TW200537167A - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- TW200537167A TW200537167A TW094104266A TW94104266A TW200537167A TW 200537167 A TW200537167 A TW 200537167A TW 094104266 A TW094104266 A TW 094104266A TW 94104266 A TW94104266 A TW 94104266A TW 200537167 A TW200537167 A TW 200537167A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- liquid crystal
- rth
- retardation
- display device
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 304
- 230000003287 optical effect Effects 0.000 claims abstract description 77
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 238000002834 transmittance Methods 0.000 claims abstract description 13
- 229920002678 cellulose Polymers 0.000 claims description 237
- 239000001913 cellulose Substances 0.000 claims description 228
- 150000001875 compounds Chemical class 0.000 claims description 198
- 125000000217 alkyl group Chemical group 0.000 claims description 65
- 210000002858 crystal cell Anatomy 0.000 claims description 61
- 125000003118 aryl group Chemical group 0.000 claims description 55
- 230000001681 protective effect Effects 0.000 claims description 55
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 54
- 238000004519 manufacturing process Methods 0.000 claims description 50
- 239000000126 substance Substances 0.000 claims description 48
- 230000005540 biological transmission Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 21
- 239000007787 solid Substances 0.000 claims description 15
- 238000006467 substitution reaction Methods 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 8
- 238000005192 partition Methods 0.000 claims description 7
- HGASFNYMVGEKTF-UHFFFAOYSA-N octan-1-ol;hydrate Chemical compound O.CCCCCCCCO HGASFNYMVGEKTF-UHFFFAOYSA-N 0.000 claims description 6
- 230000002829 reductive effect Effects 0.000 claims description 6
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 4
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 claims description 3
- 230000004224 protection Effects 0.000 claims description 2
- 229920005601 base polymer Polymers 0.000 claims 1
- 230000001976 improved effect Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 511
- 235000010980 cellulose Nutrition 0.000 description 205
- 239000010410 layer Substances 0.000 description 102
- 239000012071 phase Substances 0.000 description 90
- -1 tetrahydrofuran Chemical class 0.000 description 72
- 238000000034 method Methods 0.000 description 69
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 66
- 239000007788 liquid Substances 0.000 description 66
- 238000000576 coating method Methods 0.000 description 61
- 125000001424 substituent group Chemical group 0.000 description 58
- 239000011248 coating agent Substances 0.000 description 57
- 125000004432 carbon atom Chemical group C* 0.000 description 51
- 229910052799 carbon Inorganic materials 0.000 description 50
- 229920000642 polymer Polymers 0.000 description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 45
- 239000006185 dispersion Substances 0.000 description 38
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 229920002301 cellulose acetate Polymers 0.000 description 36
- 239000002904 solvent Substances 0.000 description 35
- 239000003795 chemical substances by application Substances 0.000 description 30
- 239000000203 mixture Substances 0.000 description 30
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 27
- 229920001577 copolymer Polymers 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 239000004372 Polyvinyl alcohol Chemical group 0.000 description 22
- 229920002451 polyvinyl alcohol Chemical group 0.000 description 22
- 239000000463 material Substances 0.000 description 20
- 239000000178 monomer Substances 0.000 description 20
- 239000002245 particle Substances 0.000 description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 18
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 17
- 125000005843 halogen group Chemical group 0.000 description 17
- 125000003545 alkoxy group Chemical group 0.000 description 16
- 125000003277 amino group Chemical group 0.000 description 16
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 16
- 125000004104 aryloxy group Chemical group 0.000 description 16
- 239000010419 fine particle Substances 0.000 description 16
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 238000001035 drying Methods 0.000 description 15
- 239000000654 additive Substances 0.000 description 14
- 125000004093 cyano group Chemical group *C#N 0.000 description 14
- 125000000524 functional group Chemical group 0.000 description 13
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 12
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 12
- 229920006254 polymer film Polymers 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 11
- 229910052731 fluorine Inorganic materials 0.000 description 11
- 125000001183 hydrocarbyl group Chemical group 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 230000010287 polarization Effects 0.000 description 11
- 125000000304 alkynyl group Chemical group 0.000 description 10
- 238000005266 casting Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 230000035699 permeability Effects 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 239000004014 plasticizer Substances 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Natural products CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 125000001153 fluoro group Chemical group F* 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 238000007127 saponification reaction Methods 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 6
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000006224 matting agent Substances 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 125000003226 pyrazolyl group Chemical group 0.000 description 6
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052702 rhenium Inorganic materials 0.000 description 6
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 125000004434 sulfur atom Chemical group 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 239000004988 Nematic liquid crystal Substances 0.000 description 5
- 235000010724 Wisteria floribunda Nutrition 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 208000028659 discharge Diseases 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 230000005606 hygroscopic expansion Effects 0.000 description 5
- 125000002883 imidazolyl group Chemical group 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 125000001624 naphthyl group Chemical group 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 239000013557 residual solvent Substances 0.000 description 5
- 229910052724 xenon Inorganic materials 0.000 description 5
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 4
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 4
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical group N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 229910002012 Aerosil® Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical group N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 4
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 4
- 238000013467 fragmentation Methods 0.000 description 4
- 238000006062 fragmentation reaction Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical group O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 4
- 229920002098 polyfluorene Polymers 0.000 description 4
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 4
- 150000003440 styrenes Chemical class 0.000 description 4
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 150000003536 tetrazoles Chemical group 0.000 description 4
- 150000003852 triazoles Chemical group 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 3
- CWHBUPIYFIPPRI-UHFFFAOYSA-N 2,2,3,3-tetrahydroxy-2,3-dihydronaphthalene-1,4-dione Chemical group C1=CC=C2C(=O)C(O)(O)C(O)(O)C(=O)C2=C1 CWHBUPIYFIPPRI-UHFFFAOYSA-N 0.000 description 3
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 3
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 125000006165 cyclic alkyl group Chemical group 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 150000008282 halocarbons Chemical class 0.000 description 3
- 125000001041 indolyl group Chemical group 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 3
- 125000005647 linker group Chemical group 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 239000012788 optical film Substances 0.000 description 3
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 3
- 125000002971 oxazolyl group Chemical group 0.000 description 3
- 125000004043 oxo group Chemical group O=* 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000000807 solvent casting Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 3
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 3
- 125000002769 thiazolinyl group Chemical group 0.000 description 3
- LPSFUJXLYNJWPX-UHFFFAOYSA-N 1,1'-biphenyl;diphenyl hydrogen phosphate Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OP(=O)(O)OC1=CC=CC=C1 LPSFUJXLYNJWPX-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical group 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- SYWDWCWQXBUCOP-UHFFFAOYSA-N benzene;ethene Chemical group C=C.C1=CC=CC=C1 SYWDWCWQXBUCOP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000011978 dissolution method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 235000010855 food raising agent Nutrition 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000000879 imine group Chemical group 0.000 description 2
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229960005181 morphine Drugs 0.000 description 2
- 125000005185 naphthylcarbonyl group Chemical group C1(=CC=CC2=CC=CC=C12)C(=O)* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000002345 steroid group Chemical group 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008093 supporting effect Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 2
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- HKRUGYLXIPAMFZ-UHFFFAOYSA-N 1,2,3-triethyl-9h-fluorene Chemical compound C1=CC=C2C(C=C(C(=C3CC)CC)CC)=C3CC2=C1 HKRUGYLXIPAMFZ-UHFFFAOYSA-N 0.000 description 1
- ODIRBFFBCSTPTO-UHFFFAOYSA-N 1,3-selenazole Chemical group C1=C[se]C=N1 ODIRBFFBCSTPTO-UHFFFAOYSA-N 0.000 description 1
- 150000004057 1,4-benzoquinones Chemical class 0.000 description 1
- XHTUOWXUBNMVEU-UHFFFAOYSA-N 1-benzoyl-5-ethyl-5-(3-methylbutyl)-1,3-diazinane-2,4,6-trione Chemical group O=C1C(CC)(CCC(C)C)C(=O)NC(=O)N1C(=O)C1=CC=CC=C1 XHTUOWXUBNMVEU-UHFFFAOYSA-N 0.000 description 1
- BLPGWZAQVVZJOA-UHFFFAOYSA-N 1-butyl-9h-fluorene Chemical compound C1C2=CC=CC=C2C2=C1C(CCCC)=CC=C2 BLPGWZAQVVZJOA-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- FNHMJTUQUPQWJN-UHFFFAOYSA-N 2,2-dimethylpropanimidamide Chemical compound CC(C)(C)C(N)=N FNHMJTUQUPQWJN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- LBSXSAXOLABXMF-UHFFFAOYSA-N 4-Vinylaniline Chemical compound NC1=CC=C(C=C)C=C1 LBSXSAXOLABXMF-UHFFFAOYSA-N 0.000 description 1
- IRQWEODKXLDORP-UHFFFAOYSA-N 4-ethenylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=C)C=C1 IRQWEODKXLDORP-UHFFFAOYSA-N 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical group NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 241000723347 Cinnamomum Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241001050985 Disco Species 0.000 description 1
- 101100095178 Escherichia coli (strain K12) scpB gene Proteins 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical group CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- 238000001159 Fisher's combined probability test Methods 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000008582 Pinus sylvestris Nutrition 0.000 description 1
- 241000218626 Pinus sylvestris Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229920006221 acetate fiber Polymers 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000005090 alkenylcarbonyl group Chemical group 0.000 description 1
- 125000002355 alkine group Chemical group 0.000 description 1
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000320 amidine group Chemical group 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000005418 aryl aryl group Chemical group 0.000 description 1
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- KXNQKOAQSGJCQU-UHFFFAOYSA-N benzo[e][1,3]benzothiazole Chemical group C1=CC=C2C(N=CS3)=C3C=CC2=C1 KXNQKOAQSGJCQU-UHFFFAOYSA-N 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical group C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- JEVCWSUVFOYBFI-UHFFFAOYSA-N cyanyl Chemical group N#[C] JEVCWSUVFOYBFI-UHFFFAOYSA-N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- NKLCHDQGUHMCGL-UHFFFAOYSA-N cyclohexylidenemethanone Chemical group O=C=C1CCCCC1 NKLCHDQGUHMCGL-UHFFFAOYSA-N 0.000 description 1
- NLUNLVTVUDIHFE-UHFFFAOYSA-N cyclooctylcyclooctane Chemical group C1CCCCCCC1C1CCCCCCC1 NLUNLVTVUDIHFE-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000006263 dimethyl aminosulfonyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 230000037308 hair color Effects 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N hex-1-en-3-one Chemical group CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000006626 methoxycarbonylamino group Chemical group 0.000 description 1
- MOVBJUGHBJJKOW-UHFFFAOYSA-N methyl 2-amino-5-methoxybenzoate Chemical compound COC(=O)C1=CC(OC)=CC=C1N MOVBJUGHBJJKOW-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CBFCDTFDPHXCNY-UHFFFAOYSA-N octyldodecane Natural products CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HDBWAWNLGGMZRQ-UHFFFAOYSA-N p-Vinylbiphenyl Chemical compound C1=CC(C=C)=CC=C1C1=CC=CC=C1 HDBWAWNLGGMZRQ-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical group N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001839 pinus sylvestris Substances 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical group C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002328 sterol group Chemical group 0.000 description 1
- 125000004646 sulfenyl group Chemical group S(*)* 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 125000000101 thioether group Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- IFOIAHYDBXLNJX-UHFFFAOYSA-N trioxazole Chemical group O1OC=NO1 IFOIAHYDBXLNJX-UHFFFAOYSA-N 0.000 description 1
- 238000005533 tritiation Methods 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45F—TRAVELLING OR CAMP EQUIPMENT: SACKS OR PACKS CARRIED ON THE BODY
- A45F5/00—Holders or carriers for hand articles; Holders or carriers for use while travelling or camping
- A45F5/02—Fastening articles to the garment
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C11/00—Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45F—TRAVELLING OR CAMP EQUIPMENT: SACKS OR PACKS CARRIED ON THE BODY
- A45F5/00—Holders or carriers for hand articles; Holders or carriers for use while travelling or camping
- A45F5/1575—Holders or carriers for portable tools
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H1/00—Tops
- A63H1/30—Climbing tops, e.g. Yo-Yo
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45F—TRAVELLING OR CAMP EQUIPMENT: SACKS OR PACKS CARRIED ON THE BODY
- A45F5/00—Holders or carriers for hand articles; Holders or carriers for use while travelling or camping
- A45F2005/008—Hand articles fastened to the wrist or to the arm or to the leg
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
Abstract
Description
200537167 九、發明說明: 【發明所屬之技術區域】 本發明係有關於一種液晶顯示裝置,使用對液晶顯示 裝置有用的醯化纖維素,本發明係有關於一種面內切換式 (In-Plane Switching mode)液晶顯示裝置,藉由鐵電性液晶 顯示裝置、反鐵電性液晶顯示裝置、以及對配向於水平方 向之向列式液晶施加橫方向電場來進行顯示。 【先前技術】 在2片正交的偏光板之間夾有扭轉配列的向列式液晶 層、並在基板垂直的方向施加電場之方式作爲液晶顯示裝 置、亦即TN模式正廣泛地被使用。此方式在黑色顯示時, 因爲液晶對基板立起,所以從斜向觀看時會發生起因於液 晶分子複折射之漏光。針對此問題,藉由使用液晶性分子 混成配向之薄膜來對液晶胞進行光學性補償,用以防止該 漏光之方式正實用化中。但是,即便使用液晶分子,欲無 問題地在光學光上完全補償液晶胞係非常困難的,而有在 畫面下方向發生無法完全抑制灰階反轉之問題存在。 爲了解決如此問題,有提案揭示一種對液晶施加橫電 場、亦即面內切換式(In-Plane Switching; IPS)模式之液晶 顯示裝置,和一種垂直配向(VA)模式,係藉由垂直配向、 在板內形成之突起或狹縫電極來對介電常數異方向性爲 負的液晶進行配向分割,正實用化中。近年來’該等板並 非僅限於監視器之用途,亦進行TV用途的開發而使畫面 的輝度有大幅度提升。因而在此等動作模式之黑色顯示 時,在對角位置斜入射方向之稍微漏光會成爲顯示品質降 200537167 :: 、· 低的原因(以往未被視爲問題)已經顯著化。 在IPS模式亦有在液晶層和偏光板之間配置 射特性之光學補償材料,檢討作爲改善該色調和 之視野角等手段之一,例如有文獻(參照專利文| 一種從斜方向直視白色顯示或是中間調顯示時 的手段,係藉由在基板與偏光板之間配置複折射 複折射介質係使對傾斜時液晶層遲滯値的增減 用之光軸互相正交而成。又,有提案揭示一種使 φ 償膜的方法(參照專利文獻2、3、4),該光學補 具有負的固有折射之苯乙烯聚合物或是碟狀液 物所構成,又,有揭示一種組合光學補償膜的j 專利文獻5),該光學補償膜係由複折射爲正且光 膜的面內之膜、以及複折射爲正且光學軸位於膜 向之膜組合而成,有揭示一種使用遲滯値爲二分 之二軸性光學補償片的方法(參照專利文獻6), 用具有負遲滯値之膜作爲偏光板的保護膜,在該 | 具有正遲滯値的光學補償層之方式(參照專利文擄 但是,該眾多方式之提案,因爲該等方式係 液晶胞中之液晶的複折射異方向性來改善視野角 斜方向觀看正交偏光板時,由於偏光軸交差角度 離而產生的漏光,有無法充分解決的問題存在。 又,即使被認爲可以補償該漏光的方式,欲 在光學上完全補償液晶胞係非常困難的。主要的 光板的保護膜係光學異方向性,爲了進行包含這 學補償,必須極端地加大相位差膜之異方向性而 具有複折 黑色顯示 K 1)揭示 改善顏色 介質,該 有補償作 用光學補 償膜係由 晶性化合 ϊ法(參照 學軸位於 的法線方 之一波長 有提案使 表面設置 K 7) 〇 藉由消除 ,對於從 從正交偏 無問題地 原因係偏 在內的光 更加有必 200537167 要添加光學異方向性層。 減少保護膜之相位差値之方法’有文獻(參照專利文獻 8、9)試驗使用含有降萡烯之膜,或是含有具有亞胺基之 樹脂和具有苯基、腈基之樹脂之膜,來作爲保護膜。但是 該等合成樹脂通常係疏水性,有與偏光膜之黏著問題、容 易剝離。又,在偏光膜的兩側層疊保護膜的步驟,因爲無 法期待水分從偏光膜滲透而有在內部殘留水分帶來偏光 性能變差之問題點存在。 [專利文獻1]特開平9-80424號公報 [專利文獻2]特開平1 0-54982號公報 [專利文獻3]特開平1 1 -202323號公報 [專利文獻4]特開平9-292522號公報 [專利文獻5]特開平1 1 - 1 33408號公報 [專利文獻6]特開平1 1 -3052 1 7號公報 [專利文獻7]特開平10_30729 1號公報 [專利文獻8]特開2004-464 1號公報 [專利文獻9]特開2004-4642號公報 【發明內容】 本發明之課題係提供一種面內切換(In_piane Switching ; IPS)型液晶顯示裝置,藉由簡易的結構,不僅 是顯示水準而且可以顯著地改善視野角。 用以解決前述課題之手段如下。亦即本發明係 (1)一種液晶顯示裝置,係依以下順序配置第1偏光膜、 第1相位差區域及第2相位差區域、第1基板、、液晶層:、 第2基板、以及第2偏光膜而成’在黑色顯示時該液晶層 200537167 ;; / 之液晶分子的配向係與前述一對基板之表面平行,其中第 ' 2相位差區域面內之遲滯値Re爲100nm以下,而且厚度 方向之遲滯値Rth爲50nm〜200nm,第1相位差區域之折 射率異方向性係負的且光軸對於層面係實質上平行,該第 1相位差區域的遲相軸係與第1偏光膜的透光軸及黑色顯 示時之液晶分子的遲相軸方向正交。 (2)如(1)之液晶顯示裝置,其中前述第1相位差區域之 Re 爲 50nm〜400nm 〇 B (3)如(1)或(2)之液晶顯示裝置,其中前述第2相位差區 域之遲相軸係與第1偏光膜的透光軸實質上正交。 (4) 如(1)至(3)中任一項之液晶顯示裝置,其中前述第1 相位差區域及第2相位差區域之至少一方係含有碟狀液晶 性化合物。 (5) 如(1)至(4)中任一項之液晶顯示裝置,其中在前述第 2基板之更外側具有第2偏光膜。 (6) 如(1)至(5)中任一項之液晶顯示裝置,其中以夾於前 φ 述第1偏光膜及/或前述第2偏光膜之方式配置有一對保護 膜,該一對保護膜中接近液晶層側之保護膜厚度方向之相 位差Rth爲25nm以下。 (7) 如(1)至(6)中任一項之液晶顯示裝置,其中以夾於前 述第1偏光膜及/或前述第2偏光膜之方式配置有一對保護 膜,該一對保護膜中接近液晶層側之保護膜係醯化纖維素 膜或是降萡烯系之薄膜。 (8)如(6)之液晶顯示裝置,其中以夾於前述第1偏光膜 及/或前述第2偏光膜之方式配置有一對保護膜,該一對保 200537167 :: •- 護膜中接近液晶層側之保護膜係滿足下述(I)及(II)之醯化 % 纖維素膜。 (I) 0SRe(630)S10、且 | Rth(630) | $25 (II) I Re(400) —Re(700) | $10、且 | Rth(400)-Rth(700) | $35 (式(I)、(II)中,Re( λ )係表示在波長λ nm之面內遲滯 値(nm),Rth( λ )係表示在波長;l nm之膜厚方向的遲滯値 (nm) 〇 ) (9) 如(8)之液晶顯示裝置,其中前述醯化纖維素膜在滿 | 足下述式(III)及(IV)的範圍至少含有1種降低該醯化纖維 素膜在膜厚度方向的遲滯値之化合物。 (III) (Rth(A)- Rth(0))/A^- 1.0 (IV) 0.01 S A S 30 (式(III)及(IV)中,Rth(A)係表示含有A%降低Rth的化 合物之醯化纖維素膜的Rth(nm),Rth(0)係表示該醯化纖維 素膜未含有降低 Rth( λ )的化合物之醯化纖維素膜的 Rth(nm),Α係表示相對於纖維素膜原料聚合物,降低 $ Rth(又)的化合物的重量(%)。) (10) 如(8)或(9)之液晶顯示裝置,其中前述醯化纖維素 膜,在醯基取代度爲2.85〜3.00之醯化纖維素中含有至少1 種可以降低Rth( λ )之化合物,該化合物相對於醯化纖維素 之固體成分爲〇.〇1〜30質量%。 (11) 如(8)至(10)中任一項之液晶顯示裝置,其中前述醯 化纖維素膜含有至少1種可以降低前述醯化纖維素膜之 | Rth(400) — Rth(700) |的化合物,該化合物相對於醯化纖 維素之固體成分爲〇·〇1〜30質量%。 -10- 200537167 · (1 2)如(8)至(1 1)中任一項之液晶顯示裝置,其中前述醯 化纖維素膜之厚度爲10〜120微米。 (13) 如(8)至(12)中任一項之液晶顯示裝置,其中前述醯 化纖維素膜含有至少1種降低Rth( λ )且辛醇-水分配係 數(L 〇 g Ρ値)爲0〜7之化合物,該化合物相對於醯化纖維素 之固體成分爲0.01〜30質量%。 (14) 如(13)之液晶顯示裝置,其中所含有可以降低前述 RthU )且辛醇—水分配係數(Log P値)爲0〜7之化合物, φ 係選自由下式通式(13)或是下述通式(18)所示化合物中之 至少一種。 [化學式1] 通式(13)200537167 IX. Description of the invention: [Technical area to which the invention belongs] The present invention relates to a liquid crystal display device using a cellulose that is useful for the liquid crystal display device. The present invention relates to an in-plane switching mode) a liquid crystal display device that performs display by applying a lateral electric field to a nematic liquid crystal aligned in a horizontal direction, a ferroelectric liquid crystal display device, an antiferroelectric liquid crystal display device, and the like. [Prior art] A TN mode is widely used as a liquid crystal display device in which a twisted nematic liquid crystal layer is sandwiched between two orthogonal polarizers and an electric field is applied in a direction perpendicular to the substrate. When this method is used for black display, liquid crystals stand up against the substrate, so when viewed obliquely, light leakage due to the birefringence of liquid crystal molecules occurs. In view of this problem, the liquid crystal cell is optically compensated by using a thin film of liquid crystal molecules mixed with alignment, and a method for preventing the light leakage is being put into practical use. However, even if liquid crystal molecules are used, it is very difficult to completely compensate the liquid crystal cell line in optical light without problems, and there is a problem that the gray-scale inversion cannot be completely suppressed in the direction below the screen. In order to solve such a problem, a proposal discloses a liquid crystal display device that applies a lateral electric field to the liquid crystal, that is, an In-Plane Switching (IPS) mode, and a vertical alignment (VA) mode. Protrusions or slit electrodes formed in the plate are used for the alignment and division of liquid crystals with negative dielectric constant anisotropy, and are being put into practical use. In recent years, these boards have been used not only for monitors, but also for TV applications, and the brightness of the screen has been greatly improved. Therefore, in the black display of these operation modes, a slight light leakage in the oblique incident direction in the diagonal position will cause the display quality to be lowered. 200537167 ::, · The reason has not been noticed. In the IPS mode, optical compensation materials are also arranged between the liquid crystal layer and the polarizing plate. As a means to improve the hue and the viewing angle, for example, there are references (see the patent document | a white display viewed from an oblique direction). Or a method for mid-tone display is formed by disposing a birefringent birefringent medium between the substrate and the polarizing plate so that the optical axes for increasing or decreasing the retardation of the liquid crystal layer when tilted are orthogonal to each other. The proposal discloses a method for making a φ compensation film (refer to Patent Documents 2, 3, and 4). The optical compensation is made up of a styrene polymer or a dish-like liquid with a negative intrinsic refraction, and a combined optical compensation is also disclosed. Patent Document 5 of the film) This optical compensation film is a combination of a film with positive birefringence and in-plane light film, and a film with positive birefringence and optical axis in the film direction. This method is a two-half-axis optical compensation sheet (refer to Patent Document 6), which uses a film with negative hysteresis as a protective film for a polarizing plate. In this method, an optical compensation layer with positive hysteresis (refer to the patent) Wen Ye, however, because of the multiple refraction anisotropy of the liquid crystals in the liquid crystal cell to improve the viewing angle and oblique viewing of the orthogonal polarizer, the light leakage due to the intersection of the polarization axes and the angle deviation, There are problems that cannot be fully solved. Moreover, even if it is considered that the light leakage can be compensated, it is very difficult to completely compensate the liquid crystal cell optically. The protective film of the main light plate is optically anisotropic. In order to include this, To compensate, it is necessary to extremely increase the directionality of the retardation film and have a multi-fold black display. K 1) Reveal the improved color medium. The optical compensation film is compensated by the crystalline compound method (refer to the method where the academic axis is located). It has been proposed that one of the wavelengths of the line make the surface set K 7) 〇 By eliminating, it is more necessary for the light to be deflected from the cause of orthogonal polarization 200537167 to add an optical anisotropic layer. A method for reducing the phase difference of a protective film 'There are references (refer to Patent Documents 8 and 9) that use a film containing norbornene, or a film containing a resin having an imine group and a resin having a phenyl group and a nitrile group. Comes as a protective film. However, these synthetic resins are generally hydrophobic, have problems with adhesion to polarizing films, and are easily peeled. Furthermore, in the step of laminating the protective films on both sides of the polarizing film, there is a problem in that it is impossible to expect that moisture penetrates from the polarizing film and there is a problem that the polarization performance is deteriorated due to the residual moisture inside. [Patent Document 1] JP 9-80424 [Patent Document 2] JP 10-54982 [Patent Document 3] JP 1 -202323 [Patent Document 4] JP 9-292522 [Patent Document 5] Japanese Patent Application Laid-Open No. 1 1-1 33408 [Patent Literature 6] Japanese Patent Application Laid-open No. 1 1 -3052 1 [Patent Literature 7] Japanese Patent Application Laid-Open No. 10_30729 [Japanese Patent Application No. 8] Japanese Patent Laid-Open No. 2004-464 [Patent Document 9] Japanese Unexamined Patent Publication No. 2004-4642 [Summary of the Invention] The object of the present invention is to provide an in-plane switching (IPS) type liquid crystal display device. With a simple structure, not only the display level And can significantly improve the viewing angle. The means to solve the aforementioned problems are as follows. That is, the present invention is (1) a liquid crystal display device in which a first polarizing film, a first retardation region and a second retardation region, a first substrate, a liquid crystal layer, a second substrate, and a first polarizer are arranged in the following order. The liquid crystal layer is made of 2 polarizing films in black display 200537167; / the alignment of the liquid crystal molecules is parallel to the surfaces of the aforementioned pair of substrates, wherein the retardation 値 Re in the plane of the 2nd retardation region is 100 nm or less, and The retardation 値 Rth in the thickness direction is 50 nm to 200 nm. The refractive index anisotropy of the first retardation region is negative and the optical axis is substantially parallel to the layer system. The retardation axis system of the first retardation region and the first polarized light The transmission axis of the film is orthogonal to the retardation axis direction of liquid crystal molecules during black display. (2) The liquid crystal display device according to (1), wherein Re of the first phase difference region is 50 nm to 400 nm. (3) The liquid crystal display device according to (1) or (2), wherein the second phase difference region is The late phase axis system is substantially orthogonal to the transmission axis of the first polarizing film. (4) The liquid crystal display device according to any one of (1) to (3), wherein at least one of the first phase difference region and the second phase difference region contains a discotic liquid crystal compound. (5) The liquid crystal display device according to any one of (1) to (4), further comprising a second polarizing film on the outer side of the second substrate. (6) The liquid crystal display device according to any one of (1) to (5), wherein a pair of protective films are disposed so as to sandwich the first polarizing film and / or the second polarizing film described above. In the protective film, the phase difference Rth in the thickness direction of the protective film near the liquid crystal layer side is 25 nm or less. (7) The liquid crystal display device according to any one of (1) to (6), wherein a pair of protective films are disposed to sandwich the first polarizing film and / or the second polarizing film, and the pair of protective films The protective film near the liquid crystal layer is a halogenated cellulose film or a norbornene-based film. (8) The liquid crystal display device according to (6), wherein a pair of protective films are disposed in such a manner as to sandwich the first polarizing film and / or the second polarizing film, and the pair protects 200537167: The protective film on the liquid crystal layer side is a halogenated cellulose film that satisfies the following (I) and (II). (I) 0SRe (630) S10, and | Rth (630) | $ 25 (II) I Re (400) —Re (700) | $ 10, and | Rth (400) -Rth (700) | $ 35 (Formula (I ), (II), Re (λ) represents the hysteresis (nm) in the plane of the wavelength λ nm, and Rth (λ) represents the wavelength; the hysteresis nm (nm) in the thickness direction of 1 nm 〇) ( 9) The liquid crystal display device according to (8), wherein the aforementioned tritiated cellulose film contains at least one of the following formulae (III) and (IV) to reduce the hysteresis of the tritiated cellulose film in the film thickness direction: Of compounds. (III) (Rth (A)-Rth (0)) / A ^-1.0 (IV) 0.01 SAS 30 (In the formulae (III) and (IV), Rth (A) means a compound containing A% to reduce Rth Rth (nm) of the tritiated cellulose film, Rth (0) means Rth (nm) of the tritiated cellulose film which does not contain the compound which reduces Rth (λ), and A is relative to the fiber Plain film raw material polymer, reducing the weight (%) of the compound (R) (again). (10) The liquid crystal display device according to (8) or (9), in which the aforementioned halogenated cellulose film has a degree of substitution at the fluorene group The tritiated cellulose having a concentration of 2.85 to 3.00 contains at least one compound capable of reducing Rth (λ), and the compound has a solid content of 0.001 to 30% by mass relative to the solid content of the tritiated cellulose. (11) The liquid crystal display device according to any one of (8) to (10), wherein the halogenated cellulose film contains at least one kind that can reduce the halogenated cellulose film | Rth (400) — Rth (700) A compound of 0.001 to 30% by mass based on the solid content of the tritiated cellulose. -10- 200537167 · (1 2) The liquid crystal display device according to any one of (8) to (1 1), wherein the thickness of the aforementioned cellulose cellulose film is 10 to 120 microns. (13) The liquid crystal display device according to any one of (8) to (12), wherein the halogenated cellulose film contains at least one kind of reduced Rth (λ) and an octanol-water partition coefficient (L 〇g Ρ 値) The compound is 0 to 7 and the compound has a solid content of 0.01 to 30% by mass based on the solid content of the tritiated cellulose. (14) The liquid crystal display device according to (13), which contains a compound that can reduce the aforementioned RthU) and an octanol-water partition coefficient (Log P 値) of 0 to 7, and φ is selected from the following general formula (13) Or it is at least one of the compounds represented by the following general formula (18). [Chemical Formula 1] General Formula (13)
(通式(13)中,R11係表示烷基或芳基,R12及R13係表示 各自獨立之氫原子、烷基或是芳基。) [化學式2] 通式(18) OR16 R14—C-N-R15 (通式(18)中,R14係表示烷基或芳基,R15及R16係表示 各自獨立之氫原子、烷基或是芳基。) (15)如(8)〜(14)中任一項之液晶顯示裝置,其中前述醯 -11- 200537167 ^ % ·- 化纖維素膜在波長380 η m之分光穿透率爲45〜95 %, 波長350 nm之分光穿透率爲10%以下。 (16) 如(8)〜(15)中任一項之液晶顯示裝置,其中在 且90%RH的環境下對前述醯化纖維素膜處理240小味 醯化纖維素膜之Rth( λ )的變化量爲I5nm以下。 (17) 如(8)〜(16)中任一項之液晶顯示裝置,其中在 的環境下對前述醯化纖維素膜處理240小時後,醯化 素膜之Rth( λ )的變化量爲15nm以下。 p (1 8)如(8 )〜(1 6)中任一項之液晶顯示裝置,其中前 化纖維素膜之膜面內遲滯値係係滿足下述式。 | Re(n) - Re(0) | /η ^ 1.0 (式中 Re(n)係表示 η(%)延伸之膜面內正面遲 (nm),Re(0)係表示未延伸之膜面內正面遲滯値(nm)。 (19) 如(8)〜(16)中任一項之液晶顯示裝置,其中前 化纖維素膜在該膜面內,於對製造該膜之機械的該膜 方向(MD方向)垂直之方向(TD方向)具有遲相軸。 (20) 如(8)〜(16)中任一項之液晶顯示裝置,其中前 化纖維素膜在該膜面內,在具有遲相軸之方向延伸時 遲滯値變小,在與具有遲相軸之方向之垂直方向延伸 面遲滯値變大。 (21) 如(1)〜(20)中任一項之液晶顯不裝置,其中在 液晶胞之一對基板中較接近觀察側之相反側基板 置,配置有前述第1相位差區域及前述第2相位差區 (22) 如(1)〜(21)中任一項之液晶顯示裝置’其中在 液晶胞之一對基板中較接近觀察側基板的位置,配置 且在 6 0°C ί後, 8 0°C 纖維 述醯 滯値 ) 述醯 搬運 述醯 正面 時正 前述 的位 域。 前述 有前 -12- 200537167 / 述第1相位差區域及前述第2相位差區域。 ' 依以下順序配置第1偏光膜、第1相位差區域及第2 相位差區域、第1基板、液晶層、第2基板、以及苐2偏 光膜等,在黑色顯示時該液晶層之液晶分子的配向係與前 述一對基板之表面平行之液晶顯示裝置,藉由使第2相位 差區域面內之遲滯値Re爲100nm以下,而且厚度方向之 遲滯値Rth爲50nm〜200nm,第1相位差區域之折射率異 方向性係負的且光軸對於層面係實質上平行,該第1相位 φ 差區域的遲相軸係與第1偏光膜的透光軸及黑色顯示時之 液晶分子的遲相軸方向正交之配置,絲毫未變更正面方向 之特性,可以改善由斜方位角方向觀看時因爲2片偏光板 之吸收軸從90度偏離而發生之對比降低、特別是可以改 善從45度斜方向之對比降低。而且,藉由使偏光膜之保 • * . 護膜的Rth爲25nm以下,可以更加實現對比的提升。 【實施方式】 以下,依順序說明本發明之液晶顯示器之一實施形態 φ 及其構成組件。又,在本說明書使用之「〜」所表示之數 値範圍,其意思係含有「〜」之前後所述之數値作爲下限 値及上限値範圍。 在本說明書,Re、Rth係各自表示在波長5 50nm時之內 面的遲滯値及厚度方向的遲滯値。Re係在KOBRA 21 AD Η (王子§十測機器(株)製)於0吴法線方向入射波長5 5 0 n m的光 來進行測定。Rth係KOB 21 ADH依據前述Re、以面內的 遲相軸(藉由KOBRA 21ADH來判斷)作爲傾斜軸(旋轉軸) 自對膜法線方向+40度傾斜方向入射波長5 5 0nm的光所測 -13- 200537167 / 定之遲滯値、以及以面內的遲相軸作爲傾斜軸(旋轉軸)自 ' 對膜法線方向—40度傾斜方向入射波長5 5 Onm的光所測 定之遲滯値,合計三個方向所側定得到之遲滯値來算出。 在此,平均折射率的假設値可以使用聚合物手冊(】〇 Η N WILEY&SONS, INC)、各種光學膜目錄的値。平均折射率 之値並非已知時可以使用折射計測定。主要光學膜之平均 折射率之値例示如下:醯化纖維素(1 · 4 8 )、環烯烴聚合物 (1.5 2)、聚碳酸酯(1.59)、聚甲基丙烯酸酯(1.49)、聚苯乙 p 烯(1.5 9)。輸入此等平均折射率假定値和膜厚時,KOBRA 21 ADH 可以算出 nx、ny、nz。 又,Rth符號係以面內的遲相軸作爲傾斜軸(旋轉軸)自 對膜法線方向之+20度傾斜方向入射波長5 50nm的光進行 測定所得到的遲滯値,大於Re時爲正,小於Re時爲負。 但是I Rth/Re |爲9以上的試樣係使用具有旋轉自由台座 之偏光顯微鏡,將面內的進相軸作爲傾斜軸(旋轉軸)而在 對膜法線方向之+ 4 0度傾斜的狀態下’可以使用偏光板的 測試板來決定,當試料的遲相軸與膜平面平行時爲正, β 又,當遲相軸在膜之厚度方向時爲負。 在本說明書,「平行」、「正交」之意思爲精確角度 土 10度的範圍。此範圍與精確角度的誤差爲 ±5度以下爲 佳,±2度以下爲更佳。又,「遲相軸」之意思係最大折射 率的方向。而且折射率及相位差的測定波長若沒有特別敘 述時,爲可見光域λ =5 5 Onm之値。 在本說明書之「偏光板」’未特別事先告知時,所採 用的意思包含有裁斷(在本說明書「裁斷」包含「貫穿」 -14- 200537167 / 及「切下」等)成爲長偏光板、以及可以組裝成液晶裝置 ^ 大小之偏光板等兩者。又,在本說明書區分爲「偏光膜」 及「偏光板」,其中「偏光板」之意思係指在「偏光膜」 的至少一面具有保護該偏光膜的透明保護膜之積層體。 又,保護膜之構成亦可以兼作爲其他的膜,係指例如該保 護膜之構成亦可以兼作爲相位差區域。 以下使用圖面來詳細說明本發明之實施形態。第1圖 係顯示本發明液晶顯示裝置之像素區域例子的模式圖。第 φ 2圖係本發明液晶顯示裝置之一實施形態的模式圖。 [液晶顯示裝置] 第2圖所示之液晶顯示裝置具有偏光膜8、20、和第1 相位差區域1 0、和第2相位差區域1 2、和基板1 3、17、 和液晶層15。偏光膜8、20係夾於各自之保護膜7a和7b、 以及19a和19b之間。 在第2圖之液晶顯示裝置,液晶胞係由基板1 3及1 7、 和夾於此等之間的液晶層1 5所構成。液晶層之厚度d(微 $ 米)和折射率異方向性△ η的積△ η · d在穿透模.式、未具 有彎曲構造之IPS型,以在0.2〜0.4微米的範圍爲最佳値。 因爲在該範圍白色顯示輝度高、黑色顯示輝度小,可以得 到明亮、對比高之顯示裝置。在基板1 3及1 7接觸液晶層 1 5之表面形成有配向膜(未圖示),使液晶分子之配向爲對 基板表面略平行,同時藉由對配向膜上所施加之擦拭處理 方向1 4及1 8等,在無施加電壓狀態或是低施加狀態下可 以控制液晶分子配向方向,可以決定遲相軸1 6的方向。 又,第2圖係表示擦拭方向爲平行,但是亦可以非平行。 -15- 200537167 或該 膜在 向’ 配角 光野 用視 使大 以擴 可了 , 爲 時, 係又 關 。 之向 中配 圖晶 如液 向制 方控 向來 配法 之束 板子 基離 在是 配或 • 1 t /|\ 角 傾 的 晶 液 之 膜 向 可 有 成 形 面 內 的 7 11 2 示 顯 未 中 是圖 13第 /\ 板極 基電 在之 , 壓 又電 。 加 佳施 爲子 度分 角晶 低液 以對 t)以 在第1圖,模式性顯示液晶層1 5之1像素區域中之液 晶分子的配向。第1圖係同時顯示相當於液晶層15之1 像素程度之極小面積區域中液晶分子的配向、在基板1 3 φ 及1 7的內面所形成配向膜之擦拭方向4、以及可以對在基 板1 3及1 7的內面所形成的液晶分子施加電壓之電極2及 3之模式圖。使用具有正介電異方向性之向列型液晶作爲 電場效果型液晶,在進行活動驅動時,在無施加電壓或是 低施加狀態時液晶分子配向方向爲5a及5b,此時可以得 到黑色顯示。在電極2及3之間施加電壓時,液晶分子按 照照電壓往6a及6b的方向變動其配向方向。通常係藉由 該狀態來進行明顯示。 φ 又,在第2圖,偏光膜8之穿透軸9之配置係與偏光膜 20之穿透軸2 1正交。第1相位差區域1 〇之遲相軸1 1係 與偏光膜8之穿透軸9及黑色顯示時之液晶層1 4中的液 晶分子的遲相軸方向1 5正交。 第2圖所顯示之液晶顯示裝置,偏光板8之構成係夾於 保護膜7a及7b之間,但是亦可以沒有保護膜7b。又,偏 光膜20亦夾於二片保護膜19a及19b之間,但是靠近液晶 層1 5側的保護膜亦可以沒有。配置保護膜7b及1 9a時, 該保護膜的厚度方向之相位差Rth以25 nm以下爲佳。 -16- 200537167 - 靠近保護膜7b及液晶層1 5側的保護膜1 9a以後述的醯 化纖維素爲佳。保護膜所使用光學異方向性(Re、Rth)小之 醯化纖維素,在波長63 0nm面內之遲滯値Re(63 0)爲10nm 以下(OS Re(6 3 0)S 10),而且膜厚方向之遲滯値Rth(630) 之絕對値25nm以下(丨Rth丨S 25nm)。以〇$ Re(6 3 0)S 5、 且 |Rth|S20nm 爲佳,以 0$Re(630)S2 、且 I Rth| S15nm 爲更佳。 而且,在本發明所使用之保護膜係波長色散較小的纖 φ 維素膜,| Re(400) — Re(700) | S 10、且丨 Rth(400)—(In the general formula (13), R11 represents an alkyl group or an aryl group, and R12 and R13 represent independent hydrogen atoms, alkyl groups, or aryl groups.) [Chemical Formula 2] Formula (18) OR16 R14—CN- R15 (In the general formula (18), R14 represents an alkyl group or an aryl group, and R15 and R16 represent each independently a hydrogen atom, an alkyl group, or an aryl group.) (15) As in any of (8) to (14) A liquid crystal display device according to one item, wherein the above-mentioned 醯 -11- 200537167 ^% ·-chemical cellulose film has a spectral transmittance of 45 to 95% at a wavelength of 380 η m and a spectral transmittance of a wavelength of 350 nm of 10% or less . (16) The liquid crystal display device according to any one of (8) to (15), wherein the aforementioned tritiated cellulose film is treated with an Rth (λ) of 240 small-odor tritiated cellulose film under an environment of 90% RH. The amount of change is 15 nm or less. (17) The liquid crystal display device according to any one of (8) to (16), wherein after the halogenated cellulose film is treated in the environment for 240 hours, the amount of change in Rth (λ) of the halogenated film is 15nm or less. p (1 8) The liquid crystal display device according to any one of (8) to (16), wherein the in-plane retardation system of the pre-cellulose cellulose film satisfies the following formula. Re (n)-Re (0) | / η ^ 1.0 (where Re (n) is the retardation (nm) on the surface of η (%) stretched film surface, and Re (0) is the unstretched film surface Internal surface hysteresis (nm). (19) The liquid crystal display device according to any one of (8) to (16), wherein the pre-cellulose cellulose film is in the film surface, and the film is opposed to the film-making machinery. The direction (MD direction) perpendicular to the direction (TD direction) has a late phase axis. (20) The liquid crystal display device according to any one of (8) to (16), wherein the pre-cellulose cellulose film is in the film surface, The hysteresis 値 becomes smaller when extending in the direction with the slow phase axis, and the hysteresis 値 becomes larger in the extending direction perpendicular to the direction with the slow phase axis. (21) If the liquid crystal of any one of (1) to (20) shows A device in which one of the liquid crystal cell pair substrates is located on the opposite side of the substrate closer to the observation side, and the first phase difference region and the second phase difference region (22) such as any of (1) to (21) are arranged The liquid crystal display device of the item 'wherein one of the pair of liquid crystal cells is located closer to the substrate on the observation side, and it is arranged at 60 ° C, and the fiber is described as hysteresis at 80 ° C) The time is the aforementioned bit field. The foregoing includes the first -12-200537167 / the first phase difference region and the second phase difference region. '' The first polarizing film, the first retardation region and the second retardation region, the first substrate, the liquid crystal layer, the second substrate, and the 苐 2 polarizing film are arranged in the following order, and the liquid crystal molecules of the liquid crystal layer are displayed in black In the liquid crystal display device whose alignment is parallel to the surfaces of the aforementioned pair of substrates, the retardation 値 Re in the plane of the second retardation region is 100 nm or less, and the retardation 厚度 Rth in the thickness direction is 50 nm to 200 nm. The refractive index anisotropy of the region is negative and the optical axis is substantially parallel to the layer system. The retardation axis system of the first phase φ difference region is related to the transmission axis of the first polarizing film and the retardation of liquid crystal molecules during black display. The arrangement of the orthogonal axis direction does not change the characteristics of the front direction at all, which can improve the reduction in contrast caused by the deviation of the absorption axis of the two polarizers from 90 degrees when viewed from the oblique azimuth angle, especially from 45 degrees. The contrast in the oblique direction decreases. In addition, by making the protection of the polarizing film • *. The Rth of the protective film be 25nm or less, the contrast can be further improved. [Embodiment] Hereinafter, an embodiment φ of a liquid crystal display of the present invention and its constituent elements will be described in order. In addition, the number 数 range indicated by "~" used in this specification means that the number 所述 described before and after "~" is included as the lower limit 値 and the upper limit 値 range. In this specification, Re and Rth each indicate a hysteresis 値 and a thickness 的 in a thickness direction at a wavelength of 5 to 50 nm. Re was measured at KOBRA 21 AD Η (manufactured by Toshiki Instruments Co., Ltd.) with a wavelength of 5 50 n m incident in the direction of the normal direction. Rth KOB 21 ADH is based on the aforementioned Re and uses the in-plane retardation axis (determined by KOBRA 21ADH) as the tilt axis (rotation axis) from the normal direction of the film +40 degrees to the direction of the incident light at a wavelength of 5 50 nm Measure -13- 200537167 / fixed hysteresis chirp, and use the in-plane retardation axis as the tilt axis (rotation axis) to measure the hysteresis chirp measured by incident light with a wavelength of 5 5 Onm in the direction of the film's normal direction—40 degrees tilt, Calculate the hysteresis 定 determined in three directions in total. Here, the assumption of the average refractive index 値 can be used in the polymer handbook (] WIL N WILEY & SONS, INC), 目录 of various optical film catalogs. When the average refractive index is not known, it can be measured using a refractometer. Examples of the average refractive index of the main optical film are as follows: halogenated cellulose (1.48), cycloolefin polymer (1.5 2), polycarbonate (1.59), polymethacrylate (1.49), polybenzene Ethylene (1.5 9). KOBRA 21 ADH can calculate nx, ny, and nz when these average refractive indices are assumed to be 値 and film thickness. In addition, the Rth symbol is a hysteresis 得到 obtained by measuring light incident at a wavelength of 50 nm to +20 degrees of the normal direction of the film with the in-plane retardation axis as the inclination axis (rotation axis). , Negative if less than Re. However, a sample with an I Rth / Re | of 9 or more is a polarizing microscope with a rotating free stand. The phase advance axis is used as the tilt axis (rotation axis) and the tilt is + 40 degrees to the film normal direction. In the state, it can be determined by using a test plate of a polarizing plate. When the retardation axis of the sample is parallel to the film plane, it is positive, and when the retardation axis is in the thickness direction of the film, it is negative. In this specification, "parallel" and "orthogonal" mean the precise angle range of 10 degrees. The error between this range and the precise angle is preferably ± 5 degrees or less, and more preferably ± 2 degrees or less. The "late axis" means the direction of the maximum refractive index. In addition, if the measurement wavelength of the refractive index and the phase difference is not specifically described, the visible light range is λ = 5 5 Onm. When the "polarizing plate" in this manual is not notified in advance, the meaning used includes cutting ("cutting" in this manual includes "through" -14-200537167 / and "cut off" etc.) to become a long polarizing plate, And can be assembled into a polarizer of the size of a liquid crystal device. In this specification, the polarizing film is divided into a “polarizing film” and a “polarizing plate”, and the “polarizing plate” means a laminated body having a transparent protective film for protecting the polarizing film on at least one side of the “polarizing film”. The constitution of the protective film may also serve as another film, and it means that, for example, the constitution of the protective film may also serve as a retardation region. Hereinafter, embodiments of the present invention will be described in detail using drawings. Fig. 1 is a schematic diagram showing an example of a pixel area of a liquid crystal display device of the present invention. Fig. 2 is a schematic diagram of an embodiment of a liquid crystal display device of the present invention. [Liquid crystal display device] The liquid crystal display device shown in FIG. 2 includes polarizing films 8, 20, and a first retardation region 10, and a second retardation region 1, 2, a substrate 1, 3, 17, and a liquid crystal layer 15. . The polarizing films 8, 20 are sandwiched between the respective protective films 7a and 7b, and 19a and 19b. In the liquid crystal display device of FIG. 2, the liquid crystal cell system is composed of substrates 13 and 17 and a liquid crystal layer 15 sandwiched therebetween. The product of the thickness d (micrometers) of the liquid crystal layer and the refractive index anisotropy Δ η Δ d is in the transmission mode. IPS type without a curved structure, preferably in the range of 0.2 to 0.4 microns value. In this range, a white display has a high luminance and a black display has a low luminance, so that a bright and high-contrast display device can be obtained. An alignment film (not shown) is formed on the surfaces of the substrates 1 3 and 17 that contact the liquid crystal layer 15 so that the alignment of the liquid crystal molecules is slightly parallel to the surface of the substrate. At the same time, the wiping treatment direction 1 applied to the alignment film 1 4 and 18 can control the alignment direction of the liquid crystal molecules in the state of no applied voltage or low applied state, and can determine the direction of the late phase axis 16. The second figure shows that the wiping direction is parallel, but it may be non-parallel. -15- 200537167 Or the film is widened to the supporting role of the light field. The orientation of the crystal in the direction of the liquid crystal system is controlled by the direction of the beam. The base of the beam is in the phase of the crystal or • 1 t / | \ The angle of the crystal liquid film can be displayed in the forming surface. 7 11 2 In the figure, the plate electrode is shown in Figure 13, and the voltage is charged. Add Jiashi as the sub-degree angle of the low-temperature liquid crystal to t). In Fig. 1, the alignment of liquid crystal molecules in the 15-pixel region of the liquid crystal layer is shown schematically. Figure 1 shows the alignment of liquid crystal molecules in a very small area equivalent to 1 pixel of the liquid crystal layer 15 at the same time, the wiping direction 4 of the alignment film formed on the inner surface of the substrate 1 3 φ and 17, and can be aligned on the substrate Schematic diagrams of electrodes 2 and 3 for applying voltage to liquid crystal molecules formed on the inner surfaces of 13 and 17. When nematic liquid crystals with positive dielectric anisotropy are used as electric field effect liquid crystals, the orientation of liquid crystal molecules is 5a and 5b when no voltage is applied or in a low applied state during active driving. At this time, a black display can be obtained. . When a voltage is applied between the electrodes 2 and 3, the liquid crystal molecules change their alignment directions in the directions of 6a and 6b according to the voltage. This state is usually used for clear display. φ In FIG. 2, the arrangement of the transmission axis 9 of the polarizing film 8 is orthogonal to the transmission axis 21 of the polarizing film 20. The retardation axis 11 of the first retardation region 10 is orthogonal to the retardation axis 15 of the liquid crystal molecules 14 in the liquid crystal layer 14 of the polarizing film 8 and the liquid crystal layer 14 during black display. In the liquid crystal display device shown in Fig. 2, the structure of the polarizing plate 8 is sandwiched between the protective films 7a and 7b, but the protective film 7b may not be provided. The polarizing film 20 is also sandwiched between the two protective films 19a and 19b, but the protective film on the liquid crystal layer 15 side may not be required. When the protective films 7b and 19a are arranged, the phase difference Rth in the thickness direction of the protective film is preferably 25 nm or less. -16- 200537167-It is preferable that the protective film 19a which is close to the protective film 7b and the liquid crystal layer 15 side will be described later. The hysteresis cellulose with a small optical anisotropy (Re, Rth) used in the protective film has a retardation within a plane of a wavelength of 63 0 nm. Re (63 0) is 10 nm or less (OS Re (6 3 0) S 10), and The hysteresis in the film thickness direction is absolute of Rth (630) and less than 25nm (丨 Rth 丨 S 25nm). 〇 $ Re (6 3 0) S 5 and | Rth | S20nm are more preferable, and 0 $ Re (630) S2 and I Rth | S15nm are more preferable. In addition, the protective film used in the present invention is a fiber φ-dimensional element film with a small wavelength dispersion, | Re (400) — Re (700) | S 10, and Rth (400) —
Rth(700) | S 35 。以 | Re(400) — Re(700) | S 5 、且 I Rth(400) — Rth(700) | $ 25 爲佳,以 | Re(400)—Rth (700) | S 35. Re (400) — Re (700) | S 5 and I Rth (400) — Rth (700) | $ 25 is better, and | Re (400) —
Re(700)| S3、且 | Rth(400) - Rth(700)| $15 爲更佳。 又,保護膜7b及保護膜19a以10〜120微米爲佳,以 (30〜90)微米爲更佳。 第1相位差區域及第2相位差區域以液晶胞之位置爲基 準,可以配置於液晶胞與觀察側之偏光膜之間,亦可以配 φ 置於液晶胞與背面側偏光膜之間。 又,第2圖顯示具備上側偏光板及下側偏光板之穿透 模式顯示裝置的態樣,但是本發明亦可以是只具備一偏光 板的反射模式態樣,如此情況時,因爲液晶胞內的光路變 爲2倍,所以最佳△ n · d之値成爲上述的1 /2程度之値。 又,本發明所使用之液晶胞不限定於IPS模式,在黑色顯 示時若是液晶分子對前述一對基板的表面係實質上平行 配向之液晶顯示裝置時,都可以適合使用。此例子有鐵電 性液晶顯示裝置、反鐵電性液晶顯示裝置、以及EC B型液 -17- 200537167 / 晶顯示裝置。 本發明之液晶顯示裝置不限定是第2圖之構成,亦可 以含有其他構件。例如,可以在液晶層與偏光膜之間配置 彩色濾光片。又,亦可以在偏光膜的保護膜表面施行反射 防止處理或是硬塗(hard coat)處理。又,亦可以使用在構 成組件賦予導電性之物。又,使用作爲穿透型時,可以在 背面配置以冷陰極或是熱陰極螢光管、或是發光二極體、 場致發射元件、電發光元件、作爲光源之背光板。此時, φ 背光板之配置可以在第2圖之上側亦可以在下側。又,亦 可以在液晶層與背光板間配置反射型偏光板或擴散板、稜 鏡片或導光板。 又,如上述,本發明之液晶顯示裝置可以是反射型, 此時,偏光板可以只在觀察側配置1片,在液晶胞背面或 是液晶胞的下側基板的內面配置反射膜。當然亦可以在液 晶胞觀察側設置使用述光源之前光板。 本發明之液晶顯示裝置含有畫像直視型、畫像投影 φ 型、光變調型等。本發明之態樣,以應用於使用如TFT或 MIM之3端子或是2端子半導體元件之主動式矩陣液晶顯 示裝置特別有效。當然,應用於被稱爲時分割驅動之被動 式矩陣液晶顯示裝置之態樣亦有效。 以下詳細說明本發明之液晶顯示裝置可以使用之種種 組件的較佳光學特性、組件所使用之材料、以及其製造方 法等。 [第1相位差區域] 本發明配置有折射率異方向性爲負、光軸對層面係實 -18- 200537167 •- 質上平行之第丨相位差區域,係以該第1相位差區域之遲 相軸與第1偏光膜的穿透軸及黑色顯示時液晶分子的遲相 軸方向正交之方式配置。前述第1相位差區域只要是具有 前光學特性時,沒有特別限定其材料及形態。例如,在由 複折射聚合物膜構成之相位差膜、以及透明支撐體上,藉 由塗布或是轉印低分子或是高分子液晶性化合物所形成 之具有相位差層之相位差膜等都可以使用。又,亦可以將 各種層疊起來使用。 I 第1相位差區域係以其遲相軸與黑色顯示時之液晶分 子的遲相軸方向正交之方式配置。爲了有效地減少斜方向 之漏光,第1相位差區域之Re以50nm〜400nm爲佳,以 80nm〜250nm爲更佳,以llOnm〜210nm爲最佳。 <具有複折射聚合物膜之第1相位差區域> 由具有上述光學特性之複折射聚合物所構成之相位差 膜,藉由延伸高分子膜而可以容易地形成。高分子膜之材 料最好是折射率異方向性爲負的。折射率異方性爲負的聚 | 合物可以舉出的有苯乙烯系聚合物。苯乙烯系聚合物可以 大致區分爲:苯乙烯或是苯乙烯衍生物之單獨聚合物;苯 乙烯或是苯乙烯衍生物與其他單體之共聚物;苯乙烯或是 苯乙烯衍生物與其他單體所得到之接枝共聚物;以及該等 聚合物之混合物。 苯乙烯或是其衍生物之單獨聚合物的例子’可以舉出 的有苯乙烯、α -甲基苯乙烯、鄰甲基苯乙烯、對甲基苯 乙烯、對氯苯乙烯、鄰硝基苯乙烯、對胺基苯乙烯、對羧 基苯乙燒、對苯基苯乙嫌、及2,5 -—氯苯乙嫌之單獨聚合 -19- 200537167 •- 物。苯乙烯或是苯乙烯衍生物與其他單體之共聚物的例 子,可以舉出的有苯乙烯/丙烯腈共聚物、苯乙烯/甲基丙 烯腈共聚物、苯乙烯/甲基丙烯酸甲酯共聚物、苯乙烯/甲 基丙烯酸乙酯共聚物、苯乙烯/ 氯丙烯腈共聚物、苯乙 烯/丙烯酸甲酯共聚物、苯乙烯/丙烯酸乙酯共聚物、苯乙 烯/丙烯酸丁酯共聚物、苯乙烯/丙烯酸共聚物、苯乙烯/ 甲基丙烯酸共聚物、苯乙烯/丁二烯共聚物、苯乙烯/異戊 二烯共聚物、苯乙烯/順丁烯二酸酐共聚物、苯乙烯/衣康 | 酸共聚物、苯乙烯/乙烯基咔唑共聚物、苯乙烯/N-苯基丙 烯醯胺共聚物、苯乙烯/乙烯基吡啶共聚物、苯乙烯/乙烯 基萘共聚物、α-甲基苯乙烯/丙烯腈共聚物、甲基苯乙 烯/甲基丙烯腈共聚物、甲基苯乙烯/乙酸乙酯共聚物、 苯乙烯/ α-甲基苯乙烯/丙烯腈共聚物、苯乙烯/ α-甲基苯 乙烯/甲基丙烯腈共聚物、以及苯乙烯/ 甲基苯乙烯/甲 基丙烯酸甲酯共聚物、以及苯乙烯/苯乙烯衍生物共聚物。 苯乙烯系聚合物以使苯乙烯/丁二烯共聚合物與苯乙烯、 | 丙烯腈及 α -甲基苯乙烯組成群中至少一種接枝聚合而成 之共聚物爲佳。關於苯乙烯系聚合物,特開平4-97322號 公報及特開平6-67 1 69號公報有敘述。 前述相位差層在光學上係負的單軸性,具有與基板平 行的光軸,例如可以藉由單軸延伸上述苯乙烯系聚合物等 折射率異方向性爲負的聚合物來得到。 <具有由液晶性化合物所形成相位差層之第1相位差區 域> 由具有上述光學特性之液晶性化合物所形成之相位差 -20- 200537167 / 層,可以藉由在支撐體或是暫時支撐體上塗布含有負的複 折射之碟狀液晶化合物或是含有其之組成物,使液晶分子 垂直配向、使其光軸與基板大致水平後固定化來形成。在 暫時支撐體上形成時,可以藉由將該相位差層轉印在支撐 體上來製造。又,不只是一層相位差層,亦可以層疊複數 層相位差層來構成可以顯示上述光學特性之第1相位差區 域。又,亦可以使支撐體和相位差層之積層體整體滿足上 述光學特性之方式來構成第1相位差區域。 > <碟狀液晶性化合物> 本發明可以使用各種文獻(C.Destirade等人,Mol. Crysr. Liq. Cryst·,vol· 71,page 111(1981);曰本化學會 編、季刊化學總說、No. 22、液晶化學、第5章、第10章 第 2 節(1994); B. Kohne 等人,Angew.Chem.Soc.Chem.Re (700) | S3, and | Rth (400)-Rth (700) | $ 15 is even better. The protective film 7b and the protective film 19a are preferably 10 to 120 microns, and more preferably (30 to 90) microns. The first phase difference region and the second phase difference region are based on the position of the liquid crystal cell, and can be arranged between the liquid crystal cell and the polarizing film on the observation side, or φ can be placed between the liquid crystal cell and the polarizing film on the back side. In addition, FIG. 2 shows a state of a transmission mode display device including an upper polarizing plate and a lower polarizing plate. However, the present invention may also be a reflection mode with only one polarizing plate. In this case, because the liquid crystal cell The optical path of the lens is doubled, so the optimal value of Δ n · d becomes a value of about ½ of the above. The liquid crystal cell used in the present invention is not limited to the IPS mode, and any liquid crystal display device in which liquid crystal molecules are aligned substantially parallel to the surface of the pair of substrates in black display can be suitably used. This example includes a ferroelectric liquid crystal display device, an antiferroelectric liquid crystal display device, and an EC B-type liquid -17-200537167 / crystal display device. The liquid crystal display device of the present invention is not limited to the structure shown in Fig. 2, and may include other members. For example, a color filter may be disposed between the liquid crystal layer and the polarizing film. Further, the surface of the protective film of the polarizing film may be subjected to a reflection prevention treatment or a hard coat treatment. It is also possible to use a material that imparts conductivity to a component. When used as a transmissive type, a cold cathode or hot cathode fluorescent tube, or a light emitting diode, a field emission element, an electroluminescent element, and a backlight as a light source can be arranged on the back surface. At this time, the arrangement of the φ backlight plate may be on the upper side or the lower side in FIG. 2. Further, a reflective polarizing plate, a diffusion plate, a prism sheet, or a light guide plate may be disposed between the liquid crystal layer and the backlight plate. As described above, the liquid crystal display device of the present invention may be a reflective type. In this case, a polarizing plate may be arranged only on the observation side, and a reflective film may be arranged on the back surface of the liquid crystal cell or the inner surface of the lower substrate of the liquid crystal cell. Of course, a light plate before using the light source can also be provided on the liquid crystal cell observation side. The liquid crystal display device of the present invention includes a portrait direct-view type, a portrait projection φ type, and a light modulation type. Aspects of the present invention are particularly effective when applied to an active matrix liquid crystal display device using a 3-terminal or 2-terminal semiconductor element such as a TFT or MIM. Of course, the aspect applied to a passive matrix liquid crystal display device called time division driving is also effective. In the following, preferred optical characteristics of the various components that can be used for the liquid crystal display device of the present invention, materials used for the components, and a manufacturing method thereof are described in detail. [First phase difference region] The present invention is configured with a negative refractive index anisotropy, and the optical axis is true to the plane. 18- 200537167 • The first phase difference region that is substantially parallel is based on the first phase difference region. The retardation axis is arranged so as to be orthogonal to the transmission axis of the first polarizing film and the retardation axis direction of the liquid crystal molecules during black display. The first phase difference region is not particularly limited in material and form as long as it has front optical characteristics. For example, on a retardation film composed of a birefringent polymer film and a transparent support, a retardation film having a retardation layer formed by coating or transferring a low-molecular or high-molecular liquid crystal compound is applied. can use. Various types can also be used by stacking them. I The first retardation region is arranged such that the retardation axis thereof is orthogonal to the retardation axis direction of the liquid crystal molecules during black display. In order to effectively reduce light leakage in the oblique direction, the Re of the first retardation region is preferably 50 nm to 400 nm, more preferably 80 nm to 250 nm, and most preferably 110 nm to 210 nm. < First retardation region having a birefringent polymer film > A retardation film composed of a birefringent polymer having the above-mentioned optical characteristics can be easily formed by stretching a polymer film. It is preferable that the material of the polymer film has negative refractive index anisotropy. Examples of the polymer having a negative refractive index anisotropy include a styrene-based polymer. Styrene polymers can be roughly divided into: styrene or styrene derivatives alone; styrene or copolymers of styrene derivatives and other monomers; styrene or styrene derivatives and other monomers Graft copolymers; and mixtures of these polymers. Examples of individual polymers of styrene or its derivatives' include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, p-chlorostyrene, and o-nitrobenzene Separate polymerization of ethylene, p-aminostyrene, p-carboxystyrene, p-phenylstyrene, and 2,5-chlorophenethylbenzene. Examples of styrene or copolymers of styrene derivatives and other monomers include styrene / acrylonitrile copolymers, styrene / methacrylonitrile copolymers, and styrene / methyl methacrylate copolymers. Polymer, styrene / ethyl methacrylate copolymer, styrene / chloroacrylonitrile copolymer, styrene / methyl acrylate copolymer, styrene / ethyl acrylate copolymer, styrene / butyl acrylate copolymer, benzene Ethylene / acrylic acid copolymer, styrene / methacrylic acid copolymer, styrene / butadiene copolymer, styrene / isoprene copolymer, styrene / maleic anhydride copolymer, styrene / Itaconic Acid copolymer, styrene / vinylcarbazole copolymer, styrene / N-phenylacrylamide copolymer, styrene / vinylpyridine copolymer, styrene / vinylnaphthalene copolymer, α-methyl Styrene / acrylonitrile copolymer, methylstyrene / methacrylonitrile copolymer, methylstyrene / ethyl acetate copolymer, styrene / α-methylstyrene / acrylonitrile copolymer, styrene / α -Methylstyrene / methacrylonitrile copolymer, and benzene Ethylene / methyl styrene / methyl methacrylate copolymer, and styrene / styrene derivative copolymers. The styrene-based polymer is preferably a copolymer obtained by graft-polymerizing at least one of a styrene / butadiene copolymer with styrene, | acrylonitrile, and α-methylstyrene. Regarding styrenic polymers, Japanese Unexamined Patent Publication No. 4-97322 and Japanese Unexamined Patent Publication No. 6-67 1 69 are described. The retardation layer is uniaxially optically negative and has an optical axis parallel to the substrate. For example, the retardation layer can be obtained by uniaxially stretching a polymer having negative refractive index anisotropy such as the styrene polymer. < A first retardation region having a retardation layer formed of a liquid crystal compound > A retardation of -20-200537167 / layer formed of a liquid crystal compound having the above-mentioned optical characteristics can be used on a support or temporarily The support is coated with a dish-shaped liquid crystal compound containing negative birefringence or a composition containing the same, and the liquid crystal molecules are aligned vertically, and the optical axis of the liquid crystal is substantially horizontal with the substrate, and the support is formed. When it is formed on a temporary support, it can be produced by transferring the retardation layer to the support. Moreover, not only one retardation layer but also a plurality of retardation layers may be laminated to form a first retardation region capable of displaying the above-mentioned optical characteristics. In addition, the first retardation region may be configured such that the entire laminated body of the support and the retardation layer satisfies the optical characteristics described above. < Disc-shaped liquid crystalline compound > Various documents can be used in the present invention (C. Destirade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981); ed. General Chemistry, No. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem.
Comm·,page 1 794( 1 98 5 ); J.Zhang 等人,J.Am. Chem. Soc·, v o 1 · 1 1 6,p a g e 2 6 5 5 ( 1 9 9 4))所述碟狀液晶性化合物。特開 平8 -272 84號公報有敘述碟狀液晶性化合物之聚合。 p 碟狀液晶性化合物,係以可以藉由聚合來固定之形式 含有聚合性基爲佳。例如,其構造可以考慮使聚合性基作 爲取代基來與碟狀液晶性化合物的圓盤狀核心結合,但 是,直接與圓盤狀核心結合時,聚合反應時不容易保持配 向狀態。因此’圓盤狀核心係以與聚合性基之間具有連結 基之構造爲佳。亦即’具有聚合性基之碟狀液晶性化合 物,以下述式所示之化合物爲佳。 D ( — L — P ) η 式中,D係圓盤狀核心,L爲二價的連結基,Ρ爲聚合 •21- 200537167 性基,η爲4〜12之整數。前述式中之圓盤狀核心(D)、二 價之連結基(L)及聚合性基(P)之較佳具體例各自爲特開 2001-4837 號公報所述之(D1)〜(D15) 、 (L1)〜(L25)、 (P1)~(P18),同公報所述之內容可以適合使用。 前述第1相位差區域係具有相位差層之態樣,該相位 差層係由實質上垂直配向之碟狀液晶性化合物形成,該相 位差層之遲相軸係以與黑色顯示時液晶分子的遲相軸方 向正交之方式配置。第1相位差區域之Re的調整,係藉 φ 由控制塗形成之碟狀液晶層的厚度來進行。又,有必要使 碟狀液晶性化合物實質上對膜面垂直(70〜90度範圍之平 均傾斜角)之方式來進行圓盤面的配向。亦可以使碟狀液 晶性化合物傾斜配向,亦可以使傾斜角慢慢地變化(混成 配向)。傾斜配向或是混成配向時,平均傾斜角都是以7 0 度〜90度爲佳,以75度〜90度爲更佳,以80度〜90度爲最 佳。 平均傾斜角比此更小時漏光分布變爲非對稱。 $ <具有相位差層之第1相位差區域的形成方法> 由碟狀液晶性化合物所形成之相位差層,可以藉由在 支撐體上形成之垂直配向膜上塗布含有碟狀液晶性化合 物、依照希望之下述聚合性引發劑、空氣界面垂直配向 劑、以及其他添加劑等之塗布液,進行垂直配向、固定該 配向狀態來形成。 調製液布液所使用之溶劑最好是使用有機溶劑。有機 溶劑之例子包含醯胺(例如N,N-二甲基甲醯胺)、亞颯(例 如二甲基亞颯)、雜環化合物(例如吡啶)、碳氫化合物(例 -22- 200537167 - 如苯、己烷)、鹵化烷基(例如氯仿、二氯甲烷)、酯(例如 乙酸甲酯、乙酸丁酯)、酮(例如丙酮、甲基乙基酮)、醚(例 如四氫呋喃、1,2·二甲氧基乙烷)。其中以鹵化烷基及酮爲 佳。亦可以並用二種類以上的有機溶劑。塗布液之塗布可 以藉由眾所周知的方法(例如擠壓塗布法、直接凹版塗布 法、逆凹版塗布法、模塗布法)來實施。 經過垂直配向之液晶性化合物,最好是維持、固定配 向狀態。固定化最好是藉由在液晶性化合物中導入的聚合 φ 性基(P)之聚合反應來實施。聚合反應係含有使用熱聚合引 發劑之熱聚合反應與使用光聚合引發劑之光聚合反應。其 中以光聚合反應爲佳。光聚合引發劑之例子包含α -羰基 化合物(美國專利2 3 6766 1號、同2 3 67670號之各說明書敘 述)、偶姻醚(美國專利244 8 828號說明書敘述)、α -烴取 代芳香族偶姻化合物(美國專利 277225 1 2號說明書敘 述)、多核苯醌化合物(美國專利3046 1 27號、同295 1 75 8 號之各說明書敘述)、三芳基咪唑二聚物和鄰胺基苯基酮 φ 之組合(美國專利3 5 49 3 67號敘述)、吖啶及啡阱化合物(特 開昭60- 1 05667號公報、美國專利423 985 0號說明書敘 述)、以及曙·二唑化合物(美國專利42 1 2970號敘述)。 光聚合引發劑的使用量,塗布液的固體成分爲〇.〇1〜20 質量%爲佳,以0.5〜5質量%爲更佳。爲了使碟狀液晶分子 產生聚合之光照射以使用紫外線爲佳。照射能量以 20mJ/cm2 〜50J/cm2 爲佳,以 1 00m J/cm2 〜800J/cm2 爲更佳。 爲了促進光聚合反應,亦可以在加熱條件下實施光照射。 含有前述光學異方向性層之第1相位差區域的厚度以 -23- 200537167 0.1〜10微米爲佳,以0.5〜5微米爲更佳,以1〜5微米爲最 佳。 <垂直配向膜> 爲了使液晶性化合物垂直配向於配向膜側,降低配向 膜的表面能量係重要的。具體上,係藉由聚合物之官能基 來降低表面能量,藉此來使液晶性化合物呈立起狀態。可 以降低配向膜表面能量官能基,氟原子及碳原子數爲.10 以上之烴基係有效的。爲了使氟原子或是烴基存在於配向 Φ 膜的表面,與其在聚合物之主鏈不如在側鏈導入氟原子或 是烴基爲佳。含氟聚合物以氟原子含有0.05〜80質量%之 比率爲佳,含有0.1〜70質量%之比率爲較佳,含有0.5〜65 質量%之比率爲更佳,含有1〜60質量%之比率爲最佳。烴 基係脂肪族基、芳香族基或是該等之組合。脂肪族基可以 是環狀、分支狀或是直鏈狀中任一種。脂肪族基以烷基(環 烷基亦可)或是烯基(環烯基亦可)爲佳。烴基亦可以含有如 鹵原子之不呈現強親水性的取代基。烴基之碳原子數以 10〜100爲佳,以10〜60爲更佳,以10〜40爲最佳。聚合物 的主鏈以含有聚醯亞胺構造或是聚乙烯醇構造爲佳。 聚醯亞胺通常係藉由四羧酸和二胺的縮合反應來合 成。亦可以使用二種類以上的四羧酸或是二種類以上的二 胺來合成相當於共聚物之聚醯亞胺。氟原子或烴基可以存 在於四羧酸起源之重複單位、亦可以存在於二胺起源之重 複單位、或是兩方之重複單位。在聚醯亞胺導入烴基時, ‘以在聚醯亞胺之主鏈或是側鏈形成類固醇構造爲特佳。存 在於側鏈之類固醇構造之相當於碳原子數1 0以上之烴 -24- 200537167 爾 Kf 基,具有使液晶化合物垂直配向之機能。在本說明書之類 * 固醇構造之意思,係環戊烷氫化菲環構造或是其環結合的 一部分在脂肪族環之範圍(無形成芳香族環之範圍)形成雙 鍵之環構造。 又,使液晶性化合物垂直配向之方法,可以適合使用 在聚乙烯醇、改質聚乙烯醇、或是聚醯亞胺之高分子中混 合有機酸之方法。混合的酸以使用羧酸、磺酸、胺基酸爲 佳。 _ 後述之空氣表面配合劑之中,可以使用呈現酸性之 物。又,亦可以使用4級銨鹽類,乃是較佳。其混合量相 對於高分子,以0.1質量%〜20質量%爲佳,以0.5質量%〜10 質量%爲更佳。 上述聚乙烯醇的皂化度以70〜100%爲佳,以80〜100%爲 更佳。聚乙烯醇的聚合度以100〜5 000爲佳。 使碟狀液晶性化合物配向時,配向膜最好是由側鏈具 有疏水性基作爲官能基聚合物構成。具體上官能基的種類 0 係按照液晶分子的種類及必要之配向狀態來決定。例如改 質聚乙烯醇之改質基可以藉由共聚合改質、鏈移動改質或 是嵌段聚合改質來導入。改質基的例子可以舉出的有親水 性基(羧酸基、磺酸基、膦酸基、胺基、銨基、醯胺基、 硫醇基等)、碳數10〜100個之烴基、氟原子取代之烴基、 硫醚基、聚合性基(不飽和聚合性基、環氧基、吖環丙烷 基等)、烷氧基甲矽烷基(三烷氧基、二烷氧基、一烷氧基) 等。此等改質聚乙烯醇化合物之具體例,可以舉出的有例 如在日本專利特開2000- 1 552 1 6號公報說明書中段落號碼 -25- 200537167 • 9 [0022]〜[0145]、同 2002-62426號公報說明書中段落號碼 [0018]〜[0022]所述之物等。 配向膜係使用在主鏈結合有交聯性官能基之具有側鏈 的聚合物、或是具有使液晶分子配向的機能、在側鏈含有 交聯性官能基的聚合物來形成,若使用含有多官能單體之 組成物在其上面形成光學異方向性層時,可以使配向膜中 的聚合物與在其上面所形成之光學異方向性層中的多官 能單體產生共聚合。結果,不只是多官能單體之間,在配 φ 向膜聚合物之間以及在多官能單體與配向膜單體之間亦 形成共價鍵,而堅強地結合配向膜與光學異方向性層。因 此藉由使用具有交聯性官能基之聚合物形成配向膜,可以 明顯地改善例如光學補償片之包含第1相位差區域之構件 的強度。配向膜聚合物之交聯性官能基係和多官能單體同 樣地以含有聚合性基爲佳。具體上可以舉出的有例如特開 2000- 1 552 1 6號公報說明書中段落號碼[〇〇80]〜[〇1 〇〇]所述 之物等。 0 配向膜聚合物除了上述交聯性官能基之外,亦可以使 用交聯劑來交聯。交聯劑包含醛、N-羥甲基、二鳄院衍生 物、藉由活性化羧基來作用之化合物、活性乙烯化合物、 活性鹵素化合物、異腭唑及二醛澱粉等。亦可以並用二種 類以上之交聯劑。具體上可以舉出的有例如特開 2 00 2-6 24 26號公報說明書中段落號碼[0023]〜[024]所述之 物等。以反應活性高的醛、特別是戊二醛爲佳。 交聯劑的添加量,相對於聚合物以〇 · 1〜2 0質量%爲丨圭, 以0 · 5〜1 5質量%爲更佳。配向膜之殘留未反應交聯劑的量 -26- 200537167 -- 以:L0質量%以下爲佳,以〇·5質量%以下爲更佳。藉由 此調節,即使在液晶顯示裝置長期使用配向膜,或是長 間放置於高溫高濕的環境下’亦可以不會發生縐紋而具 充分的耐久性。 配向膜基本上可以藉由在透明支撐體上塗布含有作 配向膜形成材料之上述聚合物、以及交聯劑之組成物後 加熱乾燥(使其交聯),進行擦拭處理來形成。如前述在 明支撐體上塗布後可以在任何時期進行交聯反應。使用 φ 聚乙烯醇之水溶性聚合物作爲配向膜形成材料時,塗布 以使用有消泡作用的有機溶劑(例如甲醇)和水之混合溶 爲佳。其比率爲質量比時水:甲醇爲0:1 00〜99:1爲佳, 0·. 100〜9 1:9爲更佳。藉此,可以抑制氣泡發生、明顯地 少配向膜、進而光學異方向性層表面之缺陷. 配向膜的塗布方法以旋塗法、浸塗法、簾塗布法、 壓塗法、棒塗布法、或是輥塗布法爲佳。以輥塗布爲特佳 又,乾燥後之膜厚以0.1〜10微米爲佳。加熱乾燥可以 I 20 °C〜1 lOt進行。爲了形成充分的交聯,以60 °C〜100 °C 佳,以80°C〜10(TC爲特佳。乾燥時間爲可以進行1分鐘〜 小時,以1分鐘〜30分鐘爲佳。pH以設定在所使用交聯 之最適當値爲佳,使用戊二醇時,pH以4.5〜5.5爲佳, 5爲特佳。 配向膜以設置在透明支撐體上爲佳。配向膜係如 述,可以在聚合物層交聯後藉由對表面進行擦拭來得到 前述擦拭處理可以應用在LCD液晶配向處理步驟廣 被採用的處理方法。亦即使用紙、紗布、氈、橡膠或是 如 時 有 爲 、 透 如 液 劑 以 減 擠 〇 在 爲 36 劑 以 上 〇 爲 耐 -27- 200537167 綸、聚酯纖維等以一定方向擦拭配向膜的表面來得到配向 之方法。通常,係藉由使用長度及粗細度平均之植毛布, 進行數次左右的擦拭來實施。 使碟狀液晶性化合物均一配向,通常以藉由擦拭處理 之垂直配向膜來控制配向方向爲佳,但是另一方面,棒狀 液晶性化合物的垂直配向最好不要進行擦拭處理。又,使 用配向膜來配向液晶性合物後,可以將維持於此配向狀態 之液晶性化合物固定,來形成光學異方向性層,亦可以只 Φ 有將光學異方向性層轉印在聚合物膜(或是透明支撐體) 上。 <空氣表面垂直配向劑〉 通常,液晶性化合物因爲在空氣表面側具有傾斜配向 的性質,爲了得到均勻且垂直配向狀態,在空氣表面側有 必要對液晶性化合均勻地進行垂直配向控制。爲了此目 的,最好是使用液晶塗布液中含有傾向存在於空氣表面 側、藉由其佔有空間效果或靜電效果來達成使液晶性化合 $ 物垂直配向之作用的化合物,來形成相位差膜爲佳。使液 晶性化合物垂直配向之作用,在碟狀液晶化合物時,此作 用相當於減少導向板的傾斜角度、亦即導向板與塗布液晶 空氣側表面所構成角度。可以減少碟狀液晶分子對導向板 的傾斜角度的化合物,最好是使用含有如順丁烯二醯亞胺 基之具有佔有體積效果之剛直性構造單位的聚合物。 又,可以使用日本專利特開2002-203 63號公報、特開 2002- 1 29 1 62號公報所述之化合物作爲空氣表面配向劑。 又,特願2002-212100號說明書中段落號碼[〇〇72]〜[0075]、 -28- 200537167 特願2002-262239號說明書中段落號碼[0037]〜[0039]、特 願 2003 -9 1 7 52號說明書中段落號碼[〇〇71]〜[007 8]、特願 2003-119959 號說明書中段落號碼[0052]〜[0054]、 [0065 ]〜[0066]、[0092]〜[0094]、特願 2003-330303 號說明 書中段落號碼[0028]〜[0030]、特願2004-003804號說明書 中段落號碼[0087]〜[0090]所述之事項亦可以適合應用於 本發明。又,藉由調配此等化合物,改善塗布性、抑制發 生不均勻或是收縮斑。 p 相對於液晶塗布液,空氣表面配向劑之使用量以0.0 5 質量%〜5質量%爲佳。又,使用氟系空氣表面配向劑時, 以1質量%以下爲佳。 <相位差層中之其他材料> 與上述液晶性化合物一起,並用可塑劑、表面活性劑、 聚合性單體等可以提升塗布膜的均勻性、膜的強度、液晶 性化合物的配向性等。此等原料以和液晶性化合具有相溶 性、不會妨礙配向爲佳。 φ 聚合性單體可以舉出的有自由基聚合性或是陽離子聚 合性的化合物。最好是使用多官能性自由基聚合性單體, 以含有上述聚合性基之具有與液晶化合物共聚合性之物 爲佳。可以舉出的有例如特開2002-296423號公報說明書 中的段落號碼[001 8]〜[0020]所述之物。上述化合物的添加 量相對於碟狀液晶性分子,通常是1〜50質量%的範圍,以 5〜30質量%的範圍爲佳。 表面活性劑可以舉出以往眾所周知的化合物,特別是 氟系化爲佳。具體上,可以舉出的有特開200卜3 30725號 -29- 200537167 , 公報說明書中段落號碼[0 0 2 8 ]〜[0 0 5 6 ]所述之物、特願 2003-295212號公報說明書中的段落號碼[0069]〜[0126]所 述之物。 與液晶性化合物並用之聚合物,以可以使塗布液增黏 爲佳。聚合物的例子可以舉出的有纖維素酯。纖維素酯之 較佳例子,可以舉出的有特開2000- 1 552 1 6號公報說明書 中段落號碼[0 1 7 8 ]所述之物。爲了不妨礙液晶性化合物的 配合,上述聚合物的添加量相對於液晶性分子,以〇. 1〜1 〇 φ 質量%的範圍爲佳,以0.1〜8質量%的範圍爲更佳。液晶性 化合之圓盤狀向列型液晶相-固相轉移溫度以70〜300°C爲 佳,以7 0〜1 7 0 °C爲更佳。 <支撐體> 在本發明可以在支撐體上形成由液晶性化合物所形成 之相位差層。支撐體以透明爲佳,具體上光穿透率以80% 以上爲佳。支撐體以波長色散性小的爲佳,具體上 R e 4 0 0 / R e 7 0 0之比以小於1 · 2爲佳。其中,以聚合物膜爲 $ 佳。透明支撐體亦可以兼作爲第2相位差區域、或是偏光 板保護膜。又,亦可以藉由透明支撐體和相位差層整體$ 構成第1相位差區域。支撐體之光學異方向性以較小爲 佳,面內遲滯値(R e)以2 0 n m以下爲佳,以1 〇 n m以下爲更; 佳,以5 n m以下爲最佳。又,兼作爲第2相位差區域時, 厚度方向之遲滯値Rth爲50nm〜200nm,以60nm〜150nm的 箪B圍爲更佳’以70ηπι〜130nm的fe圍爲最佳。又,兼作爲 偏光保護膜時,厚度方向之遲滯値Rth爲25nm以下,以 2 0nm以下爲更佳,以lOnm以下爲最佳。 -30- 200537167 •- 作爲支撐體之聚合物膜的例子,包含纖維素酯、聚碳 酸酯、聚颯、聚醚颯、聚丙烯酸酯、以及聚甲基丙烯酸酯 之膜。以纖維素酯膜爲佳,以乙醯纖維素膜爲更佳,以三 乙醯纖維素膜爲最佳。聚合物膜以以藉由溶劑流延法形成 爲佳。透明支撐體的厚度以20〜500微米爲佳,以40〜200 微米爲較佳。爲了改善透明支撐體與設置於其上面的層 (黏著層、垂直配向層膜或是相位差層)之黏著,亦可以在 透明支撐體上實施表面處理(例如發光放電處理、電暈放 φ 電處理、紫外線(UV)處理、火焰處理。亦可以在透明支撐 體上設置黏著層(打底層)。又,透明支撐體或長透明支撐 體爲了賦予在搬運步驟之滑動性,或是爲了防止捲取後裡 面與表面黏貼,以使用在支撐體的一面塗布一層聚合物層 (混合有固體成分比爲 5 %〜40%之平均粒徑爲大約 10~100nm的無機粒子)或是藉由與支撐體共流延之方式所 形成之物爲佳。 [第2相位差區域] $ 第2相位差區域的光學特性,在厚度方向的遲滯値爲Comm., Page 1 794 (1 98 5); J. Zhang et al., J. Am. Chem. Soc ·, vo 1 · 1 1 6, page 2 6 5 5 (1 9 9 4)) Liquid crystal compound. Japanese Patent Application Laid-Open No. 8-272 84 describes the polymerization of a discotic liquid crystalline compound. p The dish-like liquid crystal compound preferably contains a polymerizable group in a form which can be fixed by polymerization. For example, the structure can be considered as a substituent in which a polymerizable group is bonded to the disc-shaped core of the discotic liquid crystalline compound. However, when directly bonded to the disc-shaped core, it is difficult to maintain the alignment state during the polymerization reaction. Therefore, the 'disc-shaped core' has a structure having a linking group with a polymerizable group. That is, the dish-like liquid crystalline compound having a polymerizable group is preferably a compound represented by the following formula. D (— L — P) η In the formula, D is a disc-shaped core, L is a divalent linking group, and P is a polymerization group; 21-200537167, and η is an integer from 4 to 12. Preferred specific examples of the disc-shaped core (D), the divalent linking group (L), and the polymerizable group (P) in the aforementioned formulas are (D1) to (D15) described in Japanese Patent Application Laid-Open No. 2001-4837. ), (L1) to (L25), (P1) to (P18), the content described in the bulletin can be used appropriately. The first retardation region has a retardation layer formed of a dish-shaped liquid crystal compound that is substantially vertically aligned. The retardation axis of the retardation layer is similar to that of the liquid crystal molecules during black display. Arranged so that the direction of the late phase axis is orthogonal. The adjustment of Re in the first retardation region is performed by controlling the thickness of the disc-shaped liquid crystal layer formed by coating. In addition, it is necessary to perform the alignment of the disc surface so that the dish-like liquid crystalline compound is substantially perpendicular to the film surface (average inclination angle in the range of 70 to 90 degrees). The dish-like liquid crystalline compound can also be tilted and aligned, or the tilt angle can be changed slowly (mixed alignment). When tilt alignment or hybrid alignment, the average tilt angle is preferably 70 degrees to 90 degrees, more preferably 75 degrees to 90 degrees, and most preferably 80 degrees to 90 degrees. When the average tilt angle is smaller than this, the light leakage distribution becomes asymmetric. $ < Formation method of first retardation region having retardation layer > A retardation layer formed of a discotic liquid crystalline compound can be coated with a discotic liquid crystal by coating a vertical alignment film formed on a support The compound is formed by performing vertical alignment and fixing the alignment state according to a desired coating liquid such as a polymerizable initiator, an air interface vertical alignment agent, and other additives. An organic solvent is preferably used as a solvent for preparing the liquid cloth. Examples of the organic solvent include amidine (for example, N, N-dimethylformamide), fluorene (for example, dimethylmethane), heterocyclic compounds (for example, pyridine), and hydrocarbons (Example-22- 200537167- (Such as benzene, hexane), halogenated alkyl (such as chloroform, dichloromethane), esters (such as methyl acetate, butyl acetate), ketones (such as acetone, methyl ethyl ketone), ethers (such as tetrahydrofuran, 1, 2. Dimethoxyethane). Among them, halogenated alkyls and ketones are preferred. Two or more kinds of organic solvents may be used in combination. The coating liquid can be applied by a known method (for example, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, or a die coating method). It is preferred that the liquid crystal compound undergoes vertical alignment to maintain and fix the alignment state. The immobilization is preferably performed by a polymerization reaction of a polymerized φ-based group (P) introduced into the liquid crystal compound. The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. Among them, photopolymerization is preferred. Examples of the photopolymerization initiator include α-carbonyl compounds (described in the specifications of U.S. Patent No. 2, 3,766, 1 and 2,67,670), diethyl ether (described in the specification of U.S. Patent No. 244 8 828), and α-hydrocarbon substituted aromatic Family marriage compounds (described in US Pat. No. 277225 1 2), polynuclear benzoquinone compounds (described in US Pat. Nos. 3046 1 27 and 295 1 75 8), triarylimidazole dimers, and o-aminobenzene Combinations of ketones φ (described in US Patent No. 3 5 49 3 67), acridine and phenanthrene compounds (Japanese Patent Publication No. 60-1 05667, described in US Patent No. 423 985 0 0), and Shu · Diazole compounds (Described in US Patent 42 1 2970). The amount of the photopolymerization initiator used is preferably from 0.01 to 20% by mass, and more preferably from 0.5 to 5% by mass. In order to irradiate the dish-shaped liquid crystal molecules with polymerization light, ultraviolet rays are preferably used. The irradiation energy is preferably 20mJ / cm2 to 50J / cm2, and more preferably 100mJ / cm2 to 800J / cm2. In order to promote the photopolymerization reaction, light irradiation may be performed under heating conditions. The thickness of the first retardation region containing the optically anisotropic layer is preferably -23-200537167 0.1 to 10 microns, more preferably 0.5 to 5 microns, and most preferably 1 to 5 microns. < Vertical alignment film > In order to vertically align the liquid crystal compound to the alignment film side, it is important to reduce the surface energy of the alignment film. Specifically, the functional group of the polymer is used to reduce the surface energy, thereby bringing the liquid crystal compound into an upright state. Functional groups that can reduce the surface energy of the alignment film are effective for fluorine and hydrocarbon groups with a carbon number of .10 or more. In order for a fluorine atom or a hydrocarbon group to exist on the surface of the alignment film, it is better to introduce a fluorine atom or a hydrocarbon group into the side chain than in the main chain of the polymer. The fluorine-containing polymer preferably contains a fluorine atom at a ratio of 0.05 to 80% by mass, more preferably at a ratio of 0.1 to 70% by mass, more preferably at a ratio of 0.5 to 65% by mass, and at a ratio of 1 to 60% by mass. For the best. The hydrocarbon group is an aliphatic group, an aromatic group, or a combination thereof. The aliphatic group may be cyclic, branched, or linear. The aliphatic group is preferably an alkyl group (or a cycloalkyl group) or an alkenyl group (or a cycloalkenyl group). The hydrocarbon group may contain a substituent such as a halogen atom which does not exhibit strong hydrophilicity. The carbon number of the hydrocarbon group is preferably 10 to 100, more preferably 10 to 60, and most preferably 10 to 40. The polymer main chain preferably has a polyfluorene imine structure or a polyvinyl alcohol structure. Polyfluorene imine is usually synthesized by a condensation reaction of a tetracarboxylic acid and a diamine. It is also possible to use two or more types of tetracarboxylic acids or two or more types of diamines to synthesize polyfluorene imide equivalent to a copolymer. The fluorine atom or the hydrocarbon group may exist in a repeating unit of tetracarboxylic acid origin, may exist in a repeating unit of diamine origin, or both. When a polyimide is introduced with a hydrocarbon group, it is particularly preferable to use a steroid structure formed on the main chain or side chain of the polyimide. The Kf group, which is equivalent to a hydrocarbon having 10 or more carbon atoms in a steroid structure such as a side chain, has a function of vertically aligning a liquid crystal compound. For the purposes of this specification *, a sterol structure refers to a cyclopentane hydrogenated phenanthrene ring structure or a ring structure in which a part of the ring bond forms a double bond in the range of an aliphatic ring (the range where no aromatic ring is formed). The method of vertically aligning the liquid crystalline compound can be suitably used a method of mixing an organic acid with a polymer of polyvinyl alcohol, modified polyvinyl alcohol, or polyimide. The mixed acid is preferably a carboxylic acid, a sulfonic acid, or an amino acid. _ Among the air surface compounding agents mentioned later, acidic substances can be used. In addition, it is also possible to use grade 4 ammonium salts. The blending amount is preferably 0.1% to 20% by mass, and more preferably 0.5% to 10% by mass relative to the polymer. The saponification degree of the polyvinyl alcohol is preferably 70 to 100%, and more preferably 80 to 100%. The degree of polymerization of polyvinyl alcohol is preferably from 100 to 5,000. When the discotic liquid crystalline compound is aligned, the alignment film is preferably composed of a polymer having a hydrophobic group in a side chain as a functional group. Specifically, the type of the functional group 0 is determined according to the type of the liquid crystal molecule and the necessary alignment state. For example, the modified group of modified polyvinyl alcohol can be introduced by copolymerization modification, chain shift modification, or block polymerization modification. Examples of the modifying group include a hydrophilic group (carboxylic acid group, sulfonic acid group, phosphonic acid group, amine group, ammonium group, amidine group, thiol group, etc.), and a hydrocarbon group having 10 to 100 carbon atoms. Fluorine-substituted hydrocarbon groups, thioether groups, polymerizable groups (unsaturated polymerizable groups, epoxy groups, acryl propane groups, etc.), alkoxysilyl groups (trialkoxy, dialkoxy, Alkoxy) and so on. Specific examples of such modified polyvinyl alcohol compounds include, for example, paragraph number-25-200537167 • 9 in the specification of Japanese Patent Laid-Open No. 2000-155255216 [0022] ~ [0145], the same Items described in paragraph numbers [0018] to [0022] in the specification of 2002-62426. The alignment film is formed using a polymer having a side chain in which a crosslinkable functional group is bonded to the main chain, or a polymer having a function of aligning liquid crystal molecules, and a polymer having a crosslinkable functional group in a side chain. When the composition of the polyfunctional monomer forms an optically anisotropic layer thereon, the polymer in the alignment film and the polyfunctional monomer in the optically anisotropic layer formed thereon can be copolymerized. As a result, covalent bonds are not only formed between the polyfunctional monomers, but also between the polymer of the alignment film and between the polyfunctional monomer and the alignment film monomer, and the alignment film and optical anisotropy are strongly combined. Floor. Therefore, by forming an alignment film using a polymer having a crosslinkable functional group, for example, the strength of a member including a first retardation region in an optical compensation sheet can be significantly improved. The crosslinkable functional group system and the polyfunctional monomer of the alignment film polymer preferably contain a polymerizable group. Specific examples include those described in paragraphs [0080] to [〇1〇〇] in the specification of JP 2000-1552552 16. 0 In addition to the above-mentioned crosslinkable functional group, the alignment film polymer may be crosslinked using a crosslinker. Cross-linking agents include aldehydes, N-methylol, derivatives of Erguayuan, compounds acting by activating carboxyl groups, active ethylene compounds, active halogen compounds, isoxazole and dialdehyde starch. It is also possible to use two or more types of crosslinking agents in combination. Specific examples include those described in paragraphs [0023] to [024] in the specification of Japanese Patent Laid-Open No. 2 00 2-6 24 26 and the like. Highly reactive aldehydes, especially glutaraldehyde, are preferred. The amount of the cross-linking agent to be added is from 0.1 to 20% by mass relative to the polymer, and more preferably from 0.5 to 15% by mass. Amount of residual unreacted cross-linking agent of the alignment film -26- 200537167-Preferably: L0% by mass or less, more preferably 0.5% by mass or less. With this adjustment, even if the alignment film is used for a long time in the liquid crystal display device, or if it is left in a high-temperature and high-humidity environment for a long time, it can have sufficient durability without wrinkles. The alignment film can basically be formed by coating a transparent support with a composition containing the above-mentioned polymer as an alignment film-forming material and a cross-linking agent, followed by heating and drying (cross-linking), followed by wiping treatment. The cross-linking reaction can be performed at any time after coating on the support as described above. When a water-soluble polymer of φ polyvinyl alcohol is used as the alignment film forming material, it is preferable to apply a miscible mixture of an organic solvent (such as methanol) and water with a defoaming effect. When the ratio is mass ratio, water: methanol is preferably 0: 1 00 to 99: 1, and 0 ·. 100 to 9 1: 9 is more preferable. Thereby, it is possible to suppress the occurrence of bubbles, significantly reduce the defects of the alignment film, and further the surface of the optically anisotropic layer. The coating method of the alignment film is a spin coating method, a dip coating method, a curtain coating method, a pressure coating method, a rod coating method, Alternatively, roll coating is preferred. Roll coating is particularly preferred. The film thickness after drying is preferably 0.1 to 10 microns. Heating and drying can be performed at I 20 ° C ~ 1 lOt. In order to form sufficient cross-linking, 60 ° C to 100 ° C is preferred, 80 ° C to 10 ° C (TC is particularly preferred. Drying time is 1 minute to 1 hour, and 1 minute to 30 minutes is preferred. The pH is preferably It is preferable to set the most suitable cross-linking used. When using pentanediol, the pH is preferably 4.5 to 5.5, and 5 is particularly preferred. The alignment film is preferably set on a transparent support. The alignment film is as described, The above-mentioned wiping treatment can be obtained by wiping the surface after the polymer layer is cross-linked. It can be applied to the processing method widely used in LCD liquid crystal alignment processing steps. That is, using paper, gauze, felt, rubber, or as usual, Permeate the liquid agent to reduce the extrusion. Above 36 agents, the resistance is -27- 200537167. Polyamide, polyester fiber, etc. Wipe the surface of the alignment film in a certain direction to obtain the alignment method. Generally, the length and thickness are used. The average flocked cloth is wiped for several times. The dish-like liquid crystal compound is uniformly aligned, and it is usually better to control the alignment direction by a vertical alignment film with wiping treatment. It is best not to wipe the vertical alignment of the composition. After the liquid crystal composition is aligned using an alignment film, the liquid crystal compound maintained in this alignment state can be fixed to form an optically anisotropic layer. An optically anisotropic layer is transferred onto a polymer film (or a transparent support). ≪ Air surface vertical alignment agent> In general, liquid crystal compounds have the property of oblique alignment on the air surface side. In the vertical alignment state, it is necessary to uniformly control the vertical alignment of the liquid crystalline compound on the air surface side. For this purpose, it is best to use a liquid crystal coating solution that contains liquids that tend to exist on the air surface side and occupy space or electrostatic effects. The compound that achieves the effect of vertical alignment of the liquid crystal compound is preferable to form a retardation film. The effect of the vertical alignment of the liquid crystal compound is equivalent to the reduction of the inclination angle of the guide plate when the liquid crystal compound is dish-like That is, the angle formed by the guide plate and the air-side surface of the coated liquid crystal can reduce the dish-like liquid crystal molecules. As the compound of the inclination angle of the guide plate, a polymer containing a rigid structural unit having a volume-occupying effect such as a cis-butenediamido group is preferably used. In addition, Japanese Patent Laid-Open No. 2002-203 63 can be used. The compound described in JP 2002- 1 29 1 62 is used as an air surface alignment agent. In addition, paragraph numbers [00〇72] to [0075], -28-200537167 in JP 2002-212100 specification Paragraph numbers [0037] to [0039] in the specification No. -262239, paragraph numbers [00〇71] to [007 8] in the specification No. 2003-9-9 7 52, paragraph numbers in the specification No. 2003-119959 [ 0052] ~ [0054], [0065] ~ [0066], [0092] ~ [0094], paragraph numbers [0028] ~ [0030] in the Japanese Patent Application No. 2003-330303, paragraphs in the Japanese Patent Application No. 2004-003804 The matters described by numbers [0087] to [0090] can also be suitably applied to the present invention. In addition, by blending these compounds, the coating properties can be improved, unevenness and shrinkage spots can be suppressed. p The use amount of the air surface alignment agent with respect to the liquid crystal coating liquid is preferably from 0.05 mass% to 5 mass%. When a fluorine-based air surface alignment agent is used, it is preferably 1% by mass or less. < Other materials in the retardation layer > The use of plasticizers, surfactants, and polymerizable monomers together with the above-mentioned liquid crystal compounds can improve the uniformity of the coating film, the strength of the film, and the alignment of the liquid crystal compounds, etc. . These materials are preferably compatible with liquid crystalline compounds and do not interfere with alignment. Examples of the φ polymerizable monomer include compounds having a radical polymerizable property or a cationic polymerizable property. It is preferable to use a polyfunctional radical polymerizable monomer, and it is preferable that the polymerizable group contains a polymerizable group with a liquid crystal compound. Examples thereof include those described in paragraphs [001 8] to [0020] in the specification of Japanese Patent Application Laid-Open No. 2002-296423. The amount of the compound to be added is usually in the range of 1 to 50% by mass, and preferably in the range of 5 to 30% by mass relative to the dish-like liquid crystalline molecules. Examples of the surfactant include conventionally known compounds, and particularly a fluorine-based compound is preferred. Specifically, there can be cited JP 200B 3 30725-29-200537167, the articles described in paragraph numbers [0 0 2 8] to [0 0 5 6] in the specification of the bulletin, and Japanese Patent Application No. 2003-295212 Paragraph numbers [0069] to [0126] in the description. The polymer used in combination with the liquid crystalline compound is preferably one capable of thickening the coating liquid. Examples of the polymer include cellulose esters. Preferable examples of the cellulose ester include those described in paragraph number [0 1 7 8] of the specification of JP 2000-1552552. In order not to hinder the compounding of the liquid crystal compound, the amount of the polymer added is preferably in the range of 0.1 to 10% by mass relative to the liquid crystal molecules, and more preferably in the range of 0.1 to 8% by mass. Liquid crystal properties The compound-disc nematic liquid crystal phase-solid phase transition temperature is preferably 70 to 300 ° C, and more preferably 70 to 170 ° C. < Support > In the present invention, a retardation layer made of a liquid crystal compound can be formed on a support. The support is preferably transparent, and the specific light transmittance is preferably 80% or more. The support preferably has a small wavelength dispersion, and specifically, the ratio of R e 4 0 0 / R e 7 0 0 is preferably less than 1.2. Among them, polymer films are preferred. The transparent support may also serve as a second retardation region or a protective film for a polarizing plate. In addition, the first phase difference region may be constituted by the transparent support and the entire phase difference layer $. The optical anisotropy of the support is preferably small, and the in-plane hysteresis (R e) is preferably 20 nm or less, more preferably 100 nm or less, and most preferably 5 nm or less. In the case of the second retardation region, the hysteresis 方向 Rth in the thickness direction is 50 nm to 200 nm, and the 箪 B circumference of 60 nm to 150 nm is more preferable. The fe circumference of 70 nm to 130 nm is most preferable. In addition, when used also as a polarizing protective film, the retardation 値 Rth in the thickness direction is 25 nm or less, more preferably 20 nm or less, and most preferably 10 nm or less. -30- 200537167 •-Examples of polymer films for the support include films of cellulose esters, polycarbonates, polyfluorenes, polyethers, polyacrylates, and polymethacrylates. A cellulose ester film is preferred, an ethyl acetate cellulose film is more preferred, and a triacetate cellulose film is most preferred. The polymer film is preferably formed by a solvent casting method. The thickness of the transparent support is preferably 20 to 500 microns, and more preferably 40 to 200 microns. In order to improve the adhesion between the transparent support and the layer (adhesive layer, vertical alignment film or retardation layer) provided on it, a surface treatment (such as a light-emitting discharge treatment, a corona discharge φ discharge) can also be performed on the transparent support. Treatment, ultraviolet (UV) treatment, flame treatment. An adhesive layer (base layer) can also be provided on the transparent support. In addition, the transparent support or long transparent support is used to impart slippage during the transport step or to prevent curling. After taking it, the inner surface is adhered to the surface to apply a polymer layer on one side of the support (mixed with inorganic particles with a solid content ratio of 5% to 40% and an average particle diameter of about 10 to 100nm) or by supporting [Second phase difference region] $ The optical characteristics of the second phase difference region. The hysteresis in the thickness direction is
Rth 爲 50nm 〜200nm,以 60nm 〜150nm 爲較佳,以 70nm~130nm 爲更佳。又,第2相位差區域之遲相軸方向的配置若Re 爲20nm以下即可,沒有特別的限定,大於20nm時,與第 1偏光膜的穿透軸大致爲正交的方向而較佳。如此配置 時,例如第1相位差區域係含有由液晶性化合物所形成的 相位差層時,相位差層的厚度可以較薄。 前述第2相位差區域只要是具有前述光學特性,其材 料並有特別限制。例如,由複折射聚合物膜所構成的相位 -31- 200537167 ^ 差膜、以及藉由在透明支撐體上塗布或是轉印低分子或是 筒分子液晶性化合物來形成具有相位差層的相位差膜等 都可以使用。又,亦可以將各自層疊起來使用。 <具有複折射聚合物膜之第2相位差區域〉 由具有上述光學特性之複折射聚合物膜所構成的相位 差膜,可以容易地藉由單軸或是二軸延伸來形成高分子膜 (例如特開2003 - 1 3 962 1號公報、特開2002- 1 46045號公 報)。又,只流延而未延伸之能夠顯現光學特性的醯化纖 φ 維素類可以適合使用。如此醯化纖維素可以使用特開 2000-275434號公報、特開 200卜1 66 1 44號公報、特開 2002- 1 6 1 1 44號公報、特開2002-9054 1號公報所述之物。 高分子膜的材料,通常可以使用合成聚合物(例如聚碳酸 酯、聚礪、聚醚颯、聚丙烯酸酯、聚甲基丙烯酸酯、降萡 烯樹脂、醯化纖維素)。 <具有由液晶性化合所形成之相位差層之第2相位差區 域> ^ 由具有上述光學特性之液晶性化合物所形成之相位差 層,可以藉由在支撐體或是暫時支撐體上塗布含有對掌性 構造單位之棒狀膽固醇型液晶性組成物,使其螺旋軸之配 向大致垂直基板後、固定化來形成。在暫時支撐體形成前 述相位差層時,可以藉由轉印到支撐體來製造。又,使複 折射爲負的碟狀液晶性化合物水平配向(導向板對基板垂 直)、固定而成之相位差層,以及在基板上流延固定聚醯 亞胺高分子而成之相位差層等亦同樣地可以使用。而且, 不僅是一相位差層,亦可以層疊複數相位差層來構成能夠 -32- 200537167 顯現上述光學特性之第2相位差區域。又,亦可以採用使 支撐體與相位差層之積層體整體滿足上述光學特性之方 式來構成第2相位差區域。 <使碟狀液晶性化合物水平配向而成之相位差層的形 成方法> 含有由碟狀液晶性化合物所形成之相位差層之第2相 位差區域,可以藉由在形成於支撐體上之水平配向膜的上 面塗布含有碟狀液晶性化合物或是前述聚合性引發劑或 | 空氣表面水平配向劑(例如,特願2003 -3 8 8 308公報所述) 及前述之其他添加劑之塗布液來形成。用以使碟狀液晶層 水平配向之配向膜,可以使用有機酸或鹽等固體成分含有 量爲0.1質量%以下之聚乙烯醇、聚醯亞胺、聚醯胺、丙 烯酸等高分子配向膜。配向膜形成後可以進行擦拭,亦可 以不進行擦拭。 此外,可以使用之碟狀液晶性化合物的例子、塗布液 的調製所使用溶劑的例子、塗布方法的例子、聚合性引發 g 劑及聚合性單體等其他材料、以及形成相位差層所使用之 支撐體,係與在構成上述第1相位差區域之相位差層的說 明所例示之材料等相同。 <偏光膜用保護膜> 本發明的液晶顯示裝置所使用之偏光板保護膜中,靠 近液晶層側的保護膜以使用醯化纖維素膜爲佳。亦即,以 滿足下述(1)及(2)中任一條件之醯化纖維素膜作爲保護 膜、特別是使用作爲配置於靠近液晶層側之保護膜爲佳。 (1)滿足下述式(I)及(II)之醯化纖維素膜; -33- 200537167 黎 ,* (I) OS Re(630)S 10、且 I Rth(630) | ^ 25 ' (II) I Re(400) — Re(700) | S 10、且 | Rth(400) — Rth(700) I S 35 (上述式(I)及(II)中,Re(A )係表示在波長λ nm之正面遲滯 値(nm),Rth( λ )係表示在波長 λ nm之膜厚方向的遲滯値 (nm) 〇 ) (2)含有降低該醯化纖維素膜在膜厚度方向的Rth之化合 物,藉此Rth滿足下述式(III)及(IV)之醯化纖維素膜; (III) (Rth(A)— Rth(0))/AS— 1.0 _ (IV) 0.01 S AS30 (式(III)及(IV)中,Rth (A)係表示含有A%降低Rth的化合物 之醯化纖維素膜的 Rth(nm),Rth(O)係表示未含有降低 Rth(又)的化合物之該醯化纖維素膜的Rth(nm),A係表示 相對於纖維素膜原料聚合物,降低Rth(又)之化合物的重量 (%) ° ) 以下詳細說明本發明所使用之較佳醯化纖維素膜。 醯化纖維素原料之纖維素可以舉出的有棉花短絨、木 φ 漿(濶葉樹木槳、針葉樹木漿)等。可以使用由任何一種原 料纖維素所得到的醯化纖維素,亦可以依照情況來混合使 用。關於此等原料纖維素之詳述,例如可以使用塑膠材料 講座(17)纖維素樹脂(九澤、宇田著、日刊工業新聞社、197〇 年發行)、發明協會公開技報2001-1745(7頁〜8頁)所述之 纖維素,對前纖維素膜沒有特別限定。 醯化纖維素取代度 本發明可以使用之醯化纖維素有例如纖維素的羥基被 醯化之物’其取代基可以使用醯基的碳原子數爲2〜22的 -34-Rth is 50 nm to 200 nm, preferably 60 nm to 150 nm, and more preferably 70 nm to 130 nm. The arrangement of the second phase difference region in the direction of the late phase axis is not particularly limited as long as Re is 20 nm or less, and if it is greater than 20 nm, it is preferable that the direction is substantially orthogonal to the transmission axis of the first polarizing film. In such a configuration, for example, when the first retardation region contains a retardation layer formed of a liquid crystalline compound, the thickness of the retardation layer can be made thin. The material of the second retardation region is not particularly limited as long as it has the aforementioned optical characteristics. For example, a retardation film composed of a birefringent polymer film-31-200537167 ^ and a phase having a retardation layer formed by coating or transferring a low-molecular or barrel-molecule liquid crystal compound on a transparent support. Differential films can be used. Moreover, you may use each by stacking. < A second retardation region having a birefringent polymer film> A retardation film composed of a birefringent polymer film having the above-mentioned optical characteristics can be easily formed into a polymer film by uniaxial or biaxial stretching. (For example, Japanese Patent Laid-Open No. 2003-1 962 1 and Japanese Patent Laid-Open No. 2002-1 46045). In addition, the φ-dimensional fluorescein fibers which can only express optical characteristics by being cast but not stretched can be suitably used. In this way, the cellulose described in Japanese Patent Application Laid-Open No. 2000-275434, Japanese Patent Application No. 200 1 66 1 44, Japanese Patent Application No. 2002- 1 6 1 1 44 and Japanese Patent Application No. 2002-9054 can be used. . As the material of the polymer film, synthetic polymers (for example, polycarbonate, polyether, polyether, polyacrylate, polymethacrylate, norbornene resin, and tritiated cellulose) can be generally used. < A second retardation region having a retardation layer formed of a liquid crystal compound > ^ A retardation layer formed of a liquid crystal compound having the above-mentioned optical characteristics can be used on a support or a temporary support A rod-shaped cholesterol-type liquid crystal composition containing a palm-shaped structural unit is applied, and the spiral axis thereof is aligned substantially perpendicular to the substrate, and is formed by being fixed. When the temporary support is formed with the aforementioned retardation layer, it can be produced by transferring to the support. In addition, a dish-shaped liquid crystal compound having negative birefringence is horizontally aligned (the guide plate is perpendicular to the substrate), a retardation layer formed by immobilization, and a retardation layer formed by casting and fixing a polyimide polymer on a substrate. It can be used similarly. Furthermore, not only a retardation layer but also a plurality of retardation layers may be laminated to form a second retardation region capable of expressing the above-mentioned optical characteristics. In addition, the second retardation region may be constituted by a method in which the entire laminated body of the support and the retardation layer satisfies the aforementioned optical characteristics. < Method for forming a retardation layer formed by horizontally aligning a discotic liquid crystalline compound > A second retardation region containing a retardation layer formed of a discotic liquid crystalline compound can be formed on a support The horizontal alignment film is coated with a coating liquid containing a discotic liquid crystalline compound or the aforementioned polymerizable initiator or | air surface horizontal alignment agent (for example, as described in Japanese Patent Application No. 2003 -3 8 8 308) and other additives mentioned above. To form. As the alignment film for horizontally aligning the dish-like liquid crystal layer, a polymer alignment film such as polyvinyl alcohol, polyimide, polyimide, acrylic acid or the like having a solid content of 0.1% by mass or less as an organic acid or a salt can be used. After the alignment film is formed, it may or may not be wiped. In addition, examples of usable discotic liquid crystalline compounds, examples of solvents used in the preparation of coating liquids, examples of coating methods, other materials such as polymerizable initiators and polymerizable monomers, and those used to form retardation layers The support is the same as the material and the like exemplified in the description of the retardation layer constituting the first retardation region. < Protective film for polarizing film > Among the protective films for polarizing plates used in the liquid crystal display device of the present invention, it is preferable to use a halogenated cellulose film as the protective film near the liquid crystal layer side. That is, it is preferable to use a tritiated cellulose film that satisfies any one of the following conditions (1) and (2) as a protective film, and particularly a protective film disposed near the liquid crystal layer side. (1) A tritiated cellulose film satisfying the following formulae (I) and (II); -33- 200537167 Li, * (I) OS Re (630) S 10, and I Rth (630) | ^ 25 '( II) I Re (400) — Re (700) | S 10, and | Rth (400) — Rth (700) IS 35 (In the above formulae (I) and (II), Re (A) represents the wavelength λ Frontal hysteresis (nm) in nm, Rth (λ) is a hysteresis (nm) in the film thickness direction at a wavelength of λ nm. (2) A compound containing a compound that reduces Rth in the film thickness direction of the tritiated cellulose film Therefore, Rth satisfies the following tritiated cellulose membranes of formulae (III) and (IV); (III) (Rth (A) —Rth (0)) / AS— 1.0 _ (IV) 0.01 S AS30 (Formula ( In III) and (IV), Rth (A) represents the Rth (nm) of a tritiated cellulose film containing A% of compounds that reduce Rth, and Rth (O) represents the absence of Rth (also) compounds Rth (nm) of the halogenated cellulose film, A means the weight (%) of the compound that reduces Rth (again) relative to the raw material of the cellulose film °) The following is a detailed description of the preferred halogenated fibers used in the present invention素 膜。 Plain film. Examples of the cellulose of the tritiated cellulose raw material include cotton linters, wood φ pulp (Pinus sylvestris, coniferous pulp), and the like. The tritiated cellulose obtained from any kind of raw cellulose may be used, or it may be mixed and used according to circumstances. For details about these raw materials, cellulose, for example, can be used. (17) Cellulose resin (Kutazawa, Uda, Nikkan Kogyo Shimbun, published in 1970), Invention Association Publication Gazette 2001-1745 (7 The cellulose described in pages 8 to 8) is not particularly limited to the front cellulose film. Degree of substitution of tritiated cellulose The tritiated cellulose that can be used in the present invention includes, for example, cellulose having hydroxyl groups that are tritiated, and its substituent may be a triphenyl group having 2 to 22 carbon atoms. -34-
200537167 醯基中任一種。本發明可以使用之醯化纖維素的禱 代基沒有特別限定,可以測定取代纖維素的羥基之 /或原子數3〜22的脂肪酸之結合度,經由計算來得 度。測定方法可以依據A S TM之D - 8 1 7 - 9 1來實施 如上述前述醯化纖維素,對纖維素羥基的取代 特別定’其中對纖維素羥基之醯基取代度以2,5 〇、 佳,以2.75〜3.00爲較佳,以2.85〜3.00爲更佳。 取代纖維素的羥基之乙酸及/或碳原子數3〜22 酸中,碳數2〜22之醯基,可以是脂肪族基亦可以 基’可以單獨亦可以是2種類以上之混合物。例如 之烷基羰基酯、纖維素之烯基羰基酯、芳香族羰基 香族烷基羰基酯等。此等亦可以各自更具有取代基 之較佳醯基可以舉出的有乙醯基、丙醯基、丁醯基 基、己醯基、辛醯基、癸醯基、十二醯基、十三醯 四醯基、十六醯基、十八醯基、異丁醯基、三級1 環己烷羰基、油醯基、苯醯基、萘基羰基、肉桂醯 中以乙醯基、丙醯基、丁醯基、癸醯基、辛醯基、 醯基、油醯基、苯醯基、萘基羰基、肉桂醯基爲佳 醯基、丙醯基、丁醯基爲更佳。 本發明者專心檢討的結果,得知取代上述纖維 基之醯取代基中,實質上由乙醯基、丙醯基及丁醯 少2種類所構成時,其全取代度爲2.50〜3.00時, 低醯化纖維素膜之光學異方向性。以2.60~3.00爲 以2.65〜3.00爲更佳。 醯化纖維素膜的聚合度 維素取 乙酸及 到代取 度沒有 3 · 0 0 爲 之脂肪 是烯丙 纖維素 酯及芳 。此等 、庚醯 基、十 醯基、 基,其 三級丁 ,以乙 素的羥 基中至 可以降 較佳, -35- 200537167 、- 本發明所使用之較佳醯化纖維素膜的聚合度,係黏度 / 平均聚合度爲180〜700。乙醯纖維素時以180〜5 5 0爲較佳, 以180〜400爲更佳,以180〜350爲特佳。藉由使聚合度在 一定以下,可以具有防止因爲醯化纖維素之塗布溶液的黏 度太高而難以藉由流延來製造膜之效果。藉由使聚合度在 一定以上,可以具有防止所製得之膜的強度降低之效果。 平均聚合度可以藉由例如宇田等之固有黏度法(宇田和 夫、齊藤秀夫、纖維學會誌、第18卷第1號、105〜120頁、 p 1 962年)來測定。該方法在特開平9-95 5 3 8號公報的段落號 碼(14〜15)有詳述。 又,本發明之醯化纖維素的分子量分布最好是使用凝 膠滲透色譜法來評價,以其多分散性指數Mw/Mn(Mw係質 量平均分子量、Μη係數平均分子量)較小、分子量分布較 小爲佳。具體上之Mw/Mn値以1.0〜3.0爲佳,以1.0〜2.0 爲更佳,以1.0〜1.6爲最佳。 去除低分子成分時,平均分子量(聚合度)增加,但是因 I 爲黏度比通常的醯化纖維素低而有用。低分子成分較少的 醯化纖維素’可以藉通常的方法從所合成之醯化纖維素去 除低分子成分來得到。低分子成分之去除,可以藉由適當 的有機溶劑洗淨醯化纖維素來實施。又,製造低分子成分 較少的醯化纖維素時,在醯化反應之硫酸觸媒量相對於 100質量份纖維素時以調整至〇.5〜25質量份爲佳。使硫酸 觸媒的量在上述範圍時,從分子量分布而言,可以合成較 佳的(分子量分布均勻)醯化纖維素。製造本發明可以使用 之醯化纖維素時’醯化纖維素可以使用的含水率以2質量 -36- 200537167 / %以下爲佳,以1質量%以下爲更佳,以0.7質量%以下爲 " 更佳。通常,已知醯化纖維素的含水率爲2.5〜5質量%。 爲了使醯化纖維素的含水率在前述範圍,有必要加以乾 燥,若可以達成目的含水率即可,其方法沒有特別限定。 本發明之此等醯化纖維素之原料棉、合成方法等在發明協 會公開技報(公技番號200卜1 745、2001年3月15日發行、 發明協會)第7〜12頁有詳述。 前述醯化纖維素若取代基、取代度、聚合度、分子量 0 分布等在前述範圍時,可以使用單一或是混合不同2種類 以上的醯化纖維素來使用。 <醯化纖維素之添加劑> 本發明可以使用之醯化纖維素溶液,可以在各調製步 驟按照用途來加入各種添加劑(例如降低光學異方向性之 化合物、波長色散調整劑、紫外線防止劑、可塑劑、老化 防止劑、微粒子、光學性調整劑等),此等如以下說明。 又,其添加時期係在各塗布液製造步驟都可以添加,亦可 ^ 以在塗布液調製步驟之最後調製步驟增加添加劑添加調 劑步驟來進行。 本發明可以使用之醯化纖維素膜,以含有之化合物可以降 低Rth使在膜厚度方向的Rth以滿足下述式(ΙΠ)及(IV)之 Rth爲佳。 (III) (Rth(A)- Rth(0))/A^ - 1.0 (IV) 0.01 ^ A^30 (式(III)及(IV)中,Rth( A)係表示含有A%降低Rth的化合物 之保護膜的Rth(nm),Rth(O)係表示該保護膜未含有降低 -37- 200537167 - Rth的化合物之膜的Rth(nm),A係表示相對於膜原料聚合 “ 物的重量爲100時,降低Rth的化合物的重量(%)。) 上述(III)、(IV)以 (IIM) (Rth(A)-Rth(0))/A ^ - 2.0 (IV-I) 0· 1 ‘ A - 20 爲更佳。 降低醯化纖維素膜的光學異方向性之化合物構造的特徵 說明降低醯化纖維素膜的光學異方向性之化合物。本 φ 發明之發明者等,經過專心檢討之結果,使用抑制膜中的 醯化纖維素配向於面內及膜厚方向之化合物,可以充分降 低光學異方向性,使Re爲零且Rth接近零。在此,接近 零係指例如(0±25nm)。爲了此目的,降低光學異方向性之 化合物以能與纖維素醯化充分相溶、化合物本身未具有棒 狀構造或是平面性構造者較爲有利。具體上具有複數如芳 香族基之平面性官能基時,在構造上以非同一平面、非平 面之方式來具有其等官能基爲有利。 • 1 〇 g P 値 在製造本發明可以使用之醯化纖維素膜時,如上述, 在抑制膜中的醯化纖維素配向於面內及膜厚方向來降低 光學異方向性之化合物中,辛醇之水分配係數(logP値)以 0〜7之化合物爲佳。藉由採用1 〇 g P値爲7以下的化合物, 與醯化纖維素之相溶性更佳,可以更有效地防止膜之白 濁、粉末浮現等。又,藉由採用logP値爲〇以上的化合物, 因爲親水性高,可以更有效地防止醯化纖維素膜的耐水性 變差。1 〇 g P値以1〜6的範圍爲更佳,以1 · 5〜5的範圍爲特 -38- 200537167 ·· 佳。 辛醇-水分配係數(logP値)之測定,可以依據nS日本 工業規格Z7 2 6(M 07 (2000)所述之燒瓶滲透法來實施。又, 辛醇-水分配係數(logP値)亦可以藉由計算化學的手法或 是經驗方法替代實測來估計。計算方法以使用Cnppen’s fragmentation 法(J.Chem. Inf. Comput. Sci·, 27, 21(1987)·)、Viswanadhan’s fragmentation 法(J. Chem. Inf. Comput. Sci·,29,163(1989)·)、Broto’ s fragmentation 法 _ (Eur. J.Med.Chem.-Chim. Theor·,19,7 1 ( 1 9 8 4) ·)等,其中以 Crippen’s fragmentation 法(J.Chem· Inf· Comput. Sci·,27, 2 1 ( 1 987)·)爲較佳。當某化合物之logP値因爲使用測定方 法或是計算方法而不同時,該化合物是否在本發明範圍 內,以使用Crippen’s fragmentation法來判斷爲佳。 降低光學異方向性之化合物的物性 降低光學異方向性之化合物可以含有芳香族基,亦可 以未含有。又,降低光學異方向性之化合物的分子量以 ^ 150〜3000爲佳,170〜2000爲較佳,以200〜1 000爲更佳。 在此等分子量的範圍時,可以是特定單體構造,其單體單 元亦可以是複數結合而成的低聚物構造、聚合物構造等。 降低光學異方向性之化合物以 25 t液體、熔點爲 25〜250°C之固體爲佳,以25°C液體、熔點爲25〜200°C之固 體爲更佳。又,降低光學異方向性之化合物以在製造醯化 纖維素膜時在塗布液之流延、乾燥過程不發生揮發爲佳。 降低光學異方向性化合物的添加量,以醯化纖維素之 0.01〜30質量%爲佳,以1〜25質量%爲更佳,以5〜20質量 -39- 200537167 %爲特佳。 降低光學異方向性之化合物可以單獨使用,亦可以任 意比例混合2種以上化合物使用。 添加降低光學異方向性化合物之時期,可以在各塗布 液製造步驟中任一步驟添加,亦可以在塗布液調製步驟的 最後進行。 降低光學異方向性之化合物,從至少一側的表面至全 膜厚10%爲止的部分所存在該化合物的平均含有率,最好 是位於該醯化纖維素膜之中央部所存在該化合物的平均 含有率的80〜99 %爲佳。降低光學異方向性之化合物的存 在量,例如可以使用特開平8-57 87 9號公報所述之紅外吸 收光譜的方法等測定表面及中心部的化合物量來得到。 以下係本發明所使用之較佳降低醯化纖維素膜的光學 異方向性的化合物之具體例,但是本發明不限定於此等化 合物。 降低光學異方向性的化合物之第一例係下述通式(1 3)200537167 Any of the bases. The impregnated group of the cellulose which can be used in the present invention is not particularly limited, and the degree of binding of the hydroxyl group of the substituted cellulose and / or the fatty acid having 3 to 22 atoms can be determined by calculation. The measurement method can be performed according to AS TM D-8 1 7-9 1 as described above, and the cellulose hydroxyl group substitution is specifically determined, wherein the degree of substitution of the cellulose group to the cellulose hydroxyl group is 2,50, It is preferably 2.75 to 3.00, and more preferably 2.85 to 3.00. Among the hydroxy acetic acid and / or 3 to 22 carbon atoms substituted for cellulose, the fluorenyl group having 2 to 22 carbon atoms may be an aliphatic group or a radical group ', or may be a mixture of two or more kinds. For example, alkylcarbonyl esters, alkenylcarbonyl esters of cellulose, aromatic carbonyl aromatic alkylcarbonyl esters, and the like. These may also each have a more preferable substituent. Examples include ethyl, propyl, butyl, hexamyl, octyl, decyl, dodecyl, and thirteen. Base, hexadecyl, octadecyl, isobutylfluorenyl, tertiary 1 cyclohexanecarbonyl, oleyl, phenylfluorenyl, naphthylcarbonyl, ethanyl, propanyl, butylfluorenyl, decyl The fluorenyl, octyl, fluorenyl, oleyl, phenyl fluorenyl, naphthylcarbonyl, and cinnamon fluorenyl groups are preferably fluorenyl, propionyl, and butylfluorenyl. As a result of an intensive review by the present inventors, it was found that when the fluorene substituents which substituted the above-mentioned fibrous base were substantially composed of two types: ethyl fluorenyl, propyl fluorenyl, and butyl fluorene, the total degree of substitution was 2.50 to 3.00. Low optical anisotropy of cellulose. It is preferably 2.60 to 3.00 and 2.65 to 3.00. The degree of polymerization of the tritiated cellulose film is obtained from acetic acid and substituted with acetic acid. The fat is allyl cellulose ester and aromatic. Among these, heptyl, decadecyl, and tertiary butyl groups can be lowered by the hydroxyl group of ethyl group. -35- 200537167,-Polymerization of the better tritiated cellulose film used in the present invention Degree, the viscosity / average degree of polymerization is 180 ~ 700. In the case of acetocellulose, 180 to 5 50 is preferable, 180 to 400 is more preferable, and 180 to 350 is particularly preferable. By setting the degree of polymerization to be less than or equal to a certain value, it is possible to prevent the film from being difficult to be produced by casting because the viscosity of the coating solution of the tritiated cellulose is too high. By setting the degree of polymerization to a certain level or more, it is possible to have the effect of preventing a decrease in the strength of the produced film. The average degree of polymerization can be measured by, for example, the intrinsic viscosity method of Uda (Kazuo Uda, Hideo Saito, The Journal of the Textile Society, Vol. 18 No. 1, pp. 105-120, p 1962). This method is described in detail in paragraph numbers (14 to 15) of Japanese Patent Application Laid-Open No. 9-95 5 38. The molecular weight distribution of the tritiated cellulose of the present invention is preferably evaluated by gel permeation chromatography. The polydispersity index Mw / Mn (Mw-based mass average molecular weight, Mη coefficient average molecular weight) is small, and the molecular weight distribution is small. Smaller is better. Specifically, Mw / Mn 値 is preferably 1.0 to 3.0, more preferably 1.0 to 2.0, and most preferably 1.0 to 1.6. When the low-molecular component is removed, the average molecular weight (degree of polymerization) increases, but it is useful because I has a lower viscosity than ordinary tritiated cellulose. Tritiated cellulose 'having fewer low-molecular components can be obtained by removing low-molecular components from the synthetic tritiated cellulose by a common method. Removal of low-molecular components can be carried out by washing the tritiated cellulose with a suitable organic solvent. In addition, when producing tritiated cellulose with low low-molecular components, the amount of sulfuric acid catalyst in the tritiation reaction is preferably adjusted to 0.5 to 25 parts by mass relative to 100 parts by mass of cellulose. When the amount of the sulfuric acid catalyst is in the above range, a better (uniform molecular weight distribution) tritiated cellulose can be synthesized from the viewpoint of molecular weight distribution. When producing tritiated cellulose that can be used in the present invention, the moisture content that can be used for tritiated cellulose is preferably 2 mass% to 36-200537167 /% or less, more preferably 1 mass% or less, and 0.7 mass% or less. Better. Generally, the moisture content of tritiated cellulose is known to be 2.5 to 5% by mass. In order to make the moisture content of the tritiated cellulose into the above range, it is necessary to dry it. If the moisture content can be achieved, the method is not particularly limited. The raw cotton and synthetic methods of the cellulose of this invention are disclosed in the Technical Bulletin of the Invention Association (Public Technology No. 200, 1745, issued on March 15, 2001, Association of Inventions) on pages 7-12 Described. When the substituted cellulose, the degree of substitution, the degree of polymerization, the molecular weight distribution, and the like of the halogenated cellulose are within the aforementioned ranges, a single or a mixture of two or more different cellulose celluloses may be used. < Additives of tritiated cellulose > The tritiated cellulose solution that can be used in the present invention can be added with various additives (such as compounds that reduce optical anisotropy, wavelength dispersion modifiers, and ultraviolet inhibitors) in each preparation step according to the application. , Plasticizer, aging preventive agent, fine particles, optical property adjuster, etc.), which are described below. In addition, the addition period can be added in each coating liquid manufacturing step, or it can be performed by adding an additive adding adjusting step to the last preparing step of the coating liquid preparing step. The tritiated cellulose film which can be used in the present invention, it is preferable that the compound contains a compound that can reduce Rth so that Rth in the thickness direction of the film satisfies Rth of the following formulae (II) and (IV). (III) (Rth (A)-Rth (0)) / A ^-1.0 (IV) 0.01 ^ A ^ 30 (In the formulae (III) and (IV), Rth (A) means that Ath Rth (nm) of the protective film of the compound, Rth (O) means that the protective film does not contain a compound that reduces -37- 200537167-Rth (nm), and A means the weight of the polymer relative to the film material When it is 100, the weight (%) of the compound that reduces Rth. (III), (IV) is (IIM) (Rth (A) -Rth (0)) / A ^-2.0 (IV-I) 0 · 1 'A-20 is more preferable. The characteristics of the compound structure that reduces the optical anisotropy of the tritiated cellulose film are explained. The compound that reduces the optical anisotropy of the tritiated cellulose film. The inventors of the present invention, etc. As a result of the review, the use of a compound in which the tritiated cellulose in the inhibitor film is aligned in the plane and in the thickness direction can sufficiently reduce the optical anisotropy, so that Re is zero and Rth is close to zero. Here, near zero refers to, for example, ( 0 ± 25nm). For this purpose, the compounds that reduce the optical anisotropy are more compatible with cellulose tritiated, the compound itself does not have a rod-like structure or a planar structure In particular, when it has a plurality of planar functional groups such as aromatic groups, it is advantageous in structure to have other functional groups such as non-planar and non-planar structures. • 10 g P 値 can be used in the production of the present invention. In the case of the tritiated cellulose film, as described above, among compounds that inhibit tritiated cellulose in the film from aligning in-plane and film thickness to reduce optical anisotropy, the water partition coefficient (logP 値) of octanol is 0. A compound of ~ 7 is preferred. By using 10 g of a compound having a P 値 of 7 or less, it has better compatibility with tritiated cellulose, which can more effectively prevent white turbidity of the film and the emergence of powder. Also, by using Compounds with a logP 値 of 0 or higher, because of their high hydrophilicity, can effectively prevent deterioration of the water resistance of the tritiated cellulose film. 10 P 値 is more preferably in the range of 1 to 6, and 1 · 5 to 5 The range of the special-38-200537167 is good. The measurement of the octanol-water partition coefficient (logP 値) can be carried out according to the flask permeation method described in nS Japan Industrial Standard Z7 2 6 (M 07 (2000)). The octanol-water partition coefficient (logP 値) can also be determined by Computational chemistry method or empirical method instead of actual measurement to estimate. The calculation method is to use Cnppen's fragmentation method (J.Chem. Inf. Comput. Sci ·, 27, 21 (1987) ·), Viswanadhan's fragmentation method (J. Chem. Inf Comput. Sci., 29, 163 (1989). Among them, the Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 2 1 (1 987) ·) is preferred. When the logP of a compound is not the same because of the measurement method or calculation method, it is better to use the Crippen's fragmentation method to determine whether the compound is within the scope of the present invention. Physical properties of compounds that reduce optical anisotropy Compounds that reduce optical anisotropy may contain an aromatic group or may not contain them. In addition, the molecular weight of the compound that reduces optical anisotropy is preferably 150 to 3000, more preferably 170 to 2000, and even more preferably 200 to 1,000. In such a molecular weight range, a specific monomer structure may be used, and the monomer units may have an oligomer structure, a polymer structure, etc., which are plurally combined. The compound for reducing optical anisotropy is preferably a 25 t liquid and a solid having a melting point of 25 to 250 ° C, and a 25 ° C liquid and a solid having a melting point of 25 to 200 ° C is more preferable. In addition, it is preferable that the compound that reduces optical anisotropy does not cause volatilization during the casting and drying of the coating solution during the production of the cellulose film. To reduce the amount of the optically anisotropic compound, it is preferably 0.01 to 30% by mass of tritiated cellulose, more preferably 1 to 25% by mass, and particularly preferably 5 to 20% by mass -39-200537167%. The optical anisotropy-reducing compound may be used alone, or two or more compounds may be mixed in any proportion. The time for adding the optical anisotropy-reducing compound may be added at any step in each coating liquid manufacturing step, or may be performed at the end of the coating liquid preparation step. The average content of the compound that reduces the optical anisotropy from the surface of at least one side to the entire film thickness of 10% is preferably the compound present in the center of the tritiated cellulose film. The average content rate is preferably 80 to 99%. The amount of the compound which reduces the optical anisotropy can be obtained by measuring the amount of the compound on the surface and the center using, for example, the method of infrared absorption spectrum described in JP-A-8-57 87-9. The following are specific examples of compounds which are preferably used in the present invention to reduce the optical anisotropy of the tritiated cellulose film, but the present invention is not limited to these compounds. The first example of a compound for reducing optical anisotropy is the following general formula (1 3)
或是通式(18)所示的化合物。 [化學式3] 通式(13)It is also a compound represented by general formula (18). [Chemical Formula 3] General Formula (13)
R13 N~R12 通式(13)中R11係表示烷基或是芳基。R12及Ri3係表示 各自獨立之氫、烷基或是芳基。又,R11、R12及R13之碳原 子數的總和以10以上爲特佳。Ru、RU及R13亦可以具有 -40- 200537167 取代基,取代基以氟原子、烷基、芳基、烷氧 磺醯胺基、氰基爲佳,以烷基、芳基、烷氧基 醯胺基爲特佳。又,甲基可以是直鏈、亦可以 可以是環狀,碳原子數以1〜25爲佳,以6〜25 6〜20之物(例如甲基、乙基、丙基、異丙基、 基、三級丁基、胺基、異胺基、三級胺基、己基 庚基、辛基、二環辛基、壬基、金剛烷基、癸 基、十一基、十二基、十三基、十四基、十五基 φ 十七基、十八基、十九基、二癸基)爲特佳,: 子數以6〜30爲佳,以6〜24之物(苯基、聯苯基、 萘基、聯萘基、三苯苯基)爲特佳。 [化學式4] 通式(18) OR16 II I 代 R1^—C—Γν-R15 通式(18)中,R14係表示烷基或是芳基,R15 0 示各自獨立之氫原子、烷基或是芳基。 R14係以苯基或是環狀烷基爲佳。R15及R16 基或是烷基爲佳。烷基係環狀烷基及直鍵烷基 佳。 此等基可以具有取代基,取代基以氟原子 基、烷氧基、磺基及磺醯胺基爲佳,以烷基、 基、磺基及磺醯胺基爲特佳。 通式(18)所示之化合物,以通式(19)所表示: 較佳。 基、磺基及 、磺基及磺 是分支、亦 爲更佳’以 丁基、異丁 :、環己基、 基、三級辛 :、十六基、 芳基之碳原 三聯苯基、 及R16係表 係各自以苯 中任一者都 、烷基、芳 芳基、烷氧 之化合物爲 -41- 200537167 9 [化學式5] 通式(19) OR116R13 N ~ R12 In the general formula (13), R11 represents an alkyl group or an aryl group. R12 and Ri3 represent each independently hydrogen, alkyl or aryl. The total number of carbon atoms in R11, R12, and R13 is particularly preferably 10 or more. Ru, RU, and R13 may also have a substituent of -40-200537167. The substituent is preferably a fluorine atom, an alkyl group, an aryl group, an alkoxysulfonamido group, or a cyano group. An alkyl group, an aryl group, or an alkoxy group is preferred. Amine groups are particularly preferred. The methyl group may be linear or cyclic. The number of carbon atoms is preferably 1 to 25, and 6 to 25 6 to 20 (for example, methyl, ethyl, propyl, isopropyl, Base, tertiary butyl, amine, isoamine, tertiary amine, hexylheptyl, octyl, bicyclooctyl, nonyl, adamantyl, decyl, undecyl, dodecyl, ten Three-, fourteen-, and fifteen-based φ seventeen-, eighteen-, nineteen-, and didecyl) are particularly preferred: 6 to 30 are preferred, and 6 to 24 (phenyl , Biphenyl, naphthyl, binaphthyl, triphenylphenyl) are particularly preferred. [Chemical Formula 4] General Formula (18) OR16 II I R1 ^ —C—Γν-R15 In General Formula (18), R14 represents an alkyl group or an aryl group, and R15 0 represents an independent hydrogen atom, an alkyl group, or Is aryl. R14 is preferably a phenyl group or a cyclic alkyl group. R15 and R16 are preferably an alkyl group. Alkyl is preferably a cyclic alkyl group or a linear alkyl group. These groups may have a substituent. The substituent is preferably a fluorine atom, an alkoxy group, a sulfo group, and a sulfonamido group, and particularly preferably an alkyl group, a group, a sulfo group, and a sulfonamido group. The compound represented by the general formula (18) is represented by the general formula (19): Preferred. Sulfo, sulfo, and sulfo and sulfo are branched, and are more preferably `` butyl, isobutyl :, cyclohexyl, aryl, tertiary octyl :, hexadecyl, aryl carbon, terphenyl, and The R16 series is based on the compound of any one of benzene, alkyl, arylaryl, and alkoxy as -41- 200537167 9 [Chemical Formula 5] General Formula (19) OR116
II I R11—C-N—R115 通式(19)中,R114、R115及R116係表示各自獨立烷基或是 芳基。烷基係環狀烷基及直鏈烷基中任一者都佳,芳基係 以苯基爲佳。 在以下,通式(13)所表示化合物之較佳例子如下述顯 p 示,但是本發明不限定於此等具體例。又,化合物中,Pri 之意思係異丙基(以下相同)。II I R11-C-N-R115 In the general formula (19), R114, R115, and R116 each represent an independent alkyl group or an aryl group. Either an alkyl-based cyclic alkyl group or a linear alkyl group is preferable, and an aryl-based group is preferably a phenyl group. Hereinafter, preferred examples of the compound represented by the general formula (13) are shown in the following p, but the present invention is not limited to these specific examples. In the compounds, Pri means isopropyl (the same applies hereinafter).
-42- 200537167-42- 200537167
-43- 200537167 [化學式7]-43- 200537167 [Chemical Formula 7]
Α-3 Ο A-31Α-3 Ο A-31
A-34A-34
A-3 5A-3 5
A-39 -44- 200537167A-39 -44- 200537167
在以下,通式(18)(以及通式(19))所表示化合物之較佳 例子如下述顯示,但是本發明不限定於此等具體例。又’ 化合物中,Bui之意思係異丁基。Hereinafter, preferred examples of the compound represented by the general formula (18) (and the general formula (19)) are shown below, but the present invention is not limited to these specific examples. In the compound, Bui means isobutyl.
-45- 200537167 [化學式9]-45- 200537167 [Chemical Formula 9]
[化學式10] FA-1 CH,[Chemical Formula 10] FA-1 CH,
FA-2 FA-3FA-2 FA-3
〇--rP〇--rP
C-N C:C-N C:
FA-4 FA-5 FA·?FA-4 FA-5 FA ·?
CH^ CHa -46 - 200537167CH ^ CHa -46-200537167
-47- 200537167 [化學式12] FA-13 FA-19 FA-20-47- 200537167 [Chemical Formula 12] FA-13 FA-19 FA-20
-48- 200537167 [化學式13] FB-1 FB-2 FB-3-48- 200537167 [Chemical Formula 13] FB-1 FB-2 FB-3
CH3CH3
Ο C~NΟ C ~ N
FS-4FS-4
FB-S ra-6FB-S ra-6
ιϊΡιϊΡ
Ο s^o cyΟ s ^ o cy
FB-7FB-7
FB-SFB-S
^ H,C O 你1® O^ H, C O you 1® O
^ViKD h3c o^ ViKD h3c o
FB-12FB-12
Ffi-U Οτ^Ο^ϊΚΙ) CHa [\ CHj CH3 CHj FB-13Ffi-U Οτ ^ Ο ^ ϊΚΙ) CHa [\ CHj CH3 CHj FB-13
QXO FB-I4QXO FB-I4
O FB-16O FB-16
PP
FB-1SFB-1S
-49- 200537167 [化學式14] FB-17-49- 200537167 [Chemical Formula 14] FB-17
FB-18FB-18
-H3CO-H3CO
FB-22 桃一 !T翼FB-22 Momichi! T-wing
FB-23 FB-24FB-23 FB-24
50- 200537167 [化學式15] FC-I FC-2 FC-350- 200537167 [Chemical Formula 15] FC-I FC-2 FC-3
FC*7 FC-S 〇lif>u〇 •FC-9FC * 7 FC-S 〇lif > u〇 FC-9
Or o u C-N h3c y=\Or o u C-N h3c y = \
H,C OH, C O
FC-1I FC 12FC-1I FC 12
-51- 200537167 [化學式16] PC-18-51- 200537167 [Chemical Formula 16] PC-18
FC-19FC-19
Hac〇H〇訌 FC‘23 FC-23Hac〇H〇 讧 FC‘23 FC-23
-52- 200537167 [化學式17] FD^3 FD-1 Fl>2-52- 200537167 [Chemical Formula 17] FD ^ 3 FD-1 Fl > 2
FD-7FD-7
FD-IOFD-IO
-53- 200537167 [化學式18]-53- 200537167 [Chemical Formula 18]
FD-14 FD-15FD-14 FD-15
-54- 200537167 . 波長色散調整劑 ' 說明有關降低醯化纖維素膜的波長色散之化合物(以下 亦稱爲波長色散調整劑)。爲了改良本發明之醯化纖維素之 Rth的波長色散,以滿足下述式(V)、(VI)範圍之方式至少 含有1種降低下述(VII)所表示之Rth的波長色散 ARth 二 |Rth(400) — Rth(700) | 之化合物爲佳。 (VII) ARth = | Rth(400)- Rth(700) | (V)( ARth(B)- ARth(0))/B^ - 2.0 _ (VI)0.01 S B S 30 上述(V)、(VI)係以 (V- I) (ARth(B)- ARth(0))/B^ - 3.0 (VI-I)0.05 ^ B ^ 25 爲較佳, 以 (V- II) (ARth(B)- ARth(0))/B^ - 4.0 (VI-II)O. 1 ^ B ^ 20 ^ 爲更佳。 上述要件爲藉由含有至少1種在200〜400nm之紫外區 域具有吸收、可以降低膜之丨Re(400) — Re(700) |及 I Rth(40 0)— Rth(7 00) |之化合物,相對於醯化纖維素固體 成分爲0.01〜30質量%來達成。含量以醯化纖維素之〇_1〜20 質量%爲更佳,以0.2〜10質量%爲特佳。 醯化纖維素膜之Re、Rth的値,通常具有長波長側比短 波長側大的波長色散特性。因此,要求藉由增加相對較小 的短波長側之Re、Rth,來使波長色散平滑。另一方面’ -55- 200537167 - 在200〜400nm之紫外線區域具有吸收之化合物係具有在長 波長側的吸光度比在短波長側的吸光度大之波長色散特 性。此化合物本身在醯化纖維素膜內部若是各方同性地存 在時’可以假想化合物本身的複折射性、進而Re、Rth的 波長色散係和吸光度的波長色散同樣地以短波長側爲較 大。 因此如上所述’藉由使用假想在200〜4〇〇nm之紫外區 域具有吸收' 化合物本身的Re、Rth的波長色散在短波長 φ 側較大之物’可以調製醯化纖維素膜的Re、Rth的波長色 散。因此要求調整波長色散之化合物可以十分均勻地與醯 化纖維素相溶。如此化合物的紫外區域的吸收帶範圍爲 200〜400nm爲佳,以220〜395nm爲較佳,以240〜390nm爲 更佳。 又,近年來爲了使電視、筆記型個人電腦、移動型攜 帶端末設備等之液晶顯示裝置可以使用更少的電力來提 升輝度,要求液晶顯示裝置所使用之光學構件具有優良的 0 穿透率。在這方面,要求將在200〜400nm之紫外區域具有 吸收、可以降低膜之 |Re(400)-Re(700) | 及 |Rth(400) --54- 200537167. Wavelength Dispersion Adjuster '' Describes compounds that reduce the wavelength dispersion of tritiated cellulose films (hereinafter also referred to as wavelength dispersion adjusters). In order to improve the Rth wavelength dispersion of the tritiated cellulose of the present invention, a method of satisfying the ranges of the following formulae (V) and (VI) includes at least one type of wavelength dispersion ARth that reduces the Rth represented by the following (VII) ARth II | Rth (400) — Rth (700) | compounds are preferred. (VII) ARth = | Rth (400)-Rth (700) | (V) (ARth (B)-ARth (0)) / B ^-2.0 _ (VI) 0.01 SBS 30 Above (V), (VI) (V- I) (ARth (B)-ARth (0)) / B ^-3.0 (VI-I) 0.05 ^ B ^ 25 is preferred, and (V- II) (ARth (B)-ARth (0)) / B ^-4.0 (VI-II) O. 1 ^ B ^ 20 ^ is more preferable. The above requirements are compounds containing at least one compound that has absorption in the ultraviolet region of 200 to 400 nm, and can reduce the film. Re (400) — Re (700) | and I Rth (40 0) — Rth (7 00) | It is achieved by 0.01 to 30% by mass based on the solid content of the tritiated cellulose. The content is more preferably 0_1 to 20% by mass of tritiated cellulose, and particularly preferably 0.2 to 10% by mass. Re and Rth of the tritiated cellulose film generally have a wavelength dispersion characteristic that is larger on the long wavelength side than on the short wavelength side. Therefore, it is required to smooth the wavelength dispersion by increasing the relatively small Re and Rth on the short wavelength side. On the other hand, '-55- 200537167-The compound having absorption in the ultraviolet region of 200 to 400 nm has a wavelength dispersion characteristic in which the absorbance at the long wavelength side is larger than the absorbance at the short wavelength side. If the compound itself exists in the tritiated cellulose film isotropically, it is assumed that the compound's birefringence, and further, the wavelength dispersion system of Re and Rth and the wavelength dispersion of absorbance are similarly large on the short wavelength side. Therefore, as described above, 'by using a substance having an absorption in the ultraviolet region of 200 to 400 nm', the Re of the compound itself and the wavelength dispersion of Rth on the short-wavelength φ side can be adjusted to adjust the Re of the cellulose film. , Rth wavelength dispersion. Therefore, compounds requiring wavelength dispersion adjustment can be very uniformly compatible with tritiated cellulose. The absorption band of the compound in the ultraviolet region is preferably 200 to 400 nm, more preferably 220 to 395 nm, and even more preferably 240 to 390 nm. In addition, in recent years, in order to enable liquid crystal display devices such as televisions, notebook personal computers, and mobile terminal devices to use less power to increase brightness, the optical members used in the liquid crystal display devices are required to have excellent 0-transmittance. In this regard, it is required to have absorption in the ultraviolet region of 200 to 400 nm, which can reduce the film | Re (400) -Re (700) | and | Rth (400)-
Rth(700)丨之化合物添加在醯化纖維素膜中時,具有優良 的分光穿透率。在本發明的醯化纖維素膜,在波長3 80nm 之分光穿透率爲45 %〜95 %,且在波長爲350nm時之分光穿 透率以1 〇 %以下爲佳。 如上述,本發明所使用之較佳波長色散調整劑從揮發 性的觀點分子量以250〜1 000爲佳,以260〜800爲較佳,以 270〜800爲更佳,以300〜800爲特佳。若在此等分子量之 -56- 200537167 -- 範圍可以是特定單體構造,其單體單元亦可以是複數結合 而成的低聚物構造、聚合物構造等。 波長色散調整劑以在製造醯化纖維素膜時塗布液在流 延、乾燥過程不發生揮發爲佳。 此等波長色散調整劑可以單獨使用,亦可以採用任何 比例混合2種以上化合物來使用。 又,添加此等波長色散調整劑之時期,可以在製造塗 布液步驟中的任一步驟進行,亦可以在調製塗布液步驟的 p 最後進行。 在本發明所使用之較佳波長色散調整劑的具體例,可 以舉出的有例如苯并三唑系化合物、二苯基酮、含有氰基 之化合物、羥基二苯基酮系化合物、柳酸酯系化合物、鎳 錯鹽系化合物,但是本發明不限定此等化合物。 苯并三唑系化合物以使用下述通式(1 0 1)所示之物作爲 本發明之波長色散調整劑爲佳。 通式(101)The compound Rth (700) 丨 has excellent spectral transmittance when added to a tritiated cellulose film. In the tritiated cellulose film of the present invention, the spectral transmittance at a wavelength of 3 to 80 nm is 45% to 95%, and the spectral transmittance at a wavelength of 350 nm is preferably 10% or less. As mentioned above, the preferred wavelength dispersion adjusting agent used in the present invention has a molecular weight of preferably 250 to 1,000 from the viewpoint of volatility, more preferably 260 to 800, more preferably 270 to 800, and particularly 300 to 800. good. If the range of these molecular weights is -56- 200537167-the range may be a specific monomer structure, and the monomer unit may also be an oligomer structure, a polymer structure, etc. formed by a plurality of combinations. The wavelength dispersion adjusting agent is preferably such that the coating solution does not volatilize during the casting and drying processes when the tritiated cellulose film is manufactured. These wavelength dispersion adjusting agents may be used alone or as a mixture of two or more compounds in any ratio. The timing for adding such a wavelength dispersion adjusting agent may be performed in any one of the steps of manufacturing the coating liquid, or may be performed at the end of p in the step of preparing the coating liquid. Specific examples of the preferred wavelength dispersion adjusting agent used in the present invention include, for example, benzotriazole-based compounds, diphenylketones, cyano-containing compounds, hydroxydiphenylketone-based compounds, and salicylic acid. Ester compounds and nickel salt compounds, but the present invention is not limited to these compounds. As the benzotriazole-based compound, a substance represented by the following general formula (101) is preferably used as the wavelength dispersion adjusting agent of the present invention. General formula (101)
Q丨1 - Q丨2 -〇H (通式(101)中,Q11係表示含氮芳香族雜環,Q12係表示 芳香族環。) Q11係表示含氮芳香族雜環,以5〜7節環之含氮芳香族 雜環爲佳,以5或6節環之含氮芳香族雜環爲較佳,例如 可以舉出的有咪唑環、吡唑環、三唑環、四唑環、噻唑環、 噚唑環、硒唑環、苯并三唑環、苯并噻唑環、苯并腭唑環、 苯并硒唑環、噻二唑環、腭二唑環、萘并噻唑環、萘并噚 唑環、吖苯并咪唑環、嘌呤環、吡啶環、吡阱環、嘧啶環、 -57- 200537167 . 嗒畊環、三畊環、三氮茚環、四氮茚環等’以5節環之含 〃 氮芳香族雜環爲更佳,具體上’以咪唑環、吡唑環、三唑 環、四唑環、噻π坐環、卩f唑環、苯并三π坐環、苯并噻唑環、 苯并曙唑環、噻二唑環、噚二唑環爲佳’以苯并三唑環爲 特佳。 Q11所表示含氮芳香族雜環可以更含有取代基,後述的 取代基Τ可以適合作爲取代基。又’取代基若是複數時亦 可以各自進行環縮來進而形成環。 p Q12所表示含氮芳香族環可以是芳香族烴環亦可以是芳 香族雜環。又,此等可以是單環、亦可以進而與其他環形 成稠環。 芳香族烴環以碳數6〜30之單環或是2環之芳香族烴環 爲佳,以碳數6〜20之單環或是2環之芳香族烴環爲較佳, 以碳數6〜12之單環或是2環之芳香族烴環爲更佳。Q12所 表示含氮芳香族環,具體上以萘環、苯環爲佳,以苯環爲 更佳。 _ 芳香族雜環,最好是含有氮原子或是硫原子之芳香族雜 環。雜環之具體例,可以舉出的有噻吩環、咪唑環、吡唑 環、吡啶環、吡阱環、嗒阱環、三唑環、三畊環、吲哚環、 吲唑環、嘌呤環、噻唑啉環、噻唑環、噻二唑環、噚唑啉 環、噚哇環、[曙二唑環、喹啉環、異喹啉環、酞畊環、暸 D定環、唾曙啉環、喹唑啉環、啐啉環、喋啶環、吖啶環、 啡啉環、啡哄環、四ti坐環、苯并咪嗤環、苯并噚π坐環、苯 并嚷π坐環、苯并三唑環、四氮茚環等。芳香族雜環以吡啶 環、三畊環、喹啉環等爲佳。 -58- 200537167 ·- Q12可以具有取代基,取代基以後述的取代基τ爲佳。 * 取代基Τ可以舉出的有例如烷基(以碳數1〜20爲佳、以 碳數1〜12爲更佳、以碳數1〜8爲最佳,可以舉出的有例如 甲基、乙基、異丙基、三級丁基、正辛基、正癸基、正十 六基、環丙基、環戊基、環己基等。)、烯基(以碳數2〜20 爲佳、以碳數2〜12爲更佳、以碳數2〜8爲特佳,可以舉出 的有例如乙烯基、烯丙基、2-丁烯基、3-戊烯基等)、炔基 (以碳數2〜20爲佳、以碳數2〜12爲更佳、以碳數2〜8爲特 _ 佳,可以舉出的有例如炔丙基、3-炔戊基等)、芳基(以碳 數6〜30爲佳、以碳數6〜20爲更佳、以碳數6〜12爲特佳, 可以舉出的有例如苯基、對甲基苯基、萘基等)、取代或未 取代的胺基(以碳數0〜20爲佳、以碳數0〜10爲更佳、以碳 數0〜6爲特佳,可以舉出的有例如胺基、甲基胺基、二甲 基胺基、二乙基胺基、二苄胺基等。)、烷氧基(以碳數1~20 爲佳、以碳數1〜12爲更佳、以碳數1〜8爲特佳,可以舉出 的有例如甲氧基、乙氧基、丁氧基等。)、芳氧基(以碳數 6〜20爲佳、以碳數6〜16爲更佳、以碳數6〜12爲特佳,可 1 以舉出的有例如苯氧基、2-萘氧基等)、醯基(以碳數1〜20 爲佳、以碳數1〜16爲更佳、以碳數1〜12爲特佳,可以舉 出的有例如乙醯基、苯甲醯基、甲醯基、三甲基乙醯基 等。)、烷氧基羰基(以碳數2〜20爲佳、以碳數2〜16爲更 佳、以碳數2〜1 2爲特佳,可以舉出的有例如甲氧基羰基、 乙氧基羰基等。)、芳氧基羰基(以碳數7 ~ 20爲佳、以碳數 7 ~ 1 6爲更佳、以碳數7 ~ 1 0爲特佳,可以舉出的有例如苯 氧基羰基等。)、醯氧基(以碳數2〜20爲佳、以碳數2〜16 -59- 200537167 爲更佳、以碳數2〜10爲特佳,可以舉出的有例如乙醯氧 ‘ 基、苯甲醯氧基等。)、醯胺基(以碳數2〜20爲佳、以碳數 2〜16爲更佳、以碳數2〜10爲特佳,可以舉出的有例如乙 醯胺基、苯甲醯胺基等。)、烷氧基羰基胺基(以碳數2〜20 爲佳、以碳數2〜16爲更佳、以碳數2〜12爲特佳,可以舉 出的有例如甲氧基羰基胺基等。)、芳氧基羰基胺基(以碳 數7〜20爲佳、以碳數7〜16爲更佳、以碳數7〜12爲特佳’ 可以舉出的有例如苯氧基羰基胺基等。)、磺醯胺基(以碳 | 數1~20爲佳、以碳數1〜16爲更佳、以碳數1〜12爲特佳’ 可以舉出的有例如甲烷磺醯胺基、苯烷磺醯胺基。)、磺醯 基(以碳數0〜20爲佳、以碳數0〜16爲更佳、以碳數〇〜12 爲特佳,可以舉出的有例如胺磺醯基、甲基胺磺醯基、二 甲基胺磺醯基、苯基磺醯基等。)、胺基甲醯基(以碳數1〜20 爲佳、以碳數1〜16爲更佳、以碳數1〜12爲特佳,可以舉 出的有例如胺基甲醯基、甲基胺基甲醯基、二乙基胺基甲 醯基、苯基胺基甲醯基等。)、烷基硫基(以碳數1〜20爲佳、 g 以碳數1〜16爲更佳、以碳數1〜12爲特佳,可以舉出的有 例如甲基硫基、乙基硫基等。)、芳基硫基(以碳數6〜20爲 佳、以碳數6〜16爲更佳、以碳數6〜12爲特佳’可以舉出 的有例如苯基硫基等。)、磺醯基(以碳數1〜20爲佳、以碳 數1〜1 6爲更佳、以碳數1〜1 2爲特佳,可以舉出的有例如 甲磺醯基、對甲苯磺醯基等。)、亞磺醯基(以碳數1〜20爲 佳、以碳數1〜16爲更佳、以碳數1〜12爲特佳’可以舉出 的有例如甲烷亞磺醯基、苯亞磺醯基等。)、脲基(以碳數 1〜20爲佳、以碳數1〜16爲更佳、以碳數1〜12爲特佳,可 60- 200537167 以舉出的有例如脲基、甲基脲基、苯基脲基等。)、磷酸 胺基(以碳數1〜20爲佳、以碳數1〜16爲更佳、以碳數卜 爲特佳,可以舉出的有例如二乙基磷酸醯胺基、苯基磷 醯胺基等。)、羥基、氫硫基、鹵原子(例如氟原子、氯 子、溴原子、碘原子)、氰基、磺基、羧基、硝基、氧膀 基、亞磺基、肼基、亞胺基、雜環基(以碳數1〜30爲佳 以碳數1〜12爲更佳,雜原子例如氮原子、氧原子、硫 子,具體上可以舉出的有咪唑基、吡唑基、喹啉基、呋 基、哌啶基、味啉基、苯并曙唑基、苯并咪唑基、苯并 唑基等。)、甲矽烷基(以碳數3〜40爲佳、以碳數3〜30 更佳、以碳數3〜2 4爲特佳,可以舉出的有例如三甲基 烷基、三苯基矽烷基等。)、此等取代基亦可以進一步被 代。又,取代基有2個以上時,可以相同亦可以不同。又 若可能時亦可以互相連結來形成環。 通式(101)最好是下述通式(101-A)所示之化合物。 [化學式1 9 ] 通式(101-A) 醯 12 酸 原 酸 原 喃 噻 爲 矽 取Q 丨 1-Q 丨 2-OH (In the general formula (101), Q11 represents a nitrogen-containing aromatic heterocyclic ring, and Q12 represents an aromatic ring.) Q11 represents a nitrogen-containing aromatic heterocyclic ring, with 5 to 7 Nitrogen-containing aromatic heterocyclic rings are more preferred, and nitrogen-containing aromatic heterocyclic rings having 5 or 6-membered rings are more preferred. Examples include an imidazole ring, a pyrazole ring, a triazole ring, a tetrazole ring, Thiazole ring, oxazole ring, selenazole ring, benzotriazole ring, benzothiazole ring, benzoxazole ring, benzoselazole ring, thiadiazole ring, oxadiazole ring, naphthothiazole ring, naphthalene Pyridoxazole ring, azebenzimidazole ring, purine ring, pyridine ring, pyridine ring, pyrimidine ring, -57- 200537167. Dagen ring, Sangen ring, triazindane ring, tetrazindene ring, etc. The fluorene-containing nitrogen-containing aromatic heterocyclic ring of the nodal ring is more preferable, and specifically, the 'imidazole ring, pyrazole ring, triazole ring, tetrazole ring, thiaπ ring, fluorene ring, benzotriazole ring, A benzothiazole ring, a benzoxazole ring, a thiadiazole ring, and an oxadiazole ring are preferred. A benzotriazole ring is particularly preferred. The nitrogen-containing aromatic heterocyclic ring represented by Q11 may further contain a substituent, and a substituent T described later may be suitably used as the substituent. In the case of a plurality of substituents, each may be cyclically contracted to form a ring. The nitrogen-containing aromatic ring represented by p Q12 may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring. In addition, these may be a single ring, or may further form a condensed ring with other rings. The aromatic hydrocarbon ring is preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms, and a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 20 carbon atoms is preferred. 6 to 12 monocyclic or bicyclic aromatic hydrocarbon rings are more preferred. Q12 represents a nitrogen-containing aromatic ring. Specifically, a naphthalene ring and a benzene ring are preferable, and a benzene ring is more preferable. _ Aromatic heterocyclic ring is preferably an aromatic heterocyclic ring containing a nitrogen atom or a sulfur atom. Specific examples of the heterocyclic ring include a thiophene ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyritra ring, a datra ring, a triazole ring, a Sango ring, an indole ring, an indazole ring, and a purine ring. , Thiazoline ring, thiazole ring, thiadiazole ring, oxazoline ring, oxazoline ring, [azodiazole ring, quinoline ring, isoquinoline ring, phthalocyanine ring, D fixed ring, sialoline ring , Quinazoline ring, oxoline ring, pyrimidine ring, acridine ring, morpholine ring, morphine ring, four-ti seat ring, benzimidazole ring, benzopyridine ring, benzopyridine ring , Benzotriazole ring, tetrazindene ring and the like. The aromatic heterocyclic ring is preferably a pyridine ring, a Sango ring, or a quinoline ring. -58- 200537167 ·-Q12 may have a substituent, and the substituent τ, which will be described later, is preferred. * Examples of the substituent T include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and most preferably 1 to 8 carbon atoms. , Ethyl, isopropyl, tertiary butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl (with 2 to 20 carbons as Better, preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), alkyne Group (preferably 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly 2 to 8 carbon atoms are particularly preferred, and examples thereof include propargyl, 3-propynyl, etc.), Aryl (preferably 6 to 30 carbons, more preferably 6 to 20 carbons, particularly 6 to 12 carbons), for example, phenyl, p-methylphenyl, naphthyl, etc. ), Substituted or unsubstituted amine groups (preferably 0 to 20 carbon atoms, more preferred 0 to 10 carbon atoms, particularly preferred 0 to 6 carbon atoms), for example, amine groups, methyl groups Amino group, dimethylamino group, diethylamino group, dibenzylamino group, etc.), alkoxy group (preferably carbon number 1-20) The carbon number is more preferably from 1 to 12, and the carbon number is particularly preferably from 1 to 8. Examples include methoxy, ethoxy, and butoxy.), Aryloxy (6 to 6 carbons) 20 is preferred, carbon number 6 to 16 is more preferred, carbon number 6 to 12 is particularly preferred. Examples include phenoxy, 2-naphthyloxy, etc., and fluorenyl (based on carbon number 1 to 20 is preferred, 1 to 16 carbons are more preferred, and 1 to 12 carbons are particularly preferred. Examples include ethenyl, benzamyl, formamyl, and trimethylacetamidine. Groups, etc.), alkoxycarbonyl groups (preferably 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, for example, a methoxycarbonyl group , Ethoxycarbonyl, etc.), aryloxycarbonyl (preferably with 7 to 20 carbons, more preferably with 7 to 16 carbons, particularly preferably with 7 to 10 carbons, examples include For example, phenoxycarbonyl, etc.), fluorenyloxy (preferably with 2 to 20 carbons, more preferably 2 to 16 -59-200537167, particularly preferably 2 to 10 carbons, etc.) For example, ethoxyl 'group, benzamyloxy group, etc.), fluorenylamino group (preferably with 2 to 20 carbon atoms, and 2 with carbon atoms) ~ 16 is more preferable, and carbon number of 2 to 10 is particularly preferable. Examples include acetamido, benzamido, and the like.), Alkoxycarbonylamino (with 2 to 20 carbons) It is better to use 2 to 16 carbon atoms, particularly to 2 to 12 carbon atoms. Examples include methoxycarbonylamino groups.), Aryloxycarbonylamino groups (from 7 to carbon atoms) 20 is preferred, carbon number 7 to 16 is more preferred, carbon number 7 to 12 is particularly preferred. Examples include phenoxycarbonylamino groups, etc.), sulfonamido groups (with carbon | number 1 Preferably, it is -20, more preferably 1 to 16 carbons, and particularly preferably 1 to 12 carbons. Examples thereof include a methanesulfonamido group and a benzsulfonamido group. ), Sulfonyl (preferably 0 to 20 carbons, more preferably 0 to 16 carbons, particularly 0 to 12 carbons), for example, sulfamoyl, methylaminesulfonyl Fluorenyl, dimethylaminosulfonyl, phenylsulfonyl, etc.), aminomethylsulfonyl (preferably 1 to 20 carbons, more preferably 1 to 16 carbons, 1 to 1 carbons) 12 is particularly preferred, and examples thereof include aminomethylamido, methylaminomethylamido, diethylaminomethylamido, phenylaminomethylamido, etc.), alkylthio ( Carbon number is preferably 1 to 20, g carbon number is 1 to 16 is more preferable, carbon number is 1 to 12 is particularly preferable, and examples thereof include methylthio group and ethylthio group.), Aromatic Sulfhydryl (preferably 6 to 20 carbons, more preferably 6 to 16 carbons, and particularly preferably 6 to 12 carbons. Examples include phenylthio). (The carbon number is preferably 1 to 20, the carbon number is 1 to 16 is more preferable, and the carbon number is 1 to 12 is particularly preferable. Examples thereof include a methylsulfonyl group and a p-toluenesulfonyl group. ), Sulfenyl group (preferably with carbon number 1-20, more preferably with carbon number 1-16, particularly preferably with carbon number 1-12) Examples include, for example, methanesulfinyl sulfenyl, benzenesulfinyl sulfenyl and the like.), Ureido (preferably carbon number 1-20, more preferably carbon number 1-16, more preferably carbon number 1-12) Particularly preferred, 60-200537167 can be exemplified by ureido, methylureido, phenylureido, etc.), amine phosphate (preferably with carbon number 1-20, more preferably with carbon number 1-16) Carbon atoms are particularly preferred, and examples thereof include diethylphosphonium amino groups, phenylphosphonium amino groups, etc.), hydroxyl groups, hydrogen thio groups, halogen atoms (such as fluorine atoms, chlorine atoms, Bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, oxo group, sulfinyl group, hydrazine group, imino group, heterocyclic group (with carbon number 1-30, preferably carbon number 1 ~ 12 is more preferable. Heteroatoms such as nitrogen atom, oxygen atom, and sulfur atom may be specifically exemplified by imidazolyl, pyrazolyl, quinolinyl, furyl, piperidinyl, amidinyl, and benzoxazole Group, benzimidazolyl, benzozolyl, etc.), silyl (preferably 3 to 40 carbons, more preferably 3 to 30 carbons, particularly 3 to 24 carbons are particularly preferred. Trimethylalkyl, triphenyl Alkyl silicon, etc.), these substituents may also be further generations. When there are two or more substituents, they may be the same or different. If possible, they can be connected to each other to form a ring. The general formula (101) is preferably a compound represented by the following general formula (101-A). [Chemical Formula 1 9] General formula (101-A) 醯 12 acid ortho acid orthothione
(通式(101-A)中 ’ R1、R2、R3、R4、r5、r6、R7、及 等係表不各自獨立的氫原子或是取代基。) R、R2 ' R3 ' R4 ' R5 ' R6 ' R7、r8、及 r9 係表示各自 1的氫原子或是取代基,取代基可以應用前述的取代 R8 獨 基 -61- 200537167 … T。又,此等取代基可以進一步地被其他的取代基取代。 取代基之間亦可以環縮來形成環構造。 R1及R3各自以氫原子、烷基、烯基、炔基、芳基、胺 基、烷氧基、芳氧基、羥基、鹵原子爲佳,以氫原子、火完 基、芳基、烷氧基、芳氧基、鹵原子爲較佳,以氫原子、 碳素1〜12之院基爲更佳,以碳素1〜12之院基爲特佳(最好 是碳數4〜12)。 R2及R4各自以氫原子、烷基、烯基、炔基、芳基、胺 φ 基、烷氧基、芳氧基、羥基、鹵原子爲佳,以氫原子、烷 基、芳基、烷氧基、芳氧基、鹵原子爲較佳,以氫原子、 碳素1〜12之烷基爲更佳,以氫原子、甲基爲特佳,以氫 原子爲最佳。 R5及R8各自以氫原子、烷基、烯基、炔基、芳基、胺 基、烷氧基、芳氧基、羥基、鹵原子爲佳,以氫原子、烷 基、芳基、烷氧基、芳氧基、鹵原子爲較佳,以氫原子、 碳素1〜12之烷基爲更佳,以氫原子、甲基爲特佳,以氫 I 原子爲最佳。 R6及R7各自以氫原子、烷基、烯基、炔基、芳基、胺 基、烷氧基、芳氧基、羥基、鹵原子爲佳,以氫原子、烷 基、芳基、垸氧基、芳氧基、鹵原子爲較佳,以氫原子、 鹵原子爲更佳,以氫原子、氯原子爲特佳。 通式(101)最好是下述通式(1(Η_Β)所示之化合物。 [化學式20] 通式(101-Β) -62- 200537167(In the general formula (101-A), 'R1, R2, R3, R4, r5, r6, R7, and the like are independent hydrogen atoms or substituents.) R, R2' R3 'R4' R5 ' R6'R7, r8, and r9 each represent a hydrogen atom or a substituent of 1, and the aforementioned substituents can be substituted R8 mono-61-200537167 ... T. These substituents may be further substituted with other substituents. The substituents may be cyclically contracted to form a ring structure. R1 and R3 are each preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amine group, an alkoxy group, an aryloxy group, a hydroxyl group, or a halogen atom, and a hydrogen atom, a fluorenyl group, an aryl group, or an alkane group. Oxygen, aryloxy, and halogen atoms are preferred, with hydrogen atoms and carbon 1-12 being more preferred, carbons 1-12 being particularly preferred (preferably 4-12 carbons) ). R2 and R4 are each preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amine φ group, an alkoxy group, an aryloxy group, a hydroxyl group, or a halogen atom, and a hydrogen atom, an alkyl group, an aryl group, or an alkane group is preferred. An oxygen group, an aryloxy group, and a halogen atom are preferred, a hydrogen atom and an alkyl group of carbon 1 to 12 are more preferred, a hydrogen atom and a methyl group are particularly preferred, and a hydrogen atom is most preferred. R5 and R8 are each preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amine group, an alkoxy group, an aryloxy group, a hydroxyl group, or a halogen atom, and a hydrogen atom, an alkyl group, an aryl group, or an alkoxy group A radical, an aryloxy group, and a halogen atom are preferred, a hydrogen atom and an alkyl group of carbon 1 to 12 are more preferred, a hydrogen atom and a methyl group are particularly preferred, and a hydrogen I atom is most preferred. R6 and R7 are each preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amine group, an alkoxy group, an aryloxy group, a hydroxyl group, or a halogen atom, and a hydrogen atom, an alkyl group, an aryl group, or a halogen atom is preferred. A radical, an aryloxy group, and a halogen atom are more preferred, a hydrogen atom and a halogen atom are more preferred, and a hydrogen atom and a chlorine atom are particularly preferred. The general formula (101) is preferably a compound represented by the following general formula (1 (Η_B). [Chemical formula 20] General formula (101-B) -62- 200537167
通式(101-B)中,R1、R3、R6、及R7等係與通式(1(H-A) 之其等同義,又,較佳範圍亦相同。 以下舉出通式(1 0 1)所表示化合物之具體例,但是本發 明不受下述具體例之任何限定。 [化學式21]In the general formula (101-B), R1, R3, R6, and R7 are equivalent to the general formula (1 (HA), and their preferred ranges are also the same. The general formula (1 0 1) is given below. Specific examples of the compounds shown, but the present invention is not limited at all by the following specific examples.
UV-7UV-7
UV-8UV-8
UV4 UV-9UV4 UV-9
UV-SUV-S
UV-10 200537167 [化學式22]UV-10 200537167 [Chemical Formula 22]
UVA6 UV- ΠUVA6 UV- Π
UV-J3 UV-18UV-J3 UV-18
UV.14 M9 UV-15 ^00¾ UV-20UV.14 M9 UV-15 ^ 00¾ UV-20
UV-22UV-22
-64- 200537167 在以上例子所舉出之苯并三唑系化合物中,經確認以 未含有分子量爲3 20以下之物的方式來製造本發明之醯化 纖維素膜時,從保留性而言係有利的。 又,二苯基酮系化合物係本發明所使用波長色散調整劑 之一,該二苯基酮系化合物以使用通式(102)所示之物爲 佳。 [化學式23] 通式 (102)-64- 200537167 Among the benzotriazole-based compounds listed in the above examples, it was confirmed that when the tritiated cellulose film of the present invention is produced without containing a molecular weight of 3 to 20, from the standpoint of retention Is favorable. The diphenyl ketone compound is one of the wavelength dispersion adjusting agents used in the present invention. The diphenyl ketone compound is preferably one represented by the general formula (102). [Chemical Formula 23] General Formula (102)
(通式(102)中,Q1及Q2係各自表示芳香族環。X係表示 NR(R係表示氫原子或是取代基。)、氧原子或是硫原子。) Q1及Q2所表示之芳香族環可以是芳香族烴環亦可以是 芳香族雜環。又,此等可以是單環,亦可以更與其他環形 成稠環。 Q1及Q2所表示之芳香族烴環以碳數6〜30的單環或是二 環的芳香族烴環(可以舉出的有例如苯環、萘環等)爲佳, 以碳數6〜20的芳香族烴環爲較佳、以碳數6〜12的芳香族 烴環爲更佳、以苯環爲更佳。 Q1及Q2所表示之芳香族雜環,以至少含有氧原子、氮 原子或是硫原子中任何一^種之方香族雜環爲佳。雜環之具 體例可以舉出的有例如呋喃環、吡咯環、噻吩環、咪唑環、 吡唑環、吡啶環、吡阱環、嗒阱環、三唑環、三畊環、吲 哚環、吲唑環、嘌呤環、噻唑啉環、噻唑環、噻二唑環、 -65- 200537167 »» - 曙哗啉環、噚唑環、曙二唑環、喹啉環、異喹啉環、默哄 環、暸啶環、喹噚啉環、喹唑啉環、啐啉環、碟陡環、口丫 Π定環、啡啉環、啡畊環、四唑環、苯幷咪唑環、苯幷曙哩 環、苯并噻唑環、苯并三唑環、四氮茚環等。芳香族雜環 以吡啶環、三阱環、喹啉環等爲佳。 Q1及Q2所表示之芳香族雜環,以芳香族烴環爲佳,以 碳數6〜ίο之芳香族烴環爲更佳,以取代或未取代的苯環 爲更佳。 , Q1及Q2可以更具有取代基,以後述的取代基T爲佳, 取代基未含有羧酸、磺酸、4級銨鹽。又,若可能時取代 基之間亦可以連結來形成環構造。 X係表不NR(R係表不氫原子或是取代基。取代基可以 應用上述之取代基T。)'氧原子或是硫原子,乂以nr(r 以醯基、磺基爲佳,此等取代基亦可以進一步取代)' 或是 氧原子爲佳,以氧原子爲特佳。 通式(102)以下述通式(1〇2_A)所示之化合物爲佳。 _ [化學式24] 通式(102-A)(In the general formula (102), Q1 and Q2 each represent an aromatic ring. X represents NR (R represents a hydrogen atom or a substituent.), An oxygen atom, or a sulfur atom.) The aromatics represented by Q1 and Q2 The family ring may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring. In addition, these may be single rings, or they may form fused rings with other rings. The aromatic hydrocarbon ring represented by Q1 and Q2 is preferably a monocyclic or bicyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms (for example, a benzene ring, a naphthalene ring, etc.), and preferably 6 to 30 carbon atoms. An aromatic hydrocarbon ring of 20 is more preferable, an aromatic hydrocarbon ring having 6 to 12 carbons is more preferable, and a benzene ring is more preferable. The aromatic heterocyclic ring represented by Q1 and Q2 is preferably an aromatic heterocyclic ring containing at least any one of an oxygen atom, a nitrogen atom, or a sulfur atom. Specific examples of the heterocyclic ring include, for example, a furan ring, a pyrrole ring, a thiophene ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrrole ring, a datra ring, a triazole ring, a sangen ring, an indole ring, Indazole ring, purine ring, thiazoline ring, thiazole ring, thiadiazole ring, -65- 200537167 »»-Supraline ring, oxazole ring, epidazole ring, quinoline ring, isoquinoline ring, Coaxing ring, pyridine ring, quinazoline ring, quinazoline ring, oxoline ring, disco ring, mouth ring, morpholine ring, morphine ring, tetrazole ring, benzimidazole ring, phenylhydrazone Shure ring, benzothiazole ring, benzotriazole ring, tetrazindene ring and the like. The aromatic heterocyclic ring is preferably a pyridine ring, a triple well ring, a quinoline ring, or the like. The aromatic heterocyclic ring represented by Q1 and Q2 is preferably an aromatic hydrocarbon ring, more preferably an aromatic hydrocarbon ring having 6 to 18 carbon atoms, and even more preferably a substituted or unsubstituted benzene ring. Q1 and Q2 may further have a substituent, and a substituent T described later is preferred, and the substituent does not include a carboxylic acid, a sulfonic acid, or a quaternary ammonium salt. If possible, the substituents may be linked to form a ring structure. X represents NR (R represents a hydrogen atom or a substituent. The substituent can use the above-mentioned substituent T.) 'oxygen or sulfur atom, preferably nr (r is fluorenyl or sulfo, These substituents may be further substituted) or an oxygen atom, particularly an oxygen atom. The general formula (102) is preferably a compound represented by the following general formula (102-A). _ [Chemical Formula 24] General Formula (102-A)
(通式(102-A)中,R21、r”、r23、、R25、r26、r27、 R28、及R2 9係表不各自獨立的氫原子或是取代基。) V'、R^、R24、R25、R26、R28、及係表示各獨立之氫 -66- 200537167 原子或是取代基,取代基可以應用前述的取代基了。, 此等取代基可以進—步地被其他的取代基取代。取代:之 間亦可以環縮來形成環構造。 R21、R23、R24、R25、r26、r28、及 κ以氣原子、烷基、 嫌基、快基、芳基'胺基、院氧基、芳氧基、羥基、鹵原 子爲佳,以氫原子、烷基、芳基、烷氧基、芳氧基鹵原 子爲較佳’以氫原子、碳素1〜12之烷基爲更佳,以氯基、 甲基爲特佳’以氫ί原子爲最佳。(In the general formula (102-A), R21, r ", r23, R25, r26, r27, R28, and R2 9 each represent an independent hydrogen atom or a substituent.) V ', R ^, R24 , R25, R26, R28, and each represent an independent hydrogen-66-200537167 atom or a substituent, and the aforementioned substituents can be used as the substituents. These substituents can be further substituted by other substituents Substitution: It is also possible to cyclically shrink to form a ring structure. R21, R23, R24, R25, r26, r28, and κ are gas atoms, alkyl groups, alkyl groups, fast groups, aryl groups, amino groups, and oxygen groups. , Aryloxy, hydroxyl, and halogen atoms are preferred, with hydrogen atoms, alkyl, aryl, alkoxy, and aryloxy halogen atoms being preferred. 'Hydrogen atoms, carbon 1 to 12 alkyl groups are more preferred Of these, chloro and methyl are particularly preferred, and hydrogen is preferred.
R22以氫原子、院基、嫌基、炔基、芳基、胺基、院氧 基、芳氧基、羥基、鹵原子爲佳,以氫原子、碳數i〜2〇 之烷基、碳數0〜20之胺基、碳數1〜12之烷氧基、碳數6〜12 之芳氧基、羥基爲較佳,以碳素1〜20之烷氧基爲更佳, 以碳素1~12之烷氧基爲特佳。 R27以氫原子、院基、儲基、炔基、芳基、胺基、院氧 基、芳氧基、羥基、鹵原子爲佳,以氫原子、碳數1〜20 之烷基 '碳數〇〜20之胺基、碳數1〜12之烷氧基、碳數6〜12 之芳氧基、羥基爲較佳,以氫原子、碳素1〜20之烷基(以 碳數1〜12爲佳,以碳數1〜8爲較佳,以甲基爲更佳)爲更 佳,以甲基、氫原子爲特佳。 通式(102)以通式(102-B)所示之化合物爲佳。 [化學式25] -67- 200537167 通式(102-B)R22 is preferably a hydrogen atom, an alkyl group, an alkyl group, an alkynyl group, an aryl group, an amine group, an oxo group, an aryloxy group, a hydroxyl group, and a halogen atom, and is preferably a hydrogen atom, an alkyl group having a carbon number of i to 20, and a carbon atom. 0 to 20 amine groups, 1 to 12 carbon alkoxy groups, 6 to 12 carbon aryloxy groups, hydroxyl groups are preferred, 1 to 20 carbon alkoxy groups are more preferred, and carbon is An alkoxy group of 1 to 12 is particularly preferred. R27 is preferably a hydrogen atom, an alkyl group, a storage group, an alkynyl group, an aryl group, an amine group, an oxo group, an aryloxy group, a hydroxyl group, and a halogen atom, and a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and a carbon number. 〇 ~ 20 amine group, alkoxy group with 1 to 12 carbons, aryloxy group with 6 to 12 carbons, and hydroxyl group are preferred. Hydrogen atom, alkyl group with 1 to 20 carbon atoms (with 1 to 20 carbon atoms) 12 is preferable, carbon number 1 to 8 is more preferable, methyl group is more preferable), methyl group and hydrogen atom are particularly preferable. The compound represented by the general formula (102) is preferably a compound represented by the general formula (102-B). [Chemical Formula 25] -67- 200537167 General Formula (102-B)
(通式(102-B)中,R1C)係表示氫原子、烷基、燃基 芳基。)(In the general formula (102-B), R1C) represents a hydrogen atom, an alkyl group, or an aryl group. )
R10係表示氫原子、烷基、烯基、炔基、芳基 以具有取代基。取代基可以應用前述的取代基τ R1。以烷基爲佳,以碳數5〜20之烷基爲較佳, 之院基(可以舉出的有正己基、2_乙基己基、正辛 基、正十二基、苄基等)爲更佳,以碳數6〜12之] 未取代的烷基(2_乙基己基、正辛基、正癸基、正 苄基)爲特佳。 €式(102)所表示之化合物可以使用特開平11· 公報所述之眾所囿如1 所W知的方法來合成。 以下舉出通式 ^ a U 02)所表示之化合物可以舉t 例,但是本發明不@ 1夂到下述具體例之任何限定。 ;、炔基、 ,此等可 〇 以5〜12 基、正癸 収代或是 十二基、 12219 號 tl的具體 -68- 200537167 [化學式26] UV-101R10 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group and has a substituent. As the substituent, the aforementioned substituent τ R1 can be used. An alkyl group is preferred, and an alkyl group having 5 to 20 carbon atoms is more preferred. An alkyl group (for example, n-hexyl, 2-ethylhexyl, n-octyl, n-dodecyl, benzyl, etc.) More preferably, it is particularly preferably an unsubstituted alkyl group (2-ethylhexyl, n-octyl, n-decyl, n-benzyl) having 6 to 12 carbon atoms. The compound represented by the formula (102) can be synthesized by a method known in Japanese Unexamined Patent Publication No. 11 · Gazette and known as 1. Examples of the compound represented by the general formula (^ a U 02) are given below, but the present invention does not limit the @ 1 夂 to the following specific examples. ;, Alkynyl,, and the like may be 0 to 5-12 groups, n-decyl is substituted or dodecyl, 12219 specific tl -68- 200537167 [Chemical formula 26] UV-101
ΟΟ
VV^〇3VV ^ 〇3
O OH (/τΧο [化學式27] UV-J049 OH UV- 105 ΛO OH (/ τΧο [Chemical Formula 27] UV-J049 OH UV- 105 Λ
CflH17(nJ υν-109 OH 〇 〇Η CeHsO^ ^OCsHs UV-130 0C«Hi7CflH17 (nJ υν-109 OH 〇 〇Η CeHsO ^ ^ OCsHs UV-130 0C «Hi7
UV406UV406
υν^ιο»υν ^ ιο »
UV-UIUV-UI
Ο OHΟ OH
°CaH17(nJ 0¾ 69- 200537167 [化學式28] W17 uv_m° CaH17 (nJ 0¾ 69- 200537167 [Chemical Formula 28] W17 uv_m
qhh2-Q ^0¾ (rlCsHnO 〇CSHt1 (n}qhh2-Q ^ 0¾ (rlCsHnO 〇CSHt1 (n)
/-IIS 0 ΗΝ-ί s〇2-^-ch3/ -IIS 0 ΗΝ-ί s〇2-^-ch3
UV-121 (n}CeHi?i uv-neUV-121 (n) CeHi? I uv-ne
HsCOT^ ^ 'OCiaUssCn ) 又,含有氰基之化合物係本發明所使用波長色散調整劑 之一,該含有氰基之化合物以使用通式(103)所示之物爲 佳。 [化學式29] 通式(103)HsCOT ^ ^ 'OCiaUssCn) The cyano group-containing compound is one of the wavelength dispersion adjusting agents used in the present invention. The cyano group-containing compound is preferably one represented by the general formula (103). [Chemical Formula 29] General Formula (103)
X 31 ,χ 32X 31, χ 32
3V3V
Q 32 -70- 200537167 (通式(103)中,Q31及Q32係表示各自獨 X31及X32係各自表示氣原子或取代基’至 示氰基、羰基、磺醯基、芳香族雜環基。 Q31及Q32所表示之芳香族環可以是芳 以是芳香族雜環。又’此等可以是單環’ 的環形成稠環。 芳香族烴環以碳數6〜30的單環或是2 (例如可以舉出的有苯環、萘環),以碳數 環爲佳,以碳數6〜12的芳香族烴環爲更 佳。 芳香族雜環以含有氮原子或是硫原子 佳。雜環之具體例可以舉出的有噻吩環、q 吡陡環、吡阱環、嗒阱環、三π坐環、三哄 唑環、嘌呤環、噻唑啉環、噻唑環、噻二吗 曙唑環、0萼二唑環、喹啉環、異喹啉環、酌 喹卩f啉環、喹唑啉環、啐啉環、喋啶環、口、丨 啡阱環、四唑環、苯并咪唑環、苯并噚唑驾 苯并三唑環、四氮茚環等。芳香族雜環以卩 喹啉環等爲佳。 Q31及Q32所表示之芳香族環以芳香族 環爲更佳。 Q31及Q32可以更具有取代基,以上述写 一 χ|及X2係表示氫原子或是取代基,至 不氰基、羰基、磺醯基、芳香雜環。X!及 代基,可以應用前述的取代基τ。又χ 立的芳香族環。 少其中之一係表 ) 香族烴環、亦可 亦可以更與其他 環之芳香族烴環 5〜20的芳香族烴 佳,以苯環爲最 之芳香族雜環爲 长唑環、吡唑環、 環、吲哚環、吲 〖環、噚唑啉環、 :阱環、嘹啶環、 ’啶環、啡啉環、 !、苯并噻唑環、 :[:D定環、三哄環、 烴環爲佳,以苯 又代基Τ爲佳。 少其中之一係表 χ2所表示的取 〔X2所表示的取 •71- 200537167 代基可以更被其他取代基取代,χ1及χ2亦可以各自環縮 形成環構造。 X1及X2以氫原子、烷基、芳基、氰基、硝基、羰基、 磺醯基、芳香族雜環爲佳,以氰基、羰基、磺醯基、芳香 族雜環爲較佳,以氰基、羰基爲更佳,以氰基、烷氧羰基 (―C( = 〇)〇R (R爲:碳數υο之烷基、碳數6〜12之芳基 及組合此等之物)爲特佳。 通式(103)以下述通式(1〇3-A)所示之化合物爲佳。 [化學式30] 通式(103-A)Q 32 -70- 200537167 (In the general formula (103), Q31 and Q32 are each independently X31 and X32 are each a gas atom or a substituent group 'to a cyano group, a carbonyl group, a sulfofluorenyl group, and an aromatic heterocyclic group. The aromatic ring represented by Q31 and Q32 may be aromatic or an aromatic heterocyclic ring. Also, these rings may be a monocyclic ring to form a condensed ring. The aromatic hydrocarbon ring is a monocyclic ring having 6 to 30 carbon atoms or 2 (For example, a benzene ring and a naphthalene ring are mentioned.) A carbon ring is more preferable, and an aromatic hydrocarbon ring having 6 to 12 carbons is more preferable. The aromatic heterocyclic ring preferably contains a nitrogen atom or a sulfur atom. Specific examples of the heterocyclic ring include a thiophene ring, a q-pyridine ring, a pyridine ring, a da trap ring, a tri-π seated ring, a trioxazole ring, a purine ring, a thiazoline ring, a thiazole ring, and thiadiazol. Oxazole ring, oxadiazole ring, quinoline ring, isoquinoline ring, quinoline fline ring, quinazoline ring, oxoline ring, pyrimidine ring, mouth, chlorin ring, tetrazole ring, benzene A benzimidazole ring, a benzoxazole ring, a benzotriazole ring, a tetrazindene ring, etc. The aromatic heterocyclic ring is preferably a quinolinol ring, etc. The aromatic rings represented by Q31 and Q32 are more preferably an aromatic ring. Q31 and Q32 may further have a substituent. In the above description, χ | and X2 are used to indicate a hydrogen atom or a substituent, to a non-cyano group, a carbonyl group, a sulfonyl group, and an aromatic heterocyclic ring. X! And a substituted group can be applied. The aforesaid substituents τ. And χ vertical aromatic rings. One of them is listed below.) Aromatic hydrocarbon rings, or aromatic hydrocarbon rings 5 to 20 with other aromatic hydrocarbon rings. The most aromatic ring is a long azole ring, a pyrazole ring, a ring, an indole ring, an indene ring, an oxazoline ring, a well ring, a pyridine ring, a 'pyridine ring, a morpholine ring,!, A benzothiazole ring, a: [: D fixed ring, a triad ring, and a hydrocarbon ring are preferred, and a benzene substituted group T is preferred. One of them is the formula represented by χ2 [The formula represented by X2 • 71-200537167 can be substituted by other substituents, and χ1 and χ2 can be cyclically contracted to form a ring structure. X1 and X2 are preferably a hydrogen atom, an alkyl group, an aryl group, a cyano group, a nitro group, a carbonyl group, a sulfofluorenyl group, and an aromatic heterocyclic ring, and more preferably a cyano group, a carbonyl group, a sulfonyl group, and an aromatic heterocyclic ring. Preferred are cyano and carbonyl, and cyano and alkoxycarbonyl (-C (= 〇) 〇R (R is: alkyl group with carbon number υο, aryl group with carbon number 6-12 and combinations thereof) ) Is particularly preferred. The general formula (103) is preferably a compound represented by the following general formula (103-A). [Chemical Formula 30] General formula (103-A)
R 32 3 5R 32 3 5
RR
R38、R39及R3°係表示各自獨立的氫原子或是取代基。又31 及X32與通式(103)之該等同義,又,較佳範圍亦相同。) R”、Rn、R34、R”、r36、R3 3 係表不各獨 立之氫原子或是取代基,取代基可以應用前述的取代基 T。又,此等取代基可以進〜步地被其他的取代基取代。 取代基之間亦可以環縮來形成環構造。 K 、厂、R' R"、r、R37、r3。以氫原子、院 基、烯基、炔基、芳基、胺基、烷氧基、芳氧基、羥基、 鹵原子爲佳’以氫原子、烷基、芳基、烷氧基、芳氧基、 -72- 200537167 鹵原子爲較佳,以氫原子、碳數1〜12之烷基爲更佳,以 氫原子、甲基爲特佳,以氫原子爲最佳。 R33及R38以氫原子、烷基、烯基、炔基、芳基、胺基、 烷氧基、芳氧基、羥基、鹵原子爲佳,以氫原子、碳數1〜2q 之烷基、碳數0〜20之胺基、碳數1〜12之烷基氣、碳數6〜 之方氧基、經基爲較佳’以氮原子、碳數1〜12之院基、 碳數1〜12之烷基氣爲更佳,以氫原子爲特佳。 通式(103),以下述通式(i〇3-B)所表示之化合物爲佳。 [化學式31] 通式(103-B) NC\^X33R38, R39, and R3 ° represent each independently a hydrogen atom or a substituent. 31 and X32 have the same meaning as that of the general formula (103), and the preferred ranges are also the same. ) R ”, Rn, R34, R”, r36, R3 3 are each a separate hydrogen atom or a substituent, and the aforementioned substituent T may be used as the substituent. These substituents may be further substituted with other substituents. The substituents may be cyclically contracted to form a ring structure. K, factory, R'R ", r, R37, r3. Preferred are hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, amine group, alkoxy group, aryloxy group, hydroxyl group, and halogen atom. 'A hydrogen atom, alkyl group, aryl group, alkoxy group, and aryloxy group are preferred. A radical, -72-200537167 is more preferred, a hydrogen atom, an alkyl group having 1 to 12 carbon atoms is more preferred, a hydrogen atom, a methyl group is particularly preferred, and a hydrogen atom is most preferred. R33 and R38 are preferably a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an amine group, an alkoxy group, an aryloxy group, a hydroxyl group, and a halogen atom. A hydrogen atom, an alkyl group having 1 to 2q carbon atoms, Amino groups with 0 to 20 carbon atoms, Alkyl groups with 1 to 12 carbon atoms, Cryptoxy groups with 6 to 6 carbon atoms, and Warp groups are preferred. 'A nitrogen atom, 1 to 12 carbon atoms, and 1 to 12 carbon atoms An alkyl gas of ~ 12 is more preferred, and a hydrogen atom is particularly preferred. The general formula (103) is preferably a compound represented by the following general formula (io3-B). [Chemical Formula 31] General Formula (103-B) NC \ ^ X33
(通式(103-B)中,R33及R”係與通式(1〇3_幻之其等同 義,又,較佳之範圍亦相同。X3 3係表示氫原子或是取代 基。) X33係表示氫原子或是取代基,取代基可以應用前述之 取代基T,又,可能時亦可以更被取代基取代。Χ33以氫原 子、烷基、芳基、氰基、硝基、羰基、磺醯基、芳香族雜 環爲佳’以氰基、羰基、磺醯基、芳香族雜環爲較佳,以 氰基、羰基爲更佳,以氰基、烷氧羰基(一 C( = 〇)〇R3Q1 (R3。1 爲:碳數1〜20之烷基、碳數6〜12之芳基及組合此等之物)) 爲特佳。 -73- 200537167 嫌· . 通式(103),以下述通式(103-C)所表示之化合物爲佳。 ' [化學式32] 通式(103-C) 0(In the general formula (103-B), R33 and R "are the same as the general formula (103-3), and the preferred range is also the same. X3 3 represents a hydrogen atom or a substituent.) X33 Represents a hydrogen atom or a substituent, and the substituent may be the aforementioned substituent T, and may be substituted by a substituent when possible. X33 is a hydrogen atom, an alkyl group, an aryl group, a cyano group, a nitro group, a carbonyl group, Sulfonyl and aromatic heterocycles are preferred'Cyanyl, carbonyl, sulfofluorenyl, and aromatic heterocycles are preferred, cyano and carbonyl are more preferred, and cyano and alkoxycarbonyl (-C (= 〇) 〇R3Q1 (R3.1 is: alkyl group with 1 to 20 carbons, aryl group with 6 to 12 carbons, and combinations thereof)) is particularly preferred. -73- 200537167 · General formula (103 ), A compound represented by the following general formula (103-C) is preferable. '[Chemical formula 32] General formula (103-C) 0
(通式(103-C)中,R33及R38係與通式(103-A)之其等同 義,又,較佳之範圍亦相同。R3°2係表示碳數1〜20的烷基。) R3°2當R33及R38之雙方爲氫原子時,以碳數2〜12之烷 基爲佳’以碳數4〜12之院基爲較佳,以碳數6〜12之院基 爲更佳,以正辛基、三級辛基、2-乙基己基、正癸基、正 十二基爲特佳,以2-乙基己基爲最佳。 R3°2當R33及R38爲氫原子以外時,以通式(103-C)所表 示化合物的分子量爲300以上且碳數爲20以下之烷基爲 佳。 本發明通式(103)所表示之化合物可以使用Jouiial of American Chemical Society 63 卷 3452 頁(1941)所述方法來 合成。 以下舉出通式(103)所示之化合物的具體例,但是本發 明未受到下述具體例之任何限定。 -74- 200537167 [化學式33] 〇(In the general formula (103-C), R33 and R38 are equivalent to the general formula (103-A), and the preferred ranges are also the same. R3 ° 2 represents an alkyl group having 1 to 20 carbon atoms.) R3 ° 2 When both R33 and R38 are hydrogen atoms, alkyl groups with 2 to 12 carbon atoms are preferred. '4 to 12 carbon atoms are preferred, and 6 to 12 carbon atoms are more preferred. Preferably, n-octyl, tertiary octyl, 2-ethylhexyl, n-decyl, and n-dodecyl are particularly preferred, and 2-ethylhexyl is most preferred. R3 ° 2 When R33 and R38 are other than a hydrogen atom, the compound represented by the general formula (103-C) is preferably an alkyl group having a molecular weight of 300 or more and a carbon number of 20 or less. The compound represented by the general formula (103) of the present invention can be synthesized by the method described in Jouiial of American Chemical Society 63 Vol. 3452 (1941). Specific examples of the compound represented by the general formula (103) are given below, but the present invention is not limited at all by the following specific examples. -74- 200537167 [Chemical Formula 33]
-75 200537167 [化學式34] UV-211 〇-75 200537167 [Chemical Formula 34] UV-211
Ο UV-2I6 Ο h3c〇 UV-2I6 〇 h3c
Q UV-212Q UV-212
UV^217UV ^ 217
UV-21S Ο^Γ Οoxc UV-2L9 οUV-21S Ο ^ Γ Οoxc UV-2L9 ο
UV-215 UV-220UV-215 UV-220
76- 20053716776- 200537167
[化學式35] UV-22I[Chemical Formula 35] UV-22I
UV^226UV ^ 226
UV-222UV-222
UV-231UV-231
PhWCN ^ ΎΡΙ 〇Η-λ〇 Ph MC Ph -77- 200537167 κ * -- 消光劑微粒子 本發明所使用之醯化纖維素膜以添加微粒子作爲消光 劑爲佳。本發明所使用微粒子可以舉出的有二氧化矽、二 氧化鈦、氧化鋁、氧化鉻、碳酸鈣、滑石、黏土、煅燒高 嶺土、煅燒矽酸鈣、水合矽酸鈣、矽酸鋁、矽酸鎂及磷酸 鈣等。微粒子係含矽之物,從濁度變低而言乃是較佳,以 二氧化矽爲特佳。二氧化矽的微粒子,1次平均粒子大小 爲2Onm以下,且表觀比重爲70克/升以上之物爲佳。1次 φ 粒子的平均直徑小至5〜16nm之物,因爲可以降低薄膜的 霧度而較佳。表觀比重以90〜200克/升以上爲較佳,以 100〜20 0克/升以上爲更佳。表觀比重越大,越能夠作爲高 濃度之分散液,因爲可以改良霧度、凝聚物而較佳。 此等微粒子之通常平均粒子大小係形成0.1〜3.0微米的 2次粒子,此等微粒子在薄膜中係以1次粒子的凝聚體存 在。在薄膜表面上形成0.1〜3.0微米的凹凸。2次平均粒子 大小以0.2微米〜1.5微米爲佳,以0.4微米〜1.2微米爲更 φ 佳,以0.6微米〜1·1微米爲最佳。1次、2次粒子大小係使 用掃描型電子顯微鏡進行觀察薄膜中的粒子,以粒子之外 接圓作爲粒子的大小。又,變更位置觀察200個粒子,以 其平均値作爲平均粒子大小。 二氧化矽的微粒子可以使用例如 AEROSIL R972、 R972V、 R974、 R812、 200、 200V、 300、 R202、 0X50、 ΤΤ600(以 上係日本阿葉洛濟魯(股)製)等市售品。氧化鍩的微粒子使 用例如AEROSIL R97 6、R81 1(以上係日本阿葉洛濟魯(股) 製)等市售品。 -78- 200537167 蠡· .. 此等之中’ AEROSIL 200V、AEROSIL R972V 係 1 “ 均粒子大小爲20nm以下,且表觀比重爲70克/升以 二氧化矽的微粒子,因爲邊保持較低的光學膜濁度, 有降低摩擦係數的效果而特佳。 本發明爲了得到具有2次平均粒小大小的小粒子 化纖維素膜,在調製微粒子的分散液時考慮若干手法 如有預先製成攪拌混合溶劑與微粒子而成的微粒子 液,將此微粒子分散液加入另外準備的少量醯化纖維 | 液中進行攪拌溶解,進而與主要的醯化纖維素塗布液 之方法。此方法係二氧化矽微粒子的分散性較佳,從 化矽微粒子不容易凝聚而言乃是較佳的調製方法。另 在溶劑中添加少量的纖維素酯,攪拌溶解後,在此加 粒子、使用分散機進行分散,將此作爲微粒子添加液 用軸向式攪拌器將該微粒子添加液與塗布液充分混 方法。本方法不限定此等方法,將二氧化矽微粒子與 等混合分散時之二氧化矽的濃度以5〜30質量%爲佳 | 10〜25質量%爲更佳,以15〜20質量%爲最佳。分散濃 相對於添加量之液濁度變低,因爲可以改良霧度、凝 而較佳。最後在醯化纖維素的塗布液中之消光劑的添 以每1平方米0.01〜1克爲佳,以0.03〜0.3克爲更佳 0.08〜0. 16克爲最佳。 所使用之溶劑爲低碳數醇類,可以舉出的有甲醇 醇、丙醇、異丙醇、丁醇等。低碳數醇以外的溶劑沒 別限定,以纖維素酯之製膜時所使用之溶劑爲佳。可 出的有例如選自由碳原子數1〜7之鹵化碳氫化合物 次平 上之 邊具 之醯 。例 分散 素溶 混合 二氧 外有 入微 ,使 合之 溶劑 ,以 度高 聚物 加量 ,以 、乙 有特 以舉 之溶 -79- 200537167 ο * -- 劑。溶劑可以是1種類,亦可以並用2種類以上。 ' 可塑劑、老化防止劑、脫膜劑 降低上述之光學異方向性之化合物,波長色散調整劑 以外,本發明之醯化纖維素膜在各調製步驟可以按照用途 添加各種添加劑(例如,可塑劑、紫外線防止劑、老化防 止劑、脫模劑、紅外線吸收劑等),此等可以是固體可以 是油狀物。亦即,其熔點、沸點等沒有特別限定。例如在 特開200 1 - 15 1 90 1號公報等有敘述例如20 °C以下和20 °C以 φ 上之紫外線吸收材料的混合、同樣地可塑劑的混合等。而 且,紅外線吸收染料在例如特開200 1 - 1 94522號公報有敘 述。又,其添加時期可以在塗布液製造步驟中任一步驟添 加,亦可以在塗布液製造步驟之最後調製步驟增加添加劑 添加調製步驟。而且,各原料之添加量只要可以顯現機能 時沒有特別限定。又,醯化纖維素膜由多層形成時,各層 添加物之種類、添加量等可以不相同。例如特開 200 1 - 1 5 1 902號公報等之敘述,此等係以往已知之技術。 φ 此等之詳細,以使用在發明協會公開技報(公技號碼 200 1 - 1 745、200 1年3月15日發行、發明協會)第16〜22頁 所詳述之原料爲佳。 化合物添加比率 在本發明可以使用之醯化纖維素膜,分子量爲3000以 下之化合物的總量相對於醯化纖維素重量,以5〜45 %爲 佳。以10〜40%爲較佳,以15〜30%爲更佳。此等化合物如 上述,有降低光學異方向性之化合物、波長色散調整劑、 紫外線防止劑、可塑劑、老化防止劑、微粒子、脫模劑、 -80- 200537167 Λ · 紅外線吸收劑,分子量以3 0 0 0以下爲佳’以 較佳,以1 000以下爲更佳。此等化合物的總: 時,醯化纖維素單體的性質較容易出現’例 度、濕度變化較容易產生光學性能、物理強度 題。又,此等化合物的總量若大於45 %以上時 生大於在醯化纖維素膜中之化合物的相溶性 發生在薄膜表面析出使膜白濁(從薄膜浮現)等 醯化纖維素溶液的有機溶劑 B 本發明以使用溶劑延流法來製造醯化纖維 可以使用將溶解醯化纖維素溶解於有機溶劑 (塗布液)來製造。可以作爲本發明的主溶劑所 有機溶劑,以選自由碳原子數爲3〜1 2之酯、 及碳原子數爲1〜7之鹵化碳氫化合物之溶劑爲 及醚可以具有環狀構造。含有酯、酮及醚的1 —〇一、一CO —及一CO〇一)中任一種二個以上 可以使用作爲主溶劑,亦可以含有例如醇性羥 φ 能基。含有2種類以上的官能基之主溶劑時, 在含有任一種官能基之化合物的規定範圍內時 對以上在本發明可以使用之醯化纖維素膜 用氯系鹵化碳氫化合物作爲主溶劑。如發明協 200 1 - 1 745(1 2〜16頁)所述,亦可以使用非氯系 合物作爲主溶劑,對於在本發明可以使用之 膜,沒有特別限定之物。 其他,關於本發明之醯化纖維素溶液及薄 以下之專利有揭示亦含有其溶解方法,乃是較 2000以下爲 量若小於5 % 如會有對溫 之變動的問 ,較容易發 超過界限而 問題。 素膜爲佳, 而成的溶液 使用之較佳 酮、醚、以 佳。酯、_ I能基(亦即 之化合物亦 基之其他官 其碳原子數 乃是較佳。 ,亦可以使 會公開技報 鹵化碳氫化 醯化纖維素 膜的溶劑, :佳的態樣。 -81- 200537167 • 其等例如日本專利特開2000 -9 5 87 6號、特開平1 2-95 877 -* 號、特開平1 0-3 24774號、特開平8 - 1 5 25 1 4號、特開平 1 0 - 3 3 05 3 8號、特開平9 - 9 5 5 3 8號、特開平9 - 9 5 5 5 7號、特 開平1 0- 23 5 664號、特開平1 2-63 5 34號、特開平11-21379 號、特開平1 0- 1 8285 3號、特開平1 0-27 8056號、特開平 1 0-279702 號、特開平 1 0-3 23 85 3 號、特開平 1 0-237 1 86 號、 特開平1 1 -60807號、特開平U- 1 52342號、特開平1 1 -2929 8 8 號、特開平1卜6075 2號各公報等所述。依據此等專利,不 φ 只敘述在本發明之醯化纖維素的較佳溶劑,亦敘述有關其 溶液物性、共存之共存物質等,在本發明亦是較佳之態樣。 醯化纖維素膜之製造步驟 溶解步驟 本發明之醯化纖維素溶液(塗布液)的調製,其溶解方法 沒有特別限定,可以在室溫、可以進而使用冷卻溶解法或 是高溫溶解方法,可以更組合此等來實施。在本發明之醯 化纖維素溶液的調製,伴隨著溶解步驟之有關溶液濃縮、 ^ 過濾之進一步的各步驟,以使用在發明協會公開技報(公 技號碼2001-1745、2001年3月15日發行、發明協會)22〜25 頁詳述之製造步驟爲佳。 塗布液的透明度 本發明所使用之醯化纖維素溶液的塗布液透明度以 8 5 %以上爲佳,以88 %以上爲較佳,以90%以上爲更佳。 在本發明已確認各種添加可以充分地溶解醯化纖維素的 塗布溶液中。具體上,算出塗布液透明度的方法,可以將 塗布液注入1公分四方的玻璃容器中,使用分光光度計 •82- 200537167 η - • (UV-3150、島津製作所)測定在5 5 0nm之吸光度。預先測 " 定只有溶劑作爲空白試驗,從與空白試驗的吸光度比算出 醯化纖維素溶液的透明度。 流延、乾燥、捲起步驟 接著,敘述使用本發明之醯化纖維素溶液的醯化纖維 素膜之製造方法。在本發明可以使用之製造醯化纖維素膜 的方法及設備,可以使用以往用以製造醯化纖維素膜的之 溶液流延製膜方法及溶液流延製膜裝置。例如暫時在儲存 g 鍋儲存由溶解機(鍋)所調製成的塗布液(醯化纖維素溶 液),對含有在塗布液之氣泡進行脫泡而完成最後調製。 將塗布液從塗布液排出口,通過可以藉由旋轉數來高精密 度定量送液之加壓型定量幫浦送往加壓型模,使塗布液從 加壓型模的噴嘴(開縫)連續地流動而均勻地流延在流延部 金屬支撐體上,在大約爲金屬支撐體之一圈的剝離點,將 .半乾的塗布膜(亦稱爲膜)從金屬支撐體剝離。將所得到的 膜兩端以夾子夾住,邊保持寬度邊使用拉幅機進行搬運、 $ 乾燥,接著將所得到的膜使用乾燥裝置的滾筒群進行機械 性搬運、完成乾燥後使用捲取機依照規定長度捲取成滾筒 狀。拉幅機與滾筒群之乾燥裝置之組合係依照其目的而變 動。而且,在本發明所使用之醯化纖維素膜,多半附加有 塗布裝置用以進行朝偏光膜的表面加工。此等在發明協會 公開技報(公技號碼20(H- 1 745、200 1年3月15日發行、 發明協會)25〜30頁有詳述,分類爲流延(含共流延)、金屬 支撐體、乾燥、剝離等,可以適合使用於本發明。 又,醯化纖維素膜的厚度以10〜120微米爲佳,以20〜1〇〇 -83- 200537167 »* ^ 微米爲較佳,以30〜90微米爲更佳。 •- 高溫度處理後之醯化纖維素膜的光學性能變化 醯化纖維素膜物性評價 在本發明所可以使用之醯化纖維素膜因環境變化而引 起之光學性#變化’以在6 0 °C、9 0 % R Η進行2 4 0小時處理 後的醯化纖維素膜之Re及Rth的變化量爲l5nm以下爲 佳。以12nm以下爲較佳、以i〇nm以下爲更佳。 高溫度處理後的薄膜光學性能變化 • 又’在80C、240小時處理過之醯化纖維素膜之Re及PhWCN ^ HPI 〇Η-λ〇 Ph MC Ph -77- 200537167 κ *-Matting agent fine particles It is preferable to add fine particles as a matting agent for the tritiated cellulose film used in the present invention. Examples of the microparticles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, chromium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, calcium silicate hydrate, aluminum silicate, magnesium silicate, and Calcium phosphate and so on. Microparticles are silicon-containing substances, which are preferred in terms of turbidity, and silicon dioxide is particularly preferred. Fine particles of silicon dioxide having a primary average particle size of 2 nm or less and an apparent specific gravity of 70 g / liter or more are preferred. One-time φ particles with an average diameter as small as 5 to 16 nm are preferred because they can reduce the haze of the film. The apparent specific gravity is preferably 90 to 200 g / liter or more, and more preferably 100 to 200 g / liter or more. The larger the apparent specific gravity, the more it can be used as a high-concentration dispersion, and it is preferable because it can improve haze and agglomerates. The average particle size of these fine particles is usually a secondary particle of 0.1 to 3.0 micrometers, and these fine particles exist as agglomerates of primary particles in the film. An unevenness of 0.1 to 3.0 microns is formed on the film surface. The secondary average particle size is preferably 0.2 μm to 1.5 μm, more preferably 0.4 μm to 1.2 μm, and most preferably 0.6 μm to 1.1 μm. The primary and secondary particle sizes are measured using a scanning electron microscope to observe the particles in the film, and the outer circle of the particles is used as the particle size. Furthermore, 200 particles were observed at different positions, and the average particle size was used as the average particle size. As the fine particles of silicon dioxide, commercially available products such as AEROSIL R972, R972V, R974, R812, 200, 200V, 300, R202, 0X50, and TT600 (the above are manufactured by Japan Ayelozilu (stock)) can be used. Europium oxide fine particles are commercially available such as AEROSIL R97 6, R81 1 (the above are manufactured by Ayelozilu (Japan)). -78- 200537167 蠡 ·. Of these, 'AEROSIL 200V, AEROSIL R972V Series 1' "fine particles with an average particle size of 20 nm or less and an apparent specific gravity of 70 g / L made of silicon dioxide, because the edges remain low The turbidity of the optical film is particularly good because it has the effect of reducing the coefficient of friction. In order to obtain a small-sized cellulose film with a secondary average particle size, the present invention considers several methods when preparing a dispersion of fine particles, and if it is prepared in advance, it is stirred A fine particle liquid made by mixing a solvent and fine particles. This fine particle dispersion is added to a small amount of tritiated fiber prepared separately. The solution is stirred and dissolved, and then the main tritiated cellulose coating solution. This method is a silica particle. The dispersibility is better, and it is a better preparation method because the silica particles are not easy to aggregate. In addition, a small amount of cellulose ester is added to the solvent, and after stirring and dissolving, the particles are added here and dispersed using a disperser. This is a method for sufficiently mixing the fine particle addition liquid and the coating liquid with an axial agitator as the fine particle addition liquid. This method is not limited to these methods, and the silicon dioxide is The concentration of silicon dioxide when the particles are mixed and dispersed is preferably 5 to 30% by mass | 10 to 25% by mass is more preferable, and 15 to 20% by mass is most preferable. The dispersion turbidity is relative to the amount of liquid turbidity added It is lower because it can improve haze and setting. Finally, it is better to add 0.01 ~ 1 g per square meter to the matting agent in the coating solution of tritiated cellulose, more preferably 0.03 ~ 0.3 g. ~ 0. 16g is the best. The solvents used are low carbon number alcohols, including methanol alcohol, propanol, isopropanol, butanol, etc. The solvents other than low carbon number alcohol are not limited, The solvent used in the film formation with cellulose ester is preferred. For example, a solvent selected from the group consisting of halogenated hydrocarbons having a carbon number of 1 to 7 can be used. There are micro-solvents, so that the solvent is added in the amount of high polymer, and the special solvent is -79- 200537167 ο *-. The solvent can be 1 type, or more than 2 types can be used in combination. '' Plastic Compounds, anti-aging agents, release agents compounds that reduce the aforementioned optical anisotropy, wavelength dispersion In addition to the bulking agent, the tritiated cellulose film of the present invention can be added with various additives (for example, plasticizer, UV preventive agent, aging preventive agent, release agent, infrared absorber, etc.) in each preparation step according to the purpose. These may be The solid may be an oily substance. That is, its melting point, boiling point, etc. are not particularly limited. For example, it is described in JP-A No. 200 1-15 1 90 1 and the like. For example, it absorbs ultraviolet rays at φ or lower at 20 ° C and 20 ° C. Mixing of materials, similarly mixing of plasticizers, and the like. In addition, infrared absorbing dyes are described in, for example, Japanese Patent Application Laid-Open No. 200 1-94522. In addition, the addition time may be added at any step in the manufacturing process of the coating liquid, or Addition of an additive addition preparation step to the final preparation step of the coating solution manufacturing step. In addition, the amount of each raw material added is not particularly limited as long as the function can be exhibited. In addition, when the tritiated cellulose film is formed of a plurality of layers, the types, addition amounts, and the like of the additives in each layer may be different. For example, Japanese Unexamined Patent Publication No. 200 1-1 5 1 902 and the like are conventionally known techniques. φ For details, it is better to use the raw materials detailed on pages 16 to 22 of the Invention Association's Public Technical Bulletin (public technical numbers 200 1-1 745, 200 issued March 15, 2001, Invention Association). Compound addition ratio In the tritiated cellulose film which can be used in the present invention, the total amount of compounds having a molecular weight of 3,000 or less is preferably 5 to 45% by weight based on the tritiated cellulose. 10 to 40% is more preferable, and 15 to 30% is more preferable. As mentioned above, there are compounds that reduce optical anisotropy, wavelength dispersion modifiers, ultraviolet inhibitors, plasticizers, aging inhibitors, fine particles, mold release agents, -80- 200537167 Λ · Infrared absorber, molecular weight is 3 0 0 0 or less is better, more preferably, 1 000 or less is more preferred. When these compounds are combined, the properties of tritiated cellulose monomers are more likely to occur, and changes in humidity are more likely to cause problems with optical properties and physical strength. In addition, if the total amount of these compounds is greater than 45%, the compatibility of the compounds in the tritiated cellulose film is greater than the organic solvent of the tritiated cellulose solution, such as precipitation on the surface of the film and making the film cloudy (emerging from the film). B The present invention uses a solvent casting method to produce tritiated fibers, which can be produced by dissolving a tritiated cellulose in an organic solvent (coating solution). The organic solvent that can be used as the main solvent of the present invention may be a solvent selected from the group consisting of an ester having 3 to 12 carbon atoms and a halogenated hydrocarbon having 1 to 7 carbon atoms, and the ether may have a cyclic structure. Any of two or more of 1-0, 1CO-, and 1CO1) containing an ester, ketone, and ether may be used as a main solvent, and may contain, for example, an alcoholic hydroxyl φ energy group. When the main solvent containing two or more kinds of functional groups is within a predetermined range of a compound containing any one of the functional groups, the halogenated cellulose film which can be used in the present invention is a chlorine-based halogenated hydrocarbon as the main solvent. As described in the invention agreement 200 1-1 745 (pages 12 to 16), a non-chlorine-based compound can also be used as the main solvent, and there is no particular limitation on the film that can be used in the present invention. In addition, the patents concerning the tritiated cellulose solution and thinner of the present invention are disclosed and also contain the dissolving method, but the amount is less than 5% if it is less than 2000. If there is a question about temperature change, it is more likely to exceed the limit. And the problem. A plain film is preferred, and the resulting solution is preferably a ketone or ether. The ester, _I energy group (that is, the other compounds of the compound also have a better carbon number. It can also make the technical report of the halogenated hydrocarbon-halogenated cellulose film solvent: a good appearance. -81- 200537167 • For example, Japanese Patent Laid-Open No. 2000 -9 5 87 No. 6, JP-A No. 1 2-95 877- *, JP-A No. 1 0-3 24774, JP-A No. 8-1 5 25 1 4 , Kaihei 1 0-3 3 05 3 8, kaihei 9-9 5 5 3 8, kaihei 9-9 5 5 5 7, kaihei 1 0- 23 5 664, kaihei 1 2- No. 63 5 No. 34, No. 11-21379, No. 1 Heping 1 0- 1 8285 No. 3, No. Heping 1 0-27 8056, No. 0-279702, No. 1 Heping 1 0-3 23 85 No. 3, JP-A-1 0-237 1 86, JP-A 1-60-60807, JP-A U-1 52342, JP-A 1-1-2929 88, JP-A 1 1 6075 2 and other publications. These patents describe not only the preferred solvents for the tritiated cellulose in the present invention, but also the physical properties of the solution and coexisting substances, etc., which are also preferred in the present invention. Manufacturing steps The method for preparing the tritiated cellulose solution (coating solution) of the present invention is not particularly limited, and it may be performed at room temperature, and further, by a cooling dissolution method or a high temperature dissolution method, and may be implemented in combination of these. The preparation of the tritiated cellulose solution is accompanied by further steps of solution concentration and filtration of the dissolution step, in order to use in the technical publication of the Invention Association (public technical number 2001-1745, issued on March 15, 2001, invention Association) The manufacturing steps detailed on pages 22 to 25 are preferred. Transparency of the coating solution The transparency of the coating solution of the tritiated cellulose solution used in the present invention is preferably 85% or more, 88% or more is preferable, and 90% or more More than% is more preferred. In the present invention, it has been confirmed that various additions can sufficiently dissolve tritiated cellulose in the coating solution. Specifically, to calculate the transparency of the coating liquid, the coating liquid can be poured into a 1 cm square glass container and used. Spectrophotometer • 82- 200537167 η-• (UV-3150, Shimadzu Corporation) Measure the absorbance at 550 nm. Pre-measurement " Only solvent as blank test The transparency of the tritiated cellulose solution was calculated from the absorbance ratio with the blank test. Casting, drying, and rolling steps Next, a method for manufacturing a tritiated cellulose film using the tritiated cellulose solution of the present invention will be described. In the present invention, As the method and equipment for producing a tritiated cellulose film, a solution casting film forming method and a solution casting film forming apparatus that were conventionally used to produce a tritiated cellulose film can be used. For example, temporarily store the coating solution prepared by a dissolver (pot) in a storage g pot, and defoam the bubbles contained in the coating solution to complete the final preparation. The coating liquid is sent from the coating liquid discharge port to the pressure die through a pressure type dosing pump capable of high precision quantitative liquid feeding by the number of rotations, so that the coating liquid is discharged from the nozzle of the pressure die (slit). Continuously and uniformly cast on the metal support of the casting portion, and at a peeling point of about one turn of the metal support, the semi-dry coating film (also referred to as a film) was peeled from the metal support. The two ends of the obtained film were clamped by clips, and the tenter was transported and dried while maintaining the width. Then, the obtained film was mechanically transported using a roller group of a drying device, and the coiler was used after drying. It is wound into a roll shape according to the specified length. The combination of the tenter and the drying device of the drum group is changed according to its purpose. Further, a coating device is most often added to the tritiated cellulose film used in the present invention for processing the surface of the polarizing film. These are described in detail in pages 25 to 30 of the Public Technical Bulletin of the Invention Association (public technology number 20 (H-1 745, 200 issued March 15, 2001, Invention Association), classified as cast (including co-cast), Metal supports, drying, peeling, etc., can be suitably used in the present invention. The thickness of the tritiated cellulose film is preferably 10 to 120 microns, and 20 to 100-83-200537167 is preferred. It is better to use 30 ~ 90 micron. •-Change of optical properties of tritiated cellulose film after high temperature treatment Tritiated cellulose film physical properties evaluation The tritiated cellulose film that can be used in the present invention is caused by environmental changes. The optical property #change 'is preferably a change in the Re and Rth of the halogenated cellulose film after being treated at 60 ° C, 90% R for 24 hours, preferably 15 nm or less, and preferably 12 nm or less. It is better to be less than 10 nm. Changes in optical properties of films after high temperature treatment • Re and Re of cellulose films treated at 80C and 240 hours
Rth的變化量爲15nm以下爲佳。以12nm以下爲較佳、以 10nm以下爲更佳。 薄膜加熱處理後化合物揮發量 在本發明所使用之醯化纖維素膜,降低Rth之化合物和 降低△ Rth之化合物,化合物從80 °C、240小時處理過之 醯化纖維素膜之揮發量以30%以下爲佳。以25 %以下爲較 佳,以20%以下爲更佳。 φ 又,從醯化纖維素膜之揮發量,係將在80°C、240小時 處理過之醯化纖維素膜及未處理過之醯化纖維素膜,各自 使用溶劑進行溶出,使用液體高速色譜法進行檢測化合 物’以化合物的尖鋒面積當作薄膜中殘留之化合物,藉由 下述算出。 揮發量(%)={(未處理品中之殘留化合物量)-(處理品中 之殘留化合物量)}/(未處理品中之殘留化合物量)X 1〇〇 醯化纖維素膜的玻璃轉移溫度(Tg) 本發明可以使用之醯化纖維素膜的玻璃轉移溫度Tg爲 -84- 200537167 - 8 0〜1 6 5 °C。從耐熱性的觀點,T g以1 0 0〜1 6 0 °C爲更佳,以 ' 1 10〜15CTC爲特佳。玻璃轉移溫度(Tg)的測定係將本發明可 以使用之醯化纖維素膜試樣1 0毫克,從常溫升溫至200 °C爲止、升溫速度爲5 °C /分鐘,使用微差掃描熱量計 (DSC2910、T.A.INSTRUMENT)進行熱量測定,可以算出玻 璃轉移溫度(Tg)。 醯化纖維素膜的霧度 本發明可以使用之醯化纖維素膜之霧度以0.01〜2.0%爲 φ 佳。以0,05〜1.5%爲較佳、以0.1〜1.0%爲較佳。霧度之測 定可以對40mm X 80 mm之本發明醯化纖維素膜試樣,在 25°C、60%RH,使用霧度計(HGM-2DP、蘇加試驗機)依據 JIS K-6714進行測定。 醯化纖維素膜的Re、Rth的濕度依存性 本發明可以使用之醯化纖維素膜之面內的相位差(Re) 及膜厚方向的遲滯値(Rth)都是因溫度而引起的變化較小 爲佳。具體上,在 25°C、10%RH 之 Rth 與 25°C、80%RH _ 之 Rth 的差△ Rth( = RthlO%RH— Rth80%RH)以 0 〜50nm 爲 佳。以0〜40nm爲較佳,以0〜35nm爲更佳。 醯化纖維素膜的平衡含水率 本發明可以使用之醯化纖維素膜,爲了不損害與聚乙 烯醇等水溶性聚合物的黏著性,與膜厚度爲若干無關,在 25°(:、80%101之平衡含水率以0〜4%爲佳,以0.1〜3.5%爲 更佳,以1〜3%爲特佳。藉由使平衡含水率在4%以下,因 爲可以更減少遲滯値之對濕度變化的依存性而較佳。 本發明之含水率,可以對7mm X 35 mm之本發明醯化 -85- 200537167 纖維素膜試樣,使用試料乾燥裝置(CA-03、VA-05、都是 二菱化學(股))藉由卡耳-費雪法進行測定,藉由水分量(克) 除以試料重量(克)來算出。 醯化纖維素膜的透濕性 本發明可以使用之醯化纖維素膜的透濕性,依據ns規 格JISZ0208,在溫度60°C、濕度95%RH的條件下進行測 疋’換算膜厚度爲80微米以400〜2000克/m2· 24小時爲 佳。以500〜1 800克/m2.24小時爲更佳,以600〜1 600克/m2· φ 24小時爲特佳。藉由在2000克/m2 · 24小時以下,可以更 容易地保持醯化纖維素膜的Re、Rth的溫度依存性的絕對 値在0.5 nm/%RH以下,又,可以更有效地抑制液晶顯示器 的發色變化、視野角的降低等。又,藉由使醯化纖維素膜 的透濕度在400克/m2 · 24小時以上,醯化纖維素膜之黏 著劑可以較容易乾燥,而更改良黏著性。 醯化纖維素膜的膜厚度越厚透濕度越減小,膜厚度若 較薄透濕性會增加。因此,無論何種膜厚度之樣品亦都可 $ 以將基準設定在80微米來進行換算。在本發明,膜厚度 係如下述得,換算爲80微米之透濕度=實測之透濕度 X 實測的膜厚度微米/80微米。The amount of change in Rth is preferably 15 nm or less. The thickness is preferably 12 nm or less, and more preferably 10 nm or less. After the thin film heat treatment, the volatilization amount of the compound is in the halogenated cellulose film used in the present invention, the compound that reduces Rth and the compound that reduces ΔRth. Below 30% is preferred. 25% or less is preferable, and 20% or less is more preferable. φ In addition, from the volatility of the tritiated cellulose film, the tritiated cellulose film that has been treated at 80 ° C for 240 hours and the untreated tritiated cellulose film are each dissolved with a solvent, and the liquid is used at high speed. Chromatographic detection of the compound 'The peak area of the compound was taken as the remaining compound in the film, and it was calculated as follows. Volatile amount (%) = {(amount of residual compound in untreated product)-(amount of residual compound in processed product)} / (amount of residual compound in untreated product) X 100 × glass of cellulose film Transition temperature (Tg) The glass transition temperature Tg of the tritiated cellulose film that can be used in the present invention is -84-200537167-8 0 ~ 16 5 ° C. From the viewpoint of heat resistance, T g is more preferably from 100 to 160 ° C, and particularly preferably from 1 to 10 to 15 CTC. The measurement of the glass transition temperature (Tg) is to take 10 mg of the tritiated cellulose film sample that can be used in the present invention, and raise the temperature from normal temperature to 200 ° C, and the temperature increase rate is 5 ° C / min. (DSC2910, TAINSTRUMENT) By measuring the heat, the glass transition temperature (Tg) can be calculated. The haze of the tritiated cellulose film The haze of the tritiated cellulose film which can be used in the present invention is preferably 0.01 to 2.0% as φ. It is preferably from 0.05 to 1.5%, and more preferably from 0.1 to 1.0%. The haze can be measured on a 40mm X 80 mm sample of the tritiated cellulose film of the present invention at 25 ° C, 60% RH using a haze meter (HGM-2DP, Suga testing machine) in accordance with JIS K-6714 Determination. Humidity dependence of Re and Rth of tritiated cellulose film The phase difference (Re) and hysteresis (Rth) in the thickness direction of tritiated cellulose film that can be used in the present invention are both changed due to temperature. Smaller is better. Specifically, the difference between Rth at 25 ° C and 10% RH and Rth at 25 ° C and 80% RH Δ Rth (= Rth10% RH—Rth80% RH) is preferably 0 to 50 nm. 0 to 40 nm is preferable, and 0 to 35 nm is more preferable. Equilibrium moisture content of tritiated cellulose film The tritiated cellulose film that can be used in the present invention is not affected by the thickness of the film to a certain extent in order not to impair the adhesion with water-soluble polymers such as polyvinyl alcohol. The equilibrium moisture content of% 101 is preferably from 0 to 4%, more preferably from 0.1 to 3.5%, and particularly preferably from 1 to 3%. By making the equilibrium moisture content below 4%, the hysteresis can be further reduced. Dependence on changes in humidity is better. The moisture content of the present invention can be used for the 7-mm-35-200537167 cellulose film samples of the present invention using a sample drying device (CA-03, VA-05, Both are manufactured by Mitsubishi Chemical Corporation using the Carr-Fisher method, and calculated by dividing the moisture content (g) by the weight of the sample (g). Moisture permeability of tritiated cellulose membranes The present invention can be used The moisture permeability of the halogenated cellulose film was measured in accordance with the ns standard JISZ0208 at a temperature of 60 ° C and a humidity of 95% RH. The conversion film thickness was 80 microns and 400 to 2000 g / m2 for 24 hours. 500 to 1 800 g / m for 2.24 hours is more preferable, and 600 to 1 600 g / m2 · φ for 24 hours is particularly preferable. 2000 g / m2 · 24 hours or less, it is easier to keep the absolute temperature dependence of Re and Rth of the tritiated cellulose film 値 0.5 nm /% RH or less, and it can more effectively suppress the color development of liquid crystal displays Change, reduction of viewing angle, etc. Moreover, by making the moisture permeability of the tritiated cellulose film 400 g / m2 for more than 24 hours, the adhesive of the tritiated cellulose film can be dried more easily and the good adhesion can be changed. The thicker the membrane thickness of the tritiated cellulose membrane, the lower the moisture permeability. If the membrane thickness is thinner, the moisture permeability will increase. Therefore, no matter what the film thickness is, the sample can be converted by setting the benchmark at 80 microns. In the present invention, the film thickness is obtained as follows, and is converted to a moisture permeability of 80 micrometers = the measured moisture permeability X the measured film thickness micrometers / 80 micrometers.
透濕度的測定法,可以應用「高分子物性I I」(高分子 實驗講座4 共立出版)之285〜294頁:蒸氣穿透量的測 定(質量法、溫度計法、蒸氣壓法、吸著量法)所述之方法’ 將70mmcD之本發明可以使用之醯化纖維素膜的試樣’在 25°C、90%RH及60°C、95%RH,分別進行24小時調濕、 使用透濕試驗裝置(KK_709007、東洋精機(股))’依據JIS -86- 200537167 Z-0208算出每單位面積之水分量(克/m2),藉由透濕度:z調 濕後重量-調濕前重量來求得。 薄膜的尺寸變化 本發明可以使用之醯化纖維素膜的尺寸安定性,在60 °C、90 %RH的條件下靜置24小時(高濕)之尺寸變化率、 以及在90 °C、5 %RH的條件下靜置24小時(高溫)之尺寸變 化率中任一尺寸變化率以0.5%以下爲佳。以0.3%以下爲 較佳,以0.1 5 %以下爲更佳。 本發明之尺寸變化率可以藉由以下的方法來求得。亦 即,準備2片30mmxl20mm醯化纖維素試樣,25°C、60%RH 調濕24小時,使用自動針規(新東科學(股))在兩端間隔 100mm穿開6ιηιηΦ的孔,作爲穿孔間隔之原尺寸(L0)。測 定1片試樣在60 °C、90 % RH處理24小時後的穿孔間隔尺 寸(L1),測定另外1片試樣在90°C、5%RH處理24小時後 的穿孔間隔尺寸(L2)。全部間隔之測定係達到最小刻度 l/1000mm爲止。6(TC、90%RH(高濕)之尺寸變化率係如下 式求得,尺寸變化率= {|L0— Ll|/L0}xl00,90°C 、 5%RH(高溫)之尺寸變化率={ I L0 — L2| /L0}xl00。 薄膜的彈性率 (彈性率) 本發明可以使用之醯化纖維素膜的彈性率,以 200〜500kgf/mm2 爲佳。以 240〜470kgf/mm2 爲較佳、以 2 7 0〜4401^£[/1111112爲更佳。本發明的彈性率係指使用東洋伯 魯多因製萬能拉伸試驗機STM T50BP,在23°C、70%環境 中,以拉伸速度10%/分,測定0.5 %伸長之應力所得到的 -87- 200537167 镛- 値。 ^ 薄膜的光彈性係數 (光彈性係數) 本發明可以使用之醯化纖維素膜的彈性係數以 50x10 13cm2/dyne 以下爲佳。以 30x 10 13cm2/dyne 以下爲 較佳,以20x1 (Γ "cm2/dyne以下爲更佳。光彈性係數係對 1 2 m m X 1 2 0 m m醯化纖維素膜試樣的長軸方向施加拉伸應 力,使用偏振光橢圓計(ellipsometer)(M150、日本分光(股)) g 測定此時的遲滯値,從對應力之遲滯値的變化量來求得。 在延伸前後之正面遲滯値變化、遲相軸的檢測 準備1 00x1 00mm試樣,使用固定單軸延伸機在溫度140 °C的條件下,在機械搬運方向(MD方向)或是垂直方向(TD 方向)進行延伸。延伸前後之各試樣的正面遲滯値係藉由自 動折射計KOBRA21 ADH測定。遲相軸的檢測係由在測定上 述遲滯値時所得到的配向角來決定。因延伸而引起的Re 的變化以較小爲佳,具體上,Re (η)爲延伸n(%)之薄膜的 面內正面遲滯値(nm),Re (0)爲未延伸之薄膜的面內正面 遲滯値(nm)時,以具有| Re(n) - Re(0) | /nS 1.0爲佳,以 | Re(n) — Re(0) | /η ^ 0.3 爲更佳。 遲相軸的方向 本發明可以使用之醯化纖維素膜,爲了使偏光膜在機械 搬運的方向(MD方向)具有吸收軸,醯化纖維素膜之遲相軸 以在MD方向附近或是TD附近爲佳。藉由遲相軸與偏光 膜平行或是正交可以減少漏光或是發色。附近係指例如遲 相軸與MD或TD方向顯示在0〜10度、以0〜5度的範圍爲 -88- 200537167 •- . 佳。 固有複折射爲正的醯化纖維素膜 本發明可以使用之醯化纖維素膜,在薄膜面內 軸的方向延伸時正面遲滯値變大,在往具有與遲相 的方向延伸時正面遲滯値變小。這是顯示固有複折 的,在與遲相軸垂直的方向延伸對消除在纖維素膜 現的遲滯値係有效的。此方法例如當膜在機械搬 (MD方向)具有遲相軸時,可以認爲在與MD垂直 φ (TD方向)使用拉幅機延伸可以減少正面遲滯値。相 子,當膜在TD方向具有遲相軸時,可以認爲藉由if 方向之機械搬運滾筒的張力來延伸時,可以減小正 値。 固有複折射爲負的醯化纖維素膜 本發明可以使用之醯化纖維素膜,亦有在薄膜 遲相軸的方向延伸時正面遲滯値變小,在往與遲相 的方向延伸時正面遲滯値變大之情況。這顯示固有 I 爲負的,在與遲相軸相同方向延伸對消除在膜中所 遲滯値係有效的。此方法例如當膜在機械搬運方向 向)具有遲相軸時,可以認爲藉由增強MD方向之機 滾筒的張力來延伸時,可以減小正面遲滯値。相 子,當膜在TD方向具有遲相軸時,可以認爲在與 直的方向(TD方向)使用拉幅機延伸可以減少正面邁 醯化纖維素膜的評價方法 進行本發明可以使用之醯化纖維素膜的評價,後 發明實施例藉由實施以下的方法來測定。 往遲相 軸垂直 射爲正 中所顯 運方向 的方向 反的例 r強md 面遲滯 面內往 軸垂直 複折射 顯現的 (MD方 械搬運 反的例 MD垂 [滯値。 述之本 -89- 200537167 (面內遲滯値Re、膜厚度方向遲滯値Rth) 將3 0mmx40mm之試樣,在25 °C、60%RH調濕2小時, Re( λ )係在自動複折射計K〇BRA21ADH(王子計測機器(株) 製),於薄膜法線方向入射波長A nm的光來進行測定。又, Rth( λ )係使用前述Re、以及使用以面內的遲相軸作傾斜 軸並以膜法線方向當作0度、使試樣以每次1 0度直到50 度爲止的方式傾斜並入射波長λ nm的光來進行測定而得 到的遲滯値値作爲基礎,並輸入平均折射率的假設値1.48 φ 及膜厚來計算出來。 (Re、Rth的波長色散測定) 將3 0mmx40mm之試樣,在25°C、60%RH調濕2小時, 在偏振光橢圓計(ellipsometer)M-150(日本分光(股)製),於 薄膜法線方向入射波長7 80nm至3 80nm的光,求得Re、 測定Re的波長色散性。又,關於Rth的波長色散,係使 用前述Re、以面內的遲相軸作傾斜軸並對法線方向+40度 傾斜的方向入射波長7 8 0 n m至3 8 0 n m的光來進行測定而得 φ 到的遲滯値値、以及以面內的遲相軸作傾斜軸並對法線方 向—40度傾斜的方向入射波長780nm至3 80nm的光來進 行測定而得到的遲滯値値等以合計在三個方向所測定而 得到的遲滯値値作爲基礎,並輸入平均折射率的假設値 1.48及膜厚來計算出來。 (分子配向軸) 將7 0mmxl00mm之試樣,在25t:、65%RH調濕2小時、 使用自動複折射計(KOBRA 21DH、王子計測(股))、變化垂 直入射時之入射角時,藉由相位差來算出分子配向軸。 -90- 200537167 (軸偏離) 又,自動複折射計(KOBRA-21 ADH、王子計測機器(股)) 測定軸偏離角度。以等間隔、跨及寬度方向全幅的方式測 定20點,求得絕對値的平均値。又,遲相軸角度(軸偏離) 之透鏡係以等間隔、跨及寬度方向全幅的方式測定20點, 求得從軸偏離的絕對値大的一方4點的平均與從軸偏離的 絕對値小的一方4點的平均之差。 (穿透率) g 對20mmx70mm之試樣,在25°C、60%RH使用自動複折 射計(AKA光電管比色計、KOTAKI製作所)測定可見光 (615nm)的穿透率。 (分光特性) 對13mmx40mm之試樣,在25°C、60%RH使用分光計 (U-3210、日立製作所(股)),測定在波長300〜450nm之穿 透率。傾斜幅係以7 2 %的波長-5 %的波長來求得。界限波 長係以(傾斜幅/2) + 5 %的波長來表示。吸收端係以穿透率 0.4%的波長來表示。藉此來評價3 8 0nm及3 5 0nm的穿透率。 ® 醯化纖維素膜表面的性狀 本發明可以使用之醯化纖維素膜的表面,以依據 JISB060 1 - 1 994,該膜的表面凹凸的算術平均粗度(Ra)爲0.1 微米以下、及最大高度(Ry)爲0.5微米以下爲佳。最好是 算術平均粗度(R a)爲0.05微米以下、及最大高度(Ry)爲〇·2 微米以下。膜表面的凹及凸的形狀可以使用原子間顯微鏡 (AFM)來評價。 醯化纖維素膜的遲滯値面內偏差 -91- 200537167 • 本發明可以使用之醯化纖維素膜以滿足下式爲佳。 | Re(MAX) - Re(MIN) | S 3、且 | Rth(MAX) — Rth(MIN) | S 5 式中,Re (MAX)、Rth(M ΑΧ)係任意切下之1米四方薄膜 之最大遲滯値値,Re(MIN)、Rth(MIN)係最小値。 醯化纖維素膜的保留性 在本發明可以使用之醯化纖維素膜,要求添加在膜中 之各種化合物的保留性。具體上,以將本發明可以使用之 醯化纖維素膜在80°C、90%RH的條件下靜置48小時時之 B 膜的質量變化爲〇〜5 %爲佳,以爲0〜3 %爲較佳,以爲0〜2% 爲更佳。 (保留性的評價方法) 將試樣裁成lOcmxlOcm尺寸之試樣,在23°C、55%RH 的環境下放置24小時後測定質量,在80±5°C、90±10%RH 的條件下放置48小時。輕擦拭處理後的表面,在23 °C、 5 5 %RH的環境下放置1天後測定質量,以下面的方法來計 算保留性。 φ 保留性(質量%)={(放置前的質量-放置後的質量)/放 置前的質量}χ100 (薄膜的力學特性) 捲曲 本發明可以使用之醯化纖維素膜之寬度方向的捲曲 値,以-10/m〜+10/m爲佳。本發明可以使用之醯化纖維素 膜在以長尺寸進行貼合等的時候,藉由使本發明可以使用 之醯化纖維素膜之寬度方向的捲曲値在前述範圍,可以更 有效地防止薄膜在處理上所造成的障礙、薄膜發生截斷 •92- 200537167 等。又,因爲在薄膜的邊緣、中央部等與搬運滾筒確實地 接觸,可以有效地防止容易產生塵埃、在薄膜上沾附許多 異物、光學補償膜之點缺陷、以及塗布線條的頻率超過容 許値等。而且,從在與偏光膜貼合時可以防止氣泡進入的 觀點而言亦是較佳。 捲曲値可以依據美國國家規格協會所規定的方法 (ANSI/ASCPH 1.29 - 1 9 8 5)進行測定。 (撕裂強度) 以JISK 7 1 28-2:1 988之撕裂試驗方法之撕裂強度(愛爾 曼多夫撕裂法),在本發明可以使用之醯化纖維素膜之膜 厚度爲20〜80微米的範圍,以2克以上爲佳。以5〜25克 以上爲較佳,以6〜25克以上爲更佳。又,換算爲60微米 時,以8克以上爲佳,以8〜15克爲較佳。具體上,可以 將50mmx64mm試片,在25°C、65%RH的條件下進行調濕 2小時後,使用輕負載撕裂強度試驗機來進行測定。 醯化纖維素膜的殘留溶劑量 本發明可以使用之醯化纖維素膜之殘留溶劑量,以能 夠至0.01〜1.5質量%的範圍的條件來進行乾燥爲佳,以 0.01〜1.0質量%爲更佳。藉由使本發明所使用的偏光膜的 殘留溶劑量1 . 5 %以下可以控制捲曲。以1.0 %以下爲更佳。 該效果主要的原因,可以認爲是使用前述溶劑流延方法來 成膜時,使殘留溶劑量較少時可以減少自由堆積。 醯化纖維素膜的吸濕膨脹係數 本發明可以使用之醯化纖維素膜的吸濕膨脹係數最好 是30x10 — 5%RH以下。吸濕膨脹係數以15xl0_ 5%RH以下 -93- 200537167 . 爲佳、以10x1 5%RH以下爲更佳。又,吸濕膨脹係數以 ^ 較小爲佳,但是通常的値係在1·0χ1 (Γ 5% RH以上。吸濕膨 脹係數係表示在一定溫度下變化相對濕度時試樣的長度 變化量。 表面處理 醯化纖維素膜依情況進行表面處理,可以達成改良與 醯化纖維素膜的黏著。例如可以使用發光放電處理、紫外 線照射處理、電暈處理、火焰處理、酸或是鹼處理。在此 g 所稱發光放電處理可以是藉由10_3〜20托的低壓氣體來發 生低溫電漿、而且亦可以在大氣壓下進行電漿處理。電漿 激發性氣體係指在上述的條件下被電漿激發的氣體,可以 舉出的有氬、氨、氖、氪、氙、氮、二氧化碳、如四氟甲 烷之氟類及其等之混合物等。此等在發明協公開技報(公 技號碼200 1 - 1 745、200 1年3月15日發行、發明協會)30〜3 2 頁有詳述,可以適合使用於本發明。 使用鹼皂化處理之醯化纖維素表面的接觸角 鹼皂化處理係本發明可以使用之醯化纖維素膜之可以 舉出的有效表面處理方法之一。此時,鹼皂化處理後的纖 維醯化膜表的接觸角以5 5度以下爲佳。以5 0度以下爲較 佳,以45度以下爲較更佳。接觸角的評價方法可以使用 在鹼皂化處理後的薄膜表面上滴下直徑3mm之水滴,求取 醯化纖維素膜表面與水滴所構成的角度,藉由通常的方法 來評價親疏水性。 耐光性 本發明可以使用之醯化纖維素膜之光耐久性的指標, -94- 200537167 以使用超氙光照射240小時之醯化纖維素膜的色差Δ E*ab 爲2 0以下爲佳。以1 8以下爲較佳,1 5以下爲更佳。色差 測定例如可以使用UV 3 1 00(島津製作所製)。測定方法係將 醯化纖維素膜在2 5 °C、6 0 % RH進行2小時以上調濕,在照 射氙光前測定醯化纖維素膜的顏色,求得初期値(L〇*、 a0*、b0*)。接著,以醯化纖維素膜爲單體,使用超氙光耐 候試驗機SX-75(蘇加試驗機(股)製),在i50W/m2、6CTC 5 0%RH條件下照射氙光240小時。經過規定時間後,從恆 溫槽取出醯化纖維素膜,在25 °C 60%RH調濕2小時後,再 次測定顏色,求得照射經時後的値(L 1 *、a 1 *、b 1 *)。由此 等,可以藉由求取色差△E*ab = ((L0* - L1*厂2 + (a0*— al*) • 2 + (b0*— bl*)· 2厂0.5來進行測定。 [實施例] 以下舉出實施例和比較例來更具體地說明本發明的特 徵。以下實施例所示之材料、使用量、比例、處理內容、 處理順序,在不脫離本發明之意思可以進行適當地變更。 因此,本發明的範圍應不限定以下例示具體例的解釋。 [實施例1] <IPS模式液晶胞1的製造〉 在一片基板上,如第1圖所示,以鄰接電極間的距離 爲20微米的方式配置電極(第1圖中之2及3),在其上面 設置聚醯亞胺膜作爲配向膜,進行擦拭處理。在第1圖中 所示方向4進行擦拭處理。在另外準備的一片玻璃基板之 一側表面上設置聚醯亞胺膜,進行擦拭作爲配向膜。使二 片玻璃基板之配向膜之間相向,使基板的間隔(間隙;d) -95- 200537167 - 爲3 · 9微米,使二片玻璃基板以擦拭方向平行的方式互相 重疊貼合,接著,裝入折射率異方向性(Δη)爲0.0769及 介電常數異方向性(△ ε )爲正的4.5之向列型液晶組成 物。液晶層的d · △ η之値爲300nm。 <第1相位差區域1的製造> 在10重量份之下述(A)的共聚物與90重量份下述(B) 單體混合物接枝聚合而成苯乙烯系聚物170克溶解在830 克二氯甲烷中。 • (A)苯乙烯/丁二烯共聚物(質量比:20/80) (B)苯乙烯/丙烯腈/ α -甲基苯乙烯(質量比:60/20/20) 以使此溶液乾燥後的膜厚爲1 05微米之方式將其流延 在玻璃板上,在室溫放置5分鐘後,以45 °C的溫風乾燥 20分鐘,將所得到的薄膜(膜)從玻璃板剝起。將此薄膜張 貼在矩形的框上,在70 °C乾燥1小時。更在110°C乾燥15 小時後,在1 15°C的條件使用拉力試驗機(SUTOROGURAF R2、東洋精機(股)製),以1.9倍的倍率進行單軸延伸。如 φ 上述,進行測定從苯乙烯系聚合物的單軸延伸膜所得到薄 膜的遲滯値。Re爲185nm、Rth爲—92nm。該薄膜之折射 率異方向性爲負的,又,薄膜的光軸係在與薄膜面平行的 方向(亦即在薄膜面內)。以該薄膜作爲第1相位差區域。 <製造第2相位差區域1> 將下述的組成物投入攪拌器,邊加熱邊攪拌來溶解各 成分,調製具有下列組成的乙酸纖維素溶液。 -96- 200537167 乙酸纖維素溶液的組成 乙醯化度60.9%之乙酸纖維素 100質量份 三苯基磷酸酯(可塑劑) 7.8質量份 聯苯基二苯基磷酸酯(可塑劑) 3.9質量份 二氯甲烷(第1溶劑) 300質量份 甲醇(第2溶劑) 54質量份 1-丁醇(第3溶劑) 1 1質量份 、80 製 合 在其他攪拌器,投入下述1 6質量份遲滯値上升劑 φ 質量份二氯甲烷及20質量份甲醇,邊加熱邊攪拌來丨 遲滯値上升劑溶液。在487質量份乙酸纖維素溶液中彳 1 1質量份遲滯値上升劑溶液,充分攪拌來調製塗布液 [化學式36] 遲滯値上升劑The method of measuring the moisture permeability can be applied to "Polymer Properties II" (Polymer Experiment Lecture 4 Kyoritsu Publishing) pages 285 ~ 294: Measurement of vapor penetration (mass method, thermometer method, vapor pressure method, adsorption amount method) ) The method described in the above, "samples of tritiated cellulose films of 70 mmcD which can be used in the present invention" are subjected to humidity adjustment at 25 ° C, 90% RH and 60 ° C, 95% RH for 24 hours, and moisture permeability is used. Test device (KK_709007, Toyo Seiki Co., Ltd.) 'Calculate the water content per unit area (g / m2) based on JIS-86- 200537167 Z-0208, and use the moisture permeability: z weight after humidity adjustment-weight before humidity adjustment Find it. Dimensional change of film The dimensional stability of the tritiated cellulose film that can be used in the present invention, the dimensional change rate of standing for 24 hours (high humidity) under the conditions of 60 ° C and 90% RH, and at 90 ° C, 5 Any dimensional change rate of standing for 24 hours (high temperature) under% RH condition is preferably 0.5% or less. 0.3% or less is preferable, and 0.15% or less is more preferable. The dimensional change rate of the present invention can be obtained by the following method. That is, two 30mmxl20mm cellulose cellulose samples were prepared, humidity-controlled at 25 ° C and 60% RH for 24 hours, and an automatic needle gauge (Xindong Science Co., Ltd.) was used to open 6 μm holes at 100 mm at both ends as The original size of the perforation interval (L0). Measure the perforation interval size (L1) of one sample after treatment at 60 ° C and 90% RH for 24 hours, and measure the perforation interval size (L2) of another sample after treatment at 90 ° C and 5% RH for 24 hours . All intervals are measured until the minimum scale is 1 / 1000mm. 6 (TC, 90% RH (high humidity) dimensional change rate is obtained by the following formula, dimensional change rate = {| L0— Ll | / L0} xl00, 90 ° C, 5% RH (high temperature) dimensional change rate = {I L0 — L2 | / L0} xl00. Elasticity (elasticity) of the film The elasticity of the cellulose film to be used in the present invention is preferably 200 to 500 kgf / mm2. 240 to 470 kgf / mm2 It is better to use 270 ~ 4401 ^ [/ 1111112. The elasticity ratio of the present invention refers to the use of Toyo Borudin universal tensile testing machine STM T50BP, at 23 ° C, 70% environment, -87- 200537167 镛-得到 obtained by measuring the stress of 0.5% elongation at a tensile speed of 10% / min. ^ Photoelastic coefficient (photoelastic coefficient) of the film The elastic coefficient of the tritiated cellulose film that can be used in the present invention 50x10 13cm2 / dyne or lower is preferred. 30x 10 13cm2 / dyne or lower is preferred, and 20x1 (Γ " cm2 / dyne or lower is more preferred. The photoelastic coefficient is for 1 2 mm X 1 2 0 mm chemical fiber The tensile stress was applied to the long axis direction of the plain film sample, and the hysteresis 此时 at this time was measured using a polarizing ellipsometer (M150, Japan spectrometer (g)). Calculate the amount of change in the hysteresis 应力 of the stress before and after stretching, and prepare a 100x1 00mm sample for the detection of the hysteresis 正面 before and after stretching. Use a fixed uniaxial elongation machine at a temperature of 140 ° C. Extend in the conveying direction (MD direction) or vertical direction (TD direction). The frontal hysteresis of each sample before and after the extension is measured by an automatic refractometer KOBRA21 ADH. The detection of the retardation axis is performed when the hysteresis is measured. The orientation angle is determined. The change in Re due to elongation is preferably small. Specifically, Re (η) is the in-plane frontal hysteresis (nm) of the film extending n (%), and Re (0 When) is the in-plane frontal retardation nm (nm) of the unstretched film, it is preferable to have | Re (n)-Re (0) | / nS 1.0, and | Re (n) — Re (0) | / η ^ 0.3 is better. Orientation of the retarded cellulose film In order to make the polarizing film have an absorption axis in the mechanical conveying direction (MD direction), the retarded cellulose film can be used in the present invention. The vicinity of the MD direction or the vicinity of the TD is preferred. The leakage can be reduced by the retardation axis being parallel or orthogonal to the polarizing film. Light or hair color. Nearby means that, for example, the retardation axis and MD or TD directions are displayed at 0 to 10 degrees, and the range of 0 to 5 degrees is -88- 200537167 •-. Cellulose film The hysteresis cellulose film that can be used in the present invention has a large frontal hysteresis when the film is extended in the direction of the inner axis of the film, and a small frontal hysteresis when the film is extended in a direction with a retardation. This shows inherent folds, and extending in a direction perpendicular to the retardation axis is effective to eliminate the hysteresis system present on the cellulose membrane. This method, for example, when the film has a late phase axis in the mechanical transfer (MD direction), it can be considered that the use of a tenter stretch in a direction perpendicular to the MD (TD direction) can reduce the frontal hysteresis. For the film, when the film has a late phase axis in the TD direction, it can be considered that the positive chirp can be reduced when the film is stretched by the tension of the mechanical conveying roller in the if direction. Tritiated cellulose film with negative intrinsic birefringence The tritiated cellulose film that can be used in the present invention also has a negative hysteresis when the film is extended in the direction of the retardation axis, and a negative hysteresis when it is extended in the direction of the retardation.値 becomes larger. This shows that the intrinsic I is negative and extending in the same direction as the late phase axis is effective to eliminate the delayed actinide in the membrane. This method, for example, when the film has a slow axis in the direction of mechanical conveyance, can be considered to reduce the frontal hysteresis when stretched by increasing the tension of the machine roller in the MD direction. Phase, when the film has a late phase axis in the TD direction, it can be considered that the use of a tenter extension in a straight direction (TD direction) can reduce the frontal step of the cellulose film. The evaluation method of the cellulose film can be used in the present invention. The evaluation of the chemical cellulose film was measured in the following invention examples by performing the following method. An example where the vertical phase to the late phase axis is in the opposite direction of the direction of the apparent direction of transport. The strong md plane hysteresis in the plane shows the vertical birefringence to the axis. -200537167 (In-plane retardation 値 Re, film thickness direction retardation 値 Rth) A 30mm × 40mm sample was conditioned at 25 ° C and 60% RH for 2 hours. Re (λ) was in an autobirefringence meter K〇BRA21ADH ( Oji Measurement Equipment Co., Ltd.) measures light incident at a wavelength of A nm in the normal direction of the thin film. Rth (λ) uses the above-mentioned Re and the in-plane retardation axis as the tilt axis and the film The normal direction is regarded as 0 degrees, and the sample is tilted from 10 degrees to 50 degrees each time and measured with a wavelength of λ nm. The hysteresis chirp is used as the basis, and the assumption of the average refractive index is input.値 1.48 φ and film thickness are calculated. (Re and Rth wavelength dispersion measurement) A 30mm × 40mm sample is conditioned at 25 ° C and 60% RH for 2 hours, and is measured on a polarization ellipsometer M-150 (Manufactured by JASCO Corporation), and incident light with a wavelength of 7 80nm to 3 80nm in the direction of the film normal, Obtain Re, and measure the wavelength dispersion of Re. Regarding the wavelength dispersion of Rth, the above-mentioned Re is used, the in-plane retardation axis is used as the tilt axis, and the direction of the normal direction is +40 degrees. The incident wavelength is 7 8 0 nm. Hysteresis φ obtained by measuring light from 380 nm to φ, and using the in-plane retardation axis as the tilt axis and incident light with a wavelength of 780 nm to 3 80 nm in the direction of the normal direction of -40 degrees The hysteresis 得到 obtained by measurement is calculated based on the hysteresis 値 値 obtained by measuring in three directions in total, and the hypothesis of the average refractive index 値 1.48 and the film thickness are calculated. (Molecular alignment axis) 70 mmx100 mm For a sample, at 25t: 65% RH for 2 hours, using an automatic birefringence meter (KOBRA 21DH, Oji measurement (strand)), and changing the incident angle at normal incidence, the molecular alignment axis is calculated from the phase difference. -90- 200537167 (Axis deviation) In addition, an automatic birefringence meter (KOBRA-21 ADH, Oji measuring equipment (strand)) measures the angle of axis deviation. Measure 20 points at equal intervals, across the entire width in the width direction, and obtain Absolutely mean average. Again The lens of the late phase axis angle (axis deviation) is measured at 20 points at equal intervals, spans, and full width, and the average of the absolute largest deviation from the axis and the absolute deviation of the four points from the axis are smaller. (Transmittance) g For a 20 mm x 70 mm sample, measure the visible light (615 nm) at 25 ° C and 60% RH using an automatic birefringence meter (AKA Phototube Colorimeter, KOTAKI Co., Ltd.). Penetration. (Spectral characteristics) Using a spectrometer (U-3210, Hitachi, Ltd.) at a temperature of 25 ° C and 60% RH for a 13 mm x 40 mm sample, the transmittance at a wavelength of 300 to 450 nm was measured. The slope width is obtained at a wavelength of 72% to 5%. The limiting wavelength is expressed as a (tilt amplitude / 2) + 5% wavelength. The absorption end is expressed at a wavelength of 0.4% transmission. This was used to evaluate the transmittance of 380 nm and 350 nm. ® Properties of the surface of the tritiated cellulose film The surface of the tritiated cellulose film that can be used in the present invention is based on JISB060 1-1 994. The arithmetic average roughness (Ra) of the surface roughness of the film is 0.1 micron or less, and the maximum The height (Ry) is preferably 0.5 μm or less. It is preferable that the arithmetic mean thickness (Ra) is 0.05 micrometers or less and the maximum height (Ry) is 0.2 micrometers or less. The concave and convex shapes of the film surface can be evaluated using an atomic microscope (AFM). Hysteresis in-plane deviation of tritiated cellulose film -91- 200537167 • The tritiated cellulose film that can be used in the present invention preferably satisfies the following formula. Re (MAX)-Re (MIN) | S 3, and | Rth (MAX) — Rth (MIN) | S 5 In the formula, Re (MAX) and Rth (M AX) are randomly cut 1 meter square films The maximum hysteresis 値 値, Re (MIN), Rth (MIN) are the minimum 値. Retention of tritiated cellulose film The tritiated cellulose film that can be used in the present invention requires the retention of various compounds added to the film. Specifically, the mass change of the B film when the tritiated cellulose film usable in the present invention is left at 80 ° C and 90% RH for 48 hours is preferably 0 to 5%, and preferably 0 to 3%. For better, 0 ~ 2% is more preferable. (Evaluation method of retention) The sample was cut into a sample having a size of 10 cm × 10 cm, and the mass was measured after being left in an environment of 23 ° C and 55% RH for 24 hours. The conditions were measured at 80 ± 5 ° C and 90 ± 10% RH. Let stand for 48 hours. Wipe the treated surface lightly, and leave it for one day at 23 ° C, 55% RH to measure the mass, and then calculate the retention by the following method. φ Retention (mass%) = {(mass before placing-mass after placing) / mass before placing} χ100 (mechanical properties of the film) curling Curling of the width direction of the cellulose film which can be used in the present invention 値It is better to use -10 / m ~ + 10 / m. When the halogenated cellulose film usable in the present invention is bonded in a long size, etc., the curl of the width direction of the halogenated cellulose film usable in the present invention is in the foregoing range, and the film can be more effectively prevented. Obstacles in handling, film truncation • 92-200537167, etc. In addition, because the film is reliably in contact with the conveying roller at the edge and center of the film, it can effectively prevent the generation of dust, a lot of foreign matter on the film, point defects of the optical compensation film, and the frequency of the coated lines exceeding the allowance. . Furthermore, it is also preferable from the viewpoint that bubbles can be prevented from entering when bonded to a polarizing film. The curl 値 can be measured according to the method specified by the American National Standards Institute (ANSI / ASCPH 1.29-1 9 8 5). (Tear strength) According to the tear strength (Ermandorf tear method) of JISK 7 1 28-2: 1 988, the film thickness of the tritiated cellulose film that can be used in the present invention is The range of 20 to 80 microns is preferably 2 g or more. 5 to 25 g or more is preferable, and 6 to 25 g or more is more preferable. When converted to 60 micrometers, 8 grams or more is preferable, and 8 to 15 grams is more preferable. Specifically, a 50 mm x 64 mm test piece may be subjected to humidity conditioning at 25 ° C and 65% RH for 2 hours, and then measured using a light load tear strength tester. Amount of residual solvent of tritiated cellulose film The amount of residual solvent of tritiated cellulose film that can be used in the present invention is preferably dried under conditions ranging from 0.01 to 1.5% by mass, and more preferably from 0.01 to 1.0% by mass. good. The curl can be controlled by setting the residual solvent amount of the polarizing film used in the present invention to 1.5% or less. It is more preferably 1.0% or less. The main reason for this effect is considered to be that free deposition can be reduced when the amount of residual solvent is small when forming a film using the solvent casting method described above. Hygroscopic expansion coefficient of tritiated cellulose film The hygroscopic expansion coefficient of tritiated cellulose film which can be used in the present invention is preferably 30x10-5% RH or less. The hygroscopic expansion coefficient is 15xl0_ 5% RH or lower -93- 200537167. It is better, and 10x1 5% RH or lower is more preferable. It is preferable that the coefficient of hygroscopic expansion be smaller, but the normal system is 1 · 0χ1 (Γ 5% RH or more. The coefficient of hygroscopic expansion indicates the amount of change in length of the sample when the relative humidity is changed at a certain temperature. Surface treatment The tritiated cellulose film is subjected to surface treatment according to the situation, which can improve the adhesion to the tritiated cellulose film. For example, light-emitting discharge treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment can be used. The light-emitting discharge treatment referred to in this g can be low-temperature plasma generation by low-pressure gas of 10_3 ~ 20 Torr, and plasma treatment can also be performed at atmospheric pressure. Plasma-excited gas system refers to the plasma under the above conditions. Examples of the excited gas include argon, ammonia, neon, krypton, xenon, nitrogen, carbon dioxide, fluorine such as tetrafluoromethane, and mixtures thereof. These are disclosed in the Invention Association Technical Bulletin (Public Technical Number 200). 1-1 745, 200 Issued on March 15, 2001, Association of Inventions) Details on pages 30 ~ 3 2 are suitable for use in the present invention. Contact angle of saponified cellulose surface treated with alkali saponification alkali saponification It is one of the effective surface treatment methods for the cellulose fiber film that can be used in the present invention. At this time, the contact angle on the surface of the fiber cellulose film after the alkali saponification treatment is preferably 55 degrees or less. The temperature is preferably below 45 °, and more preferably below 45 °. The method of evaluating the contact angle can be a drop of 3 mm in diameter on the surface of the film after the alkali saponification treatment. The light resistance is an index of the light durability of the tritiated cellulose film that can be used in the present invention. -94- 200537167 The super-xenon light is used to irradiate the tritiated cellulose film for 240 hours. The color difference Δ E * ab is preferably 20 or less. It is more preferably 18 or less, and more preferably 15 or less. The color difference can be measured using, for example, UV 3 1 00 (manufactured by Shimadzu Corporation). The measurement method is tritiated cellulose The film was humidity-conditioned at 25 ° C and 60% RH for more than 2 hours, and the color of the tritiated cellulose film was measured before irradiating the xenon light to obtain the initial 値 (L0 *, a0 *, b0 *). Then, Using tritiated cellulose film as monomer, using super xenon light weathering test Machine SX-75 (made by Suga testing machine (stock)), irradiated with xenon light for 240 hours under i50W / m2, 6CTC 50% RH. After a specified time, the tritiated cellulose film was taken out from the thermostatic bath, After adjusting the humidity at 60% RH for 2 hours, the color is measured again, and the 値 (L 1 *, a 1 *, b 1 *) after the irradiation is obtained. From this, the color difference ΔE * can be obtained by ab = ((L0 *-L1 * Plant 2 + (a0 * — al *) • 2 + (b0 * — bl *) · Plant 2 0.5 for measurement. [Examples] Examples and comparative examples are given below. The features of the present invention will be described more specifically. The materials, usage amounts, proportions, processing contents, and processing procedures shown in the following examples can be appropriately changed without departing from the meaning of the present invention. Therefore, the scope of the present invention should not limit the explanation of the specific examples illustrated below. [Example 1] < Manufacturing of IPS-mode liquid crystal cell 1> On a substrate, as shown in Fig. 1, the electrodes were arranged so that the distance between adjacent electrodes was 20 micrometers (2 and 3 in Fig. 1). A polyimide film is provided thereon as an alignment film, and a wiping treatment is performed. Wipe processing is performed in the direction 4 shown in Fig. 1. A polyimide film was provided on one surface of a separately prepared glass substrate, and wiped as an alignment film. The alignment films of the two glass substrates were faced to each other, and the interval (gap; d) of the substrates was -95- 200537167-3.9 micrometers, and the two glass substrates were overlapped and pasted in parallel with each other in a wiping direction. Then, A nematic liquid crystal composition having a refractive index anisotropy (Δη) of 0.0769 and a dielectric constant anisotropy (Δε) of 4.5 was incorporated. The d · Δ η of the liquid crystal layer was 300 nm. < Production of the first retardation region 1 > 170 g of a styrene-based polymer prepared by graft polymerization of 10 parts by weight of the copolymer of the following (A) and 90 parts by weight of the following (B) monomer mixture was dissolved In 830 grams of dichloromethane. • (A) styrene / butadiene copolymer (mass ratio: 20/80) (B) styrene / acrylonitrile / α-methylstyrene (mass ratio: 60/20/20) to dry the solution The film was cast to a glass plate with a thickness of 105 μm. After being left at room temperature for 5 minutes, the film was dried at 45 ° C for 20 minutes, and the obtained film (film) was peeled from the glass plate. Up. This film was attached to a rectangular frame and dried at 70 ° C for 1 hour. After drying at 110 ° C for 15 hours, a uniaxial extension was performed at a rate of 1.9 times using a tensile tester (SUTOROGURAF R2, manufactured by Toyo Seiki Co., Ltd.) at 115 ° C. As described above, the hysteresis 薄 of a film obtained from a uniaxially stretched film of a styrene polymer was measured. Re was 185 nm and Rth was -92 nm. The film has a negative refractive index anisotropy, and the optical axis of the film is in a direction parallel to the film surface (that is, in the film surface). This thin film was used as a first retardation region. < Production of the second phase difference region 1 > The following composition was put into a stirrer, and each component was dissolved while being stirred while heating to prepare a cellulose acetate solution having the following composition. -96- 200537167 Composition of cellulose acetate solution 100% by mass of cellulose acetate having a degree of acetylation of 60.9% triphenyl phosphate (plasticizer) 7.8 parts by mass biphenyl diphenyl phosphate (plasticizer) 3.9 parts by mass Dichloromethane (the first solvent) 300 parts by mass of methanol (the second solvent) 54 parts by mass of 1-butanol (the third solvent) 1 1 part by mass, 80 parts were mixed in another stirrer, and the following 16 parts by mass of the hysteresis値 Ascending agent φ parts by mass of dichloromethane and 20 parts by mass of methanol, stir while heating to delay the ascending agent solution. In a 487 part by mass cellulose acetate solution, 1 1 part by mass of the delayed rhenium rising agent solution was stirred thoroughly to prepare a coating solution. [Chemical Formula 36] The delayed rhenium rising agent
將所得到的塗布液使用帶型流延進行流延。帶的辟 溫度達到4 0 °C後,以6 0 °C的溫風乾燥1分鐘,將薄月 I 帶剝下。接著,以140 °C的乾燥風乾燥薄膜1 〇分鐘,$ 厚度80微米左右的薄膜。 此薄膜的光學特性係使用自動複折射率 (KOBRA-21ADH、王子計測機器(股)製),藉由湏[J定Re ^ 入射角度依存性來求得’結果Re=15nm、Rth = 120nm。 該薄膜作爲第2相位差區域。 <製造具有相位差膜之第1偏光板> 面 從 得 計 光 將 -97- 200537167 - 以使市售偏光板(HLC2-5618、上力茲(股)製)之穿透軸 與第1相位差區域1的遲相軸正交之方式來貼合第1相位 差區域1。而且,在該第1相位差區域1以20微米厚度塗 布市售黏著劑,以該遲相軸與偏光板的穿透軸正交的方式 貼上第2相位差區域1來形成具有相位差膜之第1偏光板i。 <製造液晶顯示裝置1> 在前述所製得之IPS模式液晶胞1之一側,貼上具有 相位差膜之第1偏光板1。此時第1相位差區域1的遲相 φ 軸係以與液晶胞的擦拭方向正交的方式(亦即,第1相位 差區域1的遲相軸在黑色顯示時係與液晶胞的液晶分子的 遲相軸正交的方式)貼上。接著,在IPS模式液晶胞1之另 外一側以正交偏光的方式貼上市售的偏光板 (HLC2-5618、上力茲(股)製),來製造液晶顯示裝置。測定 如此製成的液晶顯示器之漏光。測定的開始是將未貼有偏 光板之液晶胞1放置於設置在暗室之膜片觀測器上,使用 以液晶胞之擦拭方向爲基準在左方向4 5度的方位且從液 φ 晶胞法線方向60度的方向在離開1米之處所設置的輝度 計進行測定輝度1。 接著,在與上述相同的膜片觀測器上同樣地配置實施 例1之液晶顯示板,在暗顯示狀態下同樣地測定輝度2, 將此以相對於輝度1爲1 00分率來表示時稱爲漏光,所測 定得到的漏光爲0.0 9 %。 [實施例2] <第1相位差區域2及相位差膜1的製造> 將市售之乙酸纖維素膜(FUJITAK TD 80UF、富士照相 -98- 200537167 軟片(股)製)的表面凝膠化後,使用線塗布棒在該薄膜上塗 布20ml/m2。在60°C的溫風60秒、並且在100°C的溫風120 秒進行乾燥來形膜。接著,在與薄膜的遲相軸方向平行的 方向對所形成的膜施加擦拭處理來形成配向膜。 配向膜塗布液的組成 下述的改質聚乙烯醇 1 0質量份 水 371質量份 甲醇 1 1 9質量份The obtained coating liquid was cast using a tape-type cast. After the belt temperature reached 40 ° C, it was dried with warm air at 60 ° C for 1 minute to peel off the thin band I. Next, the film was dried at 140 ° C for 10 minutes, and the film was about 80 microns thick. The optical characteristics of this film were obtained using an automatic complex refractive index (KOBRA-21ADH, manufactured by Oji Instruments Co., Ltd.), and determined by 湏 [J 定 Re ^ incidence angle dependency '. Re = 15nm, Rth = 120nm. This thin film serves as a second retardation region. < Production of the first polarizing plate with a retardation film > The surface-converted light will be -97- 200537167-so that the commercially available polarizing plate (HLC2-5618, Shanglizi (shares)) 's transmission axis and the first The first phase difference region 1 is bonded to the first phase difference region 1 such that the late phase axes thereof are orthogonal to each other. Then, a commercially available adhesive is applied to the first retardation region 1 at a thickness of 20 μm, and the second retardation region 1 is pasted so that the retardation axis is orthogonal to the transmission axis of the polarizing plate to form a retardation film. Of the first polarizing plate i. < Manufacturing liquid crystal display device 1 > On one side of the IPS mode liquid crystal cell 1 prepared as described above, a first polarizing plate 1 having a retardation film was attached. At this time, the late phase φ axis system of the first phase difference region 1 is orthogonal to the wiping direction of the liquid crystal cell (that is, the late phase axis of the first phase difference region 1 is a liquid crystal molecule that is related to the liquid crystal cell during black display. (The way the late axes are orthogonal). Next, a commercially available polarizing plate (HLC2-5618, manufactured by Shanglizi Co., Ltd.) was attached to the other side of the IPS mode liquid crystal cell 1 by orthogonal polarization to manufacture a liquid crystal display device. The light leakage of the thus produced liquid crystal display was measured. The measurement was started by placing the liquid crystal cell 1 without a polarizing plate on a diaphragm observer installed in a dark room, using an orientation of 45 ° in the left direction based on the wiping direction of the liquid crystal cell, and using the liquid crystal cell method. A luminance meter set at a distance of 60 meters in the direction of the line at a distance of 1 meter measures the luminance 1. Next, the liquid crystal display panel of Example 1 was placed on the same diaphragm observer as described above, and the luminance 2 was measured in the same manner in a dark display state. This is expressed as a ratio of 100 to the luminance 1 The light leakage was 0.0 9%. [Example 2] < Production of first retardation region 2 and retardation film 1 > The surface of a commercially available cellulose acetate film (FUJITAK TD 80UF, Fuji Photo-98-200537167 film (strand)) was cured. After gelatinization, the film was coated with 20 ml / m2 using a wire coating bar. The film was formed by drying at 60 ° C. for 60 seconds and 100 ° C. for 120 seconds. Next, a rubbing treatment is applied to the formed film in a direction parallel to the direction of the retardation axis of the film to form an alignment film. Composition of alignment film coating liquid The following modified polyvinyl alcohol 10 0 parts by mass of water 371 parts by mass methanol 1 1 9 parts by mass
戊二醛 〇 · 5質量份 氟化四甲基銨 0.3質量份 [化學式37] 改質聚乙烯醇Glutaraldehyde 0. 5 parts by mass Tetramethylammonium fluoride 0.3 part by mass [Chemical Formula 37] Modified polyvinyl alcohol
—f-CH2-CH—)-. _ f CH2-CH—V 、I /86.3 V 2 I J12\ 2 I Λ1β7 ch3 OH OCOCH3 OCONHCH2CH2OCOC«CH2 接著,將1.8克下述碟狀液晶性化合物、0.2克環氧乙 烷改質三(羥甲)丙烷三丙烯酸酯(V#3 60、大阪有機化學(股) 製)、0.06克光聚合引發劑(IRUGAKYUA-907、汽巴蓋技社 製)、0.02克敏化齊!UKAYAKYUA-DETX、曰本化藥(股)製)、 〇.〇1克空氣表面側垂直配向劑(例示化合物P-6)溶解於3.9 克的甲基乙基酮而成的溶液,使用#5的線塗布棒塗布於配 向膜上。將此貼於金屬框上,在1 25 °C的恆溫槽中加熱3 分鐘,使碟狀液晶化合物進行配向。接著,在100°C使用 120W/cm高壓水銀燈,照射UV30秒來使碟狀液晶化合物 進行交聯。隨後放冷至達到室溫爲止。如此,在作爲偏光 板保護膜之支撐體上,製造具有由圓盤獎液晶性化合物所 -99- 200537167 - 形成的相位差層之相位差膜1。 '[化學式38] 碟狀液晶性化合物—F-CH2-CH —)-. _ F CH2-CH—V, I /86.3 V 2 I J12 \ 2 I Λ1β7 ch3 OH OCOCH3 OCONHCH2CH2OCOC «CH2 Next, 1.8 g of the following discotic liquid crystalline compound and 0.2 g Ethylene oxide modified tri (hydroxymethyl) propane triacrylate (V # 3 60, manufactured by Osaka Organic Chemicals Co., Ltd.), 0.06 g of photopolymerization initiator (IRUGAKYUA-907, manufactured by Ciba Cap Technology Co., Ltd.), 0.02 Kemin Huaqi! UKAYAKYUA-DETX, manufactured by Yoshimoto Kagaku Co., Ltd., a solution in which 0.01 g of an air surface side vertical alignment agent (exemplified compound P-6) is dissolved in 3.9 g of methyl ethyl ketone, and # 5 is used. A wire coating rod is coated on the alignment film. Place this on a metal frame and heat in a constant temperature bath at 1 25 ° C for 3 minutes to align the dish-like liquid crystal compound. Next, the dish-like liquid crystal compound was crosslinked by irradiating UV at a temperature of 100 ° C for 120 seconds using a high-pressure mercury lamp of 120 W / cm. It was then left to cool to room temperature. In this manner, a retardation film 1 having a retardation layer formed of a disc-like liquid crystal compound -99-200537167-was produced on a support serving as a protective film for a polarizing plate. '[Chemical Formula 38] Dish liquid crystal compound
使用自動複折射率計(KOBRA-21ADH、王子計測機器 φ (股)製),測定偏光板保護膜1的Re之光入射角度依存性, 藉由扣除預先測定之乙酸纖維素膜的貢獻部分來算出只 有上述所製造碟狀液晶相位差層時之光學特性,結果確認 Re爲185nm、Rth爲一93nm、液晶的平均傾斜角爲89.9度, 碟狀液晶係對薄膜面垂直配向。得知此相位差層之折射率 異方向性爲負的,光軸對層面實質上平行。又,此相位差 層之遲相軸的方法,係與配向膜的擦拭方向平行。將此位 相位差層作爲第1相位差區域2。 ^ <具有相位差膜之第1偏光板2之製作> 使延伸之聚乙烯醇膜吸附碘來製造偏光膜。使用聚乙 烯醇系黏著劑將製得的相位差膜1以乙酸纖維素膜係在偏 光膜側之方式貼在偏光膜的一側。以偏光膜之穿透軸與相 位差膜1之遲相軸(第1相位差區域2之遲相軸亦與此一 致)正交之方式進行配置。 對市售之乙酸纖維素膜(FUJITAK TD 8 0UF、富士照相 軟片(股)製)進行皂化處理,並使用聚乙烯醇系黏著劑貼於 偏光膜的相反側。而且,將由實施例1所製得之乙酸纖維 -100- 200537167 - 素膜所構成的第2相位差區域1,以其遲相軸係與前述偏 " 光膜的穿透軸正交的方式貼於相位差膜1側,來製造具有 相位差膜之第1偏光板2。 <液晶顯示裝置2之製造> 將上述所製造之具有相位差膜之第1偏光板2貼在前 述所製造之IPS模式液晶胞1的一側。此時前述第丨偏光 板2之第1相位差區域2之遲相軸係與液晶胞之擦拭方向 正交的方式(亦即,第1相位差區域2的遲相軸在黑色顯 φ 示時係與液晶胞之液晶分子的遲相軸正交之方式)、且第2 相位差區域1側係在液晶胞側之方式來貼上。接著,將市 售之偏光板(HLC2-5618、上力兹(股)製)以正交偏光的方式 貼在IPS模式液晶胞1的另外一側來製造液晶顯示裝置。 如此製得之液晶顯示裝置的漏光爲0.09%。 [實施例3] <具有相位差膜之第1偏光板3的製造> 使用製造實施例2之相位差膜1所使用之相同組成的碟 φ 狀液晶塗布液,以#4 · 1進行塗布,與實施例2同樣地製造 相位差膜2。扣除該相位差膜2之三乙醯基纖維素支撐體 的貢獻部分後,Re爲130nm、Rth爲—65nm。在相位差膜 2,相位差層中之碟狀液晶性化合物係與相位差膜1同樣 是垂直配向。由碟狀液晶性化合物所形成之前述相位差層 之折射率異方向性爲負,光軸對層面係實質上平行。將此 相位差層作爲第1相位差區域3。 使延伸之聚乙烯醇膜吸附碘來製造偏光膜。使用黏著 劑將上述相位差膜2以碟狀液晶層在偏光膜側之方式貼在 -101- 200537167 ·- 偏光膜的一側。以偏光膜之穿透軸與相位差膜2之遲相軸 ' (第1相位差區域2之遲相軸亦與此一致)正交之方式進行 配置。對市售之乙酸纖維素膜(FIHITAK TD 80UF、富士照 相軟片(股)製)進行皂化處理,並使用聚乙烯醇系黏著劑貼 於偏光膜的相反側。而且,將市售之乙酸纖維素膜貼於相 位差膜2側,來製造具有相位差膜之第1偏光板3。此時, 相位差膜2之三乙醯基纖維素支撐體及與此鄰接貼著之前 述乙酸纖維素膜係作爲第2相位差區域3之機能。該第2 B 相位差區域3之Rth爲llOnm、Re爲2nm。 <液晶顯示裝置3之製造> 在前述所製造之IPS模式液晶胞1的一側,以具有相 位差膜之第1偏光板3的第2相位差區域3之遲相軸係與 液晶胞之擦拭方向正交的方式(亦即,第1相位差區域3 的遲相軸在黑色顯示時係與液晶胞之液晶分子的遲相軸 正交之方式)、且相位差膜2側係在液晶胞側之方式貼上。 接著,將市售之偏光板(HLC2-5618、上力茲(股)製)以正交 φ 偏光的方式貼在IPS模式液晶胞1的另外一側來製造液晶 顯示裝置。如此製得之液晶顯示裝置的漏光爲0 · 0 8 %。 [實施例4] <支撐體1的製造> 將下述的組成物投入混合槽,邊加熱邊攪拌、溶解各 分成,來調製乙酸纖維素A。 -102- 200537167 <乙酸纖維素溶液A組成> 取代度2.86的乙酸纖維素 100質量份 三苯基磷酸酯(可塑劑) 7.8質量份 聯苯二苯基磷酸酯(可塑劑) 3.9質量份 二氯甲烷(第1溶劑) 300質量份 甲醇(第2溶劑) 54質量份 1-丁醇 Π質量份 在另外的攪拌槽投入下述的組成物 溶解各成分,調製添加劑溶液B。 <添加劑溶液B組成> ,邊加熱邊攪拌 二氯甲烷 80質量份 甲醇 20質量份 下述光學異方向性降低劑 [化學式39] 40質量份The auto-refractive index meter (KOBRA-21ADH, manufactured by Oji measuring equipment φ (strand)) was used to measure the light incident angle dependency of Re of the polarizer protective film 1 by subtracting the contribution of the cellulose acetate film measured in advance. The optical characteristics when only the disc-shaped liquid crystal retardation layer manufactured above were calculated. As a result, it was confirmed that Re was 185 nm, Rth was 93 nm, the average tilt angle of the liquid crystal was 89.9 degrees, and the disc-shaped liquid crystal system was vertically aligned to the film surface. It is known that the refractive index anisotropy of this retardation layer is negative, and the optical axis is substantially parallel to the layers. The method of the late phase of the retardation layer is parallel to the wiping direction of the alignment film. This bit retardation layer is referred to as a first retardation region 2. ^ < Production of the first polarizing plate 2 having a retardation film > A polarizing film was produced by adsorbing iodine on the stretched polyvinyl alcohol film. The obtained retardation film 1 was attached to one side of the polarizing film so that the cellulose acetate film was on the side of the polarizing film using a polyvinyl-based adhesive. The polarizing film is arranged such that the transmission axis of the polarizing film and the retardation film of the retardation film 1 (the retardation axis of the first retardation region 2 also agrees with this) are orthogonal to each other. A commercially available cellulose acetate film (FUJITAK TD 80UF, manufactured by Fuji Photographic Film Co., Ltd.) was saponified, and a polyvinyl alcohol-based adhesive was applied to the opposite side of the polarizing film. In addition, the second phase difference region 1 composed of the acetate fiber -100- 200537167-plain film obtained in Example 1 is such that its late phase axis system is orthogonal to the transmission axis of the aforementioned "light film" The first polarizing plate 2 having a retardation film is attached to the retardation film 1 side. < Manufacturing of liquid crystal display device 2 > The first polarizing plate 2 having a retardation film manufactured as described above is attached to one side of the IPS mode liquid crystal cell 1 manufactured as described above. At this time, the manner in which the retardation axis of the first retardation region 2 of the aforementioned polarizing plate 2 is orthogonal to the wiping direction of the liquid crystal cell (that is, when the retardation axis of the first retardation region 2 is shown in black φ (The method is orthogonal to the late phase axis of the liquid crystal molecules of the liquid crystal cell), and the second phase difference region 1 is attached on the liquid crystal cell side. Next, a commercially available polarizing plate (HLC2-5618, manufactured by Shanglizi Co., Ltd.) was attached to the other side of the IPS mode liquid crystal cell 1 by orthogonal polarization to manufacture a liquid crystal display device. The light leakage of the thus-produced liquid crystal display device was 0.09%. [Example 3] < Production of the first polarizing plate 3 having a retardation film > A dish φ-shaped liquid crystal coating liquid of the same composition used in the production of the retardation film 1 of Example 2 was performed with # 4 · 1. The retardation film 2 was applied in the same manner as in Example 2. After subtracting the contribution of the triacetate cellulose support of this retardation film 2, Re was 130 nm and Rth was -65 nm. In the retardation film 2, the dish-like liquid crystalline compound in the retardation layer is aligned vertically as in the retardation film 1. The retardation layer formed of a discotic liquid crystalline compound has negative refractive index anisotropy, and the optical axis is substantially parallel to the plane. This phase difference layer is referred to as a first phase difference region 3. The extended polyvinyl alcohol film was made to adsorb iodine to produce a polarizing film. Using the adhesive, the retardation film 2 was pasted on the side of the polarizing film with the dish-like liquid crystal layer on the polarizing film side. The polarizing film is arranged so that the transmission axis of the polarizing film and the retardation film of the retardation film 2 are orthogonal to each other. A commercially available cellulose acetate film (FIHITAK TD 80UF, made by Fuji Photo Photo Film (stock)) was saponified, and a polyvinyl alcohol-based adhesive was used to stick to the opposite side of the polarizing film. Then, a commercially available cellulose acetate film was stuck on the retardation film 2 side to produce a first polarizing plate 3 having a retardation film. At this time, the tertiary ethyl acetate cellulose support of the retardation film 2 and the aforementioned cellulose acetate film system adjoining it as the second retardation region 3 function. Rth of the second B phase difference region 3 is 110 nm, and Re is 2 nm. < Manufacturing of the liquid crystal display device 3 > On the side of the IPS mode liquid crystal cell 1 manufactured as described above, the late phase axis system of the second phase difference region 3 of the first polarizing plate 3 having a retardation film and the liquid crystal cell The wiping direction is orthogonal (that is, the retardation axis of the first retardation region 3 is orthogonal to the retardation axis of the liquid crystal molecules of the liquid crystal cell during black display), and the retardation film 2 side is The LCD side is attached. Next, a commercially available polarizing plate (HLC2-5618, manufactured by Shanglizi Co., Ltd.) was attached to the other side of the IPS-mode liquid crystal cell 1 with orthogonal φ polarization to manufacture a liquid crystal display device. The light leakage of the thus-produced liquid crystal display device was 0.88%. [Example 4] < Production of support 1 > Cellulose acetate A was prepared by putting the following composition into a mixing tank, stirring and dissolving each component while heating. -102- 200537167 < Composition of cellulose acetate solution A > 100 parts by mass of triphenyl phosphate (plasticizer) with a degree of substitution of 2.86 7.8 parts by mass of biphenyl diphenyl phosphate (plasticizer) 3.9 parts by mass Dichloromethane (the first solvent) 300 parts by mass of methanol (the second solvent) 54 parts by mass of 1-butanol Π parts by mass was put into another stirring tank to dissolve each component to prepare an additive solution B. < Composition of additive solution B > and stirring while heating 80 parts by mass of methylene chloride 20 parts by mass of methanol 20 parts by mass The following optical anisotropy reducing agent [Chemical Formula 39] 40 parts by mass
在477質量份乙酸纖維素溶液A中添加40質量份添加 劑溶液B,充分攪拌來調製塗布液。從流延口將塗布液流 延至冷卻至0 °C的滾筒上。將由場外剝取、溶劑含有率爲 70質量%之薄膜的寬度方向的兩端固定於針板拉幅器(特 開平4- 1 009號之圖3所述之針板拉幅器),在溶劑含有率 爲3〜5質量%的狀態,邊保持在橫方向(對機械方向垂直之 方向)的延伸率3 %的間隔,邊進行乾燥。隨後,藉由在熱 -103- 200537167 - 處理裝置之滾筒之間搬運來進一步乾燥,製得厚度爲80 * 微米的支撐體1。 使用自動複折射率計(KOBRA- 21ADH王子計測機器 (股)製),測定Re光入射角度依存性,算出光學特性,結 果確認Re爲lnm、Rth爲6nm。 <具有位相膜之第1偏光板4的製造> 除了使用上述支撐體1作爲支撐體、以及#4.2棒塗布 碟狀液晶塗布液外,與實施例2同樣地製造相位差膜1, φ 在支撐體1上形成相位差層。所形成之相位差層之Re爲 14 0nm、Rth爲—70nm。所形成之相位差層中之碟狀液晶 性化合物係與相位差膜1同樣是垂直配向。由碟狀液晶性 化合物所形成之前述相位差層之折射率異方向性爲負,光 軸對層面係實質上平行。將此相位差層作爲第1相位差區 域4。 而且,除了使遲滯値上升劑溶液爲9 · 2質量份以外,使 用與實施例1之第2相位差區域1的製造相同方法,來製 φ 造乙酸纖維素膜。所製得之乙酸纖維素膜之 Rth爲 1 10nm、Re爲7nm。將該乙酸纖維素膜作爲第2相位差區 域4,貼於第1相位差區域4之黏貼方法,除了以2 0微米 厚度塗布售黏著劑以外,使用實施例2相同方法進行。 使用聚乙烯醇系黏著劑將第1相位差區域4和第2相位 差區域4之積層體,以支撐體1係在偏光膜側之方式貼在 實施例2所製得之偏光膜的一側。以偏光膜的穿透軸與第 1相位差區域4之遲相軸(第1相位差區域2之遲相軸劑與 此一致)正交之方式來配置。對市售之乙酸纖維素膜進行 -104- 200537167 - 皂化處理、貼於偏光膜的相反側來製造具有相位差膜之第 1偏光板4。 <液晶顯示裝置4之製造> 在前述所製造之IPS模式液晶胞1的一側,以具有相 位差膜之第1偏光板4的第1相位差區域4之遲相軸係與 液晶胞之擦拭方向正交的方式、且第2相位差膜區域4側 係在液晶胞側之方式貼上。接著,將市售之偏光板 (HLC2-5618、上力茲(股)製)以正交偏光的方式貼在IPS模 φ 式液晶胞1的另外一側來製造液晶顯示裝置。如此製得之 液晶顯不裝置的漏光爲0.09%。 [實施例5] <具有相位差膜之第1偏光板5的製造〉 除了遲滯値上升溶液爲7質量部以外,與實施例2之第 2相位差區域2同樣地製造乙酸纖維素膜。此薄膜之Rth 爲8 0nm、Re爲9nm。將此薄膜作爲第2相位差區域5。接 著,除了使用所製得之由乙酸纖維素所構成的第2相位差 ^ 區域5作爲支撐體、以及使用#4.3棒塗布碟狀液晶塗布液 以外,使用與實施例2的相位差膜1之同樣的製造方法來 形成層。所製得層之Re爲145nm、Rth爲一73nm。在層中, 碟狀液晶性化合物係以垂直配向狀態被固定。該層之折射 率異方向性爲負,光軸對層面係實質上平行。將此相位差 層作爲第1相位差區域5。 另一方面,使用聚乙烯醇系黏著劑將實施例2所製造 的偏光膜,以夾於支撐體1和進行皂化處理過之市售乙酸 纖維素膜之方式貼上來製造偏光板A。在該偏光板的支持 -105- 200537167 ^ 體1側塗布黏著劑、並將第1相位差區域5之其圓 ^ 塗布面側貼上來製造具有相位差膜之第1偏光板5 <液晶顯示裝置5之製造> 在前述所製造之IPS模式液晶胞1的一側,以 位差膜之第1偏光板5的第1相位差區域5之遲相 液晶胞之擦拭方向正交的方式、且第2相位差區域 在液晶胞側之方式貼上。接著,在IPS模式液晶胞 外一側,將偏光板A之支撐體1作爲晶胞側,以正 g 的方式貼上來製造液晶顯示裝置。如此製得之液晶 置的漏光爲0.03%。 [實施例6] <具有相位差膜之第1偏光板6的製造> 除了使遲滯値上升劑溶液爲6質量份、溶劑含 3〜5質量%的狀態、邊保持橫方向(機機方向之垂ϊ 的延伸率爲25 %的間隔邊進行乾燥以外,使用與實 之第2相位差區域2的製造相同方法,來製造乙酸 ^ 膜。該薄膜之Rth爲75nm、Re爲30nm。將該薄膜 2相位差區域6。接著,除了將所製得乙酸纖維素 成的第2相位差區域6作支撐體、以及使用#4. 1棒 碟狀液晶塗布液以外,與實施例2之相位差膜1同 造方法來形成層。所製得層之薄膜的Re爲135nm、 - 6 7 n m。在層中,碟狀液晶性化合物係以垂直配向 固定。該層之折射率異方向性爲負,光軸對層面係 平行。將此相位差層作爲第1相位差區域6。 另一方面,在實施例5所製得之偏光板A的支 盤狀液 具有相 軸係與 5側係 1之另 交偏光 顯示裝 有率爲 Ϊ方向) 施例2 纖維素 作爲第 膜所構 塗布1 樣的製 Rth爲 狀態被 實質上 撐體1 -106- 200537167 费觚 - 側塗布黏著劑,並將第1相位差區域6之碟狀 ^ 側貼上來製造具有相位差膜之第1偏光板6。 <液晶顯示裝置6之製造> 在前述所製造之IPS模式液晶胞1的一側 位差膜之第1偏光板6的第1相位差區域6之 液晶胞之擦拭方向正交的方式、且第2相位差 在液晶胞側之方式貼上。接著,在IPS模式液 側,將偏光板A之支撐體1作爲晶胞側,以正 φ 式貼上來製造液晶顯示裝置。如此製得之液晶 漏光爲0.04%。 [實施例7] <鐵電性液晶胞1之製造> 在具有ITO電極之玻璃基板上設置聚醯亞胺 膜,進行擦拭處理。製作此基板2片,使配向膜 使基板之間隔(間隙;d)爲1.9微米,以二片玻 拭方向平行之方式重疊貼合,接著裝入折射 ^ (△ η)爲0.15及自發極化(Ps)爲12nCcm_ 2之鐵 成物。液晶層之d · △ η之値爲280nm。 在所製得鐵電性液晶胞1之兩側中的一側 例2製得之具有相位差膜之第1偏光板2。此 1偏光板2之第1相位差區域2的遲相軸係以 加直流電壓1 0V時之液晶分子的遲相軸正交的 2相位差區域1側係在液晶胞側的方式貼上。 電性液晶胞1之另外一側以正交偏光的方式貼 光板(HLC2_5618、上力茲(股)製),來製造液晶 液晶塗布面 ,以具有相 遲相軸係與 區域6側係 晶胞1的一 交偏光的方 顯示裝置的 膜作爲配向 【之間相向, 璃基板之擦 率異方向性 電性液晶組 ,貼上實施 時,前述第 在液晶胞施 方式、且第 接著,在鐵 上市售的偏 顯示裝置。 -107- 200537167 如此製成的液晶顯示器之漏光爲0.10%。 " [實施例8] <支撐體2之製造> (乙酸纖維素溶液的調製) 在攪拌槽投入下述組成物,攪拌來溶 乙酸纖維素溶液A。 (乙酸纖維素溶液A組成) 乙醯化度2.86之乙酸纖維素 φ 二氯甲烷(第1溶劑) 甲醇(第2溶劑) (消光劑溶液的調製) 將 20質量份之平均粒子大小16nm (AEROSIL R972、曰本阿葉洛濟魯(股)製)、 充分攪拌混合3 0分鐘使成爲二氧化矽粒 分散液與下述組成物一起投入分散機,更 上來溶解各成分,調製消光劑。 | (消光溶液組成) 平均粒子大小1 6 n m之二氧化砍粒子分散 二氯甲烷(第1溶劑) 甲醇(第2溶劑)40 parts by mass of the additive solution B was added to 477 parts by mass of the cellulose acetate solution A, and the coating solution was prepared by sufficiently stirring. The coating solution was cast from a casting nozzle onto a roller cooled to 0 ° C. Both ends in the width direction of the film peeled from the field and the solvent content rate was 70% by mass were fixed to a needle plate tenter (the needle plate tenter described in JP-A-Heisei 4- 1 009 as shown in FIG. 3). In a state where the content rate is 3 to 5% by mass, drying is performed while maintaining an interval of 3% in the lateral direction (the direction perpendicular to the mechanical direction). Subsequently, it was further dried by being transported between the rollers of the heat-103-200537167-processing device to obtain a support body 1 having a thickness of 80 * micron. Using an automatic birefringence meter (KOBRA-21ADH Measuring Instruments Co., Ltd.), the dependence of the incident angle of Re light was measured, and the optical characteristics were calculated. As a result, it was confirmed that Re was 1 nm and Rth was 6 nm. < Production of the first polarizing plate 4 having a phase film > A retardation film 1 was manufactured in the same manner as in Example 2 except that the above-mentioned support 1 was used as the support and a # 4.2 rod was used to coat the dish-shaped liquid crystal coating liquid, φ A retardation layer is formed on the support 1. The retardation layer formed had a Re of 140 nm and a Rth of -70 nm. The discotic liquid crystalline compound in the formed retardation layer is vertically aligned like the retardation film 1. The refractive index anisotropy of the retardation layer formed of a discotic liquid crystalline compound is negative, and the optical axis is substantially parallel to the plane. This phase difference layer is referred to as a first phase difference region 4. A cellulose acetate film was produced in the same manner as in the production of the second retardation region 1 of Example 1 except that the retarded rhenium raising agent solution was 9.2 parts by mass. Rth of the obtained cellulose acetate film was 110 nm, and Re was 7 nm. This cellulose acetate film was adhered to the first retardation region 4 as the second retardation region 4 by the same method as in Example 2 except that the adhesive was coated and sold at a thickness of 20 µm. Using a polyvinyl alcohol-based adhesive, the laminated body of the first retardation region 4 and the second retardation region 4 was affixed to the side of the polarizing film obtained in Example 2 with the support 1 being on the side of the polarizing film. . The polarizing film is arranged so that the transmission axis of the polarizing film is orthogonal to the late phase axis of the first retardation region 4 (the late phase agent of the first retardation region 2 coincides with this). The commercially available cellulose acetate film was subjected to a saponification treatment -104- 200537167-and attached to the opposite side of the polarizing film to produce a first polarizing plate 4 having a retardation film. < Manufacturing of liquid crystal display device 4 > On the side of the IPS mode liquid crystal cell 1 manufactured as described above, the late phase axis system of the first phase difference region 4 of the first polarizing plate 4 having a retardation film and the liquid crystal cell The wiping direction is orthogonal, and the second retardation film region 4 side is attached to the liquid crystal cell side. Next, a commercially available polarizing plate (HLC2-5618, manufactured by Shangliz Co., Ltd.) was attached to the other side of the IPS-mode φ-type liquid crystal cell 1 by orthogonal polarization to manufacture a liquid crystal display device. The light leakage of the liquid crystal display device thus obtained was 0.09%. [Example 5] < Production of the first polarizing plate 5 having a retardation film> A cellulose acetate film was produced in the same manner as in the second retardation region 2 of Example 2 except that the hysteresis rising solution was 7 parts by mass. The Rth of this film was 80 nm and the Re was 9 nm. This thin film is referred to as a second retardation region 5. Next, except that the prepared second phase retardation region 5 composed of cellulose acetate was used as a support, and a # 4.3 rod was used to coat the dish-shaped liquid crystal coating liquid, the retardation film 1 of Example 2 was used. The same manufacturing method is used to form the layer. The prepared layer had Re of 145 nm and Rth of 73 nm. In the layer, the dish-like liquid crystalline compound is fixed in a vertical alignment state. The refractive index of this layer is negative, and the optical axis is substantially parallel to the layer. This phase difference layer is referred to as a first phase difference region 5. On the other hand, the polarizing film produced in Example 2 was laminated with a polyvinyl alcohol-based adhesive so as to be sandwiched between the support 1 and a commercially available cellulose acetate film subjected to saponification treatment to produce a polarizing plate A. Apply the adhesive on the support-105-200537167 ^ body 1 side of this polarizing plate, and attach the round ^ coating side of the first retardation area 5 to manufacture the first polarizing plate 5 with retardation film < liquid crystal display Manufacture of device 5> On one side of the IPS mode liquid crystal cell 1 manufactured as described above, the wiping direction of the late-phase liquid crystal cell of the first phase difference region 5 of the first polarizing plate 5 of the parallax film is orthogonal, The second retardation region is affixed on the liquid crystal cell side. Next, on the cell-side of the IPS-mode liquid crystal, the support 1 of the polarizing plate A is used as the cell-side, and it is stuck in a positive g manner to manufacture a liquid crystal display device. The light leakage of the liquid crystal device thus prepared was 0.03%. [Example 6] < Production of the first polarizing plate 6 having a retardation film > Except for a state where the retardation rhenium raising agent solution was 6 parts by mass and the solvent contained 3 to 5% by mass, the horizontal direction was maintained (machine The acetic acid ^ film was produced by the same method as that of the production of the second phase difference region 2 except that the elongation in the vertical direction was stretched at intervals of 25%. The Rth of this film was 75 nm and the Re was 30 nm. This film 2 has a retardation region 6. Next, the phase is the same as that of Example 2 except that the second retardation region 6 made of cellulose acetate is used as a support and a # 4.1 rod-shaped liquid crystal coating liquid is used. The difference film 1 is formed by the same method. The Re of the thin film obtained is 135 nm, -67 nm. In the layer, the dish-like liquid crystalline compound is fixed in a vertical alignment. The refractive index anisotropy of the layer is Negative, the optical axis is parallel to the plane. This retardation layer is used as the first retardation region 6. On the other hand, the support plate-shaped liquid of the polarizing plate A obtained in Example 5 has an axis system and a 5-side system. 1) The other cross-polarized light shows that the loading rate is Ϊ direction) Example 2 Cellulose as the second film The coated Rth is coated in a state of being substantially supported. 1 -106- 200537167 Fei-The side is coated with an adhesive, and the disc-shaped side of the first retardation region 6 is pasted to produce the first polarized light having a retardation film. Plate 6. < Manufacturing of the liquid crystal display device 6 > In a manner in which the wiping direction of the liquid crystal cell in the first retardation region 6 of the first polarizing plate 6 of the side retardation film of the IPS mode liquid crystal cell 1 manufactured as described above is orthogonal, The second phase difference is affixed to the liquid crystal cell. Next, on the liquid side of the IPS mode, the support 1 of the polarizing plate A is used as a cell side, and a positive φ type is attached to manufacture a liquid crystal display device. The light leakage of the liquid crystal thus obtained was 0.04%. [Example 7] < Production of ferroelectric liquid crystal cell 1 > A polyimide film was provided on a glass substrate having an ITO electrode, and a wiping treatment was performed. Make two pieces of this substrate, make the alignment film so that the distance between the substrates (gap; d) is 1.9 microns, and overlap and attach the two glass-wipe directions in parallel, and then set the refractive index ^ (△ η) to 0.15 and spontaneous polarization (Ps) is an iron product of 12nCcm_2. The d · Δ η of the liquid crystal layer is 280 nm. A first polarizing plate 2 having a retardation film was obtained on one of the two sides of the obtained ferroelectric liquid crystal cell 1. Example 2 The retardation axis system of the first retardation region 2 of this polarizing plate 2 is pasted such that the retardation axis 2 of the liquid crystal molecules orthogonal to each other when the DC voltage is applied at 10V is on the liquid crystal cell side. The other side of the electric liquid crystal cell 1 is an orthogonally polarized light plate (HLC2_5618, manufactured by Shangliz Co., Ltd.) to manufacture a liquid crystal liquid crystal coating surface to have a late phase axis system and a region 6 side system cell The film of a cross-polarized square display device of 1 is used as the alignment [the opposite direction, the rubbing rate of the glass substrate is different from the direction of the electric liquid crystal group, and when it is pasted and implemented, the foregoing is applied in the liquid crystal cell mode, and then, in iron. Commercially available bias display devices. -107- 200537167 The light leakage of the liquid crystal display thus manufactured was 0.10%. [Example 8] < Production of support 2 > (Preparation of cellulose acetate solution) The following composition was put into a stirring tank, and stirred to dissolve cellulose acetate solution A. (Composition of cellulose acetate solution A) Cellulose acetate with a degree of acetylation of 2.86 φ methylene chloride (first solvent) methanol (second solvent) (preparation of matting agent solution) 20 parts by mass average particle size 16nm (AEROSIL R972, made by Ayloziru (share), stir well and mix for 30 minutes to make the silica particle dispersion into the disperser with the following composition, and then dissolve each component to prepare a matting agent. (Composition of Matting Solution) Dispersion of Dioxide Dioxide Particles with an Average Particle Size of 16 n m Dichloromethane (first solvent) Methanol (second solvent)
乙酸纖維素溶液A (添加劑溶液的調製) 在攪拌器中没入下述組成物,邊加熱 分來調製乙酸纖維素溶液。 (添加劑組成) 解各成分,調製 100.0質量份 402.0質量份 6 0.0質量份 之二氧化矽粒子 80質量部甲醇’ 子分散液。將該 :攪拌3 0分鐘以 液1 0.0質量份 7 6.3質量份 3.4質量份 10.3質量份 邊攪拌溶解各成 -108- 200537167Cellulose acetate solution A (preparation of additive solution) The following composition was put in a stirrer and heated to prepare a cellulose acetate solution. (Additive composition) Each component was decomposed to prepare 100.0 parts by mass, 402.0 parts by mass, 6 0.0 parts by mass of silica particles, and 80 parts by mass of methanol 'sub-dispersion. This: Stir for 30 minutes to 1 0.0 parts by mass 7 6.3 parts by mass 3.4 parts by mass 10.3 parts by mass Dissolve each component while stirring -108- 200537167
降低光學異方向性之化合物(A _丨9) 波長色散調整劑(UV-102) 二氯甲烷(第1溶劑) 甲醇(第2溶劑) 乙酸纖維素溶液A 49.3質量份 7.6質量份 5 8.4質量份 8.7質量份 1 2.8質量份 又,A-19 和 UV-102 之 Log P 値分別爲 2.9、5.6。 (乙酸纖維素膜之製造) 94 · 6質量份將上述乙酸纖維素溶液A、1 .3質量份消光 φ 劑、4.1質量份添加劑溶液,分別過濾後混合,使用帶型 流延機進行流延。上述組成之降低光學異方向性之化合物 以及波長色散調整劑相對於乙酸纖維素的質量比分別爲 12%、1.8%。將殘留溶劑量30%之薄膜從帶剝離,在140 °C乾燥40分鐘來製造纖維素乙酯酯。所得到之乙酸纖維 素膜的殘留溶劑量爲0.2%,膜厚爲40微米。 又,該膜的 Re(630)爲 0.3nm、Rth(630)爲 3.2nm、| Re(400) —Re(700) I 爲 1.2nm、I Rth(400) — Rth(700) I 爲 7.5nm、 φ 薄膜的Tg爲134.3t、薄膜之霧度爲0.34%、Δΐαΐι(1〇%ΚΗ —80%RH)爲24.9nm。將此薄膜作爲保護膜1。 <偏光板B之製造> 接著,使延伸之聚乙烯醇吸附碘來製造偏光膜,對市 售之乙酸纖維素膜(FUJflTAK TD 80UF、富士照相軟片(股) 製、Re = 2nm、Rth = 48nm)進行巷化處理,並使用聚乙儲醇 系黏著劑貼於偏光膜的一面。而且,將支撐體2以其乙酸 纖維素膜側係在偏光膜側的方式貼於偏光膜的另外一側 來製造偏光板B。 -109- 200537167 [實施例8] ’ 將與實施例5同樣形成之第2相位差區域5及第1相位 差區域5之偏光板B的支撐體2側塗布黏著劑,將第1相 位差區域5之其碟狀液晶塗布面側貼上,來製造具有相位 差膜的第1偏光板8。 <液晶顯示裝置8之製造> 在前述所製造之IPS模式液晶胞1的一側,以具有相 位差膜之第1偏光板8的第1相位差區域5之遲相軸係與 φ 液晶胞之擦拭方向正交的方式、且第2相位差區域5側係 在液晶胞側之方式貼上。接著,在IPS模式液晶胞1的另 外一側,將偏光板A之支撐體1作爲晶胞側,以正交偏光 的方式貼上來製造液晶顯示裝置。如此製得之液晶顯示裝 置的漏光爲0.02%。 [比較例1] 將偏光板(HLC2-5618、上力茲(股)製)以正交偏光的方 式貼在前述所製造的IPS模式液晶胞1的兩側來製造液晶 φ 顯示裝置。未使用光學補償膜。在熱水中將該市售的偏光 板之保護膜剝下,測定光學特性的結果,Re (6 3 0)爲4.7nm、 Rth(630)爲 48.5nm、 | Re(400) — Re(700) | 爲 lO.lnm、 I Rth(400) — Rth(700) I爲23.4nm。上述液晶顯示裝置係 與實施例1同樣,以上側之偏光板的穿透軸係與液晶胞的 擦拭方向平行之方式貼在偏光板。如此製得之液晶顯示裝 置之漏光爲0.55%。 [比較例2 ] <具有相位差膜的第1偏光板9之製造> -110- 200537167 使延伸之聚乙烯醇膜吸附碘來製造偏光膜。使用聚乙 烯醇系黏著劑,將實施例2所製得之相位差膜1以纖維素 酸酯膜係在偏光膜側之方式貼於偏光膜的一側。以偏光膜 的穿透軸與相位差膜1的遲相軸係平行的方式配置。對市 售之乙酸纖維素膜(FIHITAK TD 80UF、富士照相軟片(股) 製)進行皂化處理,並使用聚乙烯醇系黏著劑貼於偏光膜 的相反側。而且,將由實施例1所製得之第2相位差區域 1,以其遲相軸係與偏光板的穿透軸正交的方式貼於相位 φ 差膜1側,來製造具有相位差膜之第1偏光板9。 <液晶顯示裝置9之製造> 在前述所製造之IPS模式液晶胞1的一側,以具有相 位差膜之第1偏光板1的第1相位差區域1之遲相軸係與 液晶胞之擦拭方向平行的方式、且第2相位差區域1側係 在液晶胞側之方式貼上。接著,將市售之偏光板 (HLC2-5618、上力茲(股)製),以正交偏光之配置貼上來製 造液晶顯示裝置。如此製得之液晶顯示裝置的漏光爲 • 0.48%。 [比較例3] 除了未貼合第2相位差區域以外,與實施例2之具有 相位差之第1偏光板2同樣地製造具有相位差膜之第1偏 光板3。在實施例1所製造的IPS模式液晶胞1的一側, 以具有相位差膜之第1偏光板3的第1相位差區域2的遲 相軸係與液晶胞的擦拭方向正交之方式、以碟狀液晶塗布 面側係在液晶胞側的方式貼上。接著,在IPS模式液晶胞 1的另外一側,將市售之偏光板(HLC2-5618、上力茲(股) -111- 200537167 製),以正交偏光之配置貼上來製造液晶顯示裝置。如此 製得之液晶顯示裝置的漏光爲1 . 5 %。 以下整理實施例1〜8及比較例1〜3的評價結果。 [表1] 第1 晶月‘ 偏光膜之液 包側保護膜 第1相位差區域 第2相位差區域 第2偏光膜之液 晶胞側保護膜 漏光 材料 Rth (nm) 材料 Re (nm) 材料 Re (nm) Rth (nm) 材料 Rth (nm) 實施例1 TAC 45 聚苯乙烯系膜 185 TAC 15 120 TAC 45 0.09% 實施例2 TAC 45 DLC 185 TAC 15 120 TAC 45 0.09% 實施例3 - - DLC 130 TAC (2片) 2 110 - 48 0.08% 實施例4 TAC 6 DLC 140 TAC 7 110 TAC 48 0.09% 實施例5 TAC 6 DLC 145 TAC 9 80 TAC 5 0.03% 實施例6 TAC 6 DLC 135 2 軸 TAC 30 75 TAC 5 0.04% 實施例7 TAC 45 DLC 185 TAC 15 120 TAC 45 0.10% 實施例8 TAC 2 DLC 145 TAC 9 80 TAC 2 0.02% 比較例1 TAC 45 4ΐΐΤ- 4π3ΐ ιιΤΓ if 11 J\\\ ^\\\ TAC 45 0.55% 比較例2 TAC 45 DLC 185 TAC 15 120 TAC 45 0.48% 比較例3 TAC 45 TAC 15 120 | TAC 45 1.5% 表中、TAC係表示三乙醯基纖維素膜的意思。 表中、DLC係表示碟狀液晶的意思。 表中、第1相位差區域的遲相軸係與第一偏光膜的穿透 軸平行。 【圖式簡單說明】 第1圖係顯示本發明液晶顯示裝置之像素區域例的槪略 圖。 第2圖係顯示本發明液晶顯示裝置之例子的槪略圖。 【主要元件符號說明】 1 液晶元件像素區域 2 像素電極 3 顯示電極 4 擦拭方向 -112- 200537167 " 5 a、5 b 黑色顯示時之液晶化合物的配向方向 6a、6b 白色顯示時之液晶化合物的配向方向 7a、7b、19a、19b 偏光膜用保護膜 8、 20 偏 光 膜 9、 21 偏 光 膜 之 偏 光 透 過 軸 10 第 1 相 位 差 區 域 11 第 1 相 位 差 區 域 之 遲相軸 12 第 2 相 位 差 區 域 13、 17 晶 胞 基 板 14、 18 晶 胞 基 板 之 擦 拭 方 向 15 液 晶 層 16 液 晶 層 之 遲 相 軸 方 向Compound (A _ 丨 9) for reducing optical anisotropy Wavelength dispersion adjusting agent (UV-102) Dichloromethane (first solvent) Methanol (second solvent) Cellulose acetate solution A 49.3 parts by mass 7.6 parts by mass 5 8.4 parts by mass 8.7 parts by mass, 1 2.8 parts by mass, and Log P 値 of A-19 and UV-102 were 2.9 and 5.6, respectively. (Production of cellulose acetate film) 94. 6 parts by mass of the above cellulose acetate solution A, 1.3 parts by mass of matting agent φ4.1, and 4.1 parts by mass of additive solution were filtered and mixed, respectively, and cast using a belt-type casting machine. . The mass ratio of the compound having the above-mentioned composition to reduce optical anisotropy and the wavelength dispersion modifier to cellulose acetate were 12% and 1.8%, respectively. A film having a residual solvent content of 30% was peeled from the tape, and dried at 140 ° C for 40 minutes to produce cellulose ethyl ester. The residual cellulose content of the obtained cellulose acetate film was 0.2%, and the film thickness was 40 m. The Re (630) of this film was 0.3 nm, Rth (630) was 3.2 nm, | Re (400) —Re (700) I was 1.2 nm, and I Rth (400) —Rth (700) I was 7.5 nm. The Tg of the φ thin film was 134.3t, the haze of the thin film was 0.34%, and the Δΐαΐι (10% KΗ—80% RH) was 24.9nm. This thin film was used as the protective film 1. < Production of polarizing plate B > Next, the extended polyvinyl alcohol was used to adsorb iodine to produce a polarizing film. Commercially available cellulose acetate film (FUJflTAK TD 80UF, Fuji Photographic Film (Stock), Re = 2nm, Rth = 48 nm), and then apply a polyethylene glycol-based adhesive to one side of the polarizing film. Then, the support 2 is attached to the other side of the polarizing film so that the cellulose acetate film side is on the polarizing film side, and a polarizing plate B is manufactured. -109- 200537167 [Example 8] 'Adhesive was applied to the support 2 side of the polarizing plate B of the second retardation region 5 and the first retardation region 5 formed in the same manner as in Example 5, and the first retardation region was formed. The first plate-shaped polarizing plate 8 having a retardation film was produced by sticking the dish-shaped liquid crystal application surface side of the fifth plate. < Manufacturing of the liquid crystal display device 8 > On the side of the IPS mode liquid crystal cell 1 manufactured as described above, the late phase axis system of the first retardation region 5 of the first polarizing plate 8 having a retardation film and the φ liquid crystal A method in which the wiping directions of the cells are orthogonal, and the side of the second retardation region 5 is attached to the side of the liquid crystal cell. Next, on the other side of the IPS-mode liquid crystal cell 1, the support 1 of the polarizing plate A is used as the cell side, and a liquid crystal display device is manufactured by applying orthogonal polarization. The light leakage of the thus-produced liquid crystal display device was 0.02%. [Comparative Example 1] A polarizing plate (HLC2-5618, manufactured by Shanglizi) was attached to both sides of the IPS mode liquid crystal cell 1 manufactured as described above by orthogonal polarization to produce a liquid crystal φ display device. No optical compensation film is used. The protective film of this commercially available polarizing plate was peeled off in hot water and the optical properties were measured. Re (6 3 0) was 4.7 nm, Rth (630) was 48.5 nm, and Re (400) — Re (700 ) | Is l0.1 nm, I Rth (400)-Rth (700) I is 23.4 nm. The liquid crystal display device described above is attached to the polarizing plate so that the penetrating axis of the polarizing plate on the upper side is parallel to the wiping direction of the liquid crystal cell as in Example 1. The light leakage of the liquid crystal display device thus obtained was 0.55%. [Comparative Example 2] < Production of the first polarizing plate 9 having a retardation film > -110- 200537167 A polarizing film was produced by adsorbing iodine on the stretched polyvinyl alcohol film. Using a polyvinyl alcohol-based adhesive, the retardation film 1 obtained in Example 2 was attached to one side of the polarizing film so that the cellulose ester film was on the side of the polarizing film. The polarizing film is arranged so that its transmission axis is parallel to the retardation axis of the retardation film 1. A commercially available cellulose acetate film (FIHITAK TD 80UF, manufactured by Fuji Photographic Film Co., Ltd.) was saponified, and a polyvinyl alcohol-based adhesive was applied to the opposite side of the polarizing film. Then, the second retardation region 1 obtained in Example 1 was pasted on the phase φ difference film 1 side so that its late phase axis system was orthogonal to the transmission axis of the polarizing plate, and a phase difference film 1 was manufactured. First polarizing plate 9. < Manufacturing of the liquid crystal display device 9 > On the side of the IPS mode liquid crystal cell 1 manufactured as described above, the late phase axis system of the first phase difference region 1 of the first polarizing plate 1 having a retardation film and the liquid crystal cell The rubbing direction is parallel, and the second retardation region 1 side is attached to the liquid crystal cell side. Next, a commercially available polarizing plate (HLC2-5618, manufactured by Shanglizi Co., Ltd.) was attached with a cross polarized configuration to manufacture a liquid crystal display device. The light leakage of the thus-produced liquid crystal display device was 0.48%. [Comparative Example 3] A first polarizing plate 3 having a retardation film was manufactured in the same manner as the first polarizing plate 2 having a retardation in Example 2 except that the second retardation region was not bonded. On the side of the IPS mode liquid crystal cell 1 manufactured in Example 1, the retardation axis system of the first retardation region 2 of the first polarizing plate 3 having the retardation film is orthogonal to the wiping direction of the liquid crystal cell. The dish-shaped liquid crystal application surface side is attached to the liquid crystal cell side. Next, on the other side of the IPS-mode liquid crystal cell 1, a commercially available polarizing plate (HLC2-5618, manufactured by Sunlinks Co., Ltd.-111-200537167) was pasted in an orthogonally polarized configuration to manufacture a liquid crystal display device. The light leakage of the liquid crystal display device thus obtained was 1.5%. The evaluation results of Examples 1 to 8 and Comparative Examples 1 to 3 are summarized below. [Table 1] The first crystal moon 'polarizer's liquid-bag-side protective film 1st retardation region 2nd retardation region 2nd polarizing film liquid crystal cell-side protective film Light leakage material Rth (nm) Material Re (nm) Material Re (nm) Rth (nm) Material Rth (nm) Example 1 TAC 45 Polystyrene film 185 TAC 15 120 TAC 45 0.09% Example 2 TAC 45 DLC 185 TAC 15 120 TAC 45 0.09% Example 3--DLC 130 TAC (2 pieces) 2 110-48 0.08% Example 4 TAC 6 DLC 140 TAC 7 110 TAC 48 0.09% Example 5 TAC 6 DLC 145 TAC 9 80 TAC 5 0.03% Example 6 TAC 6 DLC 135 2-axis TAC 30 75 TAC 5 0.04% Example 7 TAC 45 DLC 185 TAC 15 120 TAC 45 0.10% Example 8 TAC 2 DLC 145 TAC 9 80 TAC 2 0.02% Comparative Example 1 TAC 45 4ΐΐΤ-4π3ΐ ιιΓ if 11 J \\\ ^ \\\ TAC 45 0.55% Comparative Example 2 TAC 45 DLC 185 TAC 15 120 TAC 45 0.48% Comparative Example 3 TAC 45 TAC 15 120 | TAC 45 1.5% In the table, TAC represents the meaning of triethylfluorene cellulose film. In the table, DLC means the meaning of dish-shaped liquid crystal. In the table, the late phase axis of the first retardation region is parallel to the transmission axis of the first polarizing film. [Brief description of the drawings] FIG. 1 is a schematic diagram showing an example of a pixel area of a liquid crystal display device of the present invention. Fig. 2 is a schematic diagram showing an example of a liquid crystal display device of the present invention. [Description of Symbols of Main Components] 1 Pixel area of liquid crystal element 2 Pixel electrode 3 Display electrode 4 Wipe direction -112- 200537167 " 5 a, 5 b Orientation direction of liquid crystal compound during black display 6a, 6b Liquid crystal compound during white display Alignment directions 7a, 7b, 19a, 19b Protective film for polarizing film 8, 20 Polarizing film 9, 21 Polarizing light transmission axis of polarizing film 10 First phase difference area 11 First phase difference area Late phase axis 12 Second phase difference area 13, 17 Cell substrate 14, 18 Wipe direction of the cell substrate 15 Liquid crystal layer 16 Late phase direction of the liquid crystal layer
-113--113-
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004037835 | 2004-02-16 | ||
JP2004086067 | 2004-03-24 | ||
JP2005021287A JP4689286B2 (en) | 2004-02-16 | 2005-01-28 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200537167A true TW200537167A (en) | 2005-11-16 |
TWI366697B TWI366697B (en) | 2012-06-21 |
Family
ID=35438183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094104266A TWI366697B (en) | 2004-02-16 | 2005-02-15 | Liquid crystal display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4689286B2 (en) |
KR (1) | KR101154912B1 (en) |
TW (1) | TWI366697B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5076302B2 (en) * | 2005-01-25 | 2012-11-21 | 住友化学株式会社 | Liquid crystal display device and set of polarizing plates useful for it |
JP2007179024A (en) * | 2005-11-29 | 2007-07-12 | Fujifilm Corp | Wide viewing angle polarizing plate and liquid crystal display device using the same |
JP4855081B2 (en) * | 2006-01-24 | 2012-01-18 | 富士フイルム株式会社 | Retardation plate, polarizing plate, and liquid crystal display device |
JP5114012B2 (en) * | 2006-03-22 | 2013-01-09 | 富士フイルム株式会社 | Optical polymer film, and polarizing plate and liquid crystal display device using the same |
JP4860333B2 (en) * | 2006-04-10 | 2012-01-25 | 富士フイルム株式会社 | Liquid crystal display |
JP2008003188A (en) * | 2006-06-21 | 2008-01-10 | Fujifilm Corp | Manufacturing method of polarizing plate and liquid crystal display device |
JP5067373B2 (en) * | 2006-10-05 | 2012-11-07 | コニカミノルタアドバンストレイヤー株式会社 | Horizontal electric field switching mode type liquid crystal display device |
WO2008127053A1 (en) * | 2007-04-13 | 2008-10-23 | Lg Chem, Ltd. | Optical films, retardation films, and liquid crystal display comprising the sames |
JP5497286B2 (en) * | 2008-03-19 | 2014-05-21 | スタンレー電気株式会社 | Liquid crystal display |
US20120194766A1 (en) * | 2011-02-01 | 2012-08-02 | Fujifilm Corporation | Ips or ffs-mode liquid-crystal display device |
US8842243B2 (en) * | 2011-02-01 | 2014-09-23 | Fujifilm Corporation | IPS or FFS-mode liquid-crystal display device |
JP5552087B2 (en) * | 2011-03-31 | 2014-07-16 | 富士フイルム株式会社 | IPS or FFS type liquid crystal display device |
JP2013029553A (en) * | 2011-07-26 | 2013-02-07 | Fujifilm Corp | Optical film and method of manufacturing the same, laminate optical film, polarizing plate, and liquid crystal display device |
KR101472187B1 (en) | 2011-11-17 | 2014-12-12 | 주식회사 엘지화학 | Optical element |
JP2013160979A (en) * | 2012-02-07 | 2013-08-19 | Fujifilm Corp | Ips or ffs liquid crystal display device |
EP2933677B1 (en) | 2012-12-14 | 2019-02-13 | LG Chem, Ltd. | Liquid crystal element |
JP6196385B2 (en) | 2014-07-31 | 2017-09-13 | シャープ株式会社 | Liquid crystal display |
JP6952779B2 (en) | 2017-07-21 | 2021-10-20 | 富士フイルム株式会社 | Liquid crystal display |
JP7301534B2 (en) * | 2018-12-19 | 2023-07-03 | 株式会社日本触媒 | Optical film with reduced retardation in the thickness direction |
KR102514153B1 (en) * | 2018-12-28 | 2023-03-24 | 삼성에스디아이 주식회사 | Polarizing plate and liquid crystal display apparatus comprising the same |
JP2022044293A (en) * | 2020-09-07 | 2022-03-17 | 住友化学株式会社 | Optical laminate and elliptically polarizing plate including the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100601920B1 (en) * | 2004-01-09 | 2006-07-14 | 주식회사 엘지화학 | Planar switching liquid crystal display including negative biaxial retardation film and viewing angle compensation film using + C-plate |
JP4383903B2 (en) * | 2004-01-23 | 2009-12-16 | 株式会社 日立ディスプレイズ | Polarizing plate and liquid crystal display device using the same |
-
2005
- 2005-01-28 JP JP2005021287A patent/JP4689286B2/en not_active Expired - Lifetime
- 2005-02-14 KR KR1020050011942A patent/KR101154912B1/en active IP Right Grant
- 2005-02-15 TW TW094104266A patent/TWI366697B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI366697B (en) | 2012-06-21 |
KR20060041921A (en) | 2006-05-12 |
JP4689286B2 (en) | 2011-05-25 |
KR101154912B1 (en) | 2012-06-13 |
JP2005309382A (en) | 2005-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200537167A (en) | Liquid crystal display device | |
JP4740604B2 (en) | Optical compensation film, method for producing the same, polarizing plate, and liquid crystal display device | |
JP2006291186A (en) | Cellulose acylate film, method for producing the same, optical compensating film, polarizing plate and liquid crystal display device | |
JP4142691B2 (en) | Liquid crystal display | |
JP4860333B2 (en) | Liquid crystal display | |
TWI390305B (en) | Transparent film for optical application and optical compensation film by using it, polarizing plate, liquid crystal display device | |
JP2008033285A (en) | Retardation film, polarizing plate and liquid crystal display device | |
CN100578319C (en) | Liquid crystal display | |
TWI454801B (en) | Phase differential film, polarizing film and liquid crystal display device | |
US20080107832A1 (en) | Optical Film, Process of Producing the Same, Polarizing Plate Including the Same, and Liquid Crystal Display | |
JP4684047B2 (en) | Optical compensation film, polarizing plate and liquid crystal display device | |
CN100447594C (en) | Transparent film and optical compensation film using same, polarizing plate and liquid crystal display device | |
JP2006184479A (en) | Optical compensation film and liquid crystal display | |
TWI442103B (en) | Long polarizing plate and method for producing the same, and liquid crystal display | |
JP2006201502A (en) | Retardation film, polarizing plate and liquid crystal display device | |
JP2006317922A (en) | Cellulose acylate film, optical compensating film, method of producing them, polarizing plate and liquid crystal display device | |
JP2006220971A (en) | Optical compensation sheet, and polarizing plate, and liquid crystal display device using the same | |
JP4737993B2 (en) | Bend alignment mode liquid crystal display device | |
JP2006194923A (en) | Bend alignment mode liquid crystal display device | |
JP2006195140A (en) | Optical compensation sheet, polarizing plate, and liquid crystal display device | |
JP2006178176A (en) | Polarizing plate and liquid crystal display device using the same | |
JP2006243703A (en) | Liquid crystal display device | |
JP2006195205A (en) | Liquid crystal display device and polarizing plate | |
JP2006178359A (en) | Optical compensation film, polarizing plate and liquid crystal display | |
JP2006276202A (en) | Optical compensation film, polarizing plate, and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |