TW200805178A - Monolithic image perception device and method - Google Patents
Monolithic image perception device and method Download PDFInfo
- Publication number
- TW200805178A TW200805178A TW95124992A TW95124992A TW200805178A TW 200805178 A TW200805178 A TW 200805178A TW 95124992 A TW95124992 A TW 95124992A TW 95124992 A TW95124992 A TW 95124992A TW 200805178 A TW200805178 A TW 200805178A
- Authority
- TW
- Taiwan
- Prior art keywords
- cognitive
- image recognition
- recognition device
- substrate
- sensing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 230000008447 perception Effects 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 230000015654 memory Effects 0.000 claims abstract description 31
- 239000011521 glass Substances 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 230000006399 behavior Effects 0.000 claims abstract 2
- 238000005530 etching Methods 0.000 claims abstract 2
- 230000001149 cognitive effect Effects 0.000 claims description 97
- 210000002569 neuron Anatomy 0.000 claims description 70
- 238000012545 processing Methods 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 7
- 210000004027 cell Anatomy 0.000 claims description 5
- 238000012549 training Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 239000012780 transparent material Substances 0.000 claims 2
- 230000001939 inductive effect Effects 0.000 claims 1
- 230000001537 neural effect Effects 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract description 2
- 230000008921 facial expression Effects 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000037431 insertion Effects 0.000 abstract 1
- 238000003780 insertion Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 13
- 238000003384 imaging method Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000000933 neural crest Anatomy 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Image Analysis (AREA)
Abstract
Description
200805178 九、發明說明: 【發明所屬之技術領域】 本發明大體上係關於成像裝置。詳言之,本發明係關於 安置於透明基板(諸如玻璃)上或嵌入於透明基板(諸如玻 璃)中用於影像辨識之微裝置。 【先前技術】 透明表面(諸如玻璃)已存在數百年。透明表面最初打算 保護生存空間同時使居住者具有外部世界(風景、天氣及 可能威脅)之感測。新近,大量需要透明表面用於顯示工 業’以陰極射線管(CRT)開始且新近用於液晶顯示器(lcd) 及許多其他種類的平板顯示器。使用中,在大多狀況下, 人類或活生物(動物、植物)位於此等透明表面附近。 影像感應器已用了幾十年(例如,CCD或CM〇s感應 器)。舉例而言,見美國專利第6,617,565號用於 CMOS影像感應器,該案之内容以引用的方式併入本文 中。典型影像感應器基於相機設計且大體上包括位於透鏡 之後的積體電路,該透鏡可為微型或可移動的(例如,螺 旋安裝透鏡)。感應器用於將光能(光子)轉換為與由在感應 器上以陣列組織之光敏元件 心Μ 卞尸叮^叹之光Ϊ成比例的電訊 號。根據光敏元件之輸出來合成影像。 影像辨識技術成為曰益有需要的。各種大小及掣造之攝 像機對於諸如安全、識別、智慧、品質檢查、交通監督之 應用及更多應用為有需要的。攝像機通常藉由有線或無線 連接而鏈接至顯不裝置。現今,手機常規地配備有連接至 112868.doc 200805178 安置於其中之LCD顯示裝置的微型相機。 高級影像辨識需要高解析度成像合成。由於處理能力之 不足及/或由於處理器-次僅可處理影像之_像素,b因此 現今影像辨識系統以相對低的速度來操作。 因此,存在對於在先前技術上改良之新成像 需要。 不1的 【發明内容】 本發明之目標為提供一種影像辨識裝 丹兴有直接包 括於構成人射影像與感應區之間的光學界面之透明或半透 明材料中之感應區(例如’光敏元件)。影像辨識裝置本身 較佳為透明或半透明的。 本發明之又-目標為借助於可訓練處理元件之陣列提供 具有區域”決策能力之感應區。在本發明之一實施例中, 可訓練認知記憶體元件或單元與一或多個光敏元件相關 聯。區域決策能力提供其減少裝置之傳輸需求(意即,頻 寬)的優點,尤其當光敏元件之數目較大時且當光敏元件 之傳輪頻率必須較高時提供該優點。藉由提供每—者且有 區域決策能力之感應區的較大陣列,可獲得高解析度、、高 速度成像裝置。 根據本發明之實施例’可訓練認知記憶體元件可以低頻 率騎操作並引起非常低的電流。因&,確保每—元件之 自律細作,且可使用非常經濟的能源(諸如太 均等物)。 根據本發明之實施例’由所有喪入於基板中之一或多個 112868.doc 200805178 光敏元件與一或多個可 新穎單°、束_知s己憶體元件相關聯來形成 新顆早石影像辨識裝置。 个少取 根據本發明之赛# y t u 之複數個光敏元件可以;可訓練認知元件相關聯 透明或丰读明| 4 j术配置且遍佈在平坦 性。並刑幽… 早歹J 了具有可變幾何形狀及連接 列^㈣不限於)平行神經元之線形陣200805178 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to an image forming apparatus. In particular, the present invention relates to a microdevice for image recognition disposed on a transparent substrate such as glass or embedded in a transparent substrate such as glass. [Prior Art] Transparent surfaces such as glass have existed for hundreds of years. The transparent surface was originally intended to protect the living space while giving the occupants a sense of the outside world (landscape, weather and possible threats). More recently, a large number of transparent surfaces have been required for display industries, starting with cathode ray tubes (CRTs) and more recently for liquid crystal displays (LCDs) and many other types of flat panel displays. In use, in most cases, humans or living organisms (animals, plants) are located near these transparent surfaces. Image sensors have been in use for decades (for example, CCD or CM〇s sensors). For example, see U.S. Patent No. 6,617,565 for CMOS image sensors, the contents of which are incorporated herein by reference. A typical image sensor is based on a camera design and generally includes an integrated circuit located behind the lens, which lens can be micro or movable (e.g., a helical mounting lens). The sensor is used to convert light energy (photons) into electrical signals that are proportional to the light-emitting elements of the light-sensitive elements that are organized in an array on the sensor. The image is synthesized based on the output of the photosensitive element. Image recognition technology has become a boon. Cameras of all sizes and manufactured are needed for applications such as safety, identification, intelligence, quality inspection, traffic surveillance and more. The camera is usually linked to the display device by a wired or wireless connection. Today, mobile phones are conventionally equipped with a miniature camera connected to the LCD display device in which 112868.doc 200805178 is placed. Advanced image recognition requires high-resolution imaging synthesis. Due to insufficient processing power and/or because the processor can only process the pixels of the image, b nowadays image recognition systems operate at relatively low speeds. Therefore, there is a need for new imaging improvements that have been improved in the prior art. SUMMARY OF THE INVENTION The object of the present invention is to provide an image recognition device that has a sensing region (for example, a photosensitive member) directly included in a transparent or translucent material constituting an optical interface between a human image and a sensing region. ). The image recognition device itself is preferably transparent or translucent. Yet another object of the present invention is to provide a sensing region having a region's decision making capability by means of an array of trainable processing elements. In one embodiment of the invention, the trainable cognitive memory component or unit is associated with one or more photosensitive elements The regional decision making capability provides the advantage of reducing the transmission requirements (i.e., bandwidth) of the device, especially when the number of photosensitive elements is large and when the transmission frequency of the photosensitive elements must be high. A high-resolution, high-speed imaging device can be obtained with a large array of sensing regions of regional decision-making capabilities. The trainable cognitive memory component can be operated at a low frequency and causes very low according to an embodiment of the present invention. The current, because &, ensures that each element is self-disciplined and can use very economical energy sources (such as too uniform). According to an embodiment of the invention, one or more of the substrates are lost to one or more 112868. Doc 200805178 Photosensitive elements are associated with one or more novel single-beam, beam-like elements to form a new early stone image recognition device. According to the invention, a plurality of photosensitive elements of the game # ytu can be used; the training cognitive elements can be associated with transparency or rich reading | 4 j operation configuration and spread over the flatness. Connection column ^ (four) is not limited to linear array of parallel neurons
/以矩形矩陣或蜂窩狀幾何形狀連接之神經元 陣列。 F 以下參看圖式論述本發明 义令I 5之各種貫施例的進一步應用及 優點。 【實施方式】 雖然可以許多不同形式來體現本發明,但本文中描述許 多說明性實施例,丨中理解將本揭示案看作提供本發明之 原理的實例且不期望此等實例將本發明限於本文中所描述 及/或所說明之任何特定較佳實施例。/ Array of neurons connected in a rectangular matrix or a honeycomb geometry. Further applications and advantages of various embodiments of the present invention I 5 are discussed below with reference to the drawings. [Embodiment] While the invention may be embodied in a number of different forms, the invention is described herein, and is not to be construed Any particular preferred embodiment described and/or illustrated herein.
本發明為一成像裝置,該成像裝置可包括諸如光敏元件 之感應器感測裝置,其連接至可訓練認知元件(bah讣& cognitive element)、與該可訓練認知元件結合或另外與該 可訓練認知元件相關聯,其中兩個元件化學沈積或另外沈 積於透明基板之表面上或嵌入於透明基板之表面中。貫穿 此文獻將感應區與具有”區域”決策能力之可訓練認知元件 的結合稱為"認知感應器”。貫穿此文獻將可訓練認知元件 稱為"CogniMem"。感應區一般由一或多個光敏元件構 成,但可涵蓋其他感應配置。 112868.doc 200805178 據本gx明之貫施例’認知感應器可經組態以辨識入射 光圖案(例如,影像或影像部分)、處理入射光圖案以產生 區域決策及傳輸區域決策之指示結果。認知感應器可包括 許夕、、、件諸如(但不限於)··區域決策能力_資料輸入邏 輯神經元”及決策輸出邏輯,記憶體緩衝器,用於能量 自律(energy auton〇my)之太陽能電池及更多。每一認知感 應器較佳特徵化並聯配置之反應相關學習記憶體(reactive _ aSS〇Clatlve learning memory ; REALM)。根據本發明之實 加例CogniMem能夠在無任何電腦指令的情況下進行數 位或類比圖案辨識。The present invention is an imaging device that can include a sensor sensing device such as a photosensitive element that is coupled to, can be combined with, or otherwise associated with a trainable cognitive element (bah讣 & cognitive element) Training cognitive elements are associated, wherein two elements are chemically deposited or otherwise deposited on the surface of the transparent substrate or embedded in the surface of the transparent substrate. Throughout this document, the combination of a sensing area and a trainable cognitive element with "regional" decision-making ability is called a "cognitive sensor." Throughout this document, the training cognitive element is called "CogniMem". The sensing area is generally controlled by one or Multiple photosensitive elements are constructed, but may cover other sensing configurations. 112868.doc 200805178 According to this gx example, the cognitive sensor can be configured to recognize an incident light pattern (eg, an image or image portion), and to process an incident light pattern. In order to generate regional decision-making and transmission area decision-making instructions, cognitive sensors may include, for example, (but not limited to) regional decision making capabilities _ data input logic neurons and decision output logic, memory buffers , solar cells for energy auton〇 (energy auton〇my) and more. Each cognitive sensor preferably characterizes a reactive learning memory (reactive _ aSS〇Clatlve learning memory; REALM) in parallel configuration. According to the actual embodiment of the present invention, CogniMem is capable of digital or analog pattern recognition without any computer instructions.
CogmMem可包含一或多個神經元,該等神經元為可並 行存取之相關記憶體,其可對與其本身内容類似之輸入圖 案作出反應。神經元可藉由基於其他鄰近神經元之回應增 強其回應來個別或共同地作出反應。可經由連接至神經元 之抑制/激勵輸入線來完成此選擇。 • C〇gniMem之神經元内容構成"知識"。知識為一組靜態 區別數位簽名。知識可為靜態知識(一次載入)或動態知識 ^ (由其他神經元之反應來更新或自外部知識庫合適地載 入),但較佳由學習過程(learning pr〇cess)自動產生而不需 要電腦如此做。沈積於相同基板上之使用相 同或不同知識。CogmMem may comprise one or more neurons, which are related memories that are accessible in parallel, which are responsive to input patterns similar to their own content. Neurons can respond individually or collectively by activating their responses based on responses from other neighboring neurons. This selection can be done via a suppression/excitation input line connected to the neuron. • The neuron content of C〇gniMem constitutes "knowledge". Knowledge is a set of static distinct digital signatures. Knowledge can be static knowledge (one-time load) or dynamic knowledge ^ (updated by other neurons' responses or properly loaded from an external knowledge base), but is preferably automatically generated by the learning process (learning pr〇cess) I need a computer to do this. Use the same or different knowledge of deposition on the same substrate.
CogniMem可沈積於基板上或嵌入於基板中(或另外與基 板耦接)作為認知感應器之一部分,或作為獨立部分。在 前者狀況下,CogniMem通常專用於辨識由光敏元件所傳 112868.doc 200805178 輸之像素資料。在後者狀況下,CogniMem可用於支持其 他CogniMem,且可用於(例如)辨識由其他CogniMem單元 所傳輸之不同資料類型(例如以合併來自多個認知感應器 • 之回應圖案)。 , 以下列出專利及公開申請案(其每一者之全部内容以引 用的方式倂入本文中)描述適用於CogniMem及認知感應器 之神經元及神經網路的各種態樣:美國專利第5,621,863號 神經元電路;第5,717,832號改良神經元電路架構;第 ® 5,701,397號用於預充電空閒神經元電路之電路;第 5,710,869號用於神經元電路之串聯連接的菊鏈電路;第 5,740,326號用於搜尋/分類神經網路中之資料的電路;第 6,332,137號用於單獨硬體辨識之並聯相關記憶體;第 6,606,614號單線搜尋及分類;日本申請案JP8-171543用於 神經元電路之串聯連接的菊鏈電路;JP8-171542高級負载 電路;JP8-171541聚集電路(搜尋/分類);JP8-171540神經 ^ 網路及神經晶片;JP8-069445神經元電路架構;韓國專利 申請案KR164943創新神經元電路架構;歐洲專利 - EP0694852創新神經元電路架構;EP0694854改良神經半 • 導體晶片架構;EP0694855神經網路之搜尋/分類; EP0694853用於在辨識階段預充電空閒神經元電路中之輸 入向量組件(input vector component)的電路;EP0694856 用 於神經元電路之串聯連接的菊鏈電路;加拿大申請案 CA2 149478改良神經元電路架構;加拿大專利CA2149479 改良神經半導體晶片架構。 112868.doc •10- 200805178 建構於CogniMem上之神經元數目可自1改變為N,其中 歸因於神經元單元之架構,N理論上為無限的。目前,N 可高達約1000。一般而言,由應用來判定贝,且詳言之, 由將辨識之圖案之多樣性及所傳輸決策之類型來判定n。 熟習此項技術者將認識到砍技術可為判定每單位面積可提 供之神經元數目的重要因素。 圖1A及圖1B說明根據本發明之實施例之影像辨識裝置 的例示性組態。圖1A為裝置1〇〇之俯視圖,該裝置1〇〇包括 可由許多透明或半透明材料(諸如玻璃、塑膠玻璃、透明 塑料等)製成之基板102。一或多個認知感應器1〇4(在此種 狀況下,為成一陣列)可嵌入於基板102中,或如在此種狀 况下附接於或膠合至基板102之表面,或以其他方式與基 板102之表面耦接(見圖1B)。可在基板上在每一光敏元件 之前面蝕刻或沈積一光徑。舉例而言,可在基板1〇2之認 知感應器1 04之位置處钱刻以產生用於每一認知感應器} 〇4 之透鏡102a。或者,微透鏡l〇2a可於光敏元件前面插入於 基板102中(圖2)或膠合至(圖3A-圖3B)基板102上。另一選 項可為改變基板以改變靠近每一感應器之基板部分的折射 率,從而聚焦入射光。如圖1B中所示,入射光由基板透鏡 102a聚集於每一認知感應器1〇4上。 複數個透鏡102a允許認知感應器1〇4涵蓋各種視場,較 佳等於基板表面,但亦可能地涵蓋窄於或大於等於基板表 面之視%的視%。微透鏡1 〇 2 a將認知感應器1 〇 4之陣列變 為具有無限制表面及視場之遠心影像感測裝置。 112868.doc 11 200805178 圖2為根據本發明之另一實施例之單石成像裝置的俯視 圖。如所示,透鏡1 〇2a欲入於基板1 〇2中且安置在每一% 知感應器104上方。如成像裝置之使用實例,其展示dna 片^又202女置在基板1〇2之表面上。每一認知感應器可 經組態以個別地或與鄰近認知感應器1〇4合作辨識特定 DNA片段,且當該片段已經識別時輸出一訊號。 圖3 A-圖3B說明個別認知感應器104之例示性實施例。如 圖3A中所示,集中神經元區104a環繞像素感應區域i〇4b。 神經元區104a中之神經元可與像素區][04b中之感應元件耦 接’且可經組態以辨識由像素區104b所感應之圖案。如圖 3B中所示,凸透鏡或微透鏡1〇2a安置在基板1〇2之表面上 的像素區104b上方,以用於將入射光聚集於像素區1〇仆 上’或直接連接至感應器而無中間基板。透鏡丨〇2&可(例 如)由習知方法化學地沈積於基板上。 圖4為根據本發明之實施例之例示性認知感應器1⑽的功 能性方塊圖。認知感應器1〇4包括感應器或感應區域4〇2、 貢料呈現邏輯404、神經網路406及區域決策邏輯408。感 應器402可包括一或多個感應元件(諸如光敏元件)。資料呈 現邏輯404與感應區域402及神經網路406|馬接,且經組態 以適合於處理之方式來將自感應器輸出之資料呈現至神經 兀。神經元406為或變為受知識”教導,,且可處理自呈現邏 輯404輸入至神經元4〇6的資料,並將所處理資料輸出至基 於處理資料產生決策之區域決策邏輯4〇8。區域決策邏輯 408可由各種已知方法與其他認知感應器或c〇gniMem. 112868.doc -12- 200805178 接因此,可以陣列及陣列之陣列來配置認知感應器 104 〇 圖5 A及圖5B展示認知感應器之陣列的配置。如圖仏中 所示,每一認知感應器104可與複數個認知感應器ι〇4耦接 以二於陣列502。如下所述,輸入及輸出匯流排可用於感 應為之串聯或並聯|馬接。 如圖5B中所不,每一陣列5〇2可與複數個陣列⑽耗接以 形成-陣列組504。#由配置認知感應器1〇4之陣列的陣 列二產生高解析度及高速度之極有功效的辨識裝置。即, 可藉由增加感應器之數目來增加成像裝置之解析度。然 而’藉由以C〇gniMem形式提供穩固區域決策能力,認知 感應器之數目增加不減小裝置之處理速度。此外,應理解 可以許多不同幾何形狀來組織陣列,且本發明不限於正方 ^上所提及’每—神經元可與複數個輸人端㈣接,The CogniMem can be deposited on the substrate or embedded in the substrate (or otherwise coupled to the substrate) as part of the cognitive sensor, or as a separate part. In the former case, CogniMem is usually used to identify the pixel data transmitted by the photosensitive element. In the latter case, CogniMem can be used to support other CogniMems and can be used, for example, to identify different types of data transmitted by other CogniMem units (e.g., to incorporate response patterns from multiple cognitive sensors). The following is a list of patents and published applications (the entire contents of each of which are hereby incorporated by reference) for all of the disclosures of the the the the the the the the the the , neuron circuit No. 863; modified neuron circuit architecture No. 5,717,832; circuit 5,701,397 for precharging idle neuron circuits; karaoke circuit for series connection of neuron circuits; Circuit No. 5, 740, 326 for searching/classifying data in neural networks; No. 6, 332, 137 for parallel hardware-related parallel identification; No. 6,606,614 single-line search and classification; Japanese application JP8-171543 for nerves Daisy chain circuit connected by series circuit; JP8-171542 advanced load circuit; JP8-171541 aggregation circuit (search/classification); JP8-171540 neural network and neural chip; JP8-069445 neuron circuit structure; Korean patent application KR164943 innovative neuron circuit architecture; European patent - EP0694852 innovative neuron circuit architecture; EP0694854 modified neural semi-conductor chip architecture EP0694855 neural network search/classification; EP0694853 for pre-charging the input vector component of the idle neuron circuit in the identification phase; EP0694856 for the series connection of the neuron circuit daisy chain circuit; Canada Application CA2 149478 modified neuron circuit architecture; Canadian patent CA2149479 improved neural semiconductor wafer architecture. 112868.doc •10- 200805178 The number of neurons constructed on CogniMem can be changed from 1 to N, where N is theoretically infinite due to the architecture of the neuronal unit. Currently, N can be as high as about 1,000. In general, it is determined by the application, and in particular, n is determined by the diversity of patterns to be recognized and the type of decision to be transmitted. Those skilled in the art will recognize that chopping techniques can be an important factor in determining the number of neurons that can be provided per unit area. 1A and 1B illustrate an exemplary configuration of an image recognition apparatus according to an embodiment of the present invention. Figure 1A is a top plan view of a device 1 comprising a substrate 102 that can be made from a variety of transparent or translucent materials such as glass, plastic glass, transparent plastic, and the like. One or more cognitive sensors 1 〇 4 (in this case, in an array) may be embedded in the substrate 102 or attached or glued to the surface of the substrate 102 as in this case, or other The manner is coupled to the surface of the substrate 102 (see FIG. 1B). An optical path may be etched or deposited on the substrate before each photosensitive element. For example, the lens 102a for each cognitive sensor 〇4 can be generated at the location of the substrate 101's known sensor 104. Alternatively, the microlens 10a can be inserted into the substrate 102 (Fig. 2) or glued to (Fig. 3A - Fig. 3B) the substrate 102 in front of the photosensitive member. Another option may be to change the substrate to change the refractive index of the portion of the substrate adjacent each inductor to focus the incident light. As shown in Fig. 1B, incident light is collected by the substrate lens 102a on each of the cognitive sensors 1〇4. The plurality of lenses 102a allow the cognitive sensor 1 to cover a variety of fields of view, preferably equal to the surface of the substrate, but may also cover % of view that is narrower than or equal to the % of view of the surface of the substrate. The microlens 1 〇 2 a transforms the array of cognitive sensors 1 〇 4 into a telecentric image sensing device with an unrestricted surface and field of view. 112868.doc 11 200805178 Figure 2 is a top plan view of a single stone imaging apparatus in accordance with another embodiment of the present invention. As shown, the lens 1 〇 2a is intended to be inserted into the substrate 1 〇 2 and placed above each of the % sensors 104. As an example of the use of the image forming apparatus, it is shown that the dna piece is placed on the surface of the substrate 1〇2. Each cognitive sensor can be configured to recognize a particular DNA segment individually or in cooperation with a neighboring cognitive sensor 1-4 and output a signal when the segment has been identified. 3A-3B illustrate an exemplary embodiment of an individual cognitive sensor 104. As shown in Fig. 3A, the concentrated neuron region 104a surrounds the pixel sensing region i〇4b. The neurons in neuron region 104a can be coupled to the pixel region [04b in the sensing element] and can be configured to recognize the pattern sensed by pixel region 104b. As shown in FIG. 3B, a convex lens or microlens 1 2a is disposed over the pixel region 104b on the surface of the substrate 1 2 for focusing incident light on the pixel region 1 or directly connected to the inductor There is no intermediate substrate. Lens 丨〇 2 & can be deposited, for example, chemically on the substrate by conventional methods. 4 is a functional block diagram of an exemplary cognitive sensor 1 (10) in accordance with an embodiment of the present invention. The cognitive sensor 101 includes an inductor or sensing area 4, a tribute presentation logic 404, a neural network 406, and an area decision logic 408. Sensor 402 can include one or more sensing elements (such as photosensitive elements). The data presentation logic 404 is coupled to the sensing area 402 and the neural network 406| and is configured to present the data output from the sensor to the neural crest in a manner suitable for processing. Neuron 406 is or becomes taught by knowledge, and can process data input from presentation logic 404 to neuron 4〇6 and output the processed data to regional decision logic 4〇8 based on the processing data generation decision. The region decision logic 408 can be configured by various known methods with other cognitive sensors or c〇gniMem. 112868.doc -12- 200805178. Thus, the cognitive sensor 104 can be configured in an array of arrays and arrays. Figure 5A and Figure 5B show the cognition Configuration of the array of sensors. As shown in FIG. 2, each of the cognitive sensors 104 can be coupled to a plurality of cognitive sensors ι 4 to the array 502. As described below, the input and output bus bars can be used for sensing. For the series or parallel connection, as shown in Figure 5B, each array 5〇2 can be consuming with a plurality of arrays (10) to form an array group 504. #Array of arrays configured with cognitive sensors 1〇4 Second, it produces a highly effective identification device with high resolution and high speed. That is, the resolution of the imaging device can be increased by increasing the number of sensors. However, by providing a stable regional decision-making capability in the form of C〇gniMem, The increase in the number of inductors does not reduce the processing speed of the device. Furthermore, it should be understood that the array can be organized in a number of different geometries, and the invention is not limited to the squares mentioned above, 'per-neurons can be combined with a plurality of input terminals (four) Pick up,
2端1 η可為(例如)多卫輸人端,但不限於此。圖6A 二、夕個輪入端之神經元的表示’在圖6Β中簡化其。因 a神:使用,流排602(圖叱上不存在匯流排6。2)來組 _之每H列’如圖㈣之簡易平行架構所示。神經元 之母—輪出端可連接至全域決策匯流排4〇6。 圖7為根據本發明奋 塊圖。❸气“」之例示性神經元的功能性方 數位向旦… 神經70的目的為學習及回憶 所編碼之光強;僉名主要為由貧料簡化過程 a的二間/刀佈。可如圖6C中所表示並聯連接 Π 2868.doc -13- 200805178 神經元’該方式意味著並聯連接所有神經元輸入端以及其 所有輸出端。 可將資料訊號自多工輸入匯流排(未圖示)輸入至神經元 700。學習認知多工器7〇2可劃分多工輸入訊號,且將輸入 賁料訊號傳輸至神經元回憶記憶體7〇4及相關邏輯元件7〇6 中。神經το回憶記憶體7〇4處理輸入訊號,且將所處理訊The 2 end 1 η can be, for example, a multi-intelligence input end, but is not limited thereto. Fig. 6A II. The representation of the neurons at the turn-in end is simplified in Fig. 6A. Because a god: use, stream 602 (the bus bar 6.2 does not exist on the map) to group _ each H column ' as shown in the simple parallel architecture of (4). The mother of the neuron—the wheel end can be connected to the global decision bus 4〇6. Figure 7 is a block diagram of the present invention in accordance with the present invention. The functional side of the exemplary neuron of ❸ "" is used to learn and recall the light intensity coded; the nickname is mainly the simplification process of the poor material a / knife cloth. Parallel connections can be made as shown in Figure 6C. Π 2868.doc -13- 200805178 Neurons This means that all neuron inputs and all their outputs are connected in parallel. The data signal can be input to the neuron 700 from the multiplex input bus (not shown). The learning cognitive multiplexer 7〇2 can divide the multiplex input signal and transmit the input data signal to the neuron recall memory 7〇4 and the related logic element 7〇6. The nerve το recalls the memory 7〇4 to process the input signal, and the processed signal
號輸出至相關邏輯元件7〇6。相關邏輯元件7〇6包括相似係 數決策元件7〇6a 〇 每一神經元可接收由資料呈現邏輯4〇4所產生之廣播圖 案(意即,表示感應器資料之數位簽名的向量)。此廣播圖 案可為瞬時或在時域中之感應器產生資料的轉換(資料簡 化)〇 神絰元具有二種可能隨後時序狀態:休眠、即將學習 (RTL)及此後確定。至少—神經元在所有時間在RTL狀態 中,除非網路為滿的(意即,所有神經元將被確定)。若認 為所有並聯連接神經元為—鏈,則RTL神經元可自鍵之第 位置私動至最後位置。在此表示的情形下,rtl神經元 通常將在確定神經元m且錢神經元將在RTL神經 元之右側。 當神經元為休眠時,复腺丁漱p y 1 _ 、 R 了具將不對任何入射圖案作出反應。 RTL神經元將會將入身士圖宏截 考了 ΰ業載入至其回憶記憶體中以在使 用者過程決策學習時學習i lL T>r_T ^ 了予^其。此RTL神經元將不參與辨識 過程,但將專用於學習時建立新知識。 學習過程包括當未知圖宏〇 # ϋ案出現且使用者決策學習其時產 112868.doc -14- 200805178 生新知識。此知識添加將發生在RTL神經元 新夫識T能錯誤地識別入射圖案(意即關 :確,元將減少其相似域,以避免 類。此情況引起知識修改或"自適應學習”。 /曰刀 光元件可輪出數位化放射量測值。在空間分佈 有值組合形成一圖牵.此R垒介π士 佈之上的所 安,,^ 亦可在時域+發展且產生圖 —此圖案經歷導致放射量測圖案之數位The number is output to the relevant logic element 7〇6. The associated logic element 〇6 includes similar coefficient decision elements 〇6a 〇 each neuron can receive a broadcast pattern (i.e., a vector representing the digital signature of the sensor data) generated by the data presentation logic 〇4. This broadcast pattern can be used to convert data generated by sensors in the transient or in the time domain (data simplification). The 绖 绖 has two possible subsequent timing states: sleep, forthcoming learning (RTL) and subsequent determination. At least—the neurons are in the RTL state at all times unless the network is full (ie, all neurons will be determined). If all parallel connected neurons are considered to be - chains, the RTL neurons can be privately moved from the first position of the key to the last position. In the case indicated here, the rtl neuron will typically be determining the neuron m and the money neuron will be to the right of the RTL neuron. When the neurons are dormant, the complex adenine p y 1 _ , R will not react to any incident pattern. The RTL neurons will be enrolled in the syllabus and loaded into their memory to learn i lL T>r_T ^ during the user process decision learning. This RTL neuron will not participate in the identification process, but will be dedicated to building new knowledge while learning. The learning process involves the creation of new knowledge when an unknown map macro 〇 # ϋ 且 且 且 且 且 且 且 868 868 868 868 868 868 868 868 868 868 868 868 868 868 868 868 868 This knowledge addition will occur when the RTL neuron recognizes the incident pattern (meaning off: indeed, the meta will reduce its similar domain to avoid the class. This situation causes knowledge modification or "adaptive learning." / 曰 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光Figure - this pattern experiences the digits that cause the radiation measurement pattern
資料簡化過程。簡化過程不能超過以下所述所謂的"最 &別矩陣。列舉5x7矩陣之實例,區別所有歐洲大寫字母 而非漢字為可行的,為此需要16χ16矩陣。 當確定神經元在RTL狀態中時,其藉由使载入至回憶記 憶體704中之向量與保存在類別暫存器中之類別相關聯 來子4 Θ案。當入射圖案進入確定神經元時,學習/辨識 多工益702將傳輸其至相關邏輯7〇6,以使此圖案與保存在 回憶記憶體704中之向量之相似性得以估計。若發現所計 算相似性小於或等於相似係數7〇6a,則神經元將為激發 的,且因此訊號通過邏輯712。激勵/抑制邏輯之功能為當 許多神經元變為激發的時在所有確定”受激”(意即’激發^ 神經元之中執行全域仲裁,且,,抑制"不具有最佳相似性之 彼等神經元。 所關注之區域 每一遇知感應器可針對一視訊訊框與所關注之區域 (ROI)相關聯。每一認知感應器可提取仏〇1之簽名以廣播至 其神經元(用於學習或辨識目的)。R〇][之簽名為其像素值 112868.doc -15- 200805178 的壓縮格式,其經減化以適合一 N個值之序列,其中^為 神經元記憶體單元之大小。 列舉神經元配備有256位元組之記憶體容量的實例。認 知感應器可分類NxM像素之矩形roj。r〇i簽名將藉由(例 • 如)簡易區塊壓縮自NxM個值減化為256個值。 認知感應器可經組態以處理任何形狀之R〇I,且簽名提 取之選擇可為特殊應用(例如,部分檢查、表面檢查、面 _ 部辨識、目標追蹤等)。一些簽名提取可整合時間、重複 性等。又,神經元可配備有大於8位元之記憶體單元,以 向感應器之輸入端供應12位元之像素解析度或更大解析 神經元連同感應ϋ及資料呈現邏輯之組合構成^全新賴 之方法以用於肷入影像辨識而無學習或辨識過程所需之 任何軟體。Data simplification process. The simplification process cannot exceed the so-called "most & To enumerate examples of 5x7 matrices, it is possible to distinguish all European capital letters rather than Chinese characters, which requires a 16χ16 matrix. When it is determined that the neuron is in the RTL state, it associates the vector loaded into the memory memory 704 with the category stored in the class register. When the incident pattern enters the determining neuron, the learning/recognition multi-benefit 702 will transmit it to the associated logic 7〇6 to estimate the similarity of this pattern to the vector stored in the recall memory 704. If the calculated similarity is found to be less than or equal to the similarity factor 7〇6a, then the neuron will be excited, and thus the signal passes through logic 712. The function of the stimulus/suppression logic is to perform global arbitration in all determined "stimulated" when many neurons become excited (meaning that 'encitation ^ neurons are performing global arbitration, and, suppression " does not have the best similarity Each of the neurons in the region of interest can be associated with a region of interest (ROI) for each video frame. Each cognitive sensor can extract the signature of 仏〇1 to broadcast to its neurons. (for learning or identification purposes). R〇][signature is a compressed format of its pixel value 112868.doc -15- 200805178, which is reduced to fit a sequence of N values, where ^ is the neuron memory The size of the unit. An example of the memory capacity of a neuron equipped with 256 bytes. The cognitive sensor can classify the rectangular roj of NxM pixels. The r〇i signature will be compressed from NxM by (for example) simple block compression. The value is reduced to 256. The cognitive sensor can be configured to handle R〇I of any shape, and the signature extraction can be selected for special applications (eg, partial inspection, surface inspection, surface identification, target tracking, etc.) ). Some signatures mention Integration time, repeatability, etc. In addition, the neuron can be equipped with a memory unit larger than 8 bits to supply 12-bit pixel resolution or larger analytic neurons along with the sensor and data to the input of the sensor. The combination of presentation logic constitutes a new method for breaking into image recognition without any software required for the learning or identification process.
CogniMem之定址可為傳遞或選擇性的 φ CogniMem單元之回應所驅動)。 的(諸如由其他 應理解承载認知感應器之基板充當機械支持 且作為透鏡The location of the CogniMem can be driven by the response of the pass or selective φ CogniMem unit). (such as by other understanding that the substrate carrying the cognitive sensor acts as a mechanical support and as a lens
坦或彎曲表面。Tan or curved surface.
心 丨又扣取小數目之導線。 載入至認知感應器中之知識可車: 不同系列圖案的辨識。 可較佳解決相關或不相關之 112868.doc 16 200805178 實例 根據本發明之實施例,認知感應器在自動製造過程期間 對於執行檢查為理想的。如圖8中所示,一或多個認知感 應裔可用於檢查水瓶。在此實例中,三不同認知感應器用 於檢查三不同區域,稱為專家卜3。全域回應可視三個"專 家”認知感應器之組合回應而定。 在此實例中,認知感應器1(專家1)可經訓練以分類含有 瓶蓋802之ROI的簽名。認知感應器1可分類其尺〇1為2個類 別:好及壞。壞類別可結合若干狀況:蓋丟失或未適當擰 緊蓋。 同樣地,認知感應器2(專家2)可學習與瓶中流體線8〇4相 父之ROI的簽名。ROI可為較窄垂直矩形且將理想地覆蓋 瓶中之最小及最大可能填充高度。視製造者之品質控制標 準而定’認知感應器2可將其R〇I分類為任何數目之類別 (例如):可接受及不可接受的;過高、可接受及過低;或 過高、高但可接受;範圍内、低但可接受、過低。 認知感應器3(專家3)可學習覆蓋標籤區806之所關注之區 域的簽名。認知感應器3可經訓練以辨識狀況之多樣性或 狀況之組合,諸如(例如):丟失標籤、有缺陷標籤(撕破、 有劃痕或折疊)、錯放標籤(顛倒、傾斜)及較好的。 可將來自認知感應器1 - 3之輸出提供至與自動製造過程 相關之控制器,以基於藉此所產生之決策採取適當行動。 根據本發明之實施例,可個別地封裝認知感應器以形成 智慧光電池或智慧微透鏡。此裝置應用於許多技術且可用 112868.doc -17- 200805178 於(例如)摘測移動部 路線傳送移動、八 在機械組裝過程中識別路線或按 相手機中I:、分(圖9A);用於生物測定識別’諸如在照 識(圖9C)。 ’或用於在門窺孔等物中之來賓偵測及辨 根據本發明$里 金 夂4回 一 κ施例,提供駕駛員察覺偵測系統。 參看圖10,_或夕加 劣夕個認知感應器104可嵌入於機動車輛之 擋風玻璃、儀钵τ、 w 1板平板顯示器或前燈中。可教導認知感應The heart is deducted from a small number of wires. Knowledge loaded into the cognitive sensor: Identification of different series of patterns. It may be better to resolve related or unrelated 112868.doc 16 200805178 Example According to an embodiment of the invention, the cognitive sensor is ideal for performing inspections during the automated manufacturing process. As shown in Figure 8, one or more cognitive sensations can be used to inspect the water bottle. In this example, three different cognitive sensors are used to examine three different regions, called Experts. The global response may be determined by a combination of three "expert" cognitive sensors. In this example, cognitive sensor 1 (expert 1) may be trained to classify the signature of the ROI containing the cap 802. The cognitive sensor 1 may The classification of its size 1 is in two categories: good and bad. The bad category can be combined with several conditions: the cover is missing or the cover is not properly tightened. Similarly, the cognitive sensor 2 (expert 2) can learn with the fluid line in the bottle 8〇4 The signature of the ROI of the father. The ROI can be a narrow vertical rectangle and will ideally cover the minimum and maximum possible fill height in the bottle. Depending on the manufacturer's quality control criteria, the cognitive sensor 2 can classify its R〇I For any number of categories (for example): acceptable and unacceptable; too high, acceptable and too low; or too high, high but acceptable; range, low but acceptable, too low. Cognitive sensor 3 ( The expert 3) can learn the signature of the area of interest that covers the tag area 806. The cognitive sensor 3 can be trained to recognize the diversity of conditions or combinations of conditions, such as, for example, missing tags, defective tags (torture, Scratched or folded), wrong Labels (inverted, tilted) and preferably. The output from the cognitive sensor 1 - 3 can be provided to a controller associated with the automated manufacturing process to take appropriate action based on the decisions made thereby. For example, the cognitive sensor can be individually packaged to form a smart photocell or smart microlens. This device is used in many technologies and can be used, for example, to extract moving parts of the moving part of the mobile transmission, and eight in the mechanical assembly process. In the identification route or in the phase phone I:, points (Fig. 9A); for biometric identification 'such as in the illuminance (Fig. 9C). ' or for the guest detection and identification in the door peephole, etc. The invention provides a driver perception detection system. Referring to FIG. 10, a cognitive sensor 104 can be embedded in a windshield, a vehicle, or a motor vehicle. w 1 plate flat panel display or headlight. Can teach cognitive sensing
益、1 〇4辨識指示駕 0 馬駛貝何時不再專心(例如,駕駛員入睡)之 圖案,且輪出訊號以觸發警報。此等圖案可包括凝視追 跟、面部辨識、面部表情辨識及更多。此外,可教導擋風 玻璃或前燈中 > 细Λ e _ 知感應器104辨識在車輛外部之物件或 事件’諸如以料料水m識別㈣,或制行車事 故以用於行車事故警告系統。 可用許夕方式偵測在遠視場或近視場隨機出現的物件。 牛例而a,兩個或三個感應器可配備有在不同距離處聚焦 之透鏡。感應器可载人相同知識,但對具有不同大小之; 關’主之區域起作用。若至少—感應器辨識到物件,則可認 為辨識系統之全域回應為正確的。 又,可用對不同波長(諸如近汉、IR、經過濾顏色(⑶丨扣 filtered)等)敏感之輸入感應器來設計認知感應器。對於特 疋湳件或景象,此等認知感應器將產生不同像素值,但可 在其個別視訊影像上經訓練以辨識物件之類別◊在目標追 蹤中,近IR及IR認知感應器之組合將提供在一天中的任何 時間辨識目標之能力。 112868.doc -18- 200805178 根據本發明之另-實施例’成陣狀認知錢器可用於 許多其他製造應用。舉例而言,如圖11A中所示,一維陣 列之⑽知感應窃1102可用於在製造過程中檢查玻璃浮子 ’ ⑻㈣fl〇at)U〇3。如圖11B中所示,二維陣列之認知感應 - 器、1104可用於制容器11〇5(諸如飲料瓶)之底部的污染 物在此等應用中,可教導每一認知感應器識別指示玻璃 裂縫或流體污染物之圖案。 _ 根據本發明之另一實施例,可在玻璃平面等物上配置認 知感應器以執行多個獨力功能。認知感應器可為成群的且 每群以不同知識來教導。圖12展示滑動玻璃門為一實 例,該滑動玻璃門12〇2包括若干認知感應器群以⑽,以用 於痛測不同大小之接近中物件。第一群可用辨識人或動物 (例如,狗)之第一大小12〇8的知識來教導,同時第二群可 用不同大小的人(例如,男孩)121〇教導,第三群用於另一 、、 大小的人(例如,成人)1212,等等。每一群12〇4可與一或 _ 多個CogniMem 1206耦接以用於滑動門之控制。 對於熟習此項技術者顯而易見:如在閱讀此專利文獻之 ’ 纟’本發明之成像裝置在此處未列出之許多其他應用中可 •為有用的。舉例而言,另-應用包括在壩、橋或其他人造 構造中之永久損害㈣測(紋理變化)。此應用之實施應根 據本發明實施例之以上描述而顯而易見。此外,功率及訊 唬傳輸可為無線的(例如,紅外線、光電池、感應線圈 等)。 因此,以上已參看圖式完整描述許多較佳實施例。儘管 112868.doc -19- 200805178 已基於此等較佳實施例描述本發明,但對於熟習此項技術 者顯而易見··在本發明之精神及範疇内可對所述實施例進 行一些修改、變化及替代建構。 一 【圖式簡單說明】 ’ 圖1 A-圖1別包括根據本發明實施例之安置於玻璃或 塑膠玻璃或其他透明塑料或透明基板上之感應器陣列的前 視圖及俯視圖,在該玻璃或塑膠玻璃或基板中具有蝕刻透 鏡, 圖2為根據本發明實施例之安置於玻璃或神經叢基板上 之感應器陣列的俯視圖,其展示偵測DNA片段,在該玻璃 或基板中具有蝕刻透鏡; 圖3 A-圖3B分別說明根據本發明之一實施例之感應器模 的側視圖及俯視圖; 圖4為根據本發明之實施例之感應器的方塊圖; 圖5A為根據本發明之實施例之感應器陣列的方塊圖,· 籲 圖5B為根據本發明之實施例之感應器陣列組的方塊圖·, 圖6A-6C說明根據本發明之實施例之神經組態; 圖7為根據本發明之實施例之神經元的方塊圖;及 ‘ 圖8-圖12說明根據本發明之實施例之影像辨識裝置的例 示性應用。 【主要元件符號說明】 100 裝置 基板 102a 透鏡 112868.doc 200805178 104 認知感應器 104a 神經元區 104b 像素區 - 202 DNA片段 - 402 感應器/感應區域 404 資料呈現邏輯 406 神經網路 408 區域決策邏輯 5 02 陣列 504 陣列組 700 神經元 702 學習認知多工器 704 神經元回憶記憶體 706 相關邏輯元件 706 a 相似係數決策元件 • 709 類別暫存器 712 邏輯 ^ 802 瓶蓋 , 804 瓶中流體線 806 標籤區 1102 認知感應器之之一維陣列 1103 玻璃浮子 1104 認知感應器之二維陣列 1105 容器 112868.doc -21 - 200805178 1202 滑動玻璃門 1204 認知感應器群 1206 CogniMem , 1208 第一大小的人或動物 5 1210 不同大小的人 1212 另一大小的人 • 112868.doc -22 -Benefits, 1 〇 4 identify the indication drive 0 When the horse is no longer focused (for example, the driver falls asleep) pattern, and the signal is triggered to trigger the alarm. Such patterns may include gaze follow-up, facial recognition, facial expression recognition and more. In addition, it can be taught that the windshield or headlights > Λ e _ Sense sensor 104 recognizes objects or events outside the vehicle 'such as identification of material water m (4), or vehicle accidents for driving accident warning systems . Objects that appear randomly in the far field or near field of view can be detected in the manner of Xu Xi. For example, a, two or three sensors can be equipped with lenses that are focused at different distances. The sensor can carry the same knowledge, but it works for areas of different sizes; If at least the sensor recognizes the object, then the global response of the identification system is considered correct. Also, the cognitive sensor can be designed with input sensors that are sensitive to different wavelengths, such as near-near, IR, filtered color ((3) filtered, etc.). For special features or scenes, these cognitive sensors will produce different pixel values, but can be trained on their individual video images to identify the type of object. In target tracking, the combination of near IR and IR cognitive sensors will Provides the ability to identify goals at any time of the day. 112868.doc -18- 200805178 Another embodiment of the present invention can be used in many other manufacturing applications. For example, as shown in Figure 11A, a one-dimensional array of (10) sensory stealers 1102 can be used to inspect the glass float '(8)(四)fl〇at)U〇3 during the manufacturing process. As shown in FIG. 11B, a two-dimensional array of cognitive sensors, 1104 can be used to make contaminants at the bottom of the container 11〇5 (such as a beverage bottle). In such applications, each cognitive sensor can be taught to identify the indicator glass. A pattern of cracks or fluid contaminants. According to another embodiment of the present invention, a sensor can be configured on a glass plane or the like to perform a plurality of independent functions. Cognitive sensors can be grouped and each group taught with different knowledge. Figure 12 shows an example of a sliding glass door 12〇2 comprising a plurality of cognitive sensor groups (10) for pain sensing different sizes of nearby objects. The first group can be taught by knowledge of the first size 12〇8 of a recognized person or animal (eg, a dog) while the second group can be taught by a different size person (eg, a boy) 121〇, the third group is used for another , size of people (for example, adults) 1212, and so on. Each group of 12〇4 can be coupled to one or more CogniMem 1206 for control of the sliding door. It will be apparent to those skilled in the art that the imaging device of the present invention, as read in this patent document, can be useful in many other applications not listed herein. For example, another application includes permanent damage (four) measurements (texture changes) in dams, bridges, or other man-made structures. The implementation of this application should be apparent from the above description of embodiments of the invention. In addition, power and signal transmission can be wireless (eg, infrared, photocell, induction coil, etc.). Thus, many preferred embodiments have been described above in detail with reference to the drawings. Although the present invention has been described in terms of these preferred embodiments, it is apparent to those skilled in the art that the present invention may be modified and changed in the spirit and scope of the present invention. Alternative construction. BRIEF DESCRIPTION OF THE DRAWINGS [FIG. 1A-FIG. 1 includes a front view and a top view of an array of inductors disposed on glass or plastic glass or other transparent plastic or transparent substrate in accordance with an embodiment of the present invention, in which the glass or 2 is an etched lens in a plastic glass or substrate, FIG. 2 is a top plan view of an array of inductors disposed on a glass or plexus substrate in accordance with an embodiment of the present invention, showing a detected DNA fragment having an etched lens in the glass or substrate; 3A-3B are respectively a side view and a plan view of an inductor mold according to an embodiment of the present invention; FIG. 4 is a block diagram of an inductor according to an embodiment of the present invention; and FIG. 5A is an embodiment of the present invention. Block diagram of the sensor array, FIG. 5B is a block diagram of a sensor array group according to an embodiment of the present invention, and FIGS. 6A-6C illustrate a neural configuration according to an embodiment of the present invention; FIG. 7 is a A block diagram of a neuron of an embodiment of the invention; and 'Fig. 8-12 illustrate an exemplary application of an image recognition apparatus in accordance with an embodiment of the present invention. [Main component symbol description] 100 device substrate 102a lens 112868.doc 200805178 104 cognitive sensor 104a neuron region 104b pixel region - 202 DNA segment - 402 sensor / sensing region 404 data presentation logic 406 neural network 408 region decision logic 5 02 Array 504 Array Group 700 Neuron 702 Learning Cognitive Multiplexer 704 Neuron Recall Memory 706 Related Logic Element 706 a Similarity Coefficient Decision Element • 709 Class Register 712 Logic ^ 802 Cap, 804 Bottle Fluid Line 806 Label Zone 1102 One of the cognitive sensors Array 1103 Glass float 1104 Two-dimensional array of cognitive sensors 1105 Container 112868.doc -21 - 200805178 1202 Sliding glass door 1204 Cognitive sensor group 1206 CogniMem , 1208 First size person or animal 5 1210 People of different sizes 1212 Another size person • 112868.doc -22 -
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095124992A TWI463418B (en) | 2006-07-07 | 2006-07-07 | Monolithic image perception device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095124992A TWI463418B (en) | 2006-07-07 | 2006-07-07 | Monolithic image perception device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200805178A true TW200805178A (en) | 2008-01-16 |
TWI463418B TWI463418B (en) | 2014-12-01 |
Family
ID=44766036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095124992A TWI463418B (en) | 2006-07-07 | 2006-07-07 | Monolithic image perception device and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI463418B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI550527B (en) * | 2010-09-13 | 2016-09-21 | Agc北美平面玻璃公司 | Monolithic image sensing device and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3583535B2 (en) * | 1994-12-12 | 2004-11-04 | ゼロックス コーポレイション | Optically addressed neural networks |
TW374889B (en) * | 1999-03-03 | 1999-11-21 | Gemintek Corp | Vehicle parking fare rating report and the monitoring system |
TWI240216B (en) * | 2002-06-27 | 2005-09-21 | Ind Tech Res Inst | Pattern recognition method by reducing classification error |
US20040223071A1 (en) * | 2003-05-08 | 2004-11-11 | David Wells | Multiple microlens system for image sensors or display units |
US20050001281A1 (en) * | 2003-07-03 | 2005-01-06 | Hung-Jen Hsu | Process to improve image sensor sensitivity |
-
2006
- 2006-07-07 TW TW095124992A patent/TWI463418B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI550527B (en) * | 2010-09-13 | 2016-09-21 | Agc北美平面玻璃公司 | Monolithic image sensing device and method |
Also Published As
Publication number | Publication date |
---|---|
TWI463418B (en) | 2014-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2613922C (en) | Monolithic image perception device and method | |
US9092689B2 (en) | Monolithic image perception device and method | |
US10394406B2 (en) | Touch display device | |
CN104039610B (en) | Camera chain, the camera chain particularly for vehicle | |
JP7331201B2 (en) | Imaging device, imaging system, vehicle driving control system, and image processing device | |
CN111965636A (en) | Night target detection method based on millimeter wave radar and vision fusion | |
TW200805178A (en) | Monolithic image perception device and method | |
JP3917252B2 (en) | Number plate recognition device for vehicle and number plate recognition method for vehicle | |
WO2022019049A1 (en) | Information processing device, information processing system, information processing method, and information processing program | |
US20230254600A1 (en) | Information processing apparatus, information processing system, information processing method, and information processing program | |
CN108886587A (en) | Image sensor of a multifunction observation camera for observing a driver of a vehicle, image sensor arrangement, observation camera and method for generating an infrared image and an intensity image | |
JPH05189598A (en) | Number plate information reader | |
CN118509671A (en) | Optical conversion device, image processing device, camera module and vehicle | |
JPH01315879A (en) | Image input device | |
JPS59108174A (en) | Information reader and information processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |