[go: up one dir, main page]

TW200812105A - Vertical conductive GaN LED structure and the method for manufacturing - Google Patents

Vertical conductive GaN LED structure and the method for manufacturing Download PDF

Info

Publication number
TW200812105A
TW200812105A TW95130711A TW95130711A TW200812105A TW 200812105 A TW200812105 A TW 200812105A TW 95130711 A TW95130711 A TW 95130711A TW 95130711 A TW95130711 A TW 95130711A TW 200812105 A TW200812105 A TW 200812105A
Authority
TW
Taiwan
Prior art keywords
gallium nitride
layer
emitting diode
type
light
Prior art date
Application number
TW95130711A
Other languages
Chinese (zh)
Inventor
Chien-Jen Wang
Jia-Lin Shieh
Original Assignee
Ledarts Opto Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledarts Opto Corp filed Critical Ledarts Opto Corp
Priority to TW95130711A priority Critical patent/TW200812105A/en
Publication of TW200812105A publication Critical patent/TW200812105A/en

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed is a vertical conductive GaN light emitting diode (LED) structure and the method for manufacturing. The vertical conductive GaN light emitting diode includes a plurality of layers. The multi-layer structure includes a metal conductive layer. The metal conductive layer improves the performance of LED, and provides a protect material on the side wall of LED. The invention uses laser dicing to dice the wafer into single vertical conductive GaN LED, and avoids damaging the property of GaN LED.

Description

200812105 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種氮化鎵發光二極體(GaN LED)之 技術,特別是關於一種垂直導通氮化鎵發光二極體元件 以及製造方法。 【先前技術】 氮化鎵發光二極體由於缺少合適的氮化鎵基板,一 般氮化鎵發光二極體元件結構都是磊晶成長在兩種晶格 較匹配的基板上:如碳化矽(SiC)或藍寶石(sapphire,Al2 〇3 ) 0 碳化矽基板本身是可以導電的半導體材料,一般是 做成N-型基板,如此可在N-型基板端製作負極電極,正 極電極則製作在磊晶層最上方的p_型端。依此電流自上 方正極電極流入P-型磊晶層,經過發光區域的多重量子 井(Multiquantumwel卜MQW)活化層,再通過N-型磊 晶層而到達N-型碳化矽基板的負極電極。而在封裝作業 上,N-型碳化矽基板端用銀膠固晶在支架上,在上方正 極電極打上一金線。如一般黃光、紅光之四元化合物發 光二極體磊晶在N-型砷化鎵(GaAs)基板上,而為一電流 垂直流通的結構。此種碳化矽基板價袼昂貴。使用碳化 矽基板的氮化鎵發光二極體結構如0SRAM& cree的專 利。 200812105 其它製造氮化鎵發光二極體公司有的使用藍寳石為 磊晶基板,在大量使用藍寳石基板下,藍寶石價袼下滑 快速’是目前的主流產品。第_A圖為—傳統之氮化錄 發光二極體結構的示意圖。首先在藍寶石基板1⑴上成 長一低溫的不摻雜氮化鎵層(L11GaN)1〇2,然後升高溫 度依序成長-N型氮化鎵系半導體層肝㈣)⑽、一多 重量子井活化層(MQW) 104、- p型氮化鎵系半導體層 (P-GaN) 105、以及一透明導電層1〇6。 在元件製作上,必須分別製作正極1〇7、負極1〇8 宅極在P型氮化錁系半導體層1〇5及N型氮化嫁系半 導體層103上。P型氮化鎵系半導體層1〇5在多層蟲晶 結構之最上層,所以正極1〇7電極製作容易,製造方法 通常是將P型氮化鎵系半導體層1〇5區域覆蓋一透明 導電層(transparent conductive layer,TCL) 1〇6,使電流分 佈均勻,而正極107電極之金屬蒸鍍於部分區域,作為 封裝打線。因為藍寶石基板為絕緣材料並不導電,所以 負極電極無法直接做在藍寳石基板背面,必須將多層磊 晶結構之某些區域的磊晶層蝕刻後,露出部分n型氮化 蘇系半‘體層1〇3 ’接著蒸鍍上合適之金屬以形成負極 108電極。即正、負電極製作在氮化鎵發光二極體元件 同一側’如第-B圖是第-a圖的_個俯視圖。 取後,磨薄晶片後,利用鑽石刀或雷射切割成晶粒。 6 200812105 封裝時,固晶於晶粒背面之藍寶石基板,並於正、負電 極107和108各打上金線,光線自晶粒正面出光。 此正、負電極位於同一側之傳統氮化鎵發光二極體 元件100結構有下列可以改善之處。 1· #刻多層蠢晶結構以便露出N型氮化鎵系半導 體層103的部份區域,會犧牲發光的多重量子丼 活化層104面積。 2. 大部分電流集中於正、負兩電極間最短路徑,旁 邊區域電流流量變少,而造成發光不均勻。 3. 通常透明導電層1〇6電阻較p型氮化鎵系半導體 層105小,電流會以透明導電層1〇6為主要通 道橫向流通,再往下流入P型氮化鎵系半導體層 105而开〉成渴電流效應,阻抗升高進而溫度升高。 4. 藍寶石雖然是透明材質,但仍會吸收部份藍、綠 光,近半的光源通過藍寶石後自底部反射回正 面,來回反射增加光源被吸收的機會,出光效率 變差。 5. 藍寶石不導電’疏散電荷能力差,所以抗靜電放 電(Electrostatic Discharge,ESD)效果差。 6·溫度的產生主要來自未完成光電轉換的電子、電 洞載子以及被吸收的光線轉換的熱能;發熱區域 大都是在電流行經區域,集中在多層蠢晶結構上 層的磊晶層區域,所以散熱差。 7 200812105 7.正負電極製作在元件的同一側,所以晶粒尺寸難 以縮小’一般規格尺寸大小約是在12〜15密爾 (mil) 〇 &封衣作業需打兩次線,除增加打線的材料及作業 成本’更因為金線的遮蔽效應,減低了封裝後的 出光亮度,一根線大約減低10。/〇亮度。 此種以藍寶石基板的氮化鎵系元件,使用作為功率 曰曰粒日守’大多使用覆晶(flip-chip)技術、利用矽基板作為 載板,以減少熱的傳輸距離,並減少光源通過藍寶石基 板的被吸收機會。更必須在矽基板的二極體電路做抗靜 電放電保護。因此,不但增加了設備投資且製造流程更 為複雜。 為了改善上述以藍寶石基板的氮化鎵系發光二極 體,垂直導通氮化鎵系發光二極體之技術,正、負電極 分別位於發光二極體之正、下方,不僅增加發光亮度, 更可以縮小發光二極體之面積。 【發明内容】 本發明提供一種垂直導通氮化鎵發光二極體元件以 及製造方法。此發光二極體元件主要包括一金屬基板、 一反射層、一 P型歐姆層、一多層蠢晶結構、一透明導 電層以及及'一負極電極’其中多層蠢晶結構之側壁更包 200812105BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique of a gallium nitride light emitting diode (GaN LED), and more particularly to a vertically conducting gallium nitride light emitting diode element and a method of fabricating the same. [Prior Art] Since the gallium nitride light-emitting diode lacks a suitable gallium nitride substrate, the structure of the gallium nitride light-emitting diode element is generally epitaxially grown on two kinds of lattice matching substrates: such as tantalum carbide ( SiC) or sapphire (sapphire, Al2 〇3) 0 The tantalum carbide substrate itself is a conductive semiconductor material, generally made of an N-type substrate, so that a negative electrode can be fabricated on the N-type substrate end, and the positive electrode is fabricated in the Lei The p_-type end at the top of the crystal layer. According to this, a current flows from the upper positive electrode into the P-type epitaxial layer, passes through a multi-quantum well (MQW) activation layer in the light-emitting region, and passes through the N-type epitaxial layer to reach the negative electrode of the N-type tantalum carbide substrate. In the packaging operation, the N-type silicon carbide substrate is fixed on the support with silver glue, and a gold wire is applied to the upper positive electrode. For example, the quaternary compound emitting diode of general yellow light and red light is epitaxially formed on an N-type gallium arsenide (GaAs) substrate, and is a structure in which a current flows vertically. Such a tantalum carbide substrate is expensive. A gallium nitride light-emitting diode structure using a carbonized germanium substrate such as a patent of 0SRAM & cree. 200812105 Other manufacturers of gallium nitride light-emitting diodes use sapphire as the epitaxial substrate. Under the sapphire substrate, the price of sapphire is falling rapidly. It is the current mainstream product. The figure _A is a schematic diagram of the conventional nitride recording light-emitting diode structure. First, a low-temperature undoped gallium nitride layer (L11GaN) 1〇2 is grown on the sapphire substrate 1(1), and then the temperature is sequentially grown-N-type gallium nitride-based semiconductor layer liver (4)) (10), a multiple quantum well An active layer (MQW) 104, a p-type gallium nitride based semiconductor layer (P-GaN) 105, and a transparent conductive layer 1〇6. In the fabrication of the device, it is necessary to separately fabricate the positive electrode 1〇7 and the negative electrode 1〇8 on the P-type tantalum nitride-based semiconductor layer 1〇5 and the N-type nitride-based semiconductor layer 103. Since the P-type gallium nitride-based semiconductor layer 1〇5 is on the uppermost layer of the multilayered serpentine structure, the positive electrode 1〇7 electrode is easily fabricated, and the manufacturing method is generally to cover the P-type gallium nitride-based semiconductor layer 1〇5 region with a transparent conductive layer. A transparent conductive layer (TCL) 1〇6 makes the current distribution uniform, and the metal of the positive electrode 107 electrode is vapor-deposited in a part of the area as a package wire. Because the sapphire substrate is made of an insulating material and is not electrically conductive, the negative electrode cannot be directly formed on the back surface of the sapphire substrate. The epitaxial layer of some regions of the multilayer epitaxial structure must be etched to expose a portion of the n-type nitrided semi-body layer. 1〇3' followed by evaporation of a suitable metal to form the electrode of the negative electrode 108. That is, the positive and negative electrodes are formed on the same side of the gallium nitride light-emitting diode element as shown in Fig. 4B as a top view of the -a diagram. After taking it, after grinding the wafer, it is cut into crystal grains by using a diamond knife or a laser. 6 200812105 When packaged, the sapphire substrate is fixed on the back of the die, and the gold wires are applied to the positive and negative electrodes 107 and 108, and the light is emitted from the front surface of the die. The structure of the conventional gallium nitride light-emitting diode element 100 in which the positive and negative electrodes are on the same side has the following improvements. 1· The engraving of a plurality of layers of stray crystal structure to expose a portion of the N-type gallium nitride-based semiconductor layer 103 sacrifices the area of the multi-quantum 活化 activation layer 104 that emits light. 2. Most of the current is concentrated in the shortest path between the positive and negative electrodes, and the current flow in the side area is reduced, resulting in uneven illumination. 3. Generally, the transparent conductive layer 1〇6 is smaller in resistance than the p-type gallium nitride based semiconductor layer 105, and the current flows laterally through the transparent conductive layer 1〇6 as a main channel, and then flows down into the P-type gallium nitride based semiconductor layer 105. And the opening is into a thirst current effect, the impedance is increased and the temperature is raised. 4. Although the sapphire is a transparent material, it will absorb some blue and green light. Nearly half of the light source passes through the sapphire and then reflects back from the bottom to the front side. The reflection back and forth increases the chance of the light source being absorbed, and the light extraction efficiency is deteriorated. 5. Sapphire is not conductive. The ability to evacuate charge is poor, so the effect of Electrostatic Discharge (ESD) is poor. 6. The temperature is mainly generated by the electrons that have not completed photoelectric conversion, the hole carriers and the heat energy of the absorbed light. The heat generation area is mostly in the current traveling region, concentrated in the epitaxial layer region of the upper layer of the multi-layered silly structure, so Poor heat dissipation. 7 200812105 7. The positive and negative electrodes are made on the same side of the component, so the grain size is difficult to reduce. 'The general size is about 12~15 mils. 封& The sealing operation requires two lines, except for increasing the line. The material and operating cost 'more because of the shadowing effect of the gold wire, reducing the brightness of the package after the light, a line is reduced by about 10. /〇 Brightness. Such a gallium nitride-based device having a sapphire substrate is used as a power chip, and a flip-chip technology is used, and a germanium substrate is used as a carrier to reduce the heat transmission distance and reduce the light source. The sapphire substrate is absorbed. It is even more necessary to protect against electrostatic discharge in the diode circuit of the germanium substrate. As a result, equipment investment has increased and the manufacturing process has become more complex. In order to improve the gallium nitride-based light-emitting diode of the sapphire substrate and the vertical conduction of the gallium nitride-based light-emitting diode, the positive and negative electrodes are respectively located under the light-emitting diode, which not only increases the luminance but also increases the luminance. The area of the light-emitting diode can be reduced. SUMMARY OF THE INVENTION The present invention provides a vertical conduction gallium nitride light emitting diode element and a method of fabricating the same. The LED component mainly comprises a metal substrate, a reflective layer, a P-type ohmic layer, a multi-layered dormant structure, a transparent conductive layer, and a 'negative electrode electrode', wherein the sidewalls of the multi-layered stella structure are further included.

括一保護層。 本發明之垂直導魏化鎵發光二極體元件製造過程 中,其雷射剝離藍寶石基板之製程中,雷射光束之照射 雜健仙割道之間,使雷縣束之能量均句, 而避免破壞氮化鎵發光二極體元件之特性更進而提高良 率0 本發明之垂直導通氮化鎵發光二極體元件,其中之反 射層可使元件_下射出的光,能藉姐射層的反射作 用,而提供成為向上輸㈣絲,以對此垂直導通氮化 鎵發光二極體之發光作更有效地利用。 本發明之垂直導通氮化鎵發光二極體元件,其中之保 護層環繞於多層^結構發絲之側獅賴電,而使 垂直導通此氮化鎵發光二極體之發光更有效率。 本發明之垂直導通氮化鎵發光二極體元件比傳統的 氮化鎵發光二極體元件結構,有更高的發絲度、更低 的起始電壓、更高的承載電鱗優異雛。崎了垂直 導通氮化鎵發光二;&體元件本身的優良特性外,在成本 優勢上更麟突ίΒ。目魏化鎵發光二極體的主流是2 对晶片,以藍寶石為基板的結構,正、負電極都位在晶 9 200812105 片的正面,一般小尺寸規格的晶粒大小約為12密爾 (12x12密_ 2)。❿本發明之錢導通氮化鎵發光二極體 結構則可更進-步縮小到1G密爾或更小到7密爾,而 正面單電極的四元二極體最小為6 Μ (6x6密爾2)。 晶粒面積代表的就是成本,面積愈小、成本愈低, 也就愈有辭力。鼓導軌化鎵發光二極體結構比傳 統的二極體結構具有再進一步縮小氮化鎵發光二極體晶 粒的月b力即使9岔爾大小晶粒,產出量也比I]密爾 增加50〜65%,若能縮小到如四元二極體到達7密爾,比 12岔爾多出一倍多的產出量,成本也就減半了。 茲配合下列圖示、實施例之詳細說明及申請專利範 圍,將上述及本發明之其他目的與優點詳述於後。 【實施方式】 本發明之垂直導通氮化鎵發光二極體之製造方法的 主要係在多層磊晶層結構中移除不導電基板。並鍍上一 保護層使得該保護層具有環繞於該多層磊晶層結構發光 面之側壁。另外,本發明利用反射層的設置與反射層之 材料,以提高導通氮化鎵發光二極體之光輸出強度。並 且在移除不導電基板的同時,控制雷射光束照射邊界對 準其切割道,以避免破壞氮化鎵發光二極體之特性。 10 200812105 本發明使用雷射剝離(LLO,Laser Lift-Off)技術將 多層磊晶結構自藍寶石基板剝離,代之以金屬材質作為 基板,由於金屬可導電,即可在發光二極體晶粒上、下 方分別製作負、正電極形成垂直導通氮化鎵發光二極體 元件。 第二A圖為本發明之垂直導通氮化鎵發光二極體元 件的一個結構示意圖。參考第二A圖,此垂直導通氮化 鎵發光二極體元件200由上到下依序包含一金屬基板 215、一反射層213、——P型歐姆層211、一多層磊晶結 構205-209、一透明導電層203、一負極電極201以及一 保護層形成於多層磊晶結構之側邊。其中金屬基板215 並作為正電極。 多層磊晶結構由下而上依序磊晶一 N型氮化鎵系半 導體層205、一多重量子井活化層207、一 P型氮化錁系 半導體層209。 此垂直導通氮化鎵發光二極體元件2〇〇特性如下: !·在發光二極體晶粒上、下方分別製作負、正電極(201, 215) ’媒須犧牲發光面積 。 2.電流垂直流通’分散較均勻,減少渦電流。 3·金屬基板接面可反射光線,減少光源被吸收的機會, 可大幅增加發光亮度。 11 4·金屬基板可有效分《荷,增加抗靜電能力。 5.上、下電極(201,215)之結構無須擔心兩電極間距, 可大幅縮小晶粒尺寸,以增加每片晶片的晶粒產出 量。 6·封裝僅需在正面電極打單線,減少材料及作業成本, 並減少金線的遮蔽效應。 7·近圓形輸出配光曲線。 根據本發明,此垂直導軌化鎵發光二極體元件係 在一蟲晶片上依序形成,此蟲晶片不失-般性。此蟲晶 片的—個範例如第三圖所示,藍寶石基板則之上表面 依序蟲晶包含-低溫不摻雜氮化鎵緩衝層則薄膜、一 Ν型氮化鎵系半導體層挪、一多重量子井活化層2〇7 以及Ρ㉟氮化鎵系半導體層2〇9之蟲晶結構。 以下第四圖-第六圖分別是本發明垂直導通氮化蘇發 光一極體之製造方法之兩個第一、第二以及第三實施 例,係在如第三圖之磊晶片300上依序製程。 首先,參考第四圖(包括第四Α至第四G圖)之第一 實施例的步驟流程:7 第四A圖為蝕刻磊晶片300並蒸鍍一 P型歐姆層 211 °其中綱蠢晶片雇是透過黃賴程,目案定位出 12 200812105 切割道403後,蝕刻藍寳石基板3〇1上方之磊晶層之部 分區域,並藉由切割道4〇3予以分隔。接著於p型氮化 鎵系半導體層209上方蒸鍍鎳金(NiAu)金屬,並經過高 溫(450-550。〇氧化後形成一與P型氮化鎵系半導體層 209之歐姆接觸,且具有高度光穿透特性p型歐姆層21 j。 第四B圖為形成保護層。即蝕刻後之磊晶片之側壁 形成保護層217。其中保護層材料係選用如二氧化鈦 (Τι02)'二氧化石夕(si〇2)、聚甲基丙烯酸甲酯(p〇iymethyl methacrylate ’ PMMA)或旋塗式玻璃法(Spin-on-giass,sop) 等材質。 第四C圖為蒸鍍一反射層213,即在P型歐姆層211 上方蒸鑛具尚度反射特性的金屬層,其以含銀(Ag)或|呂 (A1)為主的單層或多層金屬組合。本實施例選自一鈦/紹/ 鈥/金(Ti/Al/Ti/Au)之四層金屬材質,即先鍍上鈦再鍍上 紹’接著再鑛上鈦,最後再鍍上金之四層金屬反射層。 第四D圖為製作一金屬導電基板203於反射層205a 上方,並作為正極電極,其中該金屬導電基板材質係選 自鎳(M)、銅(Cu)、鉬(Mo)、鎢(W)、銀、以及鋁等材質。 第四E圖為一雷射剝離製程,即自藍寶石基板3〇1 为面照射準分子雷射(KrF excimer laser),其雷射波長為 13 200812105 248 nm,使低溫不摻雜氮化鎵緩衝層303薄膜升溫,以 剝離藍寶石基板301,並暴露出磊晶片中之完整n型氮 化鎵系半導體層205。其中,鐳射光束照射範圍係控制 足以完整照射到該氮化鎵發光二極體410,且雷射光束 之照射邊界405係落在該氮化鎵發光二極體之間的切割 道403,以避免雷射光束照射不均而破壞氮化鎵發光二 極體之特性,進而提高良率。 第四F圖為製作一負極電極2〇1。其步驟第四E圖雷 射剝離藍寶石基板301後,並完整暴露出N型氮化鎵系 半導體層205。首先,表面處理N型氮化鎵系半導體層 2〇5以及蒸鑛-透明導電層2G3。最後蒸鑛一 N型歐姆 金(TiAlAu)、鈦鋁鈦金(TiAlTiAu)、鉻鋁金(CrAlAu)、或 鉻鋁鉻金(CrAlCrAu)等金屬。 第四G圖為雷射切割、崩裂晶片。係、從金屬導電層 215为面進打雷射照射晶體,崩裂成為單一氮化鎵發光 二極體元件。 第五八圖帛五(3圖為本發明之第二實施例。此第 二實施例與第-實施例之步螺不同處僅在於,步驟第四 A圖與第四B圖之練—p型歐姆層2ιι以及蟲晶片之 側壁形成保護層217之動作對調。即先在侧後之蠢晶 14 200812105 層側壁形成保護層217,如第五A圖所示。接著蒸鑛具 有高度光穿透特性之一 P型歐姆層211,如第五b圖所 示。然後,此第二實施例之第五C圖-第五G圖之步驟 與弟一實施例之第四C圖·•第四G圖之所有步驟相同。 更進一步說明,第四F圖與第五f圖步驟,其描述 如下。表面處理N型氮化鎵系半導體層205,其中此表 面處理包含使用感應耦合式電聚(in(jUCtiVely c〇i^ed plasma,ICP)及氫氧化鉀(KOH)溶液蝕刻清潔自雷射剝 離後之N型氮化鎵系半導體層205表面,並將n型氮化 鎵系半導體層205表面粗化,以增加出光效率。 透明導電層203,其材料選自如銦錫氧化物(indium tinoxide,ITO)、鋅錫氧化物(izo)、鋁鋅氧化物(AZ〇)、 或其他介電材質,介電常數n介於14〜2丨之介電材質, 使電流分布均勻以增加出光效率。 第七圖是準分子雷射光照射範圍示意圖。即第一及第二實施 例之第’E ®與第五£ ®之步驟,雷射光束照射於藍寶石基 板301 $面,以剝離監寶石基板3〇1。而雷射光束之邊界秘 係落在氮化鎵發光二極體41G之_切割道·,且雷射光 束照射範圍可為足以涵蓋至少_錢化紐光二極體元件。 此可使氮化紐光二麵上之雷射韻射均句,而避免破壞 氮化鎵發光二極體之特性。 15 200812105 第六圖為本發明之第三實施例。參考第六圖(包括第 六A至第六F圖)之第三實施例的步驟流程: 第六A圖為蒸鍍一 P型歐姆層211。其在如第三圖蠢 晶片300之P型氮化鎵系半導體層209上方蒸鍍鎳金 (NiAu)金屬,並經過高溫(45〇_55(rc)氧化後形成一與p 型氮化鎵系半導體層209之歐姆接觸,且具有高度光穿 透特性之P型歐姆層211。 苐六B圖為蒸鐘一反射層213,即在第四A圖之p 型歐姆層211上方蒸鍍具高度反射特性的金屬層,以含 銀(Ag)或鋁(A1)為主的單層或多層金屬組合。本實施例選 自一鈦/銘/鈦/金(Ti/Al/Ti/Au)之四層金屬材質,即先鍍上 鈦再錄上鋁,接著再鍍上鈦,最後再鍍上金之四層金屬 反射層。 第六C圖為製作一金屬導電基板203於反射層213 上方,並作為正極電極,其中該金屬導電基板材質係選 自鎳(Ni)、銅(Cu)、鉬(Mo)、鎢(W) '銀、以及鋁等材質。 第六D圖為一雷射剝離製程,即自藍寶石基板301 背面照射準分子雷射(KrF excimer laser),其雷射波長 (wave length)為248 nm,使低溫不掺雜氮化鎵緩衝層303 薄膜升溫,以剝離藍寶石基板301,並暴露出磊晶片中 16 200812105 之完整N型氮化鎵系半導體層2〇5e。 第六E圖為製作一負極電極2〇1。其步驟第六D圖 雷射剝離藍寶石基板301後,並完整暴露出^^型氮化鎵 系半導體層205。首先,表面處理N型氮化鎵系半導體 層205以及蝕刻磊晶片之某些區域。其中蝕刻磊晶片是 透過黃光製程,圖案定位出切割道403後,|虫刻蠢晶片 (205-209)之部分區域’並藉由切割道4〇3予以分隔。並 於蝕刻後之磊晶片之側壁形成保護層217。接著蒸鍍一 透明導電層203。最後蒸鍍一 N型歐姆金屬作為負極電 極201,其N型歐姆金屬材質選自鈦鋁金(TiA1Au)、欽铭 鈦金(TiAlTiAu)、絡链金(CrAlAu)、或鉻鋁鉻金 (CrAlCrAu)等金屬。 第六F圖為雷射切割、崩裂晶片。係從金屬導電層 215为面進行雷射照射晶體,崩裂成為單一氮化鎵發光 二極體元件200。 更進一步說明第六E圖之步驟’其描述如下。其中 表面處理N型氮化鎵系半導體層205,此表面處理包含 使用感應偶合式電漿及氫氧化鉀溶液|虫刻清潔自雷射剝 離後之N型氮化鎵系半導體層205表面,並將N型氮化 鎵系半導體層205表面粗化,以增加出光效率。 17 200812105 而蟲晶片之側壁之保護層2口,其保護層材料係選用 如一氧化鈦、二氧化矽、聚曱基丙烯酸曱酯或旋塗式玻 璃法等材質。 其中透明導電層203,材料選自如銦錫氧化物、鋅錫 礼化物、靖氧化物、或為介電材質,介電常數n介 於1.4〜2·1之介電材質,使電流分布均勻以增加出光效 率。 1*隹以上所述者,僅為發明之最佳範例而已,當不能 依此限定本發明實施之範JU。即大凡_本發对請專利 範圍所作之鱗變化與修飾,皆應仍屬本發明專利涵蓋 之範圍内。 18 200812105 【圖式簡單說明】 第一A圖為一示意圖,說明傳統氮化鎵發光二極體結構。 第一 b圖為一示意圖,說明第一 a ai之傳統氮化鎵發光 ^二極體俯視圖。 第二圖為本發明之垂直導通氮化鎵發光二極體結構。 第三圖為一磊晶片結構。 第四A - G圖為本發明之垂直導通氮化鎵發光二極體之 第一實施例。 第五A - G圖為本發明之垂直導通氮化鎵發光二極體之 第二實施例。 第六A - F圖為本發明之垂直導通氮化鎵發光二極體之 第三實施例。 第七圖為一示意圖,說明準分子雷射光照射範圍。 19 200812105 【主要元件符號說明】 101藍寶石基板 102低溫不慘雜氮化鎵緩衝103N型氮化鎵系半導體層 104多重量子井活化層 106透明導電層 108負極電極 200垂直導通氮化鎵發光二 極體 201金屬基板 205 N型氮化鎵系半導體層 209 P型氮化鎵系半導體層 213反射層 217保護層 300磊晶片結構 105 P型氮化鎵系半導體層 107正極電極 203透明導電層 207多重量子井活化層 211 P型歐姆層 215金屬基板 301藍寶石基板 303低溫不慘雜氮化鎵緩衝層 403切割道 405雷射照射邊界 410氮化鎵發光二極體 20Includes a protective layer. In the manufacturing process of the vertical-guided-tellurized gallium-emitting diode component of the present invention, in the process of laser-spraying the sapphire substrate, the irradiation of the laser beam between the illuminating and the slashing roads makes the energy of the Leixian beam uniform, and Avoiding destroying the characteristics of the gallium nitride light-emitting diode element and further improving the yield. The vertical conducting gallium nitride light-emitting diode element of the present invention, wherein the reflective layer can cause the light emitted by the element to be emitted by the layer. The reflection function is provided as an upward transfer (four) wire to more effectively utilize the illumination of the vertically-conductive gallium nitride light-emitting diode. The vertical conduction gallium nitride light-emitting diode element of the present invention, wherein the protective layer surrounds the side lion of the multi-layer structure, and the light which is vertically turned on by the gallium nitride light-emitting diode is more efficient. The vertically-conducting gallium nitride light-emitting diode element of the present invention has higher hairiness, lower initial voltage, and higher load-bearing electric scale than the conventional gallium nitride light-emitting diode element structure. Saki has a vertical conduction of GaN luminescence; in addition to the excellent characteristics of the body components themselves, the cost advantage is even more intense. The mainstream of the weiguang gallium luminide diode is a 2-pair wafer with a sapphire substrate. The positive and negative electrodes are located on the front side of the crystal 9 200812105. The size of the small-sized die is about 12 mils. 12x12 _ 2).钱 The money-conducting gallium nitride light-emitting diode structure of the present invention can be further reduced to 1G mil or less to 7 mils, while the front single-electrode quaternary diode has a minimum of 6 Μ (6x6 dense). 2). The grain area represents the cost. The smaller the area and the lower the cost, the more it will be. The drum-guided gallium-emitting diode structure has a further reduction in the monthly b-force of the gallium nitride light-emitting diode grain than the conventional diode structure. Even if the grain size is 9 岔, the output is also larger than I] mil. Increase by 50~65%. If you can reduce it to 7 mils if the quaternary diode reaches more than double the output of 12 岔, the cost will be halved. The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings. [Embodiment] The manufacturing method of the vertical conduction gallium nitride light-emitting diode of the present invention mainly removes the non-conductive substrate in the multilayer epitaxial layer structure. And a protective layer is plated so that the protective layer has sidewalls surrounding the light emitting surface of the multilayer epitaxial layer structure. In addition, the present invention utilizes the arrangement of the reflective layer and the material of the reflective layer to increase the light output intensity of the conductive gallium nitride light-emitting diode. And while removing the non-conductive substrate, the laser beam irradiation boundary is controlled to align the scribe line to avoid damaging the characteristics of the GaN LED. 10 200812105 The present invention uses a laser lift-off (LLO) technique to strip a multilayer epitaxial structure from a sapphire substrate and replace it with a metal material as a substrate. Since the metal is electrically conductive, it can be on the light-emitting diode die. The negative and positive electrodes are respectively formed below to form a vertical conduction GaN light-emitting diode element. The second A is a schematic structural view of the vertical conduction gallium nitride light-emitting diode element of the present invention. Referring to FIG. 2A, the vertical conduction gallium nitride light emitting diode element 200 sequentially includes a metal substrate 215, a reflective layer 213, a P-type ohmic layer 211, and a multilayer epitaxial structure 205 from top to bottom. A transparent conductive layer 203, a negative electrode 201, and a protective layer are formed on the side of the multilayer epitaxial structure. The metal substrate 215 serves as a positive electrode. The multi-layer epitaxial structure is sequentially epitaxially epitaxially formed into an N-type gallium nitride-based semiconductor layer 205, a multiple quantum well activation layer 207, and a P-type tantalum nitride-based semiconductor layer 209. The characteristics of the vertical-conducting gallium nitride light-emitting diode element 2 are as follows: • The negative and positive electrodes (201, 215) are fabricated on the lower and lower sides of the light-emitting diode die. 2. The current flows vertically. The dispersion is more uniform and reduces the eddy current. 3. The metal substrate interface can reflect light, reduce the chance of the light source being absorbed, and greatly increase the brightness of the light. 11 4·Metal substrate can be effectively divided into “charge, increase antistatic ability. 5. The structure of the upper and lower electrodes (201, 215) does not have to worry about the distance between the two electrodes, and the grain size can be greatly reduced to increase the grain yield of each wafer. 6. The package only needs to make a single wire on the front electrode, which reduces the material and operation cost and reduces the shadowing effect of the gold wire. 7. Near-circular output light distribution curve. According to the present invention, the vertical-guided gallium light-emitting diode element is sequentially formed on a wafer, and the insect wafer is not lost in general. As shown in the third figure, the sapphire substrate has a sequential smectic crystal on the upper surface of the sapphire substrate. The low temperature undoped gallium nitride buffer layer is a thin film, and a germanium GaN-based semiconductor layer is moved. The crystal structure of the multiple quantum well activation layer 2〇7 and the Ρ35 gallium nitride semiconductor layer 2〇9. The following fourth to sixth figures are respectively two first, second and third embodiments of the manufacturing method of the vertical conduction nitride light emitting diode of the present invention, which are on the epitaxial wafer 300 as shown in the third figure. Order process. First, referring to the flow chart of the first embodiment of the fourth embodiment (including the fourth to fourth G maps): 7 is a etched epitaxial wafer 300 and vapor-deposited a P-type ohmic layer 211 ° Employed by Huang Laicheng, the project locates the 12 200812105 scribe line 403, and etches a portion of the epitaxial layer above the sapphire substrate 3〇1, and is separated by a scribe line 4〇3. Then, a nickel-gold (NiAu) metal is vapor-deposited on the p-type gallium nitride-based semiconductor layer 209, and is subjected to ohmic contact with the P-type gallium nitride-based semiconductor layer 209 after high temperature (450-550 〇 oxidation). The high light transmission characteristic p-type ohmic layer 21 j. The fourth B is a protective layer formed, that is, the sidewall of the etched epitaxial wafer forms a protective layer 217. The protective layer material is selected from the group consisting of titanium dioxide (Τι02)'. (si〇2), polymethyl methacrylate (PMMA) or spin-on-giass (sop), etc. The fourth C is a vapor deposition of a reflective layer 213, That is, a metal layer having a reflectance characteristic of the mineralizer is vaporized above the P-type ohmic layer 211, and is a single layer or a combination of a plurality of layers mainly composed of silver (Ag) or |Lu (A1). This embodiment is selected from a titanium/四 / 鈥 / gold (Ti / Al / Ti / Au) four layers of metal material, that is, first plated with titanium and then plated with 'then re-mineral titanium, and finally plated with gold four metal reflective layer. D is a metal conductive substrate 203 above the reflective layer 205a, and as a positive electrode, wherein the metal conductive substrate material is selected from nickel (M) Materials such as copper (Cu), molybdenum (Mo), tungsten (W), silver, and aluminum. The fourth E is a laser stripping process, that is, a surface illuminating excimer laser from a sapphire substrate 3〇1 (KrF excimer) Laser) having a laser wavelength of 13 200812105 248 nm, heating the low temperature undoped gallium nitride buffer layer 303 film to peel off the sapphire substrate 301 and exposing the complete n-type gallium nitride based semiconductor layer 205 in the epitaxial wafer Wherein, the laser beam irradiation range is controlled to be completely irradiated to the gallium nitride light-emitting diode 410, and the irradiation boundary 405 of the laser beam falls on the cutting track 403 between the gallium nitride light-emitting diodes, Avoiding the uneven illumination of the laser beam and destroying the characteristics of the gallium nitride light-emitting diode, thereby improving the yield. The fourth F is to fabricate a negative electrode 2〇1. The fourth step is to laser-peel the sapphire substrate 301. And completely exposing the N-type gallium nitride-based semiconductor layer 205. First, the surface-treated N-type gallium nitride-based semiconductor layer 2〇5 and the vapor-deposited-transparent conductive layer 2G3. Finally, the distilled-type N-type ohmic gold (TiAlAu) , titanium aluminum titanium (TiAlTiAu), chrome aluminum (CrAlAu), or chrome aluminum chromium gold A metal such as (CrAlCrAu). The fourth G is a laser dicing and chipping wafer. The laser is irradiated into the surface from the metal conductive layer 215, and is cracked into a single gallium nitride light-emitting diode element. 5 (3 is a second embodiment of the present invention. This second embodiment differs from the step screw of the first embodiment only in the steps of the fourth and fourth B-p-ohmic layers 2 ι and The side walls of the insect wafer form a protective layer 217 that is reversed. That is, the dormant crystals on the side of the first layer 14 200812105 layer sidewalls form a protective layer 217, as shown in FIG. Next, the sulphide has a P-type ohmic layer 211 having a high light transmission characteristic as shown in Fig. 5b. Then, the steps of the fifth C-figure G diagram of the second embodiment are the same as the steps of the fourth C diagram of the fourth embodiment of the second embodiment. Further, the fourth F map and the fifth f map step are described as follows. Surface-treating the N-type gallium nitride based semiconductor layer 205, wherein the surface treatment comprises using an inductively coupled electropolymer (in (jUCtiVely c〇i^ed plasma, ICP) and potassium hydroxide (KOH) solution etching to clean the laser stripping The surface of the N-type gallium nitride-based semiconductor layer 205 is later, and the surface of the n-type gallium nitride-based semiconductor layer 205 is roughened to increase the light-emitting efficiency. The transparent conductive layer 203 is made of a material selected from, for example, indium tin oxide (indium tin oxide). ITO), zinc-tin oxide (izo), aluminum-zinc oxide (AZ〇), or other dielectric materials, dielectric materials with dielectric constant n between 14 and 2 ,, uniform current distribution to increase light extraction efficiency. The seventh figure is a schematic diagram of the irradiation range of the excimer laser light, that is, the steps of the first and second embodiments of the 'E ® and the fifth £ ® , the laser beam is irradiated on the surface of the sapphire substrate 301 $ to peel off the gemstone substrate 3 〇 1. The boundary of the laser beam falls on the GaN channel of the gallium nitride light-emitting diode 41G, and the laser beam irradiation range can be sufficient to cover at least the _ _ _ _ _ _ _ _ _ _ _ _ _ _ The laser radiance on both sides of the nitrided light beam is uniform, avoiding damage The characteristics of the gallium light-emitting diodes 15 200812105 The sixth figure is a third embodiment of the present invention. Referring to the sixth embodiment (including the sixth to sixth F-pictures), the flow of steps of the third embodiment: sixth The figure shows a P-type ohmic layer 211 deposited by vapor deposition of nickel-gold (NiAu) metal over the P-type gallium nitride-based semiconductor layer 209 of the dummy wafer 300 of the third figure, and is subjected to high temperature (45 〇 _ 55 (rc After oxidation, a ohmic contact with the p-type gallium nitride based semiconductor layer 209 is formed, and the P-type ohmic layer 211 having a high light transmission property is formed. The sixth B diagram is a vapor-reflective layer 213, that is, at the fourth A A metal layer having a highly reflective property is deposited on the p-type ohmic layer 211 of the figure, and is a single layer or a combination of a plurality of layers mainly composed of silver (Ag) or aluminum (A1). This embodiment is selected from a titanium/inscription/titanium. / Gold (Ti / Al / Ti / Au) four layers of metal material, that is, first plated with titanium and then recorded aluminum, then plated with titanium, and finally plated with a gold four-layer metal reflective layer. A metal conductive substrate 203 is formed over the reflective layer 213 as a positive electrode, wherein the metal conductive substrate is selected from the group consisting of nickel (Ni), copper (Cu), molybdenum (Mo), and tungsten (W) 'silver And the material of aluminum, etc. The sixth D is a laser stripping process, that is, a KrF excimer laser is irradiated from the back of the sapphire substrate 301, and the laser wavelength is 248 nm, so that the low temperature is not mixed. The gallium nitride buffer layer 303 is heated to peel off the sapphire substrate 301, and exposes the complete N-type gallium nitride semiconductor layer 2〇5e of the epitaxial wafer 16 200812105. The sixth E is a negative electrode 2〇1 . In the sixth step of the step, the laser detaches the sapphire substrate 301, and the GaN-based semiconductor layer 205 is completely exposed. First, the N-type gallium nitride based semiconductor layer 205 is surface-treated and certain regions of the epitaxial wafer are etched. The etched epitaxial wafer is processed through a yellow light process, and after the pattern is positioned to cut the scribe line 403, a portion of the region of the sinister wafer (205-209) is separated and separated by a scribe line 4〇3. A protective layer 217 is formed on the sidewall of the epitaxial wafer after etching. Next, a transparent conductive layer 203 is evaporated. Finally, an N-type ohmic metal is vapor-deposited as the negative electrode 201, and the N-type ohmic metal material is selected from the group consisting of titanium aluminum (TiA1Au), TiAlTiAu, CrAlAu, or CrAlCrAu. ) and other metals. The sixth F picture shows laser cutting and chipping. The laser is irradiated from the metal conductive layer 215 as a surface, and is broken into a single gallium nitride light-emitting diode element 200. The step of the sixth E diagram will be further explained, which is described below. Wherein the surface treatment of the N-type gallium nitride based semiconductor layer 205, the surface treatment comprises using an inductively coupled plasma and a potassium hydroxide solution to clean the surface of the N-type gallium nitride based semiconductor layer 205 after laser stripping, and The surface of the N-type gallium nitride based semiconductor layer 205 is roughened to increase the light extraction efficiency. 17 200812105 The protective layer of the sidewall of the insect wafer is made of materials such as titanium oxide, cerium oxide, decyl acrylate or spin-on glass. The transparent conductive layer 203 is made of a dielectric material selected from the group consisting of indium tin oxide, zinc tin oxide, cerium oxide, or dielectric material, and having a dielectric constant n of 1.4 to 2·1, so that the current distribution is uniform. Increase light extraction efficiency. 1*隹 The above is only a preferred example of the invention, and the exemplary implementation of the present invention cannot be limited thereto. That is, the scale changes and modifications made by the company to the patent scope should remain within the scope of the patent of the present invention. 18 200812105 [Simple description of the diagram] The first A diagram is a schematic diagram illustrating the structure of a conventional gallium nitride light-emitting diode. The first b-figure is a schematic view showing a top view of a conventional gallium nitride light-emitting diode of the first a ai. The second figure is the vertical conduction gallium nitride light emitting diode structure of the present invention. The third picture shows an epitaxial wafer structure. The fourth A-G diagram is a first embodiment of the vertical conduction gallium nitride light-emitting diode of the present invention. The fifth A-G diagram is a second embodiment of the vertical conduction gallium nitride light-emitting diode of the present invention. The sixth A-F diagram is a third embodiment of the vertical conduction gallium nitride light-emitting diode of the present invention. The seventh figure is a schematic diagram illustrating the range of excimer laser light illumination. 19 200812105 [Major component symbol description] 101 sapphire substrate 102 low temperature is not miscellaneous GaN buffer 103N type gallium nitride based semiconductor layer 104 multiple quantum well activation layer 106 transparent conductive layer 108 negative electrode 200 vertical conduction GaN light emitting diode Body 201 metal substrate 205 N-type gallium nitride-based semiconductor layer 209 P-type gallium nitride-based semiconductor layer 213 reflective layer 217 protective layer 300 epitaxial wafer structure 105 P-type gallium nitride-based semiconductor layer 107 positive electrode 203 transparent conductive layer 207 multiple Quantum Well Activation Layer 211 P-type Ohmic Layer 215 Metal Substrate 301 Sapphire Substrate 303 Low Temperature Unhealthy Gallium Nitride Buffer Layer 403 Cutting Road 405 Laser Irradiation Boundary 410 GaN Light Emitting Diode 20

Claims (1)

2〇〇8121〇5 Λ 十、申請專利範圍·· 1.種垂直導通氮化鎵發光二極體元件,該發光二極體 元件包含: 一導電基板,並作為電極正極; ; 一反射層,形成於該導電基板之表面之上; 1 一 ρ型歐姆層,形成於該反射層之表面之上; 一多層磊晶結構,形成於該ρ型歐姆層之表面之上; _ 一透明導電層,形成於該多層磊晶結構之表面之上; 一 Ν型歐姆金屬電極,形成在該透明導電層之表面之 上;以及 一保護層,形成於該多層磊晶結構之側邊; /、中°亥夕層蠢晶結構,係由一 Ν型氮化嫁系半導體 層、—多重量子井活化層以及一Ρ型氮化鎵系半導體 層依序蠢晶成長而成。 2·如申請專利範圍第丨項所述之垂直導通氮化鎵發光二 Φ 極體元件,其中該反射層係一金屬反射層。 3·如申請專利範圍第1項所述之垂直導通氮化鎵發光二 極體元件,其中該Ρ型歐姆層之材料係選自一鎳金金 屬。 4.如申請專利範圍第1項所述之垂直導通氮化鎵發光二 極體元件,其中該保護層之材料係選自於二氧化欽、 二氧化矽、聚甲基丙烯酸甲酯或旋塗式玻璃法之材質。 5·如申請專利範圍第1項所述之垂直導通氮化鎵發光二 極體元件,其中該導電基板係選自鎳、鋼、鉬、鶴、 21 200812105 銀、或銘之金屬材質。 6. 如申請專利範圍第1項所述之垂直導通氮化鎵發光二 極體元件,其中該透明導電層其材料選自銦錫氧化 物、半透明的鎳金材質、或其他介電材質。 7. 如申請專利範圍第1項所述之垂直導通氮化鎵發光二 極體元件,其中該N型歐姆金屬電極係選自鈦鋁金、 鈦銘鈦金、絡銘金、或鉻紹鉻金之材質。 8. —種垂直導通氮化鎵發光二極體元件之製造方法,係 在一蠢晶片上依序製程’其中該蠢晶片結構依序從下 到上包含一基板、一低溫不摻雜氮化鎵緩衝層、一 N 型氮化鎵系半導體層、一多重量子井活化層以及一 P 型氮化鎵系半導體層,其製造方法包括下列步驟: (a) 蝕刻該磊晶片以形成切割道,並於該P型氮化鎵系 半導體層上方蒸鍍一P型歐姆層; (b) 形成一保護層於蝕刻後之該磊晶片之側壁; (c) 蒸鍍一反射層於該P型歐姆層上方; (d) 製作一導電基板,於該反射層上方,並作為正極電 極; (e) —雷射剝離製程,雷射光束從該基板背面照射以剝 離該基板,並暴露該N型氮化鎵系半導體層; (f) 表面處理該N型氮化鎵系半導體層,蒸鍍一透明導 電層,以及製作一 N型歐姆金屬電極於該透明導電 層上;以及 (g) 雷射切割、崩裂晶片,雷射光束自導電基板背面 22 200812105 照射,以形«解—之該垂直導通氮化鎵發光二 極體元件。 9·如申請專利範目第8項所述之垂鱗通氮化鎵發光二 極體讀之製造方法,其中該步驟⑻之蒸鍍該p型歐 ; 姆層,與步驟⑼可對言周,即步驟⑻侧該i晶片並形 : 成該切霞後,縣形成魏護層於該蟲晶片之側 : 壁,步驟(b)則為蒸鍍該P型歐姆層。 10·如申請專利範圍第8項所述之垂直導通氮化蘇發光二 φ S體元件之製造方法,其中該P型歐姆層之材料係選 自一鎳金金屬。 11·如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該保護層之材料係選自於 二氧化鈦、二氧化矽、聚甲基丙烯酸曱酯或旋塗式玻 璃法之材質。 12·如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該導電基板係選自鎳、銅、 馨 鉬、鎢、銀、或鋁之金屬材質。 13·如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該透明導電層其材料選自 銦錫氧化物、鋅錫氧化物、鋁鋅氧化物、或其他介電 材質。 14·如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該N型歐姆金屬電極係選 自鈦鋁金、鈦鋁鈦金、鉻鋁金、或鉻鋁鉻金之材質。 23 200812105 " 15·如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該步驟(e)之該雷射剝離製 程中該雷射光束之邊界係落在該切割道。 16.如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該步驟(e)之該雷射剝離製 ; 程,係使用準分子雷射,其雷射波長為248 nm。 ^ I7.如申請專利範圍第8項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該步驟(f)之該表面處理包 φ' 括’使用感應偶合式電漿及氫氧化鉀溶液蝕刻清潔並 粗化該N型氮化鎵系半導體層表面。 18· —種垂直導通氮化鎵發光二極體元件之製造方法,係 在一蠢晶片上依序製程,其中該磊晶片結構依序從下 到上包含一基板、一低溫不摻雜氮化鎵缓衝層、一 N 型氮化鎵系半導體層 '一多重量子井活化層以及一 p 型氮化鎵系半導體層,製造方法包含下列步驟: (a) 於該磊晶片之該P型氮化鎵系半導體層上方蒸鍍一 Φ P型歐姆層; (b) 蒸鑛一反射層於該p型歐姆層上方; (c) 衣作一 基板,於該反射層上方,並作為正極電 極; (Φ —雷射剝離製程,雷射光束從該基板背面照射以剝 離該基板,並暴露該N型氮化鎵系半導體層; (e)表面處理該N型氮化鎵系半導體層,蝕刻該磊晶片 之某些區域Μ彡成切割道;形成_保護層於侧後之 24 200812105 該磊晶片之側壁;並蒸鍍一透明導電層,以及製作一 N型歐姆金展電極於該透明導電層上;以及 (f)雷射切吾彳、崩裂晶片,雷射光束自導電基板背面照 射,以形成多個單一之該垂直導通氮化鎵發光二極體 元件。 19·如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該p型歐姆層之材料係選 自一鎳金金屬。 20·如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法’其中該保護層之材料係選自於 二氧化鈦、二氧化石夕、聚曱基丙烯酸曱酉旨或旋塗式玻 璃法之材質。 21.如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法’其中該導電基板係選自鎳 '銅、 鉬、鎢、銀、或鋁之金屬材質。 22·如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該透明導電層其材料選自 銦錫氧化物 '鋅錫氧化物、銘鋅氧化物、或其他介電 材質。 23·如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該N型歐姆金屬電極係選 自鈦鋁金、鈦鋁鈥金、鉻鋁金、或鉻鋁鉻金之材質。 24·如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該步驟(d)之該雷射剝離製 25 200812105 程,係使用準分子雷射,其雷射波長為248 nm。 25.如申請專利範圍第18項所述之垂直導通氮化鎵發光二 極體元件之製造方法,其中該步驟(e)之該表面處理包 括使用感應偶合式電漿及氫氧化鉀溶液蝕刻清潔並粗 化該N型氮化鎵系半導體層表面。2〇〇8121〇5 Λ X. Patent Application Scope 1. A vertical conduction GaN light-emitting diode element, the light-emitting diode element comprises: a conductive substrate, and serves as an electrode positive electrode; Formed on the surface of the conductive substrate; 1 a p-type ohmic layer formed on the surface of the reflective layer; a multilayer epitaxial structure formed on the surface of the p-type ohmic layer; _ a transparent conductive a layer formed on a surface of the multilayer epitaxial structure; a germanium-type ohmic metal electrode formed on a surface of the transparent conductive layer; and a protective layer formed on a side of the multilayer epitaxial structure; The stupid crystal structure of the mid-degree layer is formed by a tantalum-type nitrided semiconductor layer, a multiple quantum well activation layer, and a germanium-type gallium nitride semiconductor layer. 2. The vertically-conducting gallium nitride light-emitting Φ polar body element according to the above-mentioned claim, wherein the reflective layer is a metal reflective layer. 3. The vertically-conducting gallium nitride light-emitting diode element according to claim 1, wherein the material of the germanium-type ohmic layer is selected from the group consisting of a nickel-gold metal. 4. The vertically-conducting gallium nitride light-emitting diode element according to claim 1, wherein the material of the protective layer is selected from the group consisting of dioxide, cerium oxide, polymethyl methacrylate or spin coating. The material of the glass method. 5. The vertical conduction gallium nitride light-emitting diode element according to claim 1, wherein the conductive substrate is selected from the group consisting of nickel, steel, molybdenum, crane, 21 200812105 silver, or metal of Ming. 6. The vertically-conducting gallium nitride light-emitting diode element according to claim 1, wherein the transparent conductive layer is made of a material selected from the group consisting of indium tin oxide, translucent nickel gold, or other dielectric material. 7. The vertically-conducting gallium nitride light-emitting diode component according to claim 1, wherein the N-type ohmic metal electrode is selected from the group consisting of titanium aluminum, titanium, titanium, rhodium, or chrome Gold material. 8. A method of fabricating a vertically-conducting gallium nitride light-emitting diode element in a sequential process on a stray wafer, wherein the stray wafer structure sequentially comprises a substrate from bottom to top, and a low temperature undoped nitride A gallium buffer layer, an N-type gallium nitride based semiconductor layer, a multiple quantum well activated layer, and a P-type gallium nitride based semiconductor layer are manufactured by the following steps: (a) etching the epitaxial wafer to form a dicing street And depositing a P-type ohmic layer over the P-type gallium nitride-based semiconductor layer; (b) forming a protective layer on the sidewall of the epitaxial wafer after etching; (c) depositing a reflective layer on the P-type (d) forming a conductive substrate above the reflective layer and serving as a positive electrode; (e) a laser stripping process from which the laser beam is irradiated to strip the substrate and expose the N-type a gallium nitride-based semiconductor layer; (f) surface-treating the N-type gallium nitride-based semiconductor layer, vapor-depositing a transparent conductive layer, and forming an N-type ohmic metal electrode on the transparent conductive layer; and (g) laser Cutting, chipping, laser beam from conductive 22200812105 backside irradiation, to form «Solutions - conduction of the vertical GaN light emitting diode element. 9. The method for manufacturing a vertical luminosity gallium nitride light-emitting diode according to claim 8, wherein the step (8) evaporates the p-type ohm; the m layer, and the step (9) That is, the i-wafer is formed on the side of the step (8): after the cut, the county forms a Wei sheath on the side of the insect wafer: the wall, and the step (b) is vapor deposition of the P-type ohmic layer. 10. The method of manufacturing a vertically-conductive nitriding luminescence φ S body element according to claim 8, wherein the material of the P-type ohmic layer is selected from a nickel-gold metal. 11. The method of manufacturing a vertically-conductive gallium nitride light-emitting diode element according to claim 8, wherein the material of the protective layer is selected from the group consisting of titanium dioxide, cerium oxide, polymethyl methacrylate or fluorene. The material of the coated glass method. 12. The method of manufacturing a vertically-conductive gallium nitride light-emitting diode element according to claim 8, wherein the conductive substrate is selected from the group consisting of nickel, copper, sin-molybdenum, tungsten, silver, or aluminum. The method for manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 8, wherein the transparent conductive layer is made of a material selected from the group consisting of indium tin oxide, zinc tin oxide, aluminum zinc oxide, Or other dielectric materials. 14. The method of manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 8, wherein the N-type ohmic metal electrode is selected from the group consisting of titanium aluminum gold, titanium aluminum titanium gold, chrome aluminum gold, or Chrome aluminum chrome gold material. The method for manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 8, wherein the boundary of the laser beam in the laser stripping process of the step (e) is Fall on the cutting road. 16. The method of manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 8, wherein the laser stripping process of the step (e) is performed using an excimer laser. The emission wavelength is 248 nm. The method for manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 8, wherein the surface treatment package φ' of the step (f) includes using an inductively coupled plasma and hydrogen. The potassium oxide solution is etched to clean and roughen the surface of the N-type gallium nitride based semiconductor layer. 18. A method of fabricating a vertically-conducting gallium nitride light-emitting diode element in a sequential process on a dummy wafer, wherein the epitaxial wafer structure sequentially comprises a substrate from bottom to top, and a low temperature undoped nitride A gallium buffer layer, an N-type gallium nitride-based semiconductor layer 'a multiple quantum well activation layer, and a p-type gallium nitride based semiconductor layer, the manufacturing method comprises the following steps: (a) the P-type of the epitaxial wafer Depositing a Φ P-type ohmic layer over the gallium nitride-based semiconductor layer; (b) depositing a vapor-reflecting layer over the p-type ohmic layer; (c) coating a substrate above the reflective layer and serving as a positive electrode (Φ - laser stripping process, the laser beam is irradiated from the back surface of the substrate to peel off the substrate, and the N-type gallium nitride-based semiconductor layer is exposed; (e) surface-treating the N-type gallium nitride-based semiconductor layer, etching Portion of the epitaxial wafer is diced into a dicing street; forming a _protective layer on the side of the side of the 2008 200812105 sidewall of the epitaxial wafer; and vapor-depositing a transparent conductive layer, and fabricating an N-type ohmic gold electrode for the transparent conductive On the layer; and (f) laser cutting, cracking a laser beam is irradiated from the back surface of the conductive substrate to form a plurality of single vertical-conducting gallium nitride light-emitting diode elements. 19. The vertical-conducting gallium nitride light-emitting diode according to claim 18 The manufacturing method of the device, wherein the material of the p-type ohmic layer is selected from the group consisting of a nickel-gold metal. 20) The method for manufacturing a vertically-conductive gallium nitride light-emitting diode element according to claim 18, wherein the protection The material of the layer is selected from the group consisting of titanium dioxide, cerium dioxide, polyacrylic acid acrylate or spin-on glass. 21. Vertically conducting gallium nitride light-emitting diode according to claim 18 The method for manufacturing a body member, wherein the conductive substrate is selected from the group consisting of nickel 'copper, molybdenum, tungsten, silver, or aluminum. 22 · Vertically conducting gallium nitride light-emitting diode according to claim 18 The method for manufacturing a device, wherein the transparent conductive layer is made of a material selected from the group consisting of indium tin oxide 'zinc tin oxide, zinc oxide, or other dielectric material. 23 · Vertically conducting nitrogen as described in claim 18 A method for manufacturing a gallium light-emitting diode element, wherein the N-type ohmic metal electrode is selected from the group consisting of titanium aluminum gold, titanium aluminum ruthenium gold, chrome aluminum gold, or chrome aluminum chromium gold. 24 · Patent Application No. 18 The method for manufacturing a vertically-conducting gallium nitride light-emitting diode element, wherein the laser stripping process of the step (d) is an excimer laser having a laser wavelength of 248 nm. The method for manufacturing a vertically-conducting gallium nitride light-emitting diode element according to claim 18, wherein the surface treatment of the step (e) comprises etching and thickening using an inductively coupled plasma and a potassium hydroxide solution. The surface of the N-type gallium nitride based semiconductor layer is formed. 2626
TW95130711A 2006-08-21 2006-08-21 Vertical conductive GaN LED structure and the method for manufacturing TW200812105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130711A TW200812105A (en) 2006-08-21 2006-08-21 Vertical conductive GaN LED structure and the method for manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130711A TW200812105A (en) 2006-08-21 2006-08-21 Vertical conductive GaN LED structure and the method for manufacturing

Publications (1)

Publication Number Publication Date
TW200812105A true TW200812105A (en) 2008-03-01

Family

ID=44767927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130711A TW200812105A (en) 2006-08-21 2006-08-21 Vertical conductive GaN LED structure and the method for manufacturing

Country Status (1)

Country Link
TW (1) TW200812105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587017B2 (en) 2009-07-05 2013-11-19 Industrial Technology Research Institute Light emitting device and method of fabricating a light emitting device
TWI460891B (en) * 2012-08-17 2014-11-11 Nat Univ Chung Hsing Preparation method and product of vertical conduction type light emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587017B2 (en) 2009-07-05 2013-11-19 Industrial Technology Research Institute Light emitting device and method of fabricating a light emitting device
TWI460891B (en) * 2012-08-17 2014-11-11 Nat Univ Chung Hsing Preparation method and product of vertical conduction type light emitting diode

Similar Documents

Publication Publication Date Title
JP4999696B2 (en) GaN-based compound semiconductor light emitting device and manufacturing method thereof
US9530936B2 (en) Light emitting diode having vertical topology and method of making the same
JP5554792B2 (en) Light emitting device and manufacturing method thereof
JP5816243B2 (en) Light emitting device and light emitting device package
CN101785085A (en) Process method for semiconductor wafer assembly
TW201025685A (en) Semiconductor light-emitting device and light-emitting device package having the same
CN101140977A (en) Nitride semiconductor light-emitting element and manufacturing method thereof
CN106876532A (en) A kind of high light-emitting rate, the UV LED of high reliability and its manufacture method
JP2013034010A (en) Vertical light-emitting device
US20100127297A1 (en) Semiconductor light-emitting device
KR101203137B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
KR101239852B1 (en) GaN compound semiconductor light emitting element
KR101510382B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101534846B1 (en) Group III nitride-based semiconductor light-emitting diode device with vertical structure and manufacturing method
TW200812105A (en) Vertical conductive GaN LED structure and the method for manufacturing
CN112652689B (en) Light emitting diode and manufacturing method thereof
US20050253129A1 (en) Light emitting diode with enhanced luminance and method for manufacturing the same
CN100470866C (en) A semiconductor solid-state light source device
TWI241729B (en) Semiconductor light emitting device and the method for manufacturing the same
TWI792867B (en) Light-emitting diode
CN100517775C (en) Semiconductor light emitting device with improved brightness and method of manufacturing the same
KR101205831B1 (en) Semiconductor light emitting device and manufacturing method of the same
KR101550913B1 (en) 3 fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TWI436497B (en) Method for forming a light-emitting device
KR101115571B1 (en) GaN compound semiconductor light emitting element