol, l,3-dimercaptopropane, 1-naphthalenemethanethiol. The materials listed above and the following examples are intended to clearly illustrate the advantages of the characteristic fish of the present invention and are not intended to limit the scope of the invention. Example 1 : Adipic acid (A2), with glycerol (giycero b b3), and n-hexanoic acid (n-Hexan〇ic)

Acid acid ’ AR) ’與二丁基氧>[匕錫’依不同比例加入反應槽中混合後加熱, 其中酸與醇進行總體聚合酯化反應(150〇c,2小時)後產生可溶性多枝聚 f; 酯,其產物分子量可以依原料組成調整,結果列於表1,其中分子量以凝膠 滲透色層分析儀(GPC)測定,標準品為聚苯乙烯(下同)。 表1 :實施例1中,不同原料組成產物重量及數量平均分子量(]^〜、 原料莫耳數比 己二酸:丙三醇:正己酸 1.0:2.0:4.0 Mw 17693 Μη 3340 1.0:3.0:7.0 3653 1225 實施例2 : 乙一醇雙環氧丙基醚(ethylene glycol diglycidy ether,Dow,D.E.R. 230) ’ 與聚丙基鱗雙胺(p〇iy〇Xypr〇pyiene diamine,jeffamine D230), 與縮水甘油苯甲醚(phenyl glyddyl ether,PGE)依不同比例加入反應槽中 混合後加熱,進行總體聚合反應,其中環氧基開環反應後產生羥基,其產 物可溶解於四氫呋喃(THF)中,分子量可以依原料組成調整,結果列於表2。 表2 ··實施例2中,不同原料組成產物重量及數量平均分子量。 原料莫耳數比 Mw Μη EGDE:D230:PGE 1.0:1.0:2.0 12333 3611 1.0:2.0:6.0 5964 1 3181 200817445Acid acid 'AR) 'and dibutyloxy>[匕锡' is added to the reaction tank in different proportions and heated, wherein the acid and alcohol are subjected to the overall polymerization and esterification reaction (150〇c, 2 hours) to produce more soluble The molecular weight of the product can be adjusted according to the composition of the raw materials. The results are shown in Table 1, wherein the molecular weight is determined by a gel permeation chromatography (GPC), and the standard is polystyrene (the same applies hereinafter). Table 1 : In Example 1, the weight and number average molecular weight of the different raw material composition products (=^, the molar ratio of the raw material to adipic acid: glycerol: n-hexanoic acid 1.0: 2.0: 4.0 Mw 17693 Μη 3340 1.0:3.0: 7.0 3653 1225 Example 2: ethylene glycol diglycidy ether (Dow, DER 230) ' with polypropyl scale diamine (p〇iy〇Xypr〇pyiene diamine, jeffamine D230), with glycidol The phenyl glyddyl ether (PGE) is added to the reaction tank in different proportions and then heated to carry out the overall polymerization reaction. The epoxy group is opened to react with a hydroxyl group, and the product is soluble in tetrahydrofuran (THF). According to the composition of the raw materials, the results are shown in Table 2. Table 2 · The weight and number average molecular weight of the raw materials of different raw materials in Example 2. The molar ratio of raw materials to Mw Μ EGDE: D230: PGE 1.0: 1.0: 2.0 12333 3611 1.0 :2.0:6.0 5964 1 3181 200817445

«V 實施例3 : 雙酚A環氧樹脂(Dow,D.E.R· 332,E.E.W.=173),與磺醯胺 (sulfanilamide,SAA),與縮水甘油苯甲醚(pge)依不同比例加入反應 槽中混合後加熱,進行總體聚合反應,其令環氧基開環反應後產生羥基, 其產物分子量可以依原料組成調整,結果列於表3。 表3 :實施例3中,不同原料組成產物重量及數量平均分子量。 原料莫耳數比 D.E.R.332:SAA:PGE Mw 24596 Μη 7724 1.0:1.0:2.0 1.0:2.0:6.0 13778 5310 實施例4 : 雙紛Αί衣氧基樹月曰(Dow ’ D.E.R. 332),與二乙稀三胺(diethylene triamine ’ DETA) ’ 與縮水甘油苯甲_ (phenyl glycidyl ether,PGE)依不 同比例加入乙醇中(反應物50wt%),混合加熱反應2小時(60〇C,迴流),其 中環氧基開環反應後產生羥基,其產物可溶解於四氫11 夫喃(Thf)中,分子 量可以依原料組成調整,結果列於表4。 表4 ·實施例4中,不同原料組成產物重量及數量平均分子量。 原料莫耳數比 D.E.R. 332:DETA:PGE 1.0:1.6:6.0 Mw T7093 Μη ~4260 1.0:1.8:7.0 14488 3850 1.0:2.0:8.0 9425 3229 實施例5 : 雙盼A環氧樹脂(D〇w,d.e.R. 331,E.E.W.=186),與多胺基化合物 (ylene triamine ’ DETA) ’ 與縮水甘油苯甲 _ (phenyi giyeidyl ether, ^GE) ^不同比例加a反應槽中混合後加熱,進行總體聚合反應,其中環 氧基開環反應後產生羥基,其產物可溶解於丙酮或四氫呋喃(THF)中,分 子量可以依原料組成調整,結果列於表5。 11 200817445 表5:實施例5中,不同原料組成產物重量及數量平均分子量與其玻璃轉移 溫度’其中玻璃轉移溫度以示差掃礙熱卡計⑽c)測定,升瞒速 率 10oC/min. 〇 原料莫耳數比 D.E.R,331;DETA:PGE Mw Μη Tg(°C) 1.0:1.6:6.0 26932 7485 33 1.0:2.0:8.0 3556 1527 26 實施例6 : 雙酚A環氧基樹脂(Dow,D.E.R· 332,EEW=173),與二乙稀三胺 (diethylenetriamine,DETA),與縮水甘油苯甲醚(phenylgtycidyletl^r, , PGE)依不同比例加入反應槽中混合後加熱,其中環氧基開環反應後產生羥 、 基,其產物可溶解於四氫呋喃(THF)中,分子量可以依原料組成^整,結^ 5 列於表6。 、 表6 :實施例6中,不同原料組成產物重量及數量平均分子量與其玻璃轉移 溫度。 W' 原料莫耳數比 Mw Μη Tg(°C) D.E.R. 332:DETA:PGE 1.0:1.8:7.0 12564 3341 32 1.0:2.0:8.0 11007 3358 26 實施例7 : 雙盼A環氧樹脂(Dow,D.E.R. 332),與二乙晞三胺(diethylene triamine ’ DETA) ’與單環氧基化合物:甲基丙烯酸縮水甘油醋(glycidyl methacrylate,GMA)依不同比例加入反應槽中混合後加熱,其產物為具 曱基丙烯基多分枝狀高分子,可溶解於四氫呋喃(THF)中,分子量可以依原 料組成調整,結果列於表7。 12 200817445 表7 :實施例7中,不同原料組成產物重量及數量平均分子量。 原料莫耳數比 D.E.R. 332:DETA:GMA Mw Μη 1.0:1.6:6.0 10250 2778 1.0:2.0:8.0 8947 2045 【圖式簡單說明】無 【主要元件符號說明】無 13«V Example 3: Bisphenol A epoxy resin (Dow, DER·332, EEW=173), added to the reaction tank in different proportions with sulfanilamide (SAA) and glycidyl anisole (pge) After mixing, heating is carried out to carry out an overall polymerization reaction, which causes a ring opening reaction to produce a hydroxyl group, and the molecular weight of the product can be adjusted according to the composition of the raw materials. The results are shown in Table 3. Table 3: In Example 3, the weight of the different raw material composition products and the number average molecular weight. Raw material molar ratio DER332:SAA:PGE Mw 24596 Μη 7724 1.0:1.0:2.0 1.0:2.0:6.0 13778 5310 Example 4: Double Α 衣 衣 氧基 曰 (Dow ' DER 332), with diethylene Diethylene triamine 'DETA' and phenyl glycidyl ether (PGE) were added to ethanol in different proportions (reactant 50% by weight), mixed and heated for 2 hours (60 ° C, reflux), wherein the ring After the oxy ring opening reaction, a hydroxyl group is produced, and the product is soluble in tetrahydro 11 pentane (Thf), and the molecular weight can be adjusted according to the composition of the raw materials. The results are shown in Table 4. Table 4 - In Example 4, the weight of the different raw material composition products and the number average molecular weight. Raw material molar ratio DER 332: DETA: PGE 1.0: 1.6: 6.0 Mw T7093 Μη ~ 4260 1.0: 1.8: 7.0 14488 3850 1.0: 2.0: 8.0 9425 3229 Example 5: Double-anti-A epoxy resin (D〇w, deR 331, EEW = 186), mixed with polyamine-based compound (ylene triamine ' DETA ' and phenyi giyeidyl ether ( ^GE ) ^ in a reaction tank and heated to carry out the overall polymerization , wherein the epoxy group is subjected to a ring opening reaction to produce a hydroxyl group, and the product is soluble in acetone or tetrahydrofuran (THF), and the molecular weight can be adjusted according to the composition of the raw materials. The results are shown in Table 5. 11 200817445 Table 5: In Example 5, the weight and number average molecular weight of different raw material constituents and their glass transition temperature 'where the glass transition temperature is measured by the differential thermal card (10) c), the rate of helium increase is 10oC/min. DER, 331; DETA: PGE Mw Μη Tg (°C) 1.0: 1.6: 6.0 26932 7485 33 1.0: 2.0: 8.0 3556 1527 26 Example 6: Bisphenol A epoxy resin (Dow, DER·332, EEW=173), and diethylenetriamine (DETA), and glycidyl anisole (phenylgtycidyletl^r, PGE) are added to the reaction tank in different proportions and heated, wherein the epoxy group is opened and reacted. Hydroxyl groups are produced, and the product is soluble in tetrahydrofuran (THF). The molecular weight can be determined according to the composition of the raw materials, and the results are shown in Table 6. Table 6: In Example 6, the weight and number average molecular weight of the different raw material composition products and their glass transition temperatures. W' Raw material molar ratio Mw Μη Tg (°C) DER 332: DETA: PGE 1.0: 1.8: 7.0 12564 3341 32 1.0: 2.0: 8.0 11007 3358 26 Example 7: Double-looking A epoxy resin (Dow, DER 332), with diethylene triamine 'DETA' and monoepoxy compound: glycidyl methacrylate (glycidyl methacrylate) (GMA) is added to the reaction tank in different proportions and heated, the product is The mercaptopropene-based multi-branched polymer can be dissolved in tetrahydrofuran (THF), and the molecular weight can be adjusted according to the composition of the raw materials. The results are shown in Table 7. 12 200817445 Table 7: In Example 7, the weight and number average molecular weight of the different raw material composition products. Raw material molar ratio D.E.R. 332: DETA: GMA Mw Μη 1.0:1.6:6.0 10250 2778 1.0:2.0:8.0 8947 2045 [Simple description of the diagram] None [Main component symbol description] None 13

Claims (1)

200817445 1 十、申請專利範圍: ' 1· 一種製造超分枝狀高分子或化合物之合成方法,其包括至少使用一種含 雙官能基A之單體或化合物,和至少一種含3個或3個以上官能基b之單 體或化合物,和至少一種含單官能基A或A,之單體或化合物反應後,產 生超分枝狀高分子或化合物,其中官能基A與B可以形成鍵結,且官能 基A’與B可以形成鍵結,且官能基A與A不形成鍵結,且官能基a,與a, 不形成鍵結,且官能基A與A,不形成鍵結。 2·如申請專利範圍第1項所敘述之方法,其中官能基A與B,或官能基A, 與B可以形成鍵結並且產生特定官能基,而製造出具有特定官能基之超 分枝狀南分子或化合物。 f、 3. —種製造分枝狀高分子或化合物之合成方法,其包括至少使用一種含雙 官能基A以及含官能基D之單體或化合物,和至少一種含3個或3個以上 B能基B之單體或化合物,和至少一種含單官能基A或A,之單體或化合 物反應後,產生超分枝狀高分子或化合物,其中官能基A與B可以形成 • 鍵結,且官能基A,與B可以形成鍵結,且官能基A與Λ不形成鍵結,且官 | 能基Α’與Α’不形成鍵結,且官能基Α與Α,不形成鍵結,且在反應後生成 物保留全部或部分未能參與反應之官能基D,而製造出具有官能基d之 超分枝狀局分子或化合物。 4· 一種製造分枝狀高分子或化合物之合成方法,其包括至少使用一種含雙 ^能基A之單體或化合物,和至少一種含3個或3個以上官能基B以及含 〇 官能基D之單體或化合物,和至少一種含單官能基a或A,之單體或化合 物反應後,產生超分枝狀高分子或化合物,其中官能基八與]8可以形成 鍵結’且官能基A’與B可以形成鍵結,且官能基八與八不形成鍵結,且官 能基A’與A’不形成鍵結,且官能基八與八,不形成鍵結,且在反應後生成 物保留全部或部分未能參與反應之官能基D,而製造出具有官能基〇之 超分枝狀高分子或化合物。 5. —種製造分枝狀高分子或化合物之合成方法,其包括至少使用一種含雙 官能基A之單體或化合物,和至少一種含3個或3個以上官能基B之單體 或化合物,和至少一種含單官能基A或A’以及含官能基D之單體或化合 物反應後,產生超分枝狀高分子或化合物,其中官能基八與6可以形成 鍵結,且官能基A,與B可以形成鍵結,且官能基八與八不形成鍵結,且官 • 能基A’與A’不形成鍵結,且官能基A與A,不形成鍵結,且在反應後生成 200817445 i 物保留全部或部分未能參與反應之官能基D,而製造出具有官能基D之 超分枝狀南分子或化合物。 6. 如t請專利範圍第1、2、3、4或5項所敘述之方法,其中含雙官能基A 之單體或化合物與含三個或三個以上官能基B之單體或化合物的莫耳數 比為1比0.1至1比20,且含雙官能基八之單體或化合物與含單官能基a或 A之單體或化合物的莫耳數比1 : 至1 : 1〇〇。 7. 如Ϊ請專利範圍第1、2、3、4或5項所敘述之方法,其中含雙官能基A 之單體或化合物與含三個或三個以上官能基8之單體或化合物的莫耳數 比為1比1至1比10,且含雙官能基A之單體或化合物與含單官能基A或A, 之單體或化合物的莫耳數比1 : 1至丨:2〇。 〇 8·如申請專利範圍第卜2、3、4、5、6或第7項所敘述之方法,其中官能 、 基A、A’4B*別選自環氧基、胺基、羧酸基、酸酐、咪唑基、羥基、 酚基、氰酸基、腈基、醯氣、烯基、硼酸、烷氧基(alk〇xyl)、硫醇、乙 稀嗣基、環胺基、硝基、駿基、醚基、酯基、鹼基、氯基或溴基之組合。 • 9·如申請專利範圍第卜2、3、4、5、6、7或8項所敘述之方法,其包括選 i 用下列含2個或2個以上多官能基化合物之組合:多元環氧基化合物、多 元胺基化合物、多元羥基化合物、多元羧酸基化合物、多元酸酐基化合 物、多元氰酸基化合物、或多元醯氣基化合物,並且包括選用下列含單 S此基化合物之組合:單環氧基化合物、單胺基化合物、單經基化合物、 單酸酐基化合物、單羧酸基化合物、單氰酸基化合物、單烯基化合物、 或單醯氯基化合物。 ’ 10·如申請專利範圍第卜2、3、4、5、6、7或8項所敘述之方法,其包括選 用下列含2個或2個以上多官能基化合物之組合:多元環氧基化合物或多 元胺基化合物,並且包括選用下列含單官能基化合物之組合··單環氧基 化合物'單胺基化合物、或單烯基化合物。 11·如申請專利範圍第卜2、3、4、5、6、7或8項所敘述之方法,其包括選 用下列含2個或2個以上多官能基化合物之組合:多元羥基化合物或多元 羧酸基化合物,並且包括選用下列含單官能基化合物之組合··單羥基化 合物、單羧酸基化合物、或單烯基化合物。 12.如申請專利範圍第卜2'3、4、5'6、7、8、9、10或11項所敘述之方 法所製造之超分枝狀南分子或化合物。 15200817445 1 X. Patent application scope: '1· A synthetic method for producing a super-branched polymer or compound, which comprises using at least one monomer or compound containing a difunctional group A, and at least one containing 3 or 3 The monomer or compound of the above functional group b is reacted with at least one monomer or compound containing a monofunctional group A or A to produce a hyperbranched polymer or compound in which the functional groups A and B can form a bond. And the functional groups A' and B can form a bond, and the functional groups A and A do not form a bond, and the functional groups a, and a, do not form a bond, and the functional groups A and A do not form a bond. 2. The method as recited in claim 1, wherein the functional groups A and B, or the functional groups A, and B can form a bond and produce a specific functional group, thereby producing a super-branched shape having a specific functional group. South molecule or compound. f, 3. A method for synthesizing a branched polymer or compound, which comprises using at least one monomer or compound containing a difunctional group A and a functional group D, and at least one containing 3 or more B The monomer or compound of the energy group B is reacted with at least one monomer or compound containing a monofunctional group A or A to produce a hyperbranched polymer or compound in which the functional groups A and B can form a bond. And the functional group A, and B can form a bond, and the functional group A does not form a bond with the ruthenium, and the functional group Α' and Α' do not form a bond, and the functional group Α and Α do not form a bond, And after the reaction, the product retains all or part of the functional group D which fails to participate in the reaction, and a super-branched local molecule or compound having the functional group d is produced. 4. A method of synthesizing a branched polymer or compound, comprising using at least one monomer or compound containing a bis-energy group A, and at least one having three or more functional groups B and a fluorene-containing functional group A monomer or compound of D, which reacts with at least one monomer or compound containing a monofunctional group a or A, to produce a hyperbranched polymer or compound wherein the functional groups VIII and 8 can form a linkage 'and a functional group The bases A' and B may form a bond, and the functional groups eight and eight do not form a bond, and the functional groups A' and A' do not form a bond, and the functional groups are eight and eight, do not form a bond, and after the reaction The product retains all or part of the functional group D which does not participate in the reaction, and produces a hyperbranched polymer or compound having a functional group oxime. 5. A method for synthesizing a branched polymer or compound, which comprises using at least one monomer or compound containing a difunctional group A, and at least one monomer or compound having 3 or more functional groups B And reacting with at least one monomer or compound containing a monofunctional A or A' and a functional group D to produce a hyperbranched polymer or compound in which the functional groups VIII and 6 can form a bond, and the functional group A , and B can form a bond, and the functional groups eight and eight do not form a bond, and the functional groups A' and A' do not form a bond, and the functional groups A and A do not form a bond, and after the reaction A super-branched southern molecule or compound having a functional group D is produced by generating a functional group D in which all or part of the product is not involved in the reaction. 6. The method described in clause 1, 2, 3, 4 or 5 of the patent, wherein a monomer or compound containing a bifunctional group A and a monomer or compound having three or more functional groups B The molar ratio is from 1 to 0.1 to 1 to 20, and the molar ratio of the monomer or compound containing a difunctional octene to the monomer or compound containing a monofunctional a or A is from 1: to 1: 1 〇 Hey. 7. A method as described in claim 1, 2, 3, 4 or 5, wherein a monomer or compound containing a difunctional A group and a monomer or compound having three or more functional groups 8 The molar ratio of the molar ratio is from 1 to 1 to 1 to 10, and the molar ratio of the monomer or compound containing the difunctional A to the monomer or compound containing the monofunctional A or A, is 1:1 to 丨: 2〇. 〇8. The method as described in claim 2, 3, 4, 5, 6 or 7 wherein the functional group, the base A, the A'4B* are selected from the group consisting of an epoxy group, an amine group, and a carboxylic acid group. , anhydride, imidazolyl, hydroxy, phenolic, cyanate, nitrile, helium, alkenyl, boric acid, alkoxy (alk〇xyl), thiol, ethylene sulfhydryl, cyclic amine, nitro, jun A combination of a base, an ether group, an ester group, a base, a chloro group or a bromo group. • 9. The method as described in Sections 2, 3, 4, 5, 6, 7, or 8 of the patent application, which includes the use of the following combination of two or more polyfunctional compounds: a polycyclic ring An oxy compound, a polyamine-based compound, a polyvalent hydroxy compound, a polyvalent carboxylic acid-based compound, a polybasic acid anhydride-based compound, a polybasic cyanate-based compound, or a polyvalent fluorenyl-based compound, and includes a combination of the following compounds containing a single S: A monoepoxy compound, a monoamine compound, a monomolecular compound, a monoanhydride based compound, a monocarboxylic acid based compound, a monocyanic acid based compound, a monoalkenyl compound, or a monofluorinated chlorine based compound. '10. The method as recited in claim 2, 3, 4, 5, 6, 7, or 8 includes the use of the following combination of two or more polyfunctional compounds: a polyepoxy group A compound or a polyamine-based compound, and includes a combination of the following monofunctional group-containing monoepoxy compound 'monoamine-based compound, or a mono-alkenyl compound. 11. The method as recited in claim 2, 3, 4, 5, 6, 7, or 8, which comprises the use of the following combination of two or more polyfunctional compounds: a polyhydroxy compound or a poly A carboxylic acid-based compound, and includes a combination of the following monofunctional group-containing monohydroxy compound, monocarboxylic acid compound, or monoalkenyl compound. 12. A super-branched southern molecule or compound produced by the method described in claim 2, paragraphs 3'3, 4, 5'6, 7, 8, 9, 10 or 11. 15
TW95136489A 2006-10-02 2006-10-02 Hyperbranched polymers or compounds and methods of making same TW200817445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136489A TW200817445A (en) 2006-10-02 2006-10-02 Hyperbranched polymers or compounds and methods of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136489A TW200817445A (en) 2006-10-02 2006-10-02 Hyperbranched polymers or compounds and methods of making same

Publications (1)

Publication Number Publication Date
TW200817445A true TW200817445A (en) 2008-04-16

Family

ID=44769326

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136489A TW200817445A (en) 2006-10-02 2006-10-02 Hyperbranched polymers or compounds and methods of making same

Country Status (1)

Country Link
TW (1) TW200817445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427095B (en) * 2010-09-06 2014-02-21 Univ Nat Taipei Technology Dendrimers and Their Application and Application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427095B (en) * 2010-09-06 2014-02-21 Univ Nat Taipei Technology Dendrimers and Their Application and Application

Similar Documents

Publication Publication Date Title
Strachota et al. Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks
Fu et al. X‐yne click polymerization
Voit et al. Hyperbranched and Highly Branched Polymer Architectures Synthetic Strategies and Major Characterization Aspects
Fei et al. Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester
JP5260055B2 (en) Epoxy resins imparted toughness with amphiphilic block copolymers and powder coatings produced therefrom
TWI251002B (en) Hyperbranched copolyamide, composition based on this hyperbranched copolyamide and process for obtaining it
CN103497311B (en) A kind of epoxy resin polyamine curing agent and a kind of aqueous latex of epoxy hardener
JP2013057074A (en) Amphiphilic block copolymer-toughened epoxy resins and ambient cure high-solids coatings made therefrom
JP2008519888A (en) Epoxy resin toughened by amphiphilic block copolymer
Santiago et al. Enhancement of epoxy thermosets with hyperbranched and multiarm star polymers: a review
CN1326905C (en) Network polymers comprising epoxy-terminated esters
Utaloff et al. Improvement of fracture toughness and glass transition temperature of DGEBA‐based epoxy systems using toughening and crosslinking modifiers
Allauddin et al. Synthesis and characterization of APTMS/melamine cured hyperbranched polyester-epoxy hybrid coatings
Wurm et al. Hyperbranched–linear–hyperbranched ABA‐type block copolymers based on poly (ethylene oxide) and polyglycerol
TW201514244A (en) A curable epoxy resin composition
Hu et al. Toughened and recyclable epoxy networks featuring nanostructures and dynamic covalent bonds
JP2012523472A (en) Method for producing heat-resistant polyamide
TW200817445A (en) Hyperbranched polymers or compounds and methods of making same
CN112969731A (en) Vegetable oil derived epoxy compositions with improved properties
TW201103668A (en) Method for producing silver nanoparticles by employing ethanolamine
Chen et al. Novel ternary block copolymerization of carbon dioxide with cyclohexene oxide and propylene oxide using zinc complex catalyst
Fan et al. Facile synthesis of polyester dendrimer via combining thio‐bromo “Click” chemistry and ATNRC
CN108659230A (en) Hyperbranched siloxane polymer and preparation method thereof
CN103951814B (en) A kind of take oxysuccinic acid as the method that main raw material prepares end carboxyl super branched polyester
Morell et al. New improved thermosets obtained from diglycidylether of bisphenol A and a multiarm star copolymer based on hyperbranched poly (glycidol) core and poly (methyl methacrylate) arms