[go: up one dir, main page]

TW200540439A - Electronic signal transmitting device with fault detection function - Google Patents

Electronic signal transmitting device with fault detection function Download PDF

Info

Publication number
TW200540439A
TW200540439A TW93115741A TW93115741A TW200540439A TW 200540439 A TW200540439 A TW 200540439A TW 93115741 A TW93115741 A TW 93115741A TW 93115741 A TW93115741 A TW 93115741A TW 200540439 A TW200540439 A TW 200540439A
Authority
TW
Taiwan
Prior art keywords
electronic signal
signal transmission
transmission device
mechanical
enabled
Prior art date
Application number
TW93115741A
Other languages
Chinese (zh)
Other versions
TWI233497B (en
Inventor
jia-ming Zhuang
zhi-jiao Zhang
Chia-Jung Chang
Li-Han Zhang
Original Assignee
Chroma Ate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chroma Ate Inc filed Critical Chroma Ate Inc
Priority to TW93115741A priority Critical patent/TWI233497B/en
Application granted granted Critical
Publication of TWI233497B publication Critical patent/TWI233497B/en
Publication of TW200540439A publication Critical patent/TW200540439A/en

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

This invention provides an electronic signal transmitting device with fault detection function for individually connecting one of plural test targets to testing instrument. The electronic signal transmitting device consists of plural input ports, one output port, plural mechanical relays, and a first controller. It is characterized that the electronic signal transmitting device further comprises a fault detection module for detecting the working conditions of the mechanical relays and generating a warning signal if an abnormal working condition is detected.

Description

200540439 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電子訊號傳遞裝置,特別是指一 種具故障偵測功能之電子訊號傳遞裝置,以主動偵測電子 訊號傳遞裝置上的元件的狀態。 【先前技術】 為確保品質’在品管或驗收流程中,產品都需作特性 篁測,為能一次量測多個待測物,以縮短品管驗收流程, 多於測試系統内搭配使用例如圖丨之電子訊號傳遞裝置2。 電子訊號傳遞裝置2扮演測試儀器丨丨與待測物12、13、14 間的電子訊號傳輸路徑,讓測試儀器丨丨依序導接至各待測 物12、13、14,以循序測試各待測物12、13、14。 電子訊號傳遞裝置2係以一電路卡為例,.而含有一控 制器21,夕個可受控制器21驅動而致能之機械式繼電器 22、 23、24 ’數量與機械式繼電器22、23、24數量相同之 輸入端25、26、27,及一輸出端28。各機械式繼電器22、 23、 24之電路架構可示意為具有一電感22丨、23丨、及 一開關222、232、242,其中各電感221、231、241係一端 連接至控制态21、另一端接地,開關222、232、242之一 立而白連接至輸出端28、另一端分別導接至對應輸入端25、 26 > 27 ° 欲進行測試時,先將測試儀器11導接至輸出端28,並 將待測物12、13、14分別導接至輸入端25、26、27。測試 過程中’控制器21會依序控制繼電器22、23、24中的開 200540439 5 關222、232、242開啟一段時間, 之機械式繼電器22、23、24,逐— 、Μ ’依序量測各待測物12、13、 號傳遞裝置2之控制,測試儀器j j 測多數待測物12、13、14。此外, 24數量可依需要而調整,目前可達 測128個待測物。 10 再者’配合圖2以機械式繼電器22為例,當控制器 欲控制單-機械式繼電器22開啟時,會先輸出驅動訊號中 的高位準成分至電感221,令電感221激磁而驅使開關 似開啟而短路;量測完後,再輸出低位準成A 202之驅動 訊號至電感221,使電感221不再激磁而讓開關222恢復關 閉(指開路)。由於電感221具有—定電抗,被為高位準成分 201驅動讯號激磁之初,並不會立即改變開關222狀態,而 15 使測試儀器11可經對應 導接至各待測物12、13 14之特性。藉由電子訊 可以較有效率之方式量 機械式繼電器22、23、 128個,亦即可單次量 是經一段緩衝時間後才對„ 222之菁片產生影響,並導 致開關222之簧片顏動一段時間,才漸趨穩定。一般將前 述開關222作動時間稱為啟動時間Τι。 接著,持續利用高位準成分2〇1之驅動訊號讓已經穩 定之開關22持續開啟一段時間,稱為穩定時間τ2,使測試 儀器11即利用穩定時間I來進行量測。因此,一般驅動訊 號南位準成分201時間會等於啟動時間几加穩定時間L。 供測量之穩定時間I結束後,驅動訊號變成低位準成· 分202,不再激磁電感221,使開關222恢復關閉。同樣地 ,驅動訊號變成低位準成分2〇 1之初,亦不會立即改變開 20 200540439 5 10 15 ==之狀態,此時開|| 222仍維持開啟 間後始會影響開關222之 丹 德谁入锃+ 讓耳片222顫動一段時間 態’ _般將驅動訊號之低位準2〇ι成 刀開始至開關222穩定關閉間稱為釋放時間I。 目前控制器21設定驄叙%咕202 0士„ 士 驅動Λ唬之高、低位準成分201、會將啟動時間Τι、穩定時間τ2、釋放時間Τ3 27 縮短量測時間。然而,隨著機械式繼電器、η 繼電”4广老化或毀損,啟動時間Τι會延緩,甚至機械式 :電:〜3、24無法正常開啟,使穩定時間丁2縮短於預 儀哭】至不復存在而完全阻斷造電子訊號傳遞,導致測試 1對待測物12、13、14之誤判。因此,機械式繼電器 」3、24是否正常對測試系統能否正確量測關係重大。 :前為避免因機械式繼電器22、23、24老化或毀損而影響 ★子«傳遞裝置2正常工作,往往在超過零件廠商建議 的可靠壽命時間後,就將繼電器22、23、24整批淘汰。200540439 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to an electronic signal transmission device, in particular to an electronic signal transmission device with a fault detection function to actively detect components on the electronic signal transmission device status. [Previous technology] In order to ensure the quality, in the quality control or acceptance process, the product needs to be tested for characteristics. In order to measure multiple objects to be tested at one time, the quality control acceptance process is shortened. Figure 丨 the electronic signal transmission device 2. The electronic signal transmission device 2 acts as a test instrument 丨 丨 The electronic signal transmission path between the object to be tested 12, 13, and 14 allows the test instrument to be sequentially connected to each of the objects to be tested 12, 13, 14 to sequentially test each DUT 12, 13, 14. The electronic signal transmission device 2 uses a circuit card as an example, and includes a controller 21, and the number of mechanical relays 22, 23, and 24 that can be driven by the controller 21 and the number of mechanical relays 22 and 23 , 24 have the same number of input terminals 25, 26, 27, and an output terminal 28. The circuit architecture of each mechanical relay 22, 23, 24 can be schematically illustrated as having an inductor 22 丨, 23 丨, and a switch 222, 232, 242. One end of each inductor 221, 231, 241 is connected to the control state 21, and the other One end is grounded, and one of the switches 222, 232, and 242 is connected to the output terminal 28 in white, and the other end is connected to the corresponding input terminal 25, 26 > 27 ° To test, first connect the test instrument 11 to the output Terminal 28, and lead the test objects 12, 13, and 14 to the input terminals 25, 26, and 27, respectively. During the test, the 'controller 21 will sequentially control the opening of relays 22, 23, 24 200540439 5 off 222, 232, 242 for a period of time, mechanical relays 22, 23, 24, one by one, M' Measure the control of each test object 12, 13 and the number transmission device 2. The test instrument jj measures most test objects 12, 13, 14. In addition, the number of 24 can be adjusted as needed, and currently can measure 128 DUTs. 10 Furthermore, in conjunction with Figure 2, taking mechanical relay 22 as an example, when the controller wants to control the single-mechanical relay 22 to open, it will first output the high level component in the drive signal to the inductor 221, so that the inductor 221 is excited to drive the switch. It seems to be turned on and short-circuited; after the measurement is completed, a low level drive signal of A 202 is output to the inductor 221, so that the inductor 221 is no longer excited and the switch 222 is turned off (referring to an open circuit). Since the inductor 221 has a -constant reactance, it is high-level component 201. At the beginning of the excitation signal, it will not immediately change the state of the switch 222, and 15 allows the test instrument 11 to be connected to each DUT 12, 13 14 through corresponding leads. Of characteristics. By means of electronic communication, 22, 23, and 128 mechanical relays can be measured in a more efficient manner, that is, a single amount of buffering will have an impact on „222's cyan plate and lead to the switch 222 ’s reed Yan moves for a period of time before it becomes stable. Generally, the operation time of the aforementioned switch 222 is referred to as the startup time Tm. Then, the driving signal of the high-level component 201 is continuously used to keep the already stable switch 22 on for a period of time, which is called stable The time τ2 enables the test instrument 11 to measure using the stabilization time I. Therefore, the general drive signal south level component 201 time will be equal to the startup time plus the stabilization time L. After the stabilization time I for measurement ends, the drive signal becomes The low level is divided into 202, and the magnetic inductance 221 is no longer excited, so that the switch 222 is restored to close. Similarly, at the beginning of the driving signal becoming low level component 201, the state of opening 20 200540439 5 10 15 == will not be changed immediately. At this time, the opening of the || 222 will still affect the Dand of the switch 222 after entering the + who will enter the + to make the ear piece 222 tremble for a period of time _ generally will drive the low level of the drive signal 2〇ι knife open The time from when the switch 222 stabilizes to close is called the release time I. At present, the controller 21 sets the high and low level components of the driver 20 to 20%, and will set the startup time til, the stabilization time τ2, and the release time. Τ3 27 reduces measurement time. However, with the aging or damage of mechanical relays and η relays, the start-up time will be delayed, and even mechanical: electricity: ~ 3, 24 can not be turned on normally, so that the stabilization time D2 is shortened to the cry of the instrument] to Discontinued and completely blocked the transmission of electronic signals, leading to the misjudgment of test object 12, 13, and 14 in test 1. Therefore, whether the mechanical relays 3 and 24 are normal is of great importance to the correct measurement of the test system. : In order to avoid the influence caused by the aging or damage of the mechanical relays 22, 23, and 24. «Transmission device 2 works normally, and the relays 22, 23, and 24 are eliminated in batches after the reliable life time recommended by the component manufacturer. .

然而如目3所示,真正量測結果顯示,繼電器之使用 :命分佈非常不均句,由最短的一百萬次至最長之十一億 人都有。右依照製造廠之建議’讓電子訊號傳遞裝置2在 使用達到一百萬次時即整批替換’可能浪費絕大部分尚能 正常運作之繼電器,造成資源嚴重地浪f而大幅增高測試 成本。 【發明内容】 鑒於習知電子訊號傳遞裝置無法及時獲知零件狀況, 需於使用一段時間後整體更換,本案發明人提出即時監測 (k 200540439 零件故障,讓電子訊號傳遞裝置無需盲目整體汰換,進而 解決前述問題。 因此,本發明之一目的,是在提供一種可達到即時測 測故障功效之具故障偵測功能電子訊號傳遞裝置。 5 本發明之另一目的,是提供一種可充分利用零件使用 壽命,以降低測試成本之具故障镇測功能電子訊號傳遞裝 置。 ’ 本發明之再一目的,是提供一種可即時分辨零件故障 與電路導接疏失之具故障谓測功能電子訊號傳遞裝置。 1〇 纟發明之更—目的’是提供—種可定量化鑑別零件老 化程度之具故障偵測功能電子訊號傳遞裝置。 於疋,本發明具故障偵測功能之電子訊號傳遞裝置, 用以分別將複數個待測物中的一者導接至一測試儀器,該 電子訊號傳遞裳置包含複數個輸入端、一輸出端、複數: 15 機械式繼電器、-第-控制器及-故障偵測模組。 山,各該輸入端適於導接該等待測物中對應一者;該輸出 端係適於導接至該測試儀器;各該機械式繼電器之數量係 與該等輸入端的數量相符,該等機械式繼電器係分別串接 :亥等輸入端中對應-者及該輸入端間,各該機械式繼電哭 ' 被致能時由一林台t壯妒w 4么丄 口〇 ^ W此狀怨切換成一致能狀態,當各該機械式 鏖^位於δ亥禁能狀態時,使該對應輸入端不導接至該輸 入端’當各該機械式繼電器位於該致能狀態時,使該對: 輸入端導接至該輸出端;第-控制器適時致能該等機械: 繼電器中一者為該致能狀態,·該故障制模組用以感^ 200540439 等機械式繼電器中被致能機械式繼電器是否正常工作並於 感測到該被致能機械式繼電器未正常工作時產生一擎示訊 號。 ° 5 本發明之功效能提供具故障伯測功能之電子訊號傳遞 裝置,以利用故障谓測模組來感測各機械式繼電器是否正 常工作,以於感測到未正堂 正㊉工作時產生警示訊號來即時告 知使用者異常發生之訊自、# 之讯心進而達到延長產品壽命與降低 測試成本之功效。 【實施方式】 10 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之四較佳實施例的詳細說明中 楚的呈現。 α 鑒於i知電子訊號傳遞裝置無從得知其零件狀態而需 15 於使用人數達到可靠哥命後整批更換造成測試成本之高居 不下。本發明之具故障_功能之電子訊號傳遞裝置係於 電子成號傳遞裝置中增設一故障積測模組,以领測零件之 狀態並於偵測到異常狀態時輸出警示訊號,即時告知使用 者,進而解決習知問題。 20 配口圖4,本發明之具故障债測功能之電子訊號傳遞裝 置4之較佳實施例係應用於一測試系統中,使複數個待測 物31 32、33可分別導接至測試儀器3〇。本實施例之 訊號傳遞裝置4包含複數個輸入端4ι、42、43、—輸 44複數個數夏與輸入端41、42、相符之機械式繼 45、46、47、_ 笛一 # …^ 弟 I制态48及一故障偵測模組5。為 8 5 10 15 200540439 ^見,本例之電子訊號傳輕置4係以量測3個 2例,輸人端與機械式繼電器之數量亦同,而熟習該項技 藝者當知,可量測之待測物數量可依設計需要而調整,' 支 需對應調整輸入端與機械式繼電器之數量即可。 各輸入端41、42、43係分別供待測物中 -者可分離地導接。輸出端44則供測試儀器%導接。 各機械式繼電器45、46、47之電路可示意為具有 感451、461、471及一開關452、偏、W。各電感州、 如、47i係-端導接至第_控制器48且另一端接地,以受 第一控制器48驅動而激磁。各開關452、462、472為常門 〜之開關,指為開路(或稱斷路)之開關。各開: 452、462、472係與對應之電感45i、46i、471並聯,並以 其一端共同經—輸出線路49連接至輸出端44,另-端則分 別導接至對應的輸入端41、42、43。 因此坆二平日寸(未叉第一控制器48致能時)為禁能 ⑼祕e)狀態之機械式繼電器45、46、47係分別串接在對 應輸入端^^及輸出端^卜使各輸入端^芯 、43與輸出端44間為開路。開始測試時,控制器48依序 輸出驅動訊號至各機械式繼電器45、46、47之電感451、 461、471 ’使其激磁而驅動對應開關452、扑2、π〗循序 閉合而短路,使機械式繼電器45、46、47逐一由禁能狀態 切換成致能(enable)狀態,讓導接至對應輸入端41、42、43 之待測物3卜32、33可經對應機械式繼電器45、46、47、 輸出線路49與輸出端44導接至測試儀器30,以進行待測 20 200540439 物31、32、33之特性測試。 士圖6本例中第-控制器48輸出至各機械式 之驅動訊號可為含-依據各機械式繼電器31、32、33 :: 商提供之含起動時間 由廠 5 〃穩時間12之標準時間之高位 丰成刀481,與由廠商提供含釋放時間^之 位準成分482;例如各心毫秒(騰c)。 ]之低 有別於習知電子訊^^查、蘇# $ , ^ 〜專遞竑置,本貫施例之電子訊號 傳遞襄置4中增設一姑暗#、B丨4^ Ζ Γ ^ 文障偵測杈組5,以感測該等機械式繼 10 電态45 46、47被第一控制器48致能時是否正常工作並 於感測到被致能機械式繼電器45或46 < 〇未正常工作時 產生一警示訊號。 15 各機械式繼電器45、46、47於禁能狀態與致能狀態間 變化時具有-標準特性變化值。此標準特性變化值含有一 標準起動時間、標準釋放時間、於機械式繼電$ 45、46、 47致能狀態時之標準電阻值等等。 20 本例之故障偵測模組5含有一感測器5 i及一儲存有該 標準特性變化值之處理單元52。感測器51感測被致能的機 械式繼電器45或46或47之特性變化,對應輸出一感測訊 就。處理單元52係電性連接第一控制器48與感測器51, 以接收感測訊號、並與標準特性變化值比對,以於異常時 輸出該警示訊號。本例之處理單元52係一微處理器。 如前(圖2)所述’當機械式繼電器45、46 ' 47於禁能狀 怨與致能狀態間切換時,電阻值R會有變動,電流值J與 電壓值V亦會隨之變動(R=v/I)。因此,感測器5 1可選擇量 10 200540439 測被致能之機械式繼命吳1 、包态45或46或47之電阻值、電流值 、電壓值中的至少_|。 本貫施例中故障備測模組5係選擇監視被致能之機械 式、’邋電器45 $ 46或47之電流值,而以一電流感測器串接 於輸出線路49上,採用諸如Allegro Mi⑽system廉商出薇 之型號A1321霍爾(Hall)感測器511,其輸出頻寬可達到 30KHZ。熟習該項技#者#知,本例之感測器亦可採用其他 型式之電流感測器,例如電容型感測器、電感型感測器等 等,並不應受限於本實施例所揭露者。 電流在流過諸如輸出線路49時,會於線路周圍產生磁 %,霍爾感測器511則感測磁場所驅動之電動勢輸出,作為 感測訊號。在本例中,為加強磁場強度,如圖5將輸出線 路49纏繞多數圈(如100圈)於一具有一開槽5〇1之圓環 50(Gapped Toroid)上,以放大磁場,並將霍爾感測器511置 放於開槽501内來感測磁場。 舉例來說,假設輸出線路49纏繞1〇〇圈於圓環上 與輸出線路49流通之電流為10微安培(mA),依照廠商提 供公式母安培之磁場B等於線圈匝數n乘以6.9 Gauss/A (B=N*6.9gauSS/A),所以磁場強度為 6 9Gauss(1〇〇*6 9 gauss/A*0.01 A=6.9 gauss)。依原廠產品規格書,霍爾感測 器511之靈敏度為5mV/Gauss,因此霍爾感測器511之輸出 電壓為 34.5mV(5mV/Gauss*6.9gauss=34.5mV)。因此,隨著 電流值的變化,霍爾感測器5 11可對應輸出隨電流值變大而 遞增之電壓來作為感測訊號。 ίο 15 20 由於本例之霍爾感測器511為類比式霍爾感測器且輸出 訊號較為微弱’故需額外包含連接至霍爾感測器5ιι之一放 大器512,以接收感測訊號並將其放大;以及串接於放大器 川之-類比至數位轉換器513,以接收經放大之感測訊^ 並將其數位化後輸出至處理單元52〇惟熟習該項技藝者當 知,此處亦可直接應用數位式霍爾感測器,例如Micr_s 200540439 詳細來說,如圖6,當機械式繼電器45、46、47未致 能時,開關452、462、472為開路,電阻值無限大,輸^ 線路49的電流為〇。當第一控制器料輸出驅動訊號而致能 機械式繼電器45、46、47之-時,驅動訊號之高位準成八 如初輸出-段時間,開關452或咐或472仍暫不受景^ ’輸出線路49亦無電流;而後開關452 <4« 472受; 感⑸或461或471激磁而顏動時,輸出線路49的^值 隨之忽大忽小;再經一段時間,開關452逐漸穩定導接至 接點(指短路),使輸出線路49上的電流值維持預設值A】; 並讓電流值於穩定時間T!2内維持為預設值。 繼而驅動訊號之低位準成分482輸出,開M 452同樣 暫時維持致能狀態,隨後開始顫動後,再恢復禁能狀離, 使輸出線路49上的電流值重回〇β隨著輸出線路49上的電 流變化,«爾感測器511輸出之電麼值亦隨之等效變化。 公司出廠型號HAL810之霍爾感測器,其内部直接整合類比 式霍爾感測器、放大器與類比至數位感測器,而可直接輸 出可讓處理單元52處理之數位訊號。 本例中該處理單元52係儲存機械式繼電器45、46、47 12 5 10 15 20 200540439 之心準起動時間’―般設定為介於啟動時間Τη至啟動時間 一加,穩定時間&之值。又,處理單★ 52 一方面連接至 控制器、48,另方面亦連接感測g 51㈣收其輸出之感 :訊,。本例中處理單元52更以不同腳位連接不同機械式 _45、46、47之電感451、461、471的線路。如此, 處理早tl 52可由驅動訊號由哪—個腳位馈人,得知哪一個 機械式繼電器45、46、47被致能。 如此,當第-控制器48輸出驅動訊號至將被致能之機 戒”電H 45 3戈4…7 ’處理單元52可即時獲知第一控 制器始驅動機械式繼電器45或46或π致能,而開 始計算何時自感測器51饋人的感測訊號之電壓值方能穩二 達到與預設值Al對應之預設電壓值,作為 :實^ 啟動時間T丨】。 K貫際 然後’處理單元52更將此實際啟動相τ"與標準起 日,間作比對,若大於標準起動時間門檻,則對應輪出一 警示訊號。為讓使用者可即時獲知異常情況發生:本例之 電子訊號傳遞裝置4更包含一連接處理單元52之警示燈53 :驅動警不燈53發光作為警示訊號。又’本實施例之處 。。早兀52亦可利用驅動訊號與感測訊號來計算被致能繼電 裔45或46或47的實際釋放時間Tl3。 另外,雖說本實施例係將已計算出的實際啟 τ 與標準起動時間比對、然而熟習該項技藝者當知,處理單1 兀52亦可將正在計數實際啟動時間μ指開始 時間)隨時與標準起動時間比較,以更早獲知正在計數的實 13 200540439 二動時間是否已超過標準起動時間之訊息,進而更早產 生警示訊號。 文千座 盤另外,為讓測試系統可即時反應,處理單元52更可將 5 …唬輸出至第一控制器48與測試儀器3〇中的至少一 者=例中處理單元52係將警示訊號即時輸出至測試儀器 30與弟一控制器48,使 即時獲知異常情況發生。義益30與第—控制器料皆可 10 依前所述,本實施例中利用故障偵測模組5監控各機 ,式繼電it被啟動之實際啟動㈣Tn是否不大於標準 k間、。故當機械式繼電器因老化或毁損而無法 轉換為致能狀態時,故障偵測模組 不月匕 gp拄止A ^ ^ θ奵應產生警不訊號 電器:5 : 4 6=?測:產能的條件下,提供機械式繼 ^ 4正常或異常之訊息,避免因機械式繼 電器異常導致誤判待測物之情況。 、'’ 15 一再者,由於本實施例中利用故障偵測模組5可精準地 :定機械式繼電器45、46、47之實際啟動時 時間I因此所料的驅動訊號之高位準成分或低位準成 /刀如、482長度,可較原先規定更短,例如高 20 4:之時間可更接近實際啟動時間I而標準啟動時間亦 可設定^接近實際啟動時間Τη,或低位準成分搬之時間 可接近實際釋纟時間Τι3 ’以加快測試速度。 再者,輸出線路49的電流亦與待« H33 性有關。即使輸出線路49之電流為G,除機械式繼電器45 ϋ老化或毀損而無法正常被致能、造成開路外,亦 14 200540439 可能是待測物31、32、33異常造成之開路、或待測物31、 32、33導接至輸入端41、42、43間的接觸不良等等因素。 為正確辨別實際原因,如圖7本發明第二實施例電子 訊號傳遞裝置4’中,故障偵測模組5,更含有複數個第一開 5 關54及一第二開關55,為配合三個輸入端41、42、43, 第一開關54之數量亦為三個。各第一開關54分別以一端 導接至對應之輸入端41、42、43而另一端接地,且平時為 禁能狀態而不導通,並可受處理單元52致能而由禁能狀態 變成致能狀態,而令對應輸入端41、42、43接地。第二開 1〇 關55 一端導接至輸出端44,即導接至輸出線路49,另一 鈿則導接i電源。第二開關55平時亦為禁能狀態而不導 通,並可受處理單元52致能由禁能狀態變成致能狀態,而 令輸出端44導接至電源,使電源饋入輸出線路49。 測試工作開始時,第-開關54與第二開關55維持禁 15 ,故障仙模仍可自感測訊號中判斷機械式繼 電6 47是否正常工作;當偵測到某一機械式繼電 器(例如機械式繼電器、45)可能發生異常,如實際啟動時間 τ"大於標準啟動時間’處理單元52控制與機械式繼電器 45相連接之第一開關54及第二開_ 55變成致能狀態而導 2〇 通,形成一迴路;同時處理單元52通知第-控制器48重 新輸出驅動訊號。如此,處理單元52可由感測器Η輸出 仍大於標準啟動時間。若是,就應是機械式繼電器45故障However, as shown in item 3, the actual measurement results show that the use of relays: the life distribution is very uneven, from the shortest one million times to the longest 1.1 billion people. According to the manufacturer's suggestion, “let the electronic signal transmission device 2 be replaced in batches when it is used up to one million times” may waste most of the relays that are still in normal operation, causing serious resource frustration and greatly increasing the test cost. [Summary of the Invention] In view of the fact that the conventional electronic signal transmission device can not know the condition of the parts in time, it needs to be replaced after a period of use. The foregoing problem is solved. Therefore, one object of the present invention is to provide an electronic signal transmission device with a fault detection function that can achieve real-time fault detection. 5 Another object of the present invention is to provide a device that can make full use of parts. Life, in order to reduce the test cost of the electronic signal transmission device with a fault test function. 'Another object of the present invention is to provide an electronic signal transmission device with a fault test function that can instantly identify the fault of a part and the failure of the circuit connection. 1 〇 纟 The invention is more-the purpose is to provide-an electronic signal transmission device with a fault detection function that can quantitatively identify the degree of aging of a part. In the invention, the electronic signal transmission device with a fault detection function of the present invention is used to separately One of the plurality of objects to be tested is connected to a test instrument, and the power The sub-signal transmission device includes a plurality of input terminals, an output terminal, and a plurality of: 15 mechanical relays, a-controller, and a fault detection module. Each of the input terminals is suitable for connecting to the waiting test object. Corresponding one; the output terminal is suitable to be connected to the test instrument; the number of each mechanical relay is consistent with the number of the input terminals, and the mechanical relays are connected in series: corresponding to the input terminals such as Hai Between the person and the input terminal, each of the mechanical relays cries when they are enabled by a forest platform t jealous w 4 丄 口 0 ^ W This situation is switched to a consistent state of energy, when each of the mechanical 鏖 ^ When in the disabled state, the corresponding input terminal is not connected to the input terminal. When each of the mechanical relays is in the enabled state, the pair: the input terminal is connected to the output terminal; the -control Timely enable the machinery: one of the relays is in the enabled state, and the fault control module is used to sense whether the mechanical relays that are enabled in the mechanical relays such as 200540439 are working normally and the sensing is detected. Enable a mechanical signal when the mechanical relay does not work normally ° 5 The function of the present invention can provide an electronic signal transmission device with a fault detection function to detect whether each mechanical relay works normally by using a fault detection module, so that when it is detected that the work is not working properly Generate a warning signal to inform the user of the occurrence of abnormality in real time, and the effect of ## is to extend the life of the product and reduce the test cost. [Embodiment Mode] 10 The foregoing and other technical contents, features, and effects of the present invention are described in The following is a detailed description of the detailed description of the fourth preferred embodiment with reference to the drawings. Α In view of the fact that the electronic signal transmission device has no way of knowing the state of its parts, it takes 15 to replace the entire batch after the reliable number of users has caused the test cost. The electronic signal transmission device with fault function in the present invention is to add a fault accumulation test module to the electronic signal transmission device to obtain the status of the part and output a warning signal when an abnormal state is detected. Immediately inform users to solve problems. 20 配 图 Figure 4, the preferred embodiment of the electronic signal transmission device 4 with faulty debt testing function of the present invention is applied to a test system, so that a plurality of test objects 31 32, 33 can be connected to the test instrument respectively 3〇. The signal transmission device 4 of this embodiment includes a plurality of input terminals 4m, 42, 43, and 44, and a plurality of input terminals 41 and 42, corresponding to the mechanical type 45, 46, 47, and _ flute # ... ^ Brother I system 48 and a fault detection module 5. It is 8 5 10 15 200540439 ^ See, the electronic signal transmission of this example is 4 sets to measure 3 2 cases. The number of input terminals and mechanical relays is also the same, and those who are familiar with the art should know that it can be measured. The number of objects to be measured can be adjusted according to the design requirements, and the number of input terminals and mechanical relays can be adjusted correspondingly. Each of the input terminals 41, 42, 43 is separately connected for the object under test. The output 44 is for the test instrument to be connected. The circuit of each mechanical relay 45, 46, 47 can be illustrated as having a sense 451, 461, 471 and a switch 452, bias, W. Each of the inductor states, such as 47i series, is connected to the _ controller 48 and the other end is grounded to be driven by the first controller 48 to be excited. Each of the switches 452, 462, and 472 is a switch of a normal door, and refers to an open (or open) switch. Each open: 452, 462, and 472 are connected in parallel with the corresponding inductors 45i, 46i, and 471, and are connected at one end through an output line 49 to the output terminal 44, and the other-terminals are respectively connected to the corresponding input terminals 41, 42, 43. Therefore, the mechanical relays 45, 46, and 47 of the second weekday inch (when the first fork controller 48 is enabled) are disabled (e). The mechanical relays 45, 46, and 47 are connected in series to the corresponding input terminal ^^ and output terminal ^. There is an open circuit between each of the input terminal 、, 43 and the output terminal 44. When the test is started, the controller 48 sequentially outputs drive signals to the inductances 451, 461, and 471 of each of the mechanical relays 45, 46, and 47 to cause them to be excited and drive the corresponding switches 452, flutter 2 and π to close in sequence and short-circuit. The mechanical relays 45, 46, and 47 are switched from the disabled state to the enabled state one by one, so that the object to be tested 3, 32, and 33 connected to the corresponding input terminals 41, 42, 43 can pass the corresponding mechanical relay 45. , 46, 47, the output line 49 and the output terminal 44 are connected to the testing instrument 30 to perform the characteristic test of the object to be tested 20 200540439 31, 32, 33. Figure 6 In this example, the driving signal output from the controller 48 to each mechanical type can be included.-According to the standard of each mechanical relay 31, 32, 33 The high time of Fengcheng knife 481, and the level component 482 provided by the manufacturer with the release time ^; for example, each millisecond (Teng c). The low is different from the known electronic newsletter ^^ 查 、 苏 # $, ^ ~ Special delivery settings, the electronic signal transmission in this embodiment is provided with an extra dark # 、 B 丨 4 ^ ZZ Γ ^ text Fault detection branch group 5 to sense whether these mechanical relays 10, 45, 46, 47 work normally when enabled by the first controller 48, and when the enabled mechanical relays 45 or 46 are sensed < 〇 Generate a warning signal when it is not working normally. 15 Each mechanical relay 45, 46, 47 has a -standard characteristic change value when it changes between the disabled state and the enabled state. This standard characteristic change value includes a standard start time, standard release time, standard resistance value when the mechanical relay $ 45, 46, 47 is enabled, and so on. 20 The fault detection module 5 of this example includes a sensor 5 i and a processing unit 52 storing the standard characteristic change value. The sensor 51 senses a change in the characteristics of the enabled mechanical relay 45 or 46 or 47, and outputs a sensing signal correspondingly. The processing unit 52 is electrically connected to the first controller 48 and the sensor 51 to receive a sensing signal and compare it with a standard characteristic change value so as to output the warning signal when an abnormality occurs. The processing unit 52 in this example is a microprocessor. As mentioned before (Figure 2), when the mechanical relays 45, 46 and 47 are switched between the disabled state and the enabled state, the resistance value R will change, and the current value J and voltage value V will also change accordingly. (R = v / I). Therefore, the sensor 5 1 can select the quantity 10 200540439 to measure at least _ | of the resistance value, current value, and voltage value of the enabled mechanical relay Wu 1, the package state 45 or 46 or 47. In the present embodiment, the fault preparation test module 5 selects to monitor the current value of the enabled mechanical type, the electric appliance 45 $ 46 or 47, and a current sensor is connected in series to the output line 49. Allegro Mi⑽system's model A1321 Hall sensor 511 has an output bandwidth of 30KHZ. Familiar with this technique # 者 #I know that the sensor of this example can also use other types of current sensors, such as capacitive sensors, inductive sensors, etc., and should not be limited to this embodiment Exposed. When current flows through, for example, output line 49, magnetic% is generated around the line, and Hall sensor 511 senses the output of the electromotive force driven by the magnetic field as a sensing signal. In this example, in order to strengthen the magnetic field strength, as shown in FIG. 5, the output line 49 is wound around a plurality of turns (such as 100 turns) on a Gapped Toroid 50 with a slotted 501 to amplify the magnetic field, and The Hall sensor 511 is placed in the slot 501 to sense a magnetic field. For example, suppose the output line 49 is wound around 100 circles on the ring and the current flowing through the output line 49 is 10 microamperes (mA). According to the formula provided by the manufacturer, the magnetic field B of the female ampere is equal to the number of coils n times 6.9 Gauss. / A (B = N * 6.9gauSS / A), so the magnetic field strength is 6 9 Gauss (100 * 6 9 gauss / A * 0.01 A = 6.9 gauss). According to the original product specifications, the sensitivity of the Hall sensor 511 is 5mV / Gauss, so the output voltage of the Hall sensor 511 is 34.5mV (5mV / Gauss * 6.9gauss = 34.5mV). Therefore, as the current value changes, the Hall sensor 511 can correspond to the output voltage that increases as the current value becomes larger as a sensing signal. ίο 15 20 Since the Hall sensor 511 in this example is an analog Hall sensor and the output signal is weak, it needs to additionally include an amplifier 512 connected to one of the Hall sensors 5 μm to receive the sensing signal and Amplify it; and connect it to the amplifier-analog-to-digital converter 513 to receive the amplified sensing signal ^ and digitize it to output to the processing unit 52. However, those skilled in the art know this, Digital Hall sensors can also be applied directly, such as Micr_s 200540439. In detail, as shown in Figure 6, when mechanical relays 45, 46, and 47 are not enabled, switches 452, 462, and 472 are open, and the resistance value is unlimited. Large, the current of the input line 49 is 0. When the first controller outputs the driving signal to enable the mechanical relays 45, 46, and 47, the high level of the driving signal is as high as the initial output for a period of time, and the switch 452 or the command or 472 is still not affected temporarily. The output line 49 also has no current; then the switch 452 < 4 «472 is received; when the inductance or 461 or 471 is excited and the face is moved, the value of the output line 49 will suddenly increase and decrease; after a period of time, the switch 452 gradually Stable conduction to the contact (referring to a short circuit), so that the current value on the output line 49 maintains the preset value A]; and the current value is maintained at the preset value within the stabilization time T! 2. Then drive the low-level component of the signal 482 to output, open M 452 also temporarily maintain the enabled state, and then start to vibrate, then resume the disabled state, so that the current value on the output line 49 returns to 0 β as the output line 49 As the current changes, the electric value of the sensor 511 also changes equivalently. The hall sensor of the company's factory model HAL810 directly integrates analog hall sensors, amplifiers and analog to digital sensors, and can directly output digital signals that can be processed by the processing unit 52. In this example, the processing unit 52 stores the mechanical relay 45, 46, 47 12 5 10 15 20 200540439. The quasi-start time is generally set between the start time τη and the start time plus one, and the value of the stabilization time & . In addition, the processing order ★ 52 is connected to the controller and 48 on the one hand, and also connected to the sensing g 51 to receive its output: In this example, the processing unit 52 is further connected to the lines of the inductors 451, 461, and 471 of different mechanical types _45, 46, and 47 with different pin positions. In this way, the processing of the early tl 52 can be fed from which pin of the driving signal to learn which mechanical relay 45, 46, 47 is enabled. In this way, when the first controller 48 outputs a driving signal to the machine to be enabled or the “electricity H 45 3 3 4 4 7” processing unit 52 can immediately know that the first controller starts driving the mechanical relay 45 or 46 or π. Yes, and start to calculate when the voltage value of the sensing signal fed from the sensor 51 can reach the preset voltage value corresponding to the preset value Al steadily, as: real ^ startup time T 丨]. K Guanji Then, the processing unit 52 compares the actual starting phase τ " with the standard starting date, and if it is greater than the standard starting time threshold, a warning signal is correspondingly rotated. In order to let the user know immediately that an abnormal situation occurs: For example, the electronic signal transmission device 4 further includes a warning light 53 connected to the processing unit 52: the warning light 53 is driven to emit light as a warning signal. Also in this embodiment, the early 52 can also use the driving signal and the sensing signal. To calculate the actual release time T13 of the enabled relay 45 or 46 or 47. In addition, although this embodiment compares the calculated actual start τ with the standard start time, those skilled in the art should know, Processing order 1 and 52 may also Count the actual start time μ refers to the start time.) Compare with the standard start time at any time to get the information of whether the real time being counted is faster than the standard start time. 13 200540439 The second action time has exceeded the standard start time, and an alert signal is generated earlier. In order to allow the test system to respond immediately, the processing unit 52 can also output 5 ... to at least one of the first controller 48 and the test instrument 30. In the example, the processing unit 52 outputs the warning signal to the test instrument in real time. 30 and the first controller 48, so that the abnormal situation is immediately known. Yiyi 30 and the first-controller are both available. 10 As described above, in this embodiment, the fault detection module 5 is used to monitor each machine, and the relay is relayed. The actual start of it when it is started. Is Tn not greater than the standard k. Therefore, when the mechanical relay cannot be converted to the enabled state due to aging or damage, the fault detection module does not fail. gp 拄 止 A ^ ^ θ 奵 应Alarm signal generating appliances: 5: 4 6 = Measurement: Under the condition of production capacity, provide mechanical relay ^ 4 normal or abnormal information to avoid the situation of misjudgement of the DUT due to the abnormality of the mechanical relay. 15 Repeatedly, since the fault detection module 5 can be used in this embodiment to accurately determine the actual start time I of the mechanical relays 45, 46, and 47, the expected high-level component or low-level component of the driving signal becomes / The length of the knife, 482, can be shorter than the original requirements. For example, the time of high 20 4: can be closer to the actual start time I and the standard start time can be set to ^ close to the actual start time τη, or the time to move the low level component can be close. The actual release time Ti3 'to speed up the test speed. Moreover, the current of output line 49 is also related to «H33. Even if the current of output line 49 is G, except for the mechanical relay 45, which is aging or damaged and cannot be caused normally. Can cause open circuit, 14 200540439 may be open circuit caused by abnormality of DUT 31, 32, 33, or poor contact between DUT 31, 32, 33 leading to input terminals 41, 42, 43 and so on . In order to correctly identify the actual reason, as shown in FIG. 7, in the second embodiment of the electronic signal transmission device 4 ′ of the present invention, the fault detection module 5 further includes a plurality of first switches 5 and 54 and a second switch 55. There are also three input terminals 41, 42, 43 and the first switch 54. Each of the first switches 54 is connected to the corresponding input terminals 41, 42, 43 with one end and grounded at the other end, and is normally disabled and not conductive, and can be changed from the disabled state to the enabled state by the processing unit 52. Enabled state, and the corresponding input terminals 41, 42, 43 are grounded. One end of the second open 10 off 55 is connected to the output 44, that is, to the output line 49, and the other is connected to the i power source. The second switch 55 is also normally disabled and not conductive, and can be enabled by the processing unit 52 to change from the disabled state to the enabled state, and the output terminal 44 is connected to the power source, so that the power source is fed into the output line 49. At the beginning of the test, the first switch 54 and the second switch 55 remain disabled 15, and the fault fairy can still determine whether the mechanical relay 6 47 is working normally from the sensing signal; when a mechanical relay (such as Mechanical relay, 45) may be abnormal, such as the actual start time τ " greater than the standard start time 'processing unit 52 controls the first switch 54 and the second on_55 connected to the mechanical relay 45 to become enabled and guide 2 〇 pass, a loop is formed; at the same time, the processing unit 52 notifies the first controller 48 to output the driving signal again. In this way, the output of the processing unit 52 by the sensor Η is still longer than the standard startup time. If yes, it should be mechanical relay 45 failure

,則輸出一第一氅+ 4 口各 .^ ^ ^ X Β不汛旒,以告知使用者機械式繼電器45 200540439 故p早之Λ息’反之,若此次偵測時機械 ’則排除為機械式《器45故障,而可能是剌 身有問題、或是待測物31與輸入點41間的導接不良等因 素造成的異常,㈣處理單元52輸出—第二警示訊號,以 告知使用者可能導接不良或待測物31異常之訊息。 又’配合圖8,本發明之筮二隹 之弟二只轭例電子訊號傳遞裝置 4中’故障偵測㈣5”有別於第—實施例處在於··更含有 -:準待測物56與複數個第三開關57。配合輸入端為3組 ίο 15 ,第三開關57之數量亦為三個。各第三開關57之-端分 ^導接至對應輸人$ 41、42、43、另—端平時係導接至對 ^的^則物31、32、33,並可受處理單元Μ控制而切換成 導接標準待測物5 6。 、 如此,在開始測試工作時’第三開關57導接至對岸待 測物31、32、33’故障读測模組5,仍自感測訊號”= 械式繼電II 45、46、47是 …】斷機 式繼電哭46可处㊉工作’一旦偵測到某機械 了此發生異常,如實際啟動時間Τη大於” 啟動時間,處理單元52即驅使機械式繼電器Μ連接= 5 6,處理早兀5 2 诵知笛 ».. 第—控制器48對機械式繼電器 重新傳运驅動訊號。處理單 中,判斷出此機械式繼電器46是否由正^5。1之感測訊號 第;機Μ仍為異f,則確定其故障而輸出-弟- 一號’。知使用者機械式繼電器#故 * 反之’若此次_到機械式繼電器仏正常時,則排除:械 20 200540439 式繼電器46故障之疑問,並研判是待測物32本身有問題 、或是待測物32與輸入點42間的導接不良等因素造成的 異常,因而處理單元52輸出一第二警示訊號,以告知使用 者可能導接不良或待測物32異常之訊息。 5 利用前述第二、第三實施例中的第一與第二開關54、 55或第三開關57與標準待測物56之設計,更可讓故障偵 測模組5’、5”偵測至異常時,進一步分析、精確判斷出導 致異常原因。 再者,雖說前述實施例中處理單元52以微處理器來實 1〇 現’然而如圖9之實施例,處理單元52,亦可為一内建於該 第-控制II之程式,並將感測器51之輸出直接連接至第二 控制器48,,以直接擴充第一控制器48,之功能。 综前所述,本發明之具故障偵測功能之電子訊號傳遞 裝置4 4 4、4中利用故障偵測模組5、5,、5,,、5,,, 15 巾的霍爾感測器511來偵測被致能之機械式繼電器45、46 /的電流變化’讓處理單元52、52,即時判斷機械式繼電 5 46 47疋否正常,並於偵測到異常時即時發出邀示 訊號來告知使用者,降低測試誤判之機率;並從而減短實 際啟動時間Τη與釋放時間Τΐ3,加速測試流程;又可利用 f與第二開關54、55或者第三開關57與標準待測物56 步分析故障的原因,以讓使用者料是機械式繼電 d ^、或者是待測物或導接不良所導致故障。 一更由於處理單元52、52,更會將此警示訊號即時告知第 一控制器48、48,、測試儀器30,第一控制器48、48,與測 17 200540439 試儀器30可從而排除故障的機械式繼電器,並繼續利用仍 可正常運作之機械式繼電ϋ進行職,直到故障之繼電器 達-預定比例,再停機而將該等故障者全數更換;不僅充 分利用每一機械式繼電器之有效壽命,降低元件更換之成 本;亦可大幅減少維修更換繼電器頻率,提昇作業效率。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明書内容所作之簡單的等效變化與修飾,皆 應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一種習用電子訊號傳遞裝置應用於測試系統之 架構示意圖; 圖2是機械式繼電器隨驅動訊號變化之電阻值變化圖 圖3是128個機械式繼電器壽命測試之結果分佈圖; 圖4是本發明具故障偵測功能之電子訊號傳遞襄置之 第一實施例的示意圖; 圖5是圖4的實施例中霍爾感測器組裝於輸出線路之 示意圖; 圖6是圖4之實施例中輸出線路上因機械式繼電器隨 驅動訊號變化而導致的電流值變化圖; 圖7是本發明之第二實施例的示意圖; 圖8是本發明之第三實施例的示意圖;及 圖9是本發明之第四實施例的示意圖。 18 200540439 【圖式之主要元件代表符號說明】 31、32、33待測物 30測試儀器 4、 4’、4’’、4’’,電子訊號 傳遞裝置 41、42、43輸入端 44輸出端 45、46、47機械式繼電器 451、461、471 電感 452 、 462 、 472 開關 48、48’第一控制器 49輸出線路 5、 5’、5’,、5’’’ 故障偵測 模組 5 1感測器 5 11類比式霍爾感測器 5 12放大器 5 1 3類比至數位轉換器 52、52’處理單元 53警示燈 54第一開關 55第二開關 56標準待測物 57第三開關 481高位準成分 482低位準成分, Then output a first 氅 + 4 ports each. ^ ^ ^ X Β not flood, to inform the user mechanical relay 45 200540439 Therefore, the early information of p is' inversely, if it is mechanical during this detection, it is excluded as The mechanical device 45 is faulty, but may be caused by a problem with the body, or an abnormality caused by poor connection between the test object 31 and the input point 41. The processing unit 52 outputs a second warning signal to inform the use of The person may lead to a message of poor connection or abnormality of the DUT 31. In conjunction with FIG. 8, the “fault detection unit 5” in the two yoke example electronic signal transmission devices 4 of the second and second brothers of the present invention is different from that of the first embodiment. The embodiment lies in that it further contains :: quasi-test object 56 And a plurality of third switches 57. The matching input terminal is 3 sets of 15 and the number of the third switches 57 is also three. The -end of each third switch 57 is connected to the corresponding input $ 41, 42, 43 , And the other-the end is usually connected to the corresponding objects 31, 32, 33, and can be controlled by the processing unit M to switch to the standard test object 5 6. So, when the test work started The three switches 57 are connected to the on-shore DUT 31, 32, and 33 'failure reading and testing module 5, and the self-sensing signal is still "= mechanical relay II 45, 46, 47 is ..." Workable: Once an abnormality is detected in a certain machine, if the actual start time τη is greater than the "start time", the processing unit 52 will drive the mechanical relay M to connect = 5 6 and process the early 5 2 chanting flute ». The first-controller 48 retransmits the driving signal to the mechanical relay. In the processing order, it is determined whether the mechanical relay 46 is positive 5 or not. The sensor signal of 1 is the first; if the machine is still different, it is determined that it is faulty and output-Brother-No. 1 '. Know the user mechanical relay # Therefore * Conversely, if the mechanical relay is normal this time, Then rule out: the problem of the failure of the mechanical 20 200540439 type relay 46, and research and judge whether it is an abnormality caused by the DUT 32 itself or the poor connection between the DUT 32 and the input point 42, so the processing unit 52 outputs A second warning signal to inform the user that the connection may be poor or the DUT 32 is abnormal. 5 Use the first and second switches 54, 55 or the third switch 57 and The design of the standard DUT 56 allows the fault detection module 5 ', 5 "to further analyze and accurately determine the cause of the abnormality when it detects an abnormality. Furthermore, although the processing unit 52 is implemented by a microprocessor in the foregoing embodiment, as shown in the embodiment of FIG. 9, the processing unit 52 may also be a program built in the -control II, and The output of the sensor 51 is directly connected to the second controller 48, to directly expand the function of the first controller 48. To sum up, in the electronic signal transmission device 4 4 4 of the present invention, the fault detection modules 5, 5, 5, 5 ,, 5, 5, and 15 are used for Hall sensing. Device 511 to detect the current change of the enabled mechanical relays 45 and 46 / let the processing units 52 and 52 immediately determine whether the mechanical relay 5 46 47 is normal, and immediately send an invitation when an abnormality is detected Signal to inform the user to reduce the probability of misjudgment of the test; and thus shorten the actual start time Tn and release time T3 to speed up the test process; and f and the second switch 54, 55 or the third switch 57 and the standard to be tested The 56th step analyzes the cause of the failure, so that the user is expected to be a mechanical relay d ^, or the failure caused by the object to be measured or the connection is bad. First, because the processing units 52 and 52, the warning signal will be immediately notified to the first controller 48, 48, the test instrument 30, the first controller 48, 48, and the test instrument 30 200540439 test instrument 30, which can eliminate the fault. Mechanical relays, and continue to use mechanical relays that can still operate normally until the faulty relay reaches a predetermined ratio, and then shut down to replace all those faulty; not only make full use of the effectiveness of each mechanical relay Life, reduce the cost of component replacement; can also significantly reduce the frequency of maintenance and replacement of relays, improve operating efficiency. However, the above are only the preferred embodiments of the present invention. When the scope of implementation of the present invention cannot be limited by this, that is, the simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention specification, All should still fall within the scope of the invention patent. [Schematic description] Figure 1 is a schematic diagram of the structure of a conventional electronic signal transmission device used in the test system; Figure 2 is the resistance value change of the mechanical relay with the change of the driving signal; Figure 3 is the result of the life test of 128 mechanical relays Distribution diagram; Figure 4 is a schematic diagram of the first embodiment of the electronic signal transmission with fault detection function of the present invention; Figure 5 is a schematic diagram of the Hall sensor assembled in the output circuit in the embodiment of Figure 4; Figure 6 FIG. 4 is a diagram showing a change in current value caused by a mechanical relay with a driving signal change on an output line in the embodiment of FIG. 4; FIG. 7 is a schematic diagram of a second embodiment of the present invention; FIG. 8 is a diagram of a third embodiment of the present invention A schematic diagram; and FIG. 9 is a schematic diagram of a fourth embodiment of the present invention. 18 200540439 [Description of the main components of the diagram] 31, 32, 33 DUT 30 Test instrument 4, 4 ', 4' ', 4' ', electronic signal transmission device 41, 42, 43 input terminal 44 output terminal 45, 46, 47 mechanical relays 451, 461, 471 inductances 452, 462, 472 switches 48, 48 'first controller 49 output lines 5, 5', 5 ', 5' '' fault detection module 5 1 Sensor 5 11 Analog Hall Sensor 5 12 Amplifier 5 1 3 Analog to Digital Converter 52, 52 'Processing Unit 53 Warning Light 54 First Switch 55 Second Switch 56 Standard DUT 57 Third Switch 481 high level component 482 low level component

Tn啟動時間/實際啟動時 間 Τ12穩定時間 50圓環 Τ13釋放時間 501開槽 Αι預設值 19Tn startup time / actual startup time Τ12 stabilization time 50 circles Τ13 release time 501 slotted Αι preset value 19

Claims (1)

200540439 拾、申請專利範圍: i -種具故障偵測功能之電子訊號傳遞裝置,用以分別將 複數個待測物中的—者導接至—測試儀n,該電子訊號 傳遞裝置包含·· 複數個輸人端,各該輸人端適於導接該等待測物中 對應一者; 一輸出端,係適於導接至該測試儀器; ;複數個機械式繼電器,各該機械式繼電器之數量係 與該等輸入端的數量相符,該等機械式繼電器係分別串 等輸入端中對應一者及該輸入端間,各該機械式繼 益被致能時係於—禁能狀態切換成_致能狀態,杂各 :機械式繼電器位於該禁能狀態時,使該對應輸入:不 接至该輸出端’當各該機械式繼電器位於該致能狀能 時,使該對應輸入端導接至該輸出端; 〜 第控制器,適時致能該等機械式繼電器中一者 為該致能狀態;及 ° 一故障制模組’用以感測該等機械式繼電器中被 致能之該機械式繼電器是否正常工作並於感測到該被致 月b機械式繼電器未正常工作時產生一警示訊號。 2.依據中請專利範圍第1項所述之電子訊號傳遞裝置,其 中,各該機械式繼電器於該等狀態變化時具有一特 :二=/⑷章㈣組含有一感測器及-館:有該 =性皮化值之處理單元,該感測器用以感測該等機 電益中被致能的機械式繼電器之特性變化以對應 20 200540439 輸出一感測訊號,該處理單元係接收該感測訊號並將該 感測訊號與該標準特性變化值比對,以於異常時輸出該 警示訊號。 3 ·依據申请專利範圍第2項所述之電子訊號傳遞裝置,其 中’該感測器係一用以感測該被致能機械式繼電器之電 流變化之電流感測器。 4·依據申請專利範圍第3項所述之電子訊號傳遞裝置,其 中’ δ亥電k感測器係一霍爾感測器。 5. 依據申請專利範圍第4項所述之電子訊號傳遞裝置,其 中,該霍爾感測器具有一類比式霍爾感測器、一連接該 類比式霍爾感測器之放大器及一連接該放大器之類比至 數位轉換器。 6. 依據申請專利範圍第4項所述之電子訊號傳遞裝置,其 中’该霍爾感測器係一數位式霍爾感測器。 7·依據申請專利範圍第4項所述之電子訊號傳遞裝置,更 包含一連接該輸出端與該等機械式繼電器之輸出線路, 該霍爾感測器係串接於該輸出線路上。 8·依據申請專利範圍第3項所述之電子訊號傳遞裝置,其 中,該標準特性變化值具有一標準起動時間,該處理單 元係依據該感測訊號來計算該被致能的機械式繼電器早 貫際啟動時間並於該實際啟動時間大於該標準起動時 時產生該警示訊號。 日、間 9.依據申請專利範圍第8項所述之電子訊號傳遞裝置,复 中’該警示訊號係輸出至該測試儀器中。 ” 200540439 I 〇·依據申4專利範圍第3項所述之電子訊號傳遞裝置,其 中’該故障偵測模組更含有複數個第一開關及一第二開 關,该等第一開關之一端係分別導接至該對應之輸入端 與另一端係接地並適時受該處理單元致能由一禁能狀熊 變更成一致能狀態而令該對應輸入端接地,該第二開關 =:端係導接至該輸出端與另一端係導接至一電源並適 日守又'亥處理單元致能由-禁能狀態變成-致能狀態而令 0亥輸出端導接至該電源。 II ·依據巾⑺專利範圍第3項所述之電子訊號傳遞裝置,其 中,该故障㈣模組更含有—標準待測物與複數個第三 =,該等第三開關之—端係分別導接至該對應輸入端 穴从守雖忒標準待測物。 其 12·依據申請專利範圍 固弟3項所述之電子訊號傳遞裝置 中,該處理單元係一導接t衣置 η 導接第一控制器之微處理器。 其 13·依據申請專利範圍 σ 項所述之電子訊號傳遞裝置 一里早兀係一内建於該第-控制器之程式。 00200540439 Scope of patent application: i-an electronic signal transmission device with a fault detection function, which is used to respectively connect one of a plurality of objects to be tested to the tester n. The electronic signal transmission device includes ·· A plurality of input terminals, each of which is suitable for connecting the corresponding one of the waiting objects; an output terminal, which is suitable for connecting to the test instrument; a plurality of mechanical relays, each of which is a mechanical relay The number is in accordance with the number of these input terminals. The mechanical relays are respectively connected to a corresponding one of the input terminals and between the input terminals. When each of the mechanical relays is enabled, the state is switched to the disabled state. _Enable state, miscellaneous: when the mechanical relay is in the disabled state, enable the corresponding input: do not connect to the output terminal 'When each mechanical relay is in the enabled state, enable the corresponding input terminal to conduct Connected to the output terminal; ~ the first controller, which enables one of the mechanical relays in a timely manner to be in the enabled state; and a failure control module 'for sensing the enabled ones of the mechanical relays The mechanical relay Is working properly and that the sensed to generate a warning signal is activated when the mechanical relay month b is not working properly. 2. According to the electronic signal transmission device described in item 1 of the patent scope, wherein each of the mechanical relays has a special feature when these states change: two = / ⑷ 章 ㈣ group contains a sensor and-hall : There is a processing unit with the skinning value. The sensor is used to sense the change in the characteristics of the mechanical relays that are enabled in the mechanical and electrical benefits to output a sensing signal corresponding to 20 200540439. The processing unit receives the The sensing signal is compared with a change value of the standard characteristic to output the warning signal when an abnormality occurs. 3. The electronic signal transmission device according to item 2 of the scope of the patent application, wherein the sensor is a current sensor for sensing a change in the current of the enabled mechanical relay. 4. According to the electronic signal transmission device described in item 3 of the scope of the patent application, wherein the 'delta' k-sensor is a Hall sensor. 5. The electronic signal transmission device according to item 4 of the scope of the patent application, wherein the hall sensor has an analog hall sensor, an amplifier connected to the analog hall sensor, and an amplifier connected to the hall sensor. Amplifier analog to digital converter. 6. According to the electronic signal transmission device described in item 4 of the scope of patent application, wherein the 'Hall sensor is a digital Hall sensor. 7. According to the electronic signal transmission device described in item 4 of the scope of patent application, it further includes an output line connecting the output terminal and the mechanical relays, and the Hall sensor is connected in series to the output line. 8. According to the electronic signal transmission device described in item 3 of the scope of the patent application, wherein the standard characteristic change value has a standard start time, the processing unit calculates the enabled mechanical relay early based on the sensing signal. The warning signal is generated when the actual start time is longer than the standard start time. Day and Day 9. According to the electronic signal transmission device described in item 8 of the scope of the patent application, the warning signal is output to the test instrument. ”200540439 I 〇 · According to the electronic signal transmission device described in item 3 of the scope of patent 4, wherein the fault detection module further includes a plurality of first switches and a second switch, one end of the first switches is The corresponding input terminal is connected to the corresponding input terminal and the other end are grounded, and the corresponding input terminal is grounded when the processing unit is enabled to change from a disabled energy bear to a consistent energy state in a timely manner. The second switch =: terminal system Connected to this output and the other end is connected to a power supply and the time-lapse processing unit is enabled from the -disabled state to the -enabled state, so that the 0h output terminal is connected to the power source. II. Basis The electronic signal transmission device described in item 3 of the patent scope, wherein the faulty module further includes-a standard test object and a plurality of third =, and-the ends of the third switches are respectively connected to the Corresponds to the input terminal points, although the standard test object. 12. According to the electronic signal transmission device described in item 3 of the patent application scope, the processing unit is connected to the first controller and connected to the first controller. Microprocessor. 13. According to the application Lee electronic signal transmission apparatus of a range of σ in terms of the early Wu built in the second line a - 00 of the programmable controller
TW93115741A 2004-06-02 2004-06-02 Electronic signal transmitting device with fault detection function TWI233497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93115741A TWI233497B (en) 2004-06-02 2004-06-02 Electronic signal transmitting device with fault detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93115741A TWI233497B (en) 2004-06-02 2004-06-02 Electronic signal transmitting device with fault detection function

Publications (2)

Publication Number Publication Date
TWI233497B TWI233497B (en) 2005-06-01
TW200540439A true TW200540439A (en) 2005-12-16

Family

ID=36501748

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93115741A TWI233497B (en) 2004-06-02 2004-06-02 Electronic signal transmitting device with fault detection function

Country Status (1)

Country Link
TW (1) TWI233497B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913695A (en) * 2012-12-30 2014-07-09 创意电子股份有限公司 a test system
TWI837998B (en) * 2022-12-08 2024-04-01 欣銓科技股份有限公司 Signal switching and verification device and signal verification system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593984B (en) * 2016-06-03 2017-08-01 輝創電子股份有限公司 Circuit module with detecting assembly
WO2018110337A1 (en) * 2016-12-12 2018-06-21 ローツェ株式会社 Waveform analysis device and waveform analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913695A (en) * 2012-12-30 2014-07-09 创意电子股份有限公司 a test system
CN103913695B (en) * 2012-12-30 2016-08-17 创意电子股份有限公司 Test system
TWI837998B (en) * 2022-12-08 2024-04-01 欣銓科技股份有限公司 Signal switching and verification device and signal verification system

Also Published As

Publication number Publication date
TWI233497B (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CA2871096C (en) Relay including processor providing control and/or monitoring
CN101718852B (en) Online detection and calibration method for Hall current sensor
RU2658034C2 (en) Process for determining cause of loss of tension downstream of circuit breaker, auxiliary circuit breaker apparatus, electrical system including circuit breaker and auxiliary device of this type
US9664724B2 (en) Device and method for monitoring and switching a load circuit
CN106469620B (en) Power switch and method
EP3767316B1 (en) Switch failure detection device
CN117250497B (en) Relay self-checking circuit and power supply equipment
CN117296249A (en) Monitoring device for an electrical component, semiconductor switching device with monitoring function and energy system
US9048049B2 (en) Electromagnetic opening/closing device
TW200540439A (en) Electronic signal transmitting device with fault detection function
CN102419547A (en) System and method for operating a redundant system
JP2016165032A (en) Semiconductor switch
US20120248896A1 (en) Field device
CN110676804B (en) Detection circuit and switch module using same
CN111707934A (en) Switch detector, use method of switch detector and vehicle
CN117269743A (en) Detection module suitable for relay monitoring system
TW202219533A (en) Power supply device and method for checking a field effect transistor of such a power supply device
KR101096920B1 (en) Solenoid coil monitoring apparatus using constant current circuit
TWI632581B (en) Monitoring module for solid state relay and furnace having the same
US20240337694A1 (en) Test circuit and test apparatus comprising the test circuit
EP4050349A1 (en) A residual current device for low voltage electric lines
EP4050348A1 (en) A residual current device for low voltage electric lines
US20250104954A1 (en) Solid-state circuit breaker and its self-test method
JP5876722B2 (en) Time measuring device threshold voltage adjustment adapter
RU2791868C2 (en) Electronic shutdown device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees