[go: up one dir, main page]

TW200816321A - Fast axis beam profile shaping for high power laser diode based annealing system - Google Patents

Fast axis beam profile shaping for high power laser diode based annealing system Download PDF

Info

Publication number
TW200816321A
TW200816321A TW096129455A TW96129455A TW200816321A TW 200816321 A TW200816321 A TW 200816321A TW 096129455 A TW096129455 A TW 096129455A TW 96129455 A TW96129455 A TW 96129455A TW 200816321 A TW200816321 A TW 200816321A
Authority
TW
Taiwan
Prior art keywords
fast axis
emitters
rows
polarizing
along
Prior art date
Application number
TW096129455A
Other languages
Chinese (zh)
Inventor
Dean Jennings
Abhilash J Mayur
Timothy N Thomas
Vijay Parihar
Vedapuram S Achutharaman
Randhir P S Thakur
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200816321A publication Critical patent/TW200816321A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A dynamic surface anneal apparatus for annealing a semiconductor workpiece has a workpiece support for supporting a workpiece, an optical source and scanning apparatus for scanning the optical source and the workpiece support relative to one another along a fast axis. The optical source includes an array of laser emitters arranged generally in successive rows of the emitters, the rows being transverse to the fast axis. Plural collimating lenslets overlie respective ones of the rows of emitters and have a collimation direction along the fast axis. The optical source further includes a fast axis optical deflection element associated with selected ones of the rows of emitters and having one or a succession of optical deflection angles corresponding to beam deflections along the fast axis for respective rows of emitters. Optics focus light from the array of laser emitters onto a surface of the workpiece to form a succession of line beams transverse to the fast axis spaced along the fast axis in accordance with the succession of deflection angles.

Description

200816321 九、發明說明: 【發明所屬之技術領域】 本發明大體上是關於熱處理半導體基材。特別是,本 發明是關於雷射熱處理半導體基材。200816321 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to heat treating a semiconductor substrate. In particular, the present invention relates to laser heat treated semiconductor substrates.

【先前技術】 製造矽和其他半導體積 用之玻璃面板等其他基材時 範圍可從低於250°C到高於 例如摻質佈植退火、結晶、 相沉積等。 體電路於矽晶圓或諸如顯示器 ’而進行熱處理。所需之溫度 !400°C,且可用於各種製程, 氧化、氮化、矽化、和化學氣 Ο 就先進積體電路中很淺的電路特徵結構而t,極期降 低達成熱處理所需的總熱預算(thermal budget)。熱預算可 視為高溫下完成裝置製造所需的總體時間。晶圓處於最高 溫度的時間可能很短。晶圓處於高溫的時間越長,越多的 特徵結構(如佈植接面)會擴散及釋放其定界。例如,佈植 接面深度可能因擴散而變得比預期還深。 快速熱處理(RTP)使用可快速開關的輻射燈單獨加熱 晶圓且不加熱腔室其餘部分。採用相當短(約2〇ns(十億分 之一秒))之雷射脈衝的脈衝式雷射退火實際上只加熱表層 而不加熱下面晶圓,因此容許短暫升溫與降溫速率。 近來發展且有時稱作熱熔(thermal flux)雷射退火或動 態表面退火(dynamic surface annealing ; DSA)的各類方法 插述於美國專利證書號7,005,601與6,987,240,其内文一 200816321 併引用於此供作參考。DSa系統採用許多個連續波(cw) 極體雷射’其t焦成極窄的光束線(bearn ) (〇 〇7 笔米)而形成高強度光束,並以細長輻射線或光束線形式照 射晶圓。光束線接著以垂直光束線長邊的方向掃過晶圓表 面。[Prior Art] Other substrates such as glass panels for the production of tantalum and other semiconductors may range from less than 250 ° C to higher than, for example, dopant implantation annealing, crystallization, phase deposition, and the like. The bulk circuit is heat treated on a germanium wafer or such as a display. The required temperature! 400 ° C, and can be used in a variety of processes, oxidation, nitridation, deuteration, and chemical gas. In the advanced integrated circuit, the shallow circuit characteristic structure and t, the extreme reduction of the total required to achieve heat treatment Thermal budget. The thermal budget can be thought of as the overall time required to complete the fabrication of the unit at high temperatures. The time at which the wafer is at its highest temperature may be short. The longer the wafer is at high temperatures, the more features (such as implanted joints) will diffuse and release their boundaries. For example, the depth of the implant joint may become deeper than expected due to diffusion. Rapid Thermal Processing (RTP) uses a fast-switching radiant lamp to heat the wafer separately without heating the rest of the chamber. Pulsed laser annealing using a relatively short (about 2 ns (one billionth of a second)) laser pulse actually heats only the surface layer without heating the underlying wafer, thus allowing for brief heating and cooling rates. Recently developed and sometimes referred to as thermal flux laser annealing or dynamic surface annealing (DSA), various methods are described in U.S. Patent Nos. 7,005,601 and 6,987,240, the disclosure of which is incorporated herein by reference. This is for reference. The DSa system uses a number of continuous wave (cw) polar body lasers to form a high-intensity beam with a very narrow beam line (bearn) (〇〇7 pen meters) and illuminate as a slender ray or beam line. Wafer. The beamline then sweeps across the wafer surface in the direction of the long side of the vertical beamline.

細的光束線(如〇·07亳米)確保升溫與降溫的時間相當 短及確保停留在所需溫度(如13〇〇<t)的時間很短,其與晶 圓表面上經光束線掃過之固定位置有關。例如,若掃描速 率為約50-300亳米/秒,則晶圓表面上固定位置的溫度將 在〇·6亳秒(ms)内從45〇〇c升高到13〇〇。〇。如此好處在於, 曰曰圓表面處於較低或中等溫度的時間極為短暫,此狀態下 的矽導熱性較高,因而促進加熱整個晶圓,導致擴散及喪 失下面的電路特徵結構定界。反之,曰曰曰圓表面處於預定高 溫(如130(TC)的時間較長,此狀態下的石夕導熱性最低,故 可減少加熱下面特徵結構,並且此時可達到最大的預定作 用(例如,退火處理佈植摻質、退火處理佈植前之無定形損 害等細的光束線對應雷射光束光學系統的最小解析點尺 寸R ’其可以下列公式表示: R = λ/2 NA,Thin beam lines (such as 〇·07 亳m) ensure that the temperature for warming and cooling is relatively short and that the time required to stay at the desired temperature (eg 13 〇〇 < t) is very short, and the beam line on the wafer surface Sweep over the fixed position. For example, if the scan rate is about 50-300 nm/sec, the temperature at the fixed position on the wafer surface will increase from 45 〇〇c to 13 〇 in 〇·6 亳 (ms). Hey. This has the advantage that the time at which the rounded surface is at a lower or medium temperature is extremely short, and the thermal conductivity of the crucible in this state is higher, thereby facilitating heating of the entire wafer, resulting in diffusion and loss of circuit structure delimitation. On the contrary, the rounded surface is at a predetermined high temperature (for example, 130 (TC) for a long time, and the thermal conductivity of the stone in this state is the lowest, so that the heating of the underlying characteristic structure can be reduced, and at this time, the maximum predetermined effect can be achieved (for example, The thin beam line corresponding to the amorphous damage before annealing, and the minimum resolution point size R ' of the laser beam optical system can be expressed by the following formula: R = λ/2 NA,

Numerical 其中λ為雷射波長,να為光學儀器的數值孔徑( Aperture )。數值孔徑定義為: ΝΑ = nxsin(0/2), 其中η為折射率, 間光束弦對的角度 e為簡易或理想系統中透鏡孔徑與焦點 。在上述DSA系統中’波長為81〇奈米 6 Ο Ο 200816321 (―,角度θ小於60度,且,為空氣的折射率(約為”。 這些參數提供了對應細光束線(〇·〇7亳米)之小寬度的 最小解析點尺寸R。在較佳的朵壶播# # 于又狂日1尤釆拎r田範圍内(5〇_3〇〇毫米 /秒),各固定的晶圓表面位置處於最高加 处π取同/皿度左右(如1 300。〇 的時間短於0.5毫秒。 達成晶圓表面最高溫度(13〇〇。〇需要約22〇仟瓦/平方 公分(kw/cm2)的功率密度。Λ揸$,丨μ黎 厌為達到此專級,DSA系統使用 多個810奈米的CW二極體雪斜 立 體雷射其冋說明書所述之雷射 般聚焦在同一光束線影像上。 近來面fe的問題之一為,;t日齡^/ν θ此 為相較於目前短於0.5亳秒的 停留時間,某些退火製程需僖@力畏古,— I 4 >留在最鬲溫度或最高溫度左 右(1300°C)更久的時間。此俾留砗門、” + G和留日f間足以使離子佈植的摻 質取代半導體晶格;但不足以&公同a i 疋以凡全固化離子佈植前的無定 形缺陷。離子佈植前的無定艰彳μ制扭 、疋形化製程是在摻質之離子佈植 以形成淺ΡΝ接面之前進杆 』堤仃,以避免動力摻質離子穿隧 (channeling)通過預定接面 ,衣度下的晶袼。無定形化製程藉 由較重的原子物種離子轟墼s圓而奸, 丁释擎日日0而防止上述之穿隧現象, 轟擊損害造成至少部分的主叙主邋 幻主動丰V體層從結晶態轉化成無 定形態。倘若各晶圓表面^ # % 位置處於l3〇〇°C左右的時間夠 久,則結晶中的缺陷會被 + u化此時停留時間需比目前的 0.5宅秒長。再去,盔中 …、形區域轉化回結晶態實質上會形 成蠢曰曰層於晶體展卜,田 @ i &曰圭 "而產生其他類型的缺陷,即晶體 與再、纟口日日表面之界面的邊界陷 其他種缺陷更持久,…此種邊界缺陷已發現比 、 而要更長的停留時間來完全固化或 200816321 移除,如停留在1300°C左右2至3亳秒。 為了提供如此長的停留時間,必須加大光束點尺寸, 其實質上沿著掃聪方向(以下稱為,,快軸,,)擴大光束強度 的高斯波形(Gaussian profile)。然當高斯光束波形以一特 定因子放寬時,高斯光束波形前緣(leading edge)的斜率亦 近乎以同樣的因子減小。如此將增加升溫(及降溫)時間, 使得晶圓表面的每一位置處於較低或中等溫度的時間更 Ο 0 長,以致例如因熱擴散而降低裝置結構的品質。故沿著快 軸放寬光束波形似乎不可行。因此需要可退火處理離子佈 植晶圓中之邊界缺陷和其他缺陷、且不會因熱擴散而降低 裝置品質的DSA製程。 【發明内容】 一種用於退火處理半導轉 千等體工作部件的動態表面退火設 備包括··用於支撐工作邮放Μ 又牙作部件的工作部件支撐件、光源、和 沿著快轴相對掃描光源與工作 件支撐件的掃瞄設備。光 源包括雷射發射器陣列, ,、大致排成發射器之接續行列, 且行列橫切於快軸。多個準直夂 千罝透鏡各自位在發射器行列上 方,且八有沿著快軸的準直 势〆刻肪Μ α 罝方向。光源更包括與所選發射 器4丁歹]相關的快軸偏光元古 從 盆斜處 ψ 並具有一或一連串的偏光角 度,其對應於針對各發舢 ^ 0 ^ Μ #%仃列沿著快軸之光束偏離角 度。九學儀器使雷射發鉍 1陣列的光線聚焦至工作部件的 表面以形成橫切快軸的連螬Α击# 德#备声而VU —⑴ 連績先束線,而該些光束線係依 偏先角度而沿著快軸相隔開。 8 200816321 【實施方式】 引言:Numerical where λ is the laser wavelength and να is the numerical aperture of the optical instrument (Aperture). The numerical aperture is defined as: ΝΑ = nxsin(0/2), where η is the refractive index, and the angle e of the pair of beams is the lens aperture and focus in a simple or ideal system. In the above DSA system, the wavelength is 81 〇 nanometer 6 Ο Ο 200816321 (―, the angle θ is less than 60 degrees, and is the refractive index of air (approx.). These parameters provide the corresponding beamlet line (〇·〇7最小米) The minimum resolution point size R of the small width. In the preferred flower pot broadcast # #在又狂日1尤釆拎r field (5〇_3〇〇mm/sec), each fixed crystal The position of the round surface is at the highest point π is the same as / the degree of the dish (such as 1 300. The time of 〇 is shorter than 0.5 millisecond. The maximum temperature of the wafer surface is reached (13 〇〇. 〇 needs about 22 watts / square centimeter (kw /cm2) power density. Λ揸$, 丨μ 黎 厌 达到 To achieve this level, the DSA system uses multiple 810 nm CW diode snow oblique stereo lasers. One of the problems of the recent beam line is: t day age ^ / ν θ which is compared with the current residence time shorter than 0.5 亳 second, some annealing process needs 僖 @力畏古,— I 4 > stay at the last temperature or the highest temperature (1300 ° C) for a longer period of time. This is a good way to leave the door, "+ G and stay in Japan f The implanted dopant replaces the semiconductor crystal lattice; but it is not enough to use the ai 疋 无 无 无 无 无 疋 疋 疋 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无Before the dopant ions are implanted to form the shallow splicing surface, the slab is inserted to avoid the dynamic doping ion channeling through the predetermined junction, and the amorphous crystallization process is compared. Heavy atomic species ion bombardment s round and rape, Ding Shiqing day 0 to prevent the above-mentioned tunneling phenomenon, bombardment damage caused at least part of the main narrator main illusion active V body layer from crystalline state to amorphous form. When the wafer surface ^ # position is at about l3 〇〇 °C for a long time, the defects in the crystallization will be + u. The residence time is longer than the current 0.5 ft.. Go again, the helmet... The transformation of the region back into the crystalline state will essentially form a stupid layer in the crystal display, and the other types of defects, namely the boundary between the crystal and the surface of the surface of the day, will be trapped. Defects are more durable,... such boundary defects have been found And longer residence time to fully cure or 200816321 removal, such as staying at around 1300 ° C for 2 to 3 seconds. In order to provide such a long residence time, the beam spot size must be increased, which is essentially along the sweep The Cong direction (hereinafter referred to as the fast axis, ) expands the Gaussian profile of the beam intensity. However, when the Gaussian beam waveform is relaxed by a specific factor, the slope of the leading edge of the Gaussian beam is also nearly The same factor is reduced. This will increase the temperature rise (and cool down) time so that each position of the wafer surface is at a lower or medium temperature for a longer period of time, such that the quality of the device structure is reduced, for example, due to thermal diffusion. Therefore, it seems not feasible to relax the beam waveform along the fast axis. There is therefore a need for a DSA process that can anneal the boundary defects and other defects in the ion implanted wafer without degrading the quality of the device due to thermal diffusion. SUMMARY OF THE INVENTION A dynamic surface annealing apparatus for annealing a semi-conducting working body component includes: a working component support member for supporting a working mail amp and a dental component, a light source, and a relative axis along the fast axis A scanning device that scans the light source and the workpiece support. The light source includes a laser emitter array, and is arranged substantially in a row of emitters, and the rows and columns are transverse to the fast axis. A plurality of collimation 罝 Millennium lenses are positioned above the emitter array, and eight have a collimation potential along the fast axis to engrave the fat Μ 罝 direction. The light source further includes a fast axis polarizer associated with the selected emitter 4, and has one or a series of polarization angles corresponding to each of the hairpins 0 0 Μ #%仃 along the column The beam of the fast axis deviates from the angle. The ninth instrument focuses the light of the array of laser hair 1 onto the surface of the working part to form a sniper that crosses the fast axis. #德#备声和VU—(1) The first beam line, and the beam lines Separated along the fast axis by the angle of the first angle. 8 200816321 [Implementation] Introduction:

Ο 處於咼溫(1300。〇超過0.5毫秒之離子佈植晶圓中的 缺陷可藉著提供非常長的停留時間(如2 - 3亳秒)加以退火 或固化’且不需放棄沿著快軸急遽升降的高斯型光束線邊 緣。如此’佈植前之無定形化製程和佈植後之退火製程造 成的邊界缺陷可完全移除,且不會引起不當的熱擴散。達 成方法為使第一組雷射聚焦至第一光束線影像上,以及使 第二組雷射聚焦至第二光束線影像上,第二光束線影像之 最大振幅(amplitude peak )沿著快軸方向(即垂直光束線 長度)與第一光束線影像的最大振幅錯開。此位移較佳為光 束線之高斯波形沿著快軸且在對應光束線其一之最大振幅 一半兩度下的寬度(半高寬)。二光束線具有同樣高度聚焦 的影像和前述約〇·〇7毫米的最小解析點尺寸。兩組雷射之 光學路徑間的弦對角度小於i度,藉以達成如此小的位 移’且角度視雷射與晶圓表面的間距而定。 最終結果為與單一光束線一樣具有沿著快軸急遽升降 的光束前緣與後緣(trailing edge),但處於最高溫度或左右 的停留時間為單一光束線的兩倍。雷射光束線之一為領導 光束,另一則為尾隨光束。領導光束需在〇·5毫秒内使晶 圓表面溫度從約400°C升高到1300°c,故雲且古^ 既而具有較大的功 率密度;而尾隨光束只需維持晶圓表面的高溫(不需提高溫 度)’故具有較小的功率密度。 9 程式化施加至四組 200816321 凋整施加至二組雷 #、、西洚陣D 士 町的電流可改變晶圓表面各 置Μ度時間變化的曲 ^ ^ m , 緣。提供更多組分別聚焦至 束線(如四個光束線)的雷射, 電流大小可進一半— 及 J進步進行微調。 DSA設简 上述提及之專利申 也 月案的一 DSA設備實施例多 Μ N >販不恩圖。二 定沾采/細 描用的起重架結構1 〇包招 疋的千仃攔杆12、u。 一金拓Μ二 一平行起重架橫杆16、18 疋距離而固定在一 受控於未洛-认田 ,且支托在固定欄杆12、 、禾、、、日不的馬達和 .L VL ^ 動構件,以一起於滚軸或 承上>口者固定攔杆12 A 4滑動。光源20係可滑鸯 在起重架橫杆16、18上,# I’遏可懸掛在受控於未繪开 與驅動構件的橫杆1 、 6、1 8下面,以沿著橫杆1 6、1 石夕晶圓22或1他其从〆 ^ ,、他基材係固定支托在起重架結構1 (] 光源2〇包括雷射光源和(後述的)光學儀器,用以J 近且朝下發射的扇形光束24、25,其分別照射晶1 做為領導與尾隨光束線26、27,且大致平行於固 2 1 4而延伸’其方便起見稱為「慢方向」。如後; 第一光東線27平行於第一光束線26且二者相隔# 對應於光學系統的最小解析點尺寸。達成方法將指 下說明書中。 雖然在此並未繪示,但起重架結構更可包括 座’以沿著大致平行於扇形光束24的方向移動雷剩 固定位 對應光 雷射的 Ο Ο 於第1 一對固 係相隔 上,並 滾珠輛 地支托 之馬達 滑動。 下方。 生二相 22以 定攔杆 所述, 距離係 述於以 Z轴臺 光源和 10缺陷 Defects in ion-irradiated wafers at temperatures above 1300 ° 〇 over 0.5 ms can be annealed or cured by providing very long residence times (eg 2-3 sec) without abandoning along the fast axis The edge of the Gaussian beamline that is rushing up and down. The boundary defects caused by the amorphization process before the implantation and the annealing process after the implantation can be completely removed without causing improper heat diffusion. The set of lasers is focused onto the first beamline image, and the second set of lasers is focused onto the second beamline image. The maximum amplitude of the second beamline image is along the fast axis direction (ie, the vertical beamline) The length is offset from the maximum amplitude of the first beamline image. This displacement is preferably the width (half height) of the Gaussian waveform of the beamline along the fast axis and at half the maximum amplitude of the corresponding beamline. The beamline has the same highly focused image and the minimum resolution point size of the aforementioned 〇·〇 7 mm. The chord pair angle between the optical paths of the two sets of lasers is less than i degrees, thereby achieving such a small displacement 'and angle The laser depends on the spacing of the wafer surface. The end result is the same as the single beam line with the leading edge and trailing edge of the beam rising and falling along the fast axis, but the maximum temperature or left and right dwell time is a single beam. Two times the line. One of the laser beam lines is the leading beam and the other is the trailing beam. The leading beam needs to raise the wafer surface temperature from about 400 ° C to 1300 ° C in 5 ms. The ancient ^ has a large power density; while the trailing beam only needs to maintain the high temperature of the wafer surface (no need to increase the temperature), so it has a small power density. 9 Stylized application to the four groups of 200816321 is applied to the two groups The current of Lei #, Xi Dian Shi D Shi Shi can change the curvature of the surface of the wafer, and provide more sets of lasers that are respectively focused to the beam line (such as four beam lines). The current can be cut in half - and the J progress is fine-tuned. The DSA set up a DSA device example of the patent application mentioned above. N > Lifting frame structure 1 The barriers 12, u. One gold extension Μ two parallel hoisting crossbars 16, 18 疋 distance and fixed in a controlled by Luo Luo - recognizing the field, and supporting the fixed railings 12, Wo,,,, The motor and the .L VL ^ moving member are slid together with the fixed retainer 12 A 4 together with the roller. The light source 20 is slidable on the gantry rails 16, 18, # I 'The restraint can be hung under the crossbars 1, 6, and 18 that are controlled by the unpainted and driven members, to follow the crossbars 1, 6 or 1 stone wafer 22 or 1 from the 〆^, The fixed support of the material is in the gantry structure 1 (the light source 2 〇 includes a laser light source and an optical instrument (described later), and the fan-shaped light beams 24 and 25 that are emitted near and downward, respectively, are irradiated with the crystal 1 as Leading and trailing beam lines 26, 27 and extending substantially parallel to the solid 2 1 4 are referred to as "slow directions" for convenience. As follows; the first optical east line 27 is parallel to the first beam line 26 and the two are separated by # corresponding to the minimum resolution point size of the optical system. The method of achievement will be referred to in the instructions. Although not shown here, the hoisting structure may further include a seat 'to move the lightning-retained fixed position corresponding to the light laser in a direction substantially parallel to the fan-shaped beam 24 on the first pair of solid-series And the motor of the ball bearing the ground slides. Below. The second phase 22 is defined by the fixed rod, and the distance is described by the Z-axis source and 10

200816321 光學儀器,進而可控地改變光源20與晶圓22的 而控制光束線26聚焦至晶圓22上。光束線26的 為 1 公分、寬度例如為 66微米,且功率密 220kW/cm2。或者,光源和相關光學儀器可為固 晶圓為支撐在對其進行二維掃描的臺座上。 一般操作時,起重架橫杆1 6、1 8沿著固定; 1 4而設在特定位置,且光源2 0沿著起重架橫杆 速移動以掃描垂直其長邊的光束線26、27,此掃 便起見稱為「快方向」。藉此’二光束線26、27 的一侧掃描到另一側,並照射晶圓22上1公分寬 域。光束線26、27夠窄,且在快方向的掃描速度 得光束線26、27的輻射光僅短暫曝照晶圓特定i 束線的最大強度仍足以加熱表面區域來改變高溫 有效加熱的晶圓22深處將進一步當作散熱器而 表面區域。一旦完成快速掃瞄,起重架橫杆16、 定欄杆12、14移動到新的位置,如此光束線26 著慢軸延伸之長邊方向移動。接著進行快速掃瞄 圓22上鄰近的長條區域。反覆交替進行快速和镑 也許是以光源20蛇形路徑,直到熱處理完整個d 止。 光源20包括雷射陣列,用以得到所需的高光 度(220kW/cm2)。下述光學系統使雷射陣列光束聚 近且平行的光束線,每一光束線寬66微米。一適 系統繪示於第2及3圖,其中光學系統3 0的二雷身; 間距及因 長度例如 度例如為 定式,而 爛杆1 2、 16、18 等 描方向方 從晶圓22 的長條區 .夠快,使 i域,但光 。然,未 快速冷卻 1 8沿著固 沿著其沿 以照射晶 ί慢掃描, 晶圓2 2為 學功率密 焦成二相 合的光學 f條堆(bar 11 200816321 stack) 3 2產生約810奈米的雷射光;第4圖為一雷射條堆 32的末端平面視圖❶每一雷射條堆32包括η個平行的條 狀物34,其大致對應砷化鎵(GaAs)半導體結構的垂直[η 接面、側向延伸約1公分且相隔約〇·9亳米。水冷卻層一 般置於條狀物3 4之間。各條狀物3 4具有4 9個發射器3 6, 其分別構成獨立的GaAs雷射發射光束且該些光束在直角 … 方向的發散角度不同。條狀物34的長邊設置延伸越過多個 (、 發射器3 6且沿著慢軸排成一列,其短邊則對應小於1微米 的p-n空乏層且空乏層沿著快轴排列。快軸方向上的小光 源尺寸容許有效沿著快軸對準排直。快軸方向的發散角度 大’而慢軸方向的發散角度較小。 回溯第2及3圖,獨立的半圓柱透鏡(iensiet)4〇設置 在獨立的雷射條狀物34上方,以沿著快軸準直雷射光成細 乍光束。透鏡40可由黏膠黏接到雷射條堆32上,並對準 條狀物34而延伸越過發射區域(發射器36)。如同以下說 明書所述’部分雷射條狀物34與其透鏡40為覆蓋上稜鏡 Q 44 ’其偏折光線1度以下而形成第1圖的第二(尾隨)光束 線27 °棱鏡44的角度和二光束線26、27間的位移量相對 • 第1 ·4圖的比例而言為無窮小,因此已大幅放大其在圖中 的尺寸使圖式稍微可見。 光源20更可包括傳統光學元件。傳統光學元件可包括 交錯器和偏振多工器,然其僅為舉例說明而已,熟諳此技 藝者田可選用其他光學元件。在第2及3圖的實施例中, 來自二雷射條堆32的兩組光束乃輸入交錯器42,其具有 12 200816321 多個分束器型結構且二對角界面上有特殊塗層(例如 平行波帶),用以選擇性反射及穿透光線。此類交錯器 自 Research Electro Optics(REO)。在交錯器 42 中, 化的金屬反射波帶形成在雷射條堆3 2提供之各組光 的斜面,使來自條堆3 2 —側之條狀物3 4的光束交替 或穿透,而與來自條堆32另一側之條狀物34的光束$ 其亦對應經歷選擇性穿透/反射,進而填補來自獨立發 30的間隔輻射波形。 〇 ' 第一組交錯光束通過二分之一波片4 8,以相對第 交錯光束旋轉其偏振。二組交錯光束皆輸入具雙偏振 器結構的偏振多工器(PMUX)52。此類PMUX可購自 Laser Inc·。斜向的第一與第二界面層54、56使兩組 光束沿著其正面共軸反射。第一界面層54通常做為當 式反射器(HR)的介電干涉濾波器,第二界面層56則 當作雷射波長之偏振分束器(PBS)的介電干涉濾波器 此,第一界面層54反射的第一組交錯光束照射第二界 £) 5 6的背面。因二分之一波片4 8造成旋轉偏振之故, 組交錯光束將通過第二界面層56。PMUX 52輸出的來 束58強度為任一組交錯光束強度的兩倍。 儘管繪示於不同的圖式,然交錯器42、二分之一 * 48、和PMUX 52與其界面層54、56、及可裝設在輸 與輸出面的附加濾波器,一般可由諸如紫外光(uv)可 環氧化物的塑膠封裝件結合在一起,以構成剛硬的光 統。透鏡40與雷射條堆32之間有塑膠接點,其並對 反射 可購 圖案 束用 反射 L錯, 射器 二組 分束 CVI 交錯 作硬 做為 。如 面層 第一 源光 波片 入面 固化 學系 準條 13 200816321 狀物34。來源光束58通過一組圓柱透鏡62、64、66, 來源光束5 8沿者慢輛聚焦。200816321 Optical instrument, in turn, controllably alters source 20 and wafer 22 while controlling beamline 26 to focus on wafer 22. The beam line 26 has a length of 1 cm, a width of, for example, 66 μm, and a power density of 220 kW/cm 2 . Alternatively, the light source and associated optical instrument can be supported by a solid substrate on a pedestal that is scanned two-dimensionally. In normal operation, the gantry rails 16 and 18 are fixed along the fixed position; 14 at a specific position, and the light source 20 is moved along the traverse rail to scan the beam line 26 perpendicular to its long side, 27, this sweeping is called "fast direction." Thereby, one side of the 'two beam lines 26, 27 is scanned to the other side and illuminates a 1 cm wide area on the wafer 22. The beam lines 26, 27 are narrow enough, and the scanning speed in the fast direction is such that the radiation of the beam lines 26, 27 is only briefly exposed. The maximum intensity of the wafer-specific i-beam is still sufficient to heat the surface area to change the high-temperature effectively heated wafer. The depth of 22 will be further used as a radiator and surface area. Once the fast scan is completed, the gantry rails 16, the rails 12, 14 are moved to the new position such that the beamline 26 moves in the direction of the long side of the slow axis extension. A quick scan of the adjacent strips on the circle 22 is then performed. Repeatedly alternating fast and pounds may be a snake-shaped path of light source 20 until the heat treatment is complete. Light source 20 includes a laser array for obtaining the desired high brightness (220 kW/cm2). The optical system described below converges the laser array beams in parallel and parallel beam lines, each beam line being 66 microns wide. A suitable system is shown in Figures 2 and 3, in which the two systems of the optical system 30; the spacing and the length, for example, the degree is, for example, the fixed rod, and the rotten rods 1, 2, 16, 18, etc. are drawn from the wafer 22 Long strip area. Fast enough to make i domain, but light. However, without rapid cooling 1 8 along the solid along its edge to illuminate the crystal slowly, the wafer 2 2 is the power of the dense focus into a two-phase optical f-bar stack (bar 11 200816321 stack) 3 2 produces about 810 Nai The laser light of the meter; FIG. 4 is an end plan view of a laser bar stack 32. Each of the laser bar stacks 32 includes n parallel strips 34 that substantially correspond to the vertical of the gallium arsenide (GaAs) semiconductor structure. [η joint, lateral extension of about 1 cm and separated by about 〇·9亳. The water cooling layer is typically placed between the strips 34. Each strip 34 has 49 emitters 3 6, which respectively form separate GaAs laser emitting beams and the divergence angles of the beams in the right angle direction are different. The long sides of the strips 34 are arranged to extend over a plurality of (the emitters 36 and are arranged in a row along the slow axis, the short sides of which correspond to pn depletion layers of less than 1 micron and the depletion layers are arranged along the fast axis. The small light source size in the direction allows for efficient alignment along the fast axis. The divergence angle in the fast axis direction is large and the divergence angle in the slow axis direction is small. Back to Figures 2 and 3, independent semi-cylindrical lenses (iensiet) 4〇 is disposed above the separate laser strips 34 to collimate the laser beam along the fast axis to form a fine beam of light. The lens 40 can be adhered to the laser beam stack 32 by adhesive and aligned with the strips 34. And extending over the emission area (transmitter 36). As described in the following description, the 'partial laser strip 34 and its lens 40 cover the upper 稜鏡Q 44 ', which deflects the light by 1 degree or less to form the second figure of FIG. (tailing) beam line 27 ° the angle of the prism 44 and the amount of displacement between the two beam lines 26, 27 relative to the ratio of the 1st - 4th figure is infinitesimal, so the size in the figure has been greatly enlarged so that the pattern is slightly It can be seen that the light source 20 can further comprise a conventional optical component. The conventional optical component can include Interleaver and polarization multiplexer, which are merely illustrative, and other optical components are available to those skilled in the art. In the embodiments of Figures 2 and 3, the two sets of beams from the two laser beam stacks 32 are Input interleaver 42 having 12 200816321 multiple beam splitter type structures with special coatings (eg parallel wave bands) on the two diagonal interfaces for selective reflection and penetration of light. Such interlacers from Research Electro Optics (REO). In the interleaver 42, the metal reflected wave bands form the slopes of the respective sets of light provided by the laser beam stack 32, alternating the beams from the strips 34 of the strip stack 32. Or penetrate, and the beam $ from the strip 34 on the other side of the strip stack 32 also undergoes selective penetration/reflection, thereby filling the spaced radiation pattern from the independent hair 30. 〇' The first set of staggered beams The polarization is rotated by a half-wave plate 4 8 with respect to the interlaced beam. Both sets of interlaced beams are input to a polarization multiplexer (PMUX) 52 having a dual polarizer structure. Such PMUX is commercially available from Laser Inc. The oblique first and second interface layers 54, 56 enable two sets of light Coaxial reflection along its front side. The first interfacial layer 54 is typically used as a dielectric interference filter for the reflector (HR), and the second interfacial layer 56 is used as a laser wavelength polarizing beam splitter (PBS). Dielectric Interference Filter Here, the first set of staggered beams reflected by the first interfacial layer 54 illuminate the back side of the second boundary £6. As the half wave plate 48 causes rotational polarization, the set of staggered beams will pass through the second interface layer 56. The output 58 of the PMUX 52 output is twice as strong as the intensity of any of the interlaced beams. Although illustrated in different figures, the interleaver 42, half * 48, and PMUX 52 and its interface layers 54, 56, and additional filters that can be mounted on the output and output faces, can generally be made, such as by ultraviolet light. The (uv) epoxide plastic packages are bonded together to form a rigid optical system. There is a plastic contact between the lens 40 and the laser beam stack 32, which is used to reflect the L-missing of the reflection-purchased pattern beam, and the two-beam splitting CVI of the emitter is staggered as hard. Such as the surface layer of the first source of light wave plate into the surface curing system of the standard strip 13 200816321 34. The source beam 58 passes through a set of cylindrical lenses 62, 64, 66, and the source beam 58 is focused along the slower.

一維光管70均質化沿著慢軸的來源光束。圓枉透 62、64、66聚焦的來源光束以有限會聚角沿著慢軸進入 管70且實質上平行快軸。光管70更清楚繪示於第5圖 立體視圖,其做為光束均質器,用以減少條堆3 2之多個 射器3 6沿著慢軸引入的光束結構在慢軸上分離。光管 可做為矩形的先學玻璃板72,具有夠大的折射率來形成 4全反射。其短邊為沿者慢轴’長邊為沿著快轴。玻璃 7 2沿者來源光束5 8的光軸7 4延伸一實質距離,來源光 58則沿著慢軸會聚到輸入面76。來源光束58在玻璃板 的頂面與底面間反射數次,故當其離開輸出面78時,可 除許多沿著慢軸的結構及均質化沿著慢軸的光束。然來 光束58已充分沿著快軸準直(利用圓杈透鏡4〇),而玻 板72為夠寬,因此來源光束58不會在破璃板72的側邊 反射,而是保持在沿著快軸的準直方向。 Ο 光管70可沿著其軸向逐漸變細,以控制進入與離開 徑、和光束會聚與發散。一維光管或可做為二平行反射召 其大致對應來源光束通過之玻璃板72的頂面與底面。 光管70輸出的來源光束大體上是均句的。 使 鏡 光 的 發 70 内 板 束 72 移 源 璃 間 孔 如第6圖進一步繪示,歪像透鏡組或光學儀器8〇、 放大慢轴輪出光束,且包括大致為球面的透鏡,以投射 定光束線26至晶圓22上。歪像光學儀器8〇、82將二維 束線塑形成限定長度的細窄光束線。在快轴方向上,輸 82 預 光 出 14 200816321 光予儀器在光管輸出來源端具有無限共軛系(infinite ⑶njugate )(但系統也可設計成有限來源共軛系卜且在晶 圓22的像面端具有有限共軛系;而在慢軸方向上,輸出光 予儀器在光嘗70輸出來源端具有有限共輕系,且在像面端 具有有限共軛系。另外在慢軸方向上,光管70係使雷射條 狀物之多個雷射二極體所發射的不均勻光線均質化。先管 • 70的均質化能力與光線行經光管70的反射次數息息相 0 關。次數取決於光管70的長度、變細方向(若有)、進入與 離開孔徑大小、和射入光管7 0的角度。歪像光學儀器更使 來源光束聚焦成預定尺寸的光束線並投射到晶圓22的表 面0 間和溫唐波形的可程式光東波形:_ 參照第6及8圖,一組雷射條狀物34(如間隔條狀物 3 4)照穿對應的圓柱透鏡4〇而抵光學儀器(交錯器42、偏 振多工器52)等。其餘的雷射條狀物34照穿對應的圓柱透 (J 鏡40和分別位於透鏡40上的獨立稜鏡44。每一稜鏡44 以平行於快軸的中心軸為轴心旋轉而偏折光束1度以下 / (角度A),藉以產生垂直快轴的偏光光束。光束未經偏折 的第一組雷射條狀物34產生領導光束24。光束經各稜鏡 44偏折的第二組雷射條狀物34產生尾隨光束25。第7圖 的透視圖顯示構成二平行發射器3 6行列的二雷射條狀物 34,二者均覆蓋上圓柱透鏡40,且透鏡40之一覆蓋上稜 鏡44。第8圖繪示控制電流供應器1〇2、104的波形控制 15 200816321 ΟThe one-dimensional light pipe 70 homogenizes the source beam along the slow axis. The source beams focused by the apertures 62, 64, 66 enter the tube 70 along the slow axis at a finite convergence angle and are substantially parallel to the fast axis. The light pipe 70 is more clearly shown in a perspective view of Fig. 5 as a beam homogenizer for reducing the beam structure introduced by the plurality of emitters 3 6 along the slow axis on the slow axis. The light pipe can be used as a rectangular glass plate 72 with a large enough refractive index to form 4 total reflection. Its short side is the slow axis of the edge, and the long side is along the fast axis. The glass 7 2 extends along the optical axis 74 of the source beam 58 to a substantial distance, and the source light 58 converges along the slow axis to the input face 76. The source beam 58 is reflected several times between the top and bottom surfaces of the glass sheet so that when it exits the output surface 78, a number of structures along the slow axis and homogenization of the beam along the slow axis can be eliminated. The beam 58 is then sufficiently collimated along the fast axis (using a rounded lens 4〇), while the glass plate 72 is wide enough that the source beam 58 does not reflect on the sides of the glass plate 72, but remains along the edge. The alignment direction of the fast axis. The light pipe 70 can be tapered along its axial direction to control the entry and exit paths, and the beam converges and diverges. The one-dimensional light pipe can be used as a two-parallel reflection to substantially correspond to the top and bottom surfaces of the glass plate 72 through which the source beam passes. The source beam output by the light pipe 70 is substantially uniform. The mirror beam 70 is transferred to the source glass hole as further illustrated in FIG. 6 , the lens lens group or the optical instrument 8 〇, the slow axis wheel is emitted, and the substantially spherical lens is included to project the projection. Beamline 26 is on wafer 22. The imaging optical instruments 8〇, 82 shape the two-dimensional beam into a narrow beam line of defined length. In the fast axis direction, the input 82 is pre-extracted 14 200816321 The light is given to the instrument at the source end of the light pipe with an infinite conjugate system (infinite (3) njugate ) (but the system can also be designed as a finite source conjugate and on the wafer 22 The image plane end has a finite conjugate system; in the slow axis direction, the output light to the instrument has a finite total light system at the source end of the light taste 70, and has a finite conjugate system at the image plane end. In addition, in the slow axis direction The light pipe 70 is used to homogenize the uneven light emitted by the plurality of laser diodes of the laser strip. The homogenization ability of the first tube and the 70 is closely related to the number of times the light passes through the light pipe 70. The number depends on the length of the light pipe 70, the direction of the thinning (if any), the size of the entrance and exit apertures, and the angle of the incident light pipe 70. The imaging optical instrument focuses the source beam into a beamline of a predetermined size and A programmable optical waveform projected between the surface 0 of the wafer 22 and the Wentang waveform: _ Referring to Figures 6 and 8, a set of laser strips 34 (e.g., spacer strips 34) illuminate the corresponding cylinder The lens 4 is snaking against the optical instrument (interleaver 42, polarization multiplexer 52) The remaining laser strips 34 illuminate the corresponding cylindrical passages (J mirror 40 and independent turns 44 respectively located on the lens 40. Each turn 44 is rotated about the central axis parallel to the fast axis. The beam is deflected by 1 degree / (angle A) to generate a polarized beam of vertical fast axis. The first set of laser strips 34 that are not deflected by the beam produces a leading beam 24. The beam is deflected by each of the turns 44 The two sets of laser strips 34 produce trailing beams 25. The perspective view of Fig. 7 shows two laser strips 34 constituting two parallel emitters 36, both of which cover the upper cylindrical lens 40, and the lens 40 A cover 稜鏡 44. Figure 8 shows the waveform control of the control current supply 1 〇 2, 104 15 200816321 Ο

器100如何各自獨立控制領導光束24與尾隨光束25的功 率密度,電流供應器102、104驅動間隔雷射條狀物34的 發射器6第電流供應器1 〇 2為前面光束電流供應器, 因其耦接至未被任一稜鏡44覆蓋的雷射條狀物。第二電流 供應器104為尾隨光束電淥供應器,因其耦接至被稜鏡44 覆蓋的雷射條狀物。每一稜鏡44偏折對應的雷射光束而形 成尾隨光束25。領導光束24與尾隨光束25成像在晶圓22 上的一光束線26、27(第1圖)之相隔距離取決於稜鏡44 的偏光角度。,,前面,,和,,尾隨,,等措辭亦適用光束以特定方 向掃過晶圓的實施例。若掃描方向為反向,則稜鏡料偏折 的光束會形成領導或,,前面,,光束線26,而未經偏折的光束 會形成尾隨光束線2 7。本發明任一模式皆可施行,故第6 圖實施例中諸如”前面,,和,,尾隨,,等措辭可互換。 操作時,尾隨光束線27的功率密度可能明顯小於前面 光束線26的功率密度。這是因為前面光束線26必須具有 足夠的功率密度以從較低溫度範圍快速提高晶圓表面溫度 達最高溫度,而較低溫度範圍處的晶圓導熱性較高,以致 光束線只需維持此 圓表面溫度升溫超 9圖所示,尾隨光 於領導光束線。二 溫度,故只需較小 過預定的最高溫度 束線之快軸波形的 光束線的最大功率 較難加熱表面。尾隨 的功率密度來防止晶 (1300°C )。因此如第 最大功率密度明顯小 密度差由第8圖的波形控制器1 〇〇設定。 續的尾隨光 ’雷射條狀 第1 0圖繪示之實施例提供數個(即4個)連 束,其功率密度可各自獨立調整。在第圖令 16 200816321 物34分成四組。一組雷射條狀物34-〇產生未經偏折的雷 射光而形成前面光束。另一組雷射條狀物3 4 -1產生經稜鏡 44-1偏折一小角度Αι的照光而形成第一尾隨光束。又一 組雷射條狀物34-2產生經稜鏡44-2偏折角度a2的照光, 且角度A2大於角度Al。再一組雷射條狀物34_3產生經稜 鏡44-3偏折角度A3的照光,且角度As大於角度a2❶4 個光束線26-1、26-2、26-3、26-4(第U A圖)由光學儀器(第 2·6圖的交錯器42、偏振多工器52等)聚焦至晶圓表面上。 在4個光束線26-1、26-2、26-3、26-4具有相同功率密度 的特例中,如第11Α圖所示,其沿著快軸的功率密度波形 具有相同的高斯形狀’但彼此沿著快軸錯開同樣的峰至峰 (peak-to-peak)位移。此位移取決於稜鏡441、44_2、44 3 相繼造成的偏光角度Al、Ay A”較佳地,角度Αι、a2、 A3為選擇使相鄰光束線的峰至峰位移至少約等於(若非恰 等於)單一光束線(例如前面光束的光束線)的光束半高寬 (如第9圖所示)。同樣地如同前述,此位移可對應光束的 最小解析點尺寸。偏光角度皆小於…且實際上無法從 第1〇圖察覺。為清楚綠示,第10圖的角度已經過放大。 不同組雷射條狀物34-0、m、34_2、34·3產生的功 率密度大小可由雷射功率控制器11〇各自獨立調整,其個 別提供供應電流1〇、Ιι、I2、Ι3至各雷射條狀物34_〇、34^、 34-2、34-3。故雷射功率控制器11〇控制雷射陣列產生的 快軸功率密度波形。儘管其功率密度 圖的功率密度波形),但根據第= 17 200816321 圖的各種功率密度波形,尾隨光束線的功率密 領導光束線。控制器110可調整連續的光束 1〇、Ιι、12、13,以產生如第11B圖之功率密度 梯狀波形、或如第11 C圖之單梯波形、或如第 梯波形。在另一實施例中,如第1 1 E圖所示, 前面或領導光束線後可能下降,接著從第三光 - 光束線係為上升。雖然圖式未纟會示,但波形更 0 升梯狀波形來代替第11B-11D圖的下降梯狀波 第12A圖為連續光束線的較佳功率密度 1 2 A圖繪示晶圓表面上特定位置之功率密度隨 情形。(若第12A圖轉換成繪示功率密度於固 著快轴的分布情形,則視選擇單位而定,圖形將 領導光束線26_1具有最高的最大功率密度,而 光束線26-2、26_3、26-4的最大功率密度較小 同。第12A圖中強大的領導光束線26-ι有足 度來克服石夕的高導熱性,故可快速加熱晶圓 (J 1300X:。接著的尾隨光束線26-2、26-3、26-4 功率密度’但足以維持該晶圓位置為13〇〇〇c且 ‘ °C。第12B圖緣示同一晶圓表面位置之溫度因 光束波形而隨時間改變的情形,溫度偕同前面 從400 C快逮上升到1 3001:。接著該位置保持 下3毫秒’且溫度對應相繼光束的高峰些微波 秒後’溫度偕同最後一道光束線的後緣快速下I 第12B圖指出離子佈植後之DSA退火製程How the controller 100 independently controls the power density of the leading beam 24 and the trailing beam 25, and the current supplies 102, 104 drive the emitter 6 of the spaced-off strips 34. The current supply 1 〇 2 is the front beam current supply, It is coupled to a laser strip that is not covered by any of the turns 44. The second current supply 104 is a trailing beam power supply because it is coupled to a laser strip covered by the crucible 44. Each of the turns 44 deflects the corresponding laser beam to form a trailing beam 25. The distance separating the leading beam 24 from the trailing beam 25 imaged on the wafer 22 by a beam line 26, 27 (Fig. 1) depends on the angle of polarization of the crucible 44. The , front, and, and, trailing, and the like also apply to embodiments in which the beam sweeps across the wafer in a particular direction. If the scanning direction is reversed, the deflected beam will form a leading or, front, and beam line 26, while the undeflected beam will form a trailing beam line 27. Any of the modes of the present invention can be implemented, so that the terms "front," and ", trailing," etc. are interchangeable in the embodiment of Fig. 6. In operation, the power density of the trailing beam line 27 may be significantly smaller than that of the front beam line 26. Power density. This is because the front beamline 26 must have sufficient power density to rapidly increase the wafer surface temperature from the lower temperature range to the highest temperature, while the lower temperature range of the wafer is more thermally conductive, so that the beamline is only It is necessary to maintain the temperature rise of the surface of the circle as shown in Figure 9. The trailing light is on the leading beam line. The second temperature, so the maximum power of the beam line of the fast axis waveform smaller than the predetermined maximum temperature beam line is harder to heat the surface. Trailing power density to prevent crystals (1300 ° C). Therefore, as the maximum power density is significantly small, the density difference is set by the waveform controller 1 第 of Fig. 8. Continued trailing light 'Laser strips 1 0 The illustrated embodiment provides several (i.e., four) bundles whose power densities can be independently adjusted. In Figure 16, 200816321, the objects 34 are divided into four groups. A set of laser strips 34-〇 are produced without bias. The laser beam forms a front beam. Another set of laser strips 3 4 -1 produces a first trailing beam of light that is deflected by a small angle of 稜鏡 44-1 to form a first trailing beam. 34-2 produces illumination at a deflection angle a2 of the crucible 44-2, and the angle A2 is greater than the angle Al. A further set of laser strips 34_3 produces illumination at a deflection angle A3 of the crucible 44-3, and the angle As More than the angle a2❶4 beam lines 26-1, 26-2, 26-3, 26-4 (the U-picture) are focused to the crystal by an optical instrument (interleaver 42 of the second figure, polarization complex 52, etc.) On the circular surface, in the special case where the four beam lines 26-1, 26-2, 26-3, and 26-4 have the same power density, as shown in Fig. 11 , the power density waveform along the fast axis has the same The Gaussian shape 'but shifts the same peak-to-peak displacement along the fast axis. This displacement depends on the successive polarization angles A1, Ay A" of the 稜鏡 441, 44_2, 44 3 , angles ι, a2, A3 are beams selected such that the peak-to-peak displacement of adjacent beam lines is at least approximately equal to (if not equal to) a single beam line (eg, the beam line of the front beam) Aspect (as shown in FIG. 9). Again as before, this displacement can correspond to the minimum resolution point size of the beam. The angle of polarization is less than... and can't actually be perceived from the first map. For clarity, the angle of Figure 10 has been enlarged. The power density generated by the different sets of laser strips 34-0, m, 34_2, 34·3 can be independently adjusted by the laser power controller 11 ,, which individually supplies the supply currents 1〇, Ιι, I2, Ι3 to each Laser strips 34_〇, 34^, 34-2, 34-3. Therefore, the laser power controller 11 controls the fast axis power density waveform generated by the laser array. Despite the power density waveform of the power density map, according to the various power density waveforms of the figure = 17 200816321, the power of the trailing beam line is dense to lead the beam line. The controller 110 can adjust the continuous beams 1 〇, Ιι, 12, 13 to produce a power density ladder waveform as in Fig. 11B, or a single ladder waveform as in Fig. 11C, or as a ladder waveform. In another embodiment, as shown in Figure 1 1 E, the front or leading beamline may fall behind, and then rise from the third beam-beam line. Although the pattern is not shown, the waveform is more 0 liters of ladder waveform instead of the falling ladder of Figure 11B-11D. Figure 12A shows the preferred power density of the continuous beam line. 1 2 A is shown on the wafer surface. The power density at a particular location varies with the situation. (If Figure 12A is converted to plot the distribution of power density to the fast axis of fixation, the graph will have the highest maximum power density for the leader beam line 26_1 depending on the unit of choice, while the beam lines 26-2, 26_3, 26 The maximum power density of the -4 is smaller. The powerful leading beam line 26-ι in Figure 12A has sufficient depth to overcome the high thermal conductivity of Shi Xi, so the wafer can be heated quickly (J 1300X: followed by the trailing beam line) 26-2, 26-3, 26-4 power density 'but sufficient to maintain the wafer position at 13 ° C and ' ° C. Figure 12B shows the temperature of the same wafer surface position due to the beam waveform over time In the case of change, the temperature rises from 400 C to 1 3001: and then the position remains at 3 ms' and the temperature corresponds to the peak of successive beams. After the microwave seconds, the temperature is the same as the trailing edge of the last beam line. Figure 12B shows the DSA annealing process after ion implantation

度最好小於 線供應電流 依次降低的 11 D圖之缓 振幅波形在 束線到最後 可改變成上 形。 波形圖。第 時間變化的 定時間點沿 保持不變。) 相繼的尾隨 ,其各自皆 夠的功率密 表面位置達 具有較小的 不超過1300 第12A圖之 光束的前緣 在約1 300°C 盪。約3亳 &至 400°C 〇 使用第12A 18 ΟThe degree is preferably less than the line supply current. The slower amplitude waveform of the 11 D map can be changed to the upper shape at the end of the beam line. Waveform diagram. The fixed time point of the first time change remains unchanged. Successive trailing, each with its own power-tight surface position up to a smaller than 1300, the leading edge of the beam of Figure 12A sways at approximately 1 300 °C. About 3 亳 & to 400 ° C 〇 Use section 12A 18 Ο

200816321 圖之光束波形時雷射 叮田射先的接連影響。 間,佈植前之Α定形#制 在初始時距(T1)期 經退火處理而將半導舻从以 導體材枓造成的轟擊損害 千V體材料從部分盔 態。在時距m)期間,佈植养^ 形態轉化成結晶 (”)期間,將形成於晶體…曰巴:體-格。在時距 化。第β圖緣示此類 、之界面的邊界缺陷固 當無定形半導體表層再“… 邊界缺陷的成因為 區在其邊界可能未完全對準,導 上一,日曰 Λ. - ^ V致失準缺陷形成。此缺陷 可能需要以130(TC處理3亳秒( 同 (P第12A圖申多個光束绫 的總體時間)來完全退火或固化。 光釆線 第14旧會示用以形成極彡pN接面⑼如佈㈣^ 圓表面的源極/汲極延伸區)的離子佈植製程。待形成之結 構繪示於第13圖,其中離子佈植之源極/汲極延伸區21〇、 215係佈植在深源極/汲極接觸區2〇〇、2〇5與半導體通道 區220之間,通道區220位於閘極225下方,且藉由薄閘 介電層23 0而與閘極225隔開。在第14圖製程的第一步驟 中(方塊25 0),利用重離子(如氧、氮、碳、鍺)犇擊晶圓來 打斷結晶鍵結,使自晶圓頂面235延伸到橫虛線240的表 面區域從完全結晶態轉化成至少部分無定形態。離子義擊 的能量大小為使晶圓中的離子向下延伸佈及虛線240,且 實際上止於虛線240。無定形化步驟是為了避免待下一步 驟佈植之摻質離子的穿隧作用。穿隧作用可能發生在發晶 圓的規則結晶結構,因此將足夠深(對應第13圖的虛線24〇) 的結晶結構轉化成無定形結構可防止通道作用。 19 200816321 下一步驟(第14圖的方塊255)為佈植摻質以例如形成 源極/没極延伸區 2 1 0、2 1 5。摻質可為珅(A s)、碟(p)、硼 (B)、或其他物質。此步驟可包括進行遮罩步驟,用以遮蔽 此步驟不欲佈植的晶圓區域。離子能量係經選擇而使佈植 離子的分布不會越過預定深度,例如源極/沒極延伸區 2 1 0、2 1 5的極淺深度。 視情況而定,在進行採用第1·10圖設備的DSA製程 ^ 前,可沉積吸光層至晶圓表面(第14圖的方塊260)。此步 〇 驟的施行可根據低溫電漿製程和設備,其描述於美國專利 申請號11/131,904、西元2005年5月17日申請、名稱「包 括低溫電漿沉積吸光層與高速光學退火的半導體接面形成 方法(A SEMICONDUCTOR JUNCTION FORMATION PROCESS INCLUDING LOW TEMPERATURE PLASMA DEPOSITION OF AN OPTICAL ABSORPTION LAYER AND HIGH SPEED OPTICAL ANNEALING)」、Kartik Ramaswamy 等人提出、且受讓予本所有權人的申請案。吸光層例如可 為無定形碳。 〇 下一步驟(方塊270)為使用多個具可塑形之光束波形 的光束線進行掃描雷射DSA製程。此步驟的第一子步驟(方 ‘ 塊271)為利用前面光束線26-1的陡峭前緣(第12A圖),將 - 最近遭遇之晶圓表面點(或點構成之線)的溫度從400-450 °C的周遭溫度快速提高至13〇〇〇c。下一子步驟(方塊272) 為將晶圓溫度保持在1 300°C —段足夠時間(例如3毫秒), 以(a)再結晶無定形表面區域、(b)使佈植摻質取代再結晶晶 20 200816321 格、和(C)固化再結晶區域與其下方晶體間的邊界缺陷。最 後一子步驟(方塊2 7 3 )為利用最後尾隨光束線2 6 - 4的陡山肖 後緣(第1 2 A圖 >,快速降低表面點的溫度。 第15圖繪示第8圖的變形實施例,其中稜鏡44以獨 立的鏡子121、122、123代替,且鏡子121、122、U3偏 折來自間隔雷射條狀物34之光束的方式與第8圖實施例之 v 稜鏡44偏折光束的方式相同。若偏光角度為A,則每一鏡 〇 子121、122、123相對於由各雷射條狀物34出來之光束方 向的角度為A/2 〇 第16圖為第15圖實施例的簡化圖,其中可為鏡子或 稜鏡的單一光學元件120偏折來自一連串雷射條狀物 3 4-1、34-2、3 4-3等的光束以產生尾隨光束線,而來自其 他雷射條狀物34-4、34-5、34-6沾也击土交仏 的先束未予偏折以形成領 導光束線。當第16圖的光學元件120為鏡子、而非稜鏡時’ 若偏光角度為A’則如同第15圖的實施例,光學元件Μ 相對於由各雷射條狀物3 4出來夕本击士 * μ么—200816321 The beam effect of the beam when the beam is pulsed. During the initial time interval (T1), the semi-conducting enthalpy is damaged from the bombardment caused by the conductor material, and the thousand V body material is partially shielded. During the time interval m), during the conversion of the planting form into crystals ("), it will be formed in the crystal... 曰巴: body-div. in the time interval. The β-graph edge shows the boundary defect of this type Solid when the surface of the amorphous semiconductor is "...the boundary region of the boundary defect may not be perfectly aligned at its boundary, and the first one is turned on. - ^ V causes misalignment defects to form. This defect may need to be fully annealed or cured at 130 TC for 3 sec (the same as (the overall time for multiple beams P in Figure 12A). The 14th enamel line will be used to form the pole 彡pN junction. (9) Ion implantation process such as cloth (4)^ source/drain extension of the circular surface. The structure to be formed is shown in Fig. 13, where the source/drain extension of ion implantation is 21〇, 215 Between the deep source/drain contact regions 2〇〇, 2〇5 and the semiconductor channel region 220, the channel region 220 is located under the gate 225, and is connected to the gate 225 by the thin gate dielectric layer 230. Separated. In the first step of the process of Figure 14 (block 25 0), heavy ions (such as oxygen, nitrogen, carbon, helium) are used to strike the wafer to break the crystal bond, so that the top surface of the wafer is 235. The surface region extending to the horizontal dashed line 240 is converted from a fully crystalline state to an at least partially amorphous state. The energy of the ion bombing is such that the ions in the wafer extend downwardly and the dashed line 240, and actually terminate at the dashed line 240. The shaping step is to avoid the tunneling effect of the dopant ions to be implanted in the next step. The tunneling effect may occur in the hair growth. A circular, regular crystalline structure, thus converting a crystalline structure deep enough (corresponding to the dashed line 24 of Figure 13) into an amorphous structure prevents channeling. 19 200816321 The next step (block 255 of Figure 14) is a cloth blending For example, source/dipole extension regions 2 1 0, 2 15 may be formed. The dopant may be bismuth (A s), dish (p), boron (B), or other substance. This step may include masking. a step of masking the area of the wafer that is not to be implanted in this step. The ion energy is selected such that the distribution of the implanted ions does not exceed a predetermined depth, such as the source/negative extension 2 1 0, 2 1 5 Very shallow depth. Depending on the situation, the light absorbing layer can be deposited onto the wafer surface (block 260 of Figure 14) before performing the DSA process using the device of Figure 1.10. The implementation of this step can be based on low temperature. A plasma process and apparatus, which is described in U.S. Patent Application Serial No. 11/131,904, filed May 17, 2005, entitled "Semiconductor junction forming method including low temperature plasma deposition light absorbing layer and high speed optical annealing (A SEMICONDUCTOR) JUNCTION FORMATION PROCESS INCLUDING LOW TEMPERATURE PL ASMA DEPOSITION OF AN OPTICAL ABSORPTION LAYER AND HIGH SPEED OPTICAL ANNEALING)", Kartik Ramaswamy et al., and the application to the owner. The light absorbing layer may be, for example, amorphous carbon. The next step (block 270) is A scanning laser DSA process is performed using a plurality of beam lines having a shapeable beam waveform. The first sub-step of this step (square 'block 271) is to use the steep leading edge of the front beamline 26-1 (Fig. 12A) to bring the temperature of the recently encountered wafer surface point (or line formed by the dot) from The ambient temperature at 400-450 °C is rapidly increased to 13 °c. The next sub-step (block 272) is to maintain the wafer temperature at 1 300 ° C for a sufficient period of time (eg 3 ms) to (a) recrystallize the amorphous surface area, (b) replace the implant dopant Crystalline crystals 2008 200821 21, and (C) boundary defects between the solidified recrystallized region and the underlying crystal. The last sub-step (block 2 7 3 ) is to use the trailing edge of the steep trailing beam of the last trailing beam line 2 6 - 4 (Fig. 1 2 A) to quickly lower the temperature of the surface point. Figure 15 shows the eighth figure. A variant embodiment in which the cymbal 44 is replaced by a separate mirror 121, 122, 123, and the mirrors 121, 122, U3 are deflected from the beam of the spaced laser strip 34 and the v rib of the embodiment of Fig. 8 The mirror 44 is deflected in the same manner. If the polarization angle is A, the angle of the beam direction of each of the mirrors 121, 122, 123 with respect to each of the laser strips 34 is A/2 〇 Fig. 16 A simplified view of the embodiment of Figure 15, wherein a single optical element 120, which may be a mirror or a cymbal, deflects a beam of light from a series of laser strips 3 4-1, 34-2, 3 4-3, etc. to produce a trailing The beam line, while the first beam from the other laser strips 34-4, 34-5, 34-6 is also deflected to form a leading beam line. When the optical element 120 of Figure 16 is Mirror, not 稜鏡, 'If the polarization angle is A', as in the embodiment of Figure 15, the optical element 出来 is out of the ray of each laser strip 3 4 Shi * μ it -

C 田术之光束方向的角度為Α/2。 第17及18圖繪示第7 β 。门,α 及8圖的變形實施例,其中稜 鏡44省略不用,取而代之的θh α / 的疋不同的(即交替的)半圓柱透 鏡40經旋轉角度A。旋轉所 &amp; 符所選擇之圓柱透鏡4〇與第7及 8圓稜鏡4 4的偏光行為相因 子目同。半圓柱透鏡40分別裝設在 各雷射條狀物34上’並且對淮 尉準產生預定的光束方向,然後 結合到雷射條狀物,較佳AΤΤΛ, 馬使用UV可固化環氧化物。如 此,一半的透鏡40-1、4〇q ^ r从 、 、40-5為對準开多成偏離角度a 的光束方向,其餘透鏡4〇_2、μ /1 Λ 2、4〇_4、40·6則對準提供未經 21 200816321 偏離的光束方向。 第1 9圖繪系第1 〇圖的變形實施例’其中偏光角度依 次變大的稜鏡44-1、44-2、44-3省略不用,偏光功能改由 將對應的半圓枉透鏡4〇-2、4 0-3旋轉相繼變大的角 度Αι、A2、A3達成。透鏡40-0保持不旋轉,藉以提供4 個連續的偏光角度〇、Al、A2、As。此與第1〇圖實施例中 ^ 光學儀器(交錯器42、偏振多工器52)所提供的連續偏光角 P 度相同。 第2 0圖繪示第10圖的變形實施例,其中偏光角度依 次變大的稜鏡44-1、44-2、44-3分別由旋轉角度相繼變大 的鏡子120-1、120-2、120-3代替,以偏折來自雷射條狀 物34-1、34-2、34-3的光束。來自雷射條狀物34-0的光 束未予偏折,藉以提供4個連續的偏光角度〇、Ai、八2、 As。此與第10圖實施例中光學儀器(交錯器42、偏振多卫 器52)所提供的連續偏光角度相同。 雖然本發明已以較佳實施例揭露如上,然其並非用以 〇 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内’當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖為本發明採用之熱熔雷射退火設備的立體示意 圖。 第2及3圖為從不同透視角度觀察第1圖設備之光學 22 200816321 組件的立體視圖。 第4圖為第1圖設備中部分半導體雷: 面視圖。 第5圖為用於第1圖設備之均質光管έ 第6圖為對應第2及3圖的示意圖。 第7圖為本發明一實施例之光束源的 第8圖為對應第7圖的末端視圖,其 二光束線之快軸功率密度波形的控制器。 第9圖為第7及8圖之設備所形成的 形圖。 第1 0圖為本發明另一實施例的示意圖 程式快軸波形替代高斯光束。 第11 Α至11 Ε圖為各種快軸功率密度 第丨〇圖之DSA設備的可程式控制器選擇&lt; 第12A圖為第1〇圖之DSA設備產生 車父佳功率密度波形圖。 第12B圖為與第12A圖同時產生的圖 面上固定點溫度因第1 2 A圖之功率密度波 的情形。 第13圖為利用本發明DSA設備形成 戴面側視圖。The angle of the beam direction of the field is Α/2. Figures 17 and 18 show the 7th β. A modified embodiment of the door, alpha and eight figures, wherein the prism 44 is omitted, and the different (i.e., alternating) semi-cylindrical lenses 40 of θh α / are rotated by an angle of rotation A. The cylindrical lens 4〇 selected by the rotation of the &amp; is the same as the polarization behavior of the 7th and 8th rounds. The semi-cylindrical lenses 40 are respectively mounted on the respective laser strips 34 and produce a predetermined beam direction for the yttrium, and then bonded to the laser strips, preferably A ΤΤΛ, and the horse uses a UV curable epoxide. Thus, half of the lenses 40-1, 4〇q^r, , and 40-5 are aligned with the beam direction deviating from the angle a, and the remaining lenses 4〇_2, μ /1 Λ 2, 4〇_4 40.6 is aligned to provide the direction of the beam that has not deviated from 21 200816321. Fig. 19 is a modified embodiment of the first drawing. The 稜鏡44-1, 44-2, and 44-3 in which the polarization angles are sequentially increased are omitted, and the polarizing function is changed to the corresponding semicircular 枉 lens. -2, 4 0-3 Rotation successively becomes larger angles Αι, A2, A3. Lens 40-0 remains unrotated, thereby providing four consecutive polarization angles 〇, Al, A2, As. This is the same as the continuous polarization angle P degree provided by the optical instrument (interleaver 42, polarization multiplexer 52) in the first embodiment. Fig. 20 shows a modified embodiment of Fig. 10, in which the ridges 44-1, 44-2, and 44-3, in which the polarization angles are sequentially increased, are respectively mirrors 120-1 and 120-2 whose rotation angles are successively increased. 120-3 is substituted instead to deflect the light beams from the laser strips 34-1, 34-2, 34-3. The beam from the laser strip 34-0 is not deflected to provide four consecutive polarization angles 〇, Ai, 八2, As. This is the same as the continuous polarization angle provided by the optical instrument (interleaver 42, polarization multi-guard 52) in the embodiment of Fig. 10. While the present invention has been described in its preferred embodiments, it is not intended to limit the invention, and it is to be understood that the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a hot-melt laser annealing apparatus used in the present invention. Figures 2 and 3 are perspective views of the optical 22 200816321 assembly of the apparatus of Figure 1 from different perspectives. Figure 4 is a partial semiconductor mine in the device of Figure 1: face view. Fig. 5 is a view of a homogeneous light pipe for the apparatus of Fig. 1. Fig. 6 is a schematic view corresponding to Figs. 2 and 3. Fig. 7 is a view showing a beam source of an embodiment of the present invention. Fig. 8 is an end view corresponding to Fig. 7, and a controller for the fast axis power density waveform of the two beam lines. Figure 9 is a pictorial diagram of the apparatus of Figures 7 and 8. Figure 10 is a schematic diagram of another embodiment of the present invention. The program fast axis waveform replaces the Gaussian beam. Sections 11 to 11 are diagrams of various fast-axis power densities. Programmable controller selection for DSA equipment in the figure. <12A is a diagram showing the power density waveform of the DSA equipment generated by the DSA equipment in Figure 1. Fig. 12B is a view showing the case where the fixed point temperature on the map generated at the same time as Fig. 12A is due to the power density wave of Fig. 2A. Figure 13 is a side view showing the wearing of the DSA apparatus of the present invention.

第14圖繪示使用第10圖設備的DSA 第1 5圖為第8圖之第一變形實施例白 偏光鏡。 射陣列的末端平 6立體視圖。 ^部透視圖。 更繪示用來改變 快軸功率密度波 丨,其採用數個可 波形圖,其可由 &gt; 之隨’時間改變的 形,繪示晶圓表 形而隨時間改變 之半導體裝置的 製程。 勺示意圖,其使用 23 200816321 第1 6圖為第8圖之第二變形實施例的示意圖,其使用 單一偏光鏡。 第17及1 8圖繪示第8圖的第三變形實施例,其中選 用的快軸準直圓柱透鏡係經旋轉預定的偏光角度。 第19圖為第10圖之第一變形實施例的示意圖,其藉 由使對應的快軸圓柱透鏡旋轉相繼變大的角度,以代替偏 、 光角度依次變大的稜鏡。 第20圖為第10圖之第二變形實施例的示意圖,其藉 由分別使偏光鏡旋轉相繼變大的角度,以代替偏光角度依 次變大的稜鏡。 【主要元件符號說明】 10 起重架結構 12、14 欄杆 16、18 橫杆 20 光源 22 晶圓 24、25 光束 26 、 26-1 、 26-2 、 26-3 、 26-4 、 27 光束線 〇 30 光學系統 32 條堆 34、34-0、34-1、34-2、34-3、34-4、34-5、34-6 條狀物 … 36 發射器 40、40-0〜40-6、62、64、66 透鏡 42 交錯器 44 &gt; 44-1 ' 442- ^ 44-3 稜鏡 48 波片 52 偏振多工器 54、 56 界面層 58 來源光束 70 光管 72 玻璃板 24 76 輸入 200816321 74 光軸 78 輸出面 80、82 100、110 控制器 102、104 120 光學元件 120-1 、 120-2 、 120-3 &gt; 121 、 122 、 123 200、205 接觸區 210、215 22 0 通道區 225 閘極 學儀器 電流供應器 鏡子 延伸區 〇 230 閘介電層 240 虛線 235 頂面 方塊/步驟 、13電流 250 、 255 、 260 、 270 、 271 、 272 、 273 A、Αι、A2、A3 角度 I〇、Ιι、12 u 25Fig. 14 is a view showing a white polarizer of the first modified embodiment of Fig. 8 in which the DSA of the apparatus of Fig. 10 is used. The end of the array is flat 6-dimensional view. ^ Department perspective. It is also shown to change the fast axis power density ripple, which uses a number of waveform diagrams, which can be described by the &gt; time-varying shape, showing the wafer shape and the process of the semiconductor device changing with time. Schematic diagram of a spoon, which uses 23 200816321 Figure 16 is a schematic view of a second variant embodiment of Figure 8, which uses a single polarizer. 17 and 18 illustrate a third modified embodiment of Fig. 8, wherein the selected fast-axis collimating cylindrical lens is rotated by a predetermined polarization angle. Fig. 19 is a view showing a first modified embodiment of Fig. 10, in which the corresponding fast-axis cylindrical lens is rotated by an angle which is successively enlarged to replace the ridge which becomes larger in order of the partial and optical angles. Fig. 20 is a view showing a second modified embodiment of Fig. 10, in which the polarizing mirrors are rotated by successively increasing angles, respectively, instead of the pupils whose polarization angles are gradually increased. [Main component symbol description] 10 Lifting frame structure 12, 14 Railing 16, 18 Crossbar 20 Light source 22 Wafer 24, 25 Beam 26, 26-1, 26-2, 26-3, 26-4, 27 Beamline 〇30 optical system 32 stacks 34, 34-0, 34-1, 34-2, 34-3, 34-4, 34-5, 34-6 strips... 36 emitters 40, 40-0~40 -6, 62, 64, 66 Lens 42 Interleaver 44 &gt; 44-1 ' 442- ^ 44-3 稜鏡 48 Wave Plate 52 Polarization multiplexer 54, 56 Interface layer 58 Source beam 70 Light tube 72 Glass plate 24 76 Input 200816321 74 Optical Axis 78 Output Face 80, 82 100, 110 Controller 102, 104 120 Optical Elements 120-1, 120-2, 120-3 &gt; 121, 122, 123 200, 205 Contact Areas 210, 215 22 0 channel area 225 gate instrument current supply mirror extension 〇 230 gate dielectric layer 240 dashed line 235 top block / step, 13 current 250, 255, 260, 270, 271, 272, 273 A, Αι, A2 A3 Angle I〇, Ιι, 12 u 25

Claims (1)

200816321 十、申請專利範圍: 1 · 一種動態表面退火設備,用於退火處理一半導體工作部 件,該設僑至少包含: 一工作部件支樓件,用於支撐一工作部件; 一光源;以及 掃瞄設備,用以沿著一快轴相對掃描該光源和該工作 部件支撐件; Ο CJ 其中該光源包含: w 多個雷射發射器組成的一陣列,大致排成該些發射 盗的接續行列,且該些行列橫切該快軸; 上 複數個準直透鏡,各自位在該些發射器之該些行列 上方,且具有沿著該快軸的一準直方向; 件,一與該些發射器之所選該些行列相關的快軸偏光元 具有一偏光角度,該偏光角度對應於針對該此 之所選:些行列的沿著該快轴之一光束偏離角度 -光學設備’使該雷射發射器陣列的一光線沿著橫 切該快軸的一方向而於該 、 兔1 作4件的一表面上聚焦成一細 乍光束線。 如申睛專利範圍第1項 ^ . $所述之設備,其中該光學設備將 該些發射器之所選該此/· 矣Z &lt;仃列的光線在該工作部件的該 上產生一第一光束線, ^ y 从及將來自該些發射器之其餘 该些行列的光線於該工作卸/ ^件的該表面上產生一第二光束 26 200816321 線,該第一與該第二光束線互相平行、橫切該快軸、且沿 著該快轴彼此偏離一距離,該距離對應該偏光角度。 3 ·如申請專利範圍第2項所述之設備,其中該第一與該第 二光束線之其中一者為一領導光束,且另一者為一尾隨光 束。 4.如申請專利範圍第1項所述之設備,更包含: 一快轴光束波形控制器; 一第一電流源,耦接而供應未被該快軸偏光元件覆蓋的 該些發射器之行列;以及 一第二電流源,耦接而供應被該快軸偏光元件覆蓋的該 些發射器之行列。 5 ·如申請專利範圍第4項所述之設備,其中該快軸光束波 形控制器經程式化以各自獨立根據一預定的快軸功率密度 波形來調整該第一與該第二電流源的輸出大小。 6. 如申請專利範圍第5項所述之設備,其中該第一與該第 二電流源分別設定該工作部件的該表面上一領導光束線和 一尾隨光束線的一功率密度。 7. 如申請專利範圍第2項所述之設備,其中各個該光束線 27 200816321 沿著該快軸的一寬度係對應一最小解析影像尺寸。 8 ·如申請專利範圍第7項所述之設備,其中該偏光角度是 使該第一與該第二光束線沿著該快軸偏離的該距離對應一 最小解析影像尺寸。 ^ 9·如申請專利範圍第8項所述之設備,其中該偏離距離為 〇 該些光束線之一沿著該快軸的一高斯半高寬 (half-maximum Gaussian width) 〇 I (K如申請專利範圍第1項所述之設備,其中該快軸偏光 元件包含一偏光鏡,其位在一組接續之該些發射器的該些 行列之一光學路徑上。 II ·如申請專利範圍第1項所述之設備,其中該快軸偏光 Cj 元件包含: 複數個偏光元件,設在該些發射器之所選該些行列的上 . 方,各個該些偏光元件具有使一光束偏離該快軸的一偏光 角度。 12.如申請專利範圍第11項所述之設備,其中該些偏光元 件各自為一稜鏡,其設在該發射器之一對應行列的該些準 直透鏡上方。 28 200816321 1 3 ·如申請專利範圍第11項所述之設備,其中該些偏光元 件各自為一鏡子,其設在該發射器之一對應行列的一光學 路徑上。 1 4.如申請專利範圍第11項所述之設備,其中該些偏光元 - 件各自為對應該些準直透鏡的其中之一者,且該準直透鏡 係旋轉通過一對應偏光角度。 1 5 ·如申請專利範圍第1項所述之設備,其中該快軸偏光 元件包含: 複數個偏光元件,設在該些發射器之所選該些行列的上 方,各個該些偏光元件具有對應於沿著該快軸之一連續光 束偏離的一連串之偏光角度的其中之一者。 Q 1 6.如申請專利範圍第1 5項所述之設備,其中該些偏光元 件為複數個稜鏡,該些稜鏡設在該些發射器之對應行列的 、 該些準直透鏡上方,且連續的該些稜鏡具有一連串的偏光 角度。 17.如申請專利範圍第15項所述之設備,其中該些偏光元 件為複數個鏡子,該些鏡子設在該些發射器之對應行列的 一光學路徑上,且連續的該些鏡子依次轉向以提供一連串 29 200816321 的偏光角度。 18.如申請專利範圍第15項所述之設備,其中該些偏光元 件各自為對應該些準直透鏡其中之一者,且該準直透鏡係 旋轉通過對應於一連串之偏光角度的其中之一者。 - 19.如申請專利範圍第15項所述之設備,其中該光學設備 (Ί 將來自不同或不同紐:之該些發射器的該些行列之光線於該 工作部件的該表面上產生一連續光束線,該連續光束線係 對應於該些偏光元件的該些一連串之偏光角度,相鄰的該 些光束線互相平行、橫切該快轴、且沿著該快軸彼此偏離 一距離,該距離對應於該些一連串之偏光角度的一差值。 20.如申請專利範圍第1 5項所述之設備,更包含一快軸光 束波形控制器、以及複數個可獨立調整的電流源,該些電 Q 流源耦接而供應與對應於該些偏光元件之一者相關的該些 發射器之行列。 2 1 ·如申請專利範圍第20項所述之設備,其中該快軸光束 波形控制器係經程式化以各自獨立根據一預定的快軸功率 密度波形來調整該些電流源的輸出大小。 22.如申請專利範圍第19項所述之設備,其中該些一連串 30 200816321 的偏光角度提供了沿著該快軸之一光束至光束的位移,該 位移係對應於一最小解析點尺寸。 2 3.如申請專利範圍第19項所述之設備,其中該些一連串 的偏光角度提供了沿著該快軸之一光束至光束的位移,該 位移係對應於該些光束線之一沿著該快轴的一高斯半高 - 寬。 η 24.如申請專利範圍第1項所述之設備,其中該快軸偏光 元件包含一偏光稜鏡,其位在一組之該些發射器的該些接 續行列的一光學路徑上。 〇 31200816321 X. Patent application scope: 1 · A dynamic surface annealing device for annealing a semiconductor working part, the overseas Chinese comprising at least: a working part branch member for supporting a working part; a light source; and scanning The device is configured to scan the light source and the working component support relative to each other along a fast axis; Ο CJ, wherein the light source comprises: w an array of a plurality of laser emitters, arranged substantially in a row of the pirates, And the plurality of collimating lenses are located above the rows of the emitters and have a collimating direction along the fast axis; a component, and the emitting The fast axis polarizers associated with the rows and columns of the device have a polarization angle corresponding to the selected one of the rows: the beam is offset from the angle of the beam along the fast axis - the optical device makes the mine A ray of the emitter array is focused into a fine beam line on a surface of the rabbit 1 in a direction transverse to the fast axis. The apparatus of claim 1, wherein the optical device generates the light of the selected one of the emitters on the working part a beam line, ^ y from and from the remaining rows of the emitters to produce a second beam 26 200816321 line on the surface of the working unloading member, the first and second beam lines Parallel to each other, transverse to the fast axis, and offset from each other by a distance along the fast axis, the distance corresponding to the polarization angle. 3. The apparatus of claim 2, wherein one of the first and second beam lines is a leading beam and the other is a trailing beam. 4. The device of claim 1, further comprising: a fast axis beam waveform controller; a first current source coupled to supply the array of the emitters not covered by the fast axis polarizing element And a second current source coupled to supply the array of the emitters covered by the fast axis polarizing element. 5. The apparatus of claim 4, wherein the fast axis beam shape controller is programmed to independently adjust the output of the first and second current sources according to a predetermined fast axis power density waveform size. 6. The apparatus of claim 5, wherein the first and second current sources respectively set a power density of a leading beam line and a trailing beam line on the surface of the working component. 7. The device of claim 2, wherein each of the beam lines 27 200816321 corresponds to a minimum resolution image size along a width of the fast axis. 8. The apparatus of claim 7, wherein the polarization angle is such that the first and second beam lines are offset along the fast axis by a distance corresponding to a minimum resolution image size. The device of claim 8, wherein the offset distance is a half-maximum Gaussian width 之一I of the one of the beam lines along the fast axis. The device of claim 1, wherein the fast-axis polarizing element comprises a polarizer disposed on an optical path of the array of the plurality of subsequent emitters. II. The device of claim 1, wherein the fast-axis polarizing Cj element comprises: a plurality of polarizing elements disposed on the selected ones of the plurality of rows of the emitters, each of the polarizing elements having a beam deflecting the beam The device of claim 11, wherein each of the polarizing elements is a turn disposed above the collimating lenses of one of the emitters. The apparatus of claim 11, wherein each of the polarizing elements is a mirror disposed on an optical path corresponding to one of the rows of the emitters. 11 items The device, wherein the polarizing elements are each one of corresponding collimating lenses, and the collimating lens is rotated through a corresponding polarizing angle. 1 5 · The device according to claim 1 The fast axis polarizing element comprises: a plurality of polarizing elements disposed above the selected rows of the emitters, each of the polarizing elements having a series of consecutive beam deviations corresponding to one of the fast axes The apparatus of claim 15, wherein the polarizing elements are a plurality of turns, and the plurality of turns are disposed in the corresponding rows of the emitters. Above the collimating lenses, and the plurality of consecutive cymbals have a series of polarizing angles. 17. The device of claim 15, wherein the polarizing elements are a plurality of mirrors, and the mirrors are disposed at The optical paths of the corresponding rows of the emitters, and the successive mirrors are sequentially turned to provide a series of polarization angles of 29,163,321. 18. As described in claim 15 The plurality of polarizing elements are each corresponding to one of the collimating lenses, and the collimating lens is rotated through one of the series of polarizing angles. - 19. For example, claim 15 The apparatus, wherein the optical device (the light rays from the arrays of the different or different emitters) generate a continuous beam line on the surface of the working component, the continuous beam line corresponding to The series of polarization angles of the polarizing elements, the adjacent beam lines are parallel to each other, transverse to the fast axis, and offset from each other by a distance along the fast axis, the distance corresponding to the series of polarization angles A difference. 20. The device of claim 15, further comprising a fast axis beam shape controller and a plurality of independently adjustable current sources coupled to supply and corresponding to the The array of emitters associated with one of the polarizing elements. The apparatus of claim 20, wherein the fast axis beam waveform controller is programmed to independently adjust the output magnitude of the current sources based on a predetermined fast axis power density waveform. 22. The apparatus of claim 19, wherein the series of polarization angles of 30 200816321 provide a beam-to-beam displacement along the fast axis, the displacement corresponding to a minimum resolution point size. 2. The apparatus of claim 19, wherein the series of polarization angles provides a displacement of the beam along the fast axis to the beam, the displacement corresponding to one of the beam lines The Gaussian half-height - wide of the fast axis. The device of claim 1, wherein the fast-axis polarizing element comprises a polarizing aperture positioned in an optical path of the successive rows of the plurality of emitters. 〇 31
TW096129455A 2006-08-23 2007-08-09 Fast axis beam profile shaping for high power laser diode based annealing system TW200816321A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50837606A 2006-08-23 2006-08-23

Publications (1)

Publication Number Publication Date
TW200816321A true TW200816321A (en) 2008-04-01

Family

ID=39107284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096129455A TW200816321A (en) 2006-08-23 2007-08-09 Fast axis beam profile shaping for high power laser diode based annealing system

Country Status (2)

Country Link
TW (1) TW200816321A (en)
WO (1) WO2008024211A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012264B1 (en) * 2013-10-21 2017-04-21 Saint Gobain MODULAR LASER APPARATUS
CN109997213A (en) * 2016-09-28 2019-07-09 堺显示器制品株式会社 Laser anneal device and laser anneal method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231928A (en) * 1984-04-27 1985-11-18 Matsushita Electric Ind Co Ltd Method for recording and erasing optical information
US6044096A (en) * 1997-11-03 2000-03-28 Sdl, Inc. Packaged laser diode array system and method with reduced asymmetry
DE19939750C2 (en) * 1999-08-21 2001-08-23 Laserline Ges Fuer Entwicklung Optical arrangement for use in a laser diode arrangement and laser diode arrangement with such an optical arrangement
US6556352B2 (en) * 2000-08-23 2003-04-29 Apollo Instruments Inc. Optical coupling system
JP2006330071A (en) * 2005-05-23 2006-12-07 Fujifilm Holdings Corp Linear beam generating optical apparatus

Also Published As

Publication number Publication date
WO2008024211A2 (en) 2008-02-28
WO2008024211A3 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
US7674999B2 (en) Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system
EP1063049B1 (en) Apparatus with an optical system for laser heat treatment and method for producing semiconductor devices by using the same
CN101160646B (en) Dual wavelength thermal flux laser anneal
US9114479B2 (en) Managing thermal budget in annealing of substrates
US8314369B2 (en) Managing thermal budget in annealing of substrates
CN104051244B (en) Pulse wire harness
US7129440B2 (en) Single axis light pipe for homogenizing slow axis of illumination systems based on laser diodes
KR101150001B1 (en) Autofocus for high power laser diode based annealing system
TW200818275A (en) Dynamic surface annealing of implanted dopants with low temperature HDPCVD process for depositing a high extinction coefficient optical absorber layer
US20100291760A1 (en) Method and system for spatially selective crystallization of amorphous silicon
JP5517832B2 (en) Laser annealing apparatus and laser annealing method
CN111133639B (en) Fiber laser device and method for processing workpieces
TW200816321A (en) Fast axis beam profile shaping for high power laser diode based annealing system
TW201605138A (en) Scanned pulse anneal apparatus and methods
CN209747455U (en) Laser heat treatment device
KR101727677B1 (en) Laser annealing apparatus and laser annealing method using multiple laser beams
US7799666B1 (en) Method of spatially selective laser-assisted doping of a semiconductor
Runkel et al. Effects of pulse duration on bulk laser damage in 350-nm raster