TW200535465A - Antireflection film, polarizing plate and liquid crystal display device - Google Patents
Antireflection film, polarizing plate and liquid crystal display device Download PDFInfo
- Publication number
- TW200535465A TW200535465A TW093139730A TW93139730A TW200535465A TW 200535465 A TW200535465 A TW 200535465A TW 093139730 A TW093139730 A TW 093139730A TW 93139730 A TW93139730 A TW 93139730A TW 200535465 A TW200535465 A TW 200535465A
- Authority
- TW
- Taiwan
- Prior art keywords
- film
- refractive index
- group
- layer
- polarizing plate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/12—Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133502—Antiglare, refractive index matching layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
Description
200535465 九、發明說明: 【發明所屬之技術領域】 本發明係關於使用於電腦、文字處理機、電視機等之影 像顯示液晶顯示裝置,更詳而言’係關於用以提局顯不品 質之抗反射膜、偏光板、及液晶顯示裝置。 【先前技術】 液晶顯示裝置由於具有低電壓•低耗電功率且可小型化 •薄膜化等之各種優點,因此廣泛地應用在個人電腦或攜 帶式機器之監控器、電視機等用途。此等液晶顯示裝置係 根據液晶胞內液晶之配列狀態而已有提案揭示各種模式, 但是先前一向是以一種會形成從液晶胞之下側基板向上側 基板扭轉約90°的配列狀態之TN模式爲其主流。 一般而言,液晶顯示裝置係包括液晶胞、光學補償片、 偏光板。光學補償片係用以消除影像著色或擴大視野角, 且使用經加以延伸的雙折射薄膜或在透明薄膜塗佈液晶之 薄膜。例如已在發明專利第2,5 8 7,3 98號公報中揭示一種在 三乙醯基纖維素薄膜上塗佈碟狀液晶並使其配向且加以固 定化之光學補償片適用於TN模式之液晶胞,以擴大視野 角之技術。然而,茲就可預期到需要爲大畫面且可供由各 種不同的角度觀看的電視機用途之液晶顯示裝置而言,對 視野角相依性之要求依舊是嚴格,以致以如上所述方法仍 然無法滿足要求。於是已著手硏究IPS (面內切換)模式 、OCB (光學補償彎曲)模式、Va (垂直配向)模式等之 與TN模式不同之液晶顯示裝置。其中尤其是VA模式,因 200535465 其對比較高且製造良率較高’可用作爲TV用之 裝置而受到重視。 在VA模式方面,爲達成廣視野角,也必須組 膜,相位差膜則必須爲具有從20至70奈米之Re 從70至400奈米之Rth延遲値者。在日本專 2003 -75 63 8號公報,則除改良對比之外,進一步 階調特性爲目的而已揭示一種相位差膜與光擴散 〇 然而,近年來供使用液晶顯示裝置的環境已涉 ,且對顯示品質也有高度的要求,以致對上述組 如與VA模式特有的左右之色調變化、在明室中 定性相形之下,仍然是不完美的性能。 另一方面,抗反射膜係一般在例如陰極管顯 CRT)、電漿顯示裝置(PDP)、電激發光顯示裝 )、或液晶顯示裝置(LCD )之顯示裝置中,爲 之反射所引起之對比降低或影像映入以提高影像 必須使用光擴散與光學干渉之原理而將其配置在 之最外表面。 先前之抗反射膜有一種藉由將表面反射光加以 制外光之正反射,以防止外部環境的映入之防眩 射膜。例如日本專利特開第2000-33 83 1 0號公報 膜,其係採取一種將適當的微粒包含在硬質塗層 賦予凹凸以擴散外光藉以緩和畫面的刺目現象之 外,在同特開第2002- 1 96 1 1 7號公報及同特開 液晶顯示 合相位差 延遲値、 利特開第 也以改良 膜之組合 及多方面 合而言, 的黑色穩 示裝置( :置(ELD 防止外光 視認性, 顯示裝置 擴散以抑 性之抗反 之抗反射 以對表面 方法。另 第 2003- 200535465 1 6 1 8 1 6號公報之抗反射膜,則在具有表面微細凹凸形狀之 防眩性硬質塗層上設置一層低折射率層,以除利用表面的 外光擴散以外,再加上利用光干涉之原理來抑制反射率之 方法。另外,在同特開第2003-2 1 620號公報之抗反射膜, 則在低折射率層之下面設置高折射率層,以有效地利用光 干涉來降低外光之反射。 然而,該等防眩性之抗反射膜,則可以表面之微細凹凸 來擴散外光之同時,卻無可避免顯示畫面變白(白色模糊 )、影像之鮮明性降低(影像模糊),甚至例如由於微細 凹凸結構的透鏡效應等之刺目現象之難題。針對於此等難 題,雖然正在進行控制防眩層之霧度、影像鮮明度、微細 凹凸形狀等加以改良之嘗試,但是並未獲得可令人滿意者 〇 另外,在日本專利特開第2003-574 1 5號公報已揭示一種 高影像鮮明性且並無白色模糊或刺目現象,又可擴大視野 角之抗反射膜,其係一種表面微細凹凸非常小,且使具有 內部散射性之透光性顆粒包含在硬質塗層內所構成之抗反 射膜。 然而,即使使用該特開第2003-574 1 5號公報所揭示之抗 反射膜,雖然尙可獲得某一程度之改良功效,但是從在明 室中作黑色顯示時的黑色穩定性的觀點來考慮,則並未達 到可令人滿意之水準。 該等抗反射膜通常用作爲偏光板之視認側的保護膜。在 偏光板之另一側,亦即在液晶胞側之保護膜一向是將醯化 200535465 纖維素薄膜或光學補償膜(相位差膜)分別以單獨或加以 組合使用。 此外,由於醯化纖維素薄膜係與其他聚合物薄膜相形下 ,具有光學等方向性較高(延遲値較低)之特徵,因此通 常用作爲例如偏光板之要求光學等方向性之用途。 另一方面,對於液晶顯示裝置之光學補償片(相位差膜 )卻相反地被要求光學異方向性(高延遲値)。此種情形 下,光學補償片一般則使用如聚碳酸酯薄膜或聚颯薄膜的 高延遲値之合成聚合物薄膜。 修 在歐洲發明專利第25 873 98號公報則已推翻迄今爲止之 一般原則’而揭示一種也可使用於要求光學異方向性之用 途的具有高延遲値之纖維素醋酸酯薄膜。在該發明專利文 獻,爲以纖維素三醋酸酯實現高延遲値,則添加至少具有 兩種芳香族環之化合物,其中較佳爲添加具有1,3,5-三 氮阱環之化合物,並施加延伸處理。一般而言,已知纖維 素三醋酸酯係一種不易延伸之高分子材料,因此如欲增大 雙折射率則有困難,但是若以延伸處理同時使該添加劑加 ® 以配向時,藉此即可增大雙折射率,以實現高延遲値。由 於該薄膜可兼作爲偏光板之保護膜,因此具有可提供廉價 且體態薄型的液晶顯示裝置之優點。 近年來爲謀求液晶顯示裝置之輕量化,降低製造成本, 已演變爲液晶胞之薄膜化爲必須條件。因此對光學補償片 則要求一種具有更高的Re延遲値且具有更低的Rth延遲値 者。然而,歐洲發明專利第25 873 98號公報之方法,若被 -9- 200535465 個別指定上述Re延遲値與Rth延遲値時,則有不能使該等 之條件兩者並存之難題存在。 另外,雖然在日本專利特開第200 1 - 1 1 6926號公報已揭 示一種控制Rth値之方法,但是仍然不能使Re値與Rth値 之兩者並存。 爲解決以上之難題,已有新的提案在日本專利特開第 2 00 1 -24 9223號公報所揭示之一種由纖維素醋酸酯薄膜所構 成之光學補償片。然而,以該特開第200 1 -249223號公報 之光學補償片所構成之偏光板,卻造成如後所述最外層之 容易刮傷而引人注意之難題。 換言之,此等光學補償片係設置在偏光膜之單側,並且 隔著偏光膜在另一側則設置透明保護膜,此種結構是偏光 板之通常結構。然而,位於最外側的透明保護膜若僅爲未 具有抗反射功能之通常醯化纖維素薄膜時,則由於外光之 反射而導致對比降低或影像映入所引起之妨礙鑒賞,及耐 擦傷性較差而容易引人注意等之難題存在。 另一方面,在例如陰極管顯示裝置(CRT )、液晶顯示 裝置(LCD)、電漿顯示裝置(PDP)、電激發光顯示裝置 (ELD )之顯示裝置中,已知在顯示裝置最外表面配置一 種例如利用光學干涉之原理來降低反射率的抗反射膜之方 法。 上述具有光學補償片之偏光板係對液晶胞薄膜化有效, 但是也會出現作成爲薄膜時,特別是在最外層爲僅由未具 有抗反射功能之普通醯化纖維素薄膜所構成之情形下,若 •10- 200535465 外力施加到最外層而使薄膜刮傷時,則其變形將顯著而容 易引人注意之難題。 糸示上所述,目則並未有提案揭示一種能使光學補償功能 與抗反射功能之兩者並存’又不容易在表面造成刮傷之偏 光板’且從液晶顯不裝置之輕量化•低成本化的觀點來考 慮’目則也正在迫切需要開發一種具有可使該等性能並存 之偏光板。 【發明內容】 〔所欲解決之技術問題〕 本發明之第一目的係提供一種視野角擴大,幾乎不致於 發生由於視角變化所引起之對比降低、階調或黑白反轉、 及色相變化等之偏光板,以提高液晶顯示裝置之視認性, 及使用其之液晶顯示裝置。 並且,提供一種可提高抗反射性,特別是可提高在明室 之視認性之偏光板,及使用其之液晶顯示裝置。 本發明之第二目的係提供一種可防止外光之映入,且無 白色模糊、影像模糊、刺目現象,並且更進一步改善在明 室的黑色穩定性之抗反射膜,以提高液晶顯示裝置等之顯 示裝置之視認性。 另外,本發明之目的係藉由抗反射膜以提供一種具有高 度視認性,又擴大視野角(特別是下方向之視野角)’並 且幾乎不致於發生由於視角變化所引起之對比降低’階調 或黑白反轉、及色相變化等之偏光板,及使用其之液晶顯 示裝置。 -11- 200535465 本發明之第三目的係關於僅由經賦予光學補償功能之醯 化纖維素薄膜所構成之功能膜之偏光板中,提供一種可在 不必特別增加結構構件數下可更進一步賦予抗反射功能, 加上可使表面之刮傷不致於醒目之偏光板,並且再進一步 提供一種設置具有該等功能的偏光板之液晶顯示裝置。 本發明之第一目的係以如下所述之第(1 )至(9 )項之 偏光板,及如下所述之第(1 0 )項之液晶顯示裝置即可達 成。 〈第一*方式〉 (1 ) 一種偏光板,其特徵爲將偏光膜之兩面以抗反射 膜與相位差膜加以挾持者,且該抗反射膜,係在 透明支撐體上具有至少一層之硬質塗層及位於最 外層之低折射率層,該硬質塗層含有黏結劑及至 少一種折射率爲與該黏結劑不同之透光性顆粒, 該抗反射膜之表面粗糙度Ra (中心線平均粗糙度 )爲0.10微米以下;該相位差膜,係以如下所示 之數學式(I)所定義之Re延遲値爲從20至70 奈米,以如下所示之數學式(II )所定義之Rth 延遲値爲從70至400奈米,且該Re延遲値與該 Rth延遲値之比(Re/Rth比)爲從0.2至0.4,該 相位差膜之遲相軸與該偏光膜之透射軸係實質上 配置成平行: 數學式(I) Re = (nx - ny) x d 數學式(II) Rth =〔 { ( nx + ny ) /2 } — nz〕x d 200535465 在該數學式中,nx爲薄膜面內之遲相軸方向之折 射率,ny爲薄膜面內之進相軸方向之折射率,nz 爲薄膜之厚度方向之折射率,d爲薄膜之厚度。 (2 ) 如第(1 )項之偏光板,其中抗反射膜之透射影像 鮮明度爲65%以上。 (3) 如第(1)或(2)項之偏光板,其中抗反射膜之 霧度爲10%以上。 (4) 如第(1 )至(3 )項中任一項之偏光板,其中抗 反射膜經以測角光度計所測得散射光分佈之相對 Φ 於〇°出射角的光強度之30°散射光強度爲從0.01% 至 0.2%。 (5 ) 如第(1 )至(4 )項中任一項之偏光板,其中低 折射率層包含平均粒徑爲從0.5至200奈米且折 射率爲從1.17至1.40之中空二氧化矽微粒。 (6) 如第(1 )至(5 )項中任一項之偏光板,其中在 硬質塗層上具有至少一層折射率爲高於透明支撐 體之高折射率層。 β (?) 如第(1 )至(6 ).項中任一項之偏光板,其中相 位差膜係由以從3至100%之延伸倍率所延伸之醯 化纖維素薄膜所構成。 (8) 如第(1 )項之偏光板,其中相位差膜係由含有相 對於100質量份之醯化纖維素爲從0.01至20質 量份之具有至少兩個芳香族環且具有線性分子結 構之棒狀化合物之醯化纖維素薄膜所構成。 -13- 200535465 (9) 如第(7 )或(8 )項之偏光板,其中醯化纖維素 之乙醯化度爲從5 9.0至6 1 . 5 %。 (10) —種V A模式之液晶顯示裝置,其特徵爲包括配 置在液晶胞及其兩側之兩片偏光板者,且以如第 (1 )至(9 )項中任一項之偏光板用作爲該兩片 偏光板中之一方,且使低折射率層配置於顯示裝 置之最外表層。 本發明之第二目的係以如下所述之第(Η )至(1 6 )項 之抗反射膜,如下所述之第(1 7 )、( 1 8 )項之偏光板, 及如下所述之第(1 9 )項之液晶顯示裝置即可達成。 (11) 一種抗反射膜,其特徵爲在透明支撐體上具有至 少一層之硬質塗層及位於最外層之低折射率層者 ,且硬質塗層之霧度爲40 %以上,抗反射膜之表 面粗糙度Ra (中心線平均粗糙度)爲〇·1〇微米以 下,且在從450奈米至650奈米之波長區域相對 於積分反射率平均値之5度鏡面反射率之平均値 爲65 %以上。 (12) 如第(1 1 )項之抗反射膜,其中抗反射膜在從 450奈米至650奈米的波長區域之積分反射率平 均値爲2.5 %以下。 (13) 如第(11)或(12)項之抗反射膜,其中抗反射 膜之透射影像鮮明度爲65 %以上。 (14) 如第(1 1 )至(1 3 )項中任一項之抗反射膜’其 中硬質塗層具有黏結劑及至少一種折射率爲與該 -14- 200535465 黏結劑不同且具有內部散射性之透光性顆粒。 (15 ) 如第(1 1 )至(1 4 )項中任一項之抗反射膜,其 中硬質塗層經以測角光度計所測得散射光分佈之 相對於0°出射角的光強度之30°散射光強度爲 0 · 0 1 % 至 0 · 2 %。 (16) 如第(1 1 )至(1 5 )項中任一項之抗反射膜,其 中在硬質塗層上具有至少一層折射率爲高於透明 支撐體之高折射率層。 (17) —種偏光板,其特徵爲將偏光膜之兩面以保護膜 加以挾持者,且一側之保護膜係使用如第(11 ) 至(1 6 )項中任一項之抗反射膜。 (18) 如第(1 7 )項之偏光板,其中在兩片保護膜中未 使用抗反射膜之保護膜爲具有光學異方向性層之 光學補償膜,該光學異方向性層爲含有具有碟狀 結構單元之化合物之層,碟狀結構單元之圓盤面 係相對於保護膜表面成傾斜,且碟狀結構單元之 圓盤面與保護膜表面所形成之角度係朝光學異方 層之深度方向而變化。 (19) 一種液晶顯示裝置,其特徵爲將如第(1 1 )至( 1 6 )中任一項之抗反射膜或如第(1 7 )、( 1 8 ) 項之偏光板使用於液晶顯示裝置之最外表層。 〔發明之功效〕 若根據本發明之第一方式,則可提供一種偏光板,及使 用其之液晶顯示裝置,該偏光板能擴大視野角,且可在幾 -15- 200535465 乎不致於發生由於視角變化所引起之對比降低、階調或黑 白反轉、及色相變化等下提高液晶顯示裝置之視認性。 並且,可提供一種抗反射性高,尤其是可提高在明室之 視認性之偏光板,及使用其之液晶顯示裝置。 若根據本發明之第二方式,則可提供一種抗反射膜,該 膜可提高防止外光映入、並無白色模糊、影像模糊、剌目 現象、且可改善在明室的黑色穩定性的液晶顯示裝置等之 顯示裝置之視認性。 另外,本發明之抗反射膜可用作爲偏光板之保護膜。本 發明之該抗反射膜或偏光板,經使用於液晶顯示裝置,藉 此即可提供一種具有高度的視認性,又可擴大視野角,特 別是擴大下方向視野角,且幾乎不致於發生由於視角變化 所引起之對比降低、階調或黑白反轉、及色相變化等之液 晶顯裝置。 〔實施發明之最佳方式〕 茲參照圖式將本發明第一、第二方式之抗反射膜偏光板 實施方式說明如下。 第1至3圖係展示使用於本發明第一、第二方式之偏光 板的抗反射膜結構實例模式剖面圖。本發明之抗反射膜1 0 ,如第1圖所示係將透明支撐體1,與含有可賦予內部散 射性的透光性顆粒4A之硬質塗層2A,以及在最外層加以 積層低折射率層3所構成。各層之方式或薄膜之層結構係 可適當地加以變更,例如如第2圖之抗反射膜20所示,在 硬質塗層2B之內部可含有其他種類之透光性顆粒4B,也 200535465 可如第3圖之抗反射膜3 0所示爲提高利用光干涉的抗反射 性而在硬質塗層2 Α之上面設置中折射率層5、高折射率層 6,並在最外層配置低折射率層3。 然後,第4圖係展示本發明第一、第二方式之偏光板結 構實例模式剖面圖。 本發明之偏光板60係在用以夾持偏光膜40的保護膜中 ,在一側使用抗反射膜1 〇、20或30等,另一側則使用相 位差膜5 0。 然後,就用以構成本發明偏光板之各層詳加說明如下。 此外,在本申請案說明書中所使用之術語「從(數字A ) 至(數字B)」是意謂「(數字A)以上且(數字B)以下 j 0 (相位差膜) 相位差薄膜之Re延遲値及Rth延遲値,可分別以如下所 示之數學式(I)和(II)所定義。測定波長爲5 50奈米。 數學式(I) Re = (nx— ny) x d 數學式(II) Rth =〔 { (nx + ny) /2 }— nz〕x d 在數學式(I )和(II )中,nx係薄膜面內之遲相軸方向 (折射率將成爲最大之方向)之折射率,ny係薄膜面內之 進相軸方向(折射率將成爲最小之方向)之折射率。在數 學式(II)中,nz係薄膜之厚度方向之折射率。在數學式 (I )和(II )中,d係以奈米爲單位的薄膜之厚度。 在本發明中,則將相位差膜之Re延遲値調整爲從20至 70奈米,並將Rth延遲値調整爲從70至4 00奈米。另外 200535465 ,在本發明中,則將Re/Rth比調整爲從0.2至0.4。較佳 爲將Re延遲値調整爲從40至70奈米,將Rth延遲値調整 爲從90至200奈米,且將Re/Rth比調整爲從0.3至0.4。 該等調整可由具有芳香環的棒狀化合物之種類、添加量及 延伸倍率來實施。 另外,相位差膜之雙折射率(nx — ny ),較佳爲從 0.0002至0.0009,更佳爲從0.00025至0.0009,且最佳爲 從0.0003 5至0.0009。此外,相位差膜之厚度方向雙折射 率〔{ ( nx + ny ) /2 } — nz〕,較佳爲從 0 · 0 0 0 6 至 0 · 00 5, 更佳爲從0.0008至0.005,且最佳爲從0.0012至0.005。 相位差膜一向是使用透明聚合物薄膜。樹脂薄膜、聚合 物之實例係包括:降萡烯樹脂、纖維素酯(例如纖維素三 醋酸酯、纖維素二醋酸酯、纖維素醋酸丁酸酯)、聚酯( 例如對苯二甲酸乙二醇酯、聚碳酸酯)、聚醚颯、聚烯烴 (例如聚曱基戊烯、聚醯化酯)、聚胺甲酸酯、聚礪、聚 醚、聚醚酮、聚丙烯腈及聚甲基丙烯腈。也可利用市售商 品級之降萡烯樹脂(Arton,JSR (股)公司製;Zeonex、 Zeonoa,日本Zeon (股)公司製)。其中,較佳爲使用通 常所使用之醯化纖維素薄膜作爲偏光板的保護膜。亦即, 爲不致於導致液晶顯示裝置之厚度增加,較佳爲使用具有 相位差膜應有之功能,與透明保護膜應有之功能(偏光膜 之保護功能)兩者之一片纖維素醋酸酯薄膜。 〔醯化纖維素薄膜〕 使用於本發明醯化纖維素之原料棉,可使用傳統原料( 200535465 參閱例如曰本發明協會公開技法200 ^:1745 )。另外,醯化 纖維素之合成也可使用傳統方法(參閱例如右田等人之「 木材化學」第180至190頁(共立出版、1968年))。醯 化纖維素之黏度平均聚合度係較佳爲200至700’更佳爲 250至500,且最佳爲從250至350。此外,使用於本發明 之纖維素酯,較佳爲藉由凝膠透層析法之Mw/Mn ( Mw爲 質量平均分子量,Μη爲數量平均分子量)之分子量分佈爲 較狹幅。具體的Mw/Mn之値較佳爲從1.5至5 ·0,更佳爲 從2.0至4.5,且最佳爲從3.0至4.0。 · 醯化纖維素薄膜之醯基雖然並無特殊的限定,但是較佳 爲使用乙醯基、丙醯基,特佳爲使用乙醯基。全醯基之取 代度較佳爲從2.7至3.0,且更佳爲從2.8至2.95。在本說 明書中,「醯基之取代度」係意謂根據ASTM D817所計算 得之値。 醯基最佳爲乙醯基,若使用醯基爲乙醯基的纖維素醋酸 酯時,則「乙醯化度」較佳爲從59.0至62.5%,且更佳爲 從5 9.0至6 1 . 5 %。若乙醯化度爲在此範圍時,則不致於由 · 於流延時的輸送張力而導致Re大於吾所欲得値之情況,面 內之不均勻性也少,且由於溫濕度所引起的延遲値之變化 也少。 6位次的醯基之取代度,從抑制Re、Rth的不均勻性的 觀點來考慮,則較佳爲〇.9以上。 〔延遲控制劑〕 在本發明中爲調整延遲,較佳爲將具有至少兩個芳香族 -19- 200535465 環之棒狀化合物用作爲延遲控制劑。該棒狀化合物_父佳爲 具有線性分子結構。所謂「線性分子結構」係意謂在熱力 學上最穩定的結構中棒狀化合物之分子結構爲呈線性。熱 力學上最穩定的結構係可由結晶結構解析或分子軌道計算 求得。例如使用分子軌道計算軟體(例如WinMOPAC 2000 、富士通(股)公司製)運算分子軌道計算’即可求得化 合物之生成熱會變成爲最小的分子之結構。所謂「分子結 構爲線性」係意謂經如上所述計算所求得之熱力學上最穩 定的結構中,在分子結構中之主鏈所構成的角度爲140度 以上。 具有至少兩個芳香族環之棒狀化合物較佳爲以如下所示 之通式(1 )所代表之化合物。 通式(1) : Ari - Li— Ar〗 在如上所示之通式(1 )中,An及Ar2係分別獨立地代 表經取代或未經取代之碳原子數爲從6至3 0之芳基(例如 苯基、萘基、蒽基),或碳原子數爲從2至30之芳香族雜 環基。芳香族雜環較佳爲5員環、6員環或7員環,且更 佳爲5員環或6員環。雜原子較佳爲氮原子、氧原子或硫 原子,且更佳爲氮原子或硫原子。芳香族雜環之具體實例 包括:呋喃環、噻吩環、吡咯環、噁唑環、異噁唑環、噻 唑環、異噻唑環、咪唑環、吡唑環、呋咕環、噻唑環、哌 喃環、吡啶環、嗒阱環、嘧啶環、吡阱環、及丨,3,5 —三 氮哄環。200535465 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to an image display liquid crystal display device used in a computer, a word processor, a television, etc., more specifically, it is used to improve the quality of local display. Anti-reflection film, polarizing plate, and liquid crystal display device. [Prior art] Liquid crystal display devices have various advantages such as low voltage, low power consumption, miniaturization, and thin film. Therefore, they are widely used in personal computers, monitors for portable devices, and televisions. These liquid crystal display devices have proposed various modes according to the arrangement state of liquid crystals in the liquid crystal cell. However, a TN mode in which an arrangement state of twisting about 90 ° from the substrate below the liquid crystal cell to the substrate on the upper side has been used as Its mainstream. Generally speaking, a liquid crystal display device includes a liquid crystal cell, an optical compensation sheet, and a polarizing plate. The optical compensation sheet is used to eliminate coloration of the image or expand the viewing angle, and a stretched birefringent film or a film coated with liquid crystal on a transparent film is used. For example, in Patent Publication No. 2,5 8 7,3 98, an optical compensation sheet in which a discotic liquid crystal is coated on a triethylfluorinated cellulose film and aligned and fixed is suitable for use in the TN mode. Liquid crystal cell to expand the viewing angle. However, as far as the liquid crystal display device that can be expected to be a large-screen television set that can be viewed from various angles, the requirements on the viewing angle dependency are still strict, so that the method described above is still impossible. fulfil requirements. Therefore, the LCD display device different from the TN mode, such as the IPS (In-Plane Switching) mode, the OCB (Optical Compensation Bending) mode, and the Va (Vertical Alignment) mode, has been studied. Among them, the VA mode is particularly valued because it has a high contrast and a high manufacturing yield, 200535465, can be used as a TV device. In the VA mode, in order to achieve a wide field of view, the film must also be assembled, and the retardation film must have a Reth from 20 to 70 nm and an Rth retardation of 70 to 400 nm. In Japanese Patent Publication No. 2003-75 63 8, in addition to improving contrast, further retardation characteristics have been disclosed for the purpose of a retardation film and light diffusion. However, in recent years, the environment for using liquid crystal display devices has been involved, and The display quality also has high requirements, so that the above-mentioned groups, such as the left and right hue changes unique to the VA mode, are qualitatively inferior in the bright room, and still have imperfect performance. On the other hand, anti-reflection films are generally caused by reflections in display devices such as cathode ray tube display (CRT), plasma display devices (PDP), electroluminescent display devices), or liquid crystal display devices (LCD). Contrast reduction or image reflection to improve the image must be arranged on the outermost surface using the principles of light diffusion and optical drying. The conventional anti-reflection film has an anti-glare film that prevents the external environment from reflecting into the regular reflection of the external light by reflecting the light reflected from the surface. For example, the film of Japanese Patent Laid-Open No. 2000-33 83 1 0 adopts a method in which appropriate particles are contained in a hard coating layer to provide unevenness to diffuse external light to alleviate the glare phenomenon of the screen. -1 96 1 1 7 and the same phase-opening liquid crystal display with retardation delay 値, Lite-Kaldi also uses a combination of improved films and a variety of aspects, a black display device (: (ELD to prevent external light) Visually, the display device diffuses anti-reverse and anti-reflection to the surface. In addition, the anti-reflection film of 2003-200535465 1 6 1 8 1 6 is an anti-glare hard coating with a fine uneven surface. A low-refractive-index layer is provided on the layer, in addition to using external light diffusion on the surface, and a method of suppressing reflectance by using the principle of optical interference. In addition, in the same way as in Japanese Patent Application Laid-Open No. 2003-2 1 620 For the reflective film, a high-refractive index layer is provided under the low-refractive index layer to effectively use light interference to reduce the reflection of external light. However, such anti-glare anti-reflection films can be diffused by fine unevenness on the surface outer At the same time, it is unavoidable that the display screen becomes white (white blur), the sharpness of the image is reduced (image blur), and even dazzling phenomena such as the lens effect of the fine concave-convex structure. In view of these problems, although Attempts have been made to improve the haze, image sharpness, and fine unevenness of the anti-glare layer, but no satisfactory results have been obtained. In addition, Japanese Patent Laid-Open No. 2003-574 15 has disclosed a method Anti-reflection film with high image sharpness, no white blur or glare, and widen the viewing angle. It is a kind of anti-reflection film with very small fine unevenness on the surface, and the transparent particles with internal scattering are included in the hard coating. However, even if the anti-reflection film disclosed in Japanese Patent Application Laid-Open No. 2003-574 15 is used, a certain degree of improved efficacy can be obtained, but the effect of black display in a bright room is poor. From the viewpoint of black stability, they have not reached a satisfactory level. These antireflection films are generally used as protective films on the visible side of a polarizing plate. The other side of the polarizing plate, that is, the protective film on the side of the liquid crystal cell, has been used for the cellulose film or optical compensation film (phase retardation film) 200535465 cellulose film alone or in combination. In addition, because of the halogenated cellulose film Compared with other polymer films, it has the characteristics of high directivity (low delay) such as optics, so it is usually used for applications such as polarizing plates that require directivity such as optics. On the other hand, for liquid crystal display devices, Optical compensation films (phase retardation films) are instead required to have optical anisotropy (high-latency chirp). In this case, optical compensation films generally use a high-latency chirped synthetic polymer such as a polycarbonate film or a polyfluorene film. The European Patent Publication No. 25 873 98 has overturned the general principles so far and disclosed a cellulose acetate film with high retardation that can also be used for applications requiring optical anisotropy. In this invention patent document, in order to achieve high-latency hydration with cellulose triacetate, a compound having at least two aromatic rings is added, and among them, a compound having a 1,3,5-triazine ring is preferably added, and Apply an extension. Generally speaking, cellulose triacetate is known as a kind of polymer material that is difficult to extend. Therefore, it is difficult to increase the birefringence. However, if the additive is added with ® for orientation by extension treatment, it means that The birefringence can be increased to achieve high delay chirp. Since this film can also serve as a protective film for a polarizing plate, it has the advantage of being able to provide a liquid crystal display device that is inexpensive and thin. In recent years, in order to reduce the weight of the liquid crystal display device and reduce the manufacturing cost, it has become a necessary condition for the thin film of the liquid crystal cell. Therefore, an optical compensation sheet is required to have a higher Re delay (and a lower Rth delay). However, if the method of European Invention Patent No. 25 873 98 is individually designated by -9-200535465 as described above, there is a problem that these conditions cannot coexist. In addition, although a method of controlling Rth 値 has been disclosed in Japanese Patent Laid-Open No. 200 1-1 1 6926, it is still impossible to make both of Re 値 and Rth 値 coexist. In order to solve the above problems, a new proposal has been proposed in Japanese Patent Laid-Open No. 2001-24-24223 for an optical compensation sheet composed of a cellulose acetate film. However, the polarizing plate composed of the optical compensation sheet of Japanese Patent Laid-Open No. 2001-249223 has caused the problem that the outermost layer is easily scratched and attracts attention as described later. In other words, these optical compensation sheets are provided on one side of the polarizing film, and a transparent protective film is provided on the other side through the polarizing film. This structure is a normal structure of a polarizing plate. However, if the outermost transparent protective film is only an ordinary cellulose film without anti-reflection function, the contrast may be reduced due to the reflection of external light, or the image may be impeded by the reflection, and the scratch resistance Difficult and easy problems exist. On the other hand, in display devices such as a cathode tube display device (CRT), a liquid crystal display device (LCD), a plasma display device (PDP), and an electroluminescent display device (ELD), it is known to be on the outermost surface of the display device A method of disposing an anti-reflection film using the principle of optical interference to reduce the reflectance is provided. The above-mentioned polarizing plate with an optical compensation sheet is effective for thinning a liquid crystal cell, but it may also appear as a thin film, especially in the case where the outermost layer is composed of ordinary tritiated cellulose film without antireflection function. If • 10- 200535465 external force is applied to the outermost layer and the film is scratched, its deformation will be significant and easily noticeable. As mentioned above, there is no proposal to reveal a polarizing plate that can make both the optical compensation function and the anti-reflection function co-exist, and it is not easy to cause scratches on the surface, and reduce the weight of the liquid crystal display device. From the viewpoint of cost reduction, the objective is also urgently needed to develop a polarizer having such properties. [Summary of the Invention] [The technical problem to be solved] The first object of the present invention is to provide a widening of the viewing angle, which can hardly cause the decrease in contrast, the tone or the black and white inversion, and the hue change caused by the change of the viewing angle. Polarizing plates to improve the visibility of liquid crystal display devices and liquid crystal display devices using the same. Further, a polarizing plate capable of improving anti-reflection properties, particularly visibility in a bright room, and a liquid crystal display device using the same are provided. A second object of the present invention is to provide an anti-reflection film which can prevent the reflection of external light, has no white blur, blurry images, and glare, and further improves the black stability in bright rooms to improve liquid crystal display devices, etc. Visibility of the display device. In addition, the object of the present invention is to provide an anti-reflection film with a high visibility, which can increase the viewing angle (especially the viewing angle in the downward direction) 'and hardly cause a decrease in the contrast caused by a change in viewing angle. Or black and white inversion, and hue change, and liquid crystal display devices. -11- 200535465 A third object of the present invention is to provide a polarizing plate of a functional film composed of only a tritiated cellulose film provided with an optical compensation function, and to provide a polarizing plate that can be further provided without particularly increasing the number of structural members. The anti-reflection function, coupled with a polarizing plate that can prevent the surface from being scratched, and further provides a liquid crystal display device provided with a polarizing plate having such functions. The first object of the present invention can be achieved by using the polarizing plate of the items (1) to (9) described below, and the liquid crystal display device of the item (1 0) described below. 〈First * Method〉 (1) A polarizing plate characterized in that both sides of the polarizing film are held by an anti-reflection film and a retardation film, and the anti-reflection film is a rigid having at least one layer on a transparent support. A coating layer and an outermost low refractive index layer, the hard coating layer contains a binder and at least one light-transmitting particle having a refractive index different from that of the binder, and the surface roughness of the anti-reflection film Ra Degrees) is less than 0.10 microns; the retardation film is defined by the Re retardation defined by the mathematical formula (I) shown below as from 20 to 70 nm, and defined by the mathematical formula (II) shown below The Rth retardation 値 is from 70 to 400 nm, and the ratio of the Re retardation 値 to the Rth retardation (Re / Rth ratio) is from 0.2 to 0.4. The retardation axis of the retardation film and the transmission axis of the polarizing film The system is essentially arranged in parallel: Mathematical formula (I) Re = (nx-ny) xd Mathematical formula (II) Rth = [{(nx + ny) / 2} — nz] xd 200535465 In this mathematical formula, nx is Refractive index in the direction of the retardation axis in the film plane, ny is the refractive index in the direction of the advancement axis in the film plane, nz Is the refractive index in the thickness direction of the film, and d is the thickness of the film. (2) The polarizing plate according to item (1), in which the transmission image clarity of the anti-reflection film is more than 65%. (3) The polarizing plate according to item (1) or (2), wherein the haze of the antireflection film is 10% or more. (4) The polarizing plate according to any one of items (1) to (3), wherein the relative Φ of the scattered light distribution of the anti-reflection film measured by the goniophotometer is 30 of the light intensity at an exit angle of 0 ° ° Scattered light intensity is from 0.01% to 0.2%. (5) The polarizing plate according to any one of items (1) to (4), wherein the low refractive index layer includes hollow silicon dioxide having an average particle diameter of from 0.5 to 200 nm and a refractive index of from 1.17 to 1.40 particle. (6) The polarizing plate according to any one of items (1) to (5), wherein the hard coat layer has at least one high refractive index layer having a refractive index higher than that of the transparent support. β (?) The polarizing plate according to any one of items (1) to (6)., wherein the phase difference film is composed of a tritiated cellulose film stretched at an extension ratio from 3 to 100%. (8) The polarizing plate as described in the item (1), wherein the retardation film is composed of a linear molecular structure having at least two aromatic rings and containing at least two aromatic rings from 0.01 to 20 parts by mass relative to 100 parts by mass of tritiated cellulose. The rod-shaped compound is made of tritiated cellulose film. -13- 200535465 (9) The polarizing plate according to item (7) or (8), wherein the degree of ethylation of the tritiated cellulose is from 5 9.0 to 6 1.5%. (10) A liquid crystal display device of the VA mode, which is characterized by including two polarizing plates arranged on the liquid crystal cell and two sides thereof, and a polarizing plate as in any one of items (1) to (9) It is used as one of the two polarizing plates, and a low refractive index layer is arranged on the outermost surface layer of the display device. The second object of the present invention is the anti-reflection film according to items (i) to (16) described below, the polarizing plates of items (1 7) and (18) described below, and the following The liquid crystal display device of item (1 9) can be achieved. (11) An anti-reflection film, which is characterized by having at least one hard coating layer and a low refractive index layer on the outermost layer on a transparent support, and the haze of the hard coating layer is more than 40%. The surface roughness Ra (centerline average roughness) is 0.1 μm or less, and the average 値 of the 5 ° specular reflectance in the wavelength region from 450 nm to 650 nm relative to the average 値 of the integrated reflectance is 65. %the above. (12) The anti-reflection film according to item (1 1), wherein the average reflectance of the anti-reflection film in a wavelength region from 450 nm to 650 nm is 値 2.5% or less. (13) The anti-reflection film according to item (11) or (12), wherein the transmission image clarity of the anti-reflection film is more than 65%. (14) The anti-reflection film according to any one of (1 1) to (1 3), wherein the hard coating has a binder and at least one refractive index is different from that of the -14-200535465 binder and has internal scattering Translucent particles. (15) The anti-reflection film according to any one of items (1 1) to (1 4), wherein the hard coating layer has a light intensity with respect to an exit angle of 0 ° as measured by a scattered light distribution measured by an angle photometer The 30 ° scattered light intensity is from 0 · 0 1% to 0 · 2%. (16) The antireflection film according to any one of items (1 1) to (1 5), wherein the hard coating layer has at least one high refractive index layer having a refractive index higher than that of the transparent support. (17) A polarizing plate characterized in that both sides of the polarizing film are supported by a protective film, and the protective film on one side is an anti-reflective film according to any one of (11) to (16) . (18) The polarizing plate as described in (1 7), wherein the protective film without the antireflection film in the two protective films is an optical compensation film having an optically anisotropic layer, and the optically anisotropic layer contains The layer of the compound of the disc-shaped structural unit, the disc surface of the disc-shaped structural unit is inclined relative to the surface of the protective film, and the angle formed by the disc surface of the disc-shaped structural unit and the surface of the protective film is toward the optical anisotropic layer. The depth direction varies. (19) A liquid crystal display device characterized by using an antireflection film according to any one of (1 1) to (1 6) or a polarizing plate according to (1 7) or (1 8) in a liquid crystal The outermost surface layer of the display device. [Effect of the Invention] According to the first aspect of the present invention, a polarizing plate and a liquid crystal display device using the same can be provided. The polarizing plate can expand the viewing angle, and can be within a few -15-200535465. The visibility of the liquid crystal display device is improved under the decrease of the contrast caused by the viewing angle change, the tone or black and white inversion, and the hue change. Furthermore, it is possible to provide a polarizing plate having high anti-reflection properties, in particular, improved visibility in a bright room, and a liquid crystal display device using the same. According to the second aspect of the present invention, an anti-reflection film can be provided, which can prevent the reflection of external light, has no white blur, blurry images, and glare, and can improve the black stability in bright rooms. Visibility of display devices such as liquid crystal display devices. In addition, the anti-reflection film of the present invention can be used as a protective film for a polarizing plate. The anti-reflection film or polarizing plate of the present invention is used in a liquid crystal display device, thereby providing a high degree of visibility and an enlarged viewing angle, especially a downward viewing angle, which hardly occurs due to Liquid crystal display device with reduced contrast, gradation or black-and-white inversion, and hue changes caused by changes in viewing angle. [Best Mode for Carrying Out the Invention] An embodiment of the anti-reflection film polarizing plate of the first and second aspects of the present invention will be described below with reference to the drawings. Figures 1 to 3 are schematic cross-sectional views showing examples of the structure of an antireflection film used in the polarizing plates of the first and second modes of the present invention. The antireflection film 10 of the present invention is a transparent support 1 and a hard coat layer 2A containing light-transmitting particles 4A capable of imparting internal scattering properties, as shown in FIG. 1, and a low refractive index is laminated on the outermost layer. Made up of layer 3. The method of each layer or the layer structure of the thin film can be appropriately changed. For example, as shown in the anti-reflection film 20 in FIG. 2, other types of light-transmitting particles 4B may be contained in the hard coating layer 2B. The anti-reflection film 30 shown in FIG. 3 is provided with a middle refractive index layer 5 and a high refractive index layer 6 on the hard coating layer 2 A to improve the anti-reflection property by light interference, and a low refractive index is arranged on the outermost layer. Layer 3. Next, Fig. 4 is a schematic cross-sectional view showing an example of the structure of a polarizing plate of the first and second aspects of the present invention. The polarizing plate 60 of the present invention is a protective film for holding the polarizing film 40. An antireflection film 10, 20, or 30 is used on one side, and a phase difference film 50 is used on the other side. Then, the layers used to constitute the polarizing plate of the present invention are described in detail as follows. In addition, the term "from (number A) to (number B)" used in the specification of this application means "from (number A) to (number B) and below j 0 (phase difference film). Re delay 値 and Rth delay 値 can be respectively defined by the following mathematical formulas (I) and (II). The measurement wavelength is 5 50 nm. Mathematical formula (I) Re = (nx— ny) xd Mathematical formula (II) Rth = [{(nx + ny) / 2} — nz] xd In the mathematical formulae (I) and (II), the direction of the retardation axis in the plane of the nx film (the direction where the refractive index will become the largest) The refractive index of ny is the refractive index in the direction of the advancing axis (the direction where the refractive index will become the smallest) in the plane of the film. In mathematical formula (II), the nz is the refractive index in the thickness direction of the film. In mathematical formula (I ) And (II), d is the thickness of the film in nanometers. In the present invention, the Re retardation 値 of the retardation film is adjusted from 20 to 70 nm, and the Rth retardation 値 is adjusted from 70 to 400 nanometers. In addition, 200535465, in the present invention, the Re / Rth ratio is adjusted from 0.2 to 0.4. It is preferable to adjust the Re delay 値 to from 40 to 70 nanometers. The Rth retardation 値 is adjusted from 90 to 200 nm, and the Re / Rth ratio is adjusted from 0.3 to 0.4. These adjustments can be performed by the type, addition amount, and extension ratio of the rod-like compound having an aromatic ring. In addition, The birefringence (nx — ny) of the retardation film is preferably from 0.0002 to 0.0009, more preferably from 0.00025 to 0.0009, and most preferably from 0.0003 to 0.0009. In addition, the birefringence of the retardation film in the thickness direction [{(Nx + ny) / 2} — nz], preferably from 0 · 0 0 0 6 to 0 · 00 5, more preferably from 0.0008 to 0.005, and most preferably from 0.0012 to 0.005. Phase difference film Transparent polymer films have always been used. Examples of resin films and polymers include norbornene resins, cellulose esters (such as cellulose triacetate, cellulose diacetate, cellulose acetate butyrate), polyester (Such as polyethylene terephthalate, polycarbonate), polyether fluorene, polyolefin (such as polypentyl pentene, polyfluorinated ester), polyurethane, polyether, polyether, polyether Ketones, polyacrylonitrile, and polymethacrylonitrile. Commercially available norbornene resins can also be used (Arton, manufactured by JSR Corporation); Zeonex, Zeonoa, manufactured by Zeon Corporation (Japan). Among them, it is preferable to use an ordinary cellulose film as a protective film for a polarizing plate. In order to increase the thickness of the liquid crystal display device, it is preferable to use a cellulose acetate film having one of the functions of a retardation film and the function of a transparent protective film (protection function of a polarizing film). [Thickened cellulose film] The raw material cotton used for the hardened cellulose of the present invention may use a traditional raw material (200535465, see, for example, the present invention association published technical method 200 ^: 1745). Alternatively, conventional methods can be used for the synthesis of tritiated cellulose (see, for example, "Wood Chemistry" by Youtian et al., Pp. 180-190 (Kyoritsu Publishing, 1968)). The viscosity average polymerization degree of the tritiated cellulose is preferably 200 to 700 ', more preferably 250 to 500, and most preferably 250 to 350. In addition, the cellulose ester used in the present invention preferably has a narrow molecular weight distribution by Mw / Mn (Mw is mass average molecular weight, Mη is number average molecular weight) by gel permeation chromatography. The specific Mw / Mn ratio is preferably from 1.5 to 5.0, more preferably from 2.0 to 4.5, and most preferably from 3.0 to 4.0. · Although the fluorenyl group of the tritiated cellulose film is not particularly limited, it is preferred to use ethenyl and propionyl, and particularly preferred is to use ethynyl. The substitution degree of the whole base is preferably from 2.7 to 3.0, and more preferably from 2.8 to 2.95. In this manual, "substitution degree of hydrazone" means hydrazone calculated according to ASTM D817. The fluorenyl group is most preferably acetyl, and if cellulose acetate having fluorenyl group is used, the "acetylation degree" is preferably from 59.0 to 62.5%, and more preferably from 5 9.0 to 6 1 . 5%. If the degree of acetylation is within this range, it will not cause the Re to be larger than what I want due to the transport delay of the flow delay, the unevenness in the surface is also small, and it is caused by temperature and humidity. Delayed changes are also small. The degree of substitution of the 6-position fluorenyl group is preferably 0.9 or more from the viewpoint of suppressing the non-uniformity of Re and Rth. [Delay control agent] In the present invention, in order to adjust the delay, it is preferable to use a rod-shaped compound having at least two aromatic -19-200535465 rings as a delay control agent. This rod-shaped compound, Father Jiawei, has a linear molecular structure. The "linear molecular structure" means that the molecular structure of the rod-shaped compound is linear among the most thermodynamically stable structures. The most thermodynamically stable structural system can be obtained from crystal structure analysis or molecular orbital calculation. For example, using molecular orbital calculation software (such as WinMOPAC 2000, manufactured by Fujitsu Co., Ltd.) to calculate molecular orbital calculations' can obtain the structure of the molecule where the heat of formation of the compound becomes the smallest. The so-called "molecular structure is linear" means that among the most thermodynamically stable structures obtained by calculation as described above, the angle formed by the main chain in the molecular structure is 140 degrees or more. The rod-shaped compound having at least two aromatic rings is preferably a compound represented by the following general formula (1). General formula (1): Ari-Li— Ar〗 In the general formula (1) shown above, An and Ar2 each independently represent a substituted or unsubstituted aromatic group having a carbon number of 6 to 30. (Such as phenyl, naphthyl, anthracenyl), or an aromatic heterocyclic group having 2 to 30 carbon atoms. The aromatic heterocyclic ring is preferably a 5-membered ring, a 6-membered ring or a 7-membered ring, and more preferably a 5-membered ring or a 6-membered ring. The hetero atom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, and more preferably a nitrogen atom or a sulfur atom. Specific examples of the aromatic heterocyclic ring include: furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furacyl ring, thiazole ring, piperan Ring, pyridine ring, dapin ring, pyrimidine ring, pyridine ring, and 3,5-triazine ring.
An及Ah所具有之芳香族環較佳爲苯環、呋喃環、噻吩 200535465 環、吡咯環、噁唑環、噻唑環、咪唑環、三氮唑環、吡啶 環、喻η定環及Π比哄環’特佳爲苯環。A1·!及A r 2較佳爲芳基 〇 芳基及芳香族雜環基的取代基之具體實例係包括:鹵素 原子(F、Cl、Br、I)、羥基、羧基、氰基、胺基、烷氨 基(係碳原子數爲從1至20之烷胺基,例如甲胺基、乙胺 基、丁胺基、二甲胺基)、硝基、颯基、胺甲醯基、烷基 甲醯基(係碳原子數爲從1至20之烷基甲醯基,例如N — 甲基胺甲醯基、N—乙基胺甲醯基、n,N—二甲基胺甲醯基 、胺磺醯基、烷基胺磺醯基(係碳原子數爲從1至2〇之胺 磺醯基,例如N -甲基胺磺醯基、N -乙基胺磺醯基、N,N -二甲基胺磺醯基),脲基,烷脲基(係碳原子數爲從1 至20之脲基,例如N—甲基脲基、N,N—二甲基脲基、N, Ν,Ν’ —三甲基脲基),烷基(係碳原子數爲從丨至20之 直鏈、分枝或環狀之烷基,例如甲基、乙基、丙基、丁基 、戊基、庚基、晬基、癸基、十二基、異丙基、二級-丁基 、三級-戊基、環己基、環戊基),烯基(係碳原子數爲從 2至20之直鏈、分枝或環狀之烯基,例如伸乙基、烯丙基 、2_ 丁烯基、己烯基),炔基(例如碳原子數爲從2至 2 0之炔基,如乙炔基、2 - 丁炔一 1 —基、丙炔基),芳基 (係碳原子數爲從6至20之芳基,例如苯基、2一萘基) ,醯基(係碳原子數爲從1至20之醯基,例如甲醯基、乙 醯基、丁醯基、己醯基、十二醯基,醯氧基(係碳原子數 爲從1至20之醯氧基,例如乙醯氧基、丁醯氧基、己醯氧 -21- 200535465 基、十一醯氧基,院氧基(係碳原子數爲從1至20之院氧 基’例如甲氧基、乙氧基、丙氧基、異丙氧基、丁氧基、2 一丁氧基、戊氧基、庚氧基、啐氧基、環己氧基),芳氧 基(係碳原子數爲從6至20之芳氧基,例如苯氧基、1 一 萘氧基)’烷氧基羰基(係碳原子數爲從2至20之烷氧基 羰基,例如甲氧基羰基、乙氧基羰基、丙氧基羰基、丁氧 基羰基、戊氧基羰基、庚氧基羰基),芳氧基羰基(係碳 原卞數爲從7至20之方氧基鑛基,例如苯氧基鑛基,院氧 基羰胺基(係碳原子數爲從2至20之烷氧基羰胺基,例如 甲氧基羰胺基、丁氧基羰胺基、己氧基羰胺基、環己基羰 胺基),烷硫基、(係碳原子數爲從1至20之烷硫基,例 如甲硫基、乙硫基、丙硫基、丁硫基、戊硫基、庚硫基、 晬硫基、十二硫基、十四硫基),芳硫基(係碳原子數爲 從6至20之芳硫基,例如苯硫基),烷基磺醯基(係碳原 子數爲從1至20之烷基磺醯基,例如甲基磺醯基、乙基磺 醯基、丙基磺醯基、丁基磺醯基、戊基磺醯基、庚基磺醯 基、晬基磺醯基),醯胺基(係碳原子數爲從1至20之醯 胺基,例如乙醯胺基、丁醯胺基、己醯胺基、月桂醯胺基 、苯醯胺基、環己烷羰胺基)、及非芳香族複素環基(係 碳原子數爲從2至20之非芳香族複合環基,例如4 -嗎啉 基、1—哌啶基、2-四氫呋喃基)。 芳基及芳香族雜環基之取代基較佳爲鹵素原子、氰基、 羧基、羥基、胺基、烷胺基、醯基、醯氧基、醯胺基、烷 氧基锻基、院氧基、院硫基及院基。 200535465 烷胺基、烷氧基羰基、烷氧基及烷硫基之烷基部份及烷 基係又可含有取代基。烷基部份及烷基的取代基之具體實 例係包括·鹵素原子、經基、殘基、氰基、胺基、院胺基 、硝基、磺基、胺甲醯基、烷基胺甲醯基、胺磺醯基、烷 基fecfe醯基、脲基、院基脲基、烯基、炔基、醯基、醯氧 基、烷氧基、芳氧基、烷氧基羰基、芳氧基羰基、烷氧基 羰醯胺基、烷硫基、芳硫基、烷基磺醯基、醯胺基、及非 芳香族複合環基,該等之較佳的碳原子數及具體實例係與 上述作爲芳基及芳香族雜環基之取代基所列舉者相同。烷 基部份及烷基之取代基較佳爲鹵素原子、羥基、胺基、烷 胺基、醯基、醯氧基、醯胺基、烷氧基羰基、及烷氧基。 在通式(1 )中,Li爲選自由伸烷基、伸烯基、伸炔基 、伸芳基、一 Ο-、一 CO —及此等之組合所構成之族群中 之基的二價連結基。 伸烷基可具有環狀結構。環狀伸烷基較佳爲伸環己基, 特佳爲1,4 -伸環己基。鏈狀伸烷基,具有直鏈狀伸烷基 優於分枝之伸烷基,較佳爲直鏈狀伸烷基。 伸烷基之碳原子數較佳爲從1至20,更佳爲從1至1 5, 進一步更佳爲從1至10,更佳爲從1至8,且最佳爲從1 至6 〇 伸烯基及伸炔基,具有鏈狀結構優於環狀結構者’且具 有直鏈狀結構優於具有分枝之鏈狀結構者。 伸烯基及伸炔基之碳原子數較佳爲從2至1 0 ’更佳爲從 2至8,進一步更佳爲從2至6,更佳爲從2至4’且最佳 -23- 200535465 爲2(伸乙基或伸乙炔基)。 伸芳基較佳爲碳原子數爲從6至20,更佳爲從6至i 6, 且進一步更佳爲6至12。 茲列出經由組合所構成之二價連結基之具體實例如下。 L -1 · 一 〇 — C Ο —伸院基—CO — Ο — L-2· — C Ο 一 Ο —伸院基—Ο — CO - L - 3 · — 〇 — C Ο —伸儲基 一 CO — Ο — L - 4 · — C Ο 一 Ο 一 伸嫌基—Ο — C Ο — L-5 : — 〇一 c〇— 伸炔基—CO - Ο— Φ L-6: — C Ο — Ο —伸快基—〇 — CO — L-7: — 0 — C Ο —伸芳基—CO — Ο — L-8 : — CO—O —伸芳基—0— CO — L-9: _ 〇 — C0 —伸芳基—C0 — 0 — L-10 : 一 c〇— 0 —伸芳基—0 - C0 — 在通式(1 )之分子結構中,隔著Μ由An與Ar2所形 成之角度較佳爲1 40度以上。棒狀化合物更佳爲以如下所 示之通式(2)所代表之化合物。 ® 通式(2) · Ari— L〗一 X— L3 - Ar2 在如上所不通式(2)中,Αι*ι及係代表與通式(1) 之Art及Ar2相同定義之基。 在通式(2 )中,L2及L3係分別獨立地代表伸院基、-〇 -、一 C0 -、及選自由此等之組合所構成之族群中之基 的二價連結基。 伸烷基,具有鏈狀結構優於具有環狀結構者,且具有直 -24- 200535465 鏈狀結構更優於具有分枝的鏈狀結構者。 伸烷基之碳原子數較佳爲從1至10,更佳爲從1至8, 進一步更佳爲從1至6’特佳爲從1至4’且最佳爲1或2 (亞甲基或伸乙基)° 1^2及 l3 特佳爲一 0 一 c0 —或—co—0一。 在通式(2)中’ X係丨,4一伸環己基、伸乙基或伸乙快 基。 茲列出以通式(1 )和(2 )所代表之化合物之具體實例 如下。 ⑺ βγ"^^-ο·8-^^-8_ο^^^-βγ sα —οτοώ^γ^ο,ο.» (4) 3<3)7 ceH^o^co-^y^o-o-ceH (2)5caO^Oco^y^o^o^CTH 0-000-^-8-00 -25 200535465 0) ο5ΦΟ-8Φ8-ΟΦΙ ⑼ ο ⑻ .^ότο-^,^ι^οότ^The aromatic rings possessed by An and Ah are preferably benzene ring, furan ring, thiophene 200535465 ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, η fixed ring and Π ratio Coaxing ring 'is especially good for benzene ring. A1 ·! And A r 2 are preferably aryl, aryl and aromatic heterocyclic substituents. Specific examples include: halogen atom (F, Cl, Br, I), hydroxyl, carboxyl, cyano, amine. Group, alkylamino (an alkylamino group having 1 to 20 carbon atoms, such as methylamino, ethylamino, butylamino, dimethylamino), nitro, fluorenyl, carbamoyl, alkyl Methyl formamyl (an alkyl formamyl group having 1 to 20 carbon atoms, such as N-methylamine formamyl, N-ethylamine formamyl, n, N-dimethylamine formamidine Sulfamoyl, sulfamoyl, alkylaminosulfonyl (based on sulfamoyl groups having 1 to 20 carbon atoms, such as N-methylaminosulfonyl, N-ethylaminesulfonyl, N , N-dimethylaminosulfonyl), ureido, alkylureido (based on ureido having 1 to 20 carbon atoms, such as N-methylureido, N, N-dimethylureido, N, Ν, Ν '-trimethylureido), alkyl (a linear, branched or cyclic alkyl group having a carbon number from 丨 to 20, such as methyl, ethyl, propyl, butane Base, pentyl, heptyl, fluorenyl, decyl, dodecyl, isopropyl, secondary-butyl, Higher-pentyl, cyclohexyl, cyclopentyl), alkenyl (systems of straight, branched or cyclic alkenyl having 2 to 20 carbon atoms, such as ethyl, allyl, 2-butene Group, hexenyl), alkynyl (for example, alkynyl having 2 to 20 carbon atoms, such as ethynyl, 2-butynyl-1-yl, propynyl), aryl (system carbon number is Aryl groups from 6 to 20, such as phenyl, 2-naphthyl, and fluorenyl (based on fluorenyl groups having 1 to 20 carbon atoms, such as methyl, ethyl, fluorenyl, butanyl, hexyl, hexadecyl Difluorenyl, fluorenyloxy (based on fluorenyloxy having 1 to 20 carbon atoms, such as ethenyloxy, butylfluorenyl, hexamethyleneoxy-21-200535465, undecyloxy, oxo (Cyclooxy groups having 1 to 20 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-butoxy, pentyloxy, heptyloxy Group, fluorenyloxy group, cyclohexyloxy group), aryloxy group (an aryloxy group having 6 to 20 carbon atoms, such as phenoxy group, 1-naphthyloxy group) 'alkoxycarbonyl group (a carbon atom Alkoxycarbonyl groups from 2 to 20, such as methoxycarbonyl , Ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, heptyloxycarbonyl), aryloxycarbonyl (a carbonoxy group with a carbon atom number of 7 to 20, for example Phenoxy group, alkoxycarbonyl group (system alkoxycarbonyl group with 2 to 20 carbon atoms, such as methoxycarbonylamino, butoxycarbonylamino, hexyloxycarbonyl Alkyl, cyclohexylcarbonylamino), alkylthio, (alkylthio having 1 to 20 carbon atoms, such as methylthio, ethylthio, propylthio, butylthio, pentylthio, heptyl Thio, sulfanyl, dodecylthio, tetradecylthio), arylthio (based on arylthio with 6 to 20 carbon atoms, such as phenylthio), alkylsulfonyl (based on carbon Alkylsulfonyl groups from 1 to 20, such as methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, pentylsulfonyl, heptylsulfonyl , Fluorenylsulfonyl), fluorenylamino (based on fluorenylamines having 1 to 20 carbon atoms, such as acetaminophen, butylamino, hexamidine, laurylamino, phenylamino) Group, cyclohexanecarbonylamino group), and non-aromatic Isocyclic group (Department of carbon atoms from non-aromatic complex ring group of from 2 to 20, e.g. 4 - morpholinyl, 1-piperidinyl, 2-tetrahydrofuranyl). The substituents of the aryl group and the aromatic heterocyclic group are preferably a halogen atom, a cyano group, a carboxyl group, a hydroxyl group, an amine group, an alkylamino group, a fluorenyl group, a fluorenyl group, a fluorenylamino group, an alkoxycarbyl group, and a oxo group. Base, institute sulfur base and college base. 200535465 Alkylamino, alkoxycarbonyl, alkoxy and alkylthio groups and alkyl groups may contain substituents. Specific examples of the alkyl moiety and the substituent of the alkyl group include a halogen atom, a warp group, a residue, a cyano group, an amine group, an amino group, a nitro group, a sulfo group, a carbamoyl group, and an alkylamine group. Fluorenyl, sulfamoyl, alkyl fecfefluorenyl, ureido, ureido, alkenyl, alkynyl, fluorenyl, fluorenyl, alkoxy, aryloxy, alkoxycarbonyl, aryloxy Carbonyl group, alkoxycarbonylamido group, alkylthio group, arylthio group, alkylsulfonyl group, fluorenylamino group, and non-aromatic composite ring group. The preferred number of carbon atoms and specific examples are It is the same as those mentioned above as a substituent of an aryl group and an aromatic heterocyclic group. The substituent of the alkyl moiety and the alkyl group is preferably a halogen atom, a hydroxyl group, an amine group, an alkylamino group, a fluorenyl group, a fluorenyloxy group, a fluorenylamino group, an alkoxycarbonyl group, and an alkoxy group. In the general formula (1), Li is a divalent group selected from the group consisting of an alkylene group, an alkenyl group, an alkynyl group, an arylene group, a 10-, a CO — and a combination thereof Linker. The alkylene group may have a cyclic structure. The cyclic alkylene group is preferably a cyclohexyl group, and particularly preferably 1,4-cyclohexyl. A linear alkylene group having a linear alkylene group is preferred to a branched alkylene group, and a linear alkylene group is preferred. The number of carbon atoms of the alkylene group is preferably from 1 to 20, more preferably from 1 to 15 and even more preferably from 1 to 10, even more preferably from 1 to 8, and most preferably from 1 to 6. An alkenyl group and an alkynyl group have a linear structure better than a cyclic structure, and a linear structure is better than a branched chain structure. The number of carbon atoms of the alkenyl group and the alkenyl group is preferably from 2 to 10 ', more preferably from 2 to 8, still more preferably from 2 to 6, more preferably from 2 to 4', and most preferably -23. -200535465 is 2 (ethynyl or ethynyl). The arylene is preferably from 6 to 20 carbon atoms, more preferably from 6 to i 6, and even more preferably from 6 to 12. Specific examples of the bivalent linking group formed by the combination are listed below. L -1 · One 〇— C 〇 — Shenyuanji — CO — 〇 — L-2 · — C Ο 1〇 — Shenyuan — 0 — CO-L-3 · — 〇— C Ο — Shenji CO — Ο — L-4 · — C Ο 〇 〇 〇 OH-〇 — C Ο — L-5 : — 〇 一 c〇— alkynyl —CO-〇— Φ L-6: — C Ο — Ο —Dendronyl — 0 — CO — L-7: — 0 — C Ο — Daryl — CO — Ο — L-8: — CO — O — Daryl — 0 — CO — L-9: _ 〇 — C0 —Extended aryl —C0 — 0 — L-10: —c0 — 0 —Extended aryl —0-C0 — In the molecular structure of general formula (1), it is formed by An and Ar2 through M The angle is preferably 140 degrees or more. The rod-shaped compound is more preferably a compound represented by the general formula (2) shown below. ® General formula (2) · Ari— L〗 -X— L3-Ar2 In the general formula (2) as described above, Ai * ι and represents the same definition as Art and Ar2 of general formula (1). In the general formula (2), L2 and L3 each independently represent a divalent linking group of Shinnenki, -0-, -C0-, and a group selected from the group consisting of combinations thereof. The alkyl group has a chain structure better than a cyclic structure, and a straight -24- 200535465 chain structure is better than a branched chain structure. The number of carbon atoms of the alkylene group is preferably from 1 to 10, more preferably from 1 to 8, even more preferably from 1 to 6 ', particularly preferably from 1 to 4', and most preferably 1 or 2 (methylene Radical or ethyl) ° 1 ^ 2 and l3 are particularly preferably 0 0 c0 —or —co—0 1. In the general formula (2), 'X system', 4 is cyclohexyl, ethylene or ethylene. Specific examples of the compounds represented by the general formulae (1) and (2) are listed below. ⑺ βγ " ^^-ο · 8-^^-8_ο ^^-βγ sα —οτοώ ^ γ ^ ο, ο. »(4) 3 < 3) 7 ceH ^ o ^ co- ^ y ^ oo-ceH (2) 5caO ^ Oco ^ y ^ o ^ o ^ CTH 0-000-^-8-00 -25 200535465 0) ο5ΦΟ-8Φ8-ΟΦΙ ⑼ ο ⑻. ^ Ότο-^, ^ ι ^ οότ ^
ο 如CH"^~^""οοο"^^9°ο"^^"⑶OH 4) (1 HoHor-^^-0.8-^y-8lo-^^-ok 3) oο Such as CH " ^ ~ ^ " " οοο " ^^ 9 ° ο " ^^ " ⑶OH 4) (1 HoHor-^^-0.8- ^ y-8lo-^^-ok 3) o
-26- 200535465 8)o SSOOCH,-^^-οι8-^^-8ιο~^^-5-ο·8ιδ 19) ^olscolodHCH-^^-odo-^^-s-o-^^-CHlCH-OISIS-olc? C^2Hs Ο CO ch2 ch2 CO Io ch2 CH,-26- 200535465 8) o SSOOCH,-^^-οι8-^^-8ιο ~ ^^-5-ο · 8ιδ 19) ^ olscolodHCH-^^-odo-^^-so-^^-CHlCH-OISIS- olc? C ^ 2Hs Ο CO ch2 ch2 CO Io ch2 CH,
(21) OH (22) ch2 CH -OH(21) OH (22) ch2 CH -OH
CH I O 2CH I O 2
o CO ο CO CO$ Φύ o ch2 CHa CO CH^ CHa9° O C2H5o CO ο CO CO $ Φύ o ch2 CHa CO CH ^ CHa9 ° O C2H5
ch2 CH -OH CHa OH -27 200535465ch2 CH -OH CHa OH -27 200535465
• · Λ πιοώ-^^-018810-^^-8-0 -仏 β) {2 cilo-s-^^-ols-^^-slo-^^s-o-COH I slodo (24 ΟΗΗ2Η20-0-00Φ8·ΟΦΟ-Β α) -28 200535465 Γ8-ο-ο-8φ8-οφ81Ηr-Qrf^%^_^Q^ e) 1 1 9) (2 1 1 53Φ8-0Φ0-8Φ53 (30 (3 2) (3 Ho 4 9• · Λ πιοώ-^^-018810-^^-8-0-仏 β) {2 cilo-s-^^-ols-^^-slo-^^ so-COH I slodo (24 ΟΗΗ2Η20-0-00Φ8 ΟΦΟ-Β α) -28 200535465 Γ8-ο-ο-8φ8-οφ81Ηr-Qrf ^% ^ _ ^ Q ^ e) 1 1 9) (2 1 1 53Φ8-0Φ0-8Φ53 (30 (3 2) (3 Ho 4 9
HoHo
II
Ho 9 4h 5-^~^-o-8lcmcdolo-^^^~CH,(35) ^~^~ol8lcmccolo""^~^ 6) c?-^^-odolcmcdo-o-^^c? 7) -29- 200535465 8) (3 Ho 4Ho 9 4h 5- ^ ~ ^ -o-8lcmcdolo-^^^ ~ CH, (35) ^ ~ ^ ~ ol8lcmccolo " " ^ ~ ^ 6) c?-^^-odolcmcdo-o-^^ c? 7 ) -29- 200535465 8) (3 Ho 4
OaoICmcISIOwOaoICmcISIOw
η9 C4Hη9 C4H
sHo~c~^"ococmccoo"^~^~odHsHo ~ c ~ ^ " ococmccoo " ^ ~ ^ ~ odH
II
Cyloco~^~^~odolcmcl8io~^~^"8lo""c? ι ^ο"οώ^©·οοο"Ό^ (41 (42) β ΤΗ, Ηβ -30- 200535465 u 3 1 mp _ 1 C?IO~^"^~0COCHCHCOIO~^""^-0-C? %/ 3 H7 1 ocochchcoio-^~v"c71 蹦— i oco-^^-ocochchco-o-^^-§0o7 1 -31 - 200535465 ㈣ (AT) 〇Cyloco ~ ^ ~ ^ ~ odolcmcl8io ~ ^ ~ ^ " 8lo " " c? Ι ^ ο " οώ ^ © · οοο " Ό ^ (41 (42) β ΤΗ, Ηβ -30- 200535465 u 3 1 mp _ 1 C? IO ~ ^ " ^ ~ 0COCHCHCOIO ~ ^ " " ^-0-C?% / 3 H7 1 ocochchcoio- ^ ~ v " c71 Jump — i oco-^^-ocochchco-o-^^-§ 0o7 1 -31-200535465 ㈣ (AT) 〇
CH30 CN Χ4\%0 —CO CN mCH30 CN Χ4 \% 0 —CO CN m
O (4β)O (4β)
nC«H130 乂)-ί-O CN nC6H170-^^- CN (50) (S1) nC«H,3〇 〇ch3 °°办3" (52)nC «H130 乂) -ί-O CN nC6H170-^^-CN (50) (S1) nC« H, 3〇 〇ch3 °° Office 3 " (52)
(53) 〇 (54) 〇 ftC7Hl5^^^〇C-^^CO-^^-C7H16 (55) nC4l (56)(53) 〇 (54) 〇 ftC7Hl5 ^^^ 〇C-^^ CO-^^-C7H16 (55) nC4l (56)
(57) 〇 〇 CH3(CH2>3^CH20OCCO〇CH2CH(CH2)3CH3 C2H5 C2H5 (58) CH3OC-^^-OC CO-^^-COCHa -32- 200535465 (59) 〇 nC4HeOC "^^3" °°4^ m O p S m S 八 i? CH^CHJaCHCHzO-C OC C〇 "^3" COCHaCHiCHaXjC^ C2Hs 一 一 CaH» («1) ftC4H9(57) 〇〇CH3 (CH2 > 3 ^ CH20OCCO〇CH2CH (CH2) 3CH3 C2H5 C2H5 (58) CH3OC-^^-OC CO-^^-COCHa -32- 200535465 (59) 〇nC4HeOC " ^^ 3 " °° 4 ^ m O p S m S ii? CH ^ CHJaCHCHzO-C OC C〇 " ^ 3 " COCHaCHiCHaXjC ^ C2Hs One-to-One CaH »(« 1) ftC4H9
O I! OCO I! OC
s°-〇-c^n o m ch3o -o- iXX7 ?^-〇- och3 (63)s ° -〇-c ^ n o m ch3o -o- iXX7? ^-〇- och3 (63)
CaHaO <y^<y<y^-<y OCaHsCaHaO < y ^ < y < y ^-< y OCaHs
-33- 200535465 (64) (65)-33- 200535465 (64) (65)
CHaCHa
&&
(67)(67)
OCHs -34- 200535465 具體實例之第(1 )〜(3 4 ) 、 ( 41 )和(4 2 )例係在環 己烷環之1位次與4位次具有兩個不對稱碳原子。但是由 於具體實例之第(1 ) 、( 4 )〜(3 4 ) 、( 4 1 ) 、( 42 )例 係具有對稱的內消旋型之分子結構,因此並無光學異構物 (光學活性),只有幾何異構物(反式和順式)存在。如 上所述,棒狀化合物較佳爲具有線性分子結構。因此,反 式是優於順式。 若化合物具有光學異構物時,關於光學異構物,則難以 區別優劣,可爲D、L或外消旋體中任一者。 在具體實例之第(43 )至(45 )例中,在中心之伸乙基 鍵則具有反式型與順式型。基於與上述相同之理由,反式 型是優於順式型。 延遲上升劑之分子量較佳爲從300至800。 也可倂用兩種以上之在溶液之紫外線吸收光譜中最大吸 收波長(λ m ax )係比2 5 0奈米爲短波長之棒狀化合物。 「棒狀化合物」可參照文獻所揭述之方法來合成。文獻 係包括:Mol. Cryst. Liq. Cryst.第 53 冊、第 229 頁(1979 年),同第89冊、第93頁(1982年),同第145冊、第 111 頁(1987 年),同第 170 冊、第 43 頁(1989 年),J. Am. Chem. Soc.第 1 13 冊、第 1,349 頁(1991 年),同第 118冊、第5,346頁(1996年),同第92冊、第1,582頁 (1 970 年),J. Org· Chem.第 40 冊、第 420 頁(1 975 年 ),Tetrahedron 第 48 冊、第 16 期,第 3,43 7 頁(1 992 年 200535465 用作爲延遲控制劑的芳香族化合物之添加量係使用相對 於1 〇 0質量份之醯化纖維素爲從〇 · 〇 1至2 0質量份之範圍 。芳香族化合物係使用相對於1 〇0質量份之酿化纖維素爲 從0.05至15質量份之範圍,且更佳爲從0.1至10質量份 之範圍。也可倂用兩種以上之化合物。 〔醯化纖維素薄膜之製造〕 本發明之醯化纖維素薄膜’較佳爲以溶劑流延法製造。 在溶劑流延法,薄膜係使用將醯化纖維素溶解於有機溶劑 之溶液(塗佈液:dope )來製造。 φ 有機溶劑較佳的是含有選自碳原子數爲從3至1 2之醚、 碳原子數爲從3至12之酮、碳原子數爲從3至12之酯、 及碳原子數爲從1至6之鹵化碳氫化合物溶劑所構成之族 群中之溶劑。 醚、酮及酯也可具有環狀結構。具有醚、酮及酯之官能 基(亦即,一 0—、— CO-及一 C00 —)中之任何兩種以 上之化合物也可用作爲有機溶劑。有機溶劑也可具有例如 醇性羥基之其他官能基。若爲具有兩種以上官能基之有機 鲁 溶劑時,較佳爲其碳原子數是在具有上述較佳的碳原子數 範圍內之任一官能基的溶劑。 碳原子數爲從3至12之醚類之實例係包括:二異丙基醚 、二甲氧基甲烷、二甲氧基乙烷、1,4 —二噁烷、1,3 —二 噁戊烷、四氫呋喃、甲氧苯、及苯基乙基醚。 碳原子數爲從3至1 2之酮類之實例係包括:丙酮,甲基 乙基酮、二乙基酮、二異丁基酮、環己酮、及甲基環己酮 -36- 200535465 碳原子數爲從3至1 2之酯類之實例係包括:甲酸乙酯、 甲酸丙酯、甲酸戊酯、醋酸甲酯、醋酸乙酯、及醋酸戊酯 〇 具有兩種以上之官能基的有機溶劑之實例係包括:醋酸 2 —乙氧基乙酯、2—甲氧基乙醇、及2— 丁氧基乙醇。 鹵化碳氫化合物之碳原子數較佳爲1或2,且最佳爲1。 鹵化碳氫化合物之鹵素較佳爲氯。鹵化碳氫化合物之氫原 子爲鹵素所取代之比率較佳爲從25至75莫耳%,更佳爲 φ 從30至70莫耳%,進一步更佳爲從35至65莫耳%,且最 佳爲從40至60莫耳%。二氯甲烷是代表性的鹵化碳氫化 合物。 也可混合倂用兩種以上之有機溶劑。 以一般的方法,即可調製醯化纖維素溶液。所謂「一般 的方法」係意謂在0 °C以上之溫度(常溫或高溫)進行處 理。溶液之調製係可使用通常之溶劑流延法的塗佈液之調 製方法及裝置。另外,若使用一般的方法時,有機溶劑則 鲁 較佳爲使用鹵化碳氫化合物(尤其是二氯甲烷)。 醯化纖維素之數量係應加以調整成在所製得之溶液中含 有從10至40質量%。醯化纖維素之數量更佳爲從1〇至30 質量%。在有機溶劑(主溶劑)中也可添加後述之任何添 加劑。 溶液係可藉由在常溫(0至4(TC )下將醯化纖維素與有 機溶劑加以攪拌之方法來調製。高濃度之溶液係可在加壓 -37- 200535465 及加熱條件下攪拌。具體而言,將醯化纖維素與有機溶劑 放入加壓容器並加以密閉,然後在加壓下加熱至溶劑在常 溫時之沸點以上,且溶劑不致於沸騰的範圍內之溫度,同 時加以攪拌。加熱溫度通常爲在40 °C以上,較佳爲從60 至200°C,且更佳爲從80至110°C。 各成份也可預先加以粗混合後再裝入容器。而且,也可 以逐步地裝入。容器必須具有能加以攪拌之結構。可注入 氮氣等之惰性氣體以加壓容器。另外,也可利用由於加熱 所引起之溶劑蒸氣壓力的上升,或是經密閉容器後,在壓 力下添加各成份。 加熱時,宜從容器之外部加熱。例如,可使用夾套型之 加熱裝置。此外,也可採取在容器外部設置板式加熱器, 並加以配管以使液體進行循環來加熱整個容器之方式。 較佳爲在容器內部設置攪拌翼,並使用其來攪拌。攪拌 翼較佳爲具有可到達接近容器壁附近之長度者。在攪拌翼 之末端較佳爲設置刮壁翼以更新容器壁之液膜。 在容器內可設置壓力計、溫度計等之儀表類。在容器內 使各成份溶解於溶劑中。經調製所製得之塗佈液係經冷卻 後從容器取出’或先取出後,再使用熱交換器等來使其冷 卻。 也可藉由冷卻溶解法來調製溶液。冷卻溶解法可使醯化 纖維素溶解於以根據通常溶解方法是不易溶解的有機溶劑 中。而且’即使爲屬於根據通常溶解方法也能溶解醯化纖 維素之溶劑’若採取冷卻溶解法時,則具有可迅速地製得 -38- 200535465 均勻溶液之功效。 冷卻溶解法係初期在室溫、在有機溶劑中邊攪拌邊緩慢 地添加醯化纖維素。 醯化纖維素之數量,較佳爲加以調整成在混合物中含有 1 0至4 0質量%。醯化纖維素之數量更佳爲從1 0至3 0質量 %。此外,在混合物中也可預先添加後述之任何添加劑。 其次,將混合物冷卻成從-1 〇〇至—1 〇°c (較佳爲從-80至一 l〇t:,更佳爲從—50至—20 °C,且最佳爲從—50 至-30°C )。冷卻係可在例如乾冰•甲醇浴(-75°C )或 經冷卻的二甘醇溶液(從一 30至一 20°C )中實施。經過冷 卻醯化纖維素與有機溶劑之混合物將會硬化。 冷卻速度較佳爲4°C/分鐘以上,更佳爲8t/分鐘以上, 且最佳爲1 2 °C /分鐘以上。冷卻速度係愈快愈佳,但是 1 0,000°C/秒鐘爲理論上的上限,l,〇〇〇°C/秒鐘爲技術上的 上限,且l〇〇°C /秒鐘爲實用上的上限。另外,冷卻速度係 將開始冷卻時之溫度與最後的冷卻溫度之差除以自冷卻開 始起至達到最後的冷卻溫度所需之時間所得之値。 然後,當將其加熱至從〇至200°C (較佳爲從0至150°C ,更佳爲從〇至120°C,且最佳爲從0至50°C )時,醯化 纖維素將可溶解於有機溶劑中。升溫係可僅放置在室溫下 、或在溫浴中加溫。 加溫速度較佳爲4°C/分鐘以上,更佳爲8°C/分鐘以上, 且最佳爲1 2°C /分鐘以上。加溫速度雖然是以愈快愈好,但 是1 0,000°C/秒鐘爲其理論上的上限,1,000°C/秒鐘爲技術 200535465 上的上限,且100°C /秒鐘爲實用上的上限。加溫速度係將 開始加溫時之溫度與最後的加溫溫度之差除以自開始加溫 起至達到最後的加溫溫度所需之時間所得之値。 以如上所述之方式即可製得均勻的溶液。若溶解爲並不 充分時,則也可重複實施冷卻、加溫之操作。溶解是否已 爲充分之判斷係只以目視觀察溶液之外觀即可加以判斷。 在冷卻溶解法中,爲避免由於冷卻時之結露(凝結)而 導致水份混入,較佳爲使用密閉容器。另外,當在冷卻加 溫操作中,在進行冷卻時則加壓,在進行加溫時則減壓時 Φ ,即可縮短溶解時間。實施加壓及減壓時,較佳爲使用耐 壓性容器。 另外,將醯化纖維素(乙醯化度:60.9%、黏度平均聚合 度:299 )以冷卻溶解法溶解於醋酸甲酯中的20質量%之 溶液,若根據微差掃瞄熱量測定法(DSC )之測定時,在 3 3 °C附近則有溶膠狀態與凝膠狀態之假相轉移點存在,在 該溫度以下則爲均勻的凝膠狀態。因此,該溶液必須在假 相轉移溫度以上,較佳爲在凝膠相轉移溫度加上約1 〇°C之 ® 溫度來保存。但是該假相轉移溫度係根據醯化纖維素之乙 醯化度、黏度平均聚合度、溶液濃度或所使用的有機溶劑 而有所不同。 由所調製得之醯化纖維素溶液(塗佈液)’以溶劑流延 法製造醯化纖維素薄膜。 塗佈液係將其流延在轉筒或帶上,並使溶劑蒸發以形成 薄膜。流延前之塗佈液,較佳爲將濃度調整成固體份量爲 -40 - 200535465 1 8至3 5 %。轉筒或帶之表面較佳爲預先加以精加工成爲鏡 面狀態。關於溶劑流延法中之流延及乾燥方法,則揭示於 美國發明專利第2,3 3 6,3 1 0號、同第2,367,603號、同第 2,492,078 號、同第 2,492,977 號、同第 2,492,978 號、同 第 2,607,704 號、同第 2,739,069 號、同第 2,739,070 號、 英國發明專利第640,73 1號、同第73 6,8 92號之各說明書、 日本專利特公昭第45-4554號、同第49-56 1 4號、特開昭 第 60-176834 號、同第 60-203430 號、同第 62-115035 號之 各公報中。 _ 塗佈液較佳爲流延在表面溫度爲1 0°C以下之轉筒或帶上 。較佳爲流延後用風吹2秒鐘以上加以乾燥。也可將所製 得之薄膜從轉筒或帶加以剝取,再以從1 00至1 60 °C逐漸 改變溫度的高熱風進行乾燥以蒸發殘留溶劑。以上之方法 係揭示於日本專利特公平第5- 1 7844號公報中。若根據該 方法,則可縮短自流延起直到加以剝取爲止所需之時間。 爲實施該方法,則在流延時之轉筒或帶之表面溫度下,塗 佈液必須凝膠化。 · 也可使用所調製的數種醯化纖維素溶液(塗佈液)並以 溶劑流延法實施兩層以上之流延以製造薄膜。此種情形下 ,塗佈液係流延在轉筒或帶上,然後使溶劑蒸發以形成薄 膜。流延前之塗佈液,較佳爲將其濃度調整成固體份量爲 從10至40%之範圍。轉筒或帶之表面較佳爲預先加以精加 工成爲鏡面狀態。 流延兩層以上之數層醯化纖維素液時,也可流延數種之 -41- 200535465 ϋ化纖維素溶液’亦即可採取從朝支撐體之進行方向隔著 間隔所設置的數個流延口分別使含有醯化纖維素之溶液流 延,使其積層同時製膜之方法。例如,可使用在日本專利 特開昭第6 1 - 1 584 1 4號、同特開平第1 - 1 224 1 9號、及特開 平第1 1 - 1 9 82 8 5號之各公報所揭示之方法。另外,由兩個 流延口流延醯化纖維素溶液也可使其薄膜化。例如,可使 用日本專利特公昭第60-27562號、同特開昭第61 -94724 號、同特開昭第6 1 -947245號、同特開昭第6 1 - 1 048 1 3號 、同特開昭第6 1 - 1 5 84 1 3號、及同特開平第6- 1 34933號之 各公報中所揭示之方法。另外,也可使用在同特開昭第56-1 626 1 7號公報所揭示之將高黏度醯化纖維素溶液之流體物 以低黏度之醯化纖維素溶液包覆之狀態下,將其高、低黏 度之醯化纖維素溶液同時擠出的醯化纖維素薄膜之流延方 法。 也可採取使用兩個流延口,剝下藉由第一流延口所成型 於支撐體上之薄膜,然後,在接於支撐體面之一側施加第 二之流延,以製造薄膜,例如在日本專利特公昭第44-20235號公報所揭示之方法。供流延之醯化纖維素溶液並 無特殊的限定,可使用相同或不同之醯化纖維素溶液。爲 使醯化纖維素層具有數種功能,則宜將按照其功能之醯化 纖維素溶液由各流延口擠出即可。 再者,本發明之醯化纖維素溶液係也可實施與其他之功 能層(例如黏合層、染料層、抗靜電劑、抗暈光層、紫外 線吸收層、偏光層等)形成用溶液同時進行流延’以同時 -42 - 200535465 形成功能層與薄膜。 對單層液而言’爲製成吾所欲得的薄膜厚度,則必須在 筒濃度下擠壓出局黏度之醢化纖維素溶液。此時,醯化纖 維素溶液之穩定性不佳,結果導致會產生固態物而構成凹 凸點之缺陷,或平面性變得不良而多半將變成爲有問題者 。對此問題之解決方法,若將數種醯化纖維素溶液從流延 口流延時,即可使高黏度之溶液同時擠出在支撐體上,藉 此不僅能製造平面性獲得良化且具有優良面狀之薄膜,且 藉由使用濃縮醯化纖維素溶液即可減低乾燥負荷,而達成 提高薄膜之生產速率。 對醯化纖維素薄膜可使用下述塑化劑以改良其機械性物 性。「塑化劑」係可使用磷酸酯或羧酸酯。「磷酸酯類」 之實例係包括:磷酸三苯酯(TPP )、及磷酸三甲苯酯( TCP ) 。「羧酸酯類」係以鄰苯二甲酸酯、及檸檬酸酯爲 其代表。鄰苯二甲酸酯類之實例係包括:鄰苯二甲酸二甲 酯(DMP )、鄰苯二甲酸二乙酯(DEP )、鄰苯二甲酸二 丁酯(DBP )、鄰苯二甲酸二啐酯(DOP )、鄰苯二甲酸二 苯酯(DPP )、及鄰苯二甲酸二乙基己酯(DEHP )。檸檬 酸酯類之實例係包括:〇 -乙醯基檸檬酸三乙基酯( OACTE)、及0—乙醯基檸檬酸三丁基酯(OACTB )。其 他之羧酸酯類之實例係包括:油酸丁酯、蓖麻醇酸甲基乙 醯基酯、癸二酸二丁酯、各種不同的1,2,4 一苯三甲酸酯 鄰苯二甲酸酯系塑化劑(DMP、DEP、DBP、DOP、DPP、 DEHP )係適合於使用,其中特佳爲DEP及DPP。 200535465 塑化劑之添加量較佳爲醯化纖維素之數量的從〇. 1至2 5 質量%,更佳爲從1至20質量%,且最佳爲從3至1 5質量 %。 對纖維素醋酸酯也可添加防劣化劑(例如:抗氧化劑、 過氧化物分解劑、自由基抑制劑、金屬惰性化劑、酸捕獲 劑、胺劑)。 關於防劣化劑,則揭示於日本專利特開平第3 - 1 9920 1號 、同第 5-1907073 號、同第 5-1 94 789 號、同第 5-271471 號 、同第6- 1 07854號之各公報中。防劣化劑之添加量,從欲 能顯現添加防劣化劑之功效、及抑制防劣化劑在薄膜表面 之滲出現象的觀點來考慮,則較佳爲將要調製的目標溶液 (塗佈液)之從0.01至1質量%,且更佳爲從0.01至0.2 質量%。特別理想的防劣化劑之實例則有丁基化羥基甲苯 (BHT)、三苯甲基胺(TBA)。 〔醯化纖維素薄膜之延伸處理〕 醯化纖維素薄膜係可藉由延伸處理來調整其延遲。延伸 倍率較佳爲從3至100%。 延伸方法可在不脫離申請專利範圍之範圍內使用傳統方 法,但是從面內之均勻性的觀點來考慮,則特佳爲使用拉 幅機延伸。本發明之醯化纖維素薄膜較佳爲具有1 00公分 以上之寬度,全寬度的Re値不均勻性較佳爲士5奈米’更 佳爲土3奈米。另外,Rth値之不均勻性較佳爲士1〇奈米’ 且更佳爲:t5奈米。長度方向之Re値、及Rth値之不均勻 性較佳爲在寬度方向的不均勻性之範圍內。 -44- 200535465 延伸處理可在製膜步驟之途中實施,也可將對製膜後所 捲取的捲裝薄膜加以延伸處理。在前者之情形下,即可在 含有殘留溶劑量之狀態下施加延伸,在殘留溶劑量爲從2 至3 0 %時適合於延伸。此時,較佳的是將薄膜朝著長度方 向輸送,同時朝著與長度方向正交的方向延伸,以使該薄 膜之遲相軸能與該薄膜之長度方向成正交。 延伸溫度可視延伸時的殘留溶劑量與膜厚來選擇適當條 件。 在含有殘留溶劑之狀態施加延伸時,則較佳爲經延伸後 即使其乾燥。乾燥方法係可根據上述薄膜之製膜所敍述之 方法。 延伸後的醯化纖維素薄膜之厚度爲11 〇微米以下,較佳 爲從40至110微米,更佳爲從60至110微米,最佳爲從 80至1 1 0微米。該膜厚係相當於本發明相位差膜之膜厚。 〔醯化纖維素薄膜之表面處理〕 醯化纖維素薄膜較佳爲對其施加表面處理。其具體的方 法可使用電暈放電處理、輝光放電處理、火焰處理、酸處 理、鹼處理、或紫外線照射處理。另外,也可使用日本專 利特開平第7-33 3 433號公報中所揭示者,加以設置基底塗 層。 從保持薄膜之平面性的觀點來考慮,在該等之處理時, 則將醯化纖維素薄膜之溫度設定在Tg (玻璃轉移溫度)以 下,具體而言,較佳爲設定在150°C以下。 若將本發明之抗反射膜用作爲偏光板之透明保護膜時, •45- 200535465 通常係使得醯化纖維素接著於偏光膜時,從與偏光膜的黏 著性的觀點來考慮,則特佳爲實施酸處理或鹼處理,亦即 ,對醯化纖維素實施皂化處理。 從黏著性的觀點來考慮,則醯化纖維素薄膜之表面能量 較佳爲55 mN/m以上,且更佳爲60 mN/m以上且75 mN /m以下,其可以上述表面處理加以調整。 固體之表面能量係如「潤濕之基礎與應用」(Realize公 司,1989年12月10日出版)一書中所揭述之以接觸角法 、濕潤熱法、及吸附法求得。在本發明之醯化纖維素薄膜 之情形時,則較佳爲使用接觸角法。 具體而言,將表面能量爲既知之兩種溶液滴在醯化纖維 素薄膜上,在液滴之表面與薄膜表面之交點,以畫在液滴 的切線與薄膜表面所形成之角,且包含液滴者之角定義爲 接觸角,即可由計算算出薄膜之表面能量。 茲就表面處理以鹼性鹼化處理爲例,具體說明如下。 醯化纖維素薄膜之鹼性鹼化處理,較佳爲將薄膜表面浸 漬於鹼性溶液後,以酸性溶液中和,然後水洗並加以乾燥 之循環來進行。 鹼性溶液係包括氫氧化鉀溶液、氫氧化鈉溶液,氫氧化 物離子之當量濃度較佳爲從〇·1 mole/ι至3.0 mole/Ι,且更 佳爲從〇·5 mole/Ι至2.0 mole/Ι。鹼性溶液溫度較佳爲在室 溫至90 °C之範圍,且更佳爲從40至70°C之範圍。 從生產性的觀點來考慮,則較佳爲塗佈鹼性液,然後經 鹼化處理後,以水洗從薄膜表面脫除鹼。從潤濕性的觀點 -46- 200535465 來考慮,則塗佈溶劑較佳爲IP A、正-丁醇、甲醇、乙醇等 之醇類,且較佳爲添加水、丙二醇、乙二醇等以調製鹼溶 解之助劑。 (抗反射膜) 〔透明支撐體〕 本發明抗反射膜之透明支撐體並無特殊的限定,可使用 透明樹脂薄膜、透明樹脂板、透明樹脂片或透明玻璃等。 透明樹脂薄膜可使用醯化纖維素薄膜(纖維素三醋酸酯薄 膜(折射率1.48)、纖維素二醋酸酯薄膜、纖維素醋酸丁 酸酯薄膜、纖維素醋酸丙酸酯薄膜)、對苯二甲酸乙二醇 酯薄膜、聚醚楓薄膜、聚丙烯酸系樹脂薄膜、聚胺甲酸酯 系樹脂薄膜、聚酯薄膜、聚碳酸酯薄膜、聚颯薄膜、聚醚 薄膜、聚甲基戊烯薄膜、聚醚酮薄膜、(甲基)丙烯腈薄 膜等。 其中,較佳爲透明性高、光學雙折射少,且製造容易而 爲一般最常用於偏光板之保護膜的醯化纖維素薄膜,且特 佳爲纖維素三醋酸酯薄膜。透明支撐體之厚度通常爲從約 25微米至1,000微米。 在本發明之醯化纖維素薄膜,可使用如上所述醯化纖維 素薄膜以作爲相位差膜。 當用作爲抗反射膜之支撐體時,並不需要控制延遲,因 此可含有或不含上述延遲控制劑。 另外,雖然不需要延伸處理以控制延遲,但是也可爲改 善乾燥不均勻性或根據乾燥收縮所產生的膜厚不均勻性、 -47- 200535465 表面的凹凸而施加延伸處理。延伸處理之具體方法係與相 位差膜之延伸處理相同。 〔硬質塗層〕 本發明之抗反射膜爲賦予薄膜的物理強度,則在透明支 撐體中之至少一者必須設置硬質塗層。在本發明則在硬質 塗層上設置低折射率層,較佳爲在硬質塗層與低折射率層 之間設置中折射率層、高折射率層以構成本發明之抗反射 膜。 本發明之抗反射膜爲改善白色模糊、影像模糊、刺目現 象,則必須使表面成爲平坦。具體而言,在表示表面粗糙 度的特性中,應使中心線平均粗糙度(Ra )爲0.1 0微米以 下。Ra更佳爲0.0 9微米以下,進一步更佳爲0.08微米以 下。在本發明之抗反射膜中,薄膜的表面凹凸係受硬質塗 層的表面凹凸所支配,因此較佳爲使硬質塗層之中心線平 均粗糙度控制在上述範圍之內。 控制上述表面形狀,也需要一倂控制反射率特性。本發 明之抗反射膜爲消除白色模糊、影像模糊、刺目現象、在 明室中的黑色穩定性,較佳爲從450奈米至65 0奈米的波 長區域中相對於積分反射率平均値的5度鏡面反射率平均 値設定爲65%以上。更佳爲70%以上,且進一步更佳爲 75%以上。 而且,控制積分反射率之絶對値也是重要,從45 0奈米 至65 0奈米之波長區域中之積分反射率平均値較佳爲2.5 以下,更佳爲2.3以下,且進一步更佳爲2.1以下。 -48- 200535465 本發明抗反射膜之「透射影像鮮明度」較佳爲65%以上 。透射影像鮮明度係代表一般透射過薄膜所映出的影像之 模糊程度之指標,因此該値愈大則表示透過薄膜所看的影 像爲愈鮮明且良好。透射影像鮮明度較佳爲70%以上,且 更佳爲80%以上。 上述透射影像鮮明度係可根據;TIS K7105而以Suga試驗 機(股)公司製之繪圖式測定器(ICM-2D型),且使用縫 隙寬度爲5毫米之光學梳來測定。 本發明硬質塗層之折射率,從爲獲得抗反射性薄膜的光 學設計的觀點來考慮,則其折射率爲從1.48至2.00範圍, 較佳爲從1.50至1.90,且更佳爲從1.50至1.80。在本發 明由於在硬質塗層上至少有一層低折射率層,因此若折射 率爲小於該範圍時,則抗反射性將降低,若爲太大時,則 有反射光之色調將趨於強烈之傾向。 硬質塗層之膜厚係從爲對薄膜賦予足夠的耐久性、耐衝 撃性的觀點來考慮,硬質塗層之厚度則通常設定爲約0.5 微米至50微米,較佳爲1微米至20微米,更佳爲2微米 至10微米,且最佳爲3微米至7微米。 此外,硬質塗層之強度,藉由根據JIS K5400之「鉛筆 硬度試驗」所測得者,較佳爲Η或以上,更佳爲2H或以 上,且最佳爲3Η或以上。 此外,在根據JIS Κ54〇〇之泰范(Taber)摩耗試驗時, 介於試驗前與後之間的試料之摩耗量較佳爲較少者。 硬質塗層較佳爲藉由電離輻射線硬化性化合物之交聯反 -49- 200535465 應’或藉由聚合反應所形成。例如可藉由將含有電離輻射 線硬化性之多官能單體或多官能寡聚物之塗佈組成物塗佈 在透明支撐體上,然後使多官能單體或多官能寡聚物進行 交聯反應或聚合反應來形成。 電離輻射線硬化性之多官能單體或多官能寡聚物之官能 基較佳爲光、電子射線、放射線聚合性,其中較佳爲光聚 合性官能基。 光聚合性官能基包括(甲基)丙烯醯基、乙烯基、苯乙 烯基'烯丙基等之不飽和聚合性官能基等,其中較佳爲( 甲基)丙烯醯基。 具有光聚合性官能基之「光聚合性多官能單體」之具體 實例係包括: 丙烯酸新戊二醇酯、(甲基)丙烯酸1,6—己二醇酯、 二(甲基)丙烯酸丙二醇酯等之伸烷基二醇之(甲基)丙 烯酸二酯類; 二(甲基)丙烯酸三甘醇酯、二(甲基)丙烯酸二丙二 醇酯、聚二(甲基)丙烯酸乙二醇酯、聚二(甲基)丙烯 酸丙二醇酯等之聚氧化烯二醇之(甲基)丙烯酸二酯類; 二(甲基)丙烯酸新戊四醇酯等之多元醇之(甲基)丙 烯酸二酯類; 2,2—雙(4 一(烯丙氧基•二乙氧基)苯基)丙烷、2, 2-雙(4 一(烯丙氧基•聚丙氧基)苯基)丙烷等之環氧 乙烷或環氧丙烷加成物之(甲基)丙烯酸二酯類等。 並且,(甲基)丙烯酸環氧酯類、(曱基)丙烯酸胺甲 -50- 200535465 酸酯類、聚(甲基)丙烯酸酯類也適合用作爲聚合性多官 能單體。 其中,較佳爲多元醇與(甲基)丙烯酸之酯類。更佳的 是在一分子中具有3個以上之(甲基)丙烯醯基的多官能 單體。具體而言,係包括:三(甲基)丙烯酸三羥甲基丙 烷酯、三(甲基)丙烯酸三羥甲基乙烷酯、四(甲基)丙 烯酸1,2,4-環己烷酯、三丙烯酸五丙三醇酯、四(甲基 )丙烯酸新戊四醇酯、三(甲基)丙烯酸新戊四醇酯、三 丙烯酸(二)新戊四醇酯、五丙烯酸(二)新戊四醇酯、 四(甲基)丙烯酸(二)新戊四醇酯、六(甲基)丙烯酸 (二)新戊四醇酯、三丙烯酸三新戊四醇酯、六丙烯酸三 新戊四醇酯等。本說明書中「(甲基)丙烯酸酯」係代表 「丙烯酸酯或甲基丙烯酸酯」,「(甲基)丙烯醯基」係 代表「丙烯醯基或甲基丙烯醯基」。 多官能單體係可倂用兩種或以上。 在光聚合性多官能單體之聚合反應較佳爲使用光聚合引 發劑。光聚合引發劑較佳爲光-自由基聚合引發劑與光-陽 離子聚合引發劑,特佳爲光-自由基聚合引發劑。 「光-自由基聚合引發劑」包括:例如,苯乙酮類、二苯 甲酮類、米其勒之苯甲醯基苯甲酸酯、α —戊氧基酯、一 硫化四甲基秋蘭姆、及9 —氧硫卩山噃(thioxanthone)類等 〇 市售商品級之「光-自由基聚合引發劑」包括:日本化藥 (股)公司製之 KAYACURE (DETX-S、BP-100、BDMK、 200535465 CTX、BMS、2-EAQ、ABQ、CPTX、EPD、ITX、QTX、 BTC、MCA 等)、日本 Ciba-Geigy (股)公司製之 Irgacure ( 65 1、184、5 00、907、3 69、1173、295 9、4265 、4 2 6 3 等)、Sartomer 公司製之 Esacure ( KIP 1 OOF、KB 1 、EB3、BP、X33、KT046、KT37、KIP150、TZT )等。 特佳的是「光裂解型」之光-自由基聚合引發劑。關於光 裂解型之光-自由基聚合引發劑,則揭述於「最新UV硬化 技術」(第159頁,發行人;高薄一弘,發行所;日本技 術情報協會(股),1991年發行)。市售商品級之光裂解 型的光-自由基聚合引發劑係包括日本Ciba-Geigy (股)公 司製之 Irgacure (651、184、907)等。 光聚合引發劑之使用量,相對於1 〇〇質量份之多官能單 體,較佳爲0.1〜15質量份之範圍,且更佳爲1〜10質量 份之範圍。 除光聚合引發劑以外,也可使用光增感劑。「光增感劑 」之具體實例包括:正-丁基胺、三乙基胺、三-正-丁基 膦、米其勒酮(Miller’s ketone)、及9 —氧硫卩山卩星。市售 商品級之光增感劑包括日本化藥(股)公司製之 KAYACURE ( DMBI、EPA)等。 光聚合反應較佳爲經硬質塗層的塗佈及乾燥後以紫外線 照射來實行。 硬質塗層之經交聯或聚合的黏結劑,係具有聚合物之主 鏈經交聯或聚合的結構。聚合物之主鏈的具體實例包括聚 烯烴(飽和碳氫化合物)、聚醚、聚脲、聚胺甲酸酯、聚 -52- 200535465 酯、聚胺、聚醯胺、及三聚氰胺樹脂。較佳爲聚烯烴主鏈 、聚醚主鏈及聚脲主鏈,更佳爲聚烯烴主鏈及聚醚主鏈, 且最佳爲聚烯烴主鏈。 聚烯烴主鏈係由飽和碳氫化合物所構成。聚烯烴主鏈係 例如由不飽和聚合性基之加成聚合反應所製得。聚醚主鏈 係以醚鍵(一 〇 —)使重複單元鍵結。聚醚主鏈係可由例如 環氧基之開環聚合反應來獲得。聚脲主鏈係以脲鍵(- NH 一 CO - NH—)使重複單元鍵結。聚脲主鏈係可由例如異氰 酸基與胺基之縮聚合反應來獲得。聚胺甲酸酯主鏈係以胺 甲酸酯鍵(一 NH — CO — Ο-)使重複單元鍵結。聚胺甲酸 酯主鏈係由例如異氰酸基與羥基(包括N -羥甲基)之縮 聚合反應所獲得。聚醚主鏈係以酯鍵(一 CO — Ο -)使重 複單元鍵結。聚酯主鏈係由例如羧基(包括鹵化醯基)與 羥基(包括N -羥甲基)之縮聚合反應所獲得。聚胺主鏈 係以胺基鍵(-NH —)使重複單元鍵結。聚胺主鏈係由例 如伸乙基亞胺基之開環聚合反應所獲得。聚醯胺主鏈係以 醯胺基鍵(一 NH - CO -)使重複單元鍵結。聚醯胺主鏈係 由例如異氰酸酯基與羧基(包括鹵化醯基)之反應所獲得 。三聚氰胺樹脂主鏈係以例如噻哄基(例如三聚氰胺)與 醛(例如甲醛)之縮聚合反應所獲得。另外,三聚氰胺樹 脂係其主鏈本身即具有交聯或聚合結構。 在硬質塗層之黏結劑,以控制硬質塗層之折射率爲目的 ,可添加高折射率單體和/或無機微粒。無機微粒除具有用 以控制折射率之功效外,也可抑制交聯反應所引起之硬化 -53- 200535465 收縮的功效。 高折射率單體之具體實例包括:雙(4-甲基丙烯醯基硫 苯基)硫、乙烯基萘、乙烯基苯基硫、4一甲基丙烯醯基苯 基一 4’一甲氧基苯基硫醚等。 無機微粒之具體實例包括選自矽、锆、鈦、鋁、銦、鋅 、錫、銻中之至少一種金屬之氧化物、其他BaS04、CaC03 、滑石及高嶺土,其粒徑則爲100奈米以下,較佳爲50奈 米以下。將無機微粒加以微細化成1 〇〇奈米以下即可形成 不致於損及透明性之硬質塗層。 對於爲使硬質塗層高折射率化之目的,則無機微粒較佳 爲選自A卜Zr、Zn、Ti、In及Sn中之至少一種金屬之氧 化物超微粒,具體實例包括Zr02、Ti02、Al2〇3、1η203、 ΖηΟ、Sn02、Sb203、ITO等。該等中特別是以Zr02爲適合 使用。 高折射率之單體或無機微粒之添加量較佳爲黏結劑的全 質量之從10至90質量%,且更佳爲從20至80質量%。在 硬質塗層內中可使用兩種或以上之無機微粒。 硬質塗層之霧度値,爲以散射改良視野角特性,則較佳 爲10%以上,更佳爲從20%至80%,進一步更佳爲從30% 至7 0%,且最佳爲從35%至60%。 尤其是第二方式的硬質塗層之霧度値,爲以散射賦予擴 大視野角之功能,則較佳爲40%以上,更佳爲從40%至 9 0%,進一步更佳爲從45 %至80%,且最佳爲從50%至70% 200535465 本發明之抗反射膜是一種表面凹凸爲非常小或幾乎無, 且表面霧度幾乎無之薄膜,如欲賦予霧度時,則較佳爲設 置成爲內部霧度。因此較佳爲硬質塗層具有內部霧度,亦 即,具有「內部散射性」。 爲賦予視野角擴大功能,除調整上述霧度値以外,重要 的是調整硬質塗層之可由測角光度計測定得散射光之強度 分佈(散射光分佈)。例如在液晶顯示裝置之情形下,由 背光所出射之光愈受到設置在視認側偏光板表面之抗反射 膜的擴散,則視野角特性會愈佳。然而若太受到擴散時, 則後方散射將變爲較大,使得正面亮度減少,或散射太大 而造成影像鮮明性劣化等之難題。因此,必須將硬質塗層 之散射光強度分佈控制在特定範圍內。爲達成吾所欲得之 視認特性,則相對於散射光分佈之出射角爲0°的光強度, 較佳爲與視野角改良功效有相關的出射角爲3 0°之散射光 強度設定爲從0.01%至0.2%,更佳爲從0.02%至0.15%, 且最佳爲從0.02%至0.1%。 散射光分佈可就設置硬質塗層的抗反射膜,使用村上色 彩技術硏究所(股)公司製之自動變色光度計GP-5型來測 定。 對硬質塗層賦予內部散射性之方法、或賦予吾人所希望 之散射分佈之方法,較佳爲採用將折射率與黏結劑不同的 透光性顆粒包含在黏結劑(包括可調整折射率之上述無機 顆粒等)中之方法。黏結劑與透光性顆粒之折射率差較佳 爲從0.02至0.20。因爲若折射率差爲小於0.02時,則光 200535465 擴散功效將由於兩者折射率差太小而變小;另外’若折射 率差爲大於0.20時,則由於光擴散性太高,將導致薄膜全 體會白化之原因。上述折射率差更佳爲從0.03至〇.15,且 最佳爲從0.04至0.13。 黏結劑與透光性顆粒之組合方式可以調整上述折射率差 之目的而作適當地選擇。 透光性顆粒之顆粒徑較佳爲從〇·5微米至5微米。粒徑 若爲〇 · 5微米以下時,則光擴散功效將會太小、或後方散 射將變大使得光之利用效率降低。若爲5微米以上時,表 面之凹凸將變大,結果導致白色模糊或刺目現象。另外, 上述透光性顆粒之粒徑較佳爲從0.7微米至4.5微米,且最 佳爲從1.0微米至4.0微米。 如欲使透光性顆粒包含在硬質塗層時,則必須將硬質塗 層膜厚調整成不致於由於該顆粒而產生表面凹凸。通常藉 由採取加大膜厚之方法使顆粒突起不致於從硬質塗層表面 突出’即可使表面粗糙度Ra (中心線平均粗糙度)控制在 〇 · 1 〇微米以下。 透光1生顆粒可爲有機顆粒或無機顆粒。粒徑愈無不均勻 1生存在’散射特性之不均勻性就愈少,因此霧度値之設計 SP Μ加容易達成。透光性微粒最佳爲塑膠微粒,特別是以 Μ Β月度高且與黏結劑之折射率差較佳爲如上所述之數値者 有機顆粒可使用聚甲基丙烯酸甲酯微粒(折射率1.49) '丙燃酸〜苯乙烯共聚物微粒(折射率丨.54)、三聚氰胺 200535465 微粒(折射率1.57)、聚碳酸酯微粒(折射率1.57)、苯 乙烯微粒(折射率1.60)、交聯聚苯乙烯微粒(折射率 1.61)、聚氯乙烯微粒(折射率1.60)、 苯并鳥糞胺一三聚氰胺甲醛微粒(折射率1.68 )等。 無機顆粒可使用二氧化矽微粒(折射率1.44 )、氧化鋁 微粒(折射率1.63 )等。 透光性顆粒之粒徑,係適當地選擇使用如上所述從〇.5 至5微米者即可,也可混合使用兩種以上,使其相對於 1〇〇質量份之黏結劑含有從5至30質量份即可。 φ 在使用如上所述的透光性顆粒之情形下,由於透光性顆 粒容易在黏結劑中沉降,爲防止沉降也可添加二氧化矽等 之無機塡料。另外,無機塡料係添加量愈增加,則對防止 透光性微粒之沉降愈有效,但是將對塗膜透明性會造成不 良影響。因此較佳爲將粒徑爲0.5微米以下之無機塡料對 黏結劑在不致於損及塗膜之透明性的程度使其含有小於約 0.1質量%即可。 在硬質塗層與透明支撐體相接之情形下,用以形成硬質 0 塗層所需塗佈液之溶劑,爲達成硬質塗層表面之凹凸控制 (使凹凸變小或使其平坦)及透明支撐體與硬質塗層之間 的密著性兩者並存,較佳爲由用以溶解透明支撐體(例如 三乙醯基纖維素支撐體)的至少一種以上之溶劑,與不致 於溶解透明支撐體的至少一種以上之溶劑所構成。更佳爲 不溶解透明支撐體的溶劑中至少一種是相對於可溶解透明 支撐體的溶劑中至少一種爲高沸點。進一步更佳爲不溶解 -57- 200535465 ia明支撐體的丨谷中沸點最咼的溶劑,與可溶解透明支撐 體的溶劑中沸點最高的溶劑之沸點溫度差爲3 〇 c以上,且 最佳爲5 0 °C以上。 可溶解透明支撐體(較佳爲Η乙醯基纖維素)之溶劑係 包括: 碳原子數爲從3至12之醚類(具體而言,其係包括:二 丁基醚、二甲氧基甲烷、二甲氧基乙烷、二乙氧基乙烷、 環氧丙烷、1,4 一二噁烷、1,3〜二噁茂烷、丨,3,5 —三噁 口山、四氫呋喃、大茴香醚、及苯基乙基醚等):碳原子數 爲從3至12之酮類(具體而言,丙酮、甲基乙基酮、二乙 基酮、二丙基酮、二丁基酮、環戊酮、環己酮、甲基環己 酮、及甲基環己酮等);碳原子數爲從3至12之酯類(具 體而言,甲酸乙酯、甲酸丙酯、甲酸正-戊酯、乙酸甲酯、 乙酸乙酯、丙酸甲酯、丙酸乙酯、乙酸正-戊酯、及r 一丁 內醯胺等);具有兩種以上之官能基的有機溶劑(具體而 言,2—甲氧基醋酸甲酯、2—乙氧基醋酸甲酯、2 —乙氧基 醋酸乙酯、2—乙氧基丙酸乙酯、2—甲氧基乙醇、2—丙氧 基乙醇、2 — 丁氧基乙醇、1,2 —二乙醯氧基丙酮、乙醯基 丙酮、二丙酮醇、乙醯乙酸甲酯、及乙醯乙酸乙酯等。 該等可以單獨或組合兩種以上來使用。用以溶解透明支 撐體之溶劑較佳爲酮系溶劑。 不溶解透明支撐體(較佳爲三乙醯基纖維素)之溶劑係 包括:甲醇、乙醇、1 一丙醇、2 —丙醇、1— 丁醇、2—丁 醇、三級-丁醇、1 一戊醇、2 —甲基一 2 —丁醇、環己醇、 -58- 200535465 醋酸異丁酯、甲基異丁基酮、2 -晬酮、2—戊酮、2 —己酮 、2 —庚酮、3 -戊酮、3 -庚酮、4 —庚酮。 該等可以單獨或組合兩種以上來使用。 可溶解透明支撐體的溶劑之總量(A )與不溶解透明支 撐體的溶劑之總量(B )的質量比率(A/B ),較佳爲從 5/95至5 0/50,更佳爲從10/90至40/60,且進一步更佳爲 從 15/85 至 30/70 。 〔低折射率層〕 本發明之抗反射膜在最外層具有低折射率層。低折射率 層之折射率較佳爲從1.20至1.46,更佳爲從1.25至1.41 ,且最佳爲從1.30至1.39。此外,從獲得低反射率化的觀 點來考慮,則低折射率層較佳爲符合如下所示之數學式(1 )· 數學式(1) (mi/4) X 0.7 <ni di < (mi/4) χ 1.3 如上所不之數學式(1)中,mi是正奇數,ni是低折射 率層之折射率,且t是低折射率層之膜厚(奈米)。另外 ,λ是波長且爲從500至5 50奈米範圍之値。所謂符合數 學式(1 )之條件係意謂在上述波長範圍內具有可符合數學 式(1)之mi (正奇數,通常爲1)存在。 在低折射率層中,作爲低折射率黏結劑而含有含氟聚合 物、或含氟之溶膠-凝膠材料等。含氟聚合物、或含氟之溶 膠-凝膠材料,較佳爲藉由熱或電離輻射線而交聯所形成之 低折射率層表面的動摩擦係數爲從〇.〇3至0.15,且對水的 接觸角爲從90至120°的材料。在本發明之低折射率層可 200535465 使用無機塡料以改善膜強度。 可使用於低折射率層之含氟聚合物,除含有全氟烷基之 矽烷化合物(例如(十七氟一 1,1,2,2 —四氫癸基)三乙 氧基矽烷)之水解、脫水縮合物之外,包括以含氟單體單 元與用以賦予交聯反應性所需之組成單元爲組成成份之含 氟共聚物。 含氟單體單元之具體實例雖然包括例如氟烯烴類(例如 氟乙烯、偏二氟乙烯、四氟乙烯、六氟丙烯、全氟一2, 2 — 二甲基一 1,3—二噁唑等)、(甲基)丙烯酸酯之部份或完 全氟化烷基酯衍生物類(例如Biscoat 6FM (大阪有機化學 公司製)或M-2020 ( Daikin公司製)等)、完全或部份氟 化乙烯醚類等,但是較佳爲全氟類,且從折射率、溶解性 、透明性、易獲得性等的觀點來考慮,則特佳爲六氟丙烯 〇 用於賦予交聯反應性之組成單元之實例包括:一種藉由 先前在分子中具有自交聯化官能基之單體〔例如,(甲基 )丙烯酸縮水甘油酯和縮水甘油基乙烯基醚〕的聚合反應 所獲得之組成單元;一種藉由具有羧基、羥基、胺基、或 磺基之單體〔例如,(甲基)丙烯酸、(甲基)丙烯酸羥 甲酯、(甲基)丙烯酸羥烷酯、丙烯酸烯丙酯、羥乙基乙 烯基醚、羥丁基乙烯基醚、順丁烯二酸、及巴豆酸〕的聚 合反應所獲得之組成單元;及一種藉由將交聯反應性基〔 例如’(甲基)丙烯醯基〕以聚合物反應(例如藉由使得 氯化丙烯酸對羥基發生作用等之方法,以導入交聯反應性 -60- 200535465 基)而導入如上所述組成單元所獲得之組成單元。 另外,除上述含氟單體單元、用以賦予交聯反應性之組 成單元以外,從對溶劑的溶解性、薄膜之透明性等的觀點 來考慮,則也可適當地與不含氟原子的單體共聚合。可倂 用的單體單元並無特殊的限定,例如包括:烯烴類(乙烯 、丙烯、異戊二烯、氯乙烯、偏二氯乙烯等):丙烯酸酯 類(丙烯酸甲酯、丙烯酸乙酯、丙烯酸2 —乙基己酯); 甲基丙烯酸酯類(甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲 基丙烯酸丁酯、二甲基丙烯酸乙二醇酯等);苯乙烯衍生 φ 物(苯乙烯、二乙烯基苯、乙烯基甲苯、α —甲基苯乙烯 等):乙烯基醚類(甲基乙烯基醚、乙基乙烯基醚、環己 基乙烯基醚等):乙烯基酯類(醋酸乙烯酯、丙酸乙烯酯 、桂皮酸乙烯酯等):丙烯醯胺類(Ν—三級-丁基丙烯醯 胺、Ν—環己基丙烯醯胺等);甲基丙烯醯胺類、及丙烯腈 衍生物等。 可將適當的硬化劑與此聚合物組合倂用,如在日本專利 特開平第1〇-253 8 8號和日本專利特開平第1 0- 1 47739號公 # 報中所揭示者。 低折射率層用之特別有用的含氟聚合物是全氟烯烴與乙 烯基醚或酯之無規共聚物。特定言之,含氟聚合物較佳爲 具有本身能進行交聯化反應之基〔例如,例如(甲基)丙 烯醯基等之自由基反應性基、或例如環氧基和氧雜環丁烷 基之開環聚合性基〕。含聚合性單元之交聯反應性基在聚 合物之全部聚合性單元中,較佳爲佔有從5至70莫耳%, -61 - 200535465 且特佳爲30〜60旲耳%。 另外,在本發明之含氟聚合物,較佳爲以爲賦予防污性 爲目的而導入聚矽氧烷結構。聚矽氧烷結構之導入方法雖 然並無特殊的限定,但是較佳爲例如:日本專利特開平第 1 1 - 1 8962 1 號、同第 1 1 -22863 1 號、特開第 2000-3 1 3709 號 之各公報所揭示之使用聚矽氧巨偶氮引發劑來導入聚矽氧 烷嵌段共聚合成份之方法、例如特開平第2-25 1 5 5 5號、同 第2-308806號的各公報所揭示之使用聚矽氧巨分子來導入 聚矽氧烷接枝共聚合成份之方法。該等之聚矽氧烷成份較 φ 佳爲聚合物之從0.5至10質量%,且特佳爲從1至5質量 %。 關於賦予防污性,除上述以外,也可採取添加含有反應 性基之聚矽氧烷(例如·· KF-100T、X-22-1 69AS、KF-102 、Χ-22-370 1 ΙΕ、Χ·22-1 64Β、Χ-22-5002、Χ-22-1 73Β、Χ-22-174D、Χ-22-167Β、X-22-161AS (以上爲商品名稱,信 越(Shin-Etsu)化學工業公司製)、AK-5、AK-3 0、AK-32 (以上爲商品名稱,東亞合成公司製)、Sairaplein · FM02 75、Sairaplein FM072 1 (以上爲氮氣公司製)等)之 方法。此時,該等聚矽氧烷較佳爲添加入低折射率層總固 體份之從0.5至10質量%範圍,且特佳爲從1至5質量% 〇 在本發明之低折射率層中,較佳爲含有中空二氧化矽微 粒,以實現低折射率與耐擦傷性兩者並存之目的。 中空二氧化矽微粒之折射率爲從1.17至1.40,較佳爲從 -62- 200535465 1 · 1 7至1 · 3 5,且更佳爲從1 . 1 7至1 . 3 0。在此所使用之「折 射率」是表示全體顆粒之折射率,且並不是代表僅形成中 空二氧化矽顆粒之外殼部份的二氧化矽之折射率。此時假 設在顆粒內部之空腔的半徑是a,且在顆粒之外殻的半徑 是b,則空隙率X是根據如下所示之數學式(2 )計算得·’ 數學式(2) : x = (4aa3/3) / (47ib3/3) X 100。 空隙率x較佳爲從10至60%,更佳爲從20至60%,且 最佳爲從30至60%。若欲使得中空二氧化矽顆粒具有更降 低之折射率及更增加的空隙率,則外殻之厚度變小而顆粒 之強度減少。因此,從耐擦傷性的觀點來考慮,則折射率 爲低至少於1 .1 7之顆粒是無法使用。 在此中空二氧化矽顆粒之折射率是藉由阿貝(Abbe)折 射計(AT AGO (股)公司製)所測得。 中空二氧化矽微粒之製造方法係揭示於日本專利特開第 2001-233611、或特開第 2002-79616 號公報。 中空二氧化矽微粒之塗佈量較佳爲從1 mg/m2至100 mg/m2,更佳爲從5 mg/m2至80 mg/m2,且進一步更佳爲 從10 mg/m2至60 mg/m2。若太少時,則低折射率化之功效 、或耐擦傷性之改良功效將減少;若太多時,則將在低折 射率層表面造成微細的凹凸,使黑色穩定性等之外觀或積 分反射率惡化。 中空二氧化矽微粒之平均粒徑較佳爲低折射率層之厚度 的從30至150%,更佳爲從35至8 0%,且還更佳爲從40 至60%。換言之,當低折射率層之厚度是1〇〇奈米時,中 200535465 空二氧化矽微粒之粒徑較佳爲從3 0至1 5 0奈米,更佳爲從 35至80奈米,且還更佳爲從40至60奈米。 若中空二氧化矽微粒之粒徑是太小時,則空腔部之比率 將減少’使得改善耐擦傷性的效果減少,然而若其係過大 時,則在低折射率層表面上形成微細凹凸,且此會使得例 如黑色穩定性之外觀、或積分反射率將惡化。中空二氧化 矽微粒可爲結晶質或非晶質,中空二氧化矽微粒之粒徑分 佈係可爲單分散性顆粒、多分散性顆粒、或甚至可爲凝集 顆粒,只要可符合預定的粒徑即可。形狀最佳爲球狀,但 是甚至若爲不定形狀也不會出現問題。 此外,中空二氧化矽微粒之平均粒徑可藉由電子顯微鏡 照相來測定。 在本發明中,對提高耐擦傷性之目的,可含有其他之無 機塡料與中空二氧化矽微粒倂用。 該無機塡料,由於其係使其包含在低折射率層中,較佳 爲具低折射率者,例如氟化鎂或二氧化矽。尤其是從折射 率、分散穩定性、成本的觀點來考慮,則較佳爲不含空腔 鲁 的二氧化矽微粒。不含空腔的二氧化矽微粒之顆粒尺寸較 佳爲30奈米以上且150奈米以下,更佳爲35奈米以上且 80奈米以下,且最佳爲40奈米以上且60奈米以下。 此外,至少一種平均粒徑爲小於低折射率層厚度之25 % 的二氧化矽微粒(此微粒是稱爲「小粒徑二氧化矽微粒」 )較佳爲組合倂用具有如上所述粒徑之二氧化矽微粒(此 微粒是稱爲「大粒徑二氧化矽微粒」)的二氧化矽微粒。 -64- 200535465 小粒徑二氧化矽微粒可存在於大粒徑二氧化矽微粒之間 的間隙,因此有助於用作爲大粒徑二氧化矽微粒之保持劑 〇 小粒徑二氧化矽微粒之平均粒徑較佳爲從1至20奈米, 更佳爲從5至1 5奈米,且還更佳爲從1 0至1 5奈米。從原 料成本和保持劑效果的觀點來考慮,則較佳爲使用此二氧 化矽微粒。 二氧化矽微粒可歷經例如電漿放電處理和電暈放電之物 理性表面處理,或以界面活性劑、偶合劑或其類似物之化 學處理,使得在分散液產物或塗佈液中之分散穩定化、或 強化對黏結劑成份之親和性或黏結性。特佳爲使用偶合劑 。關於偶合劑,較佳爲使用烷氧基金屬化合物(鈦偶合劑 、矽烷偶合劑)。特定言之,以矽烷偶合劑處理是有效的 〇 此偶合劑是用作爲在調製低折射率層用之塗佈液之前, 用以預先對低折射率層之無機塡料施加表面處理的表面處 理劑,但是較佳爲進一步添加偶合劑作爲在調製低折射率 層用之塗佈液時的添加劑,且倂用入層中。 二氧化矽微粒較佳爲預先分散於表面處理之介質中,以 降低表面處理之負荷。 在本發明中,從耐擦傷性的觀點來考慮,則硬質塗層與 低折射率層中至少一層較佳爲含有有機矽烷化合物之水解 產物和/或其部份縮合物,亦即所謂的「溶膠成份」(在下 文中稱爲如此)。有機矽烷化合物可以如下所示通式(3 ) -65- 200535465 表示: 通式(3) ( R1。)Si ( χ) “ 在通式(3)巾,Rl。代表經取代或未經取代之烷基、或 經取代或未經取代之芳基。院基較佳爲具有碳原子數爲從 1至20 2直鏈、分枝或環狀者’烷基之具體實例包括:甲 基、乙基、丙基、丁基、戊基、庚基、啐基、癸基、十二 基、異丙基、二級-丁基、三級_戊基、環己基、環戊基)OCHs -34- 200535465 Examples (1) to (3 4), (41), and (4 2) of the specific examples have two asymmetric carbon atoms in the 1st and 4th positions of the cyclohexane ring. However, since the first (1), (4) to (3 4), (4 1), (42) examples of specific examples have a symmetrical meso-type molecular structure, there are no optical isomers (optical activity ), Only geometric isomers (trans and cis) exist. As described above, the rod-shaped compound preferably has a linear molecular structure. Therefore, trans is better than cis. When the compound has an optical isomer, it is difficult to distinguish the superiority and inferiority of the optical isomer, and it may be any of D, L, or a racemate. In specific examples (43) to (45), the ethylenic bond at the center has a trans-type and a cis-type. For the same reasons as above, the trans-type is better than the cis-type. The molecular weight of the delayed rising agent is preferably from 300 to 800. It is also possible to use two or more rod-shaped compounds having a maximum absorption wavelength (λ m ax) in the ultraviolet absorption spectrum of the solution that is shorter than 250 nm. The "rod-shaped compound" can be synthesized by referring to the method disclosed in the literature. Literature Department includes: Mol. Cryst. Liq. Cryst. Book 53, Book 229 (1979), Book 89, Book 93 (1982), Book 145, Book 111 (1987), Book 170, Book 43 (1989) , J. Am. Chem. Soc. Book 1 13, page 1,349 (1991), same as book 118, page 5,346 (1996), and book 92, page 1,582 (1970), J. Org Chem. Vol. 40, p. 420 (1975), Tetrahedron Vol. 48, No. 16, p. 3, 437 (1 992 200535465 The amount of aromatic compounds used as a delay control agent is used relative to 1 0.00 parts by mass of cellulose is in the range from 0.001 to 20 parts by mass. The aromatic compound is used from 0.1 to 100 parts by mass of brewed cellulose. A range of 05 to 15 parts by mass, and more preferably from 0. A range of 1 to 10 parts by mass. Two or more compounds may be used. [Production of tritiated cellulose film] The tritiated cellulose film of the present invention is preferably produced by a solvent casting method. In the solvent casting method, a film is produced using a solution (coating solution: dope) in which tritiated cellulose is dissolved in an organic solvent. The φ organic solvent preferably contains an ether selected from the group consisting of 3 to 12 carbon atoms, a ketone having 3 to 12 carbon atoms, an ester having 3 to 12 carbon atoms, and a carbon number from Solvents in the group consisting of halogenated hydrocarbon solvents from 1 to 6. The ether, ketone, and ester may have a cyclic structure. Any two or more compounds having functional groups of ether, ketone, and ester (i.e., -0-, -CO-, and -C00-) can also be used as the organic solvent. The organic solvent may have other functional groups such as an alcoholic hydroxyl group. In the case of an organic solvent having two or more kinds of functional groups, it is preferable that the solvent has any one of the functional groups having a carbon number within the above-mentioned preferred number of carbon atoms. Examples of ethers having 3 to 12 carbon atoms include: diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane Alkanes, tetrahydrofuran, methoxybenzene, and phenylethyl ether. Examples of ketones having 3 to 12 carbon atoms include: acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclohexanone, and methyl cyclohexanone-36- 200535465 Examples of the esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, and pentyl acetate. Examples of the organic solvent include 2-ethoxyethyl acetate, 2-methoxyethanol, and 2-butoxyethanol. The number of carbon atoms of the halogenated hydrocarbon is preferably 1 or 2, and most preferably 1. The halogen of the halogenated hydrocarbon is preferably chlorine. The ratio of the halogen atom of the halogenated hydrocarbon to the halogen is preferably from 25 to 75 mole%, more preferably φ from 30 to 70 mole%, even more preferably from 35 to 65 mole%, and most preferably It is preferably from 40 to 60 mol%. Dichloromethane is a representative halogenated hydrocarbon. It is also possible to mix and use two or more organic solvents. In a general method, a tritiated cellulose solution can be prepared. The so-called "general method" means processing at a temperature above 0 ° C (normal temperature or high temperature). The solution can be prepared by a conventional method and apparatus for preparing a coating solution by a solvent casting method. When a general method is used, the organic solvent is preferably a halogenated hydrocarbon (especially dichloromethane). The amount of tritiated cellulose should be adjusted so as to contain from 10 to 40% by mass in the resulting solution. The amount of tritiated cellulose is more preferably from 10 to 30% by mass. It is also possible to add any of the additives mentioned later to the organic solvent (main solvent). The solution can be prepared by stirring tritiated cellulose and organic solvents at normal temperature (0 to 4 (TC). High-concentration solutions can be stirred under pressure-37-200535465 and heating conditions. Specific In other words, the tritiated cellulose and the organic solvent are placed in a pressurized container and sealed, and then heated under pressure to a temperature above the boiling point of the solvent at a temperature not to cause the solvent to boil, while stirring. The heating temperature is usually above 40 ° C, preferably from 60 to 200 ° C, and more preferably from 80 to 110 ° C. The ingredients can also be coarsely mixed beforehand and then packed into a container. Moreover, it can also be gradually added The container must have a structure capable of being stirred. An inert gas such as nitrogen can be injected to pressurize the container. In addition, the increase in the pressure of the solvent vapor due to heating can also be used, or the pressure in the closed container after the pressure Add the ingredients below. When heating, it should be heated from the outside of the container. For example, a jacket type heating device can be used. In addition, a plate heater can be installed outside the container and piping can be used to make the liquid The method of heating the whole container by circulating the body. It is preferable to set stirring wings inside the container and use them to stir. The stirring wings preferably have a length that can reach near the wall of the container. The end of the stirring wings is preferably Scraper wings are installed to update the liquid film on the container wall. Instruments such as pressure gauges, thermometers, etc. can be installed in the container. Each component is dissolved in the solvent in the container. The coating solution prepared after preparation is cooled Take it out of the container or cool it with a heat exchanger after taking it out. The solution can also be prepared by the cooling dissolution method. The cooling dissolution method can dissolve the tritiated cellulose so that it is difficult to dissolve according to the usual dissolution method Organic solvent. Also, 'even solvents that can dissolve tritiated cellulose according to the usual dissolving method' has the effect of quickly preparing a homogeneous solution of -38-200535465 when the cooling dissolving method is adopted. The cooling dissolving method Initially, the tritiated cellulose is slowly added at room temperature under stirring in an organic solvent. The amount of tritiated cellulose is preferably adjusted to a mixture Contains 10 to 40% by mass. The amount of tritiated cellulose is more preferably from 10 to 30% by mass. In addition, any of the additives described below may be added to the mixture in advance. Next, the mixture is cooled to from -1. 〇〇 ~ -1〇 ° C (preferably from -80 to -10t :, more preferably from -50 to -20 ° C, and most preferably from -50 to -30 ° C). Cooling system It can be carried out, for example, in a dry ice • methanol bath (-75 ° C) or a cooled diethylene glycol solution (from -30 to -20 ° C). The mixture of cellulose and organic solvent after cooling will harden. Cooling The speed is preferably 4 ° C / min or more, more preferably 8t / min or more, and most preferably 12 ° C / min or more. The faster the cooling rate, the better, but 10,000 ° C / sec is theoretically The upper limit is 1000 ° C / second, which is a technical upper limit, and 100 ° C / second is a practical upper limit. The cooling rate is calculated by dividing the difference between the temperature at the beginning of cooling and the final cooling temperature by the time required to reach the final cooling temperature from the start of cooling. Then, when it is heated to from 0 to 200 ° C (preferably from 0 to 150 ° C, more preferably from 0 to 120 ° C, and most preferably from 0 to 50 ° C), the fiber is calcined. The element will be soluble in organic solvents. The temperature rise system can be left alone at room temperature or heated in a warm bath. The heating rate is preferably 4 ° C / min or more, more preferably 8 ° C / min or more, and most preferably 12 ° C / min or more. Although the heating speed is as fast as possible, 10,000 ° C / second is the theoretical upper limit, 1,000 ° C / second is the upper limit of technology 200535465, and 100 ° C / second is practical. On the ceiling. The heating speed is calculated by dividing the difference between the temperature at the beginning of heating and the last heating temperature by the time required from the start of heating to the time when the last heating temperature is reached. A uniform solution can be prepared in the manner described above. If the dissolution is insufficient, the cooling and heating operations may be repeated. Whether the dissolution is sufficient is judged by merely visually observing the appearance of the solution. In the cooling and dissolving method, it is preferable to use a closed container in order to avoid mixing of water due to condensation (condensation) during cooling. In addition, in the cooling and heating operation, the pressure is increased during cooling, and the pressure is reduced during heating, Φ, which can shorten the dissolution time. When pressurizing and decompressing, a pressure-resistant container is preferably used. In addition, tritiated cellulose (acetylation degree: 60. 9%, viscosity average degree of polymerization: 299) 20% by mass solution dissolved in methyl acetate by cooling dissolution method, if measured by differential scanning calorimetry (DSC), near 3 3 ° C There are pseudo-phase transition points in the sol state and the gel state, and the gel state is uniform below this temperature. Therefore, the solution must be stored above the pseudo-phase transfer temperature, preferably at the gel phase transfer temperature plus a temperature of about 10 ° C ®. However, the pseudo-phase transfer temperature differs depending on the degree of acetylation of cellulose, the average degree of viscosity of polymerization, the concentration of the solution, or the organic solvent used. From the prepared tritiated cellulose solution (coating solution) ', a tritiated cellulose film was produced by a solvent casting method. The coating solution is cast on a drum or a belt, and the solvent is evaporated to form a thin film. The coating solution before casting is preferably adjusted to have a solid content of -40-200535465 1 8 to 35%. The surface of the drum or belt is preferably finished in advance to be a mirror surface. The casting and drying methods in the solvent casting method are disclosed in U.S. Invention Patent Nos. 2,3 3 6,3 1 0, the same as 2,367,603, the same as 2,492,078, the same as 2,492,977, and the same as 2,492,978 , The same as No. 2,607,704, the same as No. 2,739,069, the same as No. 2,739,070, the British invention patent No. 640,73 1, the same as the specifications of No. 73 6,8 92, the Japanese Patent Publication No. 45-4554, the same as 49-56 1 No. 4, Japanese Patent Application Laid-Open No. 60-176834, same as No. 60-203430, and 62-115035. _ The coating solution is preferably cast on a drum or belt with a surface temperature below 10 ° C. After casting, it is preferably blown with air for 2 seconds or more and dried. The prepared film can also be stripped from the drum or belt, and then dried with high-temperature hot air that gradually changes the temperature from 100 to 160 ° C to evaporate the residual solvent. The above method is disclosed in Japanese Patent Unexamined Publication No. 5- 1 7844. According to this method, the time required from casting to stripping can be shortened. To implement this method, the coating solution must be gelled at the surface temperature of the rotating drum or belt. • It is also possible to use two or more prepared cellulose solutions (coating liquids) and cast two or more layers by a solvent casting method to produce a film. In this case, the coating liquid is cast on a drum or a belt, and then the solvent is evaporated to form a thin film. The coating liquid before casting is preferably adjusted so that its concentration is in the range of 10 to 40% by weight. The surface of the drum or belt is preferably finished in advance to become a mirror surface. When casting more than two layers of tritiated cellulose solution, you can also cast several kinds of -41- 200535465 Tritiated cellulose solution ', which can also take the number set at intervals from the direction of the support. Each casting port is a method for casting a solution containing tritiated cellulose, and forming a layer while forming a film. For example, it can be disclosed in various publications of Japanese Patent Laid-Open No. 6 1-1 584 1 4, the same as Japanese Patent Laid-open No. 1-1 224 1 9, and Japanese Patent Laid-Open No. 1-1 9 82 8 5 Method. In addition, it is also possible to cast the tritiated cellulose solution from two casting ports to form a thin film. For example, Japanese Patent Laid-Open Publication No. 60-27562, Japanese Patent Laid-Open Publication No. 61-94724, Japanese Patent Laid-Open Publication No. 6 1-947245, Japanese Patent Laid-Open Publication No. 6 1-1 048 1 3, The methods disclosed in JP-A-Sho 6 1-1 5 84 1 3, and JP-A Hei 6- 1 34933. In addition, it is also possible to use a state in which a fluid substance of a high-viscosity tritiated cellulose solution is coated with a low-viscosity tritiated cellulose solution as disclosed in Japanese Patent Application Laid-Open No. 56-1 626 1 7. Casting method of high and low viscosity tritiated cellulose solution simultaneously extruded tritiated cellulose film. It is also possible to use two casting openings to peel off the film formed on the support by the first casting opening, and then apply a second casting to one side of the supporting surface to manufacture the film, for example, The method disclosed in Japanese Patent Publication No. 44-20235. There is no particular limitation on the tritiated cellulose solution for casting, and the same or different tritiated cellulose solutions can be used. In order to make the tritiated cellulose layer have several functions, it is preferable to extrude the tritiated cellulose solution according to its function from each casting port. In addition, the tritiated cellulose solution of the present invention may be implemented simultaneously with the solution for forming other functional layers (such as an adhesive layer, a dye layer, an antistatic agent, an anti-halation layer, an ultraviolet absorbing layer, and a polarizing layer). Casting '-42-200535465 to form functional layers and films simultaneously. For a single-layer solution, 'is the thickness of the film that we want, and it is necessary to extrude a cellulose solution with a local viscosity at a cylinder concentration. At this time, the stability of the tritiated cellulose solution is not good, and as a result, a solid substance will be generated, which will cause defects such as concave and convex points, or the planarity will become poor, and most of them will become problematic. As a solution to this problem, if several kinds of tritiated cellulose solutions are delayed from the casting mouth, a high-viscosity solution can be extruded on the support at the same time, thereby not only making the planarity good, but also having Excellent surface film, and by using concentrated tritiated cellulose solution, the drying load can be reduced, and the production rate of the film can be increased. The following plasticizers can be used for the tritiated cellulose film to improve its mechanical properties. The "plasticizer" is a phosphate or carboxylic acid ester. Examples of "phosphates" include: triphenyl phosphate (TPP), and tricresyl phosphate (TCP). "Carboxylic acid esters" are represented by phthalates and citrates. Examples of phthalates include: dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), difluorene phthalate Ester (DOP), diphenyl phthalate (DPP), and diethylhexyl phthalate (DEHP). Examples of the citrates include: o-ethylammonium citrate triacetate (OACTE), and 0-ethylammonium citrate tributyl ester (OACTB). Examples of other carboxylic acid esters include: butyl oleate, methyl ethyl ricinoleate, dibutyl sebacate, various 1,2,4 monophthalate phthalates Formate plasticizers (DMP, DEP, DBP, DOP, DPP, DEHP) are suitable for use, with DEP and DPP being particularly preferred. The addition amount of 200535465 plasticizer is preferably from 0. 1 to 25 mass%, more preferably 1 to 20 mass%, and most preferably 3 to 15 mass%. Anti-deterioration agents (such as antioxidants, peroxide decomposers, free radical inhibitors, metal inertizers, acid trapping agents, amines) can also be added to cellulose acetate. Regarding anti-deterioration agents, they are disclosed in Japanese Patent Laid-Open No. 3-1 9920 1, the same as 5-1907073, the same as 5-1 94 789, the same as 5-271471, and the 6- 1 07854 In each bulletin. The amount of the anti-deterioration agent to be added is from the viewpoint of exhibiting the effect of adding the anti-degradation agent and suppressing the appearance of the anti-degradation agent on the surface of the film. 0. 01 to 1% by mass, and more preferably from 0. 01 to 0. 2% by mass. Examples of particularly desirable anti-deterioration agents are butylated hydroxytoluene (BHT) and tritylamine (TBA). [Extended treatment of tritiated cellulose film] The tritiated cellulose film can be adjusted in retardation by stretching. The stretching ratio is preferably from 3 to 100%. The stretching method can use the traditional method without departing from the scope of patent application, but from the viewpoint of uniformity in the plane, it is particularly preferable to use a tenter to stretch. The tritiated cellulose film of the present invention preferably has a width of 100 cm or more, and the Re 値 nonuniformity of the full width is preferably ± 5 nm ', more preferably 3 nm. In addition, the non-uniformity of Rth 値 is preferably ± 10 nm 'and more preferably: t5 nm. The non-uniformity of Re 値 and Rth 値 in the longitudinal direction is preferably within the range of the non-uniformity in the width direction. -44- 200535465 The stretching process can be carried out during the film formation step, or the roll film wound up after film formation can be stretched. In the former case, stretching can be applied with a residual solvent content, and it is suitable for stretching when the residual solvent content is from 2 to 30%. At this time, it is preferable that the film is transported in the length direction and extended in a direction orthogonal to the length direction so that the late phase axis of the film can be orthogonal to the length direction of the film. The elongation temperature may be appropriately selected depending on the amount of residual solvent and the film thickness during elongation. When extension is applied in a state containing a residual solvent, it is preferably after the extension even after it is dried. The drying method can be the method described in the above-mentioned film formation. The thickness of the stretched tritiated cellulose film is 110 microns or less, preferably from 40 to 110 microns, more preferably from 60 to 110 microns, and most preferably from 80 to 110 microns. This film thickness corresponds to the film thickness of the retardation film of the present invention. [Surface treatment of tritiated cellulose film] The tritiated cellulose film is preferably subjected to a surface treatment. Specific methods include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, or ultraviolet irradiation treatment. Alternatively, a substrate coating may be used as disclosed in Japanese Patent Laid-Open No. 7-33 3 433. From the viewpoint of maintaining the flatness of the film, during such processing, the temperature of the tritiated cellulose film is set below Tg (glass transition temperature), and specifically, it is preferably set below 150 ° C. . When the anti-reflection film of the present invention is used as a transparent protective film for a polarizing plate, 45-200535465 is usually made when the tritiated cellulose is adhered to the polarizing film from the viewpoint of adhesiveness with the polarizing film. To perform an acid treatment or an alkali treatment, that is, a saponification treatment is performed on the tritiated cellulose. From the viewpoint of adhesion, the surface energy of the tritiated cellulose film is preferably 55 mN / m or more, and more preferably 60 mN / m or more and 75 mN / m or less, which can be adjusted by the surface treatment described above. The surface energy of a solid is obtained by the contact angle method, moist heat method, and adsorption method as disclosed in the book "Basics and Applications of Wetting" (Realize, published on December 10, 1989). In the case of the tritiated cellulose film of the present invention, the contact angle method is preferably used. Specifically, the surface energy of two known solutions is dropped on the tritiated cellulose film, and the intersection between the surface of the droplet and the surface of the film is to draw an angle formed by the tangent of the droplet and the surface of the film, and includes The angle of the droplet is defined as the contact angle, and the surface energy of the film can be calculated by calculation. The surface treatment is exemplified by alkaline alkalization treatment, and is specifically described below. The alkaline alkalizing treatment of the tritiated cellulose film is preferably performed by immersing the film surface in an alkaline solution, neutralizing it with an acidic solution, washing it with water, and drying it. The alkaline solution includes a potassium hydroxide solution and a sodium hydroxide solution, and the equivalent concentration of hydroxide ions is preferably from 0.1 mole / m to 3. 0 mole / 1, and more preferably from 0.5 mole / 1 to 2. 0 mole / 1. The temperature of the alkaline solution is preferably in a range of room temperature to 90 ° C, and more preferably in a range of 40 to 70 ° C. From the viewpoint of productivity, it is preferable to apply an alkaline solution, and then perform an alkali treatment, followed by washing with water to remove alkali from the film surface. From the viewpoint of wettability -46-200535465, the coating solvent is preferably an alcohol such as IP A, n-butanol, methanol, ethanol, etc., and it is preferable to add water, propylene glycol, ethylene glycol, etc. to Preparation of alkali dissolution aid. (Antireflection film) [Transparent support] The transparent support of the antireflection film of the present invention is not particularly limited, and a transparent resin film, a transparent resin plate, a transparent resin sheet, or transparent glass can be used. As the transparent resin film, tritiated cellulose film (cellulose triacetate film (refractive index 1. 48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), ethylene terephthalate film, polyether maple film, polyacrylic resin film, polyamine Formate resin films, polyester films, polycarbonate films, polyfluorene films, polyether films, polymethylpentene films, polyetherketone films, (meth) acrylonitrile films, and the like. Among these, a tritiated cellulose film having high transparency, low optical birefringence, and being easy to manufacture is generally the most commonly used protective film for polarizing plates, and cellulose triacetate film is particularly preferred. The thickness of the transparent support is usually from about 25 microns to 1,000 microns. In the halogenated cellulose film of the present invention, a halogenated cellulose film as described above can be used as a retardation film. When used as a support for an antireflection film, it is not necessary to control the retardation, and therefore, the above-mentioned retardation control agent may be contained or not contained. In addition, although the stretching treatment is not required to control the delay, the stretching treatment may be applied to improve drying unevenness, film thickness unevenness due to drying shrinkage, and unevenness of the surface of -47- 200535465. The specific method of the stretching treatment is the same as that of the phase difference film. [Hard Coating] In order to impart physical strength to the thin film of the antireflection film of the present invention, it is necessary to provide a hard coating on at least one of the transparent supports. In the present invention, a low refractive index layer is provided on the hard coating layer, and it is preferable to provide a middle refractive index layer and a high refractive index layer between the hard coating layer and the low refractive index layer to constitute the antireflection film of the present invention. In order to improve the white blurring, image blurring, and dazzling phenomenon, the antireflection film of the present invention must make the surface flat. Specifically, in the characteristics indicating the surface roughness, the center line average roughness (Ra) should be 0. Below 10 microns. Ra is more preferably 0. 0 9 microns or less, more preferably 0. Below 08 microns. In the antireflection film of the present invention, the surface irregularities of the thin film are dominated by the surface irregularities of the hard coating layer. Therefore, it is preferable to control the average roughness of the centerline of the hard coating layer within the above range. Controlling the above-mentioned surface shape also requires controlling the reflectance characteristics. The anti-reflection film of the present invention is to eliminate white blurring, image blurring, dazzling phenomena, and black stability in a bright room. It is preferably an average reflectance relative to the integrated reflectance in a wavelength range from 450 nm to 65 nm. The average 5 ° specular reflectance is set to 65% or more. It is more preferably 70% or more, and still more preferably 75% or more. Moreover, it is also important to control the absolute 値 of the integrated reflectance, and the average 积分 of the integrated reflectance in the wavelength region from 45 0 nm to 65 0 nm is preferably 2. 5 or less, more preferably 2. 3 or less, and more preferably 2. 1 or less. -48- 200535465 The "transparent image sharpness" of the anti-reflection film of the present invention is preferably 65% or more. The transmitted image sharpness is an indicator of the degree of blurring of an image reflected through a film in general. Therefore, a larger value means that the image viewed through the film is more vivid and good. The transmitted image sharpness is preferably 70% or more, and more preferably 80% or more. The above-mentioned transmission image sharpness can be measured according to TIS K7105 using a drawing measuring instrument (ICM-2D type) manufactured by Suga Tester Co., Ltd. and using an optical comb with a gap width of 5 mm. The refractive index of the hard coating layer of the present invention, from the viewpoint of optical design to obtain an anti-reflective film, the refractive index is from 1. 48 to 2. 00 range, preferably from 1. 50 to 1. 90, and more preferably from 1. 50 to 1. 80. In the present invention, since there is at least one low-refractive index layer on the hard coating layer, if the refractive index is less than this range, the anti-reflection will be reduced, and if it is too large, the hue with reflected light will tend to be strong The tendency. The film thickness of the hard coating layer is considered from the viewpoint of imparting sufficient durability and impact resistance to the film, and the thickness of the hard coating layer is usually set to about 0. 5 micrometers to 50 micrometers, preferably 1 micrometer to 20 micrometers, more preferably 2 micrometers to 10 micrometers, and most preferably 3 micrometers to 7 micrometers. In addition, the strength of the hard coating layer, as measured by the "pencil hardness test" according to JIS K5400, is preferably Η or more, more preferably 2H or more, and most preferably 3 Η or more. In the Taber abrasion test in accordance with JIS KK 5400, it is preferable that the amount of abrasion of the sample between before and after the test is smaller. The hard coat layer is preferably formed by cross-linking of a hardening compound by ionizing radiation -49-200535465 'or by a polymerization reaction. For example, a coating composition containing a polyfunctional monomer or polyfunctional oligomer that is hardenable by ionizing radiation can be coated on a transparent support, and then the polyfunctional monomer or polyfunctional oligomer can be crosslinked. Reaction or polymerization. The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably photopolymerizable, electron beam, or radiation polymerizable, and among these, a photopolymerizable functional group is preferred. The photopolymerizable functional group includes a (meth) acrylfluorenyl group, an unsaturated polymerizable functional group such as a vinyl group, a styrene group, an allyl group, and the like, and among them, a (meth) acrylfluorene group is preferred. Specific examples of the "photopolymerizable polyfunctional monomer" having a photopolymerizable functional group include neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, and propylene glycol di (meth) acrylate. (Meth) acrylic diesters of alkylene glycols such as esters; triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate And (meth) acrylic acid diesters of polyoxyalkylene glycols such as propylene glycol di (meth) acrylate; (meth) acrylic acid diesters of polyhydric alcohols such as neopentyl tetrakis (meth) acrylate Class; 2,2-bis (4-mono (allyloxy • diethoxy) phenyl) propane, 2,2-bis (4-mono (allyloxy • polypropoxy) phenyl) propane, etc. (Meth) acrylate diesters of ethylene oxide or propylene oxide adducts. In addition, (meth) acrylic acid epoxy esters, (fluorenyl) methacrylates -50- 200535465 acid esters, and poly (meth) acrylic acid esters are also suitable as polymerizable polyfunctional monomers. Among these, esters of a polyhydric alcohol and (meth) acrylic acid are preferred. More preferred is a polyfunctional monomer having more than three (meth) acrylfluorenyl groups in one molecule. Specifically, the system includes: trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, and 1,2,4-cyclohexane tetra (meth) acrylate , Pentaglycerol triacrylate, neopentaerythritol tetra (meth) acrylate, neopentaerythritol tri (meth) acrylate, neopentaerythritol triacrylate, pentaacrylate Pentaerythritol ester, (di) nepentaerythritol tetra (meth) acrylate, (di) nepentaerythritol hexa (meth) acrylate, trinepentaerythritol triacrylate, trinepentaerythritol Alcohol esters, etc. In this specification, "(meth) acrylate" means "acrylate or methacrylate", and "(meth) acrylfluorenyl" means "acrylfluorenyl or methacrylfluorenyl". Polyfunctional monosystems can use two or more. In the polymerization reaction of the photopolymerizable polyfunctional monomer, a photopolymerization initiator is preferably used. The photo-polymerization initiator is preferably a photo-radical polymerization initiator and a photo-cation polymerization initiator, and particularly preferably a photo-radical polymerization initiator. "Photo-radical polymerization initiators" include, for example, acetophenones, benzophenones, Michelin's benzamylbenzoate, α-pentyloxyester, tetramethyl autumn Lam, 9-thioxanthone, and other commercially available "photo-radical polymerization initiators" include: KAYACURE (DETX-S, BP- 100, BDMK, 200535465 CTX, BMS, 2-EAQ, ABQ, CPTX, EPD, ITX, QTX, BTC, MCA, etc.), Irgacure (65 1,184,500,907) , 3 69, 1173, 295 9, 4265, 4 2 6 3, etc.), Esacure (KIP 1 OOF, KB 1, EB3, BP, X33, KT046, KT37, KIP150, TZT) made by Sartomer. Particularly preferred is a "photo-cracking type" photo-radical polymerization initiator. Photo-cracking photo-radical polymerization initiators are disclosed in "Latest UV Hardening Technology" (P.159, Issuer; Takahiro Ichihiro, Issuing Office; Japan Technical Information Association (Stock), issued in 1991) . Commercially available commercial photo-radical type photo-radical polymerization initiators include Irgacure (651, 184, 907) manufactured by Ciba-Geigy Co., Ltd., Japan. The amount of the photopolymerization initiator used is preferably 0.1 to 100 parts by mass of the multifunctional monomer. A range of 1 to 15 parts by mass, and more preferably a range of 1 to 10 parts by mass. In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the "light sensitizer" include: n-butylamine, triethylamine, tri-n-butylphosphine, Miller's ketone, and 9-oxothiocarpine. Commercially available commercial light sensitizers include KAYACURE (DMBI, EPA), etc., manufactured by Nippon Kayaku Co., Ltd. The photopolymerization reaction is preferably carried out by applying and drying a hard coat layer and then irradiating with ultraviolet rays. The crosslinked or polymerized adhesive of the hard coating has a structure in which the main chain of the polymer is crosslinked or polymerized. Specific examples of the polymer main chain include polyolefins (saturated hydrocarbons), polyethers, polyureas, polyurethanes, poly-52-200535465 esters, polyamines, polyamides, and melamine resins. Polyolefin backbone, polyether backbone and polyurea backbone are preferred, polyolefin backbone and polyether backbone are more preferred, and polyolefin backbone is most preferred. The polyolefin main chain is composed of saturated hydrocarbons. The polyolefin main chain system is produced, for example, by addition polymerization of an unsaturated polymerizable group. The main chain of polyether is bonded with repeating unit by ether bond (10-). The polyether main chain system can be obtained by, for example, ring-opening polymerization of epoxy groups. The polyurea backbone is bonded to repeat units by urea bonds (-NH-CO-NH-). The polyurea main chain system can be obtained by, for example, polycondensation reaction between an isocyanate group and an amine group. The polyurethane main chain is bonded to repeat units by a urethane bond (mono-NH-CO-O-). The polyurethane main chain is obtained by, for example, polycondensation of an isocyanate group with a hydroxyl group (including N-methylol group). The main chain of the polyether is bonded to the repeating unit by an ester bond (one CO — 0-). The polyester main chain is obtained by, for example, polycondensation reaction of a carboxyl group (including a halogenated fluorenyl group) and a hydroxyl group (including an N-methylol group). The polyamine backbone is bonded to repeating units by an amine bond (-NH —). The polyamine main chain is obtained by, for example, ring-opening polymerization of an ethyleneimine group. Polyamine backbones are linked by repeating units with an amine bond (mono-NH-CO-). Polyamine backbone is obtained, for example, by the reaction of isocyanate groups with carboxyl groups (including halogenated fluorenyl groups). The main chain of the melamine resin is obtained by, for example, polycondensation reaction of a thiazole group (such as melamine) and an aldehyde (such as formaldehyde). In addition, the melamine resin has a crosslinked or polymerized structure in its main chain itself. For the purpose of controlling the refractive index of the hard coating, the hard coating adhesive can be added with high refractive index monomers and / or inorganic fine particles. In addition to the function of controlling the refractive index, the inorganic particles can also inhibit the hardening caused by the crosslinking reaction -53- 200535465. Specific examples of the high refractive index monomer include: bis (4-methacrylfluorenylthiophenyl) sulfur, vinylnaphthalene, vinylphenylsulfur, 4-methacrylfluorenylphenyl-4'-methoxy Phenyl sulfide and the like. Specific examples of the inorganic fine particles include oxides of at least one metal selected from silicon, zirconium, titanium, aluminum, indium, zinc, tin, and antimony, other BaS04, CaC03, talc, and kaolin, and the particle size is 100 nm or less , Preferably 50 nm or less. The inorganic fine particles are finely reduced to 1000 nm or less to form a hard coating layer that does not impair transparency. For the purpose of increasing the refractive index of the hard coating layer, the inorganic fine particles are preferably oxide ultrafine particles of at least one metal selected from the group consisting of Zr, Zn, Ti, In, and Sn. Specific examples include Zr02, Ti02, Al2O3, 1η203, Zn0, Sn02, Sb203, ITO, etc. Among these, Zr02 is particularly suitable for use. The addition amount of the high refractive index monomer or inorganic fine particles is preferably from 10 to 90% by mass, and more preferably from 20 to 80% by mass based on the total mass of the binder. Two or more kinds of inorganic fine particles may be used in the hard coating layer. The haze of the hard coating is preferably more than 10%, more preferably from 20% to 80%, still more preferably from 30% to 70%, and the most preferable is to improve the viewing angle characteristics by scattering. From 35% to 60%. In particular, the haze of the hard coating of the second method is preferably 40% or more, more preferably from 40% to 90%, and even more preferably from 45% in order to provide the function of expanding the viewing angle by scattering. Up to 80%, and most preferably from 50% to 70% 200535465 The anti-reflection film of the present invention is a film with very small or almost no surface irregularities and almost no surface haze. It is better to set the internal haze. Therefore, it is preferable that the hard coat layer has internal haze, that is, it has "internal scattering property". In order to provide a function of increasing the viewing angle, it is important to adjust the intensity distribution (scattered light distribution) of the scattered light that can be measured by the goniophotometer in addition to adjusting the haze 値 described above. For example, in the case of a liquid crystal display device, the more the light emitted from the backlight is diffused by the anti-reflection film provided on the surface of the viewing-side polarizing plate, the better the viewing angle characteristics. However, if it is too diffused, the backscattering will become larger, causing the front brightness to be reduced, or the scattering will be too large, which will cause the image sharpness to deteriorate. Therefore, the scattered light intensity distribution of the hard coating must be controlled within a specific range. In order to achieve the desired visual characteristics, the light intensity with an emission angle of 0 ° relative to the scattered light distribution is preferably set to a light intensity with an emission angle of 30 ° which is related to the effect of improving the viewing angle. 0. 01% to 0. 2%, more preferably from 0. 02% to 0. 15%, and preferably from 0. 02% to 0. 1%. The scattered light distribution can be determined by setting an anti-reflection film with a hard coating layer and using the GP-5 type automatic color change photometer made by Murakami Color Technology Research Institute. The method for imparting internal scattering properties to the hard coating layer or the scattering distribution desired by us is preferably to include the light-transmitting particles having a refractive index different from that of the binder in the binder (including the above-mentioned adjustable refractive index) Inorganic particles, etc.). The refractive index difference between the binder and the light-transmitting particles is preferably from 0. 02 to 0. 20. Because if the refractive index difference is less than 0. At 02 o'clock, the light 200535465 diffusion effect will become smaller because the refractive index difference between the two is too small; in addition, 'if the refractive index difference is greater than 0. At 20 o'clock, the light diffusivity is too high, which will cause the film to completely whiten. The above refractive index difference is more preferably from 0. 03 to 〇. 15, and preferably from 0. 04 to 0. 13. The combination of the binder and the light-transmitting particles can be appropriately selected for the purpose of adjusting the refractive index difference. The particle diameter of the light-transmitting particles is preferably from 0.5 μm to 5 μm. If the particle diameter is 0.5 μm or less, the light diffusion effect will be too small, or the rear diffusion will become large, which will reduce the light utilization efficiency. If it is 5 micrometers or more, the surface unevenness becomes large, and as a result, white blurring or glare may occur. In addition, the particle diameter of the light-transmitting particles is preferably from 0. 7 microns to 4. 5 microns, and preferably from 1. 0 micron to 4. 0 microns. When the light-transmitting particles are to be included in the hard coating layer, it is necessary to adjust the film thickness of the hard coating layer so as not to cause surface irregularities due to the particles. Generally, by increasing the thickness of the film so that the protrusions of the particles do not protrude from the surface of the hard coating layer, the surface roughness Ra (average roughness of the center line) can be controlled to be less than or equal to 0.1 micron. The light-transmitting raw particles may be organic particles or inorganic particles. The smaller the particle size is, the less unevenness exists in the 'scattering characteristics'. Therefore, the design of the haze can be easily achieved. The light-transmitting microparticles are preferably plastic microparticles, especially those having a high monthly refractive index and a refractive index difference of the adhesive preferably the number as described above. Organic particles can use polymethyl methacrylate microparticles (refractive index 1 . 49) 'propionic acid ~ styrene copolymer particles (refractive index 丨. 54), melamine 200535465 fine particles (refractive index 1. 57), polycarbonate particles (refractive index 1. 57), styrene particles (refractive index 1. 60), crosslinked polystyrene particles (refractive index 1. 61), polyvinyl chloride particles (refractive index 1. 60). Benzoguanamine-melamine formaldehyde particles (refractive index 1. 68) etc. For inorganic particles, silica particles (refractive index 1. 44), alumina particles (refractive index 1. 63) etc. The particle size of the light-transmitting particles is appropriately selected and used from the above. 5 to 5 micrometers may be sufficient, and two or more kinds may be mixed and used so that it may contain 5 to 30 parts by mass relative to 100 parts by mass of the adhesive. φ In the case of using the light-transmitting particles as described above, since the light-transmitting particles are liable to settle in the binder, an inorganic aggregate such as silicon dioxide may be added to prevent the settling. In addition, the more the amount of the inorganic filler added, the more effective it is to prevent the sedimentation of the light-transmitting particles, but it will adversely affect the transparency of the coating film. Therefore, it is preferable to set the particle size to 0. Inorganic materials below 5 microns have a content of less than about 0 to the extent that the adhesive does not impair the transparency of the coating film. 1 mass% is sufficient. In the case where the hard coating layer is in contact with the transparent support body, the solvent used to form the coating solution required for the hard 0 coating layer is used to achieve the unevenness control of the hard coating surface (to make the unevenness small or flat) and transparent The cohesiveness between the support and the hard coating layer coexists, and it is preferably composed of at least one solvent used to dissolve a transparent support (such as a triethylsulfonyl cellulose support) and not to dissolve the transparent support. It is composed of at least one kind of solvent. More preferably, at least one of the solvents that does not dissolve the transparent support has a high boiling point relative to at least one of the solvents that dissolve the transparent support. It is even more preferable that the solvent with the highest boiling point in the valley of the insoluble -57- 200535465 ia Ming support and the solvent with the highest boiling point in the solvent that can dissolve the transparent support have a boiling point temperature difference of more than 3 ° C, and the most preferred is Above 50 ° C. Solvents that dissolve the transparent support (preferably ethyl acetate) include: Ethers having 3 to 12 carbon atoms (specifically, they include: dibutyl ether, dimethoxy Methane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3 ~ dioxane, 丨, 3,5-trioxakouzan, tetrahydrofuran, Anisyl ether, phenyl ethyl ether, etc.): Ketones having 3 to 12 carbon atoms (specifically, acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl Ketones, cyclopentanone, cyclohexanone, methylcyclohexanone, and methylcyclohexanone, etc .; esters having 3 to 12 carbon atoms (specifically, ethyl formate, propyl formate, formic acid N-pentyl, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, and r-butyrolactam, etc.); organic solvents with two or more functional groups ( Specifically, methyl 2-methoxyacetate, methyl 2-ethoxyacetate, ethyl 2-ethoxyacetate, ethyl 2-ethoxypropionate, 2-methoxyethanol, 2- Propoxyethyl , 2-butoxyethanol, 1,2-diacetoxyacetone, acetamidoacetone, diacetone alcohol, methylacetate, and ethylacetate, etc. These can be used alone or in combination. Used above. The solvent used to dissolve the transparent support is preferably a ketone solvent. The solvent that does not dissolve the transparent support (preferably triethylfluorenyl cellulose) includes: methanol, ethanol, 1-propanol, 2 -Propanol, 1-butanol, 2-butanol, tertiary-butanol, 1-pentyl alcohol, 2-methyl-2 butanol, cyclohexanol, -58- 200535465 isobutyl acetate, methyl Isobutyl ketone, 2-fluorenone, 2-pentanone, 2-hexanone, 2-heptanone, 3-pentanone, 3-heptanone, 4-heptanone These can be used alone or in combination of two or more The mass ratio (A / B) of the total amount of the solvent that dissolves the transparent support (A) to the total amount of the solvent that does not dissolve the transparent support (A / B), preferably from 5/95 to 50/50 , More preferably from 10/90 to 40/60, and even more preferably from 15/85 to 30/70. [Low refractive index layer] The antireflection film of the present invention has a low refractive index layer in the outermost layer. Low The refractive index layer is preferably from 1. 20 to 1. 46, more preferably from 1. 25 to 1. 41 and the best is from 1. 30 to 1. 39. In addition, from the viewpoint of obtaining a low reflectance, it is preferable that the low refractive index layer conforms to the following mathematical formula (1) · mathematical formula (1) (mi / 4) X 0. 7 < ni di < (mi / 4) χ 1.3 In the mathematical formula (1) as described above, mi is a positive odd number, ni is the refractive index of the low refractive index layer, and t is the film thickness (nano) of the low refractive index layer. In addition, λ is a wavelength in the range of 500 to 5 50 nm. The condition that the mathematical formula (1) is met means that in the above-mentioned wavelength range, a mi (positive odd number, usually 1) that can meet the mathematical formula (1) exists. The low-refractive index layer contains a fluorine-containing polymer or a fluorine-containing sol-gel material as a low-refractive index binder. The fluorine-containing polymer or fluorine-containing sol-gel material preferably has a low-refractive index layer surface formed by crosslinking by heat or ionizing radiation with a kinetic friction coefficient of from 0.03 to 0.15, and The contact angle of water is from 90 to 120 °. In the low-refractive-index layer of the present invention, an inorganic binder can be used to improve film strength. It can hydrolyze fluoropolymers used in low-refractive-index layers, in addition to perfluoroalkyl-containing silane compounds (such as (seventeenfluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane) In addition to dehydrated condensates, it includes fluorinated copolymers containing fluoromonomer units and constituent units required to impart cross-linking reactivity as constituents. Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-1,2,2-dimethyl-1,3-dioxazole Etc.), partially or fully fluorinated alkyl ester derivatives of (meth) acrylates (such as Biscoat 6FM (manufactured by Osaka Organic Chemical Co., Ltd.) or M-2020 (manufactured by Daikin Co., Ltd.), etc.), fully or partially fluorinated Vinyl ethers, etc., but are preferably perfluoro, and from the viewpoints of refractive index, solubility, transparency, availability, etc., hexafluoropropylene is particularly preferred for imparting crosslinking reactivity. Examples of the constituent unit include a constituent unit obtained by a polymerization reaction of a monomer having a self-crosslinking functional group in the molecule (for example, glycidyl (meth) acrylate and glycidyl vinyl ether). ; By a monomer having a carboxyl group, a hydroxyl group, an amine group, or a sulfo group [for example, (meth) acrylic acid, hydroxymethyl (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, Hydroxyethyl vinyl ether, hydroxybutyl A constituent unit obtained by polymerization of alkenyl ether, maleic acid, and crotonic acid]; and a polymer reaction (for example, The constituent unit obtained by introducing the cross-linking reactivity (-60-200535465 group) by introducing chlorinated acrylic acid to a hydroxyl group and the like is introduced. In addition to the above-mentioned fluorine-containing monomer units and constituent units for imparting cross-linking reactivity, from the viewpoints of solubility in a solvent, transparency of a thin film, and the like, they may be appropriately combined with fluorine-free monomers. Copolymerization of monomers. The usable monomer units are not particularly limited, and include, for example: olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.): acrylic esters (methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate); methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.); styrene-derived φ ( Styrene, divinylbenzene, vinyltoluene, α-methylstyrene, etc.): vinyl ethers (methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.): vinyl esters (Vinyl acetate, vinyl propionate, vinyl cinnamate, etc.): acrylamides (N-tertiary-butyl acrylamide, N-cyclohexyl acrylamide, etc.); methacrylamide, And acrylonitrile derivatives. An appropriate hardener may be used in combination with this polymer, as disclosed in Japanese Patent Laid-Open No. 10-253 88 and Japanese Patent Laid-Open No. 10-147739. Particularly useful fluoropolymers for low refractive index layers are random copolymers of perfluoroolefins and vinyl ethers or esters. In particular, the fluoropolymer preferably has a group capable of undergoing a cross-linking reaction [for example, a radical reactive group such as a (meth) acrylfluorenyl group or the like, or an epoxy group and an oxetan group, for example. Ring-opening polymerizable group of an alkyl group]. The crosslinkable reactive group containing a polymerizable unit preferably accounts for 5 to 70 mole%, -61 to 200535465, and particularly preferably 30 to 60 mole% of the total polymerizable units of the polymer. In the fluoropolymer of the present invention, a polysiloxane structure is preferably introduced for the purpose of imparting antifouling properties. Although the method for introducing the polysiloxane structure is not particularly limited, it is preferably, for example, Japanese Patent Laid-Open No. 11-1 8962 1, the same as No. 1 -22863 1, JP-A No. 2000-3 1 A method for introducing a polysiloxane block copolymerization component using a polysiloxane macroazo initiator as disclosed in each of Gazette No. 3709, for example, Japanese Patent Application Laid-Open No. 2-25 1 5 5 5 and the same as No. 2-308806 The methods disclosed in the various publications use polysiloxane macromolecules to introduce a polysiloxane graft copolymerization component. These polysiloxane components are preferably from 0.5 to 10% by mass of the polymer, and particularly preferably from 1 to 5% by mass. Concerning imparting antifouling properties, in addition to the above, it is also possible to add a polysiloxane containing a reactive group (for example, KF-100T, X-22-1 69AS, KF-102, X-22-370 1 ΙΕ, X22-1 64B, X-22-5002, X-22-1 73B, X-22-174D, X-22-167B, X-22-161AS (The above are the product names, Shin-Etsu Chemical Industrial company), AK-5, AK-3 0, AK-32 (the above are the product names, manufactured by Toa Kosei), Sairaplein · FM02 75, Sairaplein FM072 1 (the above are manufactured by nitrogen company), etc.). At this time, the polysiloxanes are preferably added to the range of 0.5 to 10% by mass of the total solid content of the low refractive index layer, and particularly preferably from 1 to 5% by mass. In the low refractive index layer of the present invention It is preferable to contain hollow silica particles to achieve the purpose of coexistence of both low refractive index and scratch resistance. The refractive index of the hollow silica particles is from 1.17 to 1.40, preferably from -62- 200535465 1 · 17 to 1 · 3 5, and more preferably from 1. 17 to 1. 30. As used herein, "refractive index" refers to the refractive index of the entire particle, and does not represent the refractive index of silicon dioxide that forms only the shell portion of the hollow silicon dioxide particles. At this time, assuming that the radius of the cavity inside the particle is a and the radius of the shell of the particle is b, the porosity X is calculated according to the mathematical formula (2) shown below. 'Mathematical formula (2): x = (4aa3 / 3) / (47ib3 / 3) X 100. The porosity x is preferably from 10 to 60%, more preferably from 20 to 60%, and most preferably from 30 to 60%. If the hollow silica particles are to have a lower refractive index and an increased porosity, the thickness of the shell becomes smaller and the strength of the particles decreases. Therefore, from the viewpoint of abrasion resistance, particles having a refractive index lower than 1.1 are not usable. The refractive index of the hollow silica particles is measured by an Abbe refractometer (manufactured by AT AGO Co., Ltd.). The manufacturing method of hollow silica particles is disclosed in Japanese Patent Laid-Open No. 2001-233611 or Japanese Patent Laid-Open No. 2002-79616. The coating amount of the hollow silica particles is preferably from 1 mg / m2 to 100 mg / m2, more preferably from 5 mg / m2 to 80 mg / m2, and even more preferably from 10 mg / m2 to 60 mg. / m2. If it is too small, the effect of reducing the refractive index or the effect of improving the scratch resistance will be reduced; if it is too much, it will cause fine unevenness on the surface of the low refractive index layer, making the appearance or integration of black stability, etc. The reflectivity deteriorates. The average particle diameter of the hollow silica particles is preferably from 30 to 150%, more preferably from 35 to 80%, and still more preferably from 40 to 60% of the thickness of the low refractive index layer. In other words, when the thickness of the low refractive index layer is 100 nm, the particle size of the medium 200535465 hollow silica particles is preferably from 30 to 150 nm, and more preferably from 35 to 80 nm. And still more preferably from 40 to 60 nm. If the particle diameter of the hollow silica particles is too small, the ratio of the cavity portion will be reduced, thereby reducing the effect of improving the scratch resistance. However, if it is too large, fine unevenness will be formed on the surface of the low refractive index layer. And this will deteriorate the appearance of black stability or the integrated reflectance, for example. The hollow silica particles can be crystalline or amorphous, and the particle size distribution of the hollow silica particles can be monodisperse particles, polydisperse particles, or even agglomerated particles, as long as they meet the predetermined particle size. Just fine. The shape is best spherical, but it is not a problem even if it has an indefinite shape. The average particle diameter of the hollow silica particles can be measured by an electron microscope photograph. In the present invention, for the purpose of improving abrasion resistance, other inorganic materials and hollow silica particles may be contained. Since the inorganic filler is contained in the low refractive index layer, it is preferably one having a low refractive index, such as magnesium fluoride or silicon dioxide. In particular, from the viewpoints of refractive index, dispersion stability, and cost, it is preferable to use silica particles not containing a cavity. The particle size of the silica-free particles having no cavity is preferably 30 nm to 150 nm, more preferably 35 nm to 80 nm, and most preferably 40 nm to 60 nm the following. In addition, at least one silica particle having an average particle diameter of less than 25% of the thickness of the low refractive index layer (this particle is referred to as a "small-diameter silica particle") is preferably used in combination with a particle diameter as described above. Of silicon dioxide particles (this particle is called "large particle size silicon dioxide particles"). -64- 200535465 Small particle size silica particles can exist in the gaps between large particle size silica particles, so it is useful as a retainer for large particle size silica particles. Small particle size silica particles The average particle diameter is preferably from 1 to 20 nm, more preferably from 5 to 15 nm, and even more preferably from 10 to 15 nm. From the viewpoint of the cost of the raw materials and the effect of the retaining agent, it is preferable to use these silica particles. The silicon dioxide particles can be subjected to physical surface treatments such as plasma discharge treatment and corona discharge, or chemical treatment with a surfactant, a coupling agent or the like, so that the dispersion in the dispersion liquid product or the coating liquid is stable. Make or strengthen the affinity or cohesiveness of the binder ingredients. Particularly preferred is the use of a coupling agent. As the coupling agent, an alkoxy metal compound (titanium coupling agent, silane coupling agent) is preferably used. In particular, the treatment with a silane coupling agent is effective. This coupling agent is used as a surface treatment for applying a surface treatment to the inorganic material of the low-refractive index layer before preparing the coating solution for the low-refractive index layer. However, it is preferable to further add a coupling agent as an additive when preparing a coating liquid for a low refractive index layer, and to use it in the layer. The silica particles are preferably dispersed in the surface-treated medium in advance to reduce the load on the surface treatment. In the present invention, from the viewpoint of abrasion resistance, at least one of the hard coat layer and the low refractive index layer is preferably a hydrolyzate of an organosilane compound and / or a partial condensate thereof, also known as " Sol component "(hereinafter referred to as this). The organosilane compound can be represented by the general formula (3) -65-200535465 as follows: General formula (3) (R1.) Si (χ) "In the general formula (3), R1. Represents a substituted or unsubstituted Alkyl, or substituted or unsubstituted aryl. The radical preferably has a linear, branched or cyclic alkyl group having 1 to 20 2 carbon atoms. Specific examples include methyl, ethyl (Propyl, propyl, butyl, pentyl, heptyl, fluorenyl, decyl, dodecyl, isopropyl, secondary-butyl, tertiary-pentyl, cyclohexyl, cyclopentyl)
。芳基較佳的是具有碳原子數爲從6至20者,芳基之實例 包括苯基和1 一萘基。 X代表水解性基,例如:烷氧基(具有碳原子數爲從ι 至5之;I:兀氧基,例如甲氧基、乙氧基)、鹵素原子(例如 ,C^Br、l)、及以R2c〇〇所代表之基(其中該…較佳 爲氫原子、具有碳原子數爲從1至5之烷基,例如 CH3COO、C2H5COO ) 。X更佳爲烷氧基,且特佳爲甲氧基 或乙氧基。 πι代表1至3之整數。當存在數個rig或X時,該數個 R1Q或X可爲相同或不同。m較佳爲1或2,且特佳爲1。 在R1G中所含有的取代基並無特殊的限定,但是此等之 貫例包括:鹵素原子(例如,氣、氯、溴)、經基、氫硫 基、羧基、環氧基、烷基(例如,甲基、乙基、異丙基、 丙基、三級-丁基)、芳基(例如,苯基、萘基)、芳香族 雜環基(呋喃基、吡唑基、吡啶基)、烷氧基(例如,甲 氧基、乙氧基、異丙氧基、己氧基)、芳氧基(例如,苯 氧基)、烷硫基(例如,甲硫基、乙硫基)、芳硫基(例 -66- 200535465 如,苯硫基)、烯基(例如,乙烯基、1 一丙烯基)、醯氧 基(例如,乙醯氧基、丙烯醯氧基、甲基丙烯醯氧基)、 烷氧基羰基(例如,甲氧羰基、乙氧羰基)、芳氧基羰基 (例如’苯氧羰基)、胺甲醯基(例如,胺甲醯基、N —甲 基胺甲醯基、N,N —二甲基胺甲醯基、N —甲基一 N—啐基 胺甲醯基)、及醯胺基(例如,乙醯胺基、苯甲醯胺基、 丙烯醯胺基、甲基丙烯醯胺基)。此等取代基各自可進一 步加以取代。 當存在數個R1()時,至少一個較佳爲經取代之烷基或經 鲁 取代之芳基。 特定言之,較佳爲一種以如下所示通式(3 )所代表之具 有乙烯基聚合性取代基之有機矽烷化合物: 通式(4). The aryl group is preferably one having 6 to 20 carbon atoms. Examples of the aryl group include a phenyl group and a 1-naphthyl group. X represents a hydrolyzable group, for example: an alkoxy group (having a carbon number from ι to 5; I: a carboxy group such as a methoxy group, an ethoxy group), a halogen atom (for example, C ^ Br, l) , And a group represented by R2c00 (wherein ... is preferably a hydrogen atom and an alkyl group having 1 to 5 carbon atoms, such as CH3COO, C2H5COO). X is more preferably alkoxy, and particularly preferably methoxy or ethoxy. πm represents an integer from 1 to 3. When there are several rigs or Xs, the R1Qs or Xs may be the same or different. m is preferably 1 or 2, and particularly preferably 1. The substituent contained in R1G is not particularly limited, but these conventional examples include: a halogen atom (eg, gas, chlorine, bromine), a hydroxyl group, a hydrogenthio group, a carboxyl group, an epoxy group, an alkyl group ( For example, methyl, ethyl, isopropyl, propyl, tertiary-butyl), aryl (eg, phenyl, naphthyl), aromatic heterocyclic (furanyl, pyrazolyl, pyridyl) , Alkoxy (for example, methoxy, ethoxy, isopropoxy, hexyloxy), aryloxy (for example, phenoxy), alkylthio (for example, methylthio, ethylthio) , Arylthio (eg, -66- 200535465 such as phenylthio), alkenyl (eg, vinyl, 1-propenyl), ethoxy (eg, ethoxy, propenyloxy, methacryl) Methoxy), alkoxycarbonyl (for example, methoxycarbonyl, ethoxycarbonyl), aryloxycarbonyl (for example, 'phenoxycarbonyl), carbamate (for example, carbamate, N-methylamine) Formamyl, N, N-dimethylaminoformamyl, N-methyl-N-amidinomethylformamyl), and amidino (eg, ethylamido, benzamidine, Acrylamide, methacrylamido). Each of these substituents may be further substituted. When several R1 () are present, at least one is preferably a substituted alkyl group or a substituted aryl group. Specifically, an organic silane compound having a vinyl polymerizable substituent represented by the following general formula (3) is preferable: General formula (4)
夂丨。)>x) η 3-η夂 丨. ) > x) η 3-η
在通式(4)中,Ri代表氫原子、甲基、甲氧基、烷氧 基羰基、氰基、氟原子或氯原子。烷氧基羰基之實例包括 甲氧鑛基和乙氧羯基。…較佳爲氫原子、甲基、甲氧基、 甲氧羰基、氰基、氟原子或氯原子,更佳爲氫原子、甲基 、甲氧鑛基、氟原子或氯原子,且特佳爲氫原子或甲基。 Y代表單鍵 —n(r20)co - 一 COO—、 —0—、及 0C0 — CON(R20)— N(R21)CON(R22) —* -67- 200535465 係表不在通式(4)中之雙鍵之鍵結位置。R2G、R21及R22 代表氫原子及碳原子數爲從1至5之院基。γ較佳爲單鍵 、*— coo—、及 *一 C0N(R2())—,更佳爲單鍵及 *— COO — ,且特佳爲*—coo—。 L代表碳原子數爲從1至2 0之二價連結基。其具體實例 包括:經取代或未經取代之伸烷基、經取代或未經取代之 伸芳基、具有內部連結基(例如,醚、酯、醯胺基)之經 取代或未經取代之伸烷基、及具有內部連結基之經取代或 未經取代之伸芳基。L較佳爲經取代或未經取代之伸烷基 、經取代或未經取代之伸芳基、或具有內部連結基之伸院 基’更佳爲未經取代之伸烷基、未經取代之伸芳基、或具 有內部醚或酯連結基之未經取代之伸烷基,且特佳爲未經 取代之伸烷基、或具有內部醚或酯連結基之伸烷基。取代 基之實例包括:鹵素、羥基、氫硫基、羧基、環氧基、烷 基和芳基。此等取代基各自可進一步加以取代。 η代表0或1。當存在數個X時,數個X可爲相同或不 同。η較佳爲〇。 R1 ^具有與在通式(3 )中相同的意義,且較佳爲未經取 代之烷基、或未經取代之芳基。 X具有與在通式(3)中相同的意義,且較佳爲鹵素原子 及未經取代之烷氧基,更佳爲氯原子及未經取代之具有碳 原子數爲從1至5之烷氧基,還更佳爲具有碳原子數爲從 1至3之烷氧基,且特佳爲甲氧基。 以通式(3 )和通式(4 )所代表之化合物可以其兩種或 -68- 200535465 以上組合倂用以作爲有機矽烷化合物。以通式(3 )和通式 (4 )所代表之化合物的具體實例是展示於下,但是本發明 並不受限於此等。 M-1 ^S^0—(CH2)3- S 卜(OCH3)3In the general formula (4), Ri represents a hydrogen atom, a methyl group, a methoxy group, an alkoxycarbonyl group, a cyano group, a fluorine atom, or a chlorine atom. Examples of the alkoxycarbonyl group include a methoxide group and an ethoxyfluorenyl group. ... preferably a hydrogen atom, a methyl group, a methoxy group, a methoxycarbonyl group, a cyano group, a fluorine atom or a chlorine atom, more preferably a hydrogen atom, a methyl group, a methoxy group, a fluorine atom or a chlorine atom, and particularly preferably Is a hydrogen atom or a methyl group. Y represents a single bond—n (r20) co-a COO—, —0—, and 0C0 — CON (R20) — N (R21) CON (R22) — * -67- 200535465 The system is not in the general formula (4) The position of the double bond. R2G, R21 and R22 represent a hydrogen atom and a radical having a carbon number of 1 to 5. γ is preferably a single bond, * —coo—, and * —C0N (R2 ()) —, more preferably a single bond and * —COO—, and particularly preferably * —coo—. L represents a divalent linking group having 1 to 20 carbon atoms. Specific examples include: substituted or unsubstituted alkylene groups, substituted or unsubstituted alkylene groups, substituted or unsubstituted alkyl groups having internal linking groups (eg, ethers, esters, amido groups) Alkyl groups, and substituted or unsubstituted arylene groups having an internal linking group. L is preferably a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkylene group, or an alkylene group having an internal linking group. More preferably, it is an unsubstituted alkylene group, unsubstituted An alkylene group or an unsubstituted alkylene group having an internal ether or ester linking group, and particularly preferably an unsubstituted alkylene group or an alkylene group having an internal ether or ester linking group. Examples of the substituent include: halogen, hydroxy, hydrogenthio, carboxyl, epoxy, alkyl, and aryl. Each of these substituents may be further substituted. η represents 0 or 1. When there are multiple Xs, the multiple Xs may be the same or different. η is preferably 0. R 1 ^ has the same meaning as in the general formula (3), and is preferably an unsubstituted alkyl group or an unsubstituted aryl group. X has the same meaning as in the general formula (3), and is preferably a halogen atom and an unsubstituted alkoxy group, more preferably a chlorine atom and an unsubstituted alkane having 1 to 5 carbon atoms. The oxy group is more preferably an alkoxy group having 1 to 3 carbon atoms, and particularly preferably a methoxy group. The compounds represented by the general formula (3) and the general formula (4) can be used as an organic silane compound in combination of two or more of -68- 200535465. Specific examples of the compounds represented by the general formula (3) and the general formula (4) are shown below, but the present invention is not limited thereto. M-1 ^ S ^ 0-(CH2) 3- S (OCH3) 3
V 0 M-2 ^C.0-(CH2)3-Si-(0CH3)3V 0 M-2 ^ C.0- (CH2) 3-Si- (0CH3) 3
II Ο Μ-3 ^C.0-(CH2)3-Si-(0C2H5)3 η ΟII Ο Μ-3 ^ C. 0- (CH2) 3-Si- (0C2H5) 3 η Ο
Μ-4 o_(ch2)3 一 Si—(OC2H5)3Μ-4 o_ (ch2) 3-Si— (OC2H5) 3
II Ο -69- 200535465 M-5 ^j-icn^-sr-iocn^ o M-6II Ο -69- 200535465 M-5 ^ j-icn ^ -sr-iocn ^ o M-6
Y7-(CH2)3-Si-(OC2H5)3 O M-7Y7- (CH2) 3-Si- (OC2H5) 3 O M-7
^c.〇-(CH2)2-Si-(OCH3)3 II O^ c.〇- (CH2) 2-Si- (OCH3) 3 II O
M-8M-8
^c.〇-(CH2)4-Si-(OC2H5)3 II O M-9^ c.〇- (CH2) 4-Si- (OC2H5) 3 II O M-9
CH2OCH2CH2_Si — (OCH3>3CH2OCH2CH2_Si — (OCH3 > 3
M-10M-10
ch2och2ch2-ch2och2ch2-
Si-(OCH3)2Si- (OCH3) 2
在此等化合物之中,較佳爲(M — 1) 、(M — 2)和(M —5 )。 有機矽烷之水解•縮合反應可在含有或不含溶劑下實施 ,但是欲能均勻地混合成份,較佳爲使用有機溶劑。其適 當的實例包括:醇類、芳香族碳氫化合物、醚類、酮類和 -70- 200535465 酯類。 溶劑較佳爲一種能溶解有機矽烷和觸媒之溶劑。從製程 的觀點來考慮,則較佳爲使用有機溶劑作爲塗佈液、或作 爲塗佈液之一部份,且當與其他材料例如含氟聚合物混合 時,較佳爲該等不會削弱可溶性或可分散性者。 在此等有機溶劑之中,醇類之實例包括:一元醇和二元 醇。該一元醇較佳爲具有碳原子數爲從1至8之飽和脂肪 族醇。「醇類」之具體實例包括:乙醇、正-丙醇、異-丙 醇、正-丁醇、二級-丁醇、三級-丁醇、乙二醇、二甘醇、 三甘醇、乙二醇一 丁基醚、及醋酸伸乙酯乙二醇一乙基醚 〇 此外,「芳香族碳氫化合物」之具體實例包括:苯、甲 苯和二甲苯。「醚類」之具體實例包括:四氫呋喃和二噁 烷。「酮類」之具體實例包括:丙酮、甲基乙基酮、甲基 異丁基酮和二異丁基酮。「酯類」之具體實例包括:醋酸 乙酯、醋酸丙酯、醋酸丁酯和碳酸丙烯酯。 此等溶劑之一種可單獨使用、或其兩種或以上用作爲混 合物。 在反應中之固體含量濃度並無特殊的限定,但是通常爲 從1至90%,且較佳爲從20至70%。 有機矽烷之水解及後續的縮合反應通常是在觸媒之存在 下實施。「觸媒」之實例包括:無機酸類,例如氫氯酸、 硫酸和硝酸;有機酸類,例如草酸、醋酸 '甲酸、甲磺酸 和甲苯磺酸;無機酸鹽類,例如氫氧化鈉、氫氧化鉀和氨 -71 - 200535465 ;有機鹼類,例如三乙胺和吡啶;金屬烷氧化物,例如三 異丙氧基鋁和四異丙氧基锆;及金屬螯合化合物。但是從 溶膠之製造穩定性或溶膠液之保存穩定性的觀點來考慮, 則較佳爲酸觸媒(無機酸類、有機酸類)及金屬螯合化合 物。在此等觸媒之中,關於無機酸較佳爲氫氯酸和硫酸, 而關於有機酸較佳爲該等具有在水中之酸解離常數(pKa 値(2 5 °C ))爲4.5或以下者;更佳爲氫氯酸、硫酸,及 具有在水中之酸解離常數爲3.0或以下之有機酸;且還更 佳爲氫氯酸、硫酸、及具有在水中之酸解離常數爲2.5或 以下之有機酸;更佳爲具有在水中之酸解離常數爲2.5或 以下之有機酸,還更佳爲甲磺酸、草酸、鄰苯二甲酸和丙 二酸;且特佳爲草酸。 水解·縮合反應是藉由添加相對於每莫耳之有機矽烷水 解性基爲從0.3至2莫耳,較佳爲從〇 · 5至1莫耳之水,且 在含有或不含上述溶劑及觸媒之存在下,在25至i〇0°C攪 拌所獲得之溶液來實施。 若水解性基爲烷氧化物且觸媒爲有機酸時,則由於有機 酸之羧基或磺基將提供質子,可減少水之添加量,相對於 有機砍丨兀之1旲耳!^兀執化物基的水之添加重爲從〇至2莫 耳,較佳爲從0至1.5莫耳,更佳爲從〇至1莫耳,且特 佳爲從0至〇·5莫耳。若以醇用作爲溶劑時,則實質地未 添加水的情形時也是可適用。 觸媒之使用量,若觸媒爲無機酸時,則相對於水解性基 爲從0·01至10莫耳%,較佳爲從0.1至5莫耳。/。,若觸媒 200535465 爲有機酸時,則其最佳使用量將根據水之添加量而不同; 但是若添加水時,則相對於水解性基爲從〇 · 〇 1至1 〇莫耳% 5且更佳爲從〇· 1至5莫耳%,若實質地未添加水時,則相 對於水解性基爲從1至5 00莫耳%,較佳爲從1 〇至200莫 耳%,更佳爲從20至200莫耳%,進一步更佳爲從5〇至 150莫耳%,且特佳爲從50至120莫耳%。 反應係在從25至100°C下加以攪拌來實施,但是較佳爲 適當地視有機矽烷之反應性來加以調整。 金屬螯合化合物只要其係以選自Zr、Ti或A1之金屬爲 中心金屬者,則並無特殊的限定,可適合於使用。只要爲 屬於該範疇,也可倂用兩種或以上之金屬螯合化合物。可 使用於本發明之「金屬螯合化合物」之具體實例包括:「 鉻螯合化合物」,例如三-正-丁氧基乙基乙醯醋酸锆、二-正-丁氧基-雙(乙基乙醯醋酸)鉻、正-丁氧基一參(乙醯 醋酸乙鹽)锆、肆(正-丙基乙醯醋酸)鉻、肆(乙醯基乙 醯醋酸)锆、和肆(乙基乙醯醋酸)銷;「鈦螯合化合物 」,例如二異丙氧基一雙(乙基乙醯醋酸)鈦、二異丙氧 基一雙(乙醯醋酸)鈦、和二異丙氧基一雙(乙醯基丙酮 )鈦;及鋁螯合化合物,例如二異丙氧基乙基乙醯醋酸鋁 、二異丙氧基乙醯基醋酮酸鋁、異丙氧基-雙(乙基乙醯 醋酸)鋁、異丙氧基一雙(乙醯基醋酮酸)鋁、參(乙基 乙醯醋酸)鋁、參(乙醯基醋酮酸)鋁、一乙醯基醋酮醯 基一雙(乙基乙醯醋酸)鋁。 在此等金屬螯合化合物之中,較佳爲三-正-丁氧基乙基 -73- 200535465 乙醯醋酸銷、二異丙氧基雙(乙醯基醋酮酸)鈦、二異丙 氧基乙基乙醯醋酸鋁、及參(乙基乙醯醋酸)鋁。此等金 屬螯合化合物可單獨或以其兩種或以上之混合物來使用。 也可使用此等金屬螯合化合物之部份水解產物。 本發明之金屬螯合化合物之使用量,從縮合反應之速度 及製成爲塗膜時的膜強度來看,較佳爲0.01至50質量%, 更佳爲從0 · 1至5 0質量%,且特佳爲從0 · 5至1 0質量%, 以有機矽烷化合物爲基準。 有機矽烷的溶膠之適當的含量係根據欲添加的層而不同 ,但是對低折射率層之添加量,較佳爲相對於低折射率層 的全固體份爲從〇 · 1至5 0質量%,更佳爲從〇. 5至2 0質量 %,且特佳爲從1至1 0質量%。對低折射率層以外的層之 添加量,較佳爲含有相對於層(添加層)的全固體份之從 0.001至50質量%,更佳爲從0.01至20質量%,進一步更 佳爲從0.05至10質量%,且特佳爲從0.1至5質量%。 在低折射率層中,相對於含氟聚合物之有機矽烷的溶膠 之使用量,較佳爲從5至100質量%,更佳爲從5至40質 量%,進一步更佳爲從8至3 5質量%,且特佳爲從1〇至 3 0質量%。若使用量太少時,則難以獲得本發明之功效, 若使用量若太多時,則折射率將增加或膜之形狀·面狀將 惡化,因此不佳。 爲形成本發明之低折射率層所使用之塗佈液的溶劑組成 ,可爲單獨及混合者中任一者,混合者時,則沸點爲i 〇 〇 t以下之溶劑較佳爲從50至100%,更佳爲從80至100% 200535465 ,進一步更佳爲從90至100%,且最佳爲100%。若沸點爲 l〇〇t以下之溶劑爲50%以下時,則乾燥速度將變得非常遲 緩,使得塗佈面狀惡化且造成塗佈膜厚之不均勻性,結果 導致反射率等光學特性也將惡化。在本發明中由於使用含 有較多的沸點爲1 〇〇 °C以下之溶劑之塗佈液,因此可解決 此難題。 沸點爲l〇〇°C以下之溶劑的實例包括:碳氫化合物,例 如己烷(沸點:68.7 °C )〔在下文中「°C」是省略〕、庚 烷(98.4)、環己烷(80.7)和苯(80.1);鹵化碳氫化合 物,例如二氯甲烷(39_8 )、氯仿(61.2 )、四氯化碳( 76.8 )、1,2—二氯乙烷(83.5 )和三氯乙烯(87.2 );醚 類,例如二乙基醚(34.6)、二異丙基醚(68.5)、二丙基 醚(90·5 )和四氫呋喃(66);酯類,例如甲酸乙酯(54.2 )、醋酸甲酯(57.8)、醋酸乙酯(77.1)和醋酸異丙酯( 89);酮類,例如丙酮(56.1)和2 — 丁酮(亦即,甲基乙 基酮)(79.6 ):醇類,例如甲醇(64.5 )、乙醇(78.3 ) 、2 —丙醇(82.4)和1一丙醇(97.2);氰基化合物,例 如乙腈(81.6 )和丙腈(97.4 );及二硫化碳(46.2 )。其 中較佳爲酮類、酯類,特佳爲酮類。在酮類中,較佳爲2 一丁 二酮。 沸點爲l〇〇°C以上之溶劑的實例包括:啐烷(125.7 )、 甲苯(110.6)、二甲苯(138)、四氯乙烯(121.2)、氯 苯(13 1.7 )、二噁烷(101.3 )、二 丁基醚(142.4 )、醋 酸異丁酯(118)、環己酮(155.7) 、2 —甲基一 4 一戊酮 -75- 200535465 (=甲基異 丁基酮(MIBK) ,115.9) 、1— 丁醇(117.7 )、N,N —甲基甲醯胺(153) 、N,N —甲基乙醯胺(166 )和二甲基亞颯(189)。彼等之中,較佳爲環己酮和2 — 甲基—4 一戊酮。 以上述組成物之溶劑稀釋低折射率層成份,藉此即可調 製低折射率層用塗佈液。塗佈液濃度是藉由考慮到塗佈液 之黏度及層材料之比重等適當地加以調整,較佳爲從〇. 1 至20質量%,且更佳爲從1至1 0質量%。 (高折射率層) 在本發明之抗反射膜中,可在硬質塗層上設置高折射率 層、中折射率層以提高抗反射性。本發明之高折射率層、 中折射率層之折射率較佳爲從1.5 5至2.40。以下之本說明 書中也有將該高折射率層與中折射率層統稱爲「高折射率 層」之情形。另外在本發明中所謂高折射率層、中折射率 層、低折射率層之「高」、「中」、「低」係表示層彼此 之相對的折射率之大小關係。若就與透明支撐體之關係來 討論折射率,較佳爲能符合:透明支撐體 >低折射率層、及 高折射率層 >透明支撐體之關係。 〔高折射率層之無機微粒〕 本發明之高折射率層含有在硬質塗層所說明之用以使硬 質塗層高折射率化爲目的所使用之無機微粒。無機微粒較 佳爲含有以選自鈷、鋁和鉻中之至少一種元素的二氧化鈦 爲主成份之無機微粒。「主成份」是意謂一種在構成顆粒 之成份中的含量(質量%)是最高的成份。 200535465 用於本發明之以二氧化鈦爲主成份的無機微粒較佳的是 折射率爲從1.90至2.80,更佳爲從2.10至2.80,且最佳 爲從2.20至2.80。 以二氧化鈦爲主成份的無機微粒之質量平均一次粒徑較 佳爲從1至200奈米,更佳爲從1至150奈米,還更佳爲 從1至100奈米,且特佳爲從1至80奈米。 無機微粒之粒徑可藉由光散射法或電子顯微鏡照相來測 定。無機微粒之比表面積較佳爲從10至400 m2/g,更佳爲 從20至200 m2/g,且最佳爲從30至150m2/g。 關於以二氧化鈦爲主成份的無機微粒之結晶結構,主成 份較佳爲金紅石結構、金紅石/銳鈦礦混合結晶、銳鈦礦結 構、或不定形狀結構,且更佳爲金紅石結構。「主成份」 是意謂一種在構成顆粒之成份中的含量(質量% )是最高 的成份。 藉由將選自Co (鈷)、A1 (鋁)和Zr (鍩)之至少一種 元素倂用入以二氧化鈦爲主成份的無機微粒中,則可抑制 二氧化鈦之光觸媒活性,且改良用於本發明之高折射率層 之耐候性。 該元素較佳爲Co (鈷)。也較佳的是組合倂用兩種或以 上之元素。 以Ti (鈦)爲基準,Co (鈷)、A1 (鋁)或Zr (鉻)之 含量較佳爲從0.05至30質量%,更佳爲從0.1至10質量% ,還更佳爲從0.2至7質量%,且特佳爲從0.3至5質量% ,且最佳爲從0.5至3質量%。 -77- 200535465Among these compounds, (M-1), (M-2) and (M-5) are preferred. The hydrolysis and condensation reaction of organic silanes can be carried out with or without a solvent. However, if the ingredients are to be mixed uniformly, an organic solvent is preferably used. Suitable examples include: alcohols, aromatic hydrocarbons, ethers, ketones, and -70-200535465 esters. The solvent is preferably a solvent capable of dissolving the organosilane and the catalyst. From a process point of view, it is preferable to use an organic solvent as the coating liquid, or as a part of the coating liquid, and when mixed with other materials such as a fluoropolymer, it is preferable that these do not weaken Soluble or dispersible. Among these organic solvents, examples of the alcohols include monohydric alcohols and dihydric alcohols. The monohydric alcohol is preferably a saturated aliphatic alcohol having 1 to 8 carbon atoms. Specific examples of "alcohols" include: ethanol, n-propanol, iso-propanol, n-butanol, secondary-butanol, tertiary-butanol, ethylene glycol, diethylene glycol, triethylene glycol, Ethylene glycol monobutyl ether and ethylene glycol acetate ethyl ether. In addition, specific examples of the "aromatic hydrocarbon" include benzene, toluene, and xylene. Specific examples of "ethers" include: tetrahydrofuran and dioxane. Specific examples of "ketones" include: acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone. Specific examples of "esters" include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate. One of these solvents may be used alone, or two or more thereof may be used as a mixture. The solid content concentration in the reaction is not particularly limited, but is usually from 1 to 90%, and preferably from 20 to 70%. The hydrolysis and subsequent condensation reaction of the organosilane are usually carried out in the presence of a catalyst. Examples of the "catalyst" include: inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid; organic acids such as oxalic acid, acetic acid 'formic acid, methanesulfonic acid, and toluenesulfonic acid; inorganic acid salts such as sodium hydroxide, hydroxide Potassium and ammonia-71-200535465; organic bases, such as triethylamine and pyridine; metal alkoxides, such as aluminum triisopropoxide and zirconium tetraisopropoxide; and metal chelate compounds. However, from the viewpoints of production stability of the sol or storage stability of the sol solution, acid catalysts (inorganic acids, organic acids) and metal chelate compounds are preferred. Among these catalysts, hydrochloric acid and sulfuric acid are preferable as regards inorganic acids, and those having an acid dissociation constant in water (pKa 値 (25 ° C)) of 4.5 or less are preferable as regards organic acids. More preferably hydrochloric acid, sulfuric acid, and organic acids having an acid dissociation constant in water of 3.0 or less; and still more preferably hydrochloric acid, sulfuric acid, and having an acid dissociation constant of 2.5 or less in water Organic acids; more preferably organic acids having an acid dissociation constant of 2.5 or less in water, still more preferably methanesulfonic acid, oxalic acid, phthalic acid, and malonic acid; and particularly preferably oxalic acid. The hydrolysis / condensation reaction is performed by adding water having a hydrolyzable group of from 0.3 to 2 moles per mole, and preferably from 0.5 to 1 mole, with or without the above solvents and In the presence of the catalyst, the obtained solution was stirred at 25 to 100 ° C. for implementation. If the hydrolyzable group is an alkoxide and the catalyst is an organic acid, the carboxyl group or sulfo group of the organic acid will provide protons, which can reduce the amount of water added. The weight of the compound-based water is from 0 to 2 moles, preferably from 0 to 1.5 moles, more preferably from 0 to 1 mole, and particularly preferably from 0 to 0.5 moles. When an alcohol is used as a solvent, it is applicable even when water is not substantially added. When the amount of the catalyst used is an inorganic acid, it is from 0.01 to 10 mol% with respect to the hydrolyzable group, and preferably from 0.1 to 5 mol. /. If the catalyst 200535465 is an organic acid, the optimum amount will be different according to the amount of water added; but when water is added, it will be from 0.001 to 10 mol% with respect to the hydrolyzable group 5 It is more preferably from 0.1 to 5 mole%, and when water is not substantially added, it is from 1 to 500 mole%, and more preferably from 10 to 200 mole%, relative to the hydrolyzable group. It is more preferably from 20 to 200 mole%, even more preferably from 50 to 150 mole%, and particularly preferably from 50 to 120 mole%. The reaction is carried out by stirring at 25 to 100 ° C, but it is preferably adjusted appropriately depending on the reactivity of the organosilane. The metal chelate compound is not particularly limited as long as it is a metal selected from the group consisting of Zr, Ti, and A1, and can be suitably used. As long as it belongs to this category, two or more kinds of metal chelate compounds may be used. Specific examples of the "metal chelate compound" that can be used in the present invention include: "chromium chelate compound" such as tri-n-butoxyethylacetonium zirconium acetate, di-n-butoxy-bis (ethyl Acetyl Acetate Acetate) Chromium, n-Butoxy One Ginseng (Acetyl Acetate Acetate) Zirconium, Acetyl Acetate (Acetyl Acetyl Acetate Acetate) Chromium, Acetyl Acetyl Acetate Acetate, Zirconium Acetate Acetylacetate) pins; "titanium chelate compounds" such as titanium diisopropoxy-bis (ethylacetamidineacetate), diisopropoxy-bis (acetamidineacetate) titanium, and diisopropoxy -Bis (ethenylacetone) titanium; and aluminum chelate compounds, such as aluminum diisopropoxyethylacetamate acetate, aluminum diisopropoxyacetylate acetate, isopropyloxy-bis ( Ethyl acetoacetate) aluminum, isopropoxy bis (ethyl ethyl acetonate) aluminum, ginseng (ethyl acetic acid acetic acid) aluminum, ginseng (ethyl acetoacetic acid) aluminum, monoethyl acetic acid Ketofluorenyl-bis (ethylacetoacetate) aluminum. Among these metal chelate compounds, tri-n-butoxyethyl-73-200535465 is preferred. Acetyl acetate, diisopropoxy bis (ethylacetoacetonate) titanium, and diisopropyl Oxyethyl ethylacetate aluminum acetate and ginseng (ethyl ethylacetate) aluminum. These metal chelate compounds can be used alone or as a mixture of two or more kinds thereof. Partial hydrolysis products of these metal chelate compounds can also be used. The amount of the metal chelate compound of the present invention is preferably from 0.01 to 50% by mass, and more preferably from 0.1 to 50% by mass, from the viewpoint of the speed of the condensation reaction and the strength of the film when it is made into a coating film. In addition, it is particularly preferably from 0.5 to 10% by mass based on an organic silane compound. The appropriate content of the organosilane sol varies depending on the layer to be added, but the amount of addition to the low refractive index layer is preferably from 0.1 to 50% by mass relative to the total solids content of the low refractive index layer. , More preferably from 0.5 to 20% by mass, and particularly preferably from 1 to 10% by mass. The addition amount of the layers other than the low-refractive index layer is preferably from 0.001 to 50% by mass, more preferably from 0.01 to 20% by mass, and even more preferably from 0.001 to 50% by mass based on the total solids content of the layer (additive layer). 0.05 to 10% by mass, and particularly preferably from 0.1 to 5% by mass. In the low-refractive-index layer, it is preferably from 5 to 100% by mass, more preferably from 5 to 40% by mass, and even more preferably from 8 to 3, with respect to the usage amount of the fluoropolymer-containing organosilane sol. 5% by mass, and particularly preferably from 10 to 30% by mass. If the amount is too small, it is difficult to obtain the effects of the present invention. If the amount is too large, the refractive index will increase or the shape and surface of the film will be deteriorated. The solvent composition of the coating liquid used to form the low-refractive index layer of the present invention may be either alone or mixed, and when mixed, the solvent having a boiling point of less than or equal to i 00t is preferably from 50 to 100%, more preferably from 80 to 100% 200535465, even more preferably from 90 to 100%, and most preferably 100%. If the solvent with a boiling point of 100t or less is 50% or less, the drying speed will become very slow, which will cause the coating surface to deteriorate and cause non-uniformity in the thickness of the coating film. As a result, optical characteristics such as reflectance will also result. Will worsen. In the present invention, since a coating liquid containing a large amount of a solvent having a boiling point of 1000 ° C or less is used, this problem can be solved. Examples of solvents having a boiling point of 100 ° C or lower include: hydrocarbons such as hexane (boiling point: 68.7 ° C) [hereinafter "° C" is omitted], heptane (98.4), cyclohexane (80.7 ) And benzene (80.1); halogenated hydrocarbons such as dichloromethane (39_8), chloroform (61.2), carbon tetrachloride (76.8), 1,2-dichloroethane (83.5) and trichloroethylene (87.2) ); Ethers, such as diethyl ether (34.6), diisopropyl ether (68.5), dipropyl ether (90 · 5), and tetrahydrofuran (66); esters, such as ethyl formate (54.2), acetic acid Methyl esters (57.8), ethyl acetate (77.1), and isopropyl acetate (89); ketones, such as acetone (56.1) and 2-butanone (that is, methyl ethyl ketone) (79.6): alcohols For example, methanol (64.5), ethanol (78.3), 2-propanol (82.4) and 1-propanol (97.2); cyano compounds, such as acetonitrile (81.6) and propionitrile (97.4); and carbon disulfide (46.2). Among them, ketones and esters are preferred, and ketones are particularly preferred. Among ketones, 2-diacetyl is preferred. Examples of solvents having a boiling point of 100 ° C or higher include: oxane (125.7), toluene (110.6), xylene (138), tetrachloroethylene (121.2), chlorobenzene (13 1.7), dioxane (101.3 ), Dibutyl ether (142.4), isobutyl acetate (118), cyclohexanone (155.7), 2-methyl-4-pentanone-75-200535465 (= methyl isobutyl ketone (MIBK), 115.9), 1-butanol (117.7), N, N-methylformamide (153), N, N-methylacetamide (166), and dimethylmethylene (189). Among them, cyclohexanone and 2-methyl-4pentanone are preferred. By diluting the components of the low refractive index layer with the solvent of the above composition, the coating liquid for the low refractive index layer can be adjusted. The concentration of the coating liquid is appropriately adjusted in consideration of the viscosity of the coating liquid, the specific gravity of the layer material, etc., and is preferably from 0.1 to 20% by mass, and more preferably from 1 to 10% by mass. (High-refractive index layer) In the antireflection film of the present invention, a high-refractive index layer and a middle-refractive index layer may be provided on the hard coat layer to improve the anti-reflection property. The refractive index of the high refractive index layer and the medium refractive index layer of the present invention is preferably from 1.5 5 to 2.40. In the following description, the high refractive index layer and the middle refractive index layer may be collectively referred to as a "high refractive index layer". In the present invention, the "high", "medium", and "low" of the high-refractive index layer, the middle-refractive index layer, and the low-refractive index layer indicate the magnitude relationship of the relative refractive indices of the layers. If the refractive index is discussed in relation to the transparent support, it is preferable to be able to satisfy the relationship of the transparent support > a low refractive index layer and the high refractive index layer > a transparent support. [Inorganic fine particles of high refractive index layer] The high refractive index layer of the present invention contains the inorganic fine particles used for the purpose of increasing the refractive index of the hard coating layer described in the hard coating layer. The inorganic fine particles are preferably inorganic fine particles containing titanium dioxide containing at least one element selected from the group consisting of cobalt, aluminum, and chromium as a main component. The "main component" means a component whose content (% by mass) is the highest among the components constituting the particles. 200535465 The inorganic fine particles mainly containing titanium dioxide used in the present invention preferably have a refractive index of 1.90 to 2.80, more preferably 2.10 to 2.80, and most preferably 2.20 to 2.80. The mass average primary particle diameter of the titanium dioxide-based inorganic fine particles is preferably from 1 to 200 nm, more preferably from 1 to 150 nm, still more preferably from 1 to 100 nm, and particularly preferably from 1 to 80 nm. The particle diameter of the inorganic fine particles can be measured by a light scattering method or an electron microscope photograph. The specific surface area of the inorganic fine particles is preferably from 10 to 400 m2 / g, more preferably from 20 to 200 m2 / g, and most preferably from 30 to 150 m2 / g. Regarding the crystal structure of the inorganic fine particles containing titanium dioxide as a main component, the main component is preferably a rutile structure, a mixed crystal of rutile / anatase, an anatase structure, or an irregular shape structure, and more preferably a rutile structure. The "main component" means a component whose content (% by mass) is the highest among the components constituting the granules. By using at least one element selected from the group consisting of Co (cobalt), A1 (aluminum), and Zr (鍩) into the inorganic fine particles containing titanium dioxide as a main component, the photocatalytic activity of titanium dioxide can be suppressed, and it is improved for use in the present invention Weatherability of the high refractive index layer. The element is preferably Co (cobalt). It is also preferable to use two or more elements in combination. Based on Ti (titanium), the content of Co (cobalt), A1 (aluminum) or Zr (chromium) is preferably from 0.05 to 30% by mass, more preferably from 0.1 to 10% by mass, and even more preferably from 0.2 To 7% by mass, and particularly preferably from 0.3 to 5% by mass, and most preferably from 0.5 to 3% by mass. -77- 200535465
Co (鈷)、A1 (鋁)或Zr (鉻)可存在於以二氧化鈦爲 主成份的無機微粒之至少內部或表面二者之一,但是元素 較佳爲存在於以二氧化鈦爲主成份的無機微粒之內部,最 佳爲在其內部和表面兩者。Co (cobalt), A1 (aluminum), or Zr (chromium) may be present in at least either the interior or the surface of the inorganic particles containing titanium dioxide as the main component, but the element is preferably present in the inorganic particles containing titanium dioxide as the main component Inside, it is best to be both inside and outside.
Co (鈷)、A1 (鋁)或Zr (锆)是可藉由各種不同的方 法使其(例如,摻雜)存在於以二氧化鈦爲主成份的無機 微粒之內部。該方法之實例包括··離子注入法法〔參閱青 木安,第18冊、第5期、第262至268頁(1 998年)〕 ’及揭示於日本公開發明專利公報之特開平第1 1 -263 62〇 號、特表平第1 1 - 5 1 2 3 3 6號、歐洲公開發明專利第0 3 3 5 7 7 3 號、及日本發明專利公報特開平第5-3 3 08 25號。 特佳的一種方法是在形成以二氧化鈦爲主成份的無機微 粒之製程中導入Co (鈷)、A1 (鋁)或Zr (锆)(參閱例 如曰本發明專利公報特表平第n_5 1 23 36號、歐洲公開發 明專利第03 3 5 773號、及日本公開發明專利公報特開平第 5-330825 號)。Co (cobalt), A1 (aluminum), or Zr (zirconium) can be made (for example, doped) inside the inorganic fine particles mainly composed of titanium dioxide by various methods. Examples of this method include the ion implantation method [see Aoki An, Vol. 18, No. 5, pp. 262-268 (1998)] and Japanese Patent Laid-Open Publication No. 11 1 -263 No. 62, Special Table No. 1 1-5 1 2 3 3 No. 6, European Published Invention Patent No. 0 3 3 5 7 7 No. 3, and Japanese Invention Patent Gazette No. 5-3 3 08 25 . A particularly preferred method is to introduce Co (cobalt), A1 (aluminum), or Zr (zirconium) into a process for forming inorganic particles containing titanium dioxide as a main component (see, for example, Japanese Patent Publication No. N_5 1 23 36 No. 3, European Patent Publication No. 03 3 5 773, and Japanese Patent Publication No. 5-330825).
Co (鈷)、A1·(鋁)或Zr (銷)呈氧化物之形態存在也 是較佳的。 以一氧化鈦爲主成份的無機微粒可根據目的而進一步含 有其他元素。可含有其他元素作爲雜質。其他元素之實例 包括:Sn (錫)、Sb (銻)、Cu (銅)、Fe (鐵)、Μη ( 錳)、Pb (鉛)、Cd (鎘)、As (砷)、Cr (鉻)、Hg ( 录)、Zn (鋅)、Mg (鎂)、Si (矽)、P (磷)和 S (硫 -78- 200535465 〔無機微粒之表面處理〕 用於本發明之以二氧化鈦爲主成份的無機微粒可爲經表 面處理者。表面處理較佳爲藉由使用無機化合物或有機化 合物來實施。用於表面處理之無機化合物的實例包括:含 鈷無機化合物(例如,C〇02、C〇203、C〇304 )、含鋁無機 化合物(例如,Al2〇3、Al(OH)3 )、含锆無機化合物(例 如,Zr02、Zr(OH)4 )、含矽無機化合物(例如,Si02 )、 及含鐵無機化合物(例如,Fe203 )。 此等之中,較佳爲含鈷無機化合物、含鋁無機化合物及 含銷無機化合物,特佳爲含鈷無機化合物;用於Α1(ΟΗ)3 表面處理之有機化合物的實例包括:多元醇、鏈烷醇胺、 硬脂酸、矽烷偶合劑和鈦酸鹽偶合劑。此等之中,最佳爲 矽烷偶合劑,例如以如上所示之通式(3 )或通式(4 )所 表示之化合物。 矽烷偶合劑之含量較佳爲高折射率層的全固體份之從1 至90質量%,更佳爲從2至80質量%,且特佳爲從5至 5 0質量%。 鈦酸鹽偶合劑之實例包括:金屬烷氧化物,例如四甲氧 基鈦、四乙氧基欽和四異丙基欽、及「Preneact」(例如, KR-TTS、KR-46B、KR-5 5 和 KR-41B,味之素(股)公司 製)。 用於本發明之較佳的有機化合物之實例包括:多元醇、 鏈烷醇胺及其他具有陰離子性之有機化合物。此等之中, 特佳爲具有羧基、磺酸基或磷酸基之有機化合物。 200535465 較佳爲使用硬脂酸、月桂酸、油酸、亞麻油酸和次亞麻 油酸。 用於表面處理之有機化合物較佳爲進一步具有交聯性或 聚合性官能基。交聯性或聚合性官能基之實例包括:可在 自由基類之作用下進行加成反應/聚合反應之乙烯性不飽和 基(例如,(甲基)丙烯基、烯丙基、苯乙烯基、乙烯氧 基):陽離子性聚合性基(例如,環氧基、氧雜環丁烷基 、乙烯氧基);及聚縮合反應性基(例如,水解性矽烷基 、N -羥甲基)。此等之中,較佳爲具有乙烯性不飽和基之 官能基。 此等表面處理也可以其兩種或以上之組合倂用。特佳爲 組合倂用含鋁有機化合物及含锆無機化合物。 本發明之以二氧化鈦爲主成份的無機微粒可藉由在曰本 發明專利特開平第200 1 - 1 66 1 04號所揭示之表面處理而致 使其具有芯/殻結構。 在高折射率層所含有之以二氧化鈦爲主成份的無機微粒 的形狀較佳爲卵石狀、球形狀、立方體狀、紡錘形狀、或 不定形狀,且更佳爲不定形狀或紡錘形狀。 〔無機微粒之分散劑〕 爲分散在本發明之高折射率層中所使用之以二氧化鈦爲 主成份的無機微粒是可使用分散劑。 用以分散在本發明之高折射率層中所使用之以二氧化鈦 爲主成份的無機微粒,較佳爲使用具有陰離子性基之分散 劑。 -80- 200535465 關於陰離子性基,一種具有酸性質子之基,例如羧基、 磺酸基(及磺基)、磷酸基(及膦基)、磺醯胺基、及其 鹽類是有效的。此等之中,較佳爲羧基、磺酸基、膦酸基 、及其鹽類;且更佳爲羧基和磷酸基。在分散劑之每一分 子中所含有的陰離子性基之數目是一個或以上。 茲就更進一步改良無機微粒之分散性而言,可含有數個 陰離子性基。陰離子性基之平均數目較佳爲2個或以上, 更佳爲5個或以上,且特佳爲10個或以上。而且,在分散 劑之一分子中可含有數種陰離子性基。 分散劑較佳爲進一步含有交聯性或聚合性官能基。交聯 性或聚合性官能基之實例包括:乙烯性不飽和基(例如, 可在自由基類之作用下進行加成反應/聚合反應之(甲基) 丙烯醯基、烯丙基、苯乙烯基、乙烯氧基):陽離子性聚 合性基(例如,環氧基、氧雜環丁烷基、乙烯氧基);及 聚縮合反應性基(水解性矽烷基、N -羥甲基);較佳爲具 有乙烯性不飽和基之官能基。 用以分散在本發明之高折射率層中所使用之以二氧化鈦 爲主成份的無機微粒之分散劑,較佳爲一種具有陰離子性 基及交聯性或聚合性官能基,且同時在側鏈具有交聯性或 聚合性官能基之分散劑。 具有陰離子性基及交聯性或聚合性官能基,且同時在側 鏈具有交聯性或聚合性官能基之分散劑的質量平均分子量 (Mw)並無特殊的限定,但是其較佳爲1,000或以上,更 佳爲從2,000至1,000,000,還更佳爲從5,000至200,000, 200535465 且特佳爲從1 0,000至1 00,000。 關於陰離子性基,較佳爲具有酸性質子之基,例如羧基 、磺酸基(磺基)、磷酸基(膦基)、磺醯胺基等之具有 酸性質子之基、或其鹽類。此等之中,較佳爲羧基、磺酸 基、磷酸基、或其鹽類,且更佳爲羧基和磷酸基。在分散 劑之每一分子中所含有的陰離子性基之數目較佳爲2個或 以上,更佳爲5個或以上,且特佳爲10個或以上。而且, 在分散劑之一分子中可含有數種陰離子性基。 具有陰離子性基及交聯性或聚合性官能基,且同時在側 鏈具有交聯性或聚合性官能基之分散劑是在側鏈或在末端 具有陰離子性基。在側鏈導入陰離子性基之方法,可由例 如使含有陰離子性基之單體(例如(甲基)丙烯酸酯、順 丁烯二酸、部份酯化順丁烯二酸、亞甲基丁二酸、巴豆酸 、(甲基)丙烯酸2-羧基乙酯、(甲基)丙烯酸2—磺基 乙酯、一磷酸一 2—(甲基)丙烯醯氧基乙酯等聚合之方法 ,對具有羥基、胺基等之聚合物使酸酐作用之方法等之利 用高分子反應來合成。 在側鏈具有陰離子性基之分散劑中,含陰離子性基重複 單元之比例爲從1(Γ4至100莫耳%,較佳爲從1至50莫耳 %,且特佳爲從5至20莫耳%,以全部重複單元爲基準。 另一方面,在末端導入陰離子性基之方法,可以在含陰 離子性基之鏈轉移劑(例如硫乙醇酸等)之存在下進行聚 合反應之方法,使用含陰離子性基之聚合引發劑(例如和 光純藥工業性V-501)進行聚合反應之方法等來合成。 200535465 特佳爲在側鏈具有陰離子性基之分散劑。 交聯性或聚合性官能基之實例包括:乙烯性不飽和基( 例如,可在自由基類之作用下進行加成反應/聚合反應之( 甲基)丙烯基、烯丙基、苯乙烯基、乙烯氧基);陽離子 性聚合性基(例如,環氧基、氧雜環丁烷基、乙烯氧基) ;及聚縮合反應性基(水解性矽烷基、N -羥甲基)。此等 之中,較佳爲具有乙烯性不飽和基之官能基。 在分散劑之每一分子所含有的交聯性或聚合性官能基之 數目平均値較佳爲2個或以上,更佳爲5個或以上,且特 佳爲1 0個或以上。而且,在分散劑之一分子中可含有數種 交聯性或聚合性官能基。 可用於本發明之較佳的分散劑之「在側鏈具有乙烯性不 飽和基重複單元」的實例包括:聚一 1,2 —丁二烯結構、聚 —1,2 —異戊二烯結構,及一種與特定殘基(一 CO OR或一 C0HNR之R基)鍵結之(甲基)丙烯酸酯或醯胺重複單元 。該「特定殘基(R基)」之實例包括:—(CH2)n — CRi=CR2R3 ' - (CH2〇)n- CH2CRi = CR2R3 ' - (CH2CH2〇)n —0 C H 2 C R i == C R 2 R 3 、 一 (C H 2) η _ N H — CO — 0 — C H 2 C R i = C R 2 R 3、—( C H 2) n _ _ C O — C R i = C R 2 R 3、及— (CH2CH20)2 — X〔式中,該心至R3各爲氫原子、鹵素原子 、具有碳原子數爲從1至20之烷基、芳基、烷氧基、或芳 氧基;Ri可與R2或R3相互結合以形成環,η是1至10之 整數,且X是二環戊二烯基殘基〕。「酯殘基R」之具體 實例包括:一 CH2CH = CH2、-CH2CH20— CH2CH = CH2、— 200535465 CH2CH2OC〇CH = CH2 、 — CH2CH2OCOC(CH3) = CH2 、 一 CH2C(CH3) = CH2 、 — CH2CH = CH — C6H5 、 — C H 2 C H 2 〇 C O C H = C H — C 6 H 5 、 一 C H 2 C H 2 一 NHCOO — CH2CH = CH2、及一CH2CH20 — X〔其中該X是二環戊二烯 基殘基〕。「醯胺殘基 R」之具體實例包括:-CH2CH = CH2、— CH2CH2 — Y〔其中該Y是1—環己烯基殘 基〕、一 CH2CH2- oco- CH = CH2、及一 CH2CH2- OCO — C(CH3)= CH2。 在該具有乙烯性不飽和基之分散劑中,係將自由基(在 Φ 聚合性化合物之聚合反應步驟中之聚合反應引發自由基或 成長自由基)添加到不飽和鍵基,以造成份子之間直接或 藉由聚合性化合物之聚合反應鏈的加成聚合反應,結果介 於分子之間形成交聯,藉此完成硬化。另一可行的方法是 在分子中之原子(例如,在鄰接不飽和鍵基之碳原子上的 氫原子)是藉由自由基引拔以產生聚合物自由基,且該聚 合物自由基是彼此鍵結,使得分子之間形成交聯,藉此完 成硬化。 Φ 在側鏈導入交聯或聚合性官能基之方法,例如日本專利 特開平第3 -24965 3號公報等所揭示,可藉由經實施交聯或 含聚合性官能基的單體(例如,(甲基)丙烯酸烯丙酯、 (甲基)丙烯酸縮水甘油酯、甲基丙烯酸三烷氧基矽烷基 丙酯等)之共聚合,丁二烯或異戊二烯之共聚合,具有3 -氯丙酸酯部份的乙烯單體之共聚合後實施脫氯化氫之方 法;利用高分子反應的交聯或聚合性官能基之導入(例如 -84- 200535465 對含羧基聚合物的含環氧基乙烯單體之高分子反應)等方 法來合成。 除含陰離子性基重複單元以外,含交聯性或聚合性官能 基單元可構成全部重複單元,但是較佳爲在全部交聯化或 重複單元中佔有從5至50莫耳%,且更佳爲從5至30莫 耳%。 本發明之較佳的分散劑,可爲一種與除具有交聯性或聚 合性官能基及陰離子性基之單體以外之適當的單體之共聚 物。共聚合反應成份並無特殊的限定,但是考慮到例如分 散穩定性、與其他單體成份之相容性、及所形成薄膜之強 度等各種不同的觀點來加以選擇。此等之較佳的實例包括 :(甲基)丙烯酸甲酯、(甲基)丙烯酸正-丁酯、(甲基 )丙烯酸三級-丁酯、(甲基)丙烯酸環己酯、及苯乙烯。 本發明之較佳的分散劑之形態並無特殊的限定,但是較 佳爲嵌段共聚物或無規共聚物,且從成本和易合成性的觀 點來考慮,則特佳爲無規共聚物。 用於本發明之較佳的分散劑之具體實例是展示於下’但 是用於本發明之分散劑並不受限於此等。除非另外指示, 此等爲無規共聚物。 -85- 200535465It is also preferable that Co (cobalt), A1 · (aluminum), or Zr (pin) exists in the form of an oxide. The inorganic fine particles mainly containing titanium monoxide may further contain other elements depending on the purpose. Other elements may be contained as impurities. Examples of other elements include: Sn (tin), Sb (antimony), Cu (copper), Fe (iron), Mn (manganese), Pb (lead), Cd (cadmium), As (arsenic), Cr (chromium) , Hg (record), Zn (zinc), Mg (magnesium), Si (silicon), P (phosphorus) and S (sulfur-78- 200535465 [Surface treatment of inorganic particles] Titanium dioxide is used as the main component in the present invention The inorganic fine particles may be surface-treated. The surface treatment is preferably carried out by using an inorganic compound or an organic compound. Examples of the inorganic compound used for the surface treatment include: cobalt-containing inorganic compounds (for example, Co.02, Co. 203, Co.304), aluminum-containing inorganic compounds (for example, Al203, Al (OH) 3), zirconium-containing inorganic compounds (for example, Zr02, Zr (OH) 4), silicon-containing inorganic compounds (for example, Si02) , And iron-containing inorganic compounds (for example, Fe203). Among these, cobalt-containing inorganic compounds, aluminum-containing inorganic compounds, and marketing inorganic compounds are preferred, and cobalt-containing inorganic compounds are particularly preferred; for A1 (ΟΗ) 3 Examples of surface-treated organic compounds include: polyols, alkanolamines, stearic acid, silanes Mixture and titanate coupling agent. Among these, a silane coupling agent is preferable, for example, a compound represented by the general formula (3) or the general formula (4) shown above. The content of the silane coupling agent is preferably The total solid content of the high refractive index layer is from 1 to 90% by mass, more preferably from 2 to 80% by mass, and particularly preferably from 5 to 50% by mass. Examples of the titanate coupling agent include: metal alkane oxidation Materials, such as tetramethoxytitanium, tetraethoxycin and tetraisopropylcin, and "Preneact" (eg, KR-TTS, KR-46B, KR-5 5 and KR-41B, Ajinomoto (shares )). Examples of preferred organic compounds used in the present invention include: polyhydric alcohols, alkanolamines, and other anionic organic compounds. Among these, particularly preferred are carboxyl, sulfonic or Phosphate-based organic compounds. 200535465 It is preferred to use stearic acid, lauric acid, oleic acid, linoleic acid, and linolenic acid. The organic compound used for surface treatment preferably further has a crosslinkable or polymerizable functional group. Examples of crosslinkable or polymerizable functional groups include: Ethylene unsaturated groups (for example, (meth) propenyl, allyl, styryl, and vinyloxy) that undergo addition reaction / polymerization under action: cationic polymerizable groups (for example, epoxy, Oxetanyl, vinyloxy); and polycondensation-reactive groups (eg, hydrolyzable silyl, N-hydroxymethyl). Among these, functional groups having ethylenically unsaturated groups are preferred. These surface treatments can also be used in combination of two or more of them. Particularly preferred are aluminum-containing organic compounds and zirconium-containing inorganic compounds used in combination. The inorganic particles containing titanium dioxide as the main component of the present invention can be used in Japan The surface treatment disclosed in Japanese Patent Laid-Open No. 200 1-1 66 1 04 results in a core / shell structure. The shape of the inorganic fine particles containing titanium dioxide as a main component contained in the high refractive index layer is preferably a pebble shape, a spherical shape, a cubic shape, a spindle shape, or an irregular shape, and more preferably an irregular shape or a spindle shape. [Dispersant for Inorganic Fine Particles] The inorganic fine particles containing titanium dioxide as a main component for dispersing in the high refractive index layer of the present invention are dispersants which can be used. It is preferable to use a dispersant having an anionic group to disperse the inorganic fine particles containing titanium dioxide as the main component used in the high refractive index layer of the present invention. -80- 200535465 Regarding the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic group (and a sulfo group), a phosphate group (and a phosphine group), a sulfonamido group, and a salt thereof is effective. Among these, a carboxyl group, a sulfonic acid group, a phosphonic acid group, and a salt thereof are preferred; and a carboxyl group and a phosphate group are more preferred. The number of anionic groups contained in each molecule of the dispersant is one or more. In order to further improve the dispersibility of the inorganic fine particles, it may contain several anionic groups. The average number of anionic groups is preferably 2 or more, more preferably 5 or more, and particularly preferably 10 or more. Moreover, several molecules of anionic groups may be contained in one molecule of the dispersant. The dispersant preferably further contains a crosslinkable or polymerizable functional group. Examples of the crosslinkable or polymerizable functional group include: ethylenically unsaturated groups (for example, (meth) acrylfluorenyl, allyl, styrene that can undergo addition / polymerization reaction under the action of radicals) Group, vinyloxy group): cationic polymerizable group (for example, epoxy group, oxetanyl group, vinyloxy group); and polycondensation reactive group (hydrolyzable silane group, N-hydroxymethyl group); A functional group having an ethylenically unsaturated group is preferred. The dispersant used to disperse the inorganic fine particles mainly containing titanium dioxide used in the high-refractive index layer of the present invention is preferably one having an anionic group and a crosslinkable or polymerizable functional group, and at the same time in a side chain Dispersant with crosslinkable or polymerizable functional group. The mass average molecular weight (Mw) of the dispersant having an anionic group and a crosslinkable or polymerizable functional group and having a crosslinkable or polymerizable functional group at the side chain is not particularly limited, but it is preferably 1,000. Or more, more preferably from 2,000 to 1,000,000, still more preferably from 5,000 to 200,000, 200535465 and particularly preferably from 10,000 to 100,000. The anionic group is preferably a group having an acidic proton, for example, a group having an acidic proton, such as a carboxyl group, a sulfonic acid group (sulfo group), a phosphate group (phosphino group), or a sulfonamido group, or a salt thereof. . Among these, a carboxyl group, a sulfonic acid group, a phosphate group, or a salt thereof is preferred, and a carboxyl group and a phosphate group are more preferred. The number of anionic groups contained in each molecule of the dispersant is preferably 2 or more, more preferably 5 or more, and particularly preferably 10 or more. Moreover, several molecules of anionic groups may be contained in one molecule of the dispersant. A dispersant having an anionic group and a crosslinkable or polymerizable functional group and having a crosslinkable or polymerizable functional group at the side chain at the same time has an anionic group at the side chain or at the terminal. The method for introducing an anionic group into a side chain can be performed by, for example, making an anionic group-containing monomer (for example, (meth) acrylate, maleic acid, partially esterified maleic acid, methylene butadiene Acid, crotonic acid, 2-carboxyethyl (meth) acrylate, 2-sulfoethyl (meth) acrylate, 2- (meth) acryloxyethyl monophosphate, etc. Polymers such as hydroxyl and amine groups are synthesized by a method of reacting an acid anhydride with a polymer. In a dispersant having an anionic group in a side chain, the proportion of repeating units containing anionic groups is from 1 (Γ4 to 100 mol). Ear%, preferably from 1 to 50 mole%, and particularly preferably from 5 to 20 mole%, based on all repeating units. On the other hand, the method of introducing an anionic group at the end can include anions A method of polymerizing a polymer in the presence of a chain transfer agent (such as thioglycolic acid), and a polymerization method using a polymerization initiator containing an anionic group (such as Wako Pure Chemical Industries V-501). 200535465 Especially good for side chain Anionic group dispersant. Examples of crosslinkable or polymerizable functional groups include: ethylenically unsaturated groups (for example, (meth) acrylic groups that can undergo addition / polymerization under the action of free radicals, Allyl, styryl, vinyloxy); cationic polymerizable groups (eg, epoxy, oxetanyl, vinyloxy); and polycondensation reactive groups (hydrolyzable silane, N -Hydroxymethyl). Among these, functional groups having ethylenically unsaturated groups are preferred. The number of crosslinkable or polymerizable functional groups per molecule of the dispersant is preferably 2 on average. Or more, more preferably 5 or more, and particularly preferably 10 or more. Furthermore, one molecule of the dispersant may contain several kinds of crosslinkable or polymerizable functional groups. It can be used in the present invention. Examples of the "dispersing unit having an ethylenically unsaturated group in a side chain" of a good dispersant include a poly1,2-butadiene structure, a poly1,2-isoprene structure, and a kind of (A CO OR or a C0HNR R group) bonded (meth) acrylic acid Or amidine repeat units. Examples of the "specific residue (R group)" include: — (CH2) n — CRi = CR2R3 '-(CH2〇) n- CH2CRi = CR2R3'-(CH2CH2〇) n —0 CH 2 CR i == CR 2 R 3, one (CH 2) η _ NH — CO — 0 — CH 2 CR i = CR 2 R 3, — (CH 2) n _ _ CO — CR i = CR 2 R 3 , And — (CH2CH20) 2 — X [wherein the core to R3 are each a hydrogen atom, a halogen atom, and an alkyl group, an aryl group, an alkoxy group, or an aryloxy group having a carbon number of 1 to 20; Ri may be combined with R2 or R3 to form a ring, η is an integer of 1 to 10, and X is a dicyclopentadienyl residue]. Specific examples of "ester residue R" include: -CH2CH = CH2, -CH2CH20-CH2CH = CH2,-200535465 CH2CH2OC〇CH = CH2,-CH2CH2OCOC (CH3) = CH2,-CH2C (CH3) = CH2,-CH2CH = CH — C6H5, — CH 2 CH 2 〇COCH = CH — C 6 H 5, —CH 2 CH 2 —NHCOO — CH2CH = CH2, and —CH2CH20 — X [wherein X is a dicyclopentadienyl residue] . Specific examples of "amidoamine residue R" include: -CH2CH = CH2,-CH2CH2-Y [wherein Y is a 1-cyclohexenyl residue], a CH2CH2- oco-CH = CH2, and a CH2CH2- OCO — C (CH3) = CH2. In the dispersant having an ethylenically unsaturated group, radicals (polymerization-initiated radicals or growing radicals in the polymerization reaction step of the Φ polymerizable compound) are added to unsaturated bond groups to cause the Addition polymerization reaction between polymerizable compounds directly or through a polymerization reaction chain results in the formation of cross-linking between molecules, thereby completing hardening. Another possible method is that the atoms in the molecule (for example, hydrogen atoms on the carbon atom adjacent to the unsaturated bond group) are extracted by free radicals to generate polymer radicals, and the polymer radicals are each other Bonding allows cross-linking between molecules, thereby completing hardening. Φ A method for introducing a cross-linking or polymerizable functional group into a side chain, for example, as disclosed in Japanese Patent Laid-Open No. 3-24965 3, etc., can be performed by performing cross-linking or a polymerizable functional group-containing monomer (for example, Copolymerization of allyl (meth) acrylate, glycidyl (meth) acrylate, trialkoxysilylpropyl methacrylate, etc.), copolymerization of butadiene or isoprene, having 3- The method of dehydrochlorination is carried out after the copolymerization of the chloropropionate ethylene monomers; the cross-linking or the introduction of polymerizable functional groups using polymer reactions (for example, -84- 200535465 for epoxy groups containing carboxyl polymers) Polymerization of ethylene monomer) and other methods. In addition to the anionic group-containing repeating unit, the crosslinkable or polymerizable functional group-containing unit may constitute all the repeating units, but it is preferably from 5 to 50 mol% in all the crosslinked or repeating units, and more preferably It is from 5 to 30 mol%. The preferred dispersant of the present invention may be a copolymer with an appropriate monomer other than a monomer having a crosslinkable or polymerizable functional group and an anionic group. The copolymerization reaction component is not particularly limited, but is selected in consideration of various viewpoints such as dispersion stability, compatibility with other monomer components, and strength of the formed film. Preferred examples of these include: methyl (meth) acrylate, n-butyl (meth) acrylate, tertiary-butyl (meth) acrylate, cyclohexyl (meth) acrylate, and styrene . The form of the preferred dispersant of the present invention is not particularly limited, but is preferably a block copolymer or a random copolymer, and is particularly preferably a random copolymer from the viewpoint of cost and ease of synthesis. . Specific examples of the preferred dispersant used in the present invention are shown below ', but the dispersant used in the present invention is not limited to these. Unless otherwise indicated, these are random copolymers. -85- 200535465
C02CH2CH=CH2 co2h COOR χ/y/z是莫耳比率 X y z R Mw P,⑴ 80 20 0 — 40,000 P-(2) 80 20 0 — 110,000 P - (3) 80 20 0 — 10,000 P-(4) 90 10 0 一 40.000 P-⑸ 50 50 0 一 40,000 PK6) 30 20 50 CH2CH2CHa 30.000 P-C7) 20 30 50 CH2CH2CH2CH3 50,000 P-⑻ 70 20 10 CH(CH3)3 60,000 P-⑻ 70 20 10 -ch2chch2ch2ch2ch3 ch2ch3 150,000 P-(10) 40 30 30 15,000 200535465C02CH2CH = CH2 co2h COOR χ / y / z is the mole ratio X yz R Mw P, ⑴ 80 20 0 — 40,000 P- (2) 80 20 0 — 110,000 P-(3) 80 20 0 — 10,000 P- (4 ) 90 10 0-40.000 P-⑸ 50 50 0-40,000 PK6) 30 20 50 CH2CH2CHa 30.000 P-C7) 20 30 50 CH2CH2CH2CH3 50,000 P-⑻ 70 20 10 CH (CH3) 3 60,000 P-⑻ 70 20 10 -ch2chch2ch2ch2ch3 ch2ch3 150,000 P- (10) 40 30 30 15,000 2005 35 465
"tA七 C02CH2CH=CH2 A Mw —CH2—CH— p-(11) I COOH —CH2—CH— 20,000 P-(12) I co2ch2ch2cooh —ch2-ch- 30,000 P-<13) S03Na CHg 100,000 P-(14) I —ch2-c_ I co2ch2ch2so3h ch3 20,000 P-(15) I —CHg_C— 0 I II C02CH2CH2〇P(〇H)2 50,000 P-(16) —ch2-ch—— 0 C02CH2CH20 -f- CH2 OP (OH) 2 15,000" tA 七 C02CH2CH = CH2 A Mw —CH2—CH— p- (11) I COOH —CH2—CH— 20,000 P- (12) I co2ch2ch2cooh —ch2-ch- 30,000 P- < 13) S03Na CHg 100,000 P -(14) I —ch2-c_ I co2ch2ch2so3h ch3 20,000 P- (15) I —CHg_C— 0 I II C02CH2CH2〇P (〇H) 2 50,000 P- (16) —ch2-ch—— 0 C02CH2CH20 -f- CH2 OP (OH) 2 15,000
-87- 200535465 ch3 寸弋叫一〒b-87- 200535465 ch3 inch howl
COOHCOOH
A Mw CHa P - (17) I —ch2—c—— COOCH2CH2OCH=CH 一 CH2—CH 一 0 20,000 P - (18) 1 II COOCH2CH2OCCH2CH=CH2 ch3 25,000 P - (19) 1 —ch2—c一 COO - CH2~^~y-CH=CH2 —CH2 一 CH— 人 18,000 P-(20) T OCCH2CH=CH2 II 0 —CHo—CH— 〇 20,000 P-(21) I II conhch2ch2occh 二 ch2 35,000 -88- 200535465 CH3 ch3 ch3 -f ch2-c^ -f ch2-c)^ COOR1 COOH COOR2 R1 R2 x y z P - (22) P-(23) P - (24) P-(25) P-(26) P-(27) P-(28) P - (29) P-(30) O II CH2CH2OCCH=CH2 O II CH2CH2OCCH=CH2 o II CH2CH2OCC=CH2 ch3A Mw CHa P-(17) I —ch2—c—— COOCH2CH2OCH = CH one CH2—CH one 0 20,000 P-(18) 1 II COOCH2CH2OCCH2CH = CH2 ch3 25,000 P-(19) 1 —ch2—c one COO- CH2 ~ ^ ~ y-CH = CH2 —CH2 one CH— person 18,000 P- (20) T OCCH2CH = CH2 II 0 —CHo—CH— 〇20,000 P- (21) I II conhch2ch2occh two ch2 35,000 -88- 200535465 CH3 ch3 ch3 -f ch2-c ^ -f ch2-c) ^ COOR1 COOH COOR2 R1 R2 xyz P-(22) P- (23) P-(24) P- (25) P- (26) P- (27 ) P- (28) P-(29) P- (30) O II CH2CH2OCCH = CH2 O II CH2CH2OCCH = CH2 o II CH2CH2OCC = CH2 ch3
HOHO
HOHO
H /-CH2OCCH=CH2 OH / -CH2OCCH = CH2 O
CH2〇CCH=CH2 II O C4H,(n) C4HB(t) C4H,(n) 10 10 80 10 10 80 10 10 80 C4Hfi(n) 10 10 80 C4Hs(n) 80 10 10CH2〇CCH = CH2 II O C4H, (n) C4HB (t) C4H, (n) 10 10 80 10 10 80 10 10 80 C4Hfi (n) 10 10 80 C4Hs (n) 80 10 10
HOHO
HOHO
HOHO
HO CH2OCCH=CH2 II oHO CH2OCCH = CH2 II o
CH2〇CCH=rCH2 II O CH2OCCH=CH2 II 0 C4H0(n) 50 20 30 C4HB(t) 10 10 80 CH2CH2OH 50 10 40 ch3 I C4H9(n) 10 10 80 CH2OCC=CH2 II 0CH2〇CCH = rCH2 II O CH2OCCH = CH2 II 0 C4H0 (n) 50 20 30 C4HB (t) 10 10 80 CH2CH2OH 50 10 40 ch3 I C4H9 (n) 10 10 80 CH2OCC = CH2 II 0
Mw 25.000 25.000 500,000 23.000 30.000 30.000 20.000 20,000 25,000Mw 25.000 25.000 500,000 23.000 30.000 30.000 20.000 20,000 25,000
-89- 200535465 P-(31)-89- 200535465 P- (31)
OCCH=:CH2 II OOCCH =: CH2 II O
Mw=60,000 P-(32) ch3 -(-CH2 —C-J—S-COOH Mw=10,000Mw = 60,000 P- (32) ch3-(-CH2 —C-J—S-COOH Mw = 10,000
co2ch2ch=ch2 P-(33) ch3 cooh 一^ CH2 一 c S — CHCH2COOH Mw=20,000 C02CH2CHr:CH2 P-(34) / f / 20 co2ch2ch=ch2 co2ch2ch2coohco2ch2ch = ch2 P- (33) ch3 cooh one ^ CH2 one c S — CHCH2COOH Mw = 20,000 C02CH2CHr: CH2 P- (34) / f / 20 co2ch2ch = ch2 co2ch2ch2cooh
Mw=30,000 (嵌段共聚物) P-(35) CH; -^ch2-c- COOH ^-CH2CH_Mw = 30,000 (block copolymer) P- (35) CH;-^ ch2-c- COOH ^ -CH2CH_
I 80 x / 20 c〇2ch2ch2occh=ch2 II 0I 80 x / 20 c〇2ch2ch2occh = ch2 II 0
Mw=15,000 (嵌段共聚物) -90- ,0、200535465 Ρ-(36) CH ch2—c CH, ch9-c· I 60 COoCH, 20Mw = 15,000 (block copolymer) -90-, 0, 200535465 P- (36) CH ch2-c CH, ch9-c · I 60 COoCH, 20
Mw=8,000Mw = 8,000
C〇2H P-(37) CHa七H2-叫 ch5 eoC〇2H P- (37) CHa seven H2-called ch5 eo
Mw=5,000Mw = 5,000
COOHCOOH
C02CH2CH2CH2Si(OCH2CH3)a P-(38)C02CH2CH2CH2Si (OCH2CH3) a P- (38)
—(-CH —CH2-〇-)-j〇 —(-CH—CH-〇-)-^〇 Mw^IO.OOO CH20-f CH2-)j- Si(OCH2CH3)3 ch2—o—(-ch2-^-occh =ch2— (-CH —CH2-〇-)-j〇 — (-CH—CH-〇-)-^ 〇Mw ^ IO.OOO CH20-f CH2-) j- Si (OCH2CH3) 3 ch2—o-(- ch2-^-occh = ch2
O 所使用之分散劑的數量,以二氧化鈦爲主成份的無機微 粒爲基準,較佳爲從1至5 0質量%,更佳爲從5至3 0質 量%,且最佳爲從5至20質量%。而且,可組合倂用兩種 或以上之分散劑。 〔高折射率層之形成方法,及其他〕 高折射率層用之以二氧化鈦爲主成份的無機微粒是以分 散狀態來使用以形成高折射率層。無機微粒是在如上所述 分散劑之存在下加以分散於分散介質中。 分散介質較佳爲具有沸點爲60至170°C之液體。分散介 質之實例包括:水;醇類(例如,甲醇、乙醇、異丙醇、 -91- 200535465 丁醇、苯甲醇);酮類(例如,丙酮、甲基乙基酮、甲基 異丁基酮、環己酮);酯類(例如,醋酸甲酯、醋酸乙酯 、醋酸丙酯、醋酸丁酯、甲酸甲酯、甲酸乙酯、甲酸丙酯 、甲酸丁醋);脂肪族碳氫化合物(例如,己院、環己院 );鹵化碳氫化合物(例如,二氯甲院、氯仿、四氯化碳 );芳香族碳氫化合物(例如,苯、甲苯、二甲苯);醯 胺類(例如,二甲基甲醯胺、二甲基乙醯胺、正-甲基吡咯 啶酮);醚類(例如,二乙基醚、二噁烷、四氫呋喃); 及醚醇類(例如,1—甲氧基一 2-丙醇)。此等之中,較 佳爲甲苯、二甲苯、甲基乙基酮、甲基異丁基酮、環己酮 和丁醇。 特佳的分散介質爲甲基乙基酮、甲基異丁基酮、環己酮 〇 無機微粒是藉由使用分散機加以分散。分散機之實例包 括:砂磨機(例如,附銷式細微粒磨機)、高速葉輪磨機 、球磨機、滾磨機、磨碎機和膠體硏磨機。此等之中,較 佳爲砂磨機和高速葉輪。而且,可實施初步分散處理。用 於初步分散處理之分散機的實例包括:球磨機、三輥磨機 、捏合機和擠壓機。 無機微粒較佳爲以具有儘可能小的粒徑分散於分散介質 中。質量平均粒徑爲從1至200奈米,較佳爲從5至150 奈米,更佳爲從10至100奈米,且特佳爲從10至80奈米 藉由將無機微粒分散成200奈米或以下之微細化小粒徑 200535465 ,則可在形成高折射率層時並不會削弱其透明性。 用於本發明之高折射率層較佳爲如下所述所形成。將黏 結劑(已在硬質塗層之說明所例示之電離輻射線硬化性之 多官能單體或多官能寡聚物等)、光聚合引發劑、增感劑 、塗佈溶劑等添加到如上所述藉由將無機微粒分散於分散 介質所獲得之分散液中,以調製一種高折射率層形成用之 塗佈液組成物,並將所獲得該高折射率層形成用之塗佈液 組成物塗佈在硬質塗層上,且藉由電離輻射線硬化性化合 物(例如,多官能單體或多官能寡聚物等)之交聯化反應 φ 或聚合反應加以硬化。黏結劑、光聚合引發劑、增感劑、 塗佈溶劑之具體實例係可使用在硬質塗層所例示之化合物 0 並且,較佳爲在塗佈高折射率層之同時或塗佈之後,與 分散劑交聯化或聚合反應。 藉此所獲得高折射率層之黏結劑,由於如上所述較佳的 分散劑與電離輻射線硬化性之多官能單體或多官能寡聚物 將進行交聯或聚合反應,而使其呈現分散劑之陰離子性基 Φ 被包含於黏結劑中的形態。並且包含於高折射率層之黏結 劑的陰離子性基具有維持無機微粒之分散狀態的功能,且 交聯化或聚合結構將對黏結劑賦予成膜性,因此含有無機 微粒之高折射率層可改善其物理強度及耐化學藥品性和耐 候性。 無機微粒具有控制高折射率層之折射率的效果,且也具 有抑制硬化收縮的功能。 -93- 200535465 高折射率層中之無機微粒較佳爲以具有儘可能小的粒徑 分散於高折射率層中,質量平均粒徑爲從1至200奈米。 高折射率層中之無機微粒之質量平均粒徑較佳爲從5至 150奈米,更佳爲從10至1〇〇奈米,且最佳爲從1〇至80 奈米。 藉由將無機微粒分散成200奈米或以下之微細化小粒徑 ,則可在形成高折射率層時並不會削弱其透明性。 在高折射率層中之無機微粒的含量,以高折射率層之質 量爲基準,較佳爲從1〇至90質量%,更佳爲從15至80 φ 質量%,且還更佳爲從1 5至75質量%,。在高折射率層中 ,可組合倂用兩種或以上之無機微粒。 由於在高折射率層上具有低折射率層,則高折射率層之 折射率較佳爲高於透明支撐體之折射率。 在高折射率層中,較佳爲也可使用一種藉由將含有芳香 族環之電離輻射線硬化性化合物、含有除氟以外之鹵素原 子(例如,溴(Br )、碘(I )、氯(C1 ))之電離輻射線 硬化性化合物、或含有例如硫(S )、氮(N )和磷(P ) φ 原子之電離輻射線硬化性化合物加以交聯化或聚合反應所 獲得之黏結劑。 高折射率層之折射率較佳爲從1 . 5 5至2 · 40,更佳爲從 1.60至2.20,還更佳爲從1.65至2.10,且最佳爲從1.80 至 2.00 。 例如在硬質塗層上以中折射率層、高折射率層、低折射 率層之順序設置三層時,較佳爲中折射率層之折射率爲從 -94- 200535465 1.55至1.80、高折射率層之折射率爲從1.80至2.40、低折 射率層之折射率爲從1.20至1.46。 除如上所述成份(無機微粒、聚合引發劑、光增感劑等 )以外,高折射率層可含有樹脂、界面活性劑、抗靜電劑 、偶合劑、增稠劑、著色抑制劑、著色劑(例如,顏料、 染料)、消泡劑、均塗劑、難燃劑、紫外線吸收劑、紅外 線吸收劑、膠黏劑、聚合反應抑制劑、抗氧化劑、表面改 質劑、導電性金屬微粒、及其類似物。 高折射率層之膜厚可根據用途適當地設計。當高折射率 φ 層是用作爲如後所述之光學干涉層時,則膜厚較佳爲從3 0 至2 00奈米,更佳爲從50至170奈米,且特佳爲從60至 150奈米。 〔抗反射膜之其他層〕 爲製造具有更優良的抗反射性能之抗反射膜,較佳爲設 、置具有折射率爲介於高折射率層之折射率與透明支撐體之 折射率之間的中折射率層。 中折射率層較佳爲以與在本發明之高折射率層所敍述者 φ 相同方式來製造,折射率之調整係以控制薄膜中之無機微 粒的含量來達成。 在抗反射膜也可設置除上述以外之層。例如黏著層、遮 蔽層、防污層、增滑層或抗靜電層。遮蔽層係設置用以遮 蔽電磁波或紅外線。 〔抗反射膜之形成方法〕 本發明抗反射膜之各層可以如下所述之塗佈方法來形成 -95- 200535465 ,但是並不受限於此等。 可使用浸漬塗佈法、氣刀塗佈法、簾幕式淋塗法、輥式 塗佈法、線棒塗佈法、凹版輪轉塗佈法、或擠壓塗佈法( 參閱美國專利第2,681,294號說明書)、微輪轉凹版輥塗佈 法等之習知的方法,其中較佳爲微輪轉凹版輥塗佈法。 在本發明所使用之微輪轉凹版輥塗佈法,係以下述方法 塗佈爲其特徵之塗佈法:亦即,其係將直徑爲約從1 〇至 100毫米,較佳爲約從20至50毫米,且全周已刻上輪轉 凹版之輪轉凹版輥,在支撐體下方,且對於支撐體之輸送 方向使輪轉凹版輥作逆向旋轉,同時從該輪轉凹版輥表面 以刮刀刮除多餘塗佈液,以使定量之塗佈液轉印在上述支 撐體上面係處於自由狀態的位置之支撐體下面,加以塗佈 之方法。藉此連續地退捲該捲裝形態之透明支撐體,並在 該退捲的支撐體之一側,至少可將硬質塗層至含有含氟聚 合物的低折射率層中至少一層以微輪轉凹版輥塗佈法來塗 佈。 關於使用微輪轉凹版輥塗佈法時之塗佈條件,刻在輪轉 凹版輥的輪轉凹版圖案之線數較佳爲從50至800線/英寸 ,且更佳爲從1〇〇至300線/英寸;輪轉凹版圖案之深度較 佳爲從1至600微米,且更佳爲從5至200微米;輪轉凹 版輥之轉數較佳爲從3至800 rpm,且更佳爲從5至200 rpm;支撐體之輸送速度較佳爲從0.5至100公尺/分鐘, 且更佳爲從1至50公尺/分鐘。 抗反射膜之各層較佳爲經塗佈後,且經加熱乾燥後,照 -96- 200535465 射紫外線或電子射線等之電離輻射線實施硬化處理。 使用於本發明之電離輻射線爲紫外線、電子射線、r線 等’只要能使化合物活性化而交聯硬化,則並無特殊的限 制’但是較佳爲紫外線、電子射線,特別是從操作簡便且 容易獲得高能量的觀點來考慮,則較佳爲紫外線。可供紫 外線反應性化合物進行光聚合的紫外線之光源是只要爲能 產生紫外線之光源,則任何者皆可使用,例如低壓水銀燈 、中壓水銀燈、高壓水銀燈、超高壓水銀燈、碳弧燈、金 屬鹵化物燈、氙燈等。另外,也可使用ArF準分子雷射、 φ KrF準分子雷射、準分子燈或同步加速器放射線等。照射 條件雖然根據各燈而不同,但是照射光量較佳爲20 mJ/cm2 以上,更佳爲從50 mJ/cm2至10,000 mJ/cm2,且特佳爲從 5 0 m J / c m2 至 2,0 0 0 m J / c m2 〇 紫外線之照射可對構成抗反射層之數層(中折射率層、 高折射率層、低折射率層)之各層每設好一層即加以照射 ,也可經積層後照射、或組合該等加以照射。從生產性的 觀點來考慮,則較佳爲經積層多層後,照射紫外線。 φ 另外,相同地也可使用電子射線。電子射線包括由科克 勞夫-沃吞(Cockcroft-Wolton)型、bandegraph 型、諧振 變壓型、絕緣心變壓器型、直線型、地那米加速器( Dynamitron)型、咼頻型等之各種電子射線加速器所放出 之具有從50至1,〇〇〇 keV,較佳爲從1〇〇至300 keV之能 量的電子射線。 以上述電離輻射線藉由交聯反應或聚合反應來形成各層 -97- 200535465 時’交聯反應或聚合反應較佳爲在氧氣濃度爲1 〇體積。/。以 下的大氣下實施。藉由在氧氣濃度爲1 〇體積%或以下的大 氣下形成時,則可形成具有優越的物理強度或耐化學藥品 性之層。 較佳爲藉由電離輻射線硬化性化合物之交聯反應或聚合 反應在氧氣濃度爲6體積%或以下,更佳爲氧氧濃度爲4 體積%或以下,還更佳爲氧氧濃度爲2體積%或以下,且最 佳爲1體積%或以下的大氣下所形成。 將氧氣濃度調整成1 0體積%或以下之方法,較佳爲藉由 φ 以不同氣體,特佳爲以氮氣(以氮氣清除)取代空氣(氮 氣濃度:約79體積% ;氧氣濃度:約2 1體積% )。 (偏光板) 本發明之「偏光板」係由「偏光膜」及配置於其兩側的 兩片「保護膜」所構成。一側之保護膜係使用本發明之「 抗反射膜」,另一側之保護膜則使用本發明之「相位差膜 j ° 偏光膜則有碘系偏光膜、使用二色性染料的染料系偏光 φ 膜或多烯系偏光膜。碘系偏光膜及染料系偏光膜,一般則 使用聚乙烯醇系薄膜來製造。 抗反射膜之透明支撐體或相位差膜之遲相軸與偏光膜之 透射軸,係加以配置成實質地平行。 對於偏光板之生產性而言,保護膜之透濕性是重要的。 偏光膜與保護膜係經以水系黏著劑所貼合而成,其乾燥係 透過該黏著劑溶劑在保護膜中擴散所達成。因此保護膜之 -98- 200535465 透濕性愈高,乾燥之進行將愈快’使得生產性提高,但是 太高時,由於液晶顯示裝置之使用環境(高溫下),水份 將會侵入偏光膜中而導致偏光能降低。 保護膜之透濕性係視透明支撐體或聚合物薄膜(及聚合 性液晶化合物)之厚度、自由體積、親疏水性等因素而定 〇 將本發明之光擴散膜、抗反射膜用作爲偏光板之保護膜 時,則透濕性較佳爲從100至1,〇〇〇 g/m2 · 24 hrs,且更佳 爲從 3 00 至 700 g/m2 · 24 hrs。 籲 透明支撐體之厚度,在製膜時,可藉由模唇流量與生產 線速率、或延伸、壓縮來加以調整。由於透濕性係根據所 使用之主材料而不同,因此經加以調整厚度即可將其控制 在理想範圍內。 透明支撐體之自由體積,在製膜時,即可藉由乾燥溫度 與時間來加以調整。此種情形下,透濕性也根據所使用之 主材料而不同,因此藉由調整自由體積即可將其控制在理 想範圍內。 鲁 透明支撐體之親疏水性,可藉由添加劑來加以調整。對 上述自由體積中添加親水性添加劑時,則透濕性提高,相 反地添加疏水性添加劑時,則透濕性降低。 將上述透濕性獨立地加以控制時,則可以廉價和高生產 性製造具有光學補償能之偏光板。 (液晶顯示裝置) 本發明之偏光板可有利地使用於液晶顯示裝置等之影像 -99- 200535465 顯示裝置,較佳爲用於顯示裝置之最外表層。 液晶顯示裝置係具有配置在液晶胞及其兩側的兩片偏光 板,液晶胞則在兩片電極基板之間載持著液晶。 液晶胞較佳爲VA模式。 VA模式之液晶胞係在無外加電壓時,其棒狀液晶性分子 係實質地呈垂直配向。 VA模式之「液晶胞」包括·· ( 1 ) 「狹義VA模式」之 液晶胞,其中棒狀液晶性分子當未施加電壓時是實質的垂 直配向,但是當施加電壓時是實質的水平配向(揭示於曰 本專利特開平第2- 1 76625號公報);(2) 「多域VA模 式(MVA模式)」之液晶胞,用於擴大視野角〔揭述於 S ID 97「技術文獻摘要」(預備稿集),第28期、第845 頁(1997年)〕;(3) 「n-ASM模式」之液晶胞,其中O The amount of dispersant used is based on inorganic fine particles with titanium dioxide as the main component, preferably from 1 to 50% by mass, more preferably from 5 to 30% by mass, and most preferably from 5 to 20 quality%. Moreover, two or more dispersants may be used in combination. [Method for forming high refractive index layer, and others] The inorganic fine particles containing titanium dioxide as a main component for the high refractive index layer are used in a dispersed state to form a high refractive index layer. The inorganic fine particles are dispersed in a dispersion medium in the presence of a dispersant as described above. The dispersion medium is preferably a liquid having a boiling point of 60 to 170 ° C. Examples of dispersion media include: water; alcohols (for example, methanol, ethanol, isopropanol, -91-200535465 butanol, benzyl alcohol); ketones (for example, acetone, methyl ethyl ketone, methyl isobutyl Ketones, cyclohexanone); esters (for example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate); aliphatic hydrocarbons (E.g., Kojiri, Hokuji); halogenated hydrocarbons (e.g., chloroform, chloroform, carbon tetrachloride); aromatic hydrocarbons (e.g., benzene, toluene, xylene); ammonium (For example, dimethylformamide, dimethylacetamide, n-methylpyrrolidone); ethers (for example, diethyl ether, dioxane, tetrahydrofuran); and ether alcohols (for example, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are preferred. Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. The inorganic fine particles are dispersed by using a disperser. Examples of dispersers include: sand mills (e.g., pin-type fine particle mills), high-speed impeller mills, ball mills, tumble mills, attritors, and colloid hones. Among these, sand mills and high-speed impellers are preferred. Moreover, preliminary dispersion processing can be performed. Examples of the dispersing machine used for the preliminary dispersing treatment include: a ball mill, a three-roll mill, a kneader, and an extruder. The inorganic fine particles are preferably dispersed in the dispersion medium with a particle diameter as small as possible. The mass average particle diameter is from 1 to 200 nm, preferably from 5 to 150 nm, more preferably from 10 to 100 nm, and particularly preferably from 10 to 80 nm by dispersing the inorganic fine particles into 200 Micronized particle size 200535465 of nanometer or below can not reduce its transparency when forming a high refractive index layer. The high refractive index layer used in the present invention is preferably formed as described below. Add adhesives (multifunctional monomers or polyfunctional oligomers with ionizing radiation hardenability as exemplified in the description of the hard coating layer), photopolymerization initiators, sensitizers, coating solvents, etc. as described above The method of preparing a coating liquid composition for forming a high refractive index layer by dispersing inorganic fine particles in a dispersion medium is described, and obtaining the coating liquid composition for forming a high refractive index layer. It is coated on a hard coat layer and hardened by a crosslinking reaction φ or a polymerization reaction of an ionizing radiation-curable compound (for example, a polyfunctional monomer or a polyfunctional oligomer, etc.). Specific examples of the binder, the photopolymerization initiator, the sensitizer, and the coating solvent can be the compound 0 exemplified in the hard coat layer. It is preferable to apply the high refractive index layer at the same time or after coating, and The dispersant is cross-linked or polymerized. The binder of the high-refractive index layer thus obtained will be cross-linked or polymerized due to the preferred dispersant and the polyfunctional monomer or polyfunctional oligomer of ionizing radiation hardening as described above. The anionic group Φ of the dispersant is contained in the binder. In addition, the anionic group contained in the binder of the high refractive index layer has the function of maintaining the dispersed state of the inorganic fine particles, and the crosslinked or polymerized structure will impart film-forming properties to the binder, so the high refractive index layer containing the inorganic fine particles may be Improve its physical strength, chemical resistance and weather resistance. The inorganic fine particles have the effect of controlling the refractive index of the high-refractive index layer, and also have the function of suppressing the shrinkage of hardening. -93- 200535465 The inorganic fine particles in the high refractive index layer are preferably dispersed in the high refractive index layer with a particle diameter as small as possible, and the mass average particle diameter is from 1 to 200 nm. The mass average particle diameter of the inorganic fine particles in the high refractive index layer is preferably from 5 to 150 nm, more preferably from 10 to 100 nm, and most preferably from 10 to 80 nm. By dispersing the inorganic fine particles into a micronized particle size of 200 nm or less, it is possible to prevent the transparency from being impaired when forming a high refractive index layer. The content of the inorganic fine particles in the high refractive index layer is based on the mass of the high refractive index layer, preferably from 10 to 90% by mass, more preferably from 15 to 80 φ% by mass, and even more preferably from 1 5 to 75% by mass. In the high refractive index layer, two or more kinds of inorganic fine particles may be used in combination. Since the high refractive index layer has a low refractive index layer, the refractive index of the high refractive index layer is preferably higher than that of the transparent support. In the high refractive index layer, it is also preferable to use a compound that hardens by ionizing radiation containing an aromatic ring and contains halogen atoms other than fluorine (for example, bromine (Br), iodine (I), chlorine (C1)) an ionizing radiation hardening compound, or a binder obtained by crosslinking or polymerizing an ionizing radiation hardening compound containing, for example, sulfur (S), nitrogen (N), and phosphorus (P) φ atoms . The refractive index of the high refractive index layer is preferably from 1.55 to 2.40, more preferably from 1.60 to 2.20, still more preferably from 1.65 to 2.10, and most preferably from 1.80 to 2.00. For example, when three layers are arranged in the order of a medium refractive index layer, a high refractive index layer, and a low refractive index layer on a hard coating layer, it is preferable that the refractive index of the medium refractive index layer is from -94 to 200535465 1.55 to 1.80, and the high refractive index is high. The refractive index of the index layer is from 1.80 to 2.40, and the refractive index of the low index layer is from 1.20 to 1.46. In addition to the components described above (inorganic particles, polymerization initiator, photosensitizer, etc.), the high refractive index layer may contain resin, surfactant, antistatic agent, coupling agent, thickener, coloring inhibitor, and colorant. (E.g., pigments, dyes), defoamers, leveling agents, flame retardants, ultraviolet absorbers, infrared absorbers, adhesives, polymerization inhibitors, antioxidants, surface modifiers, conductive metal particles, And its analogs. The film thickness of the high refractive index layer can be appropriately designed according to the application. When the high refractive index φ layer is used as an optical interference layer as described later, the film thickness is preferably from 30 to 200 nm, more preferably from 50 to 170 nm, and particularly preferably from 60 to 60 nm. Up to 150 nm. [Other layers of the anti-reflection film] In order to manufacture an anti-reflection film having better anti-reflection performance, it is preferable to set and set the refractive index between the refractive index of the high refractive index layer and the refractive index of the transparent support Medium refractive index layer. The middle refractive index layer is preferably manufactured in the same manner as φ described in the high refractive index layer of the present invention, and the adjustment of the refractive index is achieved by controlling the content of the inorganic fine particles in the film. The anti-reflection film may be provided with a layer other than the above. For example, adhesive layer, shielding layer, antifouling layer, slip layer or antistatic layer. The shielding layer is provided to shield electromagnetic waves or infrared rays. [Formation method of antireflection film] Each layer of the antireflection film of the present invention can be formed by the following coating method -95-200535465, but it is not limited to these. A dip coating method, an air knife coating method, a curtain coating method, a roll coating method, a wire rod coating method, a gravure rotary coating method, or an extrusion coating method can be used (see U.S. Patent No. 2,681 No. 294), a micro-rotary gravure roll coating method and the like, and among them, a micro-rotary gravure roll coating method is preferred. The micro-rotato gravure roll coating method used in the present invention is a coating method characterized by coating the following method: That is, it is a diameter of about 10 to 100 mm, preferably about 20 To 50 mm, and the rotogravure roll of the rotogravure has been engraved all around, under the support, and the rotogravure roll is rotated in the reverse direction for the conveying direction of the support, and the excess coating is scraped from the surface of the rotogravure roll with a doctor A method of applying a coating liquid so that a predetermined amount of a coating liquid is transferred onto the support body under the support body at a position in a free state. In this way, the transparent support body in the roll form is continuously unrolled, and at least one layer of the hard coating layer to the low refractive index layer containing the fluoropolymer can be micro-rotated on one side of the unrolled support body. Gravure roll coating method. Regarding the coating conditions when the micro-rotary gravure roll coating method is used, the number of lines of the rotary gravure pattern engraved on the rotary gravure roll is preferably from 50 to 800 lines / inch, and more preferably from 100 to 300 lines / Inches; the depth of the rotary gravure pattern is preferably from 1 to 600 microns, and more preferably from 5 to 200 microns; the rotational speed of the rotary gravure roll is preferably from 3 to 800 rpm, and more preferably from 5 to 200 rpm ; The conveying speed of the support is preferably from 0.5 to 100 m / min, and more preferably from 1 to 50 m / min. Each layer of the anti-reflection film is preferably coated, and dried after being heated, and then hardened according to -96- 200535465 ionizing radiation such as ultraviolet or electron rays. The ionizing radiation used in the present invention is ultraviolet rays, electron rays, r rays, and the like. 'As long as the compound can be activated and cross-linked and hardened, there are no particular restrictions'. However, ultraviolet rays and electron rays are preferred, especially since the operation is simple and convenient. From the viewpoint of easily obtaining high energy, ultraviolet rays are preferred. The ultraviolet light source for photopolymerization of ultraviolet reactive compounds can be used as long as it is a light source capable of generating ultraviolet light, such as low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high-pressure mercury lamp, carbon arc lamp, metal halide Object lights, xenon lamps, etc. In addition, ArF excimer laser, φ KrF excimer laser, excimer lamp, or synchrotron radiation can also be used. Although the irradiation conditions differ depending on each lamp, the amount of irradiation light is preferably 20 mJ / cm2 or more, more preferably from 50 mJ / cm2 to 10,000 mJ / cm2, and particularly preferably from 50 mJ / c m2 to 2, 0 0 0 m J / c m2 〇 Irradiation of ultraviolet rays can irradiate each of the layers constituting the anti-reflection layer (medium refractive index layer, high refractive index layer, and low refractive index layer), or Irradiate after lamination, or combine these and irradiate. From the viewpoint of productivity, it is preferable to irradiate ultraviolet rays after laminating a plurality of layers. φ In addition, electron beams can be used in the same manner. Electron rays include various electrons from Cockcroft-Wolton type, bandegraph type, resonant transformer type, insulated core transformer type, linear type, Dynamitron type, high frequency type, etc. Electron rays emitted from a ray accelerator having an energy of from 50 to 1,000 keV, preferably from 100 to 300 keV. Each layer is formed by a cross-linking reaction or a polymerization reaction with the above-mentioned ionizing radiation. -97- 200535465 In the case of the 'cross-linking reaction or the polymerization reaction, the oxygen concentration is preferably 10 vol. /. It is implemented in the following atmosphere. When formed in an atmosphere having an oxygen concentration of 10% by volume or less, a layer having superior physical strength or chemical resistance can be formed. The crosslinking reaction or polymerization reaction of the hardening compound by ionizing radiation is preferably at an oxygen concentration of 6 vol% or less, more preferably an oxygen concentration of 4 vol% or less, and even more preferably an oxygen concentration of 2 It is formed in the atmosphere in an amount of 1% by volume or less, and preferably 1% by volume or less. The method of adjusting the oxygen concentration to 10% by volume or less, preferably using φ to replace different gases, particularly preferably nitrogen (purge with nitrogen) instead of air (nitrogen concentration: about 79% by volume; oxygen concentration: about 2 1% by volume). (Polarizing plate) The "polarizing plate" of the present invention is composed of a "polarizing film" and two "protective films" arranged on both sides thereof. The protective film on one side uses the "anti-reflection film" of the present invention, and the protective film on the other side uses the "phase retardation film j ° polarizing film" has an iodine-based polarizing film and a dye system using a dichroic dye. Polarized φ film or polyene-based polarizing film. Iodine-based polarizing film and dye-based polarizing film are generally made of polyvinyl alcohol film. Transparent support of anti-reflection film or the retardation of retardation film and polarizing film The transmission axis is configured to be substantially parallel. For the productivity of the polarizing plate, the moisture permeability of the protective film is important. The polarizing film and the protective film are bonded by an aqueous adhesive, and the drying system is Achieved by the diffusion of the adhesive solvent in the protective film. Therefore, the higher the moisture permeability of the protective film is -98- 200535465, the faster the drying will proceed, which increases the productivity, but when it is too high, due to the use of liquid crystal display devices The environment (at high temperature), water will penetrate into the polarizing film and reduce the polarizing energy. The moisture permeability of the protective film depends on the thickness and free volume of the transparent support or polymer film (and polymerizable liquid crystal compound). It depends on factors such as hydrophilicity and hydrophobicity. When the light diffusing film and the antireflection film of the present invention are used as a protective film of a polarizing plate, the moisture permeability is preferably from 100 to 1,000 g / m2 · 24 hrs. And more preferably from 300 to 700 g / m2 · 24 hrs. The thickness of the transparent support body can be adjusted by film lip flow and production line speed, or extension and compression during film formation. Due to moisture permeability It depends on the main material used, so it can be controlled within the ideal range by adjusting the thickness. The free volume of the transparent support can be adjusted by drying temperature and time during film formation. This In this case, the moisture permeability also varies according to the main material used, so it can be controlled within the ideal range by adjusting the free volume. The hydrophilicity and hydrophobicity of the transparent support can be adjusted by additives. When a hydrophilic additive is added to the free volume, the moisture permeability is increased, and when a hydrophobic additive is added, the moisture permeability is decreased. When the moisture permeability is independently controlled, it is possible to achieve low cost and high production. Manufacture of a polarizing plate with optical compensation energy. (Liquid crystal display device) The polarizing plate of the present invention can be advantageously used for an image-99-200535465 display device of a liquid crystal display device or the like, preferably for the outermost surface layer of a display device. The display device has two polarizing plates arranged on the liquid crystal cell and two sides thereof, and the liquid crystal cell carries liquid crystal between the two electrode substrates. The liquid crystal cell is preferably a VA mode. The liquid crystal cell of the VA mode has no additional When voltage is applied, the rod-shaped liquid crystal molecules are substantially vertically aligned. The "liquid crystal cell" of the VA mode includes ... (1) "Limited VA mode" liquid crystal cells, where the rod-shaped liquid crystal molecules are when no voltage is applied. Substantial vertical alignment, but a substantial horizontal alignment when a voltage is applied (disclosed in Japanese Patent Laid-Open Publication No. 2- 1 76625); (2) a liquid crystal cell of "multi-domain VA mode (MVA mode)", used In the enlarged viewing angle [disclosed in S ID 97 "Technical Literature Abstract" (Preparation Series), No. 28, p. 845 (1997)]; (3) "n-ASM mode" liquid crystal cell, of which
未施加電壓時是實質的垂直配向,但是當施加電壓時,分 子配向成扭轉多域方式〔揭述於日本液晶討論會之預備稿 集’第 58 至 59 期(1 998 年)〕;及(4) 「SURVAIVAL 模式」之液晶胞(發表於LCD International 98)。 〔解決問題之技術手段〕 其次,本發明之發明人等爲達成如上所述之第三目的經 專心硏討結果,關於延遲値獲得如下所述之見解。 亦即,Re延遲値及Rth延遲値係由3軸方向之折射率所 定義之値’且Re/Rth比係可以對延遲之貢獻大的添加劑來 加以控制,增加延伸倍率時Re/Rth比就增大,增加添加量 時Re/Rth比也會增大。並且,相對於延伸倍率的Re/Rth -100- 200535465 比之傾斜度係視添加劑而定,且就歐州發明專利第 09 1 1 65 6A2號所揭示之圓盤狀化合物而言,其傾斜度是較 小° 此外,若以拉幅機延伸法來實現最適化Re、Rth値時, 則必須加以增大相對於延伸倍率的Re/Rth增加量。具體而 言,較佳爲使用nx與ny之差容易增大的結構之添加劑, 且經檢討結果得知若使用具有至少兩個芳香族環的芳香族 化合物時即可達成。也得知其中更佳爲具有至少兩個芳香 族環且具有線性分子結構的棒狀化合物。 此外,也得知若將上述附加光學補償功能的功能膜適用 於偏光板時,相反側之最外層若爲未具有抗反射功能之一 般的醯化纖維素薄膜時,則容易受到刮傷,但是若採取最 外層保護膜使用特定的抗反射膜作爲其對策時,則可減少 刮傷程度。 本發明之如上所述之第三目的可以如下所述之第(20 ) 至(36)項之偏光板,及如下所述之第(37) 、( 38)項 之液晶顯示裝置來達成。 〈第三方式〉 (20) —種偏光板,其特徵爲在偏光膜之兩側分別配置 至少一片功能膜者,且一側之功能膜中至少一片 係僅由一片醯化纖維素薄膜所構成,該醯化纖維 素薄膜含有相對於1 〇〇質量份之醯化纖維素爲從 0.01至20質量份之具有至少兩個芳香族環之芳香 族化合物,且以如下所示之式(I )所定義之Re -101 - 200535465 延遲値爲從20至70奈米,以如下所示之式(Π )所定義之Rth延遲値爲從70至400奈米;及 另一側之功能膜中至少一片係由在透明支撐體上 具有防眩性硬質塗層或高折射率層中之至少任一 層,及低折射率層之抗反射膜所構成: (I) Re = (nx— ny) x d (II) Rth = {(nx + ny) /2— nz } x d 〔式中,該nx爲薄膜面內之遲相軸方向之折射率 ,ny爲薄膜面內之進相軸方向之折射率,nz爲薄 膜之厚度方向之折射率,d爲薄膜之厚度〕。 (21) 如第(20 )項之偏光板,其中該醯化纖維素薄膜 之膜厚爲40微米以上且70微米以下。 (22) 如第(20 )或(21 )項之偏光板,其中該芳香族 化合物係具有線性分子結構之棒狀化合物。 (23 ) 如第(20 )至(22 )項中任一項之偏光板,其中 該醯化纖維素係乙醯化度爲從5 9.0至6 1 . 5 %之纖 維素醋酸酯。 (24 ) 如第(20 )至(23 )項中任一項之偏光板,其中 該醯化纖維素薄膜係以從3至100%之延伸倍率加 以延伸者。 (25 ) 如第(20 )至(24 )項中任一項之偏光板,其中 該醯化纖維素薄膜之Re延遲値爲從40至70奈米 ’ Rth延遲値爲從90至2 50奈米。 (26 ) 如第(2〇)至(25)項中任一項之偏光板,其中 -102- 200535465 該延伸倍率每1%之Re/Rth變化量爲0.01以上且 〇·〇4以下。 (27 ) 如第(20 )至(26 )項中任一項之偏光板,其中 在該醯化纖維素薄膜之殘留溶劑量爲2%以上| 3〇%以下之狀態下朝著長度方向輸送,同時朝養: 與長度方向成正交的方向延伸,使該薄膜之遲牛目 軸成爲對該薄膜之長度方向爲正交之方向。 (28) 如第(2〇 )至(27 )項中任一項之偏光板,其中 在該抗反射膜之防眩性硬質塗層及低折射率層ψ 至少任一層形成用組成物中,含有以如下所示;^ 通式(1 )所代表之有機矽烷化合物,和/或其7jc 解產物、和/或其部份縮合物: 通式(1 ) : ( R1。)m— Si ( X) 4_m 〔通式(1 )中,該R105係代表經取代或未經取代 之烷基、經取代或未經取代之芳基,X係代^ _ 基、院氧基、鹵素原子、R2COO基,R2係代表氮 原子或碳原子數爲從1至5之烷基,m係代表從 1至3之整數〕。 (29) 如弟(2〇)至(28)項中任一項之偏光板,宜中 在該抗反射膜之低折射率層中含有至少一種二氧 化矽微粒,且該二氧化矽微粒中之至少〜種爲中 空二氧化矽微粒,該微粒之折射率爲從1. i 7至 1.40。 (30) 如第(2〇)至(29 )項中任一項之偏光板,其中 -103- 200535465 該抗反射膜之防眩性硬質塗層含有消光劑顆粒與 黏結劑,且該消光劑顆粒與黏結劑之折射率差爲 〇·〇3以上且0.2以下。 (如第(2〇)至(3〇)項中任一項之偏光板,其中 在該抗反射膜之防眩性硬質塗層含有平均粒徑爲 從〇. 5至7微米之消光劑顆粒。 (32) 如第(2〇)至(31)項中任一項之偏光板,其中 該抗反射膜之透射影像鮮明性爲從1 5 %至60%。 (33) 如弟(2〇)至(32)項中任一項之偏光板,其中 包含在該抗反射膜之功能膜之表面改質劑中含有 氟系脂肪族基。 (34) 如第(29 )至(33 )項中任一項之偏光板,其中 在該抗反射膜之低折射率層中所含有二氧化矽微 粒之至少一種是平均粒徑爲該低折射率層之厚度 的30%以上且100%以下。 (35) 如第(20)至(34)項中任一項之偏光板,其中 該抗反射膜之低折射率層中含有含氟聚合物,且 該含氟聚合物係以如下所示之通式(2 )所代表: 通式(2 )When no voltage is applied, it is a substantial vertical alignment, but when a voltage is applied, the molecular alignment becomes a twisted multi-domain method [disclosed in the preparatory collection of the Japan LCD Symposium 'Issues 58 to 59 (1998)]; and ( 4) LCD cell in "SURVAIVAL mode" (published in LCD International 98). [Technical means to solve the problem] Next, the inventors of the present invention have intensively discussed the results in order to achieve the third object as described above, and have obtained the following opinions regarding the delay. That is, the Re retardation and Rth retardation are defined by the refractive index in the 3-axis direction, and the Re / Rth ratio is an additive that can make a large contribution to the retardation. When the extension ratio is increased, the Re / Rth ratio is increased. As the amount increases, the Re / Rth ratio increases as the amount of addition increases. In addition, the slope of the Re / Rth -100- 200535465 ratio to the extension ratio depends on the additive, and for the discoid compound disclosed in European Invention Patent No. 09 1 1 65 6A2, the slope is Smaller ° In addition, if the optimization of Re and Rth 値 is achieved by the tenter stretching method, it is necessary to increase the amount of increase in Re / Rth relative to the stretching ratio. Specifically, it is preferable to use an additive having a structure in which the difference between nx and ny is likely to increase, and after reviewing the results, it is known that this can be achieved when an aromatic compound having at least two aromatic rings is used. It has also been found that rod-shaped compounds having at least two aromatic rings and having a linear molecular structure are more preferred. In addition, it was also found that if the above-mentioned functional film with added optical compensation function is applied to a polarizing plate, if the outermost layer on the opposite side is a general tritiated cellulose film that does not have an anti-reflection function, it is liable to be scratched, but If the outermost protective film is used as a countermeasure, a degree of scratching can be reduced. The third object of the present invention as described above can be achieved by the polarizing plates of the items (20) to (36) described below, and the liquid crystal display device of the items (37) and (38) described below. 〈Third Mode〉 (20) —A kind of polarizing plate, characterized in that at least one functional film is arranged on each side of the polarizing film, and at least one of the functional films on one side is composed of only one cellulose film. The tritiated cellulose film contains 0.01 to 20 parts by mass of an aromatic compound having at least two aromatic rings with respect to 100 parts by mass of tritiated cellulose, and is represented by the following formula (I) The defined Re -101-200535465 delay 値 is from 20 to 70 nanometers, and the Rth delay 定义 defined by the formula (Π) shown below is from 70 to 400 nanometers; and at least in the functional film on the other side One sheet is composed of at least one of an anti-glare hard coating layer or a high refractive index layer on a transparent support, and an antireflection film with a low refractive index layer: (I) Re = (nx— ny) xd ( II) Rth = {(nx + ny) / 2— nz} xd [where nx is the refractive index in the direction of the retardation axis in the film plane, ny is the refractive index in the direction of the advance axis in the film plane, nz Is the refractive index in the thickness direction of the film, and d is the thickness of the film]. (21) The polarizing plate according to item (20), wherein the thickness of the tritiated cellulose film is 40 micrometers or more and 70 micrometers or less. (22) The polarizing plate according to item (20) or (21), wherein the aromatic compound is a rod-shaped compound having a linear molecular structure. (23) The polarizing plate according to any one of items (20) to (22), wherein the cellulose acetate is a cellulose acetate having a degree of acetylation of 59.0 to 61.5%. (24) The polarizing plate according to any one of items (20) to (23), wherein the halogenated cellulose film is an extender at an extension ratio from 3 to 100%. (25) The polarizing plate according to any one of items (20) to (24), wherein the Re retardation of the tritiated cellulose film is from 40 to 70 nm 'and the Rth retardation is from 90 to 2 50 nm Meter. (26) The polarizing plate according to any one of items (20) to (25), wherein -102-200535465 the Re / Rth change amount per 1% of the stretching magnification is 0.01 or more and 0.004 or less. (27) The polarizing plate according to any one of items (20) to (26), wherein the residual solvent amount of the tritiated cellulose film is 2% or more and 30% or less is transported in the length direction At the same time, it extends in a direction orthogonal to the length direction, so that the late bull's eye axis of the film becomes a direction orthogonal to the length direction of the film. (28) The polarizing plate according to any one of items (20) to (27), wherein in the antiglare hard coat layer and the low refractive index layer ψ of the antireflection film, at least one of the layers is formed, Contains the following: ^ An organosilane compound represented by the general formula (1), and / or its 7jc decomposition product, and / or a partial condensate thereof: General formula (1): (R1.) M—Si ( X) 4_m [In the general formula (1), the R105 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and X is a substituted group, an oxygen group, a halogen atom, R2COO Group, R2 represents a nitrogen atom or an alkyl group having 1 to 5 carbon atoms, and m represents an integer from 1 to 3]. (29) If the polarizing plate of any one of items (20) to (28), it is preferable that the low refractive index layer of the antireflection film contains at least one kind of silica particles, and the silica particles are in the I 7 至 1.40。 At least ~ species are hollow silica particles, the refractive index of the particles is from 1. i 7 to 1.40. (30) The polarizing plate according to any one of (20) to (29), wherein -103-200535465 the anti-glare hard coating layer of the anti-reflection film contains matting agent particles and a bonding agent, and the matting agent The refractive index difference between the particles and the binder is from 0.03 to 0.2. (A polarizing plate according to any one of items (20) to (30), wherein the anti-glare hard coat layer of the antireflection film contains matting agent particles having an average particle diameter of from 0.5 to 7 microns (32) The polarizing plate according to any one of items (20) to (31), wherein the transmission image sharpness of the antireflection film is from 15% to 60%. (33) Rudi (2〇 The polarizing plate of any one of items) to (32), which contains a fluorine-based aliphatic group in a surface modifier of the functional film of the antireflection film. (34) As in items (29) to (33) The polarizing plate of any one of the above, wherein at least one of the silica particles contained in the low refractive index layer of the antireflection film has an average particle diameter of 30% to 100% of the thickness of the low refractive index layer. (35) The polarizing plate according to any one of items (20) to (34), wherein the low refractive index layer of the antireflection film contains a fluoropolymer, and the fluoropolymer is as shown below Represented by the general formula (2): General formula (2)
0+l)^C—9=CH: 在通式(2)中,L係代表碳原子數爲從1至1〇 之連結基,m係代表0或1,X係代表氫原子或甲 200535465 基’ A係代表任意乙烯單體之聚合單元,可爲單 一成份也可爲由許多成份所構成,X、y、Z係代 表各組成成份之莫耳%,且代表符合3 0 $ X $ 6 0、 5SyS70、〇Sz$65之條件之値。 (36 ) 如第(20 )至(35 )項中任一項之偏光板,其中 該抗反射膜爲具有抗靜電層者,且該抗靜電層之 表面比電阻値爲1011 Ω / 口以下(25°C、60 %RH ),霧度爲20%以下。 (3 7 ) —種液晶顯示裝置,其特徵爲如第(20 )至(3 6 ) 項中任一項之偏光板係使用於液晶顯示裝置之最 外表面。 (38) 如第(3 7 )項之偏光板,其中液晶顯示裝置之液 晶胞係VA模式或TN模式之液晶胞。 〔發明之功效〕 若根據本發明第三方式之偏光板,則可不必增加偏光板 之構成構件數,獲得具有優越的光學補償功能與抗反射功 能兩者,並且特別是在加以薄膜化時的表面之刮傷不致於 醒目之功效。再加上具備本發明偏光板之液晶顯示裝置是 一種廣視野角之良好畫面、外光源或背景的映入現象又少 且視認性極高者。 〔實施發明之最佳方式〕 茲就本發明第三方式之偏光板詳加說明如下。 本發明之偏光板,其特徵爲由偏光膜及在其兩側分別配 置至少一片功能膜所形成者,且在一側之至.少一功能膜係 -105- 200535465 僅由特定的醯化纖維素薄膜所構成,而在另一側之功能膜 係由特定的抗反射膜所構成。 首先,對於一側之功能膜加以說明後,再對於另一側之 功能膜、偏光板依序說明如下。 〈關於一側之功能膜〉 在一側之功能膜,係僅由特定的醯化纖維素薄膜所構成 的至少一功能膜。 〔薄膜之延遲〕 在本說明書中,各薄膜之Re延遲値及Rth延遲値係分別 以如下所示之式(I )和(II)所定義。 (I) Re = (nx— ny) x d (II) Rth = { ( nx + ny) /2 — nz } x d 在式(I )和(Π )中,nx係薄膜面內之遲相軸方向(折 射率將成爲最大之方向)之折射率。在式(I )和(Π )中 ,ny係薄膜面內之進相軸方向(折射率將成爲最小之方向 )之折射率。在式(II)中,nz係薄膜之厚度方向之折射 率。在式(I)和(II)中’ d係以奈米爲卓ill之薄膜厚度 〇 並且,上述特定的醯化纖維素薄膜’其Re延遲値較佳爲 20奈米以上且70奈米以下,且更佳爲從40至70奈米; Rth延遲値較佳爲7〇奈米以上且400奈米以下’且更佳爲 從90至250奈米。若Re延遲値爲小於20奈米或大於70 奈米時,則光學補償性能將較差;類似於此’若Rth延遲 値爲小於7 0奈米或大於4 0 0奈米時’則光學補償性能將較 200535465 差。該等可由包含在醯化纖維素的芳香族化合物之種類、 添加量及延伸倍率來加以調整。藉由此等方式即可製得具 有光學異方向性之醯化纖維素薄膜。 具體而言,爲製得具有上述各延遲値之醯化纖維素薄膜 ,則較佳爲以從3至100%之延伸倍率加以延伸。 延伸方法並無特殊的限定,但是可藉由拉幅機延伸等來 實施。 延伸倍率每1%之Re/Rth變化量,較佳爲〇.〇1以上且 0.04以下。 另外,在進行延伸時之纖維素醋酸酯薄膜之殘留溶劑量 爲2%以上且30%以下,且在該狀態下採取朝著長度方向輸 送,同時朝著與長度方向成正交的方向延伸,以使該薄膜 之遲相軸向相對於該薄膜之長度方向成正交的方向加以延 伸,則可獲得具有較理想的延遲値。 在液晶顯示裝置使用兩片光學異方向性之醯化纖維素薄 膜時,薄膜之Rth延遲値較佳爲從70至200奈米。在液晶 顯示裝置使用一片光學異方向性之醯化纖維素薄膜時,則 薄膜之Rth延遲値較佳爲從150至400奈米。 另外,醯化纖維素薄膜之雙折射率(△ n : nx — ny )較佳 爲從0.0 002 5至0.00088。醯化纖維素薄膜之厚度方向雙折 射率{ ( nx + ny ) /2 — nz}較佳爲從 0.00088 至 0.005。 關於上述醯化纖維素薄膜之原料成份說明如下。 〔醯化纖維素薄膜〕 可使用於本發明之醯化纖維素的原料棉,可使用習知的 -107- 200535465 原料,其合成也可以習知的方法來實施。例如可使用曰本 發明協會公開技報公技號碼第200 1 - 1 745號、或在右田等 人之「木材化學」(共立出版、1968年)第180至190頁 所揭述之原料、合成法。醯化纖維素之黏度平均聚合度較 佳爲從200至700,更佳爲從250至500,且最佳爲從250 至3 5 0。可使用於本發明之纖維素酯,較佳爲根據凝膠透 層析法的Mw/Mn ( Mw代表質量平均分子量、Μη代表數量 平均分子量)之分子量分佈爲狹窄。具體的Mw/Mn之値較 佳爲從1_5至5.0,更佳爲從2.0至4.5,且最佳爲從3.0至 4.0。 醯化纖維素薄膜之醯基較佳爲使用乙醯基、丙醯基、丁 醯基,也可含有選自該等中之許多種醯基,尤其是較佳爲 乙醯基。「全醯基之取代度」較佳爲從2.7至3.0,且更佳 爲從2.8至2_95。在本發明之醯基的取代度係經測定鍵結 於纖維素中之羥基的脂肪酸之鍵結度,然後以計算即可得 。測定方法可根據ASTM D-817-91、ASTM D-817-96準則 來測定。 另外,對羥基的醯基之取代狀態係可由13C-NMR (核磁 共振)法測定。 醯基較佳爲乙醯基,使用醯基爲乙醯基之纖維素醋酸酯 時,則乙醯化度較佳爲從59.0至62.5%,且更佳爲59.0至 6 1 ·5%。若乙醯化度爲在該範圍內時,則Re不致於由於流 延時的輸送張力而變得大於吾所欲得之値,且面內之不均 勻性較少,由於溫濕度而導致延遲値變化之現象也較少。 200535465 6位次醯基之取代度從抑制Re、Rth之不均勻性的觀點 來考慮,則較佳爲〇 . 9以上。 〔具有至少兩個芳香族環之芳香族化合物〕 在本發明中爲調整醯化纖維素薄膜之延遲,則使用具有 至少兩個芳香族環之芳香族化合物作爲延遲上升劑。芳香 族化合物係以相對於100質量份之醯化纖維素爲從0.01至 2 0質量份之範圍內來使用。芳香族化合物係以相對於1 00 質量份之醯化纖維素較佳爲從0.05至15質量份之範圍內 來使用,且更佳爲從0 · 1至1 0質量份之範圍來使用。 若芳香族化合物之使用量爲小於0.01質量份且大於20 質量份時,則光學補償性能皆將劣化。 可倂用兩種以上之芳香族化合物。在芳香族化合物之芳 香族環中,除芳香族碳氫化合物環之外,也包含芳香族性 雜環。 芳香族碳氫化合物環特佳爲6員環(亦即,苯環)。芳 香族性雜環較佳爲5員環、6員環或7員環,且更佳爲5 員環或6員環。雜原子較佳爲氮原子、氧原子及硫原子, 且特佳爲氮原子。 芳香族性雜環之具體實例係包括:呋喃環、噻吩環、啦 咯環、噁Π坐環、異螺坐環、噻Π坐環、異噻π坐環、咪π坐環、 口比π坐環、呋咕環、二氣11坐環、哌喃環、卩比Β定環、塔哄環、 嘧啶環、吡阱環及1,3,5 —三氮阱環。 並且’芳香族環較佳爲苯環、呋喃環、噻吩環、卩比咯環 、噁唑環、噻唑環、咪唑環、三氮唑環、吡啶環、嘧啶環 -109- 200535465 、吡阱環及1,3,5 —三氮畊環,且更佳爲苯環及1, 3,5 -三氮阱環。芳香族化合物特佳爲具有至少一個1,3,5 -三 氮阱環。 芳香族化合物所具有的芳香族環之數量較佳爲從2至20 ,更佳爲從2至12,進一步更佳爲從2至8,且最佳爲從 2至6 〇 各芳香族環之鍵結關係,可分類爲(a )形成縮合環之情 形’ (b )以單鍵直接鍵結之情形,及(c )經由連結基鍵 結之情形(由於芳香族環而無法形成螺接)。鍵結關係可 爲第(a )至(c )項中任一者。亦即,可使用於本發明之 上述芳香族化合物係包括上述各芳香族環所縮合形成縮合 環的化合物、上述各芳香族環經以單鍵所直接鍵結的化合 物、及由上述各芳香族環經由後述連結基鍵結所構成之化 合物。 第(a)項之縮合環(兩個以上之芳香族環的縮合環)之 具體實例,亦即形成縮合環所構成之上述芳香族化合物係 包括:茚環、萘環、葜環、荛環、菲環、蒽環、乙烯合萘 環、稠四苯環、芘環、吲哚環、異吲哚環、苯并呋喃環、 本幷噻吩環、吲哚咐環、苯幷0惡π坐環、苯并坐環、苯并 咪唑環、苯并三唑環、嘌呤環、咪唑環、暁皖烯環、喹啉 孩、異喹啉環、喹啉阱環、喹唑啉環、啐啉環、喹噁啉環 、呔哄環、喋啶環、咔唑環、吖啶環、啡啶環、_唱環、 啡阱環、啡噻畊環、啡噁噻環、啡噁阱環及噻蒽環。其中 奴Q爲萘環、莫環、吲哚環、苯并噁唑環、苯并噻唑環、 -110- 200535465 苯并咪唑環、苯并三唑環及喹啉環。 (b )之單鍵較佳爲兩個以上的芳香族環之碳原子之間的 鍵結。也可爲兩個以上之單鍵鍵結芳香族環以在兩個芳香 族環之間形成脂肪族環或非芳香族性複合環。 (c)之連結基,也是較佳爲與兩個芳香族環之碳原子鍵 結。連結基較佳爲伸烷基、伸烯基、伸炔基、一 CO -、-Ο -、一 NH —、一 S —或此等之組合。伸烷基係也可具有環 狀結構。環狀伸烷基較佳爲伸環己基,特佳爲1,4 -伸環 己基。鏈狀伸烷基較佳爲並未經分枝之直鏈狀結構者。伸 烷基之碳原子數較佳爲從1至20,更佳爲從1至8。伸烯 基及伸炔基,具有鏈狀結構者優於具有環狀結構者,且更 佳爲並無分枝之直鏈狀結構者。伸烯基及伸炔基之碳原子 數較佳爲從2至10,且更佳爲從2至4。 以組合所構成之連結基之具體實例如下。另外,如下所 示之連結基之具體實例的左右關係也可爲相反。 cl : 一 CO — 0- c2 : 一 CO- NH — c 3 : —伸烷基—〇 — c4 : - NH- CO- NH — c5 : - NH- CO- O- c6: — O — CO — O 一 c7: — 0 —伸院基—0- c8 : 一 CO—伸烯基— c9: 一 CO —伸嫌基—NH — -Ill - 200535465 c 1 0 : 一 CO —伸烯基—o - ell: 一伸院基—co —ο—伸院基—ο〜co-伸院基一 cl2: - 〇 —伸院基—CO—O —伸院基〜〇— c〇 —伸院基 -0- cl3: — 〇 — CO —伸院基—CO — Ο — cl4 : 一 NH— CO —伸烯基— c 1 5 · — 〇 — CO - 伸燒基— 芳香族環及連結基也可具有取代基。取代基之具體實例 包括:鹵素原子(F、Cl、Br、I)、羥基、羧基、氰基、 0 胺基、硝基、磺基、胺甲醯基、胺磺醯基、脲基、烷基、 烯基、炔基、脂肪族醯基、脂肪族醯氧基、烷氧基、烷氧 基碳基、院氧基幾胺基、院硫基、院磺醯基、脂肪族醯胺 基、脂肪族磺醯胺基、經脂肪族取代之胺基、經脂肪族取 代之胺甲醯基、經脂肪族取代之胺磺醯基、經脂肪族取代 之脲基及非芳香族性複合環基。 烷基之碳原子數較佳爲從1至8,鏈狀烷基優於環狀烷 基,特佳爲直鏈狀烷基。烷基又可具有取代基(例如羥基 φ 、竣基、院氧基、經院基取代之胺基)。院基之(包含經 取代之烷基)具體實例包括甲基、乙基、正-丁基、正-己 基、2—羥基乙基、4 一羧基甲基、2-甲氧基乙基及2—二 乙胺基乙基。 烯基之碳原子數較佳爲從2至8。鏈狀烯基優於環狀烯 基,特佳爲直鏈狀烯基。烯基又可具有取代基。烯基之具 體實例包括乙烯、烯丙基及1-己烯基。 -112- 200535465 炔基之碳原子數較佳爲從2至8。鏈狀炔基優於環狀炔 基,特佳爲直鏈狀炔基。炔基又可具有取代基。炔基之具 體實例包括乙炔基、1 一 丁炔基、及1 一己炔基。 脂肪族醯基之碳原子數較佳爲從1至1 〇。脂肪族醯基之 具體實例包括乙醯基、丙醯基及丁醯基。 脂肪族醯氧基之碳原子數較佳爲從1至10。脂肪族醯氧 基之具體實例包括乙醯氧基。 烷氧基之碳原子數較佳爲從1至8。烷氧基又可具有取 代基(例如烷氧基)。烷氧基之(包含經取代之烷氧基) 之具體實例包括甲氧基、乙氧基、丁氧基及甲氧基乙氧基 〇 烷氧基羰基之碳原子數較佳爲從2至10。烷氧基羰基之 具體實例包括甲氧基羰基及乙氧基羰基。 烷氧基羰胺基之碳原子數較佳爲從2至10。烷氧基羰胺 基之具體實例包括甲氧基羰胺基及乙氧基羰胺基。 烷硫基之碳原子數較佳爲從1至1 2。烷硫基之具體實例 包括甲硫基、乙硫基及啐硫基。 烷磺醯基之碳原子數較佳爲從1至8。烷基磺醯基之具 體實例包括甲磺醯基及乙磺醯基。 脂肪族醯胺基之碳原子數較佳爲從1至1 〇。脂肪族醯胺 基之具體實例包括乙醯胺。 脂肪族磺醯胺基之碳原子數較佳爲從1至8。脂肪族磺 醯胺基之具體實例包括甲磺醯胺基、丁磺醯胺基及正-啐磺 _胺基。 -113- 200535465 經脂肪族取代之胺基之碳原子數較佳爲從1至1 0。經脂 肪族取代之胺基之具體實例包括二甲基胺基、二乙基胺基 及2-羧基乙基胺基。 經脂肪族取代之胺甲醯基之碳原子數較佳爲從2至1 0。 經脂肪族取代之胺甲醯基之具體實例包括甲基胺甲醯基及 二乙基胺甲醯基。 經脂肪族取代之胺磺醯基之碳原子數較佳爲從1至8。 經脂肪族取代之胺磺醯基之具體實例包括甲基胺磺醯基及 二甲基胺磺醯基。經脂肪族取代之脲基之碳原子數較佳爲 從2至1 0。 經脂肪族取代之脲基之具體實例包括甲基脲基。 非芳香族性複合環基之具體實例包括哌啶基及嗎啉代基 〇 在如上所述之芳香族化合物之該等具體實例中,較佳爲 分子結構爲具有線性分子結構之棒狀化合物。「線性分子 結構」係意謂在熱力學上最穩定的結構是呈線性。熱力學 上最穩定的結構係可藉由結晶結構解析或分子軌域計算來 求得。例如使用分子軌域計算軟體(例如WinMOPAC 2000 、富士通(股)公司製)來實施分子軌域計算,即可求得 化合物之生成熱會成爲最小的分子之結構。所謂分子結構 爲呈線性是意謂藉由如上所述所計算得之在熱力學上最穩 定的結構中,分子結構之角度爲1 40度以上。 具有至少兩個芳香族環之芳香族化合物,具體而言係包 括如下所示之化合物等,但是並不受限於此等。 200535465 ΙΦ98Φ8·0ΦΙ μφο-8φ8-οφ?Q-o-8-@-8.00 ^^-0-8-0-8-0-04 (2) (4) Hs (5)0 + l) ^ C-9 = CH: In the general formula (2), L represents a linking group having a carbon number from 1 to 10, m represents 0 or 1, and X represents a hydrogen atom or a form. The radical 'A represents the polymerization unit of any vinyl monomer, which can be a single component or composed of many components. X, y, and Z represent the mole% of each component, and represent conforming to 3 0 $ X $ 6 0, 5SyS70, 0Sz $ 65. (36) The polarizing plate according to any one of items (20) to (35), wherein the antireflection film is an antistatic layer, and the specific resistance of the surface of the antistatic layer 値 is 1011 Ω / mouth or less ( 25 ° C, 60% RH), the haze is below 20%. (37) A liquid crystal display device characterized in that the polarizing plate according to any one of the items (20) to (36) is used on the outermost surface of the liquid crystal display device. (38) The polarizing plate according to the item (3 7), wherein the liquid crystal cell of the liquid crystal display device is a VA mode or a TN mode liquid crystal cell. [Effect of the Invention] According to the polarizing plate according to the third aspect of the present invention, it is not necessary to increase the number of constituent members of the polarizing plate, and it is possible to obtain both excellent optical compensation function and anti-reflection function. The scratches on the surface are not conspicuous. In addition, the liquid crystal display device provided with the polarizing plate of the present invention is a good picture with a wide viewing angle, an external light source, or a background with little reflection phenomenon and high visibility. [Best Mode for Carrying Out the Invention] The polarizing plate of the third embodiment of the present invention is described in detail below. The polarizing plate of the present invention is characterized in that it is formed by a polarizing film and at least one functional film arranged on both sides of the polarizing film, and is on one side. At least one functional film system -105- 200535465 is only composed of specific tritium Plain thin film, and the functional film on the other side is composed of a specific anti-reflection film. First, the functional film on one side will be described, and then the functional film and polarizing plate on the other side will be sequentially explained as follows. <About the functional film on one side> The functional film on one side is at least one functional film composed of only a specific tritiated cellulose film. [Delay of Film] In this specification, the Re retardation and Rth retardation of each film are defined by the following formulas (I) and (II), respectively. (I) Re = (nx — ny) xd (II) Rth = {(nx + ny) / 2 — nz} xd In formulae (I) and (Π), nx is the direction of the late phase axis in the plane of the film ( The refractive index will become the largest direction). In formulae (I) and (Π), ny is the refractive index in the direction of the advancing axis (the direction where the refractive index will become the smallest) in the plane of the thin film. In the formula (II), the nz is a refractive index in the thickness direction of the thin film. In the formulae (I) and (II), 'd is a film thickness of nanometers, and the specific retardation cellulose film' has a Re retardation of preferably 20 nm or more and 70 nm or less. And more preferably from 40 to 70 nanometers; Rth retardation 値 is preferably from 70 nanometers to 400 nanometers' and more preferably from 90 to 250 nanometers. If the Re delay 値 is less than 20 nm or greater than 70 nm, the optical compensation performance will be poor; similar to this 'if the Rth delay 値 is less than 70 nm or greater than 400 nm', the optical compensation performance Will be worse than 200535465. These can be adjusted by the type, addition amount, and extension ratio of the aromatic compound contained in the tritiated cellulose. By these means, a halogenated cellulose film having optical anisotropy can be obtained. Specifically, in order to obtain a halogenated cellulose film having each of the above-mentioned retardation ratios, it is preferably stretched at a stretching ratio from 3 to 100%. The stretching method is not particularly limited, but may be implemented by a tenter stretching or the like. The amount of change in Re / Rth per 1% of the stretching magnification is preferably from 0.01 to 0.04. In addition, the residual solvent content of the cellulose acetate film during stretching is 2% or more and 30% or less, and in this state, it is transported in the length direction, and at the same time it is extended in a direction orthogonal to the length direction. By extending the retarded axial direction of the film orthogonal to the length direction of the film, a better retardation chirp can be obtained. When two pieces of optically anisotropic cellulose film are used in the liquid crystal display device, the Rth retardation of the film is preferably from 70 to 200 nm. When the liquid crystal display device uses an optically anisotropic cellulose film, the Rth retardation of the film is preferably from 150 to 400 nm. The birefringence (Δ n: nx — ny) of the tritiated cellulose film is preferably from 0.0 002 5 to 0.00088. The birefringence of the tritiated cellulose film in the thickness direction {(nx + ny) / 2 — nz} is preferably from 0.00088 to 0.005. The raw material components of the above-mentioned tritiated cellulose film are described below. [Tritonized Cellulose Film] The raw cotton which can be used for the tritiated cellulose of the present invention can be a conventional -107-200535465 raw material, and its synthesis can be carried out by a conventional method. For example, it is possible to use the raw materials, synthesis, etc. as disclosed in the Japan Inventor's Association Technical Bulletin No. 200 1-1 745, or "Wood Chemistry" (Kyoritsu Publishing, 1968) on the right side, etc. law. The viscosity average polymerization degree of the tritiated cellulose is preferably from 200 to 700, more preferably from 250 to 500, and most preferably from 250 to 350. The molecular weight distribution of the cellulose ester that can be used in the present invention is preferably Mw / Mn (Mw represents mass average molecular weight, Mη represents number average molecular weight) by gel permeation chromatography. The specific Mw / Mn ratio is preferably from 1 to 5 to 5.0, more preferably from 2.0 to 4.5, and most preferably from 3.0 to 4.0. The fluorenyl group of the tritiated cellulose film is preferably ethenyl, propionyl, or butyl fluorenyl, and may contain many phosphonium groups selected from these, and particularly ethynyl is preferred. The "degree of substitution of all-fluorenyl" is preferably from 2.7 to 3.0, and more preferably from 2.8 to 2-95. The degree of substitution of the fluorenyl group in the present invention is determined by measuring the degree of bonding of the fatty acid bonded to the hydroxyl group in the cellulose, and then calculating it. The measurement method can be determined according to ASTM D-817-91 and ASTM D-817-96. The substitution state of the fluorenyl group to the hydroxyl group can be measured by 13C-NMR (nuclear magnetic resonance) method. The fluorenyl group is preferably ethenyl. When cellulose acetate having a fluorenyl group is used, the degree of acetylation is preferably from 59.0 to 62.5%, and more preferably from 59.0 to 61.5%. If the degree of acetylation is within this range, Re will not be larger than what I want due to the transport tension of the flow delay, and there is less unevenness in the surface, and the delay will be caused by temperature and humidity. There is also less change. 200535465 The degree of substitution of the 6th fluorenyl group is preferably 0.9 or more from the viewpoint of suppressing the non-uniformity of Re and Rth. [Aromatic compound having at least two aromatic rings] In the present invention, in order to adjust the retardation of a tritiated cellulose film, an aromatic compound having at least two aromatic rings is used as a retardation rising agent. The aromatic compound is used in a range of 0.01 to 20 parts by mass based on 100 parts by mass of tritiated cellulose. The aromatic compound is used in a range of preferably from 0.05 to 15 parts by mass, and more preferably in a range of from 0.1 to 10 parts by mass based on 100 parts by mass of tritiated cellulose. If the amount of the aromatic compound used is less than 0.01 parts by mass and greater than 20 parts by mass, the optical compensation performance will be deteriorated. Two or more aromatic compounds can be used. The aromatic ring of an aromatic compound contains an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (ie, a benzene ring). The aromatic heterocyclic ring is preferably a 5-membered ring, a 6-membered ring, or a 7-membered ring, and more preferably a 5-membered ring or a 6-membered ring. The hetero atom is preferably a nitrogen atom, an oxygen atom, and a sulfur atom, and particularly preferably a nitrogen atom. Specific examples of the aromatic heterocyclic ring include: furan ring, thiophene ring, lachryl ring, evil Π seat ring, isospiro ring, thio Π ring, isothio π ring, imine π ring, mouth ratio π Sit ring, furo ring, digas 11 ring, piperan ring, 卩 ring B fixed ring, tower coax ring, pyrimidine ring, pyridine ring and 1, 3, 5-triazine ring. And the 'aromatic ring is preferably a benzene ring, a furan ring, a thiophene ring, a pyridine ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring -109-200535465, and a pyridine ring. And 1,3,5-triazine ring, and more preferably benzene ring and 1,3,5-triazine ring. Aromatic compounds are particularly preferred to have at least one 1,3,5-triazine ring. The number of aromatic rings possessed by the aromatic compound is preferably from 2 to 20, more preferably from 2 to 12, even more preferably from 2 to 8, and most preferably from 2 to 60. Bonding relationships can be categorized as (a) the case of forming a condensed ring '(b) the case of direct bonding with a single bond, and (c) the case of bonding via a linking group (unable to form a splice due to an aromatic ring) . The bonding relationship may be any one of items (a) to (c). That is, the above-mentioned aromatic compounds used in the present invention may include a compound in which each of the aromatic rings is condensed to form a condensed ring, a compound in which each of the aromatic rings is directly bonded by a single bond, and a compound of each of the aromatics Compounds in which a ring is bonded via a linking group described later. Specific examples of the condensed ring (a condensed ring of two or more aromatic rings) according to item (a), that is, the above-mentioned aromatic compound system formed by forming a condensed ring includes: indene ring, naphthalene ring, fluorene ring, fluorene ring , Phenanthrene ring, anthracene ring, vinyl naphthalene ring, fused tetraphenyl ring, fluorene ring, indole ring, isoindole ring, benzofuran ring, benzethiophene ring, indole ring, benzene ring Ring, benzo sitting ring, benzimidazole ring, benzotriazole ring, purine ring, imidazole ring, fluorene ring, quinoline ring, isoquinoline ring, quinoline well ring, quinazoline ring, oxoline Ring, quinoxaline ring, hydrazone ring, pyrimidine ring, carbazole ring, acridine ring, morphine ring, sing ring, morphine ring, phenothion ring, phenoxanthrene ring, morphoxant ring and Thianthine ring. Among them, Q is naphthalene ring, molybdenum ring, indole ring, benzoxazole ring, benzothiazole ring, -110-200535465 benzimidazole ring, benzotriazole ring and quinoline ring. The single bond of (b) is preferably a bond between two or more carbon atoms of an aromatic ring. The aromatic rings may be bonded by two or more single bonds to form an aliphatic ring or a non-aromatic composite ring between the two aromatic rings. The linking group of (c) is also preferably bonded to carbon atoms of two aromatic rings. The linking group is preferably an alkylene group, an alkenyl group, an alkynyl group, -CO-, -O-, -NH-, -S-or a combination thereof. The alkylene system may have a cyclic structure. The cyclic alkylene group is preferably a cyclohexyl group, particularly preferably a 1,4-cyclohexyl group. The linear alkylene group is preferably a linear structure without branching. The number of carbon atoms of the alkylene group is preferably from 1 to 20, more preferably from 1 to 8. Those having an alkenyl group and an alkynyl group having a chain structure are better than those having a cyclic structure, and more preferably those having a branched linear structure. The carbon number of the alkenyl group and the alkenyl group is preferably from 2 to 10, and more preferably from 2 to 4. Specific examples of the linking group formed by the combination are as follows. In addition, the left-right relationship of the specific examples of the linking group shown below may be reversed. cl: one CO—0-c2: one CO—NH—c 3: —alkylene—0—c4: — NH— CO— NH — c5: — NH— CO— O— c6: — O — CO — O One c7: — 0 —Yenyuanji — 0- c8: One CO —Yenenyl — c9: One CO —Yenyl — NH — -Ill-200535465 c 1 0: One CO —Yenenyl — o-ell : Yishenyuanji—co —ο—Extended Yuanji—ο ~ co-Yenyuanji cl2:-〇— 伸 院 基 —CO—O —Yenyuanji ~ 〇— c〇— 伸 院 基 -0- cl3 : — 〇— CO —Extended base —CO — Ο — cl4: NH—CO —Extended alkenyl — c 1 5 · — 〇 —CO-Extended heat radical — Aromatic ring and linking group may have substituents. Specific examples of the substituent include: a halogen atom (F, Cl, Br, I), a hydroxyl group, a carboxyl group, a cyano group, an amine group, a nitro group, a sulfo group, a carbamoyl group, an aminesulfonyl group, a urea group, or an alkyl group. Base, alkenyl, alkynyl, aliphatic fluorenyl, aliphatic fluorenyl, alkoxy, alkoxy carbon, oxypolyamino, sulfanyl, sulfonyl, aliphatic fluorenyl , Aliphatic sulfonamide, aliphatic substituted amine, aliphatic substituted carbamoyl, aliphatic substituted aminesulfino, aliphatic substituted urea and non-aromatic composite ring base. The number of carbon atoms of the alkyl group is preferably from 1 to 8. A chain alkyl group is preferred to a cyclic alkyl group, and a linear alkyl group is particularly preferred. The alkyl group may have a substituent (for example, a hydroxyl group φ, a phenyl group, an oxo group, or an amine group substituted with an oxo group). Specific examples of the radical (including substituted alkyl) include methyl, ethyl, n-butyl, n-hexyl, 2-hydroxyethyl, 4-monocarboxymethyl, 2-methoxyethyl and 2 —Diethylaminoethyl. The number of carbon atoms of the alkenyl group is preferably from 2 to 8. Alkenyl alkenyl is better than cyclic alkenyl, and particularly preferred is linear alkenyl. The alkenyl group may have a substituent. Specific examples of alkenyl include ethylene, allyl and 1-hexenyl. The number of carbon atoms of -112- 200535465 alkynyl is preferably from 2 to 8. A chain alkynyl group is preferred to a cyclic alkynyl group, and a linear alkynyl group is particularly preferred. An alkynyl group may have a substituent. Specific examples of alkynyl include ethynyl, 1-butynyl, and 1-hexynyl. The number of carbon atoms of the aliphatic fluorenyl group is preferably from 1 to 10. Specific examples of the aliphatic fluorenyl group include ethenyl, propionyl and butylamyl. The number of carbon atoms of the aliphatic fluorenyloxy group is preferably from 1 to 10. Specific examples of the aliphatic fluorenyl group include ethynyloxy. The number of carbon atoms of the alkoxy group is preferably from 1 to 8. The alkoxy group may have a substituent (for example, an alkoxy group). Specific examples of the alkoxy group (including substituted alkoxy groups) include methoxy, ethoxy, butoxy, and methoxyethoxy. The number of carbon atoms of the alkoxycarbonyl group is preferably from 2 to 10. Specific examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group. The number of carbon atoms of the alkoxycarbonylamino group is preferably from 2 to 10. Specific examples of the alkoxycarbonylamino group include a methoxycarbonylamino group and an ethoxycarbonylamino group. The number of carbon atoms of the alkylthio group is preferably from 1 to 12. Specific examples of alkylthio include methylthio, ethylthio, and sulfanyl. The number of carbon atoms of the sulfanyl group is preferably from 1 to 8. Specific examples of the alkylsulfonyl group include a methylsulfonyl group and an ethylsulfonyl group. The number of carbon atoms of the aliphatic amido group is preferably from 1 to 10. Specific examples of the aliphatic amidino group include acetamido. The number of carbon atoms of the aliphatic sulfonamide group is preferably from 1 to 8. Specific examples of the aliphatic sulfonylamino group include a methanesulfonylamino group, a butanesulfonylamino group, and a n-sulfonylamino group. -113- 200535465 The number of carbon atoms of the aliphatic-substituted amine group is preferably from 1 to 10. Specific examples of the aliphatic-substituted amino group include a dimethylamino group, a diethylamino group, and a 2-carboxyethylamino group. The number of carbon atoms of the aliphatic-substituted carbamoyl group is preferably from 2 to 10. Specific examples of the aliphatic-substituted carbamoyl group include methylaminoformyl and diethylaminoformyl. The number of carbon atoms of the aliphatic-substituted aminesulfonyl group is preferably from 1 to 8. Specific examples of the aliphatic-substituted aminesulfinomethyl group include methylaminosulfinomethyl group and dimethylaminesulfinomethyl group. The number of carbon atoms of the aliphatic-substituted ureido group is preferably from 2 to 10. Specific examples of the aliphatic-substituted ureido group include methylureido. Specific examples of the non-aromatic composite ring group include piperidinyl and morpholino. Among these specific examples of the aromatic compound as described above, the molecular structure is preferably a rod-shaped compound having a linear molecular structure. "Linear molecular structure" means that the most thermodynamically stable structure is linear. The most thermodynamically stable structure can be obtained by analysis of crystal structure or calculation of molecular orbitals. For example, molecular orbital calculation software (such as WinMOPAC 2000, manufactured by Fujitsu Co., Ltd.) is used to perform molecular orbital calculation, and the structure of the molecule where the heat of formation of the compound becomes the smallest can be obtained. The fact that the molecular structure is linear means that among the most thermodynamically stable structures calculated as described above, the angle of the molecular structure is more than 140 degrees. The aromatic compound having at least two aromatic rings specifically includes the following compounds and the like, but is not limited thereto. 200535465 ΙΦ98Φ8 · 0ΦΙ μφο-8φ8-οφ? Q-o-8-@-8.00 ^^-0-8-0-8-0-04 (2) (4) Hs (5)
Br^^^oco^^^coo^^^^BrBr ^^^ oco ^^^ coo ^^^ Br
W ⑺ E Ho όιο^,&ι^οό,^ 0) o 1 Ht CHs5-Q-o'-0-8-o-Q-k" 1) (11 H3W ⑺ E Ho όιο ^, & ι ^ οό, ^ 0) o 1 Ht CHs5-Q-o'-0-8-o-Q-k " 1) (11 H3
Ha CH CH:£ ^0-8-^}-8-00l 2) ο H3 -Il5- 200535465 s) ο9ΗΦ0.8 令 8-οφμ2 4) (1 0,。宁8令8-。宁! 3) 1 Ji ^-0-8-^-8-0^Ha CH CH: £ ^ 0-8-^}-8-00l 2) ο H3 -Il5- 200535465 s) ο9ΗΦ0.8 Order 8-οφμ2 4) (1 0 ,. Ning 8 Order 8-. Ning! 3) 1 Ji ^ -0-8-^-8-0 ^
ll6- 200535465 e) (1ll6- 200535465 e) (1
OHCHCHCHO ol-^^-oo-^^-o-hhhu 1) cr-o-oHHoolH§~^"~^-o-8~-^y-8_o~^~"^~HHoloHH8-o-s* I 5 —I— s c2IQI8dQ4CHCH"^~^""odo""^^y-8lo"^~^-CHlCH48l84CT 19) CHsoQCH"^~^"ol8~^^y"8IQ"^~^"5lol8lCH Η -117- 200535465 (2 HoHP1 slo—8 -^^-018-^^810*^^-810-5I OH-4H:-o-^Q-o-s-^8-o-^oCHaCH;c5H17 Οβιοιοώώ^ι^οιο—^OHCHCHCHO ol-^^-oo-^^-o-hhhu 1) cr-o-oHHoolH§ ~ ^ " ~ ^ -o-8 ~-^ y-8_o ~ ^ ~ " ^ ~ HHoloHH8-os * I 5 —I— s c2IQI8dQ4CHCH " ^ ~ ^ " " odo " " ^^ y-8lo " ^ ~ ^ -CHlCH48l84CT 19) CHsoQCH " ^ ~ ^ " ol8 ~ ^^ y " 8IQ " ^ ~ ^ " 5lol8lCH Η -117- 200535465 (2 HoHP1 slo—8-^^-018-^^ 810 * ^^-810-5I OH-4H: -o- ^ Qos- ^ 8-o- ^ oCHaCH; c5H17 Οβιοιοώώ ^^ ι ^ οιο— ^
-118- 200535465 Γ8φο-8φ8-φ£Η3οφ8_οφοώφο』 8) (2 3 Ht-118- 200535465 Γ8φο-8φ8-φ £ Η3οφ8_οφοώφο 』8) (2 3 Ht
I %φ§°φο-8φί (30) (3 3y -») (3 HP C4 n τοότ^ο^ιοώ,ο.0^I% φ§ ° φο-8φί (30) (3 3y-») (3 HP C4 n τοότ ^ ο ^ ιοώ, ο.0 ^
He 5-^^0cocmcco0-^^-3 I ^^OITOICmcITOlo—^^He 5-^^ 0cocmcco0-^^-3 I ^^ OITOICmcITOlo — ^^
II
ca-^^-olsdmcdolo-^y-caH -119- 200535465 仏-^^-ols-cmcCJOlo-^^-^ca-^^-olsdmcdolo- ^ y-caH -119- 200535465 仏-^^-ols-cmcCJOlo-^^-^
8) (3 9 H H·8) (3 9 H H
s-o-^^-ocolcmcdolo-^^-odH 9) (3 H3 5 β C2IOCO—^"^"odolcmclCQlo—^""^-cololcas-o-^^-ocolcmcdolo-^^-odH 9) (3 H3 5 β C2IOCO — ^ " ^ " odolcmclCQlo — ^ " " ^-cololca
I oo~c3~ 糾 41 15IsCT-o-8-^^-0-8^^-8-0-^^-8·0ο71 -120- 200535465I oo ~ c3 ~ correction 41 15IsCT-o-8-^^-0-8 ^^-8-0-^^-8 · 0ο71 -120- 200535465
CeH13 (43) rv c7Hi5 <44) C7H15 (45) 2〇 Φ Φ 〇 Φ 0 CO CO #^LJ 9 GO CH 11 9H K^Wl do 1 Ww CH Λ§„ ςο o Φ 0 0 $ 〇7"16 wri CO 1 〇 Φ CeHia C7H15CeH13 (43) rv c7Hi5 < 44) C7H15 (45) 2〇Φ Φ 〇Φ 0 CO CO # ^ LJ 9 GO CH 11 9H K ^ Wl do 1 Ww CH Λ§ „ςο o Φ 0 0 $ 〇7 " 16 wri CO 1 〇Φ CeHia C7H15
COCO
I o -121 - 200535465 («) (47) 〇 CH3〇 (49)I o -121-200535465 («) (47) 〇 CH3〇 (49)
O (48)O (48)
nCeHt3〇 CM "CeH170 CN <5〇) (51) wC^n0-^^-C-0-^^-QCHa HC^O-QhoC^ (52)nCeHt3〇 CM " CeH170 CN < 5〇) (51) wC ^ n0-^^-C-0-^^-QCHa HC ^ O-QhoC ^ (52)
nc""^3"o^/~^c^cH2Ch^o"^]^o"^3~cn (53) 〇 (54) 。 "C7H1SH0^-〇J〇^-C7H, (SS) nC4Kg^^- m 〇nc " " ^ 3 " o ^ / ~ ^ c ^ cH2Ch ^ o " ^] ^ o " ^ 3 ~ cn (53) 〇 (54). " C7H1SH0 ^ -〇J〇 ^ -C7H, (SS) nC4Kg ^^-m 〇
nC4H9〇-^^〇S-^^&)«^^OC4HennC4H9〇-^^ 〇S-^^ &) «^^ OC4Hen
(57) 〇(57) 〇
C^(CH2)3^HCH20«^^- OC C2H5 ~ CjHs (58) 〇 〇 CH^OC-^^-OC CO COCHs -122- 200535465 (59) nC4HB〇C-^^- OC CO-^^-OC4H9n (β〇) o o o oC ^ (CH2) 3 ^ HCH20 «^^-OC C2H5 ~ CjHs (58) 〇〇CH ^ OC-^^-OC CO COCHs -122- 200535465 (59) nC4HB〇C-^^-OC CO-^^ -OC4H9n (β〇) oooo
CaH» CIVCH^CHCHiO-C-^^-OCCOCOCH2CH(CHa>3CH3 (β1>CaH »CIVCH ^ CHCHiO-C-^^-OCCOCOCH2CH (CHa > 3CH3 (β1 >
(β2) ch3o(β2) ch3o
och3och3
(«3) 〇 〇(«3) 〇 〇
CjHaO -〇-0-«-〇Η〇-Ι-0-〇- OCaH5CjHaO -〇-0-«-〇Η〇-Ι-0-〇- OCaH5
-123- (64) (64)200535465 (65)-123- (64) (64) 200535465 (65)
延遲上升劑之分子量較佳爲從300至800。 〔醯化纖維素薄膜之製造〕 關於醯化纖維素薄膜之製造,較佳爲使用發明專利文獻 4之方法。例如關於溶液之調製、流延法、塑化劑、防劣 -124- 200535465 化劑等方面在發明專利文獻4中也有揭示,較佳爲使用該 方法和材料。延伸倍率爲從3至100%,較佳爲從5至80% 〇 從面內之均勻性的觀點來考慮,延伸方法較佳爲使用拉 幅機延伸。延伸處理可在製膜步驟之途中實施,也可對經 製膜所捲取的捲筒形態之薄膜加以延伸。在前者之情形下 ,可在尙含有殘留溶劑之狀態加以延伸,較佳爲在殘留溶 劑爲從2至35%,較佳爲在從2至30%下延伸。 如上所述之醯化纖維素薄膜之膜厚較佳爲從30至140微 米,更佳爲從40至90微米,且進一步更佳爲從40至70 微米。 醯化纖維素薄膜之表面處理,係包括將在〈關於另一側 之功能膜〉段落中所述及之鹼性鹼化處理。也可使用在發 明專利文獻4〔纖維素醋酸酯薄膜之表面處理〕中所揭示 之方法。 在本發明中,上述一側之功能膜可爲僅由上述醯化纖維 素薄膜所構成之功能膜來形成者,也可爲疊合該膜與其他 功能膜所形成者。上述其他之功能膜包括例如上述醯化纖 維素薄膜之經變更延遲的薄膜,及一般的醯化纖維素薄膜 胚料等。 〈關於另一側之功能膜〉 然後,就另一側之功能膜說明如下。 上述另一側之功能膜,其至少一個功能膜係由特定的抗 反射膜所構成。該特定的抗反射膜是包括並未具有防眩性 -125 - 200535465 硬質塗層防眩性之硬質塗層、中折射率層或高折射率層中 至少任一層及低折射率層之薄膜。未具有防眩性之硬質塗 層也可爲光擴散層。在透明支撐體與硬質塗層之間加以塗 設抗靜電層也是較佳。硬質塗層可爲一層或具有二層至四 層之數層。低折射率層係塗設作爲最外層。 茲將本發明之一實施方式之較佳的抗反射膜之基本結構 參照圖式說明如下。 第5圖和第6圖是展示抗反射膜之結構模式剖面圖 在第5圖模式所展示之抗反射膜31,係由透明支撐體32 φ ,形成在透明支撐體上之硬質塗層33,形成在硬質塗層33 上之防眩性硬質塗層34,及作爲最外層所形成之低折射率 層3 5所構成。在防眩性硬質塗層34中則1使消光劑顆粒 36分散於其中。33之硬質塗層並非爲非設置不可,也可在 透明支撐體32上直接設置防眩性硬質塗層34。在防眩性 硬質塗層34上可與第6圖相同方式設置中折射率層37、 高折射率層3 8。 在第6圖模式所展示之抗反射膜,係由透明支撐體32、 # 形成在透明支撐體32上之硬質塗層33、形成在硬質塗層 3 3上之中折射率層3 7、形成在中折射率層3 7上之高折射 率層38、及作爲最外層所形成之低折射率層35所構成。 並且,也可在硬質塗層下方塗設抗靜電層。透明支撐體 32、中折射率層37、高折射率層38及低折射率層35係具 有符合如下所示之關係之折射率: 高折射率層之折射率 > 中折射率層之折射率 > 透明 -126- 200535465 支撐體之折射率 > 低折射率層之折射率。 若爲如第6圖所示之層結構時,則抗反射膜較佳爲能符 合日本專利特開昭第59-5 040 1號公報所揭示之條件者,且 更佳爲能符合如下所述之條件者。 各自之條件是中折射率層可以如下所示之數學式(III ) 所代表、高折射率層可以如下所示之數學式(IV )所代表 、低折射率層可以如下所示之數學式(V )所代表者。 在該數學式中,λ爲500奈米,h爲l,i爲2, j•爲1。 數學式(III) (h λ /4 ) χ 0.80 < m d! < ( h λ /4 ) χ 1.00 數學式(IV) (i λ /4 ) χ 0.75 < η2 d2 < ( i λ /4 ) χ 0.95 數學式(V) (j λ /4 ) χ 0.95 < η3 d3 < ( j λ /4 ) χ 1.05 在本文中所使用之「高折射率、中折射率和低折射率」 是意謂在該等層之中的折射率之相對高低程度。在第6圖 中,高折射率層是用作爲光干涉層,因此可製得具有極特 優抗反射性能之抗反射膜。 另外,在第6圖所示之抗反射膜中的硬質塗層,可爲未 具有防眩性之硬質塗層或爲防眩性硬質塗層。 〔有機矽烷化合物和/或其之水解產物、和/或其之部份縮 合物〕 用以構成本發明抗反射膜之防眩性硬質塗層與低折射率 層,若從耐擦傷性的觀點來考慮,則較佳爲在其中至少在 -127- 200535465 任一層’在用作爲形成其層的塗佈液中含有有機矽烷化合 物和/或其水解產物、和/或其之部份縮合物,即所謂「溶 膠成份」(以下稱爲如此)。特別是在低折射率層用之液 中爲使抗反射能與耐擦傷性之兩者並存,則較佳爲使其含 有有機矽烷化合物、其水解產物和/或其之部份縮合物,且 在防眩性硬質塗層用之液中較佳爲使其含有有機矽烷化合 物、其水解產物和/或其之部份縮合物中任一者或混合物。 該溶膠成份將在塗佈塗佈液後的乾燥、加熱步驟中縮合而 形成硬化物以用作爲上述層的黏結劑。另外,該硬化物若 具有聚合性不飽和鍵時,則藉由照射活性光線即可形成具 有三維結構之黏結劑。 有機矽烷化合物較佳爲以如下所示之通式(1 )所代表者 通式(1 ) ( R1。)m— Si ( X) 4-m 在如上所示之通式(1 )中,R1 G係代表經取代或未經取 代之烷基、經取代或未經取代之芳基。烷基包括甲基、乙 基、丙基、異丙基、己基、癸基、十六基等。烷基較佳爲 碳原子數爲從1至30,更佳爲碳原子數爲從1至16,且特 佳爲從1至6者。芳基包括苯基、萘基等,較佳爲苯基。 X係代表羥基或可水解性基,可水解性基包括例如烷氧 基(較佳爲碳原子數爲從1至5之烷氧基。例如包括甲氧 基、乙氧基等)、鹵素原子(例如CM、Br、I等),及以 R2COO (R2係代表氫原子或碳原子數爲從1至5之烷基。 例如包括C Η 3 C Ο Ο、C 2 Η 5 C Ο Ο等)所獲得基,最佳爲烷氧 200535465 基,特佳爲甲氧基或乙氧基。 m係代表從1至3之整數,較佳爲1或2 ’特佳爲1。 若具有數個R1()或X存在時,數個之R1()或X各自可爲 相同或不同。 包含在R1()之取代基並無特殊的限定,可包括:鹵素原 子(氟、氯、溴等)、經基、氫硫基、殘基、環氧基、院 基(甲基、乙基、異丙基、丙基、三級-丁基等)、芳基( 苯基、萘基等)、芳香族雜環基(呋喃基、吡唑基、吡啶 基等)、烷氧基(甲氧基、乙氧基、異丙氧基、己氧基等 )、芳氧基(苯氧基等)、烷硫基(甲硫基、乙硫基等) 、芳硫基(苯硫基等)、烯基(乙烯、1 一丙烯基等)、醯 氧基(乙醯氧基、丙烯酸醯氧基、甲基丙烯醯氧基等)、 烷氧基羰基(甲氧羰基、乙氧羰基等)、芳氧基羰基(苯 氧羰基等)、胺甲醯基(胺甲醯基、N —甲基胺甲醯基、N, N—二甲基胺甲醯基、N —甲基一 N —啐基胺甲醯基等)、 醯基胺基(乙醯基胺基、苯甲醯基胺基、丙烯醯胺基、甲 基丙烯醯基等)等,該等取代基也可又被取代。 通式(1 )之化合物可倂用兩種以上。以下舉例說明以通 式(Ο所代表的化合物之具體實例,但是並不受限於此等 -129· 200535465 M-l ^c.0-(CH2)3-Si-(0CH3)3 « o M-2 ^C.0-(CH2)3-Si-(0CH3)3 o M-3The molecular weight of the delayed rising agent is preferably from 300 to 800. [Production of tritiated cellulose film] As for the production of tritiated cellulose film, it is preferred to use the method of Invention Patent Document 4. For example, aspects of solution preparation, casting method, plasticizer, and anti-inferiority-124-200535465 are also disclosed in Invention Patent Document 4, and it is preferable to use the method and material. The stretching ratio is from 3 to 100%, preferably from 5 to 80%. From the viewpoint of in-plane uniformity, the stretching method is preferably stretching using a tenter. The stretching process may be performed during the film forming step, and the film in the form of a roll wound by the film may be stretched. In the former case, it can be extended in a state where 尙 contains a residual solvent, preferably when the residual solvent is from 2 to 35%, and more preferably from 2 to 30%. The film thickness of the tritiated cellulose film as described above is preferably from 30 to 140 m, more preferably from 40 to 90 m, and even more preferably from 40 to 70 m. The surface treatment of the tritiated cellulose film includes an alkaline alkali treatment which will be described in the paragraph "About the functional film on the other side". The method disclosed in Patent Document 4 [Surface treatment of cellulose acetate film] can also be used. In the present invention, the functional film on one side may be formed by a functional film composed of only the above-mentioned tritiated cellulose film, or may be formed by laminating the film and other functional films. The other functional films include, for example, the modified delayed film of the aforementioned tritiated cellulose film, and a general tritiated cellulose film blank. <About the functional film on the other side> Next, the functional film on the other side is described below. At least one of the functional films on the other side is composed of a specific anti-reflection film. The specific anti-reflection film is a thin film including at least one of a low-refractive-index layer and a hard-coating layer having no anti-glare-125-200535465 hard-coating anti-glare property. The hard coating layer having no anti-glare property may be a light diffusion layer. It is also preferable to apply an antistatic layer between the transparent support and the hard coating. The hard coating layer may be one layer or a plurality of layers having two to four layers. The low refractive index layer is applied as the outermost layer. The basic structure of a preferred antireflection film according to an embodiment of the present invention is described below with reference to the drawings. 5 and 6 are cross-sectional views showing the structure of the anti-reflection film. The anti-reflection film 31 shown in the mode of FIG. 5 is formed by a transparent support body 32 φ and a hard coating 33 formed on the transparent support body. An anti-glare hard coat layer 34 formed on the hard coat layer 33, and a low-refractive index layer 35 formed as the outermost layer. In the anti-glare hard coat layer 34, the matting agent particles 36 are dispersed therein. The hard coating layer 33 is not necessary, and an anti-glare hard coating layer 34 may be directly provided on the transparent support 32. The anti-glare hard coat layer 34 may be provided with the middle refractive index layer 37 and the high refractive index layer 38 in the same manner as in FIG. 6. The anti-reflection film shown in the mode of FIG. 6 is formed by a transparent support body 32, a hard coating layer 33 formed on the transparent support body 32, an intermediate refractive index layer 37 formed on the hard coating layer 3, and a A high refractive index layer 38 on the middle refractive index layer 37 and a low refractive index layer 35 formed as the outermost layer are formed. Also, an antistatic layer may be applied under the hard coat layer. The transparent support body 32, the medium refractive index layer 37, the high refractive index layer 38, and the low refractive index layer 35 have refractive indices that satisfy the relationship shown below: Refractive index of the high refractive index layer> Refractive index of the middle refractive index layer > Refractive index of transparent-126- 200535465 support > Refractive index of low refractive index layer. In the case of the layer structure shown in FIG. 6, the anti-reflection film is preferably one that can meet the conditions disclosed in Japanese Patent Laid-Open No. 59-5 040 1. It is more preferable that the anti-reflection film can meet the following conditions Conditional person. The respective conditions are that the medium refractive index layer can be represented by mathematical formula (III) shown below, the high refractive index layer can be represented by mathematical formula (IV) shown below, and the low refractive index layer can be represented by mathematical formula ( V) Represented. In this mathematical formula, λ is 500 nm, h is 1, i is 2, and j • is 1. Mathematical formula (III) (h λ / 4) χ 0.80 < md! ≪ (h λ / 4) χ 1.00 Mathematical formula (IV) (i λ / 4) χ 0.75 < η2 d2 < (i λ / 4) χ 0.95 Mathematical formula (V) (j λ / 4) χ 0.95 < η3 d3 < (j λ / 4) χ 1.05 "High refractive index, medium refractive index, and low refractive index" used in this article It means the relative level of the refractive index among these layers. In Fig. 6, the high-refractive index layer is used as an optical interference layer, so an anti-reflection film having extremely excellent anti-reflection performance can be obtained. The hard coat layer in the antireflection film shown in Fig. 6 may be a hard coat layer having no anti-glare property or an anti-glare hard coat layer. [Organic silane compound and / or its hydrolysate, and / or a partial condensate thereof] The antiglare hard coat layer and the low refractive index layer used to constitute the antireflection film of the present invention, from the standpoint of scratch resistance For consideration, it is preferable that at least any one of the layers of -127-200535465 'contains the organic silane compound and / or its hydrolysate, and / or its partial condensate in the coating liquid used to form its layer, The so-called "sol component" (hereinafter referred to as this). In particular, in the liquid for the low-refractive-index layer, in order to coexist both antireflection energy and abrasion resistance, it is preferable to contain an organosilane compound, a hydrolyzate thereof, and / or a partial condensate thereof, and The liquid for an anti-glare hard coating layer preferably contains any one or a mixture of an organosilane compound, a hydrolyzate thereof, and / or a partial condensate thereof. This sol component is condensed in the drying and heating steps after the application of the coating liquid to form a hardened product, and is used as a binder for the above layer. In addition, if the cured product has a polymerizable unsaturated bond, an adhesive having a three-dimensional structure can be formed by irradiating active light. The organosilane compound is preferably represented by the general formula (1) (R1.) M—Si (X) 4-m represented by the general formula (1) shown below. In the general formula (1) shown above, R1 G represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group. Alkyl includes methyl, ethyl, propyl, isopropyl, hexyl, decyl, hexadecyl and the like. The alkyl group is preferably from 1 to 30 carbon atoms, more preferably from 1 to 16 carbon atoms, and particularly preferably from 1 to 6 carbon atoms. Aryl includes phenyl, naphthyl, and the like, and phenyl is preferred. X represents a hydroxyl group or a hydrolyzable group, and the hydrolyzable group includes, for example, an alkoxy group (preferably an alkoxy group having 1 to 5 carbon atoms. For example, a methoxy group, an ethoxy group, etc.), a halogen atom (Such as CM, Br, I, etc.) and R2COO (R2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Examples include C Η 3 C Ο Ο, C 2 Η 5 C Ο Ο, etc.) The obtained group is preferably an alkoxy group 200535465, and particularly preferably a methoxy group or an ethoxy group. m represents an integer from 1 to 3, preferably 1 or 2 ', particularly preferably 1. If a plurality of R1 () or X are present, each of the plurality of R1 () or X may be the same or different. The substituents included in R1 () are not particularly limited, and may include: halogen atom (fluorine, chlorine, bromine, etc.), moieties, hydrogenthio groups, residues, epoxy groups, and radicals (methyl, ethyl) , Isopropyl, propyl, tertiary-butyl, etc.), aryl (phenyl, naphthyl, etc.), aromatic heterocyclic (furanyl, pyrazolyl, pyridyl, etc.), alkoxy (methyl Oxy, ethoxy, isopropoxy, hexyloxy, etc.), aryloxy (phenoxy, etc.), alkylthio (methylthio, ethylthio, etc.), arylthio (phenylthio, etc.) ), Alkenyl (ethylene, 1-propenyl, etc.), alkoxy (ethoxy, ethoxy, methacrylic, etc.), alkoxycarbonyl (methoxycarbonyl, ethoxycarbonyl, etc.) ), Aryloxycarbonyl (phenoxycarbonyl, etc.), carbamoyl (carbamoyl, N-methylcarbamoyl, N, N-dimethylaminocarbamyl, N-methyl-N —Fluorenylaminomethyl, etc.), fluorenylamino (ethinylamino, benzamidineamino, acrylamino, methacrylamido, etc.), etc., these substituents can also be replaced by To replace. The compound of the general formula (1) may use two or more kinds. Specific examples of compounds represented by general formula (0) are illustrated below, but are not limited to these -129 · 200535465 Ml ^ c.0- (CH2) 3-Si- (0CH3) 3 «o M-2 ^ C.0- (CH2) 3-Si- (0CH3) 3 o M-3
0-(CH2>3-Si-(0C2H5)30- (CH2 > 3-Si- (0C2H5) 3
M-4 ^c.〇-(CH2)3-Si-(OC2H5)3M-4 ^ c.〇- (CH2) 3-Si- (OC2H5) 3
IIII
OO
-130- 200535465 M-5 —Si-(OCH3>3 M-6 Y7-(ch2)3 - Si_(OC2H5)3 M-7 产fO-nsi - (OCH3)3-130- 200535465 M-5 —Si- (OCH3 > 3 M-6 Y7- (ch2) 3-Si_ (OC2H5) 3 M-7 fO-nsi-(OCH3) 3
M-8 ^c.〇-(CH2)4--Si-(OC2H5)3 M-9M-8 ^ c.〇- (CH2) 4--Si- (OC2H5) 3 M-9
[2OCH2CH2_Si—(OCH3)3[2OCH2CH2_Si— (OCH3) 3
M-10M-10
ch2och2ch2^—S 卜(OCH3>2 -131 200535465 該等之中,特佳爲(Μ— 1) 、(Μ— 2)、及(Μ— 5) ο 茲就本發明所使用之有機矽烷化合物之水解產物和/或部 份縮合物詳加說明如下。 有機矽烷之水解反應和/或縮合反應通常係在觸媒之存在 下進行。該觸媒包括鹽酸、硫酸、硝酸等之無機酸類;草 酸、醋酸、甲酸、甲磺酸、甲苯磺酸等之有機酸類;氫氧 化鈉、氫氧化鉀、氨等之無機鹽基類;三乙胺、吡啶等之 有機鹽基類;三異丙氧基銘、四丁氧基銷等之金屬院氧化 物類;Zr、Ti或A1等之以金屬爲中心金屬之金屬螯合化合 物等。 有機矽烷之水解•縮合反應雖然也可在無溶劑或在溶劑 中進行’但是爲使成份混合均勻,則較佳爲使用有機溶劑 ’例如醇類、芳香族碳氫化合物類、醚類、酮類、酯類等 〇 其方法是相對於1莫耳之有機矽烷添加之水解性基爲0.3 至2莫耳,較佳爲〇·5至1莫耳之水,然後在含有或不含 上述溶劑,且在觸媒之存在下,在從25至10(TC下加以攪 拌即可達成。 在本發明中,較佳爲將以通式R3OH (式中R3係代表碳 原子數爲從1至1 〇之烷基)所代表之醇與以通式 R4COCH2COR5 (式中R4係代表碳原子數爲從1至10之烷 基’ r5係代表碳原子數爲從1至1 〇之烷基、或碳原子數 爲從1至1 0之烷氧基)所代表之化合物作爲配位子,且在 200535465 以選自Zr、Ti或A1之金屬爲中心金屬的至少一種金屬螯 合化合物之存在下,在從25至100 °C下加以攪拌以實施水 解•縮合反應。 金屬螯合化合物只要其係以通式R3OH (式中R3係代表 碳原子數爲從 1至 1〇之烷基)所代表之醇與以 R4COCH2COR5 (式中R4係代表碳原子數爲從1至10之烷 基、R5係代表碳原子數爲從1至10之烷基、或碳原子數 爲從1至1 〇之烷氧基)所代表之化合物作爲配位子,且以 選自Zr、Ti、A1之金屬爲中心金屬者,則可在並無特殊的 限定下使用。若爲屬於該範疇內,則也可倂用兩種以上之 金屬螯合化合物。可使用於本發明之金屬螯合化合物之具 體實例包括:三-正-丁氧基乙基乙醯醋酸銷、二-正-丁 氧基雙(乙基乙醯醋酸)鍩、正-丁氧基參(乙基乙醯醋酸 )鉻、肆(正-丙基乙醯醋酸)銷、肆(乙醯基乙醯醋酸) 銷、肆(乙基乙醯醋酸)銷等之銷螯合化合物;二異丙氧 基•雙(乙基乙醯醋酸)鈦、二異丙氧基•雙(乙醯基醋 酸)鈦、二異丙氧基•雙(乙醯基丙酮)鈦等之鈦螯合化 合物;二異丙氧基乙基乙醯醋酸鋁、二異丙氧基乙醯基乙 醯醋酸鋁、異丙氧基雙(乙基乙醯醋酸)鋁、異丙氧基雙 (乙醯基乙醯醋酸)鋁、參(乙基乙醯醋酸)鋁、參(乙 醯基醋酮醯基)鋁、一乙醯基醋酮醯基•雙(乙基乙醯醋 酸)鋁等之鋁螯合化合物等。 該等金屬螯合化合物中,較佳爲三一正-丁氧基乙基乙醯 醋酸锆、二異丙氧基•雙(乙醯基醋酮醯基)鈦、二異丙 -133- 200535465 氧基乙基乙醯醋酸鋁、參(乙基乙醯醋酸)鋁。該等金屬 螯合化合物可以一種單獨、或混合兩種以上來使用。並且 ,也可使用該等金屬螯合化合物之部份水解產物。 本發明之金屬螯合化合物,從縮合反應之速度及製成塗 膜時的膜強度的觀點來考慮,則相對於有機矽烷,較佳爲 以從0.0 1至50質量%,更佳爲從0.1至50質量%,且進一 步更佳爲從0.5至10質量%之比率來使用。 使用於本發明之防眩性硬質塗層至低折射率層之塗佈液 ,較佳爲除上述含有有機矽烷化合物之水解產物和/或部份 縮合物及金屬螯合化合物之組成物以外再添加Θ -雙烯酮 化合物和/或Θ —酮酯化合物。 在本發明所使用的是以通式R4COCH2COR5所代表之/3 -雙烯酮化合物和/或/3 -酮酯化合物,其係用作爲本發明 所使用之防眩性硬質塗層至低折射率層的形成用組成物之 穩定性改善劑者。其中R4係代表碳原子數爲從1至1 0之 烷基、R5係代表碳原子數爲從1至10之烷基或碳原子數 爲從1至1 0之烷氧基。用以構成/3 -雙烯酮化合物和/或 β -酮酯化合物之R4及R5係與用以構成上述金屬螯合化 合物之R4及R5相同。 該Θ -雙烯酮化合物和/或/3 -酮酯化合物之具體實例包 括:乙醯基丙酮、乙醯醋酸甲酯、乙醯醋酸乙酯、乙醯醋 酸-正-丙酯、乙醯醋酸-異丙酯、乙醯醋酸-正-丁酯、乙醯 醋酸-二級-丁酯、乙醯醋酸-三級-丁酯、2,4 一己烷一二酮 、2,4 一庚烷—二酮、3,5-庚烷—二酮、2,4一啐烷—二 -134- 200535465 酮、2,4 一壬烷—二酮、5 —甲基一己烷一二酮等。此等之 中,較佳爲乙醯醋酸乙酯及乙醯基丙酮,特佳爲乙醯基丙 酮。該等Θ -雙烯酮化合物和/或yS -酮酯化合物可以一種 單獨或混合兩種以上來使用。在本發明中,/3 -雙烯酮化 合物和/或/3 -酮酯化合物相對於1莫耳之金屬螯合化合物 可使用2莫耳以上,且更佳爲從3至20莫耳。若爲小於2 莫耳時,則所製得之組成物會有保存穩定性較爲差之顧慮 ,因此不佳。 上述有機矽烷化合物之水解產物和/或部份縮合物之含量 ,較佳爲在比較薄膜的表面層之情形下則較少,在比較厚 膜的下層之情形下則較多。在例如低折射率層的表面層之 情形下,則較佳爲含有層(添加層)的全固體份之從0.1 至50質量%,更佳爲從0.5至20質量%,且特佳爲從1至 1 0質量%。 對於低折射率層以外的層之添加量,較佳爲含有層(添 加層)之全固體份之從0.001至50質量%,更佳爲從〇.〇1 至20質量%,進一步更佳爲從0.05至10質量%,且特佳 爲從〇. 1至5質量%。 在本發明中較佳爲首先調製含有上述有機矽烷化合物之 水解產物和/或部份縮合物及金屬螯合化合物之組成物,然 後將對其添加/3 -雙烯酮化合物和/或-酮酯化合物所獲 得之液,包含在硬質塗層或低折射率層中之至少一層的塗 佈液中加以塗設。 在低折射率層中,相對於含氟聚合物的有機矽烷溶膠成 -135- 200535465 份之使用量,較佳爲從5至100質量%,更佳爲從5至40 質量%,進一步更佳爲從8至3 5質量%,且特佳爲從丨〇至 3 0質量%。若使用量爲太少時,則難以獲得本發明之功效 ,而若使用量爲太多時,則折射率將增加,且將導致膜之 形狀•面狀惡化,因此不佳。 〔在低折射率層中所含有之無機微粒〕 其次,就可包含在本發明低折射率層中之無機微粒說明 如下。 無機微粒之塗設量較佳爲從1 mg/m2至100 mg/m2,更佳 爲從5 mg/m2至80 mg/m2,且進一步更佳爲從10 mg/m2至 6 0 mg/m2。若太少時,則將導致耐擦傷性之改良功效減少 ,而若太多時,則將在低折射率層表面產生微細的凹凸, 且導致黑色穩定性等之外觀或積分反射率惡化,因此較佳 爲設定在上述之範圍內。 該無機微粒由於其係包含在低折射率層,較佳爲低折射 率者。例如氟化鎂或二氧化矽之微粒。尤其是從折射率、 分散穩定性和成本的觀點來考慮,則較佳爲二氧化矽微粒 。二氧化矽微粒之平均粒徑較佳爲低折射率層的厚度之 20%以上且150%以下,更佳爲30%以上且100%以下,且 進一步更佳爲40%以上且60%以下。亦即,低折射率層之 厚度若爲1 00奈米時,則二氧化矽微粒之粒徑較佳爲20奈 米以上且150奈米以下,更佳爲30奈米以上且1〇〇奈米以 下,且進一步更佳爲40奈米以上且60奈米以下。 若二氧化矽微粒之粒徑爲太小時,則將導致耐擦傷性之 -136- 200535465 改良功效減少,若太多時,則將在低折射率層表面產生微 細的凹凸,且導致黑色穩定性等之外觀或積分反射率惡化 ,因此較佳爲設定在上述之範圍內。二氧化矽微粒可爲結 晶質、非結晶質中任一者,而且也可爲單分散微粒,如能 符合特定的粒徑條件時,則也可爲凝聚顆粒。形狀最佳爲 球狀,但是即使爲不定形狀也並無問題。 無機微粒之平均粒徑係可使用庫爾特(Coulter)計數器 來測定。 爲進一步減少低折射率層之折射率之上升,較佳爲使用 中空二氧化矽微粒,該中空二氧化矽微粒之折射率較佳爲 從1.17至1.40,更佳爲從1.17至1.35,且進一步更佳爲 從1.17至1.30。該折射率係表示顆粒全體之折射率,並非 爲僅表示形成中空二氧化矽顆粒外殼之二氧化矽之折射率 。因此,若顆粒內之空腔半徑爲a,顆粒外殻之半徑爲b 時,則空隙率X是以如下所示之數學式(VIII )來表示: 數學式(VIII) X = ( 4 7Γ a3/3 ) / ( 4 7Γ b3/3 ) X 100 空隙率x較佳爲從10至60%,更佳爲從20至60%,且 最佳爲從30至60%。 如欲使中空二氧化矽顆粒更加趨向低折射率而增大空隙 率,則外殻之厚度將更薄,結果導致顆粒強度減弱,因此 從耐擦傷性的觀點來考慮,則小於1 · 1 7之低折射率顆粒是 不能使用。 該等中空二氧化矽顆粒之折射率係以阿貝折射計所( -137- 200535465ch2och2ch2 ^ -S (OCH3 > 2 -131 200535465) Among these, particularly preferred are (M-1), (M-2), and (M-5) ο The organic silane compounds used in the present invention The hydrolysis products and / or partial condensates are described in detail as follows. The hydrolysis reaction and / or condensation reaction of organic silanes are usually performed in the presence of a catalyst. The catalyst includes inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, etc .; oxalic acid, Organic acids such as acetic acid, formic acid, methanesulfonic acid, toluenesulfonic acid, etc .; inorganic salts such as sodium hydroxide, potassium hydroxide, ammonia; organic salts such as triethylamine, pyridine; etc. Metal oxides such as metal oxides, tetrabutoxy pins, etc .; metal chelate compounds with metal as the center metal, such as Zr, Ti, or A1. Although the hydrolysis and condensation reaction of organic silanes can also be performed in a solvent-free or solvent "However, it is preferable to use an organic solvent for uniform mixing of ingredients" such as alcohols, aromatic hydrocarbons, ethers, ketones, esters, etc. The method is to add 1 mol of organic silane The hydrolyzable group is 0.3 to 2 moles, It is preferably 0.5 to 1 mole of water, and then it can be achieved by stirring at 25 to 10 ° C in the presence or absence of the above-mentioned solvent and in the presence of a catalyst. In the present invention, it is preferred For the alcohol represented by the general formula R3OH (where R3 represents an alkyl group having 1 to 10 carbon atoms) and the formula R4COCH2COR5 (where R4 represents an alkyl group having 1 to 10 carbon atoms) The group 'r5 represents a compound represented by an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms) as a ligand, and was selected from Zr, In the presence of at least one metal chelate compound where the metal of Ti or A1 is the center metal, it is stirred at 25 to 100 ° C to perform a hydrolysis-condensation reaction. As long as the metal chelate compound is of the general formula R3OH (where R3 represents an alcohol represented by an alkyl group having 1 to 10 carbon atoms and R4COCH2COR5 (where R4 represents an alkyl group having 1 to 10 carbon atoms, and R5 represents a carbon number of 1 to 1 A compound represented by an alkyl group of 10 to 10 or an alkoxy group of 1 to 10 carbon atoms is used as a ligand, and is selected from The metals of Zr, Ti, and A1 can be used without special restrictions. If they belong to this category, two or more kinds of metal chelate compounds can also be used. They can be used in the present invention. Specific examples of metal chelate compounds include: tri-n-butoxyethylacetic acid acetate, di-n-butoxybis (ethylacetic acid) fluorene, n-butoxygins (ethylethyl醯 Acetate) Chromium, Cr (n-propyl acetic acid) pin, Cr (ethyl acetic acid) pin, Cr (ethyl acetic acid) pin, etc .; Diisopropoxy • Titanium chelate compounds such as bis (ethyl acetoacetic acid) titanium, diisopropoxy • bis (ethyl acetic acid) titanium, diisopropoxy • bis (ethyl acetone) titanium; diisopropoxy Ethyl ethylacetate aluminum acetate, diisopropoxyethyl ethylacetate aluminum acetate, isopropyloxy bis (ethyl ethylacetate) aluminum, isopropyloxy bis (ethyl ethylacetate) aluminum, Aluminum chelation of ginseng (ethyl acetoacetate) aluminum, ginseng (ethyl acetoacetone) aluminum, monoethyl acetone acetonyl • bis (ethyl acetoacetic acid) aluminum And the like. Among these metal chelate compounds, tri-n-butoxyethylacetofluorene zirconium acetate, diisopropoxy • bis (ethylacetoacetonefluorenyl) titanium, and diisopropyl-133-200535465 are preferred. Oxyethyl ethylacetate aluminum acetate, ginseng (ethyl ethylacetate) aluminum. These metal chelate compounds can be used alone or in combination of two or more. Moreover, partial hydrolysis products of these metal chelate compounds can also be used. From the viewpoint of the speed of the condensation reaction and the strength of the film when it is made into a coating film, the metal chelate compound of the present invention is preferably from 0.01 to 50% by mass, more preferably from 0.1 to organic silane. It is used at a ratio of 50 to 50% by mass, and more preferably 0.5 to 10% by mass. The coating liquid used in the anti-glare hard coat layer to the low-refractive index layer of the present invention is preferably a composition other than the above-mentioned composition containing a hydrolyzate of an organosilane compound and / or a partial condensate and a metal chelate compound. Θ-diketene compounds and / or Θ-ketoester compounds are added. In the present invention, a / 3-diketene compound and / or a / 3-ketoester compound represented by the general formula R4COCH2COR5 is used, which is used as an anti-glare hard coating layer to a low refractive index used in the present invention. Stability improver of the layer-forming composition. Among them, R4 represents an alkyl group having 1 to 10 carbon atoms, and R5 represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. R4 and R5 used to constitute the / 3-dienone compound and / or β-ketoester compound are the same as R4 and R5 used to constitute the above-mentioned metal chelate compound. Specific examples of the Θ-dienone compound and / or / 3-ketoester compound include: ethyl acetone, methyl ethyl acetate, ethyl ethyl acetate, ethyl ethyl acetate-n-propyl acetate, ethyl ethyl acetate -Isopropyl ester, acetic acid-n-butyl ester, acetic acid-secondary-butyl ester, acetic acid-tertiary-butyl ester, 2,4-hexane-dione, 2,4-heptane— Dione, 3,5-heptane-dione, 2,4-monoxane-di-134-200535465 ketone, 2,4-nonanane-dione, 5-methyl-hexane-dione, etc. Among these, ethyl acetoacetate and ethyl acetone are preferred, and ethyl acetone is particularly preferred. These? -Diketene compounds and / or yS-ketoester compounds may be used alone or in combination of two or more. In the present invention, the / 3-dienone compound and / or the / 3-ketoester compound can be used in an amount of 2 mol or more, and more preferably from 3 to 20 mol, relative to 1 mol of the metal chelate compound. If it is less than 2 mols, the composition obtained may be inferior in storage stability, so it is not good. The content of the hydrolysate and / or partial condensate of the above-mentioned organosilane compound is preferably less when the surface layer of the film is compared, and more when it is the lower layer of the thick film. In the case of, for example, a surface layer of a low refractive index layer, it is preferably from 0.1 to 50% by mass, more preferably from 0.5 to 20% by mass, and particularly preferably from 1 to 10% by mass. The addition amount of the layers other than the low-refractive index layer is preferably from 0.001 to 50% by mass, more preferably from 0.001 to 20% by mass, and even more preferably from 0.001 to 50% by mass of the total solid content of the layer (additive layer). From 0.05 to 10% by mass, and particularly preferably from 0.1 to 5% by mass. In the present invention, it is preferable to first prepare a composition containing a hydrolyzate and / or a partial condensate of the organosilane compound and a metal chelate compound, and then add a / 3-dienone compound and / or a ketone to the composition. The liquid obtained by the ester compound is coated in a coating liquid containing at least one of a hard coat layer and a low refractive index layer. In the low refractive index layer, it is preferably from 5 to 100% by mass, more preferably from 5 to 40% by mass, and more preferably from 5 to 100% by mass relative to the use amount of the organosilane sol containing fluoropolymer. It is from 8 to 35 mass%, and particularly preferably from 0 to 30 mass%. If the amount is too small, it is difficult to obtain the effects of the present invention, and if the amount is too large, the refractive index will increase, and the shape and surface of the film will be deteriorated, which is not good. [Inorganic fine particles contained in the low refractive index layer] Next, the inorganic fine particles that can be contained in the low refractive index layer of the present invention are explained below. The coating amount of the inorganic fine particles is preferably from 1 mg / m2 to 100 mg / m2, more preferably from 5 mg / m2 to 80 mg / m2, and even more preferably from 10 mg / m2 to 60 mg / m2 . If it is too small, the improvement effect of abrasion resistance will be reduced, and if it is too large, fine unevenness will be generated on the surface of the low refractive index layer, and the appearance or integrated reflectance of black stability and the like will be deteriorated. It is preferable to set it in the said range. Since the inorganic fine particles are contained in a low refractive index layer, those having a low refractive index are preferred. For example, particles of magnesium fluoride or silicon dioxide. Especially from the viewpoints of refractive index, dispersion stability, and cost, silicon dioxide fine particles are preferred. The average particle diameter of the silicon dioxide particles is preferably 20% to 150% of the thickness of the low refractive index layer, more preferably 30% to 100%, and even more preferably 40% to 60%. That is, if the thickness of the low-refractive index layer is 100 nm, the particle diameter of the silica particles is preferably 20 nm or more and 150 nm or less, and more preferably 30 nm or more and 100 nm or less. The thickness is less than or equal to 40 nm, and more preferably not less than 40 nm and not more than 60 nm. If the particle size of the silicon dioxide particles is too small, the abrasion resistance will be reduced -136- 200535465. If it is too large, fine unevenness will be generated on the surface of the low refractive index layer, and black stability will be caused. The external appearance and integral reflectance are deteriorated, so it is preferable to set it within the above range. The silica particles may be either crystalline or amorphous, and may also be monodisperse particles, and they may be agglomerated particles if they meet specific particle size conditions. The shape is preferably spherical, but it is not a problem even if it has an indefinite shape. The average particle diameter of the inorganic fine particles can be measured using a Coulter counter. In order to further reduce the increase in the refractive index of the low refractive index layer, it is preferable to use hollow silica particles, and the refractive index of the hollow silica particles is preferably from 1.17 to 1.40, more preferably from 1.17 to 1.35, and further More preferably, it is from 1.17 to 1.30. The refractive index indicates the refractive index of the entire particle, and is not only the refractive index of the silicon dioxide that forms the shell of the hollow silicon dioxide particles. Therefore, if the radius of the cavity in the particle is a and the radius of the outer shell of the particle is b, the void ratio X is expressed by the mathematical formula (VIII) as follows: Mathematical formula (VIII) X = (4 7Γ a3 / 3) / (4 7Γ b3 / 3) X 100 The porosity x is preferably from 10 to 60%, more preferably from 20 to 60%, and most preferably from 30 to 60%. If the hollow silicon dioxide particles are to be more inclined to a low refractive index and the porosity is increased, the thickness of the shell will be thinner, resulting in a decrease in particle strength. Therefore, from the viewpoint of scratch resistance, it is less than 1 · 1 7 Low refractive index particles cannot be used. The refractive index of these hollow silica particles is based on Abbe refractometer (-137- 200535465
Atago (股)公司製)所測定。 再者,也可將平均粒徑爲小於低折射率層厚度的2 5 %之 二氧化矽微粒(在下文中稱爲「小尺寸粒徑之二氧化矽微 粒」)中之至少一種與上述粒徑之二氧化矽微粒(在下文 中稱爲「大尺寸粒徑之二氧化矽微粒」)倂用。 小尺寸粒徑之二氧化矽微粒’由於其可存在於大尺寸粒 徑之二氧化矽微粒彼此之間隙中,因此具有大尺寸粒徑之Atago Co., Ltd.). Furthermore, at least one of the silica particles having an average particle diameter of less than 25% of the thickness of the low-refractive index layer (hereinafter referred to as "silicon dioxide particles with a small size particle diameter") and the above particle diameter may be used Silicon dioxide particles (hereinafter referred to as "large-size particle diameter silicon dioxide particles") are used. Small-sized particle diameter silicon dioxide particles' can have a large-sized particle diameter because they can exist in the gap between large-sized particle diameter silicon dioxide particles.
小尺寸粒徑之二氧化矽微粒之平均粒徑’若低折射率層 爲100奈米時,則較佳爲1奈米以上且20奈米以下,更佳 爲5奈米以上且15奈米以下,且特佳爲10奈米以上且15 奈米以下。使用如上所述之二氧化矽微粒時,則在原料成 本和保持劑功效的觀點上是較佳的。 在倂用大尺寸粒徑之二氧化矽微粒與小尺寸粒徑之二氧 化矽微粒時,相對於1 〇〇質量份之大尺寸粒徑之二氧化矽 微粒,較佳爲在1〇〇質量份以內下使用。The average particle diameter of the small-sized particle diameter silicon dioxide particles, if the low refractive index layer is 100 nm, it is preferably 1 nm or more and 20 nm or less, and more preferably 5 nm or more and 15 nm or less. Below, and particularly preferably from 10 nm to 15 nm. When the silica particles as described above are used, it is preferable from the viewpoints of raw material cost and retention effect. In the case of using large-size particle diameter silica particles and small-size particle diameter silica particles, it is preferably 100 mass parts relative to 100 parts by mass of large-size particle diameter silica particles. Use within servings.
二氧化矽微粒爲謀求其在分散液中或塗佈液中的分散穩 定化,或提高與黏結劑之親和性和結合性,也可對其施加 如電漿放電處理或電暈放電處理之物理性表面處理,或使 用界面活性劑或偶合劑等之化學性表面處理。特佳爲使用 偶合劑。偶合劑較佳爲使用烷氧基金屬化合物(例如鈦偶 合劑、矽烷偶合劑)。其中以矽烷偶合劑處理爲特別有效 上述偶合劑係用作爲低折射率層的無機塡料之表面處理 -138- 200535465 劑,且在調製該層塗佈液之前爲預先施加表面處理後使用 ,但是較佳爲在調製該層塗佈液時再添加以作爲添加劑而 包含在該層中。 二氧化矽微粒較佳爲在表面處理前,預先使其分散於介 質中,以減輕表面處理之負荷。 以上所述有關二氧化矽微粒之各項也可適用於其他無機 微粒。 〔表面改質劑〕 在本發明中,對於抗反射膜之功能膜的功能層可使用含 氟脂肪族基之聚合物(以下也簡稱爲「氟系聚合物」)以 作爲表面改質劑。以下就使用於本發明之含氟脂肪族基之 聚合物形成材料之含氟脂肪族基單體說明如下。 在本發明中的功能層,可爲光學功能層、或物理功能層 二者之任一者。「光學功能層」包括高折射率層和光擴散 層,而「物理功能層」包括硬質塗層等。當然,有時候可 爲兼用作爲兩功能層之層,例如防眩性硬質塗層就是相當 於該等。 用於本發明之含氟脂肪族基單體的數量,若以在氟系聚 合物中之全部單體數量爲基準,則爲50莫耳%或以上,更 佳爲從70至100莫耳%,且還更佳爲從80至100莫耳%範 圍。 用於本發明之含氟脂肪族基之聚合物的質量平均分子量 較佳爲從3,000至1〇〇,〇〇〇,更佳爲從6,〇〇〇至8〇,〇〇〇,且 還更佳爲從8,000至60,000。 200535465 並且,在本發明所使用之含氟脂肪族基之聚合物的添加 量,以塗佈液之質量爲基準,則爲從0.001至5質量%之範 圍,較佳爲從0.005至3質量%之範圍,且更佳爲從〇.01 至1質量%之範圍。若該氟系聚合物的添加量爲小於0.001 質量%時,則效果不足夠,反之,若爲多於5質量%時,則 有可能導致塗膜之乾燥不足夠、或發生面狀失效。 在本發明之功能層所含有之含氟脂肪族基之聚合物的具 體結構實例如下所示。式中之數字係表示各單體成份之莫 耳比率,且Mw係代表質量平均分子量。In order to stabilize the dispersion of silicon dioxide particles in a dispersion liquid or a coating liquid, or to improve the affinity and binding property with a binder, physical properties such as plasma discharge treatment or corona discharge treatment may be applied to them Surface treatment, or chemical surface treatment using surfactants or coupling agents. Particularly preferred is the use of a coupling agent. The coupling agent is preferably a metal alkoxy compound (for example, a titanium coupling agent and a silane coupling agent). Among them, the silane coupling agent treatment is particularly effective. The above-mentioned coupling agent is used as a surface treatment agent for the low-refractive-index layer. -138- 200535465 agent, and it is used after applying a surface treatment in advance before preparing the coating solution for this layer. It is preferable to add it as an additive and to include it in this layer when preparing the coating liquid of this layer. The silicon dioxide particles are preferably dispersed in the medium before the surface treatment to reduce the load on the surface treatment. The above-mentioned items regarding the silica particles can also be applied to other inorganic particles. [Surface modifier] In the present invention, a fluorine-containing aliphatic polymer (hereinafter also simply referred to as "fluorine-based polymer") can be used as the surface modifier for the functional layer of the functional film of the antireflection film. The fluoroaliphatic monomer used in the fluoroaliphatic polymer-forming material of the present invention is described below. The functional layer in the present invention may be either an optical functional layer or a physical functional layer. The "optical functional layer" includes a high refractive index layer and a light diffusion layer, and the "physical functional layer" includes a hard coating layer and the like. Of course, sometimes it can be used as a layer of two functional layers, for example, an anti-glare hard coating layer is equivalent. The amount of the fluorine-containing aliphatic-based monomer used in the present invention is 50 mol% or more, more preferably from 70 to 100 mol%, based on the total amount of the monomers in the fluoropolymer And more preferably in the range from 80 to 100 mole%. The mass average molecular weight of the fluorinated aliphatic group-containing polymer used in the present invention is preferably from 3,000 to 100,000, more preferably from 6,000 to 80,000, and also More preferably, it is from 8,000 to 60,000. 200535465 In addition, the addition amount of the fluorinated aliphatic group-based polymer used in the present invention is in a range of 0.001 to 5% by mass, preferably 0.005 to 3% by mass, based on the mass of the coating liquid. The range is more preferably from 0.01 to 1% by mass. If the addition amount of the fluorine-based polymer is less than 0.001% by mass, the effect is not sufficient. On the other hand, if it is more than 5% by mass, the drying of the coating film may be insufficient, or surface failure may occur. Specific structural examples of the fluorinated aliphatic group-containing polymer contained in the functional layer of the present invention are shown below. The numbers in the formula represent the mole ratio of each monomer component, and Mw represents the mass average molecular weight.
R 如 q}100R as q) 100
C〇2 一 ⑽ 一 (CF2)n-H R η Mw P-1 Η 4 8,000 P-2 Η 4 16,000 P-3 Η 4 33,000 P-4 ch3 4 12,000 P-5 ch3 4 28,000 P-6 Η 6 8,000 P-7 Η 6 14,000 P-8 Η 6 29,000 P-9 ch3 6 10,000 P-10 ch3 6 21,000 P-11 Η 8 4,000 P-12 Η 8 16,000 P-13 Η 8 31,000 P-14 CH, 8 3,000 200535465C〇2 1⑽1 (CF2) nH R η Mw P-1 Η 4 8,000 P-2 Η 4 16,000 P-3 Η 4 33,000 P-4 ch3 4 12,000 P-5 ch3 4 28,000 P-6 Η 6 8,000 P -7 Η 6 14,000 P-8 Η 6 29,000 P-9 ch3 6 10,000 P-10 ch3 6 21,000 P-11 Η 8 4,000 P-12 Η 8 16,000 P-13 Η 8 31,000 P-14 CH, 8 3,000 200535465
〔硬質塗層〕 硬質塗層係-種並無防眩性之所謂的「平滑的硬質塗層 」,用以對抗反射膜賦予物理強度,如第1圖和第2圖所 示其係設置在透明支撐體表面上,較佳爲設置在介於透明 支撐體與上述防眩性硬質塗層之間、透明支撐體與光擴散 層之間、或透明支撐體與高折射率層之間。 硬質塗層較佳爲藉由電離輻射線硬化性化合物之交聯化 或聚合反應所形成。例如,將一種含有電離輻射線硬化性 之多官能單體或多官能寡聚物之塗料組成物塗佈在透明支 撐體上’且將多官能單體或多官能寡聚物加以交聯化或聚 合,藉此可形成硬質塗層。 電離輻射線硬化性之多官能單體或多官能寡聚物之官能 基較佳爲光聚合性官能基、電子束聚合性官能基、或輻射 -141 - 200535465 線聚合性官能基,此等之中更佳爲光聚合性官能基。光聚 合性官能基之實例包括:不飽和聚合性官能基,例如(甲 基)丙嫌醯基、乙嫌基、苯乙嫌基和嫌丙基。此等之中’ 較佳爲(甲基)丙烯醯基。多官能單體之具體實例包括曰 本專利特開第2003-4903號所揭示之多官能單體類。 此外,硬質塗層較佳爲含有一種平均一次粒徑爲200奈 米或以下之無機微粒。關於在本文中所使用之「平均粒徑 」是「質量平均粒徑」。藉由設定平均一次粒徑爲200奈 米或以下,則可形成不會削弱其透明性的硬質塗層。 無機微粒之實例除在關於折射率層所揭述者以外,其係 包括:二氧化矽、氧化鋁、碳酸鈣、硫酸鋇、滑石、高嶺 土、硫酸鈣、二氧化鈦、氧化鉻、氧化錫、氧化銦錫(ITO )和氧化鋅之微粒。此等之中,較佳爲二氧化矽、二氧化 鈦、氧化銷、氧化鋁、氧化錫、氧化銦錫(ITO )和氧化鋅 〇 無機微粒之一次顆粒之較佳的平均粒徑及硬質塗層中實 際分散微粒之平均粒徑係與後述高折射率層者相同。在硬 質塗層中之無機微粒的含量較佳爲從10至90質量%,更 佳爲從15至80質量%,且特佳爲從15至75質量%,以硬 質塗層之全部質量爲基準。 硬質塗層之膜厚可根據用途適當地設計。硬質塗層之膜 厚較佳爲從0.2至10微米,更佳爲從〇.5至7微米,且特 佳爲從0.7至5微米。 硬質塗層之強度係藉由根據JIS K5400之「鉛筆硬度試 200535465 驗」所測得,較佳爲Η或以上’更佳爲2H或以上,且最 佳爲3H或以上。 此外,在根據JIS K5 400之泰萡(Taber)摩耗試驗時, 介於試驗前與後之間的試料之摩耗量係愈少愈佳。 在形成硬質塗層時,藉由電離輻射線硬化性化合物之交 聯化或聚合反應所形成時之氧氣濃度係與如後所述高折射 率層者相同。 〔防眩性硬質塗層〕 本發明之防眩性硬質塗層是如下所述。 · 防眩性硬質塗層,其與高折射率層中任一者係必須使用 之層,含有用以賦予硬質塗層性用之黏結劑、賦予防眩性 用之消光劑顆粒、並且必要時含有高折射率化、抗交聯收 縮且高強度化用之無機微粒。 「黏結劑」較佳爲一種具有飽和碳氫化合物鏈或聚醚鏈 作爲主鏈之黏結劑聚合物,且更佳爲一種具有飽和碳氫化 合物鏈作爲主鏈之黏結劑聚合物。而且,黏結劑聚合物較 佳爲具有交聯化結構。 · 具有飽和碳氫化合物鏈作爲主鏈之黏結劑聚合物較佳爲 一種乙嫌性不飽和單體之聚合物。具有飽和碳氫化合物鏈 作爲主鏈且具有交聯型結構之黏結劑聚合物較佳爲一種具 有兩個或以上之乙烯性不飽和基之單體的(共)聚合物。 欲能獲得高折射率,較佳爲在該單體結構中含有芳香族 環、或選自由氟除外之鹵素原子、硫原子、磷原子和氮原 子所組成之族群之至少一原子。 -143· 200535465 具有兩個或以上之乙烯性不飽和基園的單體較佳爲使用 在日本專利特開第2003-4903號所揭示之多官能單體。 高折射率單體之具體實例包括:硫化雙(4 -甲基丙烯醯 基硫苯基)、乙烯基萘、硫化乙烯基苯基、及4 -甲基丙 烯醯氧基-苯基- 4’ -甲氧基苯基硫醚。此等單體也可以 其兩種或以上組合倂用。 在本發明中,黏結劑與塗膜係意謂除消光劑顆粒以外之 層構成物,係相同詞義。 上述防眩性硬質塗層係藉由調製含有具有黏結劑聚合物 之形成材料的乙烯性不飽和基之單體、光-自由基開始劑或 熱-自由基開始劑、消光劑顆粒及無機微粒之塗液,然後在 透明支撐體上塗佈該塗液後,以電離輻射線或熱之聚合反 應使其硬化即可形成。 光-自由基開始劑較佳爲使用日本專利特開第2003-4903 號所揭示之化合物。可獲得之市售商品級光裂解型光-自由 基聚合引發劑爲例如:日本Ciba-Geigy (股)公司製之 Irgacure ( 651 、 184 和 907)等。 光聚合引發劑之使用量,以100質量份之多官能單體爲 基準,較佳爲從〇· 1至15質量份之範圍,且更佳爲從1至 1 〇質量份之範圍。 除光聚合引發劑以外,可使用光增感劑。「光增感劑」 之具體實例包括:正-丁基胺、三乙基胺、三-正-丁基膦、 米其勒酮(Michler’sketone)和9一氧硫_哩。 可使用之「熱-自由基引發劑」的實例包括有機或無機過 200535465 氧化物,及有機偶氮和重氮化合物。 「有機過氧化物」之具體實例包括:過氧化苯 鹵素過氧化苯甲醯基、過氧化月桂醯基、過氧化 過氧化二丁基、氫過氧化異丙苯和氫過氧化物。 氧化物」之具體實例包括:過氧化氫、過硫化銨 鉀。「偶氮化合物」之具體實例包括:2 —偶氮一 腈、2—偶氮一雙一丙腈和2-偶氮一雙一環己烷 重氮化合物」之具體實例包括:苯胺重氮苯和對-氮鐵鹽。 防眩性硬質塗層可藉由如下所述之步驟來形成 種包含多官能環氧化合物、光酸或熱酸產生劑、 粒和無機塡料之塗佈液;將該塗佈液施塗在透明 ;且將該塗佈液藉由電離輻射線或熱之聚合反應 製得。 取代具有兩個或以上之乙烯性不飽和基之單體 外’可使用一種具有交聯性官能基之單體,以將 能基導入聚合物中,使其藉由交聯性官能基之反 聯型結構導入黏結劑聚合物中。 「交聯性官能基」之實例包括:異氰酸酯基、 氮呒基、噁唑啉基、醛基、羰基、聯胺基、羧基 、及活性亞甲基。而且,乙烯基磺酸、酸酐、氰 酯衍生物、三聚氰胺、醚化羥甲基、酯、胺甲酸 烷氧化物例如四甲氧基矽烷可用作爲導入交聯型 體。也可使用一種由於分解反應之結果而顯示交 甲醯基、 乙醯基、 「無機過 和過硫化 雙一異丁 二腈。「 硝苯-重 :調製一 消光劑顆 支撐體上 而硬化所 或除其以 交聯性官 應而將交 環氣基、 、羥甲基 基丙烯酸 酯或金屬 結構之單 聯性之官 200535465 能基,例如異氰酸酯基。換言之,用於本發明之交聯性官 能基可爲一種並不會直接造成反應,但是可由於分解結果 顯示反應性之基。 具有此交聯性官能基之黏結劑聚合物是加以塗佈,然後 加熱,藉此可形成交聯型結構。 上述消光劑顆粒係以賦予防污性質爲目的所使用者,其 平均粒徑較佳爲從〇·5至10微米,且更佳爲從0.5至7.0 微米。 消光劑顆粒之混合量較佳爲從10至1,000 mg/m2,且更 佳爲從1〇〇至700 mg/m2。由於粒徑、含量會影響防眩性 質,較佳爲適當地考慮層膜厚與所要求目標防眩性之程度 來決定。 消光劑顆粒之具體實例包括:無機化合物顆粒,例如二 氧化矽(silica)顆粒和二氧化鈦(Ti02 )顆粒;及樹脂顆 粒,例如丙烯酸系顆粒、交聯型丙烯酸系顆粒、聚苯乙烯 顆粒、交聯型苯乙烯顆粒、三聚氰胺樹脂顆粒和苯并胍胺 樹脂顆粒。此等之中,更佳爲交聯型苯乙烯顆粒、交聯型 丙烯酸系顆粒和二氧化矽顆粒。 消光劑顆粒之形狀可爲真球狀或不定形狀。此消光劑顆 粒之粒度分佈較佳爲單分散性。而且,可組合倂用兩種或 以上之具有不同粒徑之消光劑顆粒。 消光劑顆粒之粒度分佈是藉由庫爾特(Coulter)計數器 方法所測得,且所測得分佈是轉換成顆粒數分佈。 防眩性通常藉由將背面側塗黑的試料薄膜以感官評估來 -146- 200535465 做判斷,但是爲賦予客觀性,則也採取與光學測定値進行 相關分析之方法。相關性係根據塗佈配方與層結構而有所 不同,例如多半是與霧度、透射影像鮮明性、散射角度分 佈等具有一定的關係。本發明之抗反射膜與透射影像鮮明 性有相關關係存在。爲減少刮傷之影響且避免影像不鮮明 ,透射影像鮮明性較佳爲從10%至99%。若在本發明之硬 質塗層爲防眩性時,透射影像鮮明性較佳爲從10%至65% ,更佳爲從10%至55%,且最佳爲從10%至50%。若在本 發明之硬質塗層非爲防眩性時,透射影像鮮明性較佳爲從 6 5 %至99%,更佳爲從70%至99%,且最佳爲從80%至99% 〇 在防眩性硬質塗層,爲提高層之折射率及彈性模數,較 佳爲除上述消光劑顆粒以外,再含有由至少一種金屬氧化 物所構成且在分散狀態下之平均粒徑爲200奈米以下,較 佳爲100奈米以下,且更佳爲60奈米以下之無機微粒。無 機微粒較佳爲使用在日本專利特開第2003-4903號公報中 作爲供包含在防眩層的無機微粒所具體例示者。一次顆粒 之平均粒徑較佳爲從1至200奈米,更佳爲從2至100奈 米,且進一步更佳爲從3至50奈米。 無機微粒之表面較佳爲施加矽烷偶合劑處理或鈦偶合劑 處理。較佳爲使用一種具有能與在微粒表面上之黏結劑反 應之官能基的表面處理劑。 無機微粒之添加量,以防眩性硬質塗層之全部質量爲基 準,較佳爲從10至90%,更佳爲從20至80%,且特佳爲 200535465 從30至75%。 此等無機微粒,由於粒徑爲充分地小於光之波長,因此 並不會造成散射,且經將該塡料分散於黏結劑聚合物所獲 得之分散體,其行爲是如同一種光學性均勻物質。 在本發明之防眩性硬質塗層中,黏結劑和無機微粒之混 合物的整體折射率較佳爲從1 · 4 8至2 · 0 0,且更佳爲從1.5 0 至 1.80。 上述消光劑顆粒與上述黏結劑折射率之差(消光劑顆粒 之折射率一黏結劑之折射率)較佳爲從〇.03至〇.2,且更 佳爲從〇.〇5至0.15。將其差設定爲〇.〇3或以上,藉此即 可有效率地顯現防眩性,且若設定爲〇. 2或以下,即也可 在不致於造成白色份量增加太多而抑制成本增加。 上述黏結劑之折射率較佳爲從1 · 4 8至1 · 8。上述消光劑 顆粒之折射率較佳爲從1.3至1.8。 黏結劑之折射率可以阿貝折射計(ATAGO型)、橢圓計 (日本分光(股)公司製)等來測定。 如上所述範圍之折射率是可藉由適當地選擇黏結劑和無 機微粒之種類和數量比率來達成。將被選擇之種類和數量 可藉由傳統慣用的實驗容易地知道。 防眩性硬質塗層之膜厚較佳爲從1至1 0微米,且更佳爲 從2至6微米。 〔光擴散層〕 此外,也可設置光擴散層以作爲構成功能層的一層。本 發明人已證實藉由測角光度計(g 0 n i 〇 P h 〇 t 〇 m e t e r )所測得 200535465 之散射光強度分佈與視野角改良效果是相互關連。亦即, 當從背光所出射之光由於設置在視認側之偏光板表面上的 光擴散膜中所含有的透光性微粒之內部散射效應而擴散愈 多,則視野角特性改善愈多。然而,若光是過量地擴散, 後方散射增加且正面亮度減少、或產生散射太大而造成例 如影像鮮明性劣化等難題。因此,散射光強度分佈必須加 以控制在特定範圍。由於密集硏究調查的結果,發現如欲 能達成吾所欲視認特性,特別是與視野角改良效果相關的 在出射角爲30°之散射光強度,則較佳爲相對於散射光分 佈中之在出射角爲0°時之光強度爲從0.01至0.2%,更佳 爲從0.02至0.15%,且特佳爲從0·03至0.1%。 所製得光擴散膜之散射光分佈可藉由使用村上色彩技術 硏究實驗所(股)製之自動測角光度計GP-5型來測定。 光擴散層如根據本發明抗反射膜之層分類,則可以根據 透射影像鮮明度或折射率値而視爲相當於防眩性硬質塗層 或高折射率層中至少任一者。 〔高折射率層、中折射率層〕 在上述抗反射膜,爲賦予更佳的抗反射能,高折射率層 也可與上述防眩性硬質塗層選擇性地使用。 該高折射率層之折射率爲從1.55至2.40,若有屬於該範 圍內之層,即可視爲本發明之高折射率層存在。該折射率 範圍是屬於被稱爲「高折射率層」或「中折射率層」,但 是在本發明中,此等層有時候則統稱爲「高折射率層」。 另外,如上所述第2圖所示之結構中,若高折射率層與 149- 200535465 中折射率層混雜存在時,則將折射率大致爲從1 · 8至2 ·4之 層稱爲「高折射率層」,折射率爲從小於1 . 8至1 . 5 5之層 則稱爲「中折射率層」,但是高/中折射率之關係是相對性 ,其分界線折射率値有時候也會差約0.2。折射率可適當地 以所添加的無機微粒、或黏結劑之種類或比率來加以調整 〇 〔在高折射率層中所含有之無機微粒〕 用於本發明之高折射率層含有主要是由(作爲主成份) 含有選自鈷、鋁和銷之至少一種元素的二氧化鈦所構成之 無機微粒。「主成份」是意謂一種在構成顆粒之成份中的 含量(質量%)是最高的成份。 本發明之以二氧化鈦爲主成份的無機微粒較佳的是折射 率爲從1.90至2.80,且最佳爲從2.20至2.80。以二氧化 鈦爲主成份的無機微粒之質量平均一次粒徑較佳爲從1至 200奈米,更佳爲從2至100奈米,且特佳爲從2至80奈 米。 藉由將選自鈷(Co)、鋁(Α1)和銷(Zr)之至少一種 元素倂用入以二氧化鈦爲主成份的無機微粒中,則可抑制 二氧化鈦之光觸媒活性,且改良高折射率層之耐候性。 使用於本發明之以二氧化鈦爲主成份之無機微粒也可對 其施加表面處理。表面處理係使用含鈷之無機化合物、 A1(0H)3、如Zr(OH)4之無機化合物,或如矽烷偶合劑之有 機化合物來實施。本發明之以二氧化鈦爲主成份之無機微 粒,也可施加表面處理使其具有如同日本專利特開第2001 - -150- 200535465 1 66 1 04號公報所揭示之芯/殼結構。 在高折射率層中所含有的以二氧化鈦爲主成份之無機微 粒之形狀,較佳爲米粒狀、球形狀、立方體狀、紡錘形狀 或不定形狀,且特佳爲不定形狀和紡錘形狀。 〔分散劑〕 對上述無機微粒之分散可使用分散劑。分散特佳爲使用 具有陰離子性基之分散劑。 陰離子性基係以羧基、磺酸基(及磺基)、磷酸基(及 膦基)、磺醯胺基等之具有酸性質子之基、或其鹽較爲有 效,較佳爲羧基、磺酸基、磷酸基及其鹽,特佳爲羧基及 磷酸基。包含在每一分子的分散劑之陰離子性基數,雖然 以含有一個以上即可,但是較佳爲平均爲兩個或以上,更 佳爲5個或以上,且特佳爲1 〇個或以上。陰離子性基也可 在一分子中含有許多種類。並且分散劑較佳爲含有交聯或 聚合性官能基。 分散劑較佳爲相對於無機微粒爲從0.5至40質量%,更 佳爲從1至30質量%,且特佳爲從3至25質量%。 〔商折射率層及其形成法〕 使用於高折射率層之以二氧化鈦爲主成份之無機微粒, 係以分散物之狀態使用於高折射率層之形成。 無機微粒之分散係在上述分散劑之存在下分散於分散介 質中。 「分散介質」較佳爲使用沸點爲從60至170°C之液體。 分散介質之具體實例包括水、醇、酮、酯、脂肪族碳氫化 -151- 200535465 合物、鹵化碳氫化合物、芳香族碳氫化合物、醯胺類、醚 類、醚-醇類。甲苯、二甲苯、甲基乙基酮、甲基異丁基酮 、環己酮及丁醇。 分散介質特佳爲甲基乙基酮、甲基異丁基酮、環己酮。 分散介質較佳爲相對於無機微粒爲從3,000〜100質量% ,且更佳爲從2,000〜125質量%。 無機微粒係使用分散機使其分散。分散機之具體實例包 括:砂磨機(例如附銷式細微粒磨機)、高速葉輪磨機、 球磨機、滾磨機、磨碎機及膠體磨機。但是特佳爲砂磨機 和高速翼輪磨。另外,也可實施預分散處理。可用以預分 散處理的分散機之具體實例包括球磨機、三輥磨機、捏合 機及擠壓機。 無機微粒分散物較佳爲儘可能的在分散介質中加以微細 化,且質量平均粒徑爲從1至200奈米。較佳爲從5〜150 奈米,更佳爲從10〜100奈米,且特佳爲從10〜80奈米 〇 只要使無機微粒加以微細化成200奈米以下,則可形成 不致於損及透明性之高折射率層。 使用於本發明之高折射率層,較佳爲採取對經如上所述 使無機微粒分散於分散介質中的分散液,再進一步加入形 成基體所必要的黏結劑前驅體(與上述防眩性硬質塗層相 同者)、光聚合引發劑等以作爲高折射率層形成用之塗佈 組成物,然後在透明支撐體上塗佈高折射率層形成用之塗 佈組成物,並藉由電離輻射線硬化性化合物(例如多官能 -152- 200535465 單體或多官能寡聚物等)之交聯反應或聚合反應來使其硬 化以形成之方法。 對於光聚合性多官能單體之聚合反應較佳爲使用光聚合 引發劑。光聚合引發劑較佳爲光-自由基聚合引發劑與光陽 離子性聚合引發劑,特佳爲光-自由基聚合引發劑。光-自 由基聚合引發劑可使用與上述防眩性硬質塗層相同者。 在高折射率層中之黏結劑較佳爲也具有矽烷醇基。只要 使黏結劑也含有矽烷醇基,即可更進一步改良高折射率層 之物理強度、耐化學藥品性和耐候性。 矽烷醇基,係例如藉由將具有交聯或聚合性官能基之以 上述通式(1 )所代表之化合物添加入到上述高折射率層形 成用之塗佈組成物中,然後將塗佈組成物塗佈在透明支撐 體上,並使上述分散劑、多官能單體或多官能寡聚物、以 如上所示之通式(1 )所代表之化合物進行交聯反應或聚合 反應即可導入黏結劑中。 在高折射率層中之黏結劑較佳爲也含有胺基或第四級銨 基。含有胺基或第四級銨基之單體能維持無機微粒在高折 射率層中的良好分散性,以製得具有優越的物理強度、耐 化學藥品性和耐候性之高折射率層。 經交聯或聚合之黏結劑係具有聚合物之主鏈經交聯或聚 合之結構。聚合物之主鏈之實例包括聚烯烴(飽和碳氫化 合物)、聚醚、聚脲、聚胺甲酸酯、聚酯、聚胺、聚醯胺 及三聚氰胺樹脂。較佳的是聚烯烴主鏈、聚醚主鏈及聚脲 主鏈’更佳爲聚烯烴主鏈及聚醚主鏈,且最佳爲聚烯烴主 -153- 200535465 鏈。 黏結劑較佳爲具有陰離子性基之重複單元與具有交聯或 聚合結構之重複單元的共聚物。共聚物中具有陰離子性基 之重複單元的比率,較佳爲從2至96莫耳%,更佳爲從4 至94莫耳%,且最佳爲從6至92莫耳%。重複單元也可含 有兩個以上之陰離子性基。共聚物中具有交聯或聚合結構 之重複單元的比率,較佳爲從4至98莫耳%,更佳爲從6 至96莫耳%,且最佳爲從8至94莫耳%。 高折射率層除上述以二氧化鈦爲主成份的無機微粒之外 φ ’也可含有其他微細的無機微粒。該其他之無機微粒也可 使用包含在上述防眩性硬質塗層的無機微粒,但是較佳爲 必須加以分散成微細,較佳的分散後粒徑與一次顆粒粒徑 係如揭述於上述防眩性硬質塗層段落者。 在高折射率層中無機微粒之含量,較佳爲相對於高折射 率層之質量爲從10至90質量%,更佳爲從15至80質量% ,且特佳爲從1 5至75質量%。也可高折射率層內倂用兩 種以上之無機微粒。 φ 在高折射率層上具有低折射率層時,高折射率層之折射 率較佳爲高於透明支撐體之折射率。 在高折射率層中,也適合使用含有芳香環之電離輻射線 硬化性化合物、含有氟以外的鹵化元素(例如,Br、I、C1 等)之電離輻射線硬化性化合物,·含有S、N、P等之原子 的電離輻射線硬化性化合物等之藉由交聯或聚合反應所獲 得之黏結劑。 -154- 200535465 爲在高折射率層上配置低折射率層以製造抗反射膜’則 高折射率層之折射率必須爲從1.55至2.40,較佳爲從1.60 至2.20,更佳爲從1.65至2.10,且最佳爲從1.80至2.00 〇 在高折射率層中,除上述成份(無機微粒、聚合引發劑 、光增感劑等)以外,也可添加樹脂、界面活性劑、抗靜 電劑、偶合劑、增黏劑、著色防止劑、著色劑(顔料、染 料)、防眩性賦予顆粒、消泡劑、均塗劑、難燃劑、紫外 線吸收劑、紅外線吸收劑、黏著賦予劑、聚合抑制劑、抗 氧化劑、表面改質劑、導電性之金屬微粒等。 高折射率層之膜厚可視用途而適當地加以設計。若將高 折射率層用作爲上述之光擴散層時,則膜厚較佳爲3〇至 2 00奈米,更佳爲從50至170奈米,且特佳爲從60至150 奈米。 在形成高折射率層時,電離輻射線硬化性化合物之交聯 反應或聚合反應,較佳爲在氧氣濃度爲10體積%以下,更 佳爲氧氣濃度爲6體積%以下,特佳爲氧氣濃度爲2體積% 以下’且最佳爲1體積%以下的大氣下實施。 〔低折射率層〕 低折射率層爲上述抗反射膜所不可或缺之層,「低折射 率層」之折射率較佳爲從1.20至1.49,且更佳爲從1.30 至 1.44 〇 此外’從獲得低反射率化的觀點來考慮,則低折射率層 較佳爲符合如下所示之數學式(VII): 200535465 數學式(VII ) (m/4 ) x 0.7 < ni di < ( m/4 ) x 1 .3 式中,該m是正奇數,iM是低折射率層之折射率,dl是 低折射率層之膜厚(奈米及Λ是波長且是在從500至 550奈米之範圍之値。 所謂「符合數學式(νΠ )」係意謂在上述波長範圍內, 符合數學式(VII)之m (正奇數,通常爲1)是存在。 構成上述低折射率層的材料是如下所述。 在上述低折射率層較佳爲含有含氟聚合物以作爲低折射 率層黏結劑。含氟聚合物較佳爲一種具有動摩擦係數爲 0.03至0.15,對水之接觸角爲90至120°,且能藉由熱或 電離輻射線交聯化之含氟聚合物。在本發明之低折射率層 中,如上所述,也可使用無機微粒以提高薄膜強度。 低折射率層用之含氟聚合物的實例包括:一種含全氟烷 基矽烷化合物(例如,(十七氟一 1,1,2,2 -四氫癸基) 三乙氧基矽烷之水解產物和脫水-縮合物;及一種以具有含 氟單體單元及用於賦予交聯反應性之組成單元作爲組成成 份的含氟共聚物。 含氟單體單元之具體實例包括:氟烯烴類(例如,氟乙 烯、偏二氟乙烯、四氟乙烯、全氟啐基乙烯、六氟丙烯、 全氟一 2,2—二甲基一 1,3—二噁唑);(甲基)丙烯酸之 部份或完全氟化之烷基酯衍生物〔例如,BIS COTE 6FM ( 大阪(Osaka )有機化學公司製)、M-2020 ( Daikin公司 製)〕;及完全或部份氟化之乙烯基醚類。此等之中,較 -156- 200535465 佳爲全氟烯烴類,且從折射率、溶解性、透明性和易獲得 性的觀點來考慮,則特佳爲六氟丙烯。 用於賦予交聯反應性之組成單元之實例包括:一種藉由 先前在分子中具有自交聯化官能基之單體〔例如,(甲基 )丙烯酸縮水甘油酯和縮水甘油基乙烯基醚〕的聚合反應 所獲得之組成單元;一種藉由具有羧基、羥基、胺基、或 磺基之單體〔例如,(甲基)丙烯酸、(甲基)丙烯酸羥 甲酯、(甲基)丙烯酸羥烷酯、丙烯酸烯丙酯、羥乙基乙 烯基醚、羥丁基乙烯基醚、順丁烯二酸及巴豆酸〕的聚合 反應所獲得之組成單元;及一種藉由將交聯反應性基〔例 如,(甲基)丙烯醯基〕以聚合物反應(例如藉由氯化丙 烯酸對羥基作用等之方法,即可導入)而導入如上所述組 成單元所獲得之組成單元。 除含氟單體單元及用於賦予交聯反應性之組成單元以外 ,從在溶劑中之溶解性、薄膜之透明性等的觀點來考慮, 則也可適當地與不含氟原子之單體共聚合。可組合倂用之 單體單元並無特殊的限定,且此等之實例包括:烯烴類( 例如,乙烯、丙烯、異戊二烯、氯乙烯、偏二氯乙烯); 丙烯酸酯類(例如,丙烯酸甲酯、丙烯酸乙酯、丙烯酸2 -乙基己酯):甲基丙烯酸酯類(例如,甲基丙烯酸甲酯 、甲基丙烯酸乙酯、甲基丙烯酸丁酯、二甲基丙烯酸乙二 醇酯);苯乙烯衍生物(例如,苯乙烯、二乙烯基苯、乙 烯基甲苯、α-甲基苯乙烯);乙烯基醚類(例如,甲基 乙烯基醚、乙基乙烯基醚、環己基乙烯基醚):乙烯基酯 -157- 200535465 類(例如,醋酸乙烯酯、丙酸乙烯酯、桂皮酸乙烯酯); 丙烯醯胺類(例如,N -三級-丁基丙烯醯胺、n -環己基 丙烯醯胺);甲基丙烯醯胺類、及丙烯腈衍生物。 可將硬化劑適當地與上述聚合物組合倂用,如在日本專 利特開平第1 0-253 88號和特開平第1〇- 1 47739號公報中所 揭示者。[Hard Coating] Hard coating is a kind of so-called "smooth hard coating" that does not have anti-glare properties. It is used to impart physical strength to anti-reflection films. It is installed on the surface as shown in Figure 1 and Figure 2. The surface of the transparent support is preferably disposed between the transparent support and the anti-glare hard coating layer, between the transparent support and the light diffusion layer, or between the transparent support and the high refractive index layer. The hard coat layer is preferably formed by crosslinking or polymerization of an ionizing radiation-curable compound. For example, a coating composition containing a polyfunctional monomer or polyfunctional oligomer hardening ionizing radiation is coated on a transparent support 'and the polyfunctional monomer or polyfunctional oligomer is crosslinked or Polymerization, whereby a hard coating can be formed. The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a photopolymerizable functional group, an electron beam polymerizable functional group, or a radiation-141-200535465 linear polymerizable functional group. More preferably, it is a photopolymerizable functional group. Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as (methyl) propanyl, ethyl, phenethyl, and propyl. Among these, '(meth) acrylfluorenyl is preferred. Specific examples of the polyfunctional monomer include polyfunctional monomers disclosed in Japanese Patent Laid-Open No. 2003-4903. In addition, the hard coat layer preferably contains an inorganic fine particle having an average primary particle diameter of 200 nm or less. As used herein, the "average particle size" is the "mass average particle size". By setting the average primary particle diameter to 200 nm or less, a hard coating layer that does not impair its transparency can be formed. Examples of the inorganic fine particles, except those disclosed in the refractive index layer, include: silica, alumina, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, titanium dioxide, chromium oxide, tin oxide, indium oxide Particles of tin (ITO) and zinc oxide. Among these, silicon dioxide, titanium dioxide, oxide pins, aluminum oxide, tin oxide, indium tin oxide (ITO), and zinc oxide are preferred. The preferred average particle diameter of the primary particles of the inorganic fine particles and the hard coating layer are preferred. The average particle diameter of the actually dispersed fine particles is the same as that of the high refractive index layer described later. The content of the inorganic fine particles in the hard coating layer is preferably from 10 to 90 mass%, more preferably from 15 to 80 mass%, and particularly preferably from 15 to 75 mass%, based on the entire mass of the hard coating layer. . The film thickness of the hard coating layer can be appropriately designed according to the application. The film thickness of the hard coating layer is preferably from 0.2 to 10 m, more preferably from 0.5 to 7 m, and particularly preferably from 0.7 to 5 m. The strength of the hard coating layer is measured by the "pencil hardness test 200535465 test" according to JIS K5400, preferably Η or more ', more preferably 2H or more, and most preferably 3H or more. In addition, in the Taber abrasion test according to JIS K5 400, the smaller the amount of abrasion of the sample between before and after the test, the better. When the hard coat layer is formed, the oxygen concentration at the time of formation by cross-linking or polymerization of an ionizing radiation-hardening compound is the same as that of the high-refractive index layer described later. [Anti-glare hard coat layer] The anti-glare hard coat layer of the present invention is as follows. Anti-glare hard coating, which must be used with either the high refractive index layer, contains a binder for imparting hard coating properties, matting agent particles for imparting anti-glare properties, and if necessary Contains inorganic fine particles for high refractive index, anti-crosslink shrinkage, and high strength. The "binder" is preferably a binder polymer having a saturated hydrocarbon chain or a polyether chain as a main chain, and more preferably a binder polymer having a saturated hydrocarbon chain as a main chain. Moreover, the binder polymer preferably has a crosslinked structure. · The binder polymer having a saturated hydrocarbon chain as a main chain is preferably a polymer of an ethylenically unsaturated monomer. The binder polymer having a saturated hydrocarbon chain as a main chain and having a crosslinked structure is preferably a (co) polymer having two or more ethylenically unsaturated monomers. To obtain a high refractive index, the monomer structure preferably contains an aromatic ring or at least one atom selected from the group consisting of halogen atoms, sulfur atoms, phosphorus atoms, and nitrogen atoms other than fluorine. -143 · 200535465 A monomer having two or more ethylenically unsaturated groups is preferably a polyfunctional monomer disclosed in Japanese Patent Laid-Open No. 2003-4903. Specific examples of the high refractive index monomer include: bis (4-methacrylfluorenylthiophenyl) sulfide, vinylnaphthalene, vinylphenylsulfide, and 4-methacryloxy-phenyl-4 ' -Methoxyphenyl sulfide. These monomers may be used in combination of two or more kinds. In the present invention, the term "adhesive" and "coating film" means a layer structure other than the matting agent particles, and have the same meaning. The anti-glare hard coat layer is prepared by preparing an ethylenically unsaturated monomer containing a forming material having a binder polymer, a photo-radical starter or a thermo-radical starter, a matting agent particle, and inorganic fine particles. The coating liquid is then formed on the transparent support after the coating liquid is hardened by ionizing radiation or thermal polymerization reaction. The photo-radical initiator is preferably a compound disclosed in Japanese Patent Laid-Open No. 2003-4903. Commercially available commercially available photo-cracking photo-free radical polymerization initiators are, for example, Irgacure (651, 184, and 907) manufactured by Ciba-Geigy Co., Ltd., Japan. The photopolymerization initiator is used in an amount of from 0.1 to 15 parts by mass based on 100 parts by mass of the polyfunctional monomer, and more preferably from 1 to 10 parts by mass. In addition to the photopolymerization initiator, a photosensitizer can be used. Specific examples of the "photosensitizer" include: n-butylamine, triethylamine, tri-n-butylphosphine, Michler'sketone, and 9-oxysulfur. Examples of "thermo-radical initiators" that can be used include organic or inorganic per 200535465 oxides, and organic azo and diazo compounds. Specific examples of "organic peroxide" include: benzene peroxide, benzamyl peroxide, lauryl peroxide, dibutyl peroxide, cumene hydroperoxide, and hydroperoxide. Specific examples of "oxide" include: hydrogen peroxide, potassium persulfate. Specific examples of "azo compounds" include: 2-Azo-nitrile, 2-Azo-bis-propionitrile, and 2-Azo-bis-cyclohexanediazo compounds "Specific examples include: aniline diazobenzene and Para-nitrogen iron salt. The anti-glare hard coating layer can be formed into a coating liquid containing a polyfunctional epoxy compound, a photoacid or thermal acid generator, particles, and an inorganic paste by the steps described below; Transparent; and the coating solution is prepared by ionizing radiation or thermal polymerization. In place of a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group can be used to introduce an energy group into the polymer, which can be reversed by the crosslinkable functional group. The double structure is introduced into the binder polymer. Examples of the "crosslinkable functional group" include: isocyanate group, azepine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, and reactive methylene group. Further, vinylsulfonic acid, acid anhydride, cyanate ester derivative, melamine, etherified methylol, ester, carbamic acid alkoxide such as tetramethoxysilane can be used as the introduction crosslinked type. It is also possible to use a compound that exhibits methacryl, acetamyl, "inorganic and persulfurized bis-isosuccinonitrile" as a result of the decomposition reaction. "Nitrobenzene-Heavy: Modulate a matting agent on a support and harden it. Or in addition to crosslinkability, it should be a crosslinkable functional group, such as an isocyanate group, a crosslinkable gas group, a methylol acrylate, or a metal structure, such as an isocyanate group. In other words, the crosslinkability used in the present invention The functional group may be a group that does not directly cause a reaction, but may show reactivity due to the decomposition result. The adhesive polymer having the crosslinkable functional group is coated and then heated to form a crosslinked type. Structure. The above-mentioned matting agent particles are intended for the purpose of imparting antifouling properties, and the average particle diameter thereof is preferably from 0.5 to 10 microns, and more preferably from 0.5 to 7.0 microns. It is preferably from 10 to 1,000 mg / m2, and more preferably from 100 to 700 mg / m2. Since the particle size and content will affect the anti-glare properties, it is preferable to appropriately consider the layer film thickness and the desired target anti-glare To determine the degree of sexuality. Specific examples of the agent particles include: inorganic compound particles, such as silica particles and titanium dioxide (Ti02) particles; and resin particles, such as acrylic particles, crosslinked acrylic particles, polystyrene particles, and crosslinked particles. Styrene particles, melamine resin particles, and benzoguanamine resin particles. Among these, crosslinked styrene particles, crosslinked acrylic particles, and silica particles are more preferred. The shape of the matting agent particles may be true Spherical or indefinite shape. The particle size distribution of the matting agent particles is preferably monodisperse. Moreover, two or more matting agent particles having different particle sizes can be used in combination. The particle size distribution of the matting agent particles is determined by the library. Measured by the Coulter counter method, and the measured distribution is converted to the number of particles distribution. Anti-glare properties are usually judged by sensory evaluation of the sample film blacked on the back side -146- 200535465, but To impart objectivity, a correlation analysis with optical measurement and measurement is also adopted. Correlation differs depending on the coating formulation and layer structure, such as Half has a certain relationship with haze, sharpness of transmission image, scattering angle distribution, etc. The anti-reflection film of the present invention has a correlation relationship with sharpness of transmission image. In order to reduce the effect of scratches and avoid blurry images, the transmission image is sharp The property is preferably from 10% to 99%. If the hard coating of the present invention is anti-glare, the sharpness of the transmission image is preferably from 10% to 65%, more preferably from 10% to 55%, and The best is from 10% to 50%. If the hard coating of the present invention is not anti-glare, the transmission image clarity is preferably from 65 to 99%, more preferably from 70% to 99%, And preferably from 80% to 99%. In an anti-glare hard coating layer, in order to improve the refractive index and elastic modulus of the layer, it is preferable to contain at least one metal oxide in addition to the above-mentioned matting agent particles. In addition, the inorganic particles have an average particle diameter in a dispersed state of 200 nm or less, preferably 100 nm or less, and more preferably 60 nm or less. The inorganic fine particles are preferably used in Japanese Patent Laid-Open No. 2003-4903 as a specific example of the inorganic fine particles to be contained in the anti-glare layer. The average particle diameter of the primary particles is preferably from 1 to 200 nm, more preferably from 2 to 100 nm, and even more preferably from 3 to 50 nm. The surface of the inorganic fine particles is preferably treated with a silane coupling agent or a titanium coupling agent. It is preferable to use a surface treating agent having a functional group capable of reacting with a binder on the surface of the fine particles. The addition amount of the inorganic fine particles is based on the entire mass of the anti-glare hard coating layer, preferably from 10 to 90%, more preferably from 20 to 80%, and particularly preferably 200535465 from 30 to 75%. Since these inorganic particles have a particle diameter sufficiently smaller than the wavelength of light, they do not cause scattering, and the dispersion obtained by dispersing the aggregate in the binder polymer behaves like an optically homogeneous substance . In the anti-glare hard coat layer of the present invention, the overall refractive index of the mixture of the binder and the inorganic fine particles is preferably from 1.48 to 2.00, and more preferably from 1.50 to 1.80. The difference between the refractive index of the matting agent particles and the binder (the refractive index of the matting agent particles and the refractive index of the binder) is preferably from 0.03 to 0.2, and more preferably from 0.05 to 0.15. By setting the difference to 0.03 or more, the anti-glare property can be efficiently developed, and if it is 0.2 or less, the increase in cost can be suppressed without causing too much white weight. . The refractive index of the adhesive is preferably from 1.48 to 1.8. The refractive index of the above-mentioned matting agent particles is preferably from 1.3 to 1.8. The refractive index of the binder can be measured by an Abbe refractometer (ATAGO type), an ellipsometer (manufactured by JASCO Corporation). The refractive index in the range described above can be achieved by appropriately selecting the types and number ratios of the binder and the inorganic fine particles. The kind and quantity to be selected can be easily known through conventional experiments. The film thickness of the anti-glare hard coat layer is preferably from 1 to 10 m, and more preferably from 2 to 6 m. [Light Diffusion Layer] Alternatively, a light diffusion layer may be provided as a layer constituting the functional layer. The present inventors have confirmed that the scattered light intensity distribution of 200535465 measured by a goniophotometer (g 0 n i 〇 P h 〇 t om t er) is related to the effect of improving the viewing angle. That is, the more the light emitted from the backlight is diffused due to the internal scattering effect of the light-transmitting particles contained in the light-diffusing film provided on the surface of the polarizing plate on the viewing side, the more the viewing angle characteristics are improved. However, if the light is diffused excessively, the backscatter increases and the front brightness decreases, or there is a problem such that the sharpness of the image deteriorates due to excessive scattering. Therefore, the scattered light intensity distribution must be controlled to a specific range. As a result of intensive research, it is found that if the desired characteristics can be achieved, especially the scattered light intensity at an exit angle of 30 °, which is related to the improvement of the viewing angle, it is preferably relative to the scattered light distribution. The light intensity at an exit angle of 0 ° is from 0.01 to 0.2%, more preferably from 0.02 to 0.15%, and particularly preferably from 0.03 to 0.1%. The scattered light distribution of the obtained light diffusing film can be measured by using an automatic goniophotometer GP-5 type manufactured by Murakami Color Technology Research Laboratory. If the light diffusion layer is classified according to the layer of the antireflection film of the present invention, it can be regarded as equivalent to at least any one of an anti-glare hard coat layer or a high refractive index layer based on the sharpness or refractive index of the transmitted image. [High-refractive index layer, middle-refractive index layer] In the above-mentioned antireflection film, in order to provide better antireflection energy, the high-refractive index layer may be selectively used with the antiglare hard coat layer. The refractive index of the high refractive index layer is from 1.55 to 2.40, and if there is a layer within this range, it can be considered that the high refractive index layer of the present invention exists. The refractive index range is referred to as a "high refractive index layer" or "medium refractive index layer", but in the present invention, these layers are sometimes collectively referred to as a "high refractive index layer". In addition, in the structure shown in FIG. 2 as described above, if the high refractive index layer is mixed with the refractive index layer in 149-200535465, the layer having a refractive index of approximately 1 · 8 to 2 · 4 is referred to as " "High refractive index layer", the layer with a refractive index from less than 1.8 to 1.5 5 is called "medium refractive index layer", but the relationship between high / medium refractive index is relative, and the refractive index of its dividing line is not The time will be about 0.2. The refractive index can be appropriately adjusted by the type or ratio of the inorganic fine particles added or the binder. [Inorganic fine particles contained in the high refractive index layer] The high refractive index layer used in the present invention is mainly composed of ( As the main component) Inorganic fine particles composed of titanium dioxide containing at least one element selected from the group consisting of cobalt, aluminum, and pins. The "main component" means a component whose content (% by mass) is the highest among the components constituting the particles. The inorganic fine particles containing titanium dioxide as the main component of the present invention preferably have a refractive index of 1.90 to 2.80, and most preferably 2.20 to 2.80. The mass average primary particle diameter of the inorganic fine particles containing titanium dioxide as a main component is preferably from 1 to 200 nm, more preferably from 2 to 100 nm, and particularly preferably from 2 to 80 nm. By using at least one element selected from the group consisting of cobalt (Co), aluminum (A1), and pins (Zr) into inorganic fine particles containing titanium dioxide as a main component, the photocatalytic activity of titanium dioxide can be suppressed, and the high refractive index layer can be improved. Weatherability. The inorganic fine particles mainly containing titanium dioxide used in the present invention may be surface-treated. The surface treatment is performed using an inorganic compound containing cobalt, A1 (0H) 3, an inorganic compound such as Zr (OH) 4, or an organic compound such as a silane coupling agent. The inorganic microparticles containing titanium dioxide as the main component of the present invention may also be subjected to a surface treatment so as to have a core / shell structure as disclosed in Japanese Patent Laid-Open No. 2001-150-200535465 1 66 1 04. The shape of the inorganic microparticles containing titanium dioxide as a main component in the high refractive index layer is preferably rice grain shape, spherical shape, cube shape, spindle shape or indefinite shape, and particularly preferably indefinite shape and spindle shape. [Dispersant] A dispersant can be used for dispersing the inorganic fine particles. Dispersion is particularly preferred using a dispersant having an anionic group. As the anionic group, a group having an acidic proton such as a carboxyl group, a sulfonic acid group (and a sulfo group), a phosphate group (and a phosphine group), and a sulfonamido group, or a salt thereof is more effective. The acid group, the phosphate group and a salt thereof are particularly preferably a carboxyl group and a phosphate group. Although the number of anionic groups of the dispersant contained in each molecule may be one or more, it is preferably two or more on average, more preferably five or more, and particularly preferably ten or more. The anionic group may contain many kinds in one molecule. The dispersant preferably contains a crosslinkable or polymerizable functional group. The dispersant is preferably from 0.5 to 40% by mass, more preferably from 1 to 30% by mass, and particularly preferably from 3 to 25% by mass based on the inorganic fine particles. [Quotient Index Layer and Formation Method] The inorganic fine particles containing titanium dioxide as a main component used in the high refractive index layer are used in the form of a dispersion to form the high refractive index layer. The dispersion of the inorganic fine particles is dispersed in a dispersion medium in the presence of the above-mentioned dispersant. The "dispersion medium" is preferably a liquid having a boiling point of from 60 to 170 ° C. Specific examples of the dispersion medium include water, alcohols, ketones, esters, aliphatic hydrocarbons-151-200535465 compounds, halogenated hydrocarbons, aromatic hydrocarbons, amines, ethers, and ether-alcohols. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol. Particularly preferred dispersion media are methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. The dispersion medium is preferably from 3,000 to 100% by mass, and more preferably from 2,000 to 125% by mass with respect to the inorganic fine particles. The inorganic fine particles are dispersed using a disperser. Specific examples of dispersing machines include: sand mills (such as pin-type fine particle mills), high-speed impeller mills, ball mills, tumble mills, mills, and colloid mills. But especially good are sand mills and high-speed wing wheel mills. Alternatively, a pre-dispersion process may be performed. Specific examples of the dispersing machine that can be used for the pre-dispersing treatment include a ball mill, a three-roll mill, a kneader, and an extruder. The inorganic fine particle dispersion is preferably as fine as possible in the dispersion medium, and the mass average particle diameter is from 1 to 200 nm. It is preferably from 5 to 150 nanometers, more preferably from 10 to 100 nanometers, and particularly preferably from 10 to 80 nanometers. As long as the inorganic fine particles are finely reduced to 200 nanometers or less, it can be formed without damage. Transparent high refractive index layer. The high-refractive index layer used in the present invention is preferably a dispersion liquid in which inorganic fine particles are dispersed in a dispersion medium as described above, and further, a binder precursor necessary for forming a matrix (with the above-mentioned anti-glare rigidity) is preferably used. The same coating layer), photopolymerization initiator, etc. are used as a coating composition for forming a high refractive index layer, and then the coating composition for forming a high refractive index layer is coated on a transparent support, and ionizing radiation is applied. Cross-linking reaction or polymerization reaction of a linear hardening compound (such as polyfunctional-152-200535465 monomer or polyfunctional oligomer, etc.) to harden it to form it. For the polymerization reaction of the photopolymerizable polyfunctional monomer, a photopolymerization initiator is preferably used. The photopolymerization initiator is preferably a photo-radical polymerization initiator and a Guangyang ionic polymerization initiator, and particularly preferably a photo-radical polymerization initiator. As the photo-free radical polymerization initiator, the same as the above-mentioned anti-glare hard coat layer can be used. The binder in the high refractive index layer preferably has a silanol group. As long as the binder also contains a silanol group, the physical strength, chemical resistance, and weather resistance of the high refractive index layer can be further improved. The silanol group is obtained by, for example, adding a compound represented by the general formula (1) having a crosslinkable or polymerizable functional group to the coating composition for forming the high refractive index layer, and then applying the coating. The composition may be coated on a transparent support, and the dispersant, the polyfunctional monomer or the polyfunctional oligomer, and the compound represented by the general formula (1) shown above may be subjected to a crosslinking reaction or a polymerization reaction. Into the adhesive. It is preferable that the binder in the high refractive index layer also contains an amine group or a fourth-order ammonium group. Monomers containing amine or quaternary ammonium groups can maintain good dispersibility of the inorganic fine particles in the high-refractive-index layer, so as to obtain a high-refractive-index layer having superior physical strength, chemical resistance, and weather resistance. The crosslinked or polymerized binder has a structure in which the main chain of the polymer is crosslinked or polymerized. Examples of the main chain of the polymer include polyolefin (saturated hydrocarbon), polyether, polyurea, polyurethane, polyester, polyamine, polyamine, and melamine resin. Preferably, the polyolefin main chain, the polyether main chain and the polyurea main chain are more preferably a polyolefin main chain and a polyether main chain, and most preferably a polyolefin main chain -153- 200535465. The binder is preferably a copolymer of a repeating unit having an anionic group and a repeating unit having a crosslinked or polymerized structure. The ratio of the repeating unit having an anionic group in the copolymer is preferably from 2 to 96 mol%, more preferably from 4 to 94 mol%, and most preferably from 6 to 92 mol%. The repeating unit may contain two or more anionic groups. The ratio of the repeating unit having a crosslinked or polymerized structure in the copolymer is preferably from 4 to 98 mole%, more preferably from 6 to 96 mole%, and most preferably from 8 to 94 mole%. The high refractive index layer may contain other fine inorganic fine particles in addition to the above-mentioned inorganic fine particles mainly containing titanium dioxide. As the other inorganic fine particles, the inorganic fine particles included in the above-mentioned anti-glare hard coat layer may also be used. However, it is preferred that they be dispersed into fine particles. Glare hard coating paragraph. The content of the inorganic fine particles in the high refractive index layer is preferably from 10 to 90% by mass, more preferably from 15 to 80% by mass, and particularly preferably from 15 to 75% by mass relative to the mass of the high refractive index layer. %. Two or more kinds of inorganic fine particles may be used in the high refractive index layer. When φ has a low refractive index layer on the high refractive index layer, the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent support. In the high-refractive-index layer, an ionizing radiation-hardening compound containing an aromatic ring, an ionizing radiation-hardening compound containing a halogenated element other than fluorine (for example, Br, I, C1, etc.) is also suitably used. An ionizing radiation hardening compound such as P, P, etc. is a binder obtained by crosslinking or polymerization reaction. -154- 200535465 To configure a low refractive index layer on a high refractive index layer to manufacture an anti-reflection film, the refractive index of the high refractive index layer must be from 1.55 to 2.40, preferably from 1.60 to 2.20, and more preferably from 1.65 To 2.10, and preferably from 1.80 to 2.00 〇In the high refractive index layer, in addition to the above components (inorganic particles, polymerization initiator, photosensitizer, etc.), resins, surfactants, and antistatic agents can also be added. , Coupling agent, tackifier, anti-coloring agent, colorant (pigment, dye), anti-glare particles, antifoaming agent, leveling agent, flame retardant, ultraviolet absorber, infrared absorber, adhesion imparting agent Polymerization inhibitor, antioxidant, surface modifier, conductive metal particles, etc. The film thickness of the high refractive index layer is appropriately designed depending on the application. When a high refractive index layer is used as the above-mentioned light diffusion layer, the film thickness is preferably from 30 to 200 nm, more preferably from 50 to 170 nm, and particularly preferably from 60 to 150 nm. When the high refractive index layer is formed, the crosslinking reaction or polymerization reaction of the ionizing radiation hardening compound is preferably at an oxygen concentration of 10 vol% or less, more preferably an oxygen concentration of 6 vol% or less, and particularly preferably an oxygen concentration It is carried out in the atmosphere of 2% by volume or less, and preferably 1% by volume or less. [Low-refractive index layer] The low-refractive index layer is an indispensable layer of the above-mentioned antireflection film, and the refractive index of the "low-refractive index layer" is preferably from 1.20 to 1.49, and more preferably from 1.30 to 1.44. From the viewpoint of achieving low reflectance, the low refractive index layer preferably conforms to the mathematical formula (VII) shown below: 200535465 Mathematical formula (VII) (m / 4) x 0.7 < ni di < ( m / 4) x 1.3. where m is a positive odd number, iM is the refractive index of the low refractive index layer, and dl is the film thickness of the low refractive index layer (nano and Λ are wavelengths and are from 500 to 550 nanometers) The range of m. The so-called "in accordance with the mathematical formula (νΠ)" means that in the above-mentioned wavelength range, m (positive odd number, usually 1) that complies with the mathematical formula (VII) exists. The material is as follows. The low refractive index layer preferably contains a fluorinated polymer as a binder for the low refractive index layer. The fluorinated polymer preferably has a dynamic friction coefficient of 0.03 to 0.15 and a contact angle to water Fluoropolymers that are 90 to 120 ° and can be crosslinked by heat or ionizing radiation. Low in the present invention In the emissivity layer, as described above, inorganic fine particles may also be used to improve the film strength. Examples of the fluoropolymer used in the low refractive index layer include a perfluoroalkylsilane compound (for example, (seventeen fluorine-1) 1,2,2-tetrahydrodecyl) hydrolyzate and dehydration-condensate of triethoxysilane; and a component having a fluorine-containing monomer unit and a constituent unit for imparting crosslinking reactivity as constituents Fluorinated copolymers. Specific examples of fluorinated monomer units include: fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorofluorenyl ethylene, hexafluoropropylene, perfluoro-2, 2— Dimethyl-1,3-dioxazole); partially or fully fluorinated alkyl ester derivatives of (meth) acrylic acid (eg, BIS COTE 6FM (manufactured by Osaka Organic Chemical Co., Ltd.), M- 2020 (manufactured by Daikin)]; and fully or partially fluorinated vinyl ethers. Among these, -156-200535465 is preferably a perfluoroolefin, and has a refractive index, solubility, transparency and From the viewpoint of acquisition, hexafluoropropylene is particularly preferred. Examples of the pre-crosslinking reactive constituent unit include a polymerization by a monomer having a self-crosslinking functional group previously in the molecule (for example, glycidyl (meth) acrylate and glycidyl vinyl ether) A constituent unit obtained by the reaction; a monomer obtained by having a carboxyl group, a hydroxyl group, an amine group, or a sulfo group [for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate , Allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid and crotonic acid], and a constituent unit obtained by polymerization; and a cross-linking reactive group such as , (Meth) acrylfluorene] is introduced into the constituent units obtained by the above-mentioned constituent units by polymer reaction (for example, by introducing chlorinated acrylic acid to a hydroxyl group or the like). In addition to the fluorine-containing monomer unit and the constituent unit for imparting cross-linking reactivity, from the viewpoints of solubility in a solvent, transparency of a film, and the like, it may be appropriately combined with a monomer having no fluorine atom. Copolymerization. The monomer units that can be used in combination are not particularly limited, and examples thereof include: olefins (for example, ethylene, propylene, isoprene, vinyl chloride, and vinylidene chloride); acrylates (for example, Methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate): methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate) Esters); styrene derivatives (for example, styrene, divinylbenzene, vinyl toluene, α-methylstyrene); vinyl ethers (for example, methyl vinyl ether, ethyl vinyl ether, cyclic Hexyl vinyl ether): vinyl esters-157- 200535465 (for example, vinyl acetate, vinyl propionate, vinyl cinnamate); allylamines (for example, N-tertiary-butyl allylamine, n-cyclohexylacrylamide); methacrylamide and acrylonitrile derivatives. The hardener may be appropriately used in combination with the above-mentioned polymers, as disclosed in Japanese Patent Laid-Open Nos. 10-253 88 and Japanese Patent Laid-Open Nos. 10-1 47739.
本發明特別有用的含氟聚合物是全氟烯烴與乙烯基醚或 酯之無規共聚物。特定言之,含氟聚合物較佳爲具有本身 能進行交聯化反應之基〔例如,一種自由基反應性基(例 如(甲基)丙烯醯基)、或一種開環聚合性基(例如環氧 基和氧雜環丁烷基)〕。含聚合性單元之交聯反應性基在 聚合物之全部聚合性單元中較佳爲佔有從5至70莫耳%, 且特佳爲從30至60莫耳%。 使用於本發明之含氟聚合物之較隹具體實例係包括以如 下所示通式(2 )所代表之化合物。 通式(2 )Particularly useful fluoropolymers of the present invention are random copolymers of perfluoroolefins and vinyl ethers or esters. In particular, the fluoropolymer preferably has a group capable of undergoing a cross-linking reaction [for example, a radical-reactive group (for example, (meth) acrylfluorenyl) or a ring-opening polymerizable group (for example Epoxy and oxetanyl)]]. The polymerizable unit-containing crosslinkable reactive group preferably accounts for 5 to 70 mole%, and particularly preferably 30 to 60 mole% of the total polymerizable units of the polymer. Specific specific examples of the fluoropolymer used in the present invention include compounds represented by the general formula (2) shown below. General formula (2)
-(-CF2-CF-^- -|-CH2-CH^— -fA-fz 3 C— C=CH2 通式(2)中,L代表具有碳原子數爲從1至10之連結 基,較佳爲具有碳原子數爲從1至6之連結基,且更佳爲 具有碳原子數爲從2至4之連結基;其可爲線型、分枝型 或環狀,且其可具有選自氧(0)、氮(N)和硫(S)之 雜原子。 -158- 200535465 較佳的實例包括:*—(CH2)2— Ο— **、*— (CH2)2— NH -**、* - (CH2)4 — Ο — **、* - (ch2)6 — ο — **、* - (CH2)2 -O - (CH2)2 -〇-**> * - CONH — (CH2)3 — O — **、* — CH2CH(OH)CH2 — o— **、*— CH2CH2OCONH(CH2)3— o — **〔其中,*表示在聚合物主鏈側之連結基,且**表示在( 甲基)丙烯醯基側之連結部位〕。m代表0或1。 在通式(2 )中,X代表氫原子或甲基,且從硬化反應性 的觀點來考慮,則較佳爲氫原子。 在通式(2)中,A代表衍生自任意乙烯基單體之重複單 元。該重複單元並無特殊的限定,只要其係一種可與六氟 丙烯共聚合之單體的組成成份即可,且可考慮例如對基材 之黏合性、聚合物之玻璃轉移溫度(Tg )(有助於薄膜硬 度)、在溶劑中之溶解性、透明性、滑動性及防塵•防污 性各種不同的觀點而適當地選擇。重複單元可根據目的以 單一乙烯基單體、或數種之乙烯基單體來構成。 此等之較佳的實例包括:乙烯基醚類,例如甲基乙烯基 醚、乙基乙烯基醚、三級-丁基乙烯基醚、環己基乙烯基醚 、異丙基乙烯基醚、羥乙基乙烯基醚、羥丁基乙烯基醚、 縮水甘油基乙烯基醚和烯丙基乙烯基醚;乙烯基酯類,例 如醋酸乙烯酯、丙酸乙烯酯和丁酸乙烯酯;甲基丙烯酸酯 類,例如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、( 甲基)丙烯酸羥乙酯、甲基丙烯酸縮水甘油酯、(甲基) 丙烯酸烯丙酯和(甲基)丙烯醯氧基丙基三甲氧基矽烷; 苯乙烯衍生物,例如苯乙烯和對-羥甲基苯乙烯;不飽和羧 200535465 酸類,例如巴豆酸、順丁烯二酸和伊康酸;及其衍生物。 此等之中,較佳爲乙烯基醚衍生物及乙烯基酯衍生物,且 更佳爲乙烯基醚衍生物。 X、y和Z代表各相關的組成成份之莫耳%,且各代表可 符合如下所述之條件之値:30SxS60、5gyS70和〇$z $65,較佳爲 35SxS55、30SyS60 和 0$Ζ$20,且更 佳爲 40$xS55、40$y$55 和 OSzSIO;及 X + y + z = 10.0。 使用於本發明之上述含氟聚合物之通式(2)較佳具體實 例係包括以如下所示通式(3 )所代表之化合物。 通式(3 ) CF— I CF3 ^ch2-ch-(-CF2-CF-^--| -CH2-CH ^ — -fA-fz 3 C— C = CH2 In the general formula (2), L represents a linking group having 1 to 10 carbon atoms, which is more than Preferably it has a linking group having 1 to 6 carbon atoms, and more preferably has a linking group having 2 to 4 carbon atoms; it may be linear, branched, or cyclic, and it may have a member selected from Heteroatoms of oxygen (0), nitrogen (N) and sulfur (S). -158- 200535465 Preferred examples include: * — (CH2) 2— Ο— **, * — (CH2) 2— NH-* *, *-(CH2) 4 — Ο — **, *-(ch2) 6 — ο — **, *-(CH2) 2 -O-(CH2) 2 -〇-** > *-CONH — (CH2) 3 — O — **, * — CH2CH (OH) CH2 — o — **, * — CH2CH2OCONH (CH2) 3 — o — ** [wherein * represents a linking group on the polymer main chain side, And ** represents a connection site on the (meth) acryl group]. M represents 0 or 1. In the general formula (2), X represents a hydrogen atom or a methyl group, and from the viewpoint of hardening reactivity, A hydrogen atom is preferred. In the general formula (2), A represents a repeating unit derived from any vinyl monomer. The repeating unit is not particularly limited as long as it is a kind The composition of the monomer copolymerized with hexafluoropropylene is sufficient, and for example, adhesion to a substrate, glass transition temperature (Tg) of a polymer (contributes to film hardness), solubility in a solvent, The transparency, slidability, and dust and stain resistance are appropriately selected from various viewpoints. The repeating unit may be composed of a single vinyl monomer or a plurality of types of vinyl monomers according to the purpose. Preferred examples of these Including: vinyl ethers, such as methyl vinyl ether, ethyl vinyl ether, tertiary-butyl vinyl ether, cyclohexyl vinyl ether, isopropyl vinyl ether, hydroxyethyl vinyl ether, hydroxy Butyl vinyl ether, glycidyl vinyl ether, and allyl vinyl ether; vinyl esters, such as vinyl acetate, vinyl propionate, and vinyl butyrate; methacrylates, such as (methyl ) Methyl acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl methacrylate, allyl (meth) acrylate, and (meth) acryloxypropyltrimethoxy Silane; styrene derivative , Such as styrene and p-hydroxymethyl styrene; unsaturated carboxylic acids 200535465; acids such as crotonic acid, maleic acid, and itaconic acid; and derivatives thereof. Among these, vinyl ether derivatives are preferred. And vinyl ester derivatives, and more preferably vinyl ether derivatives. X, y, and Z represent mole percentages of the relevant constituents, and each represents a condition that can meet the following conditions: 30SxS60, 5gyS70 And 〇 $ z $ 65, preferably 35SxS55, 30SyS60 and 0 $ Z $ 20, and more preferably 40 $ xS55, 40 $ y $ 55 and OSzSIO; and X + y + z = 10.0. Preferred specific examples of the general formula (2) of the above-mentioned fluoropolymer used in the present invention include compounds represented by the general formula (3) shown below. General formula (3) CF— I CF3 ^ ch2-ch
1.721 CH,一 CH·1.721 CH, one CH ·
o^ch2^occ=ch2 o^ch2^oh X 通式(3)中,X具有與在通式(2)者相同的意義,且 較佳的範圍也相同。 η代表2SnS10,較佳爲2SnS6,且更佳爲2Sn$4 之整數。 B代表衍生自任意乙烯基單體之重複單元,且可爲由單 一組成物或數種之組成物所組成者。此等之實例包括該等 如上所述在通式(2)中A之實例者。 X、y、z 1和Z 2分別代表各相關的重複單元之莫耳〇/。,且 X和y各代表可符合如下所述之條件之値:3 0 $ X $ 60和5 SyS70,更佳爲35SxS55和30$y$60,且特佳爲4〇$ -160- 200535465 x S 5 5和40 S y s 5 5 ; z 1和z2各代表可符合如下所述之條 件之値:〇SzlS65和〇Sz2$65,較佳爲〇$zl$30和0 Sz2$10,更佳爲OSzl^lO和〇$ζ2€5,且特佳爲〇$ zl$10 和 〇Sz2S5;及 x + y + zl + 22 = 1〇.〇。 以通式(2 )或(3 )所代表之聚合物可藉由例如將(甲 基)丙嫌醯基根據如上所述任何方法導入一種由六氟丙烯 成份和羥烷基乙烯基醚成份所構成之共聚物中來合成。 本發明之低折射率層形成組成物,通常較佳爲採取液體 形態並作爲黏結劑而含有以上述含氟單體單元爲組成成份 之含氟共聚物,必要時則將各種不同的添加劑及自由基聚 合引發劑溶解於適當的溶劑中所製得。此時,固體含量之 濃度是根據用途而作適當的選擇’但是通常爲從0.01至60 質量%,較佳爲從0.5至50質量%,且更佳爲從約1至20 質量%。 從低折射率層之薄膜硬度的觀點來考慮,則添加硬化劑 等之添加劑未必是有利的,但是從對高折射率層之界面黏 合性、或其類似性質的觀點來考慮,則可添加少量之硬化 劑(例如,多官能(甲基)丙烯酸酯化合物、多官能環氧 化合物、聚異氰酸酯化合物、胺基塑料、多元酸及其酐類 等)。若添加此添加劑時,其添加量較佳爲從〇至30質量 %,更佳爲從〇至20質量%,且還更佳爲從0至1 0質量% ,以低折射率層薄膜之全部固體含量爲基準。 茲就欲能賦予例如防污性、耐水性、耐化學藥品性及滑 動性等特性之目的而言,可適當地添加習知的聚矽氧系或 -161- 200535465 氟系防污劑、增滑劑等。若添加此添加劑時,所添加之添 加劑較佳爲在從0.01至20質量%之範圍,更佳爲從0·05 至1 〇質量%之範圍,且還更佳爲從〇. 1至5質量%之範圍 ’以低折射率層之全部固體含量爲基準。 聚矽氧系化合物之較佳的實例包括:含有數個二甲基矽 氧基單元作爲重複單元且在鏈末端和/或側鏈具有取代基之 化合物。在含有二甲基矽氧基作爲重複單元之化合物的鏈 中,也可含有除二甲基矽氧基以外之結構單元。較佳爲存 在數個取代基,其可爲相同或不同。取代基之較佳的實例 包括:含有丙烯醯基、甲基丙烯醯基、乙烯基、芳基、桂 皮醯基、環氧基、氧雜環丁烷基、羥基、氟烷基、聚氧化 烯基、羧基、胺基、或其類似物。分子量並無特殊的限定 ,但是較佳爲1〇〇,〇〇〇或以下,更佳爲50,000或以下,且 最佳爲從3,000至30,000。聚矽氧系化合物之矽氧原子含 量並無特殊的限定,但是較佳爲18.0質量%或以上,更佳 爲從25.0至37.8質量%,且最佳爲從30.0至37.0質量。/〇 。聚矽氧系化合物之較佳的具體實例包括(但是並不受限 於此等):X-22- 1 74DX、X-22-2426、X-22- 1 64B、X-22-164C、X-22-170DX、X-22-176D 和 X-22-1821 (全部皆爲 商品名,信越化學工業(股)公司製);及?^4-0725、?^4-7725、DMS-U22、RMS-03 3、RMS-083 和 UMS-182 (全部 皆爲商品名,Chis so (股)公司製)。 氟系化合物也可爲上述作爲表面改質劑之含氟脂肪族基 之聚合物及在低折射率層作爲黏結劑所使用之氟系聚合物 -162- 200535465 ’且也可爲具有除其以外的氟烷基之化合物。該氟烷基較 佳爲具有碳原子數爲從1至20,且更佳爲從1至10者, 且可爲:直鏈(例如,一 CF2CF3、一 CH2(CF2)4H ίο Η 2 (c F 2) 8 C F 3 、 或 — c Η 2 c H 2 (c F 2) 4 Η ) :分枝結構(例如, CH(CF3)2 、 CH2CF(CF3)2 、 CH(CH3)CF2CF3 、或 CH(CH3)(CF2)5CF2H );或脂環式結構(較佳爲5-員或6-員環,例如全氟環己基、全氟環戊基、或以此等基取代之 烷基等);或可具有醚鍵(例如,CH2OCH2CF2CF3、 CH2CH2OCH2C4F8H 、 CH2CH2OCH2CH2C8F17 、 或 CH2CH2OCF2CF2OCF2CF2H等)。數個氟烷基可包含於相 同的分子之內。 氟系化合物較佳爲進一步具有有助於與低折射率層薄膜 形成鍵結或相容性之取代基。較佳爲存在數個取代基(例 如丙烯醯基、甲基丙烯醯基、環氧基等)。 低折射率層之膜厚較佳爲從20至300奈米,更佳爲從 40至200奈米,且特佳爲從60至150奈米。 若對低折射率層作爲添加劑而添加聚氧化烯系化合物、 陽離子性界面活性劑、及以該等作爲組成單元所包含在如 上所述聚矽氧系化合物或氟系化合物之化合物等時,則添 加劑之添加量較佳爲從0.01至20質量%,更佳爲從〇.〇5 至1 0質量%,且還更佳爲從〇. 1至5質量%之範圍,以低 折射率層之全部固體含量爲基準。該化合物之較佳的實例 包括:Megafac F-150 (商品名,大日本油墨和化學公司製 )及 SH-3748 (商品名,東麗-道康寧(Toray-Dow Corning 200535465 )公司製),但是並不受限於此等。 〔抗靜電層〕 在上述抗反射膜,較佳爲設置具有導電性材料之透明抗 靜電層以賦予抗靜電性等性質。透明抗靜電層雖然可獨立 地新設,但是也可使導電材料包含在防眩性硬質塗層或光 擴散層、高折射率層、中折射率層、低折射率層以一起賦 予抗靜電功能。特佳爲將抗靜電層塗佈在硬質塗層與透明 支撐體之間。 導電材料較佳爲由金屬之氧化物或氮化物之微粒所形成 。金屬之氧化物或氮化物之具體實例包括氧化錫、氧化銦 、氧化鋅及氮化鈦。此等之中,特佳爲氧化錫和氧化銦, 可以該等金屬之氧化物或氮化物爲主成份而又含有其他元 素。「主成份」係意謂在用來構成顆粒的成份中含量(質 量% )最多之成份。其他元素之具體實例包括Ti、zr、Sn 、Sb、Cu、Fe、Μη、Pb、Cd、As、Cr、Hg、Zn、A1、Mg 、Si、P、S、B、Nb、In、V及鹵素原子。爲提高氧化錫及 氧化銦較佳爲添加Sb、P、B、Nb、In、V及鹵素原子,且 較佳爲銻-氧化錫、銦-氧化錫、銻酸鋅。 除此之外,金屬微粒、離子性高分子化合物、聚氧化烯 系化合物、陽離子系界面活性劑等也適合使用。抗靜電功 能之程度係抗靜電層之表面比電阻値爲1011 Ω /口以下( 2 5°C、60 %RH),且更佳爲ι〇ι〇 Ω/口以下;抗靜電層之 霧度較佳爲20%以下。 〔透明支撐體〕 -164- 200535465 本發明之抗反射膜之透明支撐體較佳爲使用塑性薄膜。 用以形成塑性薄膜之聚合物的實例包括:纖維素酯類(例 如,三乙醯基纖維素、二乙醯基纖維素,其代表實例包括 TAC-TD80U和TD80UF,富士照相軟片公司製);聚醯胺 類;聚碳酸酯類;聚酯類(例如,聚對苯二甲酸乙二酯、 聚萘二甲酸乙二酯);聚苯乙烯類;聚烯烴類;降萡烯系 樹脂(ARTON :商品名,JSR (股)公司製);及非晶質 聚烯烴類(ZEONEX:商品名,日本Zeon公司製)。在此 等之中,較佳爲三乙醯基纖維素、聚對苯二甲酸乙二酯和 聚萘二甲酸乙二酯,且更佳爲三乙醯基纖維素。 三乙醯基纖維素係由單層或數層所構成。單層三乙醯基 纖維素是藉由揭示於日本專利特開平第7- 1 1 055號之圓筒 式流延法或帶式流延法所製得,而由數層所構成的三乙醯 基纖維素是藉由日本公開發明專利公報之特開昭第6 1 -94725號和特公昭第62-43846號所揭示之所謂的「共流延 法」所製得。 上述抗反射膜是在一面設置黏結劑層後用作爲偏光板用 保護膜。此時,爲確保令人滿意的黏合性,則在透明支撐 體上較佳爲形成含氟聚合物的最外層後,施加鹼化處理。 鹼化處理是藉由習知的方法來實施,例如藉由將薄膜浸漬 於鹼性溶液中一段適當的時間,經浸漬鹼性溶液後,較佳 爲以水徹底地沖洗以防止鹼性成份殘留於薄膜中、或浸漬 於稀酸以中和鹼性成份。 藉由鹼化處理,即可使與具有最外層之表面的相反側之 200535465 透明支撐體表面親水化。 親水化之表面對於改良與以聚乙烯醇爲主成份之偏光膜 的黏合性是特別有效的。此外,由於空氣中之塵埃難以附 著在經施加親水化之表面,因此與偏光膜黏合時,塵埃幾 乎難以進入介於偏光膜與抗反射膜之間的間隙,因此可有 效地防止由於塵埃引起之點缺陷。 較佳爲實施鹼化處理使得在具有最外層之表面的相反側 之透明支撐體的表面具有對水之接觸角爲40。或以下,更 佳爲30°或以下,且特佳爲20。或以下。 用於鹼性鹼化處理之具體的方法可選自如下所述之兩種 方法(1 )和(2 )。方法(1 )的優點是可以與泛用目的之 三乙醯基纖維素薄膜相同的步驟來實施處理,但是因爲抗 反射膜表面也會受到鹼化處理,表面可能會鹼性-水解化而 使得薄膜劣化,或若殘留鹼化處理用之溶液,則此會造成 污點的難題。若是此情況,雖然需要特殊的處理步驟,但 是方法(2 )是有利的。 (1 )在透明支撐體上形成抗反射膜後,將薄膜浸漬於鹼 性溶液中至少一次’藉此將薄膜之背面施加鹼化處 理。 (2 ) 在透明支撐體上形成抗反射膜之前或之後,將驗性 溶液塗佈在形成抗反射膜之表面的相反側之表面上 ,然後將薄膜加熱且以水沖洗和/或中和,藉此僅薄 膜之背面是加以鹼化處理。 如上所述之抗反射膜可藉由如下所述之方法來形成,但 -166- 200535465 是本發明並不受限於此等方法。 首先調製一種含有形成各層用之成份的塗佈液。 然後,在設置硬質塗層時,則將形成硬質塗層用之塗佈 液藉由浸漬塗佈法、氣刀塗佈法、簾幕式淋塗法、輥式塗 佈法、線棒塗佈法、凹版輪轉塗佈法、或擠壓塗佈法(參 閱美國專利第2,681,294號說明書)塗佈在透明支撐體上, 然後加熱和乾燥。在此等塗佈法之中,較佳爲微型凹版輪 轉塗佈法。然後,施加光照射或加熱,使得用以形成防眩 性硬質塗層之單體進行聚合,藉此形成硬質塗層。 若需要的話,硬質塗層可由數層所構成,且在塗佈防眩 性硬質塗層之前,可以相同方式塗佈平滑性硬質塗層且加 以硬化。 然後,將形成低折射率層用之塗佈液以相同方式塗佈在 防眩性硬質塗層上,且施加光照射或加熱,以形成低折射 率層。以此方式可獲得抗反射膜之一形態。 用於本發明之微型凹版輪轉塗佈法是具有如下所述特徵 :亦即,將直徑爲約10至1〇〇毫米,較佳爲從約20至50 毫米且具有在全周已蝕刻凹版圖案之凹版輪轉印刷機,在 支撐體下方,以與支撐體之輸送方向逆向旋轉,且同時將 多餘的塗佈液藉由刮刀從該凹版輪轉印刷機之表面刮除, 藉此將定量之塗佈液轉印在該支撐體之下面上,同時使得 支撐體之上面呈自由狀態;及呈捲筒狀之透明支撐體是以 連續式退捲,且在該退捲之支撐體的一面,將硬質塗層及 含有含氟聚合物之低折射率層之至少一層藉由微型凹版輪 -167- 200535465 轉塗佈法加以塗佈之塗佈法。 關於藉由微型凹版輪轉塗佈法塗佈之條件,在已蝕刻在 凹版輪轉印刷機上之凹版圖案中之線數較佳爲從50至800 線/英寸,且更佳爲從100至300線/英寸;凹版圖案之深 度較佳爲從1至600微米,且更佳爲從5至200微米;凹 版輪轉印刷機之轉數較佳爲從3至800 rpm,且更佳爲從5 至2 00 rpm ;且支撐體輸送速度較佳爲從0.5至100公尺/ 分鐘,且更佳爲從1至50公尺/分鐘。 藉此所形成本發明之抗反射膜的霧度値爲從3至70%, 較佳爲從4至60%,且在450至650奈米之平均反射率爲 3.0%或以下,較佳爲2.5 %或以下。 由於抗反射膜具有霧度値和平均反射率是分別在如上所 述之範圍,藉此可獲得優良防眩性和抗反射性,且透射影 像不會發生劣化。 此外,抗反射膜之透射影像鮮明性、從防眩性與黑色亮 度的觀點來考慮,則較佳爲從15%至60%之範圍。 該透射影像鮮明性可以實施例所揭述之方法來測定。 在本發明中,上述另一側之功能膜可爲僅由上述抗反射 膜所構成之功能膜來形成者、或將該膜與其他功能膜疊合 所形成者。 其他功能膜包括例如硬質塗膜、彩色濾光片膜等。 〈偏光板之構成〉 「偏光板」通常是由從兩面夾持偏光膜之兩片功能膜所 構成。通常各功能膜主要是由一片保護膜所構成。本發明 200535465 之偏光板在從兩面夾持偏光膜的兩片保護膜中一側之至少 一片使用上述乙醯化纖維素薄膜,與該乙醯化纖維素薄膜 相反側且隔著偏光膜之至少一片則使用上述抗反射膜。 當醯化纖維素薄膜和抗反射膜同時兼用作爲保護膜時, 則可降低偏光板之製造成本。而且,當將上述抗反射膜是 使用於偏光板之最外表面時,則可製得一種可防止外光映 入等且具有特優耐擦傷性、防污性等之偏光板。亦即,本 發明偏光板之較佳結構是由偏光膜、由積層在該偏光膜之 一側的醯化纖維素薄膜所構成之功能膜,及由積層在該偏 φ 光膜之另一側的抗反射膜所構成之功能膜所構成;且偏光 膜之一側表面爲由醯化纖維素薄膜所形成,同時另一側的 表面爲抗反射膜所形成者。 關於偏光膜,可使用習知的偏光膜,或從一種具有偏光 膜之吸收軸是既不平行也不垂直於縱向之冗長的偏光膜所 切割出之偏光膜。 聚合物薄膜之延伸法是詳細揭示於日本專利特開第 2002-865 54號公報之第0020至0030段中。 · 本發明之偏光板可適用於例如液晶顯示裝置(LCD )、 電漿顯示裝置(PDP )、電激發光顯示裝置(ELD )和陰極 管顯示裝置(CRT )等之影像顯示裝置。因爲本發明之偏 光板具有透明支撐體,可將透明支撐體側黏合到影像顯示 裝置之影像顯示面上來使用。此外,本發明之偏光板較佳 爲使用於液晶顯示裝置之最外表面。 本發明之偏光板較佳爲使用於「扭轉向列型(TN )」、 -169- 200535465 「超扭轉向列型(STN )」、「垂直配向型(VA)」、「 面內切換型(IPS )」、或「光學補償彎曲型(OCB )」等 之模式的透射型、反射型、或半透射型之液晶顯示裝置。 尤其是本發明之液晶顯示裝置較佳爲TN模式或VA模式。 VA模式之液晶胞,除(1 )使棒狀液晶性分子當未施加 電壓時是實質的垂直配向,且在施加電壓時是則使其實質 的水平配向之狹義的V A模式之液晶胞(揭示於日本專利 特開平第2- 1 76625號公報)之外;也包括(2 )爲擴大視 野角使VA模式多域化(MVA模式)之液晶胞(揭述於 S ID 97「技術文獻摘要」(預備稿集),第28期、第845 頁(1 997年);(3 )使棒狀液晶性分子在未施加電壓時 使其實質的垂直配向,但是當施加電壓時,則使其配向成 扭轉多域的模式(n-ASM模式)之液晶胞(揭述於日本液 晶討論會之預備稿集,第58至59期(1 998年);及(4 )SURVAIVAL模式之液晶胞(發表於LCD International 98 )。 「光學補償彎曲型(OCB )模式」之液晶胞是一種使用 彎曲配向模式之液晶胞,其中係使得介於液晶胞之上部與 下部之間的棒狀液晶性分子配向成實質的逆方向(對稱性 ),且此係揭示於美國發明專利第4,5 83,825號和第 5,4 10,422號之各說明書中。因爲在液晶胞之上部與下部中 的液晶性分子是對稱性配向,此彎曲配向模式液晶胞具有 「自己光學補償機能」。因此,此液晶模式也可稱爲「 OCB (光學補償彎曲型;Optically Compensatory Bend)」 -170- 200535465 液晶模式。此彎曲配向型模式之液晶顯示裝置是具有應答 速度快的優點。 在「電場效應雙折射型(ECB )模式」之液晶胞中,當 未施加電壓時,棒狀液晶性分子是實質的水平配向。此係 最常用作爲彩色薄膜電晶體(TFT )液晶顯示裝置,且已 揭述於許多文獻中,例如在「EL、PDP、LCD顯示裝置」 ’東麗(Toray)硏究所出版(2001年)所揭述者。 特定言之,對於扭轉向列型(TN )模式或面內切換型( IPS)模式之液晶顯示裝置而言,由於本發明之偏光板係以 一片偏光板的厚度,但是可兼備抗反射功效和擴大視野角 功效,因此特別佳。 【實施方式】 〔實施例〕 本發明藉由參考如下所述實施例作更詳細的說明,但是 本發明並不受限於此等。 除非另外有指示,「份」和「%」是以質量爲基準。 〈第一方式之實施例〉 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(富 士通(股)公司製)中之一對偏光板及一對光學補償片以 取出液晶胞。在取出的液晶胞與偏光板之間,將具有各種 不同的Re延遲値及Rth延遲値之透明試料以使該等之軸會 重疊之方式疊合數片,然後硏究調查其視野角特性良好且 黑色顯示將成爲中性的最適化延遲之結果,得知Re値爲 52奈米、Rth値爲132奈米,因此以此作爲目標之光學性 200535465 (相位差膜R - 1之製造) 將如下所述之纖維素醋酸酯溶液組成之各成份進料至混 合槽中,邊加熱邊攪拌使各成份溶解,以調製纖維素醋酸 酯溶液A。 (纖維素醋酸酯溶液A之組成) 乙醯化度爲6(K9%之纖維素醋酸酯 1〇〇質量份 磷酸三苯酯(塑化劑) 7.8質量份 磷酸聯苯基二苯酯(塑化劑) 3.9質量份 二氯甲烷(第一溶劑) 318質量份 甲醇(第二溶劑) 47質量份 將1 6質量份之如下所示延遲控制劑(1 )、87質量份之 二氯甲烷、及13質量份之甲醇進料至另一混合槽中,邊加 熱邊攪拌,以調製延遲控制劑(1 )溶液。 在4 74質量份之纖維素醋酸酯溶液A混合36質量份之 上述延遲控制劑(1 )溶液,充分攪拌以調製塗佈液。延遲 控制劑(1 )之添加量相對於1 00質量份之纖維素醋酸酯爲 5.0質量份。 延遲控制劑(1 )o ^ ch2 ^ occ = ch2 o ^ ch2 ^ oh X In the general formula (3), X has the same meaning as in the general formula (2), and the preferable ranges are also the same. η represents 2SnS10, preferably 2SnS6, and more preferably an integer of 2Sn $ 4. B represents a repeating unit derived from any vinyl monomer, and may be composed of a single composition or a plurality of compositions. These examples include those of A in the general formula (2) as described above. X, y, z 1 and Z 2 respectively represent moles of the respective repeating units. , And X and y each can meet the following conditions: 3 0 $ X $ 60 and 5 SyS70, more preferably 35SxS55 and 30 $ y $ 60, and particularly good 40 $ -160- 200535465 x S 5 5 and 40 S ys 5 5; z 1 and z 2 each may satisfy the following conditions: 〇SzlS65 and 〇Sz2 $ 65, preferably 〇zz $ 30 and 0 Sz2 $ 10, more preferably OSzl ^ lO And 0 $ ζ2 € 5, and particularly preferred are 0 $ zl $ 10 and 0Sz2S5; and x + y + zl + 22 = 10.0. The polymer represented by the general formula (2) or (3) can be introduced by, for example, a (meth) propanyl group according to any method as described above into a compound consisting of a hexafluoropropylene component and a hydroxyalkyl vinyl ether component. The copolymer is synthesized. The low-refractive-index layer-forming composition of the present invention is generally preferably in a liquid form and as a binder containing a fluorinated copolymer containing the above-mentioned fluorinated monomer unit as a component, and if necessary, various additives and free The base polymerization initiator is prepared by dissolving in a suitable solvent. At this time, the concentration of the solid content is appropriately selected depending on the application ', but is usually from 0.01 to 60% by mass, preferably from 0.5 to 50% by mass, and more preferably from about 1 to 20% by mass. From the viewpoint of the film hardness of the low refractive index layer, it may not be advantageous to add additives such as a hardener, but from the viewpoint of interfacial adhesion to the high refractive index layer or the like, a small amount may be added. Hardeners (eg, polyfunctional (meth) acrylate compounds, polyfunctional epoxy compounds, polyisocyanate compounds, amino plastics, polyacids and their anhydrides, etc.). When this additive is added, the addition amount thereof is preferably from 0 to 30% by mass, more preferably from 0 to 20% by mass, and even more preferably from 0 to 10% by mass. The solid content is the benchmark. For the purpose of imparting properties such as antifouling, water resistance, chemical resistance, and sliding properties, a conventional polysiloxane-based or -161-200535465 fluorine-based antifouling agent, Lubricant. If this additive is added, the additive added is preferably in a range from 0.01 to 20% by mass, more preferably in a range from 0.05 to 10% by mass, and even more preferably from 0.1 to 5% by mass. The range of% is based on the total solid content of the low refractive index layer. Preferable examples of the polysiloxane compound include compounds containing several dimethylsiloxy units as repeating units and having a substituent at a chain end and / or a side chain. The chain of a compound containing dimethylsiloxy as a repeating unit may also contain structural units other than dimethylsiloxy. Preferably, there are several substituents, which may be the same or different. Preferable examples of the substituent include acryl, methacryl, vinyl, aryl, cinnamo, epoxy, oxetanyl, hydroxy, fluoroalkyl, polyoxyalkylene Group, carboxyl group, amine group, or the like. The molecular weight is not particularly limited, but it is preferably 100,000 or less, more preferably 50,000 or less, and most preferably 3,000 to 30,000. The content of the silicon oxygen atom of the polysiloxane compound is not particularly limited, but is preferably 18.0% by mass or more, more preferably 25.0 to 37.8% by mass, and most preferably 30.0 to 37.0% by mass. / 〇. Preferred specific examples of polysiloxane compounds include (but are not limited to): X-22-1 74DX, X-22-2426, X-22-1 64B, X-22-164C, X -22-170DX, X-22-176D and X-22-1821 (all are trade names, manufactured by Shin-Etsu Chemical Industry Co., Ltd.); and? ^ 4-0725,? ^ 4-7725, DMS-U22, RMS-03 3, RMS-083, and UMS-182 (all are trade names, manufactured by Chis so). The fluorine-based compound may be the above-mentioned fluorine-containing aliphatic polymer as the surface modifier and the fluorine-based polymer -162-200535465 'used as a binder in the low refractive index layer, and may also have Fluoroalkyl compounds. The fluoroalkyl group preferably has a number of carbon atoms from 1 to 20, and more preferably from 1 to 10, and may be: a straight chain (for example, a CF2CF3, a CH2 (CF2) 4H, ί 2 (c F 2) 8 CF 3, or — c Η 2 c H 2 (c F 2) 4 Η): branch structure (for example, CH (CF3) 2, CH2CF (CF3) 2, CH (CH3) CF2CF3, or CH (CH3) (CF2) 5CF2H); or alicyclic structure (preferably 5-membered or 6-membered ring, such as perfluorocyclohexyl, perfluorocyclopentyl, or alkyl substituted with these groups, etc.) ; Or may have an ether bond (eg, CH2OCH2CF2CF3, CH2CH2OCH2C4F8H, CH2CH2OCH2CH2C8F17, or CH2CH2OCF2CF2OCF2CF2H, etc.). Several fluoroalkyl groups can be contained within the same molecule. The fluorine-based compound preferably further has a substituent that facilitates formation of a bond or compatibility with the low-refractive index layer film. Preferably, there are several substituents (e.g., acrylfluorenyl, methacrylfluorenyl, epoxy, etc.). The film thickness of the low refractive index layer is preferably from 20 to 300 nm, more preferably from 40 to 200 nm, and particularly preferably from 60 to 150 nm. If a low-refractive-index layer is added as an additive, a polyoxyalkylene-based compound, a cationic surfactant, and a compound containing the above-mentioned polysiloxane-based compound or fluorine-based compound as the constituent unit, etc., The addition amount of the additive is preferably from 0.01 to 20% by mass, more preferably from 0.05 to 10% by mass, and still more preferably from 0.1 to 5% by mass. The total solids content is the benchmark. Preferable examples of the compound include Megafac F-150 (trade name, manufactured by Dainippon Ink and Chemical Co., Ltd.) and SH-3748 (trade name, manufactured by Toray-Dow Corning 200535465), but Not limited to this. [Antistatic layer] It is preferable that a transparent antistatic layer having a conductive material is provided on the antireflection film to impart properties such as antistatic property. Although the transparent antistatic layer can be newly provided independently, the conductive material can also be included in an anti-glare hard coat layer or a light diffusion layer, a high refractive index layer, a medium refractive index layer, and a low refractive index layer to impart an antistatic function together. Particularly preferred is the application of an antistatic layer between a hard coat layer and a transparent support. The conductive material is preferably formed from particles of metal oxides or nitrides. Specific examples of the oxide or nitride of a metal include tin oxide, indium oxide, zinc oxide, and titanium nitride. Of these, tin oxide and indium oxide are particularly preferred, and oxides or nitrides of these metals may be the main component and other elements may be contained. "Main ingredient" means the ingredient with the highest content (mass%) of the ingredients used to make up the granules. Specific examples of other elements include Ti, zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, A1, Mg, Si, P, S, B, Nb, In, V, and Halogen atom. In order to improve tin oxide and indium oxide, Sb, P, B, Nb, In, V, and halogen atoms are preferably added, and antimony-tin oxide, indium-tin oxide, and zinc antimonate are more preferable. In addition, metal fine particles, ionic polymer compounds, polyoxyalkylene-based compounds, and cationic surfactants are also suitable for use. The degree of antistatic function is that the specific resistance of the surface of the antistatic layer 値 is 1011 Ω / port (25 ° C, 60% RH), and more preferably ι〇ι〇Ω / port; the haze of the antistatic layer It is preferably 20% or less. [Transparent Support] -164- 200535465 The transparent support of the antireflection film of the present invention is preferably a plastic film. Examples of the polymer used to form the plastic film include: cellulose esters (for example, triethyl cellulose, diethyl cellulose, and representative examples thereof include TAC-TD80U and TD80UF, manufactured by Fuji Photo Film Corporation); Polyamines; Polycarbonates; Polyesters (for example, polyethylene terephthalate, polyethylene naphthalate); Polystyrenes; Polyolefins; Norbornene resins (ARTON : Trade name, made by JSR (stock) company); and amorphous polyolefins (ZEONEX: trade name, made by Japan Zeon Corporation). Among these, triethylfluorene cellulose, polyethylene terephthalate, and polyethylene naphthalate are preferred, and triethylfluorene cellulose is more preferred. Triethyl cellulose is composed of a single layer or several layers. Monolayer triethyl cellulose is produced by a cylindrical casting method or a tape casting method disclosed in Japanese Patent Laid-Open No. 7- 1 1 055, and triethyl cellulose is composed of several layers. The fluorene-based cellulose is produced by the so-called "co-casting method" disclosed in Japanese Patent Laid-Open Publication No. 61-94725 and Japanese Patent Publication No. 62-43846. The antireflection film is used as a protective film for a polarizing plate after an adhesive layer is provided on one side. At this time, in order to ensure satisfactory adhesion, it is preferable to apply an alkali treatment after forming the outermost layer of the fluoropolymer on the transparent support. The alkalizing treatment is performed by a conventional method, for example, by immersing the film in an alkaline solution for an appropriate period of time. After the alkali solution is immersed, it is preferably washed thoroughly with water to prevent the residual of alkaline components. Neutralize the alkaline components in the film or dip in dilute acid. By the alkalizing treatment, the surface of the transparent support body 200535465 opposite to the surface having the outermost layer can be made hydrophilic. The hydrophilized surface is particularly effective for improving adhesion to a polarizing film containing polyvinyl alcohol as a main component. In addition, since the dust in the air is difficult to adhere to the surface that has been hydrophilized, it is difficult for the dust to enter the gap between the polarizing film and the anti-reflection film when it is bonded to the polarizing film, so it can effectively prevent Point defects. The alkali treatment is preferably performed so that the surface of the transparent support on the opposite side of the surface having the outermost layer has a contact angle to water of 40. Or less, more preferably 30 ° or less, and particularly preferably 20. Or below. Specific methods for the alkaline alkalization treatment may be selected from two methods (1) and (2) described below. The advantage of the method (1) is that the treatment can be carried out in the same steps as the triethyl cellulose film for general purpose, but since the surface of the anti-reflection film is also subjected to alkali treatment, the surface may be alkaline-hydrolyzed, making The film is deteriorated, or if the solution for the alkalizing treatment remains, this causes a problem of staining. In this case, although a special processing step is required, the method (2) is advantageous. (1) After the antireflection film is formed on the transparent support, the film is immersed in an alkaline solution at least once 'to thereby apply an alkali treatment to the back surface of the film. (2) before or after the antireflection film is formed on the transparent support, apply a test solution on the surface opposite to the surface on which the antireflection film is formed, and then heat the film and rinse and / or neutralize it with water, As a result, only the back of the film is treated with an alkali. The anti-reflection film described above can be formed by the method described below, but -166-200535465 is not limited to these methods. First, a coating liquid containing ingredients for forming each layer is prepared. Then, when a hard coat layer is provided, the coating liquid for forming the hard coat layer is coated by a dip coating method, an air knife coating method, a curtain-type shower coating method, a roll coating method, or a wire rod coating method. Method, gravure rotary coating method, or extrusion coating method (see US Pat. No. 2,681,294) is applied on a transparent support, and then heated and dried. Among these coating methods, a micro gravure rotary coating method is preferred. Then, light irradiation or heating is applied to polymerize the monomers used to form the anti-glare hard coating layer, thereby forming a hard coating layer. If necessary, the hard coating layer may be composed of several layers, and the smooth hard coating layer may be applied and hardened in the same manner before the anti-glare hard coating layer is applied. Then, a coating liquid for forming a low-refractive index layer is coated on the anti-glare hard coat layer in the same manner, and light irradiation or heating is applied to form a low-refractive index layer. In this way, one form of the antireflection film can be obtained. The micro gravure web coating method used in the present invention has the following characteristics: that is, the diameter is about 10 to 100 mm, preferably from about 20 to 50 mm and has an intaglio pattern etched all around The gravure rotary printing machine is rotated below the support body in the direction opposite to the conveying direction of the support body, and at the same time, the excess coating liquid is scraped off from the surface of the gravure rotary printing machine by a doctor blade, thereby applying a fixed amount of coating. The liquid transfer is on the lower surface of the support body, while making the upper surface of the support body in a free state; and the roll-shaped transparent support body is continuously unrolled, and the side of the unrolled support body is hardened. The coating method and at least one layer of a low refractive index layer containing a fluoropolymer are applied by a micro gravure wheel-167-200535465 transfer coating method. Regarding the conditions for coating by the micro gravure rotary coating method, the number of lines in the gravure pattern etched on the gravure rotary printing press is preferably from 50 to 800 lines / inch, and more preferably from 100 to 300 lines The depth of the gravure pattern is preferably from 1 to 600 microns, and more preferably from 5 to 200 microns; the number of revolutions of the gravure rotary printing press is preferably from 3 to 800 rpm, and more preferably from 5 to 2 00 rpm; and the supporting body conveying speed is preferably from 0.5 to 100 meters / minute, and more preferably from 1 to 50 meters / minute. The haze 値 of the anti-reflection film of the present invention thus formed is from 3 to 70%, preferably from 4 to 60%, and the average reflectance at 450 to 650 nm is 3.0% or less, preferably 2.5% or less. Since the anti-reflection film has haze and average reflectance in the ranges described above, respectively, excellent anti-glare and anti-reflection properties can be obtained, and the transmission image does not deteriorate. In addition, from the viewpoint of anti-glare property and black brightness, the transmission image of the antireflection film is preferably in a range of 15% to 60%. The sharpness of the transmission image can be measured by the method disclosed in the embodiment. In the present invention, the functional film on the other side may be formed by a functional film composed of only the above-mentioned antireflection film, or formed by laminating the film with another functional film. Other functional films include, for example, hard coating films, color filter films, and the like. <Configuration of Polarizing Plate> A "polarizing plate" is generally composed of two functional films that hold a polarizing film on both sides. Usually, each functional film is mainly composed of a protective film. In the polarizing plate of 200535465 of the present invention, at least one of the two protective films sandwiching the polarizing film from both sides uses the above-mentioned acetylated cellulose film, the opposite side of the acetylated cellulose film and at least the polarizing film are interposed therebetween. One sheet uses the above-mentioned antireflection film. When the tritiated cellulose film and the antireflection film are also used as a protective film, the manufacturing cost of the polarizing plate can be reduced. Further, when the above-mentioned antireflection film is used on the outermost surface of a polarizing plate, a polarizing plate which can prevent reflection of external light and the like and has excellent scratch resistance, antifouling properties, and the like can be obtained. That is, the preferred structure of the polarizing plate of the present invention is a polarizing film, a functional film composed of a tritiated cellulose film laminated on one side of the polarizing film, and a laminated film on the other side of the polarizing φ light film. A functional film composed of an anti-reflection film; and one surface of the polarizing film is formed of a tritiated cellulose film, while the other surface is formed of an anti-reflection film. As for the polarizing film, a conventional polarizing film can be used, or a polarizing film cut from a lengthy polarizing film having an absorption axis that is neither parallel nor perpendicular to the longitudinal direction. The stretching method of a polymer film is disclosed in detail in paragraphs 0020 to 0030 of Japanese Patent Laid-Open No. 2002-865 54. The polarizing plate of the present invention can be applied to image display devices such as a liquid crystal display device (LCD), a plasma display device (PDP), an electroluminescent display device (ELD), and a cathode tube display device (CRT). Because the polarizing plate of the present invention has a transparent support, the transparent support can be bonded to the image display surface of the image display device for use. In addition, the polarizing plate of the present invention is preferably used on the outermost surface of a liquid crystal display device. The polarizing plate of the present invention is preferably used in "twisted nematic (TN)", -169- 200535465 "super twisted nematic (STN)", "vertical alignment (VA)", "in-plane switching type ( Transmissive, reflective, or semi-transmissive liquid crystal display devices in modes such as "IPS"), or "optically compensated bending (OCB)". In particular, the liquid crystal display device of the present invention is preferably a TN mode or a VA mode. In the VA mode, except for (1), the rod-shaped liquid crystal molecules are substantially vertically aligned when no voltage is applied, and when the voltage is applied, they are substantially horizontally aligned in the narrow VA mode. In addition to Japanese Patent Laid-Open Publication No. 2- 1 76625); also includes (2) liquid crystal cells that make the VA mode multi-domain (MVA mode) to expand the viewing angle (disclosed in S ID 97 "Technical Document Abstract" (Preliminaries), No. 28, p. 845 (1997); (3) the rod-shaped liquid crystalline molecules are aligned in a substantially vertical direction when no voltage is applied, but when a voltage is applied, they are aligned Liquid crystal cells in a twisted multi-domain mode (n-ASM mode) (disclosed in the preparatory collection of the Japan LCD Symposium, Issues 58 to 59 (1998); and (4) LCD cells in SURVAIVAL mode (published In LCD International 98). The "OCB mode" liquid crystal cell is a liquid crystal cell using a curved alignment mode in which rod-shaped liquid crystal molecules are aligned between the upper and lower portions of the liquid crystal cell. Substantial reverse direction (symmetry ), And this series is disclosed in the specifications of US Patent Nos. 4,5 83,825 and 5,4 10,422. Since the liquid crystal molecules in the upper part and the lower part of the liquid crystal cell are symmetrically aligned, this bend The alignment mode liquid crystal cell has "its own optical compensation function." Therefore, this liquid crystal mode can also be called "OCB (Optically Compensatory Bend)" -170- 200535465 LCD mode. This curved alignment mode LCD device It has the advantage of fast response speed. In the liquid crystal cell of the "electric field effect birefringence (ECB) mode", when no voltage is applied, the rod-shaped liquid crystal molecules are substantially horizontally aligned. This system is most commonly used as a color film Crystalline (TFT) liquid crystal display devices, and have been disclosed in many documents, such as those disclosed in "EL, PDP, LCD display devices" 'Toray Research Institute published (2001). Specific words For a liquid crystal display device of a twisted nematic (TN) mode or an in-plane switching (IPS) mode, since the polarizing plate of the present invention has a thickness of one polarizing plate, it can have both [Effect] [Embodiments] The present invention will be described in more detail by referring to the following examples, but the present invention is not limited to these. Unless otherwise It is instructed that "part" and "%" are based on quality. <Example of the first method> One pair of liquid crystal display devices (manufactured by Fujitsu Co., Ltd.) provided in a vertical alignment type liquid crystal cell is peeled off. The polarizing plate and a pair of optical compensation plates are used to take out the liquid crystal cell. Between the taken out liquid crystal cell and the polarizing plate, transparent samples having various Re retardation and Rth retardation are stacked so that the axes thereof overlap. Combine the number of films, and then investigate the results of good viewing angle characteristics and a black display that will become a neutral optimal delay. It is learned that Re 値 is 52nm and Rth 値 is 132nm. 200535465 (manufacturing of retardation film R-1) Feed each component composed of cellulose acetate solution as described below into a mixing tank, and stir and dissolve each component while heating to prepare fibers Acetate solution A. (Composition of cellulose acetate solution A) Acetylation degree is 6 (K9% of cellulose acetate 100 parts by mass of triphenyl phosphate (plasticizer) 7.8 parts by mass of diphenyl phosphate (plastic Chemical agent) 3.9 parts by mass of dichloromethane (first solvent) 318 parts by mass of methanol (second solvent) 47 parts by mass of 16 parts by mass of the retardation control agent (1) shown below, 87 parts by mass of dichloromethane, And 13 parts by mass of methanol were fed into another mixing tank, and stirred while heating to prepare a delay control agent (1) solution. In 4 74 parts by mass of cellulose acetate solution A, 36 parts by mass of the above-mentioned retardation control were mixed. The solution of the agent (1) is sufficiently stirred to prepare a coating liquid. The amount of the retardation control agent (1) is 5.0 parts by mass relative to 100 parts by mass of the cellulose acetate. The retardation control agent (1)
將所製得之塗佈液使用帶式流延機加以流延。將殘留溶 劑量爲1 5質量%之薄膜在1 3 0 °C之條件下’使用拉幅機以 3 0 %延伸倍率加以橫向延伸’以製造纖維素醋酸酯薄膜( -172- 200535465 厚度:8 0微米)。對於所製得之纖維素醋酸酯薄膜(相位 差膜R - 1)使用橢圓計(M-150、日本分光(股)公司製 )測定其在63 3奈米波長之Re延遲値及Rth延遲値。其結 果展示於表1。 (相位差膜R - 2之製造) 將1 6質量份之如下所示之延遲控制劑(2 )、87質量份 之二氯甲烷、及13質量份之甲醇進料至混合槽中,邊加熱 邊攪拌,以調製延遲控制劑(2 )溶液。 在474質量份之纖維素醋酸酯溶液A混合36質量份之 上述延遲控制劑(2 )溶液,充分攪拌以調製塗佈液。延遲 控制劑(2 )之添加量相對於1 00質量份之纖維素醋酸酯爲 5.0質量份。The obtained coating solution was cast using a belt caster. A cellulose acetate film (-172- 200535465 thickness: 8) was produced by stretching a film with a residual solvent amount of 15% by mass at a temperature of 130 ° C using a tenter at a stretching rate of 30%. 0 microns). With respect to the obtained cellulose acetate film (phase retardation film R-1), an Ellipsometer (M-150, manufactured by JASCO Corporation) was used to measure the Re retardation and Rth retardation at 63 3 nm. . The results are shown in Table 1. (Production of retardation film R-2) 16 parts by mass of the retardation control agent (2) shown below, 87 parts by mass of dichloromethane, and 13 parts by mass of methanol were fed into a mixing tank, and heated While stirring, a solution of the delay control agent (2) is prepared. 36 parts by mass of the solution of the above-mentioned retardation control agent (2) was mixed with 474 parts by mass of the cellulose acetate solution A, and sufficiently stirred to prepare a coating solution. The amount of the retardation control agent (2) added was 5.0 parts by mass based on 100 parts by mass of cellulose acetate.
除將延伸倍率設定爲28%並將膜厚設定爲82微米以外, 其餘則與相位差膜R - 1相同方式製得經橫向延伸之纖維素 醋酸酯薄膜。對於所製得之纖維素醋酸酯薄膜(相位差膜 R - 2 ),與相位差膜R - 1相同方式評估其Re延遲値及 Rth延遲値。其結果展示於表1。 (相位差膜R - 3之製造) 將如下所述之添加溶液組成之各成份進料至混合槽中, 邊加熱邊攪拌使各成份溶解,以調製在延遲調整劑更進一 -173- 200535465 步含有添加劑之添加液。 (添加溶液組成) 延遲控制劑(1) 16質量份 偏苯三酸三甲酯 1質量份 二氯甲烷(第一溶劑) 87質量份 甲醇(第二溶劑) 13質量份 在474質量份之纖維素醋酸酯溶液A混合44質量份之 上述添加溶液,充分攪拌以調製塗佈液。延遲控制劑(1 ) 之添加量相對於100質量份之纖維素醋酸酯爲6.0質量份 與相位差膜R - 1相同方式製造經加以橫向延伸之纖維 素醋酸酯薄膜。對於纖維素醋酸酯薄膜(相位差膜R - 3 ) ,與相位差膜R - 1相同方式評估其Re延遲値及Rth延遲 値。其結果展示於表1。 (相位差膜R - 4之製造) 將1 6質量份之如下所示之延遲控制劑(3 )、87質量份 之二氯甲烷、及13質量份之甲醇進料至混合槽中,邊加熱 邊攪拌,以調製延遲控制劑(3 )溶液。 在474質量份之纖維素醋酸酯溶液A混合30質量份之 上述延遲控制劑(3 )溶液,充分攪拌以調製塗佈液。延遲 調整劑之添加量相對於1〇〇質量份之纖維素醋酸酯爲4.2 質量份。 延遲控制劑(3 ) -174- 200535465Except that the stretching ratio was set to 28% and the film thickness was set to 82 micrometers, the cellulose acetate film having a lateral stretching was produced in the same manner as the retardation film R-1. Regarding the produced cellulose acetate film (retardation film R-2), the Re retardation 値 and Rth retardation 评估 were evaluated in the same manner as in the retardation film R-1. The results are shown in Table 1. (Manufacturing of retardation film R-3) Feed each component composed of the added solution as described below into the mixing tank, and stir while heating to dissolve each component to adjust the retarder. -173- 200535465 Step Additives containing additives. (Additional solution composition) Delay control agent (1) 16 parts by mass of trimethyl trimellitate 1 part by mass dichloromethane (first solvent) 87 parts by mass methanol (second solvent) 13 parts by mass of 474 parts by mass of fiber The acetic acid acetate solution A was mixed with 44 parts by mass of the above-mentioned addition solution, and sufficiently stirred to prepare a coating liquid. The addition amount of the retardation control agent (1) was 6.0 parts by mass based on 100 parts by mass of cellulose acetate. In the same manner as the retardation film R-1, a cellulose acetate film stretched laterally was produced. For the cellulose acetate film (retardation film R-3), the Re retardation 値 and Rth retardation 评估 were evaluated in the same manner as the retardation film R-1. The results are shown in Table 1. (Production of retardation film R-4) 16 parts by mass of a retardation control agent (3) shown below, 87 parts by mass of dichloromethane, and 13 parts by mass of methanol were fed into a mixing tank and heated while While stirring, a solution of the delay control agent (3) is prepared. 30 parts by mass of the above-mentioned solution of the retardation control agent (3) was mixed with 474 parts by mass of the cellulose acetate solution A, and sufficiently stirred to prepare a coating solution. The amount of the retardation modifier added was 4.2 parts by mass based on 100 parts by mass of cellulose acetate. Delay control agent (3) -174- 200535465
och3 經流延在帶上且在殘留溶劑量爲32%時加以剝取後,以 拉幅延伸機加以橫向延伸。延伸倍率爲1 5%,延伸溫度爲 110°C。其後以130°c之溫風使其乾燥,以製得纖維素醋酸 酯薄膜。乾燥後之薄膜膜厚爲96微米。對於所製得之纖維 素醋酸酯薄膜(相位差膜R - 4 ),與相位差膜R - 1相同 方式評估其Re延遲値及Rth延遲値。其結果展示於表1。 (相位差膜R - 5之製造) 除將纖維素醋酸酯溶液A直接用作爲塗佈液,將膜厚設 定爲80微米且並未實施延伸處理以外,其餘則與相位差膜 R - 1相同方式製造纖維素醋酸酯薄膜(相位差膜R - 5 ) 並加以評估。其結果展示於表1。 (硬質塗層用塗佈液A之調製) 將如下所述之組成物進料至混合槽中,加以攪拌以調製 硬質塗層塗佈液A。 -175- 200535465 (硬質塗層用塗佈液A組成)och3 is cast on a belt and stripped when the residual solvent content is 32%, and then stretched laterally with a tenter stretcher. The elongation is 15% and the elongation temperature is 110 ° C. Thereafter, it was dried with warm air at 130 ° C to obtain a cellulose acetate film. The film thickness after drying was 96 microns. Regarding the obtained cellulose acetate film (retardation film R-4), the Re retardation th and Rth retardation 评估 were evaluated in the same manner as in the retardation film R-1. The results are shown in Table 1. (Production of retardation film R-5) The same as retardation film R-1, except that cellulose acetate solution A was directly used as a coating liquid, and the film thickness was set to 80 micrometers without extension treatment. The cellulose acetate film (retardation film R-5) was manufactured and evaluated. The results are shown in Table 1. (Preparation of coating solution A for hard coat layer) The composition described below was fed into a mixing tank and stirred to prepare a coating solution A for hard coat layer. -175- 200535465 (composition of coating liquid A for hard coating)
Desolite Z7404 (含氧化銷微粒之硬質塗層組成液: JSR (股)公司製) 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 31質量份 KBM-5103 (矽烷偶合劑:信越化學工業(股)公 司製) 10質量份 KE-P150 (1.5微米之二氧化矽顆粒:日本觸媒(股 )公司製) 8.9質量份 MXS-300 ( 3.0微米之交聯型PMMA顆粒:綜硏化 學(股)公司製) 3.4質量份 甲基乙基酮(MEK) 29質量份 甲基異丁基酮(MIBK) 13質量份 (硬質塗層用塗佈液B之調製) 將如下所述之組成物進料至混合槽中,加以攪拌以調製 硬質塗層塗佈液B。 (硬質塗層用塗佈液B組成)Desolite Z7404 (Hard coating composition solution containing oxidized pin particles: made by JSR Corporation) 100 parts by mass DPHA (UV hardening resin: manufactured by Nippon Kayaku Co., Ltd.) 31 parts by mass KBM-5103 (silane Coupling agent: Shin-Etsu Chemical Industry Co., Ltd. 10 parts by mass of KE-P150 (1.5 micron silica particles: made by Japan Catalysts Co., Ltd.) 8.9 parts by mass MXS-300 (3.0 micron cross-linked PMMA) Granules: manufactured by Sogo Chemical Co., Ltd.) 3.4 parts by mass of methyl ethyl ketone (MEK) 29 parts by mass of methyl isobutyl ketone (MIBK) 13 parts by mass (preparation of coating solution B for hard coating) The composition described below was fed into a mixing tank and stirred to prepare a hard coat coating liquid B. (Composition of coating liquid B for hard coating)
Desolite Z7404 (含氧化鉻微粒之硬質塗層組成液: JSR (股)公司製) 1100質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 31質量份 KBM-5103 (矽烷偶合劑:信越化學工業(股)公 司製) 10質量份 ΚΕ-Ρ150(1·5微米之二氧化矽顆粒:日本觸媒(股 )公司製) 4.3質量份 甲基乙基酮(MEK) 29質量份 甲基異丁基酮(MIBK) 13質量份 (二氧化鈦微粒分散液之調製) 二氧化鈦微粒係使用含有鈷且經使用氫氧化鋁與氫氧化 鉻施加表面處理之二氧化鈦微粒(MPT-129C、石原產業( -176- 200535465 股)公司製)。 在25 7.1克之該顆粒添加38.6克之如下所示之分散劑、 及704.3克之環己酮’並以Dynomill加以分散,以調製質 量平均粒徑爲7 0奈米之二氧化鈦分散液。 分散劑 CH3 CH3 —fCH2—~^CH2— 〇 C、OCH2CH=CH2 C〇〇H Mw=40000 (中折射率層用塗佈液之調製) ® 將如下所述之組成物進料至混合槽中,加以攪拌後’以 孔徑爲0.4微米之聚丙烯製濾網過濾,以調製中折射率層 用塗佈液。 (中折射率層用塗佈液組成) 二氧化鈦微粒分散液 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 66質量份 IrgaCure 907 (光聚合引發劑:Ciba-Geigy公司製) 3.5質量份 Kayacure-DETX (光增感劑:日本化藥(股)公司 製) 1.2質量份 甲基乙基酮(MEK) 543質量份 環己酮 2,1〇3質量份 (高折射率層用塗佈液之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲0.4微米之聚丙烯製濾網過濾,以調製高折射率層 用塗佈液。 (高折射率層用塗佈液組成) -177- 200535465 二氧化鈦微粒分散液 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 8.2質量份 IrgaCure 907 (光聚合引發劑·· Ciba-Geigy公司製) 0.68質量份 Kayacure-DETX (光增感劑:日本化藥(股)公司 製) 0.22質量份 甲基乙基酮(MEK) 78質量份 環己酮 243質量份 (溶膠液a之調製) 將120質量份之甲基乙基酮、100質量份之丙烯醯氧基 丙基三甲氧基矽烷(KBM-5103 (商品名),信越化學工業 公司製)、及3質量份之乙基乙醯醋酸二異丙氧基鋁添加 入配備有攪拌機和回流冷凝器之反應器中。然後,將30質 量份之離子交換水添加入,且讓所獲得之混合物在6(TC反 應4小時,然後冷卻至室溫,以獲得溶膠液a。質量平均 分子量爲1,800,且具有分子量爲1,000至20,000之成份 是在寡聚物或更大成份中佔有100%。而且,根據氣相層析 法之分析顯示完全無殘留之丙烯醯氧基丙基三甲氧基矽烷 〇 (全氟烯烴共聚物(1)之合成) 將40毫升之醋酸乙酯、14.7克之羥乙基乙烯基醚、及 0.55克之過氧化二月桂醯基進料至內部容積爲100毫升且 配備有攪拌機之不銹鋼製高壓釜中。將系統之內部除氣且 以氮氣沖洗。然後,進一步將25克之六氟丙烯(HFP)導 入高壓釜中,且將溫度升高至65 °C。當高壓釜內部之溫度 達到65°C時之壓力爲5.4 kg/cm2。讓反應持續進行8小時 200535465 ,同時維持該溫度,而當壓力達到3·2 kg/cm2時,停止加 熱且讓系統冷卻。當內部之溫度下降至室溫時,將未反應 之單體排出,且在打開高壓釜後,將反應液取出。將所獲 得反應液進料至大量過量之己烷中,藉由傾析法將溶劑移 除,且將所沉澱之聚合物取出。將此聚合物溶解於少量之 醋酸乙酯中,且藉由實施從己烷再沉澱兩次,將殘留單體 完全移除。在乾燥後,可獲得28克之聚合物。然後,將 20克之所獲得的聚合物溶解於100毫升之N,N—二甲基乙 醯胺,且在冰浴冷卻下,將1 1.4克之氯化丙烯酸逐滴添加 入後,將所獲得之溶液在室溫下攪拌1 〇小時。在添加醋酸 乙酯後,將反應液以水沖洗,將有機層萃取,然後加以濃 縮。將所獲得之聚合物以己烷再沉澱,可獲得1 9克之全氟 烯烴共聚物(1 )。所獲得聚合物之折射率爲1.421。 全氟烯烴共聚合物(1) 如-〒F七·fcH2-〒Η七。Desolite Z7404 (hard coating composition liquid containing chromium oxide particles: made by JSR Co., Ltd.) 1100 parts by mass DPHA (UV-curable resin: manufactured by Nippon Kayaku Co., Ltd.) 31 parts by mass KBM-5103 (silane coupling agent : Manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 10 parts by mass of KE-P150 (silicon dioxide particles of 1.5 micron: manufactured by Nippon Catalysts Co., Ltd.) 4.3 parts by mass of methyl ethyl ketone (MEK) 29 parts by mass 13 parts by mass of methyl isobutyl ketone (MIBK) (preparation of titanium dioxide fine particle dispersion) The titanium dioxide fine particles are titanium dioxide fine particles (MPT-129C, Ishihara Industries ( -176- 200535465 shares) company system). To 257.1 grams of these particles, 38.6 grams of a dispersant shown below and 704.3 grams of cyclohexanone 'were added and dispersed in a Dynomill to prepare a titanium dioxide dispersion having a mass average particle diameter of 70 nm. Dispersant CH3 CH3 —fCH2— ~ ^ CH2— 〇C, OCH2CH = CH2 C〇〇H Mw = 40000 (Preparation of coating solution for medium refractive index layer) ® Feed the composition as described below into the mixing tank After being stirred, it was filtered through a polypropylene filter having a pore diameter of 0.4 micrometers to prepare a coating solution for a medium refractive index layer. (Composition of coating solution for medium refractive index layer) 100 parts by mass of titanium dioxide fine particle dispersion DPHA (UV-curable resin: manufactured by Nippon Kayaku Co., Ltd.) 66 parts by mass of IrgaCure 907 (photopolymerization initiator: Ciba-Geigy (Manufactured by the company) 3.5 parts by mass Kayacure-DETX (photosensitizer: manufactured by Nippon Kayaku Co., Ltd.) 1.2 parts by mass methyl ethyl ketone (MEK) 543 parts by mass cyclohexanone 2,103 parts by mass (high Preparation of coating liquid for refractive index layer) The composition described below was fed into a mixing tank, stirred, and then filtered through a polypropylene filter with a pore diameter of 0.4 micrometers to prepare a coating for the high refractive index layer. liquid. (Composition of coating solution for high refractive index layer) -177- 200535465 100 parts by mass of titanium dioxide fine particle dispersion DPHA (UV-curable resin: manufactured by Nippon Kayaku Co., Ltd.) 8.2 parts by mass IrgaCure 907 (photopolymerization initiator ·· Ciba-Geigy Co., Ltd.) 0.68 parts by mass of Kayacure-DETX (photosensitizer: manufactured by Nippon Kayaku Co., Ltd.) 0.22 parts by mass of methyl ethyl ketone (MEK) 78 parts by mass of cyclohexanone 243 parts by mass ( Preparation of sol solution a) 120 parts by mass of methyl ethyl ketone, 100 parts by mass of propylene methoxypropyltrimethoxysilane (KBM-5103 (trade name), manufactured by Shin-Etsu Chemical Industry Co., Ltd.), and 3 parts by mass A portion of ethyl acetoacetate diisopropoxide was added to a reactor equipped with a stirrer and a reflux condenser. Then, 30 parts by mass of ion-exchanged water was added, and the obtained mixture was allowed to react at 60 ° C. for 4 hours, and then cooled to room temperature to obtain a sol a. The mass average molecular weight was 1,800 and had a molecular weight The composition of 1,000 to 20,000 accounts for 100% of the oligomer or larger. Furthermore, analysis by gas chromatography showed that there is no residual propylene glycoloxypropyltrimethoxysilane. Synthesis of fluoroolefin copolymer (1)) 40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether, and 0.55 g of dilauryl peroxide were fed to stainless steel with an internal volume of 100 ml and equipped with a stirrer Make an autoclave. The inside of the system is degassed and flushed with nitrogen. Then, 25 grams of hexafluoropropylene (HFP) is further introduced into the autoclave and the temperature is increased to 65 ° C. When the temperature inside the autoclave reaches The pressure at 65 ° C is 5.4 kg / cm2. Allow the reaction to continue for 8 hours 200535465 while maintaining the temperature, and when the pressure reaches 3 · 2 kg / cm2, stop heating and allow the system to cool. When the internal temperature drops to At room temperature, The unreacted monomer was discharged, and after the autoclave was opened, the reaction liquid was taken out. The obtained reaction liquid was fed into a large excess of hexane, the solvent was removed by decantation, and the precipitated The polymer was taken out. This polymer was dissolved in a small amount of ethyl acetate, and the residual monomer was completely removed by performing reprecipitation twice from hexane. After drying, 28 g of a polymer was obtained. Then, 20 g of the obtained polymer was dissolved in 100 ml of N, N-dimethylacetamidine, and 11.4 g of chlorinated acrylic acid was added dropwise under cooling in an ice bath, and the obtained solution was placed in Stir at room temperature for 10 hours. After adding ethyl acetate, rinse the reaction solution with water, extract the organic layer, and concentrate. Re-precipitate the obtained polymer with hexane to obtain 19 g of perfluoro The olefin copolymer (1). The refractive index of the obtained polymer is 1.421. The perfluoroolefin copolymer (1) is, for example, -〒FVII · fcH2-〒ΗVII.
〇Fo I II u「3 och2ch2〇cch=ch2 (50:50是代表莫耳比) (低折射率層用塗佈液A之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲1微米之聚丙烯製濾網過濾’以調製低折射率層用 塗佈液A。 -179- 200535465 (低折射率層用塗佈液A組成)〇Fo I II u "3 och2ch2 〇cch = ch2 (50:50 represents the molar ratio) (preparation of coating solution A for the low refractive index layer) The following composition was fed into a mixing tank, and After stirring, it was filtered through a polypropylene filter having a pore size of 1 micron to prepare a coating solution A for a low refractive index layer. -179- 200535465 (composed of a coating solution A for a low refractive index layer)
Obstar JN7228A (熱交聯性含氟聚合物組成液·· JSR (股)公司製) 100質量份 MEK-ST (二氧化矽分散物,平均粒徑爲15奈米: 曰產化學(股)公司製) 4.3質量份 粒徑與MEK-ST不同之產品(二氧化矽分散物,平 均粒徑爲45奈米:日產化學(股)公司製) 5.1質量份 溶膠液a 2.2質量份 甲基乙基酮(MEK) 15質量份 環己酮 3.6質量份 (低折射率層用塗佈液B之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲1微米之聚丙烯製濾網過濾,以調製低折射率層用 塗佈液B。 (低折射率層用塗佈液B之調製) _ DPHA(UV硬化性樹脂:日本化藥(股)公司製) 1.4克 全氟烯烴共聚物(1) 5.6克 中空二氧化矽微粒分散液(將中空二氧化矽CS-60 20.0 克 IPA (觸媒化成工業(製))以KBM-5103加以表 面改質之中空二氧化矽微粒分散液(二氧化矽之表 面改質率爲30 wt%、折射率爲l31、平均粒徑爲 60奈米、殻厚度爲10奈米、固體濃度爲18.2%) RMS-033 (反應性聚矽氧r^fest (股)公司製) 0.7克 Irgacure 907 (光聚合引發劑:ciba-Geigy公司製) 0.2克 溶膠液a ' — 6.2克 甲基乙基酮(MEK) ~~' 一 306.9 克 環己酮 9.0克 (抗反射膜A-01之製造) 200535465 將80微米厚度之纖維素三醋酸酯薄膜(TD8 0U、富士照 相軟片(股)公司製)以捲筒形態退捲以作爲支撐體,在 支撐體上使用具有線數爲135線/英寸、深度爲60微米凹 版圖案之5 0毫米直徑之微凹版輥與刮刀,以輸送速度爲 1 〇公尺/分鐘之條件下塗佈上述硬質塗層用塗佈液A,並在 60 °C乾燥1 50秒鐘後,再在氮氣清洗下使用1 60 W/cm之空 氣冷卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度 爲400 mW/cm2、照射量爲250 mJ/cm2之紫外線使塗佈層 硬化,以形成硬質塗層1,然後捲取。凹版輪轉印刷機之 轉數係加以調整成使得硬化後之硬質塗層厚度爲3.5微米 〇 用以構成硬質塗層1之含鉻微粒之黏結劑、1.5微米之二 氧化矽微粒、3.0微米之PMMA顆粒之折射率係分別爲 1.62、1.44、1.49。 再將塗佈上述硬質塗層1之支撐體退捲,使用具有線數 爲2 00線/英寸、深度爲30微米凹版圖案之50毫米直徑之 微凹版輥與刮刀,以輸送速度爲1 〇公尺/分鐘之條件下塗 佈上述低折射率層用塗佈液A,並在120°C乾燥15〇秒鐘後 ,再在140°C乾燥8分鐘後,在氮氣清洗下使用240 W/cm 之空氣冷卻式金屬鹵化物燈(Eye Graphics (股)公司製) 照度爲400 mW/cm2、照射量爲900 mJ/cm2之紫外線,以 形成低折射率層1,然後捲取。凹版輪轉印刷機之轉數係 加以調整成使得硬化後之硬質塗層厚度爲1 〇〇奈米。 (抗反射膜A - 02至05之製造) -181- 200535465 除將硬質塗層用塗佈液A之ΚΕ-Ρ150(1·5微米之二氧 化矽顆粒)之添加量分別變更爲7.0質量份、4·6質量份、 2.1質量份和0質量份(未添加)以形成硬質塗層2、3、4 和5以外,其餘則與抗反射膜A - 01相同方式分別製得抗 反射膜 A - 02、A - 03、A - 04 和 A - 05。 (抗反射膜A - 06至08之製造) 除將硬質塗層用塗佈液A之ΚΕ-Ρ150(1·5微米之二氧 化砂顆粒)之添加量變更爲4.6質量份,並以硬質塗層之 厚度分別爲3.2微米、3·0微米和2.7微米之方式形成硬質 塗層6、7和8以外,其餘則與抗反射膜A - 01相同方式 分別製得抗反射膜A - 06、A - 07和A - 08。 (抗反射膜A - 09之製造) 除使用硬質塗層用塗佈液B來形成硬質塗層9以外,其 餘則與抗反射膜A - 0 1相同方式製得抗反射膜A - 09。 用以構成硬質塗層9之含銷微粒之黏結劑、1 .5微米之二 氧化矽顆粒之折射率則分別爲1.62、1.44。 (抗反射膜A - 1 0、1 1之製造) 除將硬質塗層用塗佈液B之KE-P 150 ( 1.5微米之二氧化 矽顆粒)之添加量分別變更爲2.0質量份和0質量份(未 添加)以形成硬質塗層1 〇和Π以外,其餘則與抗反射膜 A - 0 1相同方式分別製得抗反射膜A - 1 0和A - 1 1。 (抗反射膜A - 12、13之製造)Obstar JN7228A (Heat-crosslinkable fluoropolymer composition liquid ·· Made by JSR Co., Ltd.) 100 parts by mass of MEK-ST (silica dioxide dispersion, average particle size is 15 nm: Sosan Chemical Co., Ltd. (Manufactured) 4.3 parts by mass of products with a particle size different from MEK-ST (silica dioxide dispersion, average particle size is 45 nm: manufactured by Nissan Chemical Co., Ltd.) 5.1 parts by mass of sol a 2.2 parts by mass of methyl ethyl Ketone (MEK) 15 parts by mass of cyclohexanone 3.6 parts by mass (preparation of the coating solution B for the low refractive index layer) The composition described below was fed into a mixing tank, and after stirring, the pore size was 1 micron. Filtered with a polypropylene filter to prepare a coating solution B for a low refractive index layer. (Preparation of coating solution B for low refractive index layer) _ DPHA (UV-curable resin: manufactured by Nippon Kayaku Co., Ltd.) 1.4 g of perfluoroolefin copolymer (1) 5.6 g of hollow silica particle dispersion ( Hollow silicon dioxide CS-60 20.0 g of IPA (catalyst chemical industry (manufactured)) surface modified with KBM-5103 hollow silicon dioxide fine particle dispersion (surface modification rate of silicon dioxide is 30 wt%, Refractive index is l31, average particle size is 60 nm, shell thickness is 10 nm, solid concentration is 18.2%) RMS-033 (reactive polysilicon r ^ fest (stock) company) 0.7 g Irgacure 907 (light Polymerization initiator: ciba-Geigy company) 0.2 g of sol a '-6.2 g of methyl ethyl ketone (MEK) ~~'-306.9 g of cyclohexanone 9.0 g (manufactured by antireflection film A-01) 200535465 will Cellulose triacetate film (TD8 0U, manufactured by Fuji Photographic Film Co., Ltd.) with a thickness of 80 micrometers is unrolled in a roll form as a support, and the support has a line number of 135 lines / inch and a depth of 60 micron gravure pattern of 50 mm diameter micro gravure rollers and doctor blades, at conveying speed The coating solution A for the hard coating layer was applied under the condition of 10 m / min, and dried at 60 ° C for 150 seconds, and then air-cooled metal was used at a temperature of 1 60 W / cm under a nitrogen purge. A halide lamp (manufactured by Eye Graphics Co., Ltd.) irradiates ultraviolet rays at an intensity of 400 mW / cm2 and an irradiation amount of 250 mJ / cm2 to harden the coating layer to form a hard coating layer 1 and then winds it up. The number of revolutions is adjusted so that the thickness of the hard coating after hardening is 3.5 micrometers. The refractive index system of chromium-containing microparticles used to form hard coating 1, 1.5 micrometers of silicon dioxide microparticles, and 3.0 micrometers of PMMA particles. Respectively 1.62, 1.44, and 1.49. Then unroll the support coated with the hard coating 1 above, and use a 50 mm diameter micro gravure roll and doctor blade with a line number of 200 lines / inch and a depth of 30 micrometers. The coating solution A for the low refractive index layer was coated at a conveying speed of 10 m / min, and dried at 120 ° C for 15 seconds, and then dried at 140 ° C for 8 minutes. Air-cooled metal halide lamp (Eye Grap, 240 W / cm under nitrogen purge) (made by Hics Co., Ltd.) UV rays with an illuminance of 400 mW / cm2 and an irradiation volume of 900 mJ / cm2 to form a low refractive index layer 1 and then taken up. The rotation number of the gravure rotary printing machine is adjusted so that after curing The thickness of the hard coating layer is 100 nm. (Manufactured by the antireflection film A-02 to 05) -181- 200535465 In addition to the KE-P150 (1.5 micron dioxide) The amount of silicon particles) was changed to 7.0 parts by mass, 4.6 parts by mass, 2.1 parts by mass, and 0 parts by mass (not added) to form hard coating layers 2, 3, 4, and 5, except for the anti-reflection film. A-01 was prepared in the same manner as antireflection films A-02, A-03, A-04, and A-05. (Production of anti-reflection film A-06 to 08) Except changing the addition amount of KE-P150 (1.5 micron sand dioxide particles) for coating solution A for hard coatings to 4.6 parts by mass, and coating with hard coating The thicknesses of the layers were 3.2 μm, 3.0 μm, and 2.7 μm. The hard coatings 6, 7, and 8 were formed, and the rest were made in the same manner as the anti-reflection film A-01. -07 and A-08. (Manufacture of antireflection film A-09) Except that the hardcoat layer 9 was formed using the coating liquid B for a hardcoat layer, the antireflection film A-09 was produced in the same manner as the antireflection film A-01. The refractive index of the pin particle-containing adhesive used to form the hard coating layer 9 and the silica particles of 1.5 micrometers have a refractive index of 1.62 and 1.44, respectively. (Production of antireflection film A-10, 1 1) Except for changing the addition amount of KE-P 150 (1.5 micron silica particles) for coating solution B for hard coating to 2.0 parts by mass and 0 part by mass, respectively Parts (not added) to form the hard coat layers 10 and Π, and the rest were made in the same manner as the anti-reflection film A-0 1 to obtain anti-reflection films A-1 0 and A-1 1 respectively. (Manufacture of anti-reflection film A-12, 13)
除在硬質塗層3、9之上使用上述低折射率層用塗佈液B 來形成低折射率層2以外,其餘則與抗反射膜A - 03和A 200535465 -0 9相同方式分別製得抗反射膜A - 1 2和A - 1 3。 (抗反射膜A - 1 4之製造) 與抗反射膜A - 09相同方式僅形成硬質塗層9,並將未 形成低折射率層之薄膜作爲抗反射膜A - 1 4。 (抗反射膜A - 15之製造) 將厚度爲80微米之纖維素三醋酸酯薄膜(TD80U、富士 照相軟片(股)公司製)以捲筒形態加以退捲以作爲支撐 體,在支撐體上使用凹版輪轉印刷機塗佈硬質塗層用塗佈 液B。在l〇〇°C乾燥後,在氧氣濃度爲1.0體積%以下的大 氣之方式以氮氣清洗,同時使用160 W/cm之空氣冷卻式金 屬鹵化物燈(Eye Graphics (股)公司製)照度爲 400 mW/cm2、照射量爲3 00 mJ/cm2之紫外線以使塗佈層硬化, 以形成厚度爲3.5微米之硬質塗層12。 使用凹版輪轉印刷機在硬質塗層1 2之上面塗佈中折射率 層用塗佈液。在100°C乾燥後,在氧氣濃度爲1.0體積%以 下的大氣之方式以氮氣清洗,同時使用240 W/cm之空氣冷 卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 5S0 mW/cm2、照射量爲600 mJ/cm2之紫外線以使塗佈層硬 化’以形成中折射率層(折射率爲1.65、膜厚爲67奈米) 〇 使用凹版輪轉印刷機在中折射率層之上面塗佈高折射率 層用塗佈液。在100°c乾燥後,在氧氣濃度爲1.0體積%以 下的大氣之方式以氮氣清洗,同時使用240 W/cm之空氣冷 卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 200535465 5 5 0 m W / c m2、照射量爲6 0 0 m J7 c m2之紫外線以使塗佈層硬 化,以形成高折射率層(折射率爲1 · 9 3、膜厚爲1 〇 7奈米 )° 使用凹版輪轉印刷機在高折射率層之上面塗佈低折射率 層用塗佈液Α。在8 0 °C乾燥後,在氧氣濃度爲1 . 〇體積% 以下的大氣之方式以氮氣清洗,同時使用160 W/cm之空氣 冷卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 5 5 0 m W / c m2、照射量爲6 0 0 m J / c m2之紫外線以使塗佈層硬 化,以形成低折射率層3 (折射率爲1.43、膜厚爲86奈米 )。以此等方式在硬質塗層上形成抗反射層3,以製得抗 反射膜A - 15。 (抗反射膜及相位差膜之鹼化處理) 調製1.5 mol/l之氫氧化鈉水溶液並保溫於55°C。調製 0.00 5 mo 1/1之稀硫酸水溶液並保溫於35 °C。將所製得之抗 反射膜及相位差膜浸漬於上述氫氧化鈉水溶液2分鐘後, 浸漬於水以充分地洗除氫氧化鈉水溶液。然後,在上述稀 硫酸水溶液浸漬1分鐘後,浸漬於水以充分地洗除稀硫酸 水溶液。最後將試料在120°C充分地乾燥。 以此等方式製得鹼化處理完成之抗反射膜及相位差膜。 (偏光板之製造) 將碘吸附於經延伸之聚乙烯醇薄膜以製得偏光膜。在經 鹼化處理完成之抗反射膜A - 01至A - 15,使用聚乙烯醇 系黏著劑在偏光膜之單側貼附成抗反射膜之支撐體側(三 乙醯基纖維素)位於偏光膜側。另外,將經鹼化處理完成 -184- 200535465 之相位差膜R - 1至R - 5使用聚乙烯醇系黏著劑在偏光膜 之另一側貼附,使得相位差膜之遲相軸與偏光膜之透射軸 實質地成平行。以此等方式製得偏光板,將所製得之偏光 板全部展示於表1。 (抗反射膜、相位差膜及偏光板之評估) 就所製得之抗反射膜、相位差膜及偏光板評估如下所述 之項目。其結果展示於表1。 (1 ) Re、Rth 延遲 使用橢圓計(Μ-150、日本分光(股)公司製)測定 在波長爲63 3奈米之Re延遲値及Rth延遲値。其結 果展示於表1。 (2 ) 中心線平均粗糖度R a 抗反射膜之表面粗糙度係以原子力顯微鏡(AFM : Atomic Force Microscope、SPI3 8 00N,精工(Seiko )儀器(股)公司製)測定。 (3 ) 霧度 抗反射膜之霧度係以霧度計型號1001DP (日本電色 工業(股)公司製)測定。 (4 ) 透射影像鮮明度 抗反射膜之透射影像鮮明度係使用Suga試驗機(股 )公司製之繪圖式測定器(ICM-2D型)並以0.5毫 米之光學梳測定。 (5 ) 積分反射率 將抗反射膜架設在分光光度計V-5 50 (日本分光( 200535465 股)公司製)之積分球,並在380至780奈米之波 長區域測定積分反射率,然後算出4 5 0至6 5 0奈米 之平均反射率以評估抗反射性。 (6 ) 黑色穩定性 剝下設置在使用VA型液晶胞的液晶顯示裝置(VL-1 5 3 0S、富士通(股)公司製)之視認側偏光板,並 將代替其之經以如上所述所製得之偏光板藉由黏著 劑貼附,使得抗反射膜側位於視認側且使偏光板之 透射軸與貼在製品之偏光板一致。然後,在1,000 ' lux之明室中使液晶顯示裝置處於黑色顯示狀態,並 由各種不同的視角以目視且以如下所述之基準進行 評估: A:呈十分的黑; B :稍微帶白色; C :呈弱的帶白色; D:呈強烈的帶白色。 (7) 測角光度計散射強度比。 使用自動變角光度計GP-5型(村上色彩技術硏究所 (股)製),且將抗反射膜配置成對入射光成垂直 ,以測定全方位角的散射光分佈。然後求出出射角 〇°之相對於光強度的出射角30°之散射光強度。 (8 ) 視野角 就經以上述黑色穩定性評估所製得之液晶顯示裝置 ,使用測定器(EZ-Contrast 160D、ELDIM公司製 200535465 ),由黑色顯示與白色顯示之測定,計算得對比1 〇 之視野角。Except for using the above-mentioned coating solution B for a low-refractive index layer on the hard coat layers 3 and 9 to form the low-refractive index layer 2, the rest were prepared in the same manner as the antireflection films A-03 and A 200535465-0. Antireflection films A-1 2 and A-1 3. (Manufacture of antireflection film A-14) In the same manner as in antireflection film A-09, only hard coating layer 9 was formed, and a thin film without a low refractive index layer was used as antireflection film A-14. (Manufacture of anti-reflection film A-15) A cellulose triacetate film (TD80U, manufactured by Fuji Photographic Film Co., Ltd.) having a thickness of 80 micrometers is unrolled in a roll form and used as a support on the support. The coating liquid B for a hard-coat layer was apply | coated using the gravure rotary printer. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm. The illuminance was 400 mW / cm2, and an irradiation amount of 300 mJ / cm2 of ultraviolet rays to harden the coating layer to form a hard coating layer 12 having a thickness of 3.5 micrometers. A coating liquid for a medium refractive index layer was applied on the hard coat layer 12 using a gravure rotary printer. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 240 W / cm. Illumination was 5S0 mW / cm2, with an ultraviolet ray of 600 mJ / cm2 to harden the coating layer to form a medium refractive index layer (refractive index 1.65, film thickness 67 nm) 〇 Use a gravure rotary printing machine on the middle refractive index layer A coating liquid for a high refractive index layer is applied on the upper surface. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 240 W / cm. Illumination was 200535465 5 50 m W / c m2, UV light of 600 m J7 c m2 to harden the coating layer to form a high refractive index layer (refractive index of 1. 9 3, film thickness of 107 nm ) ° A coating liquid A for a low-refractive-index layer is coated on the high-refractive-index layer using a gravure rotary printer. After drying at 80 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm. UV light of 5 50 m W / c m2, irradiation dose of 600 m J / c m2 to harden the coating layer to form a low refractive index layer 3 (refractive index of 1.43, film thickness of 86 nm) . In this manner, the anti-reflection layer 3 was formed on the hard coat layer to obtain an anti-reflection film A-15. (Alkaline treatment of anti-reflection film and retardation film) Prepare a 1.5 mol / l sodium hydroxide aqueous solution and keep it at 55 ° C. Prepare 0.00 5 mo 1/1 dilute sulfuric acid aqueous solution and keep at 35 ° C. The obtained antireflection film and retardation film were immersed in the above-mentioned sodium hydroxide aqueous solution for 2 minutes, and then immersed in water to sufficiently remove the sodium hydroxide aqueous solution. Then, after dipping the dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash the dilute sulfuric acid aqueous solution. Finally, the sample was sufficiently dried at 120 ° C. In this way, the anti-reflection film and the retardation film obtained by the alkali treatment are obtained. (Manufacture of polarizing plate) Iodine was adsorbed on the stretched polyvinyl alcohol film to obtain a polarizing film. On the anti-reflective films A-01 to A-15 that have been alkalized, a polyvinyl alcohol-based adhesive is used on one side of the polarizing film to form an anti-reflective film on the support side (triethylfluorenyl cellulose). Polarizing film side. In addition, the retardation films R-1 to R-5 that have been alkalized -184- 200535465 are adhered to the other side of the polarizing film using a polyvinyl alcohol-based adhesive, so that the retardation axis of the retardation film and polarized light The transmission axes of the film are substantially parallel. A polarizing plate was prepared in such a manner, and all of the obtained polarizing plates are shown in Table 1. (Evaluation of antireflection film, retardation film, and polarizing plate) The following items were evaluated for the antireflection film, retardation film, and polarizing plate produced. The results are shown in Table 1. (1) Re and Rth retardation The Re retardation and Rth retardation at a wavelength of 63 3 nm were measured using an ellipsimeter (M-150, manufactured by JASCO Corporation). The results are shown in Table 1. (2) The surface roughness of the center line average crude sugar R a anti-reflection film is measured with an atomic force microscope (AFM: Atomic Force Microscope, SPI3 800N, manufactured by Seiko Instruments Co., Ltd.). (3) Haze The haze of the anti-reflection film was measured with a haze meter model 1001DP (manufactured by Nippon Denshoku Industries Co., Ltd.). (4) Transmission image sharpness The transmission image sharpness of the anti-reflection film was measured using a drawing type measuring instrument (ICM-2D type) manufactured by Suga Tester Co., Ltd. with an optical comb of 0.5 mm. (5) Integral reflectance An anti-reflection film is set on an integrating sphere of a spectrophotometer V-5 50 (manufactured by JASCO Corporation (200535465 shares)), and the integral reflectance is measured in a wavelength region of 380 to 780 nm, and then calculated Average reflectance from 450 to 650 nanometers to evaluate anti-reflection. (6) Peel off the visible side polarizer installed on the liquid crystal display device (VL-1 5 3 0S, manufactured by Fujitsu Co., Ltd.) using a VA-type liquid crystal cell in black stability, and replace it with the one described above. The prepared polarizing plate is attached by an adhesive, so that the anti-reflection film side is located on the visual side and the transmission axis of the polarizing plate is consistent with the polarizing plate attached to the product. Then, the liquid crystal display device was placed in a black display state in a bright room of 1,000 'lux, and evaluated visually from various perspectives and based on the following criteria: A: Very black; B: Slightly white; C: Weak and whitish; D: Strong and whitish. (7) goniophotometer scattering intensity ratio. An automatic variable-angle photometer GP-5 (made by Murakami Color Technology Laboratories, Ltd.) was used, and the anti-reflection film was arranged perpendicular to the incident light to measure the scattered light distribution at all angles. Then, the scattered light intensity with an exit angle of 0 ° and an exit angle of 30 ° with respect to the light intensity was obtained. (8) The viewing angle is calculated from the black display and the white display using a measuring device (EZ-Contrast 160D, 200535465 manufactured by ELDIM) using the liquid crystal display device prepared by the above-mentioned black stability evaluation. Field of view.
-187- 200535465 丨SI —-187- 200535465 丨 SI —
撇I派 as m m m m 餾 m m m 餾 鎰 m 微 m 鎰 鎰 m m 鎰 餾 餾 鎰 餾 讲 件 讲 掩 λλ Ϊα 件 件 讲 J-3 ^LA jj 件 件 aA 件 柃 1λ 件 狀 ^ § Λ § Λ s Λ § Λ § Λ 78/44 ο g Λ § Λ Λ s Λ g Λ § Λ § Λ S Λ § Λ Λ g Λ § Λ 鼢 Μ i Λ s 〇 ο Ο 〇 Ο o S o Ο Ο o ο ο Ο ο oo OO OO 00 OO οο oo OO 00 00 00 00 οο 00 οο οο 左右 色調 變化 < c < < < < < CQ PQ c < c PQ U Q < < < C 黑色 穩定性 < < < < < < C PQ u Q < < C < Q < 積分 反射率 (%) Ο (N o r4 o (N ο CN ο (Ν ο (Ν ο (Ν o (N ο (Ν t-H (N <N (N (N CN ο CN ο (Ν o <N «ο ι-Η r-H 卜 m d 透射 影像 鮮明度 (%) 00 00 〇\ 00 CTn OO ON 00 Ό\ 00 ΟΝ 00 σ\ 00 字 ON (N VO Os OO On 00 a\ 〇\ 00 VO On Ό σ\ ν〇 On m t (N VO 艺 ΙΟ CN On »〇 (N (N CS r-^ CN (N m (Ν cn <N ife fei ^ 朱參ft! # 研·懸w g s -2 S S S s τ-Η s S S S T-H r-H o S S S S d d d d ο ο ο d Ο d d d d d d ο d ο d M Ra (微米) g g g S g S S g CN 1-H s s s g s S s o o d o ο ο ο o ο d d d d d d ο o ο d I ON m 〇\ cn 〇\ (N 〇\ m 00 r^H ο 〇\ m ON ΓΛ On m On m G\ m ON m OS m σ\ m ON ro m On m 〇· d d 〇 o ο Ο 2 d ο d d d d d o ο d ο Rth (奈米) in m r-1 ^T) cn r-H OO m r-H ο νο r-H 寸 in r-H m r-H W") CO CO r-H ro ro ro r*H ro m 1-Η m m CO t-H Re (奈米) m ^T) m 妄 m in CN ΙΟ ν〇 (Ν 寸 ro m yn m m rn wo m m 1/Ί m Γ〇 m m m gs r-H r-H f-H 1-Η r-H ▼-η τ-Η r-H t-H t-H (Ν CN 壊 m 1¾幽触5米 (¾鲴ft蕤 'w/ rn rn vn rn rn ^Τ) ro ΓΟ rn rn rn (N rn o rn 卜 CN rn ^T) rn rn ιη Γ〇 CO r〇 ro 硬質 塗層 r-H (N m ro m m m 寸 m VO 卜 00 Os O T»H ro Os On 2 抗反射膜 /相位差膜 (N 1 (N 1 1 (N 1 P< m I 寸 1 wn 1 P< <N 1 (N 1 (N 1 fvj 1 <N 1 (N 1 P< <N 1 <N 1 P4 (Ν I <N 1 (N 1 CN 1 P< o s s S s 、 S s 寸 〇 s o 〇 Os 〇 o r-H 〜 m V-H r-H T-H < < < < < < < <: <: <: < < <: < < < < < < 。「(V 燦埕劍)_#&&迴/issfsfew/i?ifte!fe*fr」幽»这后驅1|*筚「e」旮囅「i?®l^^/i?ifs!fcg}」w _________________ 。长«嵌 ci?iis®^^。^寸濉 ®s鰥《/®4ς®ίι 鰥 * OIAIIqq 菰3筚疵鼢膣:ϋ_ 200535465 由表1所示之結果即得知如下所述之功效。藉由組合Re 延遲値爲從20至70奈米、Rth延遲値爲從70至400奈米 、且Re/Rth比爲0.2至0.4之相位差膜,與具有擁有內部 散射性的硬質塗層、且Ra爲0.10微米以下之抗反射膜所 製得之偏光板,當使用於VA模式液晶顯示裝置時,其關 於對比、色調變化的視野角特性、抗反射性、以黑色穩定 性所代表之在明室之視認性,則已獲得極高水準之改良。 並且,在低折射率層使用中空二氧化矽微粒,且又積層如 中/高/低折射率層等之多層光干渉層,結果即可顯現極優 良的抗反射性。 〈第二方式之實施例〉 (硬質塗層用塗佈液A之調製) 將如下所述之組成物進料至混合槽中,加以攪拌以調製 硬質塗層塗佈液A。 (硬質塗層用塗佈液A組成)Skip I as mmmm distillate mmmm distillate 镒 m microm 镒 镒 mm 镒 镒 镒 讲 讲 讲 讲 λ 件 件 α 讲 讲 -3 -3 -3 件 j j 状 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 件 λ λ λ § Λ § Λ 78/44 ο g Λ § Λ Λ s Λ g Λ § Λ § Λ S Λ § Λ Λ g Λ § Λ iΜ i Λ s 〇ο Ο 〇〇 o S o Ο Ο o ο ο ο Ο ο oo OO OO 00 OO οο oo OO 00 00 00 00 οο 00 οο οο left and right hue changes < c < < < < < CQ PQ c < c PQ UQ < < < C black stability < < < < < < C PQ u Q < < C < Q < integrated reflectance (%) 〇 (N o r4 o (N ο CN ο (Ν ο (Ν ο ( Ν o (N ο (Ν tH (N < N (N (N CN ο CN ο (Ν o < N «ο ι-Η rH md md transmission image sharpness (%) 00 00 〇 \ 00 CTn OO ON 00 Ό \ 00 ΟΝ 00 σ \ 00 Word ON (N VO Os OO On 00 a \ 〇 \ 00 VO On σ σ \ ν〇 On mt (N VO 艺 ΙΟ CN On »〇 (N (N CS r- ^ CN (N m (Ν cn < N ife fei ^ 朱 参 ft! # 研 · suspend wgs -2 SSS s τ- s SSS TH rH o SSSS dddd ο ο ο d Ο dddddd ο d ο d M Ra (micron) ggg S g SS g CN 1-H sssgs S soodo ο ο ο o ο dddddd ο o ο d I ON m 〇 \ cn 〇 \ (N 〇 \ m 00 r ^ H ο 〇 \ m ON ΓΛ On m On m G \ m ON m OS m σ \ m ON ro m On m 〇 · dd 〇o ο 〇 2 d ο dddddo ο d ο Rth (nano) in m r-1 ^ T) cn rH OO m rH ο νο rH inch in rH m rH W ") CO CO rH ro ro ro r * H ro m 1-Η mm CO tH Re (nano ) M ^ T) m mm in CN ΙΟ ν〇 (Ν inch ro m yn mm rn wo mm 1 / Ί m Γ〇mmm gs rH rH fH 1-Η rH ▼ -η τ-Η rH tH tH (Ν CN壊 m 1¾ 5 meters (¾ 鲴 ft 蕤 'w / rn rn vn rn rn ^ Τ) ro ΓΟ rn rn rn (N rn o rn cn CN rn ^ T) rn rn ιη Γ〇CO r〇ro Hard coating Layer rH (N m ro mmm inch m VO bu 00 Os OT »H ro Os On 2 anti-reflection film / retardation film (N 1 (N 1 1 (N 1 P < m I inch 1 wn 1 P < N 1 (N 1 (N 1 fvj 1 < N 1 (N 1 P < < N 1 < N 1 P4 (N I < N 1 (N 1 CN 1 P < oss S s, S s inch 〇so 〇Os 〇o rH ~ m VH rH TH < < < < < < < < : ≪: <: < < <: < < < < < <. 「(V 埕 埕 剑) _ # & & return / issfsfew / i? Ifte! Fe * fr」 You »This drive 1 | * 筚「 e 」旮 冁「 i? ®l ^^ / i? Ifs ! fcg} ”w _________________. Long «embedded ci? Iis® ^^. ^ Inch 濉 ®s 鳏 《/ ®4ς®ίι 鳏 * OIAIIqq 菰 3 菰 筚: ϋ_ 200535465 From the results shown in Table 1, we know the effects described below. By combining a retardation film of Re retardation (from 20 to 70 nm, Rth retardation) from 70 to 400 nm, and a Re / Rth ratio of 0.2 to 0.4, and a hard coating layer having internal scattering properties, In addition, when a polarizing plate made of an anti-reflection film having a Ra of 0.10 micrometers or less is used in a VA mode liquid crystal display device, its contrast angle, viewing angle characteristics of color change, anti-reflection, and black stability are represented The recognition of the bright room has been improved to a very high level. In addition, when hollow silica particles are used for the low refractive index layer, and a plurality of light-dried layers such as a medium / high / low refractive index layer are laminated, as a result, excellent antireflection properties can be developed. <Example of the second aspect> (Preparation of coating solution A for hard coating layer) The composition described below was fed into a mixing tank and stirred to prepare a coating solution A for hard coating layer. (Composition of coating liquid A for hard coating)
Desolite Z7404 (含氧化鍩微粒之硬質塗層組成液: JSR (股)公司製) 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 31質量份 KBM-5103 (矽烷偶合劑:信越化學工業(股)公 司製) 1〇質量份 KE-P150 (1.5微米之二氧化矽顆粒:日本觸媒(股 )公司製) 8.5質量份 甲基乙基酮(MEK) 29質量份 甲基異丁基酮(MIBK) 13質量份 (硬質塗層用塗佈液B之調製) 將如下所述之組成物進料至混合槽中,加以攪拌以調製 -189- 200535465 硬質塗層塗佈液B。 (硬質塗層用塗佈液B組成)Desolite Z7404 (hard coating composition containing hafnium oxide particles: made by JSR Corporation) 100 parts by mass DPHA (UV-curable resin: manufactured by Nippon Kayaku Co., Ltd.) 31 parts by mass KBM-5103 (silane Coupling agent: Shin-Etsu Chemical Industry Co., Ltd.) 10 parts by mass of KE-P150 (1.5 micron silica particles: manufactured by Japan Catalysts Co., Ltd.) 8.5 parts by mass methyl ethyl ketone (MEK) 29 parts by mass 13 parts by mass of methyl isobutyl ketone (MIBK) (preparation of coating solution B for hard coating) The composition described below was fed into a mixing tank and stirred to prepare -189- 200535465 hard coating Coating liquid B. (Composition of coating liquid B for hard coating)
Desolite Z7404 (含氧化锆微粒之硬質塗層組成液: JSR (股)公司製) 1〇〇質量份 DPHA(UV硬化性樹脂··日本化藥(股)公司製) 31質量份 KBM-5103 (矽烷偶合劑:信越化學工業(股)公 司製) 10質量份 ΚΕ-Ρ150(1·5微米之二氧化矽顆粒:日本觸媒(股 )公司製) 8.9質量份 MXS-300 ( 3.0微米之交聯型ΡΜΜΑ顆粒:綜硏化 學(股)公司製) 3.4質量份 甲基乙基酮(ΜΕΚ) 29質量份 甲基異丁基酮(ΜΙΒΚ) 13質量份 (硬質塗層用塗佈液C之調製) 除將KE-P 150 ( 1.5微米之二氧化矽顆粒··日本觸媒(股 )公司製)變更爲12質量份之MX-15 0 ( 1.5微米之交聯型 PMMA顆粒:綜硏(Soken)化學(股)公司製)以外,其 餘則與硬質塗層用塗佈液B相同方式製得硬質塗層用塗佈 液C。 (硬質塗層用塗佈液D之調製) 將如下所述之組成物進料至混合槽中,加以攪拌以調製 硬質塗層塗佈液D。 -190- 200535465 (硬質塗層用塗佈液D組成)Desolite Z7404 (hard coating composition liquid containing zirconia fine particles: manufactured by JSR Co., Ltd.) 100 parts by mass of DPHA (UV-curable resin · Nippon Kayaku Co., Ltd.) 31 parts by mass of KBM-5103 ( Silane coupling agent: Shin-Etsu Chemical Industry Co., Ltd. 10 parts by mass of KE-P150 (1.5 micron silicon dioxide particles: manufactured by Japan Catalysts Co., Ltd.) 8.9 parts by mass of MXS-300 (crossed by 3.0 micron) Multi-type PMMA particles: manufactured by Shokai Chemical Co., Ltd. 3.4 parts by mass of methyl ethyl ketone (ΜΕΚ) 29 parts by mass of methyl isobutyl ketone (ΜΙΒΚ) 13 parts by mass (for coating solution C for hard coatings (Modulation) In addition to changing KE-P 150 (1.5 micron silica particles ·· made by Japan Catalysts Co., Ltd.) to 12 parts by mass of MX-15 0 (1.5 micron crosslinked PMMA particles: Synthetic ( Except for Soken), a coating liquid C for a hard coat layer was prepared in the same manner as the coating liquid B for a hard coat layer. (Preparation of coating liquid D for hard coat layer) A composition described below was fed into a mixing tank and stirred to prepare a coating liquid D for hard coat layer. -190- 200535465 (composition of coating solution D for hard coating)
Desolite Z7404 (含氧化鉻微粒之硬質塗層組成液: JSR (股)公司製) 1〇〇質量份 DPHA(UV硬化性樹脂:日本化_ (股)公司製) 31質量份 KBM-5103 (矽烷偶合劑:信越化學工業(股)公 司製) 10質量份 甲基乙基酮(MEK) 29質量份 甲基異丁基酮(MIBK) 13質量份 (二氧化鈦微粒分散液之調製) 二氧化鈦微粒係使用含有鈷且經使用氫氧化鋁與氫氧化 锆施加表面處理之二氧化鈦微粒(MPT-129C、石原產業( 股)公司製)。 在25 7.1克之該顆粒添加38.6克之如下所示之分散劑、 及7 04.3克之環己酮並以Dynomill加以分散,以調製質量 平均粒徑爲70奈米之二氧化鈦分散液。 分散劑 CH3 ch3 ~^CH2—〒 -fCH2—Desolite Z7404 (hard coating composition liquid containing chromium oxide particles: JSR Corporation) 100 parts by mass of DPHA (UV-curable resin: Nippon Chemical Co., Ltd.) 31 parts by mass KBM-5103 (silane Coupling agent: manufactured by Shin-Etsu Chemical Industry Co., Ltd. 10 parts by mass of methyl ethyl ketone (MEK) 29 parts by mass of methyl isobutyl ketone (MIBK) 13 parts by mass (preparation of titanium dioxide fine particle dispersion) Use of titanium dioxide fine particles Titanium dioxide particles (MPT-129C, manufactured by Ishihara Industry Co., Ltd.) containing cobalt and surface-treated with aluminum hydroxide and zirconium hydroxide. 38.6 g of the dispersant shown below and 7 04.3 g of cyclohexanone were added to 25 7.1 g of the particles and dispersed in a Dynomill to prepare a titanium dioxide dispersion having a mass average particle size of 70 nm. Dispersant CH3 ch3 ~ ^ CH2—〒 -fCH2—
0=0 COOH OCH2CH=CH2 Mw=40000 (中折射率層用塗佈液之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲0.4微米之聚丙烯製濾網過濾,以調製中折射率層 用塗佈液。 -191- 200535465 (中折射率層用塗佈液組成) 二氧化鈦微粒分散液 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 66質量份 Irgacure 907 (光聚合引發劑:Ciba-Geigy公司製) 3.5質量份 Kayacure-DETX (光增感劑:日本化藥(股)公司 製) 1.2質量份 甲基乙基酮(MEK) 543質量份 環己酮 2,103質量份 (高折射率層用塗佈液之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲0.4微米之聚丙烯製濾網過濾,以調製高折射率層 用塗佈液。 (高折射率層用塗佈液組成) 二氧化鈦微粒分散液 1〇〇質量份 DPHA(UV硬化性樹脂:日本化藥(股)公司製) 8.2質量份 Irgacure 907 (光聚合引發劑:Ciba-Geigy公司製) 0.68質量份 Kayacure-DETX (光增感劑:日本化藥(股)公司 製) 0.22質量份 甲基乙基酮(MEK) 78質量份 環己酮 243質量份 (溶膠液a之調製) 將120質量份之甲基乙基酮、100質量份之丙烯醯氧基 丙基三甲氧基矽烷(KBM-5103 (商品名),信越化學工業 (股)公司製)、及3質量份之乙基乙醯醋酸二異丙氧基 鋁添加入配備有攪拌機和回流冷凝器之反應器中。然後, 將30質量份之離子交換水添加入,且讓所獲得之混合物在 6(TC反應4小時,然後冷卻至室溫,以獲得溶膠液a。質 200535465 量平均分子量爲1,800’且具有分子量爲1,000至20,000 之成份是在寡聚物或更大成份中佔有1 〇〇%。而且,根據氣 相層析法之分析顯示完全無殘留之丙烯醯氧基丙基三甲氧 基矽烷。 (低折射率層用塗佈液A之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲1微米之聚丙烯製濾網過濾,以調製低折射率層用 塗佈液A。 (低折射率層用塗佈液A組成)0 = 0 COOH OCH2CH = CH2 Mw = 40000 (Preparation of coating solution for medium refractive index layer) The composition described below was fed into a mixing tank, stirred, and then filtered with a polypropylene filter having a pore size of 0.4 microns. Screen filtration to prepare a coating solution for a medium refractive index layer. -191- 200535465 (Composition of coating solution for medium refractive index layer) 100 parts by mass of titanium dioxide fine particle dispersion DPHA (UV curable resin: manufactured by Nippon Kayaku Co., Ltd.) 66 parts by mass of Irgacure 907 (photopolymerization initiator) : Manufactured by Ciba-Geigy) 3.5 parts by mass Kayacure-DETX (photosensitizer: manufactured by Nippon Kayaku Co., Ltd.) 1.2 parts by mass methyl ethyl ketone (MEK) 543 parts by mass cyclohexanone 2,103 parts by mass (Preparation of coating solution for high-refractive index layer) The composition described below was fed into a mixing tank, stirred, and then filtered through a polypropylene filter with a pore diameter of 0.4 microns to prepare a high-refractive index layer. Coating liquid. (Composition of coating solution for high refractive index layer) 100 parts by mass of titanium dioxide fine particle dispersion DPHA (UV curable resin: manufactured by Nippon Kayaku Co., Ltd.) 8.2 parts by mass of Irgacure 907 (photopolymerization initiator: Ciba-Geigy 0.68 parts by mass of Kayacure-DETX (photosensitizer: manufactured by Nippon Kayaku Co., Ltd.) 0.22 parts by mass of methyl ethyl ketone (MEK) 78 parts by mass of cyclohexanone 243 parts by mass (preparation of sol a) ) 120 parts by mass of methyl ethyl ketone, 100 parts by mass of propylene methoxypropyltrimethoxysilane (KBM-5103 (trade name), manufactured by Shin-Etsu Chemical Industry Co., Ltd.), and 3 parts by mass Ethyl acetoacetate diisopropoxyaluminum was added to a reactor equipped with a stirrer and a reflux condenser. Then, 30 parts by mass of ion-exchanged water was added, and the obtained mixture was allowed to react at 60 ° C. for 4 hours, and then cooled to room temperature to obtain a sol a. The mass average molecular weight was 1,800 ′ and A component having a molecular weight of 1,000 to 20,000 accounts for 100% of an oligomer or larger. Further, analysis by gas chromatography showed that there is no residual propylene methoxypropyltrimethoxy group at all. Silane (Preparation of coating solution A for low-refractive index layer) The composition described below was fed into a mixing tank, stirred, and then filtered through a polypropylene filter with a pore size of 1 micron to adjust the low refractive index. Coating liquid A for the index layer (composition of the coating liquid A for the low refractive index layer)
Obstar JN7228A (熱交聯性含氟聚合物組成液:jSR (股)公司製) 100質量份 MEK-ST (二氧化矽分散物平均粒徑15奈米:曰 產化學(股)公司製) 4.3質量份 粒徑與MEK-ST不同之產品(二氧化矽分散物,平 均粒徑45奈米:日產化學(股)公司製) 5.1質量份 溶膠液a 2.2質量份 甲基乙基酮(MEK) 15質量份 環己酮 3.6質量份 (全氟烯烴共聚物(1)之合成) 將40毫升之醋酸乙酯、14.7克之羥乙基乙烯基醚、及 0.55克之過氧化二月桂醯基進料至內部容積爲100毫升且 配備有攪拌機之不銹鋼製高壓釜中。將系統之內部除氣且 以氮氣沖洗。然後,進一步將25克之六氟丙烯(HFP )導 入高壓釜中,且將溫度升高至65 °C。當高壓釜內部之溫度 達到65°C時之壓力爲5.4 kg/cm2。讓反應持續進行8小時 ,同時維持該溫度,而當壓力達到3.2 kg/cm2時,停止加 200535465Obstar JN7228A (heat-crosslinkable fluoropolymer composition liquid: jSR (KK) Co., Ltd.) 100 parts by mass of MEK-ST (average particle diameter of silica dispersion: 15 nm: manufactured by Sansen Chemical Co., Ltd.) Products with a particle size different from MEK-ST (silica dioxide dispersion, average particle size 45 nm: manufactured by Nissan Chemical Co., Ltd.) 5.1 parts by mass of sol solution a 2.2 parts by mass of methyl ethyl ketone (MEK) 15 parts by mass and 3.6 parts by mass of cyclohexanone (synthesis of perfluoroolefin copolymer (1)) 40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether, and 0.55 g of dilauroyl peroxide were fed to An autoclave made of stainless steel with an internal volume of 100 ml and equipped with a stirrer. Degas the inside of the system and flush with nitrogen. Then, 25 grams of hexafluoropropylene (HFP) was further introduced into the autoclave, and the temperature was raised to 65 ° C. When the temperature inside the autoclave reached 65 ° C, the pressure was 5.4 kg / cm2. The reaction was allowed to continue for 8 hours while maintaining the temperature, and when the pressure reached 3.2 kg / cm2, the addition was stopped. 200535465
熱且讓系統冷卻。當內部之溫度下降至室溫時,將未反應 之單體排出’且在打開高壓釜後,將反應液取出。將所獲 得反應液進料至大量過量之己烷中,藉由傾析法將溶劑移 除,且將所沉澱之聚合物取出。將此聚合物溶解於少量之 醋酸乙酯中,且藉由實施從己烷再沉澱兩次,將殘留單體 完全移除。在乾燥後,可獲得2 8克之聚合物。然後,將 20克之所獲得的聚合物溶解於100毫升之N,N —二甲基乙 醯胺,且在冰浴冷卻下,將11.4克之氯化丙烯酸逐滴添加 入後,將所獲得之溶液在室溫下攪拌1 0小時。在添加醋酸 乙酯後,將反應液以水沖洗,將有機層萃取,然後加以濃 縮。將所獲得之聚合物以己烷再沉澱,可獲得1 9克之全氟 烯烴共聚物(1)。所獲得聚合物之折射率爲1.421。 全氟烯烴共聚合物(1)Heat and let the system cool. When the internal temperature dropped to room temperature, unreacted monomer was discharged 'and after opening the autoclave, the reaction solution was taken out. The obtained reaction solution was fed into a large excess of hexane, the solvent was removed by decantation, and the precipitated polymer was taken out. This polymer was dissolved in a small amount of ethyl acetate, and the residual monomer was completely removed by performing reprecipitation twice from hexane. After drying, 28 g of polymer were obtained. Then, 20 g of the obtained polymer was dissolved in 100 ml of N, N-dimethylacetamide, and 11.4 g of chlorinated acrylic acid was added dropwise under cooling in an ice bath, and the obtained solution was Stir at room temperature for 10 hours. After ethyl acetate was added, the reaction solution was washed with water, the organic layer was extracted, and then concentrated. The obtained polymer was reprecipitated with hexane to obtain 19 g of a perfluoroolefin copolymer (1). The refractive index of the obtained polymer was 1.421. Perfluoroolefin copolymer (1)
cf3cf3
〇 II och2ch2occh=ch2〇 II och2ch2occh = ch2
(50:50是代表莫耳比) (低折射率層用塗佈液B之調製) 將如下所述之組成物進料至混合槽中,加以攪拌後,以 孔徑爲1微米之聚丙烯製濾網過濾,以調製低折射率層用 塗佈液B。 -194- 200535465 (低折射率層用塗佈液B組成) 全氟烯烴共聚物(1) 1〇〇質量份 X-22-164B (信越化學工業公司製) 2.0質量份 粒徑與MEK-ST不同之產品(二氧化矽分散物,平 均粒徑45奈米:日產化學公司製) 9.2質量份 溶膠液a 2.6質量份 Irgacure 907 (光聚合引發劑:Ciba-Geigy公司製) 5.0質量份 甲基乙基酮(MEK) 1,990質量份 環己酮 60質量份 (抗反射膜A - 01之製造) 將厚度爲80微米之纖維素三醋酸酯薄膜(TD80U、富士 照相軟片(股)公司製)以捲筒形態退捲以作爲支撐體, 在支撐體上使用具有線數爲135線/英寸、深度爲60微米 凹版圖案之50毫米直徑之微凹版輥與刮刀,在輸送速度爲 1 〇公尺/分鐘之條件下塗佈上述硬質塗層用塗佈液A,並在 60°C乾燥150秒鐘後,再在氮氣清洗下使用160 W/cm之空 氣冷卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度 爲400 mW/cm2、照射量爲250 mJ/cm2之紫外線使塗佈層 硬化,以形成硬質塗層1,然後捲取。凹版輪轉印刷機之 轉數係加以調整成使得硬化後之硬質塗層厚度爲3.5微米 〇 用以構成硬質塗層1所包含之含鉻微粒的黏結劑和1 .5 微米之二氧化矽微粒之折射率係分別爲1.62和1.44。 將經塗佈上述硬質塗層1之支撐體再度加以退捲,使用 具有線數爲200線/英寸、深度爲30微米凹版圖案之50毫 米直徑之微凹版輥與刮刀,在輸送速度爲10公尺/分鐘之 -195- 200535465 條件下塗佈上述低折射率層用塗佈液A,並在1 2 0 °C乾燥 15〇秒鐘後,再在140 °C乾燥8分鐘後,在氮氣清洗下使用 240 W/cm之空氣冷卻式金屬鹵化物燈(Eye Graphics (股 )公司製)照度爲400 mW/cm2、照射量爲900 mJ/cm2之 紫外線,以形成低折射率層1,然後捲取。凹版輪轉印刷 機之轉數係加以調整成使得硬化後之硬質塗層厚度爲1 〇〇 奈米。 (抗反射膜A - 02至05之製造) 除以硬質塗層用塗佈液B將硬質塗層2、3、4和5分別 形成爲各硬質塗層之厚度爲3.5微米、3.2微米、3.0微米 和2.7微米以外,其餘則與抗反射膜A - 01相同方式分別 製造抗反射膜A - 02、A - 03、A - 04和A - 05。 用以構成硬質塗層2至5所包含之含鉻微粒的黏結劑、 1.5微米之二氧化矽顆粒及3.0微米之PMMA顆粒之折射率 係分別爲1.62、1.44及1.49。 (抗反射膜A - 06至09之製造) 除以硬質塗層用塗佈液A並以能形成硬質塗層厚度分別 爲1.7微米、2.2微米、6.2微米和9.8微米之方式加以調 整微型凹版輥之線數及轉數,以分別形成硬質塗層6、7、 8和9,並且使用低折射率層用塗佈液B來形成低折射率層 2以外,其餘則與抗反射膜A - 01相同方式分別製造抗反 射膜 Α·06、A-07、A-08 和 A-09。 (抗反射膜A - 1 〇之製造) 除以硬質塗層用塗佈液C以能使硬質塗層厚度成爲3 · 5 -196 - 200535465 微米之方式形成硬質塗層1 0以外,其餘則與抗反射膜A -06相同方式製造抗反射膜A - 1〇。 用以構成硬質塗層1 0所包含之含鉻微粒的黏結劑、1 .5 微米之PMMA顆粒和3.0微米之PMMA顆粒之折射率係分 別爲 1.6 2、1 · 4 9 和 1 · 4 9。 (抗反射膜A - 11之製造) 除以硬質塗層用塗佈液D以能使硬質塗層厚度成爲3.5 微米之方式形成硬質塗層11以外,其餘則與抗反射膜A -06相同方式製造抗反射膜A - 11。 用以構成硬質塗層1 1所包含之含銷微粒的黏結劑之折射 率爲1 ..6 2。 (抗反射膜A - 12之製造) 在支撐體4上使用凹版輪轉印刷機塗佈硬質塗層用塗佈 液A。在100°C乾燥後,在氧氣濃度爲1.0體積%以下的大 氣之方式以氮氣清洗,同時使用160 W/cm之空氣冷卻式金 屬鹵化物燈(Eye Graphics (股)公司製)照度爲400 mW/cm2、照射量爲3 00 mJ/cm2之紫外線以使塗佈層硬化, 以形成厚度爲3.5微米之硬質塗層12。 使用凹版輪轉印刷機在硬質塗層1 2之上面塗佈中折射率 層用塗佈液。在l〇〇°C乾燥後,在氧氣濃度爲1.0體積%以 下的大氣之方式以氮氣清洗,同時使用240 W/cm之空氣冷 卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 5 5 0 mW/cm2、照射量爲600 mJ/cm2之紫外線以使塗佈層硬 化,以形成中折射率層(折射率爲1.65、膜厚爲67奈米) 200535465 使用凹版輪轉印刷機在中折射率層之上面塗佈高折射率 層用塗佈液。在l〇〇°C乾燥後,在氧氣濃度爲1.0體積%以 下的大氣之方式以氮氣清洗,同時使用240 W/cm之空氣冷 卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 5 5 0 mW/cm2、照射量爲600 mJ/cm2之紫外線以使塗佈層硬 化,以形成高折射率層(折射率爲1.93、膜厚爲107奈米 )° 使用凹版輪轉印刷機在高折射率層之上面塗佈低折射率 φ 層用塗佈液B。在80°C乾燥後,在氧氣濃度爲1.0體積% 以下的大氣之方式以氮氣清洗,同時使用160 W/cm之空氣 冷卻式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲 5 5 0 mW/cm2、照射量爲600 mJ/cm2之紫外線以使塗佈層硬 化,以形成低折射率層(折射率爲1.43、膜厚爲86奈米) 。以此等方式在硬質塗層上形成抗反射層3,以製得抗反 射膜A - 12。 (抗反射膜A-13之製造) 與抗反射膜A - 02相同方式僅形成硬質塗層2,並將未 形成低折射率層之薄膜作爲抗反射膜A - 1 3。 (抗反射膜之鹼化處理) 調製1.5 mol/l之氫氧化鈉水溶液並保溫於55°C,且調 製0.00 5 mol/1之稀硫酸水溶液並保溫於35°C。將所製得之 抗反射膜及相位差膜浸漬於上述氫氧化鈉水溶液2分鐘後 ,浸漬於水以充分地洗除氫氧化鈉水溶液。然後,在上述 -198 - 200535465 稀硫酸水溶液浸漬1分鐘後,浸漬於水以充分地洗除稀硫 酸水溶液。最後將試料在1 2 0 °C充分地乾燥。 以此等方式製得鹼化處理完成之抗反射膜。 (附抗反射膜之偏光板P A - 0 1至1 3之製造) 將碘吸附於經延伸之聚乙烯醇薄膜以製得偏光膜。在經 鹼化處理完成之抗反射膜A - 01至A - 13,使用聚乙烯醇 系黏著劑在偏光膜之單側貼附,使得抗反射膜之支撐體側 (三乙醯基纖維素)位於偏光膜側。另外,將具有光學補 償層之視野角擴大薄膜(Wide-View Super Ace、富士照相 φ 軟片公司製)加以鹼化處理,然後使用聚乙烯醇系黏著劑 貼附在偏光膜之另一側。該光學補償層係碟狀結構單元之 圓盤面係對薄膜面傾斜,且該碟狀結構單元之圓盤面與薄 膜面所形成之角度係在光學異方向層之深度方向變化者。 以此等方式製得偏光板P A - 0 1至1 3。 (抗反射膜及偏光板之評估) 就所製得之抗反射膜及偏光板評估如下所述之項目。其 結果展示於表1。 鲁 (1) 中心線平均粗糙度Ra 抗反射膜之表面粗糙度係以原子力顯微鏡(AFM :(50:50 represents the molar ratio) (Preparation of the coating solution B for the low refractive index layer) The composition described below was fed into a mixing tank, stirred, and then made of polypropylene with a pore size of 1 micron. The sieve is filtered to prepare a coating solution B for a low refractive index layer. -194- 200535465 (Composition of coating liquid B for low refractive index layer) Perfluoroolefin copolymer (1) 100 parts by mass X-22-164B (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 2.0 parts by mass particle size and MEK-ST Different products (silica dioxide dispersion, average particle size 45 nm: manufactured by Nissan Chemical Co., Ltd.) 9.2 parts by mass of sol solution a 2.6 parts by mass of Irgacure 907 (photopolymerization initiator: manufactured by Ciba-Geigy) 5.0 parts by mass of methyl Ethyl ketone (MEK) 1,990 parts by mass and 60 parts by mass of cyclohexanone (manufactured by antireflection film A-01) A cellulose triacetate film (TD80U, Fuji Photographic Film Co., Ltd.) with a thickness of 80 micrometers ) Unrolled in the form of a roll as a support, using a 50 mm diameter microgravure roller and a doctor blade with a number of lines of 135 lines / inch and a depth of 60 micron gravure pattern, at a conveying speed of 10 km Apply the coating solution A for hard coating under the condition of feet / minute, and dry it at 60 ° C for 150 seconds, and then use a 160 W / cm air-cooled metal halide lamp (Eye Graphics) under nitrogen purge. (Company) company) Illumination is 400 mW / cm2, exposure 250 mJ / cm2 of ultraviolet rays coating layer is hardened to form a hard coat layer, and then wound up. The number of revolutions of the gravure rotary printing machine is adjusted so that the thickness of the hard coating after hardening is 3.5 microns. It is used to form a binder containing chromium particles and 1.5 micron silicon dioxide particles contained in the hard coating layer 1. The refractive indices are 1.62 and 1.44, respectively. The support body coated with the hard coating layer 1 was unrolled again, and a 50 mm diameter micro gravure roller and a doctor blade with a line number of 200 lines / inch and a depth of 30 micrometers were used, and the conveying speed was 10 km. The above-mentioned coating solution A for low refractive index layer was applied under the conditions of -195-200535465 feet / min, and dried at 120 ° C for 15 seconds, and then dried at 140 ° C for 8 minutes, and then purged with nitrogen. An air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) was used at a wavelength of 240 m / cm2 and an ultraviolet ray of 400 mW / cm2 and 900 mJ / cm2 was irradiated to form a low refractive index layer 1, and then rolled take. The number of revolutions of the gravure rotary printing machine is adjusted so that the thickness of the hard coating after hardening is 1000 nm. (Manufacture of antireflection film A-02 to 05) Divide by coating solution B for hard coating to form hard coatings 2, 3, 4 and 5 to a thickness of 3.5 μm, 3.2 μm, 3.0 Except for micrometers and 2.7 micrometers, the rest are manufactured in the same manner as the antireflection film A-01, and the antireflection films A-02, A-03, A-04, and A-05 are manufactured separately. The refractive index of the binder containing chromium microparticles contained in the hard coating layers 2 to 5, the silica particles of 1.5 micrometers and the PMMA particles of 3.0 micrometers are 1.62, 1.44 and 1.49, respectively. (Manufacture of anti-reflection film A-06 to 09) Divide the coating solution A for hard coating and adjust the micro gravure roll so that the thickness of the hard coating can be 1.7 microns, 2.2 microns, 6.2 microns, and 9.8 microns The number of lines and the number of revolutions are used to form hard coating layers 6, 7, 8, and 9, respectively, and the coating liquid B for the low refractive index layer is used to form the low refractive index layer 2. The rest is related to the antireflection film A-01 The antireflection films A · 06, A-07, A-08, and A-09 were manufactured in the same manner. (Manufacture of antireflection film A-10) Except that the hard coating layer 10 is formed so that the thickness of the hard coating layer can be 3 · 5 -196-200535465 micron by the coating solution C for the hard coating layer, the rest are the same as The antireflection film A-06 was manufactured in the same manner as the antireflection film A-10. The refractive index of the binder containing chromium microparticles included in the hard coating layer 10, the PMMA particles of 1.5 micrometers and the PMMA particles of 3.0 micrometers are 1.6 2, 1 · 4 9 and 1 · 4 9 respectively. (Manufacture of antireflection film A-11) Except for forming hard coating layer 11 with coating liquid D for hard coating layer so that the thickness of the hard coating layer can be 3.5 micrometers, the rest is the same as that of antireflection film A-06. Manufacture of anti-reflection film A-11. The refractive index of the binder containing pin particles included in the hard coating layer 11 is 1. .62. (Production of antireflection film A-12) The support 4 was coated with a coating solution A for a hard coat using a gravure rotary press. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm, with an illumination of 400 mW / cm2, and an ultraviolet ray with an irradiation amount of 300 mJ / cm2 to harden the coating layer to form a hard coating layer 12 having a thickness of 3.5 micrometers. A coating liquid for a medium refractive index layer was applied on the hard coat layer 12 using a gravure rotary printer. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 240 W / cm. The illuminance was 550 mW / cm2, 600 mJ / cm2 of ultraviolet radiation to harden the coating layer to form a medium refractive index layer (refractive index 1.65, film thickness 67 nm) 200535465 Using a gravure rotary printing machine in the middle A coating liquid for a high refractive index layer is coated on the refractive index layer. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 240 W / cm. The illuminance was 5 5 0 mW / cm2, 600 mJ / cm2 of ultraviolet light to harden the coating layer to form a high refractive index layer (refractive index 1.93, film thickness 107 nm) ° Using a gravure rotary printing press at high A coating liquid B for a low-refractive-index φ layer is coated on the refractive index layer. After drying at 80 ° C, it is purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm. Illuminance is 5 5 0 mW / cm2, 600 mJ / cm2 of ultraviolet radiation to harden the coating layer to form a low refractive index layer (refractive index 1.43, film thickness 86 nm). In this manner, the anti-reflection layer 3 was formed on the hard coat layer to obtain an anti-reflection film A-12. (Manufacture of antireflection film A-13) In the same manner as in antireflection film A-02, only hard coating layer 2 was formed, and a thin film without a low refractive index layer was used as antireflection film A-13. (Alkaline treatment of antireflection film) A 1.5 mol / l sodium hydroxide aqueous solution was prepared and kept at 55 ° C, and a 0.00 5 mol / 1 dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C. The obtained antireflection film and retardation film were immersed in the above-mentioned sodium hydroxide aqueous solution for 2 minutes, and then immersed in water to sufficiently remove the sodium hydroxide aqueous solution. Then, after dipping the above-mentioned -198-200535465 dilute sulfuric acid aqueous solution for 1 minute, it was immersed in water to sufficiently wash the dilute sulfuric acid aqueous solution. Finally, the sample was fully dried at 120 ° C. In this way, an anti-reflection film having been subjected to an alkali treatment is prepared. (Production of polarizing plate P A-0 1 to 1 3 with anti-reflection film) Iodine was adsorbed on the stretched polyvinyl alcohol film to obtain a polarizing film. The anti-reflective films A-01 to A-13 completed with alkali treatment are attached on one side of the polarizing film with a polyvinyl alcohol-based adhesive so that the support side of the anti-reflective film (triethylfluorenyl cellulose) Located on the polarizing film side. In addition, a viewing angle-enlarging film (Wide-View Super Ace, manufactured by Fuji Photo Film Corporation) with an optical compensation layer was subjected to alkali treatment, and then a polyvinyl alcohol-based adhesive was attached to the other side of the polarizing film. The disc surface of the disc-shaped structural unit is inclined to the film surface, and the angle formed by the disc surface and the disc surface of the disc-shaped structural unit is changed in the depth direction of the optical anisotropic layer. In this way, polarizing plates P A-0 1 to 1 3 were obtained. (Evaluation of antireflection film and polarizing plate) The following items were evaluated for the antireflection film and polarizing plate obtained. The results are shown in Table 1. Lu (1) Centerline average roughness Ra The surface roughness of the anti-reflection film is measured by an atomic force microscope (AFM:
Atomic Force Microscope,SPI3 800N,精工(Seiko )儀器(股)公司製)測定。 (2) 霧度 抗反射膜之霧度係以霧度計型號1001 DP (日本電色 工業(股)公司製)測定。 -199- 200535465 (3 ) 透射影像鮮明度 抗反射膜之透射影像鮮明度係使用Siiga試驗機(股 )公司製之繪圖式測定器(ICM-2D型)並以0.5毫 米之光學梳測定。 (4 ) 鏡面反射率 將抗反射膜架設在分光光度計V-5 50 (日本分光( 股)公司製)之接合器ARV-474,並在3 80至780 奈米之波長區域測定在入射角爲P下的出射角- 5° 之鏡面反射率,然後算出450至650奈米之平均反 射率以評估抗反射性。 (5 ) 積分反射率 將抗反射膜架設在分光光度計V-5 50 (日本分光( 股)公司製)之積分球,並在380至780奈米之波 長區域測定積分反射率,然後算出450至650奈米 之平均反射率以評估抗反射性。 (6 ) 黑色穩定性 剝下設置在使用ΤΝ型液晶胞的液晶顯示裝置(ΤΗ-15ΤΑ2、松下電器產業(股)公司製)之視認側偏 光板,並將代替其之偏光板ΡΑ - 01至13藉由黏著 劑貼附,使得抗反射膜側位於視認側且使偏光板之 透射軸與貼在製品之偏光板一致。然後,在1,〇〇〇 lux之明室中使液晶顯示裝置處於黑色顯示狀態,並 由各種不同的視角以目視且以如下所述之基準進行 評估: -200- 200535465 A : 呈十分的黑; B :稍微帶白色; C:呈弱的帶白色; D :呈強烈的帶白色。 (7 ) 測角光度計散射強度比。 使用自動變角光度計GP-5型(村上色彩技術硏究所 (股)製),且將抗反射膜配置成對入射光成垂直 ,以測定全方位角的散射光分佈。然後求出出射角 〇°之相對於光強度的出射角30°之散射光強度。 (8 ) 視野角 就經以上述黑色穩定性評估所製得之液晶顯示裝置 ,使用測定儀(EZ-Contrast 160D、ELDIM公司製 ),由黑色顯示與白色顯示之測定,計算得對比爲 1 〇之視野角。 -201- 200535465Atomic Force Microscope, SPI3 800N, measured by Seiko Instruments Co., Ltd.). (2) Haze The haze of the anti-reflection film is measured with a haze meter model 1001 DP (manufactured by Nippon Denshoku Industries Co., Ltd.). -199- 200535465 (3) Transmission image sharpness The transmission image sharpness of the anti-reflection film was measured using a graphic measuring device (ICM-2D type) made by Siiga Tester Co., Ltd. with an optical comb of 0.5 mm. (4) Specular reflectance An anti-reflection film was set on the adapter ARV-474 of a spectrophotometer V-5 50 (manufactured by JASCO Corporation), and the incident angle was measured at a wavelength range of 3 80 to 780 nm The specular reflectance at the exit angle of P-5 °, and then calculate the average reflectance of 450 to 650 nm to evaluate anti-reflection. (5) Integral reflectance An anti-reflection film is set on an integrating sphere of a spectrophotometer V-5 50 (manufactured by JASCO Corporation), and the integral reflectance is measured in a wavelength region of 380 to 780 nm, and then 450 is calculated Average reflectance to 650 nm to evaluate anti-reflection. (6) The black side peels off the visible side polarizer installed on the liquid crystal display device (T-15-15, manufactured by Matsushita Electric Industrial Co., Ltd.) using a TN type liquid crystal cell, and replaces the polarizer PA- 01 to 13 With the adhesive attached, the anti-reflection film side is located on the visual side and the transmission axis of the polarizing plate is consistent with the polarizing plate attached to the product. Then, the liquid crystal display device was placed in a black display state in a bright room at 1,000 lux, and evaluated from various viewing angles visually and based on the following criteria: -200- 200535465 A: Very dark B: slightly whitish; C: weak whitish; D: strong whitish. (7) goniophotometer scattering intensity ratio. An automatic variable-angle photometer GP-5 (made by Murakami Color Technology Laboratories, Ltd.) was used, and the anti-reflection film was arranged perpendicular to the incident light to measure the scattered light distribution at all angles. Then, the scattered light intensity with an exit angle of 0 ° and an exit angle of 30 ° with respect to the light intensity was obtained. (8) The viewing angle was measured from a black display and a white display using a measuring device (EZ-Contrast 160D, manufactured by ELDIM) for the liquid crystal display device prepared by the above-mentioned black stability evaluation. The comparison was calculated to be 1.0. Field of view. -201- 200535465
& S<N_ 200535465 〈第三方式之實施例〉 (如下所示之全氟烯烴共聚物(1)之合成) 全氟烯烴共聚合物(1)& S < N_ 200535465 <Example of the third mode> (Synthesis of perfluoroolefin copolymer (1) shown below) Perfluoroolefin copolymer (1)
cf2-cf· 50 cf3 -(-ch2-ch-4— \ 了 /so ο I ii och2ch2〇cch=ch2 ( )之添加字是代表莫耳比 將40毫升之醋酸乙酯、14.7克之羥乙基乙烯基醚和 0·55克之過氧化二月桂醯基進料至內部容積爲100毫升且 配備有攪拌機之不銹鋼製高壓釜中。將系統之內部除氣且 以氮氣沖洗。然後,進一步將25克之六氟丙烯(HFP )導 入高壓釜中,且將溫度升高至65 t。當高壓釜內部之溫度 達到65°C時之壓力爲5.4 kg/cm2。讓反應持續進行8小時 ,同時維持該溫度,而當壓力達到3.2 kg/cm2時,停止加 熱且讓系統冷卻。當內部之溫度下降至室溫時,將未反應 之單體排出,且在打開高壓釜後,將反應液取出。將所獲 得反應液進料至大量過量之己烷中,藉由傾析法將溶劑移 除,且將所沉澱之聚合物取出。將此聚合物溶解於少量之 醋酸乙酯中,且藉由實施從己烷再沉澱兩次,將殘留單體 完全移除。在乾燥後,可獲得28克之聚合物。 然後,將20克之所獲得的聚合物溶解於1〇〇毫升之N, N-二甲基乙醯胺,且在冰浴冷卻下,將11.4克之氯化丙 烯酸逐滴添加入後,將所獲得之溶液在室溫下攪拌1 〇小時 。在添加醋酸乙酯後,將反應液以水沖洗,將有機層萃取 -203 - 200535465 ,然後加以濃縮。將所獲得之聚合物以己烷再沉澱,可獲 得1 9克之全氟烯烴共聚物(1 )。所獲得聚合物之折射率 爲 1.421 。 (氟系表面改質劑P - 8之合成) 將39.93克之丙烯酸1H,1H,7H —十二氟庚酯、1.1克之 2,2’一偶氮雙異丁酸二甲酯、及30克之2 — 丁酮添加入配 備有攪拌機和回流冷凝器之反應器中,且在氮氣大氣下, 在7 8°C加熱6小時,以完成反應。質量平均分子量爲2.9 X 104° (溶膠液a之調製) 將120份之甲基乙基酮、100份之丙烯醯氧基丙基三甲 氧基矽烷(KBM-5103,信越化學工業(股)公司製)、及 3份之乙基乙醯醋酸二異丙氧基鋁添加入配備有攪拌機和 回流冷凝器之反應器中。然後,將30份之離子交換水添加 入,且讓所獲得之混合物在60°C反應4小時,然後冷卻至 室溫,以獲得溶膠液a。質量平均分子量爲1,600,且具有 分子量爲1,〇〇〇至20,000之成份是在寡聚物或更大成份中 佔有1 00%。而且,根據氣相層析法之分析顯示完全無殘留 之丙烯醯氧基丙基三甲氧基矽烷。 (具有抗靜電性之硬質塗層形成用之抗靜電層用塗佈液-1之調製) 在190克之甲醇與82克之甲基乙基酮之混合液,加入後 述經塗佈銻之176克之氧化錫分散液。對其加入2.4克之 五丙烯酸二新戊四醇酯與六丙烯酸二新戊四醇酯之混合物 -204- 200535465 (DPHA、日本化藥(股)公司製),再添加〇·3克之聚合 引發劑(Irgacure 184、Ciba特用化學品(股)公司製), 並加以混合攪拌。對此液施加振盪晶片浸漬式之超音波分 散1 0分鐘以調製抗靜電層用塗佈液-1。 將所製得之抗靜電層用塗佈液-1以如後所述之「內部 構成層之塗佈」篇段所揭述之方法塗佈成80微米厚度之三 乙醯基纖維素薄膜(薄膜之霧度僅爲〇·2%)。該試料之霧 度爲2 · 8 %。以圓電極法測定該試料之表面比電阻値,結果 爲 1 ·8χ ΙΟ10 M/口( 25〇C、60 %RH ) 〇 (經塗佈銻之氧化錫分散液之調製) 在15克之經塗佈銻之氧化錫微粒粉體(石原Techno公 司製SN-100P)加入132克之甲醇與3克之含有羧酸基之 丙烯酸聚合物之混合液,加入1 5 0克之1毫米玻璃微粒 然後放入耐壓瓶中,以塗料震動器加以分散50小時。平均 粒徑爲8 5奈米。 (防眩性硬質塗層用之塗佈液A的調製) 將50克之三丙烯酸二新戊四醇酯及四丙烯酸新戊四醇酯 之混合物(PETA,日本化藥(股)公司製)以38·5克之 甲苯稀釋。然後,添加2克之聚合引發劑(Irgacure 184, Ciba特用化學品(股)公司製)且加以攪拌混合。將所獲 得之溶液塗佈和以紫外線硬化,所獲得塗膜之折射率爲 1.51。 再對該溶液中添加將1 · 7克之藉由將平均粒徑爲3.5微 米之交聯聚苯乙烯顆粒(折射率:1.61,SXS-3 50,綜硏化 -205 - 200535465 學(股)公司製)在Polytron分散機中,在1 0,000 rpm進 行分散20分鐘所獲得之30%甲苯分散液,及13.3克之平 均粒徑爲3.5微米之交聯丙烯酸-苯乙烯顆粒(折射率: 1.55,綜硏化學(股)製)之30%甲苯分散液添加到此溶 液中。最後,添加0.75克之該氟系聚合物(P - 8 )及10 克之矽烷偶合劑(KBM-5 103,信越化學工業(股)公司製 ),藉此調製得溶液。 將所獲得之該混合溶液通過孔徑爲30微米之聚丙烯製濾 網加以過濾,以調製得防眩性硬質塗層用之塗佈液A。 對此塗佈液A添加氟系表面改質劑(P - 8 )之前的表面 張力爲35mN/m,經添加後之表面張力爲32mN/m。 (防眩性硬質塗層用之塗佈液B的調製) 除將上述防眩性硬質塗層用塗佈液A之氟系表面改質劑 (P - 8 )變更爲上述(P - 1 3 )以外,其餘則與該塗佈液A 相同方式調製防眩性硬質塗層用塗佈液B。 對此塗佈液B添加氟系表面改質劑(P - 13 )之前的表 面張力爲35 mN/m,經添加後之表面張力爲30 mN/m。 (防眩性硬質塗層用之塗佈液C的調製) 除將上述防眩性硬質塗層用塗佈液A之交聯聚苯乙烯與 交聯丙烯酸-苯乙烯顆粒之粒徑皆變更爲4.5微米以外, 其餘則與塗佈液A相同方式調製防眩性硬質塗層用塗佈液 C。 對此塗佈液C添加氟系表面改質劑(P - 1 3 )之前的表 面張力爲35 mN/m,經添加後之表面張力爲30 mN/m。 -206- 200535465 (防眩性硬質塗層用之塗佈液D的調製) 除將上述防眩性硬質塗層用塗佈液A之交聯聚苯乙燃與 交聯丙烯酸-苯乙烯顆粒之粒徑皆變更爲2 · 5微米以外, 其餘則與塗佈液A相同方式調製防眩性硬質塗層用塗佈液 D。 對此塗佈液D添加氟系表面改質劑(p - 1 3 )之前的表 面張力爲35 mN/m,經添加後之表面張力爲30 mN/m。 (光擴散層用之塗佈液B的調製) 將28 5克之市售商品級可獲得之含氧化鉻之紫外線硬化 型硬質塗佈液(DESOLITE Z7404,JSR (股)公司製,固 體濃度:約61%,在固體含量中之Zr02含量··約70%,含 有聚合性單體及聚合引發劑)、及85克之五丙烯酸二新戊 四醇酯和六丙烯酸二新戊四醇酯混合物(DPHA,日本化藥 (股)公司製)混合,且將所獲得之混合物以60克之甲基 異丁基酮和17克之甲基乙基酮稀釋。再將28克之矽烷偶 合劑(KBM-5 103,信越化學(股)公司製)添加入且加以 攪拌混合。將所獲得之溶液加以塗佈和以紫外線硬化,所 獲得之塗膜之折射率爲1 · 6 1,因此符合本發明之高折射率 層的條件。 並且,對此溶液添加將35克之藉由將平均粒徑爲30微 米之分級強化交聯型聚甲基丙烯酸甲酯(PMMA )顆粒( 折射率:1.49,MXS-300,綜硏化學(股)公司製)之30% 甲基異丁基酮分散液在Polytron分散機中,在l〇,〇〇〇 rpm 加以分散20分鐘所獲得之分散液。然後,將90克之平均 -207- 200535465 粒徑爲 I·5微米之二氧化矽顆粒(折射率:1.46, SEAHOSTA KE-P150,曰本觸媒(股)製)之30%甲基乙 基酮分散液在Polytron分散機中,在1 0,000 rpm加以分散 2〇分鐘所獲得之分散液,且最後與0.12克之氟系聚合物( P - 8 )混合和攪拌,藉此調製得溶液。 將所獲得之混合溶液通過孔徑爲3 0微米之聚丙烯製濾網 加以過濾,以製得光擴散層用之塗佈液B。 (光擴散層用之塗佈液C的調製) 光擴散層用之塗佈液C是以與塗佈液B相同方式,包括 添加量在內所調製得,例外的是使用平均粒徑爲1.5微米 級之強化高度交聯型聚甲基丙烯酸甲酯(PMMA ) ( MXS- 1 5 0H,交聯劑:二甲基丙烯酸乙二醇酯,交聯劑量:3 0% ,綜硏化學製,折射率:1.49)所調製之30%甲基乙基酮 分散液,以取代在光擴散層用之塗佈液B中之平均粒徑爲 1 . 5微米之二氧化矽顆粒。 將該溶液加以塗佈和以紫外線硬化,所獲得之塗膜之折 射率爲1.6 1,因此符合本發明之高折射率層的條件。 (低折射率層用之塗佈液A的調製) 將15克之折射率爲1.42之熱交聯性含氟聚合物(JN-7228A,固體濃度:6%,JSR (股)公司製)、0.6克之膠 體二氧化矽分散液(二氧化矽,MEK-ST,平均粒徑:15 奈米,固體濃度:30%,日產化學工業(股)製)、0.8克 之膠體二氧化矽分散液(二氧化矽,粒徑與MEK-ST不同 之產品,平均粒徑:45奈米,固體濃度:30%,日產化學 -208 - 200535465 工業(股)、〇·4克之溶膠液&、3克之甲基乙基酮、及0.6 克之環己酮添加入且加以攪拌後,將所獲得之溶液通過孔 徑爲1微米之聚丙烯製濾網加以過濾,以調製得低折射率 層用之塗佈液Α。 (低折射率層用之塗佈液B的調製) 將15.2克之全氟烯烴共聚物(1) 、1.4克之膠體二氧化 矽分散液(二氧化矽,粒徑與MEK-ST不同之產品,平均 粒徑:45奈米,固體濃度:30%,日產化學工業公司製) 、0.3克之反應性聚矽氧X-22- 1 64B (商品名,信越化學工 業(股)公司製)、7.3克之溶膠液a、0.76克之光聚合引 發劑(Irgacure 907 (商品名),Ciba-Geigy 公司製)、 301克之甲基乙基酮、及9.0克之環己酮添加入且加以攪拌 。將所獲得之溶液通過孔徑爲5微米之聚丙烯製濾網加以 過濾,以調製得低折射率層用之塗佈液B。 (低折射率層用之塗佈液C之調製) 低折射率層用之塗佈液C是以與塗佈液B相同方式,包 括添加量在內所調製得,例外的是使用19.5克之中空二氧 化矽分散液(折射率:1.31,平均粒徑:60奈米,固體濃 度:20%),全氟烯烴共聚物(1)變更爲11·7克、甲基乙 基酮量變更爲280克,以取代在調製低折射率層用之塗佈 液Β時之膠體二氧化矽分散液。 〔實施例1〕 (1 )內部構成層之塗佈 將厚度爲80微米之呈捲筒狀形態的三乙醯基纖維素薄膜 -209- 200535465 (TAC-TD8 0U,富士照相軟片(股)公司製)退捲,且將 如表1所示之內部構成層(抗靜電層、防眩性硬質塗層、 光擴散層)用之塗佈液藉由使用直徑爲5 0毫米且線數爲 1 80線/英寸和深度爲40微米之凹版圖案的微型凹版輪轉印 刷機及刮刀,在凹版輪轉印刷機轉數爲3 0 rpm、輸送速度 爲30公尺/分鐘之條件下加以塗佈在其上。然後,將塗佈 液在60 °C乾燥150秒鐘。然後,藉由使用160 W/cm之空 氣冷卻式金屬鹵化物燈(Eye Graphics (股)公司製),在 氮氣沖洗下,以照度爲 400 mW/cm2和照射量爲 250 mJ/cm2之紫外線照射,藉此使得塗層硬化以形成厚度爲6 微米之內部構成層,然後捲取薄膜。 另外,上述內部構成層之塗佈是從透明支撐體側起依照 抗靜電層、防眩性硬質塗層及光擴散層之順序所形成。 (2 )低折射率層之塗佈 將已塗佈內部層在其上之三乙醯基纖維素薄膜再退捲, 且如表1所示將低折射率層用之塗佈液藉由使用直徑爲50 毫米且線數爲180線/英寸和深度爲40微米之凹版圖案的 微型凹版輪轉印刷機及刮刀,在凹版輪轉印刷機轉數爲30 rpm、輸送速度爲15公尺/分鐘之條件下加以塗佈在其上。 然後,將塗佈液在120°C乾燥150秒鐘,且進一步在140t 乾燥8分鐘。然後,藉由使用240 W/cm之空氣冷卻式金屬 鹵化物燈(Eye Graphics (股)公司製),在氮氣沖洗下, 以照度爲400 mW/cm2和照射量爲900 mJ/cm2之紫外線照 射,以形成厚度爲1〇〇奈米之低折射率層,藉此製得抗反 -210- 200535465 射膜。然後,將薄膜捲取。 各塗佈層之組合是按照表1所示方式實施。 〔表1〕cf2-cf · 50 cf3-(-ch2-ch-4— \ 了 / so ο I ii och2ch2〇cch = ch2 () The addition is to represent 40 moles of ethyl acetate, 14.7 grams of hydroxyethyl Vinyl ether and 0.55 g of dilauryl peroxide were fed to a stainless steel autoclave with an internal volume of 100 ml and equipped with a stirrer. The inside of the system was degassed and flushed with nitrogen. Then, 25 g of Hexafluoropropylene (HFP) was introduced into the autoclave and the temperature was increased to 65 t. When the temperature inside the autoclave reached 65 ° C, the pressure was 5.4 kg / cm2. The reaction was allowed to continue for 8 hours while maintaining the temperature When the pressure reaches 3.2 kg / cm2, stop heating and allow the system to cool. When the internal temperature drops to room temperature, unreacted monomer is discharged, and after opening the autoclave, the reaction solution is taken out. The reaction solution was fed to a large excess of hexane, the solvent was removed by decantation, and the precipitated polymer was taken out. This polymer was dissolved in a small amount of ethyl acetate, and Hexane was reprecipitated twice to completely remove the residual monomer. Then, 28 g of a polymer was obtained. Then, 20 g of the obtained polymer was dissolved in 100 ml of N, N-dimethylacetamide, and 11.4 g of chlorinated acrylic acid was cooled in an ice bath. After adding dropwise, the obtained solution was stirred at room temperature for 10 hours. After adding ethyl acetate, the reaction solution was washed with water, the organic layer was extracted with -203-200535465, and then concentrated. The obtained The polymer was reprecipitated with hexane to obtain 19 g of a perfluoroolefin copolymer (1). The refractive index of the obtained polymer was 1.421. (Synthesis of fluorine-based surface modifier P-8) 39.93 g of acrylic acid 1H, 1H, 7H —dodecafluoroheptyl, 1.1 grams of dimethyl 2,2′-azobisisobutyrate, and 30 grams of 2-butanone were added to a reactor equipped with a stirrer and a reflux condenser, And in a nitrogen atmosphere, heating at 7 8 ° C for 6 hours to complete the reaction. The mass average molecular weight is 2.9 X 104 ° (the preparation of sol solution a) 120 parts of methyl ethyl ketone and 100 parts of propylene oxide Propyltrimethoxysilane (KBM-5103, Shin-Etsu Chemical Industry Co., Ltd.) Made), and 3 parts of ethyl acetoacetate diisopropoxyaluminum were added to a reactor equipped with a stirrer and a reflux condenser. Then, 30 parts of ion-exchanged water was added and the obtained mixture was allowed to It was reacted at 60 ° C for 4 hours, and then cooled to room temperature to obtain a sol liquid a. The mass average molecular weight was 1,600 and the component having a molecular weight of 1,000 to 20,000 was in an oligomer or a larger component. It accounted for 100%. Moreover, analysis by gas chromatography showed that there was no residual propylene methoxypropyltrimethoxysilane. (Preparation of coating solution-1 for antistatic layer for forming a hard coat layer with antistatic property) In a mixed solution of 190 g of methanol and 82 g of methyl ethyl ketone, 176 g of antimony-coated oxide described later was added Tin dispersion. To this was added 2.4 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate -204- 200535465 (DPHA, manufactured by Nippon Kayaku Co., Ltd.), and 0.3 g of a polymerization initiator was added. (Irgacure 184, made by Ciba Special Chemicals Co., Ltd.), and mixed. To this solution, an ultrasonic wafer immersion type ultrasonic dispersion was applied for 10 minutes to prepare a coating solution-1 for an antistatic layer. The prepared coating solution for an antistatic layer-1 was coated into a triethylfluorene cellulose film with a thickness of 80 micrometers by the method described in the "coating of the internal constituent layer" described later ( The haze of the film is only 0.2%). The haze of this sample was 2.8%. The surface specific resistance 値 of the sample was measured by a circular electrode method, and the result was 1 · 8χ 1010 M / mouth (25 ° C, 60% RH). (Preparation of tin oxide dispersion coated with antimony) Antimony tin oxide particle powder (SN-100P manufactured by Ishihara Techno) was added to a mixed solution of 132 g of methanol and 3 g of an acrylic polymer containing a carboxylic acid group, and 150 g of 1 mm glass particles was put into a pressure-resistant container. Disperse in a bottle with a paint shaker for 50 hours. The average particle size was 85 nm. (Preparation of coating liquid A for anti-glare hard coat layer) 50 g of a mixture of dipentaerythritol triacrylate and neopentaerythritol tetraacrylate (PETA, manufactured by Nippon Kayaku Co., Ltd.) 38.5 grams of toluene was diluted. Then, 2 g of a polymerization initiator (Irgacure 184, manufactured by Ciba Special Chemicals Co., Ltd.) was added and mixed with stirring. The obtained solution was coated and cured with ultraviolet rays, and the refractive index of the obtained coating film was 1.51. To this solution was added 1.7 g of cross-linked polystyrene particles with an average particle diameter of 3.5 microns (refractive index: 1.61, SXS-3 50, Synthetic Chemicals-205-200535465). (Manufactured) In a Polytron disperser, 30% toluene dispersion obtained by dispersing at 10,000 rpm for 20 minutes, and 13.3 g of crosslinked acrylic-styrene particles having an average particle diameter of 3.5 microns (refractive index: 1.55, comprehensive) To the solution, a 30% toluene dispersion of a chemical company was added. Finally, 0.75 g of the fluoropolymer (P-8) and 10 g of a silane coupling agent (KBM-5 103, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) were added to prepare a solution. The obtained mixed solution was filtered through a polypropylene filter having a pore diameter of 30 m to prepare a coating liquid A for an anti-glare hard coat layer. The surface tension before adding the fluorine-based surface modifier (P-8) to this coating liquid A was 35 mN / m, and the surface tension after the addition was 32 mN / m. (Preparation of coating liquid B for anti-glare hard coating layer) In addition to changing the fluorine-based surface modifier (P-8) of the coating liquid A for anti-glare hard coating layer to the above (P-1 3 Other than), the coating liquid B for an anti-glare hard coat layer was prepared in the same manner as the coating liquid A. The surface tension before adding the fluorine-based surface modifier (P-13) to this coating liquid B was 35 mN / m, and the surface tension after the addition was 30 mN / m. (Preparation of Coating Liquid C for Anti-Glare Hard Coating Layer) Except for changing the particle sizes of the cross-linked polystyrene and cross-linked acrylic-styrene particles of the above-mentioned coating liquid A for anti-glare hard coating layer to Except for 4.5 micrometers, the remainder was prepared in the same manner as the coating liquid A, and a coating liquid C for an anti-glare hard coat layer was prepared. The surface tension before adding a fluorine-based surface modifier (P-1 3) to this coating liquid C was 35 mN / m, and the surface tension after the addition was 30 mN / m. -206- 200535465 (Preparation of coating liquid D for anti-glare hard coatings) Except for the cross-linked polystyrene combustion of the coating liquid A for anti-glare hard coatings and cross-linking of acrylic-styrene particles The particle diameter was changed to other than 2.5 micrometers, and the rest was prepared in the same manner as the coating liquid A to prepare a coating liquid D for an anti-glare hard coat layer. The surface tension before adding the fluorine-based surface modifier (p-1 3) to this coating liquid D was 35 mN / m, and the surface tension after the addition was 30 mN / m. (Preparation of Coating Liquid B for Light Diffusion Layer) 285 g of a commercially available commercially available grade of chromium-curable ultraviolet-curable hard coating liquid (DESOLITE Z7404, manufactured by JSR Corporation), solid concentration: about 61%, Zr02 content in the solid content ... approximately 70%, containing polymerizable monomers and polymerization initiators), and 85 g of a mixture of dipentaerythritol pentaacrylate and dinepentaerythritol hexaacrylate (DPHA , Manufactured by Nippon Kayaku Co., Ltd.), and the obtained mixture was diluted with 60 g of methyl isobutyl ketone and 17 g of methyl ethyl ketone. Then, 28 g of a silane coupling agent (KBM-5 103, manufactured by Shin-Etsu Chemical Co., Ltd.) was added thereto, followed by stirring and mixing. The obtained solution was coated and hardened with ultraviolet rays, and the refractive index of the obtained coating film was 1 · 61, so that it satisfies the conditions of the high refractive index layer of the present invention. In addition, 35 grams of graded cross-linked polymethyl methacrylate (PMMA) particles with an average particle diameter of 30 microns were added to this solution (refractive index: 1.49, MXS-300, Synthetic Chemical Co., Ltd.) The 30% methyl isobutyl ketone dispersion was dispersed in a Polytron disperser at 10,000 rpm for 20 minutes. Then, 90 grams of 30% methyl ethyl ketone with an average -207-200535465 silicon dioxide particles having a particle size of 1.5 micrometers (refractive index: 1.46, SEAHOSTA KE-P150) The dispersion was dispersed in a Polytron disperser at 10,000 rpm for 20 minutes, and the dispersion was finally mixed with 0.12 g of a fluoropolymer (P-8) and stirred to prepare a solution. The obtained mixed solution was filtered through a polypropylene filter having a pore diameter of 30 m to obtain a coating liquid B for a light diffusion layer. (Preparation of the coating liquid C for the light diffusion layer) The coating liquid C for the light diffusion layer is prepared in the same manner as the coating liquid B, including the added amount, with the exception of using an average particle diameter of 1.5 Micron-strengthened highly cross-linked polymethyl methacrylate (PMMA) (MXS-150H, crosslinker: ethylene glycol dimethacrylate, crosslink dose: 30%, comprehensive chemical manufacturing, Refractive index: 1.49) The 30% methyl ethyl ketone dispersion prepared to replace silicon dioxide particles having an average particle diameter of 1.5 micrometers in the coating liquid B for the light diffusion layer. This solution was applied and hardened with ultraviolet rays, and the refractive index of the obtained coating film was 1.6 1 and thus met the conditions of the high refractive index layer of the present invention. (Preparation of Coating Liquid A for Low Refractive Index Layer) 15 g of a thermally crosslinkable fluoropolymer (JN-7228A, solid concentration: 6%, manufactured by JSR Corporation) with a refractive index of 1.42, 0.6 Grams of colloidal silica dispersion (silicon dioxide, MEK-ST, average particle size: 15 nm, solid concentration: 30%, manufactured by Nissan Chemical Industries, Ltd.), 0.8 grams of colloidal silica dispersion (dioxide Silicon, a product with a particle size different from MEK-ST, average particle size: 45 nm, solid concentration: 30%, Nissan Chemical-208-200535465 Industrial (stock), 0.4 g of sol solution & 3 g of methyl After ethyl ketone and 0.6 g of cyclohexanone were added and stirred, the obtained solution was filtered through a polypropylene filter having a pore size of 1 micron to prepare a coating solution A for a low refractive index layer. (Preparation of coating solution B for low-refractive index layer) 15.2 g of perfluoroolefin copolymer (1) and 1.4 g of colloidal silica dispersion (silicon dioxide, products with a particle size different from MEK-ST) are averaged. Particle size: 45 nm, solid concentration: 30%, manufactured by Nissan Chemical Industry Co., Ltd., 0.3 grams inverse Polysiloxane X-22- 1 64B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), 7.3 g of sol a, 0.76 g of photopolymerization initiator (Irgacure 907 (trade name), manufactured by Ciba-Geigy) , 301 g of methyl ethyl ketone, and 9.0 g of cyclohexanone were added and stirred. The obtained solution was filtered through a polypropylene filter with a pore size of 5 microns to prepare a coating for a low refractive index layer. Cloth B. (Preparation of coating liquid C for the low refractive index layer) Coating liquid C for the low refractive index layer is prepared in the same manner as the coating liquid B, including the added amount, with the exception of Using 19.5 grams of hollow silica dispersion (refractive index: 1.31, average particle size: 60 nm, solid concentration: 20%), the perfluoroolefin copolymer (1) was changed to 11.7 grams, methyl ethyl ketone The amount was changed to 280 g to replace the colloidal silica dispersion when preparing the coating solution B for the low-refractive index layer. [Example 1] (1) The coating of the internal constituent layer was made to a thickness of 80 microns. Triethyl cellulose cellulose film in roll form-209- 200535465 (TAC-TD8 0U, Fuji Photo The film (stock) company) is unrolled, and the coating liquid for the internal constituent layers (antistatic layer, anti-glare hard coating layer, light diffusion layer) shown in Table 1 is used by using a diameter of 50 mm Mini gravure rotary presses and doctor blades with a gravure pattern of 1 80 lines / inch and a depth of 40 microns are applied at a gravure rotary press speed of 30 rpm and a conveying speed of 30 m / min. It was coated thereon. Then, the coating liquid was dried at 60 ° C for 150 seconds. Then, by using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm, under a nitrogen purge, ultraviolet light was irradiated at 400 mW / cm2 and the irradiation amount was 250 mJ / cm2. This allowed the coating to harden to form an internal structural layer with a thickness of 6 microns, and then rolled the film. The coating of the internal constituent layer is performed in the order of the antistatic layer, the anti-glare hard coat layer, and the light diffusion layer from the transparent support side. (2) Coating of the low-refractive index layer The triethyl cellulose film on which the inner layer has been applied is unrolled, and the coating solution for the low-refractive index layer is used as shown in Table 1. Micro gravure rotary press and doctor blade with a gravure pattern of 50 mm in diameter and 180 lines / inch and a depth of 40 microns, with a gravure rotary press of 30 rpm and a conveying speed of 15 m / min It is applied on it. Then, the coating liquid was dried at 120 ° C. for 150 seconds, and further dried at 140 t for 8 minutes. Then, by using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 240 W / cm, under a nitrogen purge, ultraviolet light was irradiated at 400 mW / cm2 and the irradiation amount was 900 mJ / cm2 In order to form a low refractive index layer with a thickness of 100 nanometers, an anti-reflection-210-200535465 radiation film was prepared. The film is then taken up. The combination of each coating layer was implemented as shown in Table 1. 〔Table 1〕
試料 抗靜電層 防眩性 硬質塗層 光擴散層 低折射率層 101 1 A ΙΙΙΙΓ y\\\ A 102 1 A /frrr B 103 1 A >f|Tp 無 C 104 1 B ffTf C 105 1 4rnl M B C 106 1 /flTT- M C C 107 1 4πΐ m B A 108 1 M j\\\ B B 109 ifrrr 無 A M /\\\ C (抗反射膜之鹼化處理)Sample antistatic layer anti-glare hard coating light diffusion layer low refractive index layer 101 1 A ΙΙΙΙΓ y \\\ A 102 1 A / frrr B 103 1 A > f | Tp No C 104 1 B ffTf C 105 1 4rnl MBC 106 1 / flTT- MCC 107 1 4πΐ m BA 108 1 M j \\\ BB 109 ifrrr without AM / \\\ C (alkaliization of antireflection film)
將經塗佈後之上述試料101至109歷經如下所述之處理 調製1.5 mole/L之氫氧化鈉水溶液且保溫於50°c。此外 ,調製0.005 mole/L之稀硫酸水溶液且保溫於35°C。將所 製得抗反射膜浸漬於上述所調製之氫氧化鈉水溶液2分鐘 ,然後浸漬於水中,以徹底地沖洗出氫氧化鈉水溶液。然 後,將薄膜浸漬於上述所調製之稀硫酸水溶液中1分鐘, 然後浸漬於水中,以徹底地沖洗出稀硫酸水溶液。最後, 將試料在120°C徹底地乾燥。 以此方式,可製得經鹼化處理之抗反射膜之試料101至 109 ° 〔實施例2〕 (硬質塗層用之塗佈液A的調製) 在315.0克之五丙烯酸二新戊四醇酯與六丙烯酸二新戊 -211 - 200535465 四醇酯之混合物(DPH A、日本化藥(股)公司製)中,添 加入450.0克之二氧化矽微粒之甲基乙基酮分散液(MEK-ST、固體濃度30質量%、日產化學(股)公司製)、15.0 克之甲基乙基酮、220.0克之環己酮、及16.0克之光聚合 引發劑(Irgacure 907、日本Ciba-Geigy (股)公司製), 並加以攪拌。然後以孔徑爲〇·4微米之聚丙烯製濾網過濾 以調製硬質塗層用之塗佈液A。 (二氧化鈦微粒分散液的調製) 二氧化鈦微粒係使用含有鈷且經使用氫氧化鋁與氫氧化 銷施加表面處理之二氧化鈦微粒(MPT-12 9C、石原產業( 股)公司製)。 在25 7.1克之該顆粒添加38.6克之如下所示之分散劑、 及704.3克之環己酮,並以Dynomill加以分散,以調製質 量平均粒徑爲7 〇奈米之二氧化鈦分散液。 分散劑 ch3 ch3The coated samples 101 to 109 were treated as described below to prepare a 1.5 mole / L sodium hydroxide aqueous solution and kept at 50 ° C. In addition, a dilute sulfuric acid aqueous solution of 0.005 mole / L was prepared and kept at 35 ° C. The prepared antireflection film was immersed in the above-prepared sodium hydroxide aqueous solution for 2 minutes, and then immersed in water to thoroughly rinse out the sodium hydroxide aqueous solution. Then, the film was immersed in the dilute sulfuric acid aqueous solution prepared above for 1 minute, and then immersed in water to thoroughly rinse out the dilute sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C. In this way, samples 101 to 109 ° of the anti-reflection film subjected to alkali treatment can be prepared. [Example 2] (Preparation of Coating Solution A for Hard Coating) Dipentaerythritol pentaacrylate at 315.0 g 450.0 g of methyl ethyl ketone dispersion (MEK-ST) of silicon dioxide fine particles was added to a mixture with dioxolane-211-200535465 tetraol ester (DPH A, manufactured by Nippon Kayaku Co., Ltd.). , Solid concentration of 30% by mass, manufactured by Nissan Chemical Co., Ltd., 15.0 g of methyl ethyl ketone, 220.0 g of cyclohexanone, and 16.0 g of photopolymerization initiator (Irgacure 907, Japan Ciba-Geigy Co., Ltd.) ), And stir. Then, it was filtered through a polypropylene filter having a pore size of 0.4 m to prepare a coating solution A for a hard coat layer. (Preparation of Titanium Dioxide Fine Particle Dispersion Liquid) Titanium dioxide fine particles are titanium dioxide fine particles (MPT-12 9C, manufactured by Ishihara Sangyo Co., Ltd.) containing cobalt and subjected to surface treatment using aluminum hydroxide and hydroxide pins. 38.6 g of the dispersant shown below and 704.3 g of cyclohexanone were added to 25 7.1 g of the granules and dispersed in a Dynomill to prepare a titanium dioxide dispersion having a mass average particle size of 70 nm. Dispersant ch3 ch3
~f"CH2_Η·0Η2—C-flT~ f " CH2_Η · 0Η2—C-flT
〇=C COOH s〇CH2CH=CH2 Mw=40000 (中折射率層用之塗佈液A的調製) 在88.9克之上述二氧化鈦分散液中添加入58.4克之五 丙烯酸二新戊四醇酯與六丙烯酸二新戊四醇酯之混合物( DPHA ) 、3.1克之光聚合引發劑(Irgacure 907 ) 、1.1克 之光增感劑(Kayacure-DETX、日本化藥(股)公司製) 、482.4克之甲基乙基酮、及1,869.8克之環己酮,並加以 -212- 200535465 充分攪拌。最後添加0.5克之氟系表面改質劑(p - 8), 並充分攪拌後,以孔徑爲0.4微米之聚丙烯製濾網濾過以 調製中折射率層用塗佈液A。 (高折射率層用之塗佈液A的調製) 在586.8克之上述二氧化鈦分散液中添加入47.9克之五 丙烯酸二新戊四醇酯與六丙烯酸二新戊四醇酯之混合物( DPHA、日本化藥(股)公司製)、3.1克之光聚合引發劑 (Irgacure 907) 、4.0 克之光聚合引發劑(Irgacure 907、 日本Ciba-Geigy (股)公司製)、1.3克之光增感劑( Kayacure-DETX、日本化藥(股)公司製)、455.8克之甲 基乙基酮、及1,427.8克之環己酮,並加以攪拌。最後添加 0.5克之氟系表面改質劑(P - 8 ),並充分攪拌後,以孔徑 爲0.4微米之聚丙烯製濾網過濾以調製中折射率層用塗佈 液A。 (低折射率層用之塗佈液D的調製) 在 9克之折射率爲1.42之熱交聯性含氟聚合物( JN7 228A、固體濃度:6%、JSR (股)公司製)中添加入 1.4克之膠體二氧化矽(二氧化矽、粒徑與MEK-ST不同之 產品、平均粒徑:45奈米、固體濃度:30%、日產化學工 業公司製),〇.4克之溶膠液a,3克之甲基異丁基酮,及 0.6克之環己酮,並加以攬拌後,以孔徑1微米之聚丙烯製 濾網過濾,以調製低折射率層用塗佈液D。 (低折射率層用之塗佈液E的調製) 與實施例1之低折射率層用塗佈液B相同配方調製低折 -213- 200535465 射率層用塗佈液E。 (低折射率層用之塗佈液F的調整) 與實施例1之低折射率層用塗佈液C相同配方調製低折 射率層用塗佈液F。 (抗反射膜之製造) 在80微米膜厚之三乙醯基纖維素薄膜(TD-80UF、富士 照相軟片(股)公司製、透明支撐體)上,以凹版輪轉印 刷機塗佈抗靜電層用塗佈液。在1 〇〇 °C乾燥後,在氧氣濃 度爲1.0體積%以下的大氣之方式以氮氣清洗,同時使用 160 W/cm之空氣冷卻式金屬鹵化物燈(Eye Graphics (股 )公司製)照度爲400 mW/cm2、照射量爲300 mJ/cm2之 紫外線以使塗佈層硬化,以形成厚度爲0.7微米之抗靜電 層 使用凹版輪轉印刷機在抗靜電層之上面塗佈硬質塗層用 塗佈液。然後實施與上述抗靜電層相同之乾燥條件、紫外 線照射條件,以形成厚度爲3.5微米之硬質塗層。 使用凹版輪轉印刷機在硬質塗層之上面塗佈中折射率層 用塗佈液。在l〇〇°C乾燥後,在氧氣濃度爲1.0體積%以下 的大氣之方式以氮氣清洗,同時使用240 W/cm之空氣冷卻 式金屬鹵化物燈(Eye Graphics (股)公司製)照度爲550 mW/cm2、照射量爲600 mJ/cm2之紫外線以使塗佈層硬化, 以形成局折射率層(折射率爲1.65、膜厚爲67奈米)。 使用凹版輪轉印刷機在中折射率層之上面塗佈高折射率 層用塗佈液。然後實施與上述抗靜電層相同之乾燥條件、 -214- 200535465 紫外線照射條件,以形成高折射率層(折射率爲1.93,膜 厚爲1 07奈米)。 使用凹版輪轉印刷機在高折射率層之上面塗佈低折射率 層用塗佈液,在120°C乾燥150秒鐘後,再在140°C乾燥8 分鐘後,在氮氣清洗下使用240 W/cm之空氣冷卻式金屬鹵 化物燈(Eye Graphics (股)公司製),照度爲 400 mW/cm2、照射量爲900 mJ/cm2之紫外線,以形成低折射率 層(折射率爲1.43、膜厚爲86奈米)。 各層之組合方式係根據表2之方式實施,以製造抗反射 膜試料20 1至204。抗靜電層用塗佈液係使用在實施例1 所使用者。 〔表2〕〇 = C COOH 〇CH2CH = CH2 Mw = 40000 (Preparation of coating solution A for medium refractive index layer) To 88.9 g of the above-mentioned titanium dioxide dispersion, 58.4 g of dipivalate pentaacrylate and hexaacrylic acid di Neopentaerythritol ester mixture (DPHA), 3.1 g of photopolymerization initiator (Irgacure 907), 1.1 g of photosensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.), 482.4 g of methyl ethyl ketone , And 1,869.8 grams of cyclohexanone, and -212- 200535465 was stirred well. Finally, 0.5 g of a fluorine-based surface modifier (p-8) was added, and after sufficiently stirring, it was filtered through a polypropylene filter having a pore diameter of 0.4 m to prepare a coating solution A for a medium refractive index layer. (Preparation of Coating Liquid A for High-Refractive Index Layers) To 586.8 g of the above-mentioned titanium dioxide dispersion, 47.9 g of a mixture of dineopentaerythritol pentaacrylate and dineopentaerythritol hexaacrylate (DPHA, Nippon Chemicals) was added. Pharmaceutical (stock) company), 3.1 g of photopolymerization initiator (Irgacure 907), 4.0 g of photo polymerization initiator (Irgacure 907, Japan Ciba-Geigy (stock) company), 1.3 g of photosensitizer (Kayacure-DETX , Manufactured by Nippon Kayaku Co., Ltd.), 455.8 g of methyl ethyl ketone, and 1,427.8 g of cyclohexanone, and stirred. Finally, 0.5 g of a fluorine-based surface modifier (P-8) was added, and after sufficiently stirring, it was filtered through a polypropylene filter having a pore diameter of 0.4 m to prepare a coating solution A for a medium refractive index layer. (Preparation of Coating Solution D for Low Refractive Index Layer) Added to 9 grams of thermally crosslinkable fluoropolymer (JN7 228A, solid concentration: 6%, manufactured by JSR Corporation) with a refractive index of 1.42 1.4 g of colloidal silicon dioxide (silicon dioxide, a product with a particle size different from MEK-ST, average particle size: 45 nm, solid concentration: 30%, manufactured by Nissan Chemical Industries, Ltd.), 0.4 g of sol solution a, 3 g of methyl isobutyl ketone and 0.6 g of cyclohexanone were mixed and then filtered through a polypropylene filter with a pore size of 1 μm to prepare a coating solution D for a low refractive index layer. (Preparation of Coating Liquid E for Low Refractive Index Layer) The same formula as that of Coating Liquid B for Low Refractive Index Layer of Example 1 was used to prepare a low-fold coating liquid E for the emissivity layer -213- 200535465. (Adjustment of the coating liquid F for the low refractive index layer) The coating liquid F for the low refractive index layer was prepared in the same formulation as the coating liquid C for the low refractive index layer of Example 1. (Manufacture of anti-reflection film) On a 80 micron-thick triacetyl cellulose film (TD-80UF, Fuji Photographic Film Co., Ltd., transparent support), an antistatic layer was coated with a gravure rotary printing machine. Use coating solution. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 160 W / cm. The illuminance was 400 mW / cm2, ultraviolet radiation of 300 mJ / cm2 to harden the coating layer to form an antistatic layer with a thickness of 0.7 microns. Use a gravure rotary printing machine to apply a hard coating on the antistatic layer. liquid. Then, the same drying conditions and ultraviolet irradiation conditions as those of the above-mentioned antistatic layer were performed to form a hard coating layer having a thickness of 3.5 m. A coating liquid for a middle refractive index layer was applied on the hard coat layer using a gravure rotary printer. After drying at 100 ° C, it was purged with nitrogen in an atmosphere with an oxygen concentration of 1.0% by volume or less, while using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at 240 W / cm. The illuminance was 550 mW / cm2, 600 mJ / cm2 of ultraviolet radiation to harden the coating layer to form a local refractive index layer (refractive index 1.65, film thickness 67 nm). A coating liquid for a high-refractive-index layer was coated on the middle-refractive-index layer using a gravure rotary printer. Then, the same drying conditions as the above-mentioned antistatic layer and -214-200535465 ultraviolet irradiation conditions were implemented to form a high refractive index layer (refractive index of 1.93 and film thickness of 107 nm). Use a gravure rotary printing machine to apply the coating solution for the low refractive index layer on the high refractive index layer, dry it at 120 ° C for 150 seconds, and then dry it at 140 ° C for 8 minutes, then use 240 W under nitrogen purge. / cm air-cooled metal halide lamp (manufactured by Eye Graphics, Inc.) with ultraviolet light at 400 mW / cm2 and 900 mJ / cm2 of radiation to form a low refractive index layer (refractive index 1.43, film 86 nm thick). The combination of the layers is implemented according to the method of Table 2 to produce samples 20 1 to 204 of the antireflection film. The coating solution for the antistatic layer was used by the user of Example 1. 〔Table 2〕
試料 抗靜電層 硬質塗層 中折射率層 高折射率層 低折射率層 201 1 A A A D 202 1 A A A E 203 1 A A A F 204 Μ /\\\ A A A F (抗反射膜之鹼化處理) 對塗佈後之上述試料201至204施加與實施例1相同之 鹼化處理,以製得經過鹼化處理之抗反射膜試料20 1至 204 〇 〔實施例3〕 將如下所述之組成物進料至混合槽中,並加以邊加熱邊 攪拌使各成份溶解,以調製纖維素醋酸酯溶液。 200535465 〔表3〕 纖維素醋酸酯溶液組成 乙醯化度爲60.9%之纖維素醋酸酯 100質量份 磷酸三苯酯(塑化劑) 7.8質量份 磷酸聯苯基二苯酯(塑化劑) 3.9質量份 二氯甲烷(第一溶劑) 300質量份 甲醇(第二溶劑) 54質量份 1_ 丁醇(第三溶劑) 11質量梧 在另一混合槽裝入16質量份之作爲延遲上升劑之芳香族 化合物(65 )、80質量份之二氯甲烷、及20質量份之甲 醇,邊加熱邊攪拌,以調製延遲上升劑溶液。在474質量 份之實施例3之纖維素醋酸酯溶液混合25質量份之延遲上 升劑溶液,充分攪拌以調製塗佈液。延遲上升劑之添加量 相對於1〇〇質量份之纖維素醋酸酯爲3.5質量份。 將所製得之塗佈液使用帶式流延機加以流延。將殘留溶 劑量爲1 5質量%之薄膜在1 3 0 °C之條件下使用拉幅機以 25 %延伸倍率加以橫向延伸以製造纖維素醋酸酯薄膜(厚 度:80微米)。對於所製得之纖維素醋酸酯薄膜(光學補 償片)使用橢圓計(M-ISO、曰本分光(股)公司製)測定 其在5 50奈米波長之Re延遲値及Rth延遲値。其結果展示 於表4。 〔實施例4〕 除在474質量份之纖維素醋酸酯溶液混合56質量份之與 實施例3相同之延遲上升劑溶液以調製塗佈液(相對於 100質量份之纖維素醋酸酯係使用7.8質量份之延遲上升劑 ),並將延伸倍率變更爲14%以外,其餘則與實施例3相 同方式製得纖維素醋酸酯薄膜(光學補償片)並加以評估 -216- 200535465 。其結果展示於表4。 〔實施例5〕 將1 6質量份之作爲延遲上升劑的棒狀化合物之芳香族化 合物(12) ,87質量份之二氯甲烷、及13質量份之甲醇 進料至混合槽中,邊加熱邊攪拌,以調製延遲上升劑溶液 。在474質量份之實施例4之纖維素醋酸酯溶液混合36質 量份之延遲上升劑溶液,並加以充分攪拌以調製塗佈液。 延遲上升劑之添加量相對於100質量份之纖維素醋酸酯爲 5.0質量份。 將所製得之塗佈液使用帶式流延機加以流延。除將延伸 倍率變更爲28%以外,其餘則與實施例3相同方式加以橫 向延伸以製造纖維素醋酸酯薄膜(厚度:80微米)。對於 所製得之纖維素醋酸酯薄膜(光學補償片)與實施例3相 同方式測定Re延遲値及Rth延遲値。其結果展示於表4。 〔比較例1〕 除將纖維素醋酸酯溶液直接用作爲塗佈液,且並未實施 延伸處理以外,其餘則與實施例3相同方式製得纖維素醋 酸酯薄膜(光學補償片)並加以評估。其結果展示於表4 〔表4〕 薄膜 延遲上升劑 延伸倍率 Re Rth 實施例3 3.5質量份 25% 40奈米 130奈米 實施例4 7.8質量份 14% 50奈米 240奈米 實施例5 5.0質量份 28% 52奈米 135奈米 比較例1 無 未延伸 4奈米 48奈米 -217- 200535465 薄膜 每延伸1%之Re/Rth變化量 實施例3 0.012 實施例4 0.015 實施例5 0.014 比較例1 - 由上述表所示結果即得知,本發明實施例3至5之試料 ,其Re値及Rth値係比延遲上升劑與無延伸的比較例1增 大。 〔實施例6〕 將如下所述之纖維素醋酸酯溶液組成之各成份進料至混 合槽中,並加以邊加熱邊攪拌使各成份溶解,以調製纖維 素醋酸酯溶液。 (纖維素醋酸酯溶液組成) 乙醯化度爲60.9%之纖維素醋酸酯 100質量份 磷酸三苯酯(塑化_劑) 7.8質量份 磷酸聯苯基二苯酯(塑化劑) 3.9質量份 二氯甲烷(第一溶劑) 318質量份 甲醇(第二溶劑) 47質量份 將1 6質量份之作爲延遲上升劑的棒狀化合物之芳香族化 合物(46) 、87質量份之二氯甲烷、及13質量份之甲醇 進料至另一混合槽中,並加以邊加熱邊攪拌,以調製延遲 上升劑溶液。 在474質量份之纖維素醋酸酯溶液混合36質量份之延遲 上升劑溶液,充分攪拌以調製塗佈液。延遲上升劑之添加 量相對於100質量份之纖維素醋酸酯爲5.0質量份。 將所製得之塗佈液使用帶式流延機加以流延。將殘留溶 -218- 200535465 劑量爲15質量%之薄膜在13〇t:之條件下使用拉幅機以 2 8 %延伸倍率加以橫向延伸以製造纖維素醋酸酯薄膜(厚 度:82微米)。對於所製得之纖維素醋酸酯薄膜(光學補 償片)使用KOBRA 21ADH (王子計測機器公司製)測定 其在590奈米波長之Re延遲値及Rth延遲値。其結果展示 於表5。 〔實施例7〕 將如下所述之添加溶液組成之各成份進料至混合槽中, 並加以邊加熱邊攪拌使各成份溶解,以調製在延遲上升劑 再加入添加劑之添加液。 (添加溶液組成) 在實施例6所使用之延遲上升劑 16質量份 偏苯三酸三甲酯 1質量份 二氯甲烷(第一溶劑) 87質量份 甲醇(第二溶劑) 13質量份 在474質量份之實施例6的纖維素醋酸酯溶液混合44質 量份之上述延遲上升劑溶液,並充分攪拌,以調製塗佈液 。延遲上升劑之添加量相對於1 00質量份之纖維素醋酸酯 爲6 · 0質量份。 與實施例6相同方式製得經加以橫向延伸之纖維素醋酸 酯薄膜°對所製得之纖維素醋酸酯薄膜(光學補償片), 與實施例6相同方式評估其Re延遲値及Rth延遲値。其結 果展示於表5。 〔實施例8 ] 在混合槽裝入丨6質量份之作爲延遲上升劑的棒狀化合物 -219- 200535465 之芳香族化合物(67 ) 、87質量份之二氯甲烷、及13質 量份之甲醇,邊加熱邊攪拌,以調製延遲上升劑溶液。 在4 74質量份之纖維素醋酸酯溶液混合36質量份之延遲 上升劑溶液,充分攪拌以調製塗佈液。延遲上升劑之添加 量相對於100質量份之纖維素醋酸酯爲5.0質量份。 在殘留溶劑量爲33%時即由帶上剝取,並導入於拉幅延 伸機後,以28%之延伸倍率加以延伸。延伸後之膜厚爲95 微米。延伸後,以140 °C溫風乾燥由拉幅機所脫離之薄膜 ,以製得將殘留溶劑量控制於1 %以下之纖維素醋酸酯薄膜 。對所製得之纖維素醋酸酯薄膜(光學補償片),與實施 例6相同方式評估其Re延遲値及Rth延遲値。其結果展示 於表5。 〔實施例9〕 在混合槽裝入1 6質量份之與實施例6相同之延遲上升劑 、3質量份之Sumisorb 165F (住友化學(股)公司製)、 87質量份之二氯甲烷、及13質量份之甲醇,邊加熱邊攪 拌,以調製延遲上升劑溶液。 在474質量份之實施例6的纖維素醋酸酯溶液混合36質 量份之延遲上升劑溶液,充分攪拌以調製塗佈液。延遲上 升劑之添加量相對於100質量份之纖維素醋酸酯爲5_0質 量份。 在殘留溶劑量爲3 3 %時即由帶上剝取,並導入於拉幅延 伸機後,以28%之延伸倍率加以延伸。延伸後之膜厚爲95 微米。延伸後,以140 °C溫風乾燥藉由拉幅機所脫離之薄 200535465 膜’以製得將殘留溶劑量控制於丨%以下之纖維素醋酸酯薄 膜。對所製得之纖維素醋酸酯薄膜(光學補償片),與實 施例6相同方式評估其Re延遲値及Rth延遲値。其結果展 示於表5。 〔實施例1 0〕 在混合槽裝入1 6質量份之與實施例8相同之延遲上升劑 、質量份之紫外線吸收劑B ( TINUVIN 327: Ciba特用 化學品(股)公司製)、2.4質量份之紫外線吸收劑C ( TINUVIN 32 8: Ciba特用化學品(股)公司製)、87質量 份之二氯甲烷、及1 3質量份之甲醇,並加以邊加熱邊攪拌 ’以調製延遲上升劑溶液。 在474質量份之實施例6的纖維素醋酸酯溶液混合36質 量份之上述延遲上升劑溶液,充分攪拌以調製塗佈液。 然後與實施例9相同方式製得纖維素醋酸酯薄膜。對所 製得之纖維素醋酸酯薄膜(光學補償片),與實施例6相 同方式評估Re延遲値及Rth延遲値。其結果展示於表5。 〔實施例1 1〕 將如下所述之醯化纖維素溶液組成之各成份進料至混合 槽中,並加以邊加熱邊攪拌使各成份溶解,以調製醯化纖 維素溶液。 -221 - 200535465 (醯化纖維素溶液組成) 乙醯基之取代度爲1.90,丙醯基之取代度爲0.80之 纖維素醋酸-丙酸酯 100質量份 磷酸三苯酯 8.5質量份 乙醇酸乙基鄰苯二甲醯基乙酯 2.0質量份 二氯甲烷 290質量份 乙醇 60質量份 在另一混合槽裝入5質量份之纖維素醋酸-丙酸酯、6質 量份之Cinubin 326 ( Ciba特用化學品(股)公司製)、4 質量份之Cinubin 109 ( Ciba特用化學品(股)公司製)、 5質量份之Cinubin 171 (Ciba特用化學品(股)公司製) 、94質量份之二氯甲烷、8質量份之乙醇,並加以邊加熱 邊攪拌,以調製添加劑溶液。 在4 74質量份之醯化纖維素溶液混合1 0質量份之添加劑 溶液,充分攪拌以調製塗佈液。 除將延伸倍率設定爲30%,膜厚設定爲80微米以外,其 餘則與實施例6相同方式製得經加以橫向延伸之纖維素醋 酸-丙酸酯薄膜。對所製得之纖維素醋酸-丙酸酯薄膜(光 學補償片),與實施例6相同方式評估Re延遲値及Rth延 遲値。其結果展示於表5。 〔實施例1 2〕 在混合槽裝入16質量份之實施例3之延遲上升劑、87 質量份之二氯甲烷、及13質量份之甲醇,邊加熱邊攪拌, 以調製延遲上升劑溶液。 在474質量份之實施例6的纖維素醋酸酯溶液混合36質 200535465 量份之上述延遲上升劑溶液,充分攪拌以調製塗佈液。延 遲上升劑之添加量相對於1 〇〇質量份之纖維素醋酸酯爲5 . 〇 質量份。 除將延伸倍率設定爲28%以外,其餘則與實施例6相同 方式製得經加以橫向延伸之纖維素醋酸酯薄膜(厚度:8 〇 微米)。對所製得之纖維素醋酸酯薄膜(光學補償片), 與實施例6相同方式評估Re延遲値及Rth延遲値。其結果 展示於表5。 〔實施例1 3〕 在混合槽裝入1 6質量份之作爲延遲上升劑之芳香族化合 物(66) 、87質量份之二氯甲烷、及13質量份之甲醇, 邊加熱邊攪拌,以調製延遲上升劑溶液。 在474質量份之實施例6的纖維素醋酸酯溶液混合30質 量份之上述延遲上升劑溶液,充分攪拌以調製塗佈液。延 遲上升劑之添加量相對於纖維素醋酸酯100質量份爲4.2 質量份。 在帶上流延、後,在殘留溶劑量爲32%時加以剝取後,以 拉幅延伸機加以橫向延伸。延伸倍率係設定爲3 0%,延伸 溫度係設定爲ll〇°C。其後以130°C溫風使其乾燥以製得纖 維素醋酸酯薄膜。乾燥後之薄膜膜厚爲96微米。對所製得 之纖維素醋酸酯薄膜(光學補償片),與實施例6相同方 式評估Re延遲値及Rth延遲値。其結果展示於表5。 〔實施例1 4〕 使用經以實施例6所調製之塗佈液在帶上流延後,在殘 -223- 200535465 留溶劑量爲3 2 %時加以剝取後,以拉幅延伸機加以橫向延 伸。延伸倍率係設定爲26%,延伸溫度係設定爲1 10°C。 其後以1 3 0 °C溫風使其乾燥以製得纖維素醋酸酯薄膜。塗 佈液流量係調整成使得乾燥後之薄膜膜厚爲92微米。對所 製得之纖維素醋酸酯薄膜(光學補償片),與實施例6相 同方式評估Re延遲値及Rth延遲値。其結果展示於表5。 〔實施例1 5〕 在混合槽裝入1 6質量份之實施例1 3的延遲上升劑、3 質量份之紫外線吸收劑A (住友化學公司製之Sumisorb 165F) 、87質量份之二氯甲烷、及13質量份之甲醇,邊 加熱邊攪拌,以調製延遲上升劑溶液。 在474質量份之實施例6的纖維素醋酸酯溶液混合30質 量份之上述延遲上升劑溶液,充分攪拌以調製子塗佈液。 延遲上升劑之添加量相對於1 00質量份之纖維素醋酸酯爲 4.2質量份。 在帶上流延後,在殘留溶劑量爲32%時加以剝取後,以 拉幅延伸機加以橫向延伸。延伸倍率係設定爲3 0%,延伸 溫度係設定爲ll〇°C。其後以130°C溫風使其乾燥以製得纖 維素醋酸酯薄膜。乾燥後之薄膜膜厚爲96微米。對所製得 之纖維素醋酸酯薄膜(光學補償片),與實施例1相同方 式評估Re延遲値及Rth延遲値。其結果展示於表5。 -224- 200535465 〔表5〕 薄膜 膜厚 (微米) Re (奈米) Rth (奈米) 實施例6 82 52 135 實施例7 80 52 160 實施例8 95 48 144 實施例9 95 53 148 實施例10 95 58 152 實施例11 80 38 129 實施例12 82 45 175 實施例13 96 39 142 實施例14 92 32 158 實施例15 96 40 145 〔實施例1 6〕 將碘吸附於經延伸之聚乙烯醇薄膜以製得。對經以實施 例3所製得之纖維素醋酸酯薄膜施加皂化處理後,使用聚 乙烯醇系黏著劑貼附於偏光膜之單側。對本發明之抗反射 膜試料1 0 1施加皂化處理,並使用聚乙烯醇系黏著劑,貼 附於偏光膜之相反側。偏光膜之透射軸與經以實施例3所 製得的纖維素醋酸酯薄膜之遲相軸係加以平行配置。偏光 膜之透射軸與抗反射膜試料1 0 1的纖維素三醋酸酯薄膜之 遲相軸係加以配置成正交。以如上所述之方式製得偏光板 〔比較例2〕 除使用經以比較例1所製得之纖維素醋酸酯薄膜以外, 其餘則與實施例1 6相同方式製得偏光板。 〔實施例17至28〕 除使用經以實施例4至1 5所製得之纖維素醋酸酯薄膜以 外,其餘則與實施例16相同方式製得偏光板 -225 - 200535465 對所製得之偏光板試料1 6至28、比較例2偏光板試料 將經評估其鉛筆硬度與鏡面反射率之結果展示於表6。 〔表6〕 偏光板實施例 錯_硬麼 鏡面反射率(%) 〜 實施例16 2Η 2.28 實施例17 2Η 2.25 ^^ 實施例18 2Η " Ζ29 ^ 實施例19 2Η ~ 2.22 實施例20 2Η 2.24 實施例21 2ΪΓ 2.25 實施例22 2Η 2.30 實施例23 2Η 2.25 ~^ 實施例24 2Η 228 實施例25 2Η 2.24 實施例26 2Η 2.26 實施例27 2Η 2.25 實施例28 2Η 2.23 比較例2 Η 2.30 鉛蓋硬度評估Sample antistatic layer hard coating medium refractive index layer high refractive index layer low refractive index layer 201 1 AAAD 202 1 AAAE 203 1 AAAF 204 Μ / \\\ AAAF (Alkaline treatment of antireflection film) Samples 201 to 204 were subjected to the same alkalizing treatment as in Example 1 to obtain alkalized antireflection film samples 20 1 to 204. [Example 3] The composition described below was fed into a mixing tank , And stirred while heating to dissolve each component to prepare a cellulose acetate solution. 200535465 [Table 3] Cellulose acetate solution composition Cellulose acetate with a degree of acetylation of 60.9% 100 parts by mass of triphenyl phosphate (plasticizer) 7.8 parts by mass of biphenyl diphenyl phosphate (plasticizer) 3.9 parts by mass of dichloromethane (first solvent) 300 parts by mass of methanol (second solvent) 54 parts by mass of 1_ butanol (third solvent) 11 parts of mass In a separate mixing tank, 16 parts by mass of a delayed rising agent The aromatic compound (65), 80 parts by mass of dichloromethane, and 20 parts by mass of methanol were stirred while heating to prepare a delayed rising agent solution. To 474 parts by mass of the cellulose acetate solution of Example 3, 25 parts by mass of the delayed-rise solution was mixed, and sufficiently stirred to prepare a coating solution. The amount of the delayed rising agent was 3.5 parts by mass based on 100 parts by mass of cellulose acetate. The obtained coating solution was cast using a belt caster. A film with a residual solvent amount of 15% by mass was stretched laterally at a stretching rate of 25% using a tenter at 130 ° C to produce a cellulose acetate film (thickness: 80 microns). With respect to the obtained cellulose acetate film (optical compensation sheet), the Re retardation 値 and Rth retardation 曰 at a wavelength of 5 to 50 nanometers were measured using an ellipsimeter (M-ISO, manufactured by Spectroscopy Corporation). The results are shown in Table 4. [Example 4] A coating solution was prepared by mixing 56 parts by mass of the same delayed rising agent solution as in Example 3 with 474 parts by mass of the cellulose acetate solution (using 7.8 parts by mass of the cellulose acetate system). Mass part of the delay rising agent), and the stretching ratio was changed to other than 14%, and the rest were prepared in the same manner as in Example 3 to prepare a cellulose acetate film (optical compensation sheet) and evaluated -216-200535465. The results are shown in Table 4. [Example 5] 16 parts by mass of the aromatic compound (12) as a rod-shaped compound as a delay rising agent, 87 parts by mass of dichloromethane, and 13 parts by mass of methanol were fed into a mixing tank and heated while While stirring, prepare a delayed rising agent solution. 36 mass parts of the delayed rising agent solution was mixed with 474 mass parts of the cellulose acetate solution of Example 4 and sufficiently stirred to prepare a coating solution. The amount of the delayed rising agent added was 5.0 parts by mass based on 100 parts by mass of cellulose acetate. The obtained coating solution was cast using a belt caster. Except that the stretching ratio was changed to 28%, the other parts were stretched in the same manner as in Example 3 to produce a cellulose acetate film (thickness: 80 m). Regarding the obtained cellulose acetate film (optical compensation sheet), the Re retardation and Rth retardation were measured in the same manner as in Example 3. The results are shown in Table 4. [Comparative Example 1] A cellulose acetate film (optical compensation sheet) was produced and evaluated in the same manner as in Example 3, except that the cellulose acetate solution was directly used as a coating liquid and no extension treatment was performed. . The results are shown in Table 4. [Table 4] Film Retarder Elongation Ratio Re Rth Example 3 3.5 parts by mass 25% 40 nm 130 nm Example 4 7.8 parts by mass 14% 50 nm 240 nm Example 5 5.0 28% by mass 52nm 135nm Comparative Example 1 No unstretched 4nm 48nm -217- 200535465 Re / Rth change amount per 1% stretch of film Example 3 0.012 Example 4 0.015 Example 5 0.014 Comparison Example 1-From the results shown in the table above, it is known that the Re 値 and Rth 値 of the samples of Examples 3 to 5 of the present invention are larger than those of Comparative Example 1 with a delayed rising agent and no extension. [Example 6] Each component composed of the cellulose acetate solution described below was fed into a mixing tank, and the components were dissolved while being stirred while heating to prepare a cellulose acetate solution. (Composition of cellulose acetate solution) 100 parts by mass of cellulose acetate having a degree of acetylation of 60.9% of triphenyl phosphate (plasticizer) 7.8 parts by mass of biphenyl diphenyl phosphate (plasticizer) 3.9 mass Parts of dichloromethane (first solvent) 318 parts by mass of methanol (second solvent) 47 parts by mass of 16 parts by mass of an aromatic compound (46) of a rod-like compound as a delay rising agent, 87 parts by mass of dichloromethane And 13 parts by mass of methanol were fed into another mixing tank, and stirred while heating to prepare a delayed rising agent solution. 36 parts by mass of the delayed rising agent solution was mixed with 474 parts by mass of the cellulose acetate solution, and stirred sufficiently to prepare a coating solution. The amount of the delayed rising agent added was 5.0 parts by mass based on 100 parts by mass of cellulose acetate. The obtained coating solution was cast using a belt caster. The residual solvent-218-200535465 film having a dose of 15% by mass was stretched laterally at a stretching rate of 28% using a tenter at a condition of 130%: to produce a cellulose acetate film (thickness: 82 microns). The obtained cellulose acetate film (optical compensation sheet) was measured for its Re retardation 値 and Rth retardation 在 at a wavelength of 590 nm using KOBRA 21ADH (manufactured by Oji Measurement Co., Ltd.). The results are shown in Table 5. [Example 7] Each component composed of an addition solution as described below was fed into a mixing tank, and the components were dissolved while being stirred while being heated to prepare an additive liquid in which a delayed rising agent was added. (Additional solution composition) The delayed rising agent used in Example 6 was 16 parts by mass of trimethyl trimellitate, 1 part by mass of dichloromethane (first solvent), 87 parts by mass of methanol (second solvent), and 13 parts by mass of 474. The mass part of the cellulose acetate solution of Example 6 was mixed with 44 parts by mass of the above-mentioned delayed rising agent solution, and stirred sufficiently to prepare a coating solution. The added amount of the retardation rising agent is 6.0 parts by mass based on 100 parts by mass of cellulose acetate. A cellulose acetate film having a lateral extension was prepared in the same manner as in Example 6. The cellulose acetate film (optical compensation sheet) obtained was evaluated in the same manner as in Example 6 for Re retardation and Rth retardation. . The results are shown in Table 5. [Example 8] A mixing tank was charged with 6 parts by mass of an aromatic compound (67) of rod-like compound -219-200535465 as a delayed rising agent, 87 parts by mass of dichloromethane, and 13 parts by mass of methanol. Stir while heating to prepare a delayed rising agent solution. 36 parts by mass of the delayed rising agent solution was mixed with 4 to 74 parts by mass of the cellulose acetate solution, and the mixture was sufficiently stirred to prepare a coating solution. The amount of the delayed rising agent added was 5.0 parts by mass based on 100 parts by mass of cellulose acetate. When the residual solvent content is 33%, it is stripped from the belt, introduced into the tenter stretcher, and stretched at a draw ratio of 28%. The film thickness after stretching was 95 microns. After stretching, the film detached from the tenter was warm-air dried at 140 ° C to obtain a cellulose acetate film having a residual solvent amount controlled to less than 1%. Regarding the obtained cellulose acetate film (optical compensation sheet), the Re retardation and Rth retardation were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 9] A mixing tank was charged with 16 parts by mass of the same delay increasing agent as in Example 6, 3 parts by mass of Sumisorb 165F (manufactured by Sumitomo Chemical Co., Ltd.), 87 parts by mass of methylene chloride, and 13 parts by mass of methanol was stirred while heating to prepare a delayed rising agent solution. 36 mass parts of the delayed rising agent solution was mixed with 474 mass parts of the cellulose acetate solution of Example 6 and stirred sufficiently to prepare a coating solution. The added amount of the delayed rising agent is 5_0 parts by mass relative to 100 parts by mass of cellulose acetate. When the residual solvent content is 33%, it is stripped from the belt, introduced into the tenter stretcher, and stretched at a draw ratio of 28%. The film thickness after stretching was 95 microns. After stretching, the thin 200535465 film ′ detached by the tenter was heated at 140 ° C. to obtain a cellulose acetate film having a residual solvent amount controlled to less than or equal to %. Regarding the obtained cellulose acetate film (optical compensation sheet), the Re retardation and Rth retardation were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 10] A mixing tank was charged with 16 parts by mass of the same retardation rising agent as in Example 8 and parts by mass of the ultraviolet absorber B (TINUVIN 327: manufactured by Ciba Special Chemicals Co., Ltd.), 2.4 Parts by mass of UV absorber C (TINUVIN 32 8: manufactured by Ciba Special Chemicals Co., Ltd.), 87 parts by mass of dichloromethane, and 13 parts by mass of methanol, and stirred while heating to adjust the delay Rising agent solution. 36 mass parts of the above-mentioned delayed rising agent solution was mixed with 474 mass parts of the cellulose acetate solution of Example 6 and sufficiently stirred to prepare a coating solution. A cellulose acetate film was then prepared in the same manner as in Example 9. With respect to the obtained cellulose acetate film (optical compensation sheet), Re retardation 値 and Rth retardation 评估 were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 1 1] Each component composed of the tritiated cellulose solution described below was fed into a mixing tank, and the components were dissolved while being stirred while being heated to prepare a tritiated cellulose solution. -221-200535465 (composed of tritiated cellulose solution) 100% by mass of cellulose acetate-propionate, acetic acid-propionate, 8.5 parts by mass of ethyl glycolate 2.0 parts by mass of phthaloyl ethyl acetate, 290 parts by mass of dichloromethane, 60 parts by mass of ethanol, 5 parts by mass of cellulose acetate-propionate and 6 parts by mass of Cinubin 326 (Ciba Chemicals (stock) company), 4 parts by mass of Cinubin 109 (Ciba Special Chemicals (Stock) Co., Ltd.), 5 parts by mass of Cinubin 171 (Ciba Special Chemicals (Stock) Co., Ltd.), 94 mass Parts of dichloromethane and 8 parts by mass of ethanol, and stirred while heating to prepare an additive solution. 10 parts by mass of the additive solution was mixed with 4 to 74 parts by mass of the tritiated cellulose solution and thoroughly stirred to prepare a coating solution. Except that the stretching ratio was set to 30% and the film thickness was set to 80 m, the same procedure as in Example 6 was performed to obtain a cellulose acetate-propionate film stretched laterally. Regarding the obtained cellulose acetate-propionate film (optical compensation sheet), the Re retardation and Rth retardation were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 1 2] A mixing tank was charged with 16 parts by mass of the delayed rising agent of Example 3, 87 parts by mass of methylene chloride, and 13 parts by mass of methanol, and stirred while heating to prepare a delayed rising agent solution. 36 mass parts of 200535465 parts of the above-mentioned delayed rising agent solution were mixed with 474 parts by mass of the cellulose acetate solution of Example 6 and thoroughly stirred to prepare a coating solution. The added amount of the delay rising agent is 5.0 parts by mass based on 100 parts by mass of cellulose acetate. A cellulose acetate film (thickness: 80 µm) was obtained in the same manner as in Example 6 except that the stretching ratio was set to 28%. Regarding the obtained cellulose acetate film (optical compensation sheet), Re retardation and Rth retardation were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 1 3] A mixing tank was charged with 16 parts by mass of an aromatic compound (66) as a delayed rising agent, 87 parts by mass of methylene chloride, and 13 parts by mass of methanol, and stirred while heating to prepare Delayed ascent solution. 30 mass parts of the above-mentioned delayed rising agent solution was mixed with 474 mass parts of the cellulose acetate solution of Example 6 and sufficiently stirred to prepare a coating solution. The addition amount of the delay rising agent was 4.2 parts by mass based on 100 parts by mass of cellulose acetate. After being cast on the belt, it is stripped when the residual solvent content is 32%, and then stretched laterally with a tenter stretcher. The extension ratio is set to 30%, and the extension temperature is set to 110 ° C. Thereafter, it was dried with warm air at 130 ° C to obtain a cellulose acetate film. The film thickness after drying was 96 microns. Regarding the obtained cellulose acetate film (optical compensation sheet), Re retardation 値 and Rth retardation 値 were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 1 4] After using the coating solution prepared in Example 6 to cast on the belt, strip it at a residual solvent volume of -223-200535465 at 3 2%, and then use a tenter stretcher to horizontally extend. The extension ratio is set to 26%, and the extension temperature is set to 110 ° C. Thereafter, it was dried with warm air at 130 ° C to obtain a cellulose acetate film. The coating liquid flow rate was adjusted so that the film thickness of the film after drying was 92 m. With respect to the obtained cellulose acetate film (optical compensation sheet), Re retardation 値 and Rth retardation 评估 were evaluated in the same manner as in Example 6. The results are shown in Table 5. [Example 1 5] The mixing tank was charged with 16 parts by mass of the retarding rising agent of Example 1 3, 3 parts by mass of the ultraviolet absorbent A (Sumisorb 165F manufactured by Sumitomo Chemical Co., Ltd.), and 87 parts by mass of dichloromethane. And 13 parts by mass of methanol, and stirred while heating to prepare a delayed rising agent solution. 30 mass parts of the above-mentioned delayed rising agent solution was mixed with 474 mass parts of the cellulose acetate solution of Example 6 and sufficiently stirred to prepare a sub-coating solution. The amount of the delayed rising agent added was 4.2 parts by mass based on 100 parts by mass of cellulose acetate. After being cast on the belt, it was stripped when the residual solvent content was 32%, and then stretched laterally with a tenter stretcher. The extension ratio is set to 30%, and the extension temperature is set to 110 ° C. Thereafter, it was dried with warm air at 130 ° C to obtain a cellulose acetate film. The film thickness after drying was 96 microns. Regarding the obtained cellulose acetate film (optical compensation sheet), Re retardation and Rth retardation were evaluated in the same manner as in Example 1. The results are shown in Table 5. -224- 200535465 [Table 5] Film thickness (micron) Re (nano) Rth (nano) Example 6 82 52 135 Example 7 80 52 160 Example 8 95 48 144 Example 9 95 53 148 Example 10 95 58 152 Example 11 80 38 129 Example 12 82 45 175 Example 13 96 39 142 Example 14 92 32 158 Example 15 96 40 145 [Example 1 6] Iodine was adsorbed on the extended polyvinyl alcohol The film was made. After the saponification treatment was performed on the cellulose acetate film obtained in Example 3, it was attached to one side of a polarizing film using a polyvinyl alcohol-based adhesive. A sample 101 of the anti-reflection film of the present invention was subjected to a saponification treatment, and a polyvinyl alcohol-based adhesive was used to attach it to the opposite side of the polarizing film. The transmission axis of the polarizing film was arranged parallel to the slow axis system of the cellulose acetate film obtained in Example 3. The transmission axis of the polarizing film and the retardation axis system of the cellulose triacetate film of the antireflection film sample 101 were arranged orthogonally. A polarizing plate was obtained in the manner described above. [Comparative Example 2] A polarizing plate was produced in the same manner as in Example 16 except that the cellulose acetate film obtained in Comparative Example 1 was used. [Examples 17 to 28] A polarizing plate -225-200535465 was obtained in the same manner as in Example 16 except that the cellulose acetate film obtained in Examples 4 to 15 was used. The plate samples 16 to 28 and the polarizing plate samples of Comparative Example 2 are shown in Table 6 after the results of evaluating their pencil hardness and specular reflectance. [Table 6] Example of polarizing plate error _ rigid mirror reflectance (%) ~ Example 16 2Η 2.28 Example 17 2Η 2.25 ^^ Example 18 2Η " AZ29 ^ Example 19 2Η ~ 2.22 Example 20 2Η 2.24 Example 21 2ΪΓ 2.25 Example 22 2Η 2.30 Example 23 2Η 2.25 ~ ^ Example 24 2Η 228 Example 25 2Η 2.24 Example 26 2Η 2.26 Example 27 2Η 2.25 Example 28 2Η 2.23 Comparative Example 2 Η 2.30 Lead Cap Hardness Evaluation
根據:TIS K5400所揭述之鉛筆硬度評估,對偏光板之光 學補償片面的相反側面亦即對抗反射膜面進行評估。亦即 ,在25°C、60 %RH將偏光板加以調濕2小時後,使用JIS S 6006所規定的Η至B之試驗用鉛筆,在500克荷重以下 之判定基準進行評估,並以評估爲ΟΚ的最高鉛筆硬度視 爲評估値。較佳爲硬度較高者。 η =就5片之評估結果無傷至有1個刮傷:ΟΚ η =就5片之評估結果有3個以上之刮傷:NG 並且當有無傷之判斷是微妙而不能明確地分級時則以^ 〜」標示並以其範圍表示。(例·· 3Η〜2Η) 鏡面反射率 在分光光度計V-5 5 0 (日本分光(股)公司製)裝上接 -226- 200535465 合器ARV-47,在3 80至780奈米之波長區域測定在5。入 射角時的-5°出射角之鏡面反射率,然後計算出450至 6 5 0奈米之平均反射率以作爲鏡面反射率。較佳爲該値爲 較低者。 〔實施例2 9〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(VL-1 53 0S、富士通(股)公司製)之一對偏光板及一對光學補 償片,並替代其而將經以實施例1 6所製得之偏光板,以黏 著劑在觀察者側及背光側以使經以實施例3所製得之纖維 素醋酸酯薄膜位於液晶胞側之方式各貼附一片。並且,加 以配置成使觀察者側之偏光板透射軸朝上下方向,且使背 光側之偏光板透射軸朝左右方向之正交尼科耳配置。對所 製得之液晶顯不裝置使用測定機(EZ-Contrast 160D、 ELDIM公司製)測定由黑色顯示(L1)至白色顯示(L8) 的8階段之視野角。其結果展示於表7。 〔實施例3 0〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(V L -153 0S、富士通(股)公司製)之一對偏光板及一對光學補 償片,並替代其而將經以實施例1 7所製得之偏光板,以黏 著劑在觀察者側以使經以實施例4所製得之纖維素醋酸酯 薄膜位於液晶胞側之方式貼附一片。另外在背光側則貼附 一片市售商品級之偏光板(HLC2-5618HCS,Sanritz公司 製)。並且加以配置成使觀察者側之偏光板透射軸朝上下 方向,且使背光側之偏光板透射軸朝左右方向之正交尼科 -227- 200535465 耳配置。對所製得之液晶顯示裝置使用測定機(EZ-Contrast 16 0D、ELDIM公司製)測定由黑色顯示(L1 )至 白色顯示(L8 )的8階段之視野角。其結果展示於表7。 〔實施例3 1至4 1〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(VL-1530S、富士通(股)公司製)之一對偏光板及一對光學補 償片,並替代其而將經以實施例18至28所製得之偏光板 ,以黏著劑在觀察者側以使經以實施例5至1 5所製得之纖 維素醋酸酯薄膜位於液晶胞側之方式貼附一片。另外在背 光側也相同方式貼附。並且加以配置成使觀察者側之偏光 板透射軸朝上下方向,且使背光側之偏光板透射軸朝左右 方向之正交尼科耳配置。對所製得之液晶顯示裝置使用測 定機(ΕΖ-Contrast 160D、ELDIM公司製)測定由黑色顯 示(L1 )至白色顯示(L8 )的8階段之視野角。其結果展 示於表7。 〔比較例3〕 除取代經以實施例29所使用的實施例1 6之偏光板而使 用比較例2之偏光板以外,其餘則與實施例29相同方式製 得比較例3之液晶顯示裝置。 〔比較例4〕 除取代經以實施例30所使用的實施例17之偏光板而使 用比較例2之偏光板以外,其餘則與實施例3 0相同方式製 得比較例4之液晶顯示裝置。 〔比較例5〕 -228- 200535465 對使用垂直配向型液晶胞的液晶顯示裝置(VL_153〇s' 富士通(股)公司製)之液晶顯示裝置使用測定機(EZ-According to the pencil hardness evaluation disclosed by TIS K5400, the opposite side of the optical compensation sheet of the polarizing plate, that is, the anti-reflective film surface is evaluated. That is, after polarizing the polarizing plate at 25 ° C and 60% RH for 2 hours, the test pencils of Η to B specified in JIS S 6006 were used to evaluate under a 500 g load criterion, and the evaluation was based on the evaluation. The highest pencil hardness that was 0K was regarded as an evaluation 値. The higher hardness is preferred. η = No damage to 1 scratch on the evaluation result of 5 pieces: ΟΚ η = More than 3 scratches on the evaluation result of 5 pieces: NG and when the judgment of whether there is any damage is delicate and cannot be clearly graded, ^ ~ "Are marked and indicated by their range. (Example: · 3Η ~ 2Η) The specular reflectance is mounted on a spectrophotometer V-5 50 (manufactured by JASCO Corporation) with a junction-226- 200535465 combiner ARV-47, between 3 80 and 780 nm. The wavelength region was measured at 5. The specular reflectance at the -5 ° exit angle at the entrance angle is then calculated as the average reflectance from 450 to 650 nm. It is preferred that the ratio be lower. [Example 2 9] One pair of polarizing plates and one pair of optical compensation sheets provided in a liquid crystal display device (VL-1 53 0S, manufactured by Fujitsu Co., Ltd.) using a vertically aligned liquid crystal cell were peeled off and replaced therewith. One piece of the polarizing plate prepared in Example 16 was attached to the observer side and the backlight side so that the cellulose acetate film obtained in Example 3 was located on the liquid crystal cell side. . Furthermore, orthogonal Nicols are arranged so that the transmission axis of the polarizing plate on the viewer side faces up and down, and the transmission axis of the polarizing plate on the backlight side faces left and right. A measuring machine (EZ-Contrast 160D, manufactured by ELDIM Co., Ltd.) was used for the obtained liquid crystal display device to measure the viewing angles in 8 stages from black display (L1) to white display (L8). The results are shown in Table 7. [Example 3 0] A pair of polarizing plates and a pair of optical compensation sheets provided on a liquid crystal display device (VL-153 0S, manufactured by Fujitsu Co., Ltd.) using a vertical alignment type liquid crystal cell were peeled off and replaced. One piece of the polarizing plate prepared in Example 17 was attached with an adhesive on the observer side so that the cellulose acetate film obtained in Example 4 was on the liquid crystal cell side. In addition, a commercially available polarizer (HLC2-5618HCS, manufactured by Sanritz) is attached to the backlight side. Orthogonal Nico-227-200535465 ears are arranged so that the transmission axis of the polarizer on the viewer side faces up and down, and the transmission axis of the polarizer on the backlight side faces left and right. Using the measuring machine (EZ-Contrast 160D, manufactured by ELDIM), the obtained liquid crystal display device was used to measure the viewing angles in 8 stages from black display (L1) to white display (L8). The results are shown in Table 7. [Example 3 1 to 4 1] A pair of polarizing plates and a pair of optical compensation sheets provided in a liquid crystal display device (VL-1530S, manufactured by Fujitsu Co., Ltd.) using a vertically aligned liquid crystal cell were peeled off and replaced. The polarizing plates prepared in Examples 18 to 28 were attached with an adhesive on the observer side so that the cellulose acetate films prepared in Examples 5 to 15 were located on the liquid crystal cell side. one slice. It is also attached on the backlight side in the same way. Further, the polarizing plate transmission axis of the observer side is arranged in a vertical direction, and the polarizing plate transmission axis of the backlight side is arranged in an orthogonal Nicols direction. A measuring machine (EZ-Contrast 160D, manufactured by ELDIM Co., Ltd.) was used for the obtained liquid crystal display device to measure the viewing angles in eight stages from the black display (L1) to the white display (L8). The results are shown in Table 7. [Comparative Example 3] A liquid crystal display device of Comparative Example 3 was obtained in the same manner as in Example 29 except that the polarizing plate of Comparative Example 2 was used instead of the polarizing plate of Example 16 used in Example 29. [Comparative Example 4] A liquid crystal display device of Comparative Example 4 was obtained in the same manner as in Example 30 except that the polarizing plate of Comparative Example 2 was used instead of the polarizing plate of Example 17 used in Example 30. [Comparative Example 5] -228- 200535465 A liquid crystal display device (VL_153〇s' manufactured by Fujitsu Co., Ltd.) using a liquid crystal display device using a vertical alignment type was used with a measuring machine (EZ-
Contrast 160D、ELDIM公司製)測定由黑色顯示(L1)至 白色顯示(L8 )的8階段之視野角。其結果展示於表7。 〔表7〕 液晶顯示裝置 視野角(對比爲10以上且無黑色側之階調反轉之範圍) 透射軸方向 與透射軸成45〇之方向 實施例29 >80° >80° 實施例30 >80° >80° 實施例31至41 >80° >80° 比較例5 >80° 44。 (註)黑色側之階調反轉:L1與L2之間的反轉 由表7即得知本發明實施例29至41之液晶顯示裝置, 其無階調反轉的視野角範圍係比比較例5爲廣闊。 〔實施例42〕 剝下設置在使用TN型液晶胞的液晶顯示裝置(6E-A3、 夏普(股)公司製)之一對偏光板,並替代其而將經以實 施例1 8所製得之偏光板,以黏著劑在觀察者側及背光側以 使經以實施例5所製得之纖維素醋酸酯薄膜位於液晶胞側 之方式各貼附一片。並且使觀察者側之偏光板透射軸與背 光側之偏光板透射軸加以配置成爲0模式。對所製得之液 晶顯示裝置使用測定機(EZ-Contrast 160D、ELDIM公司 製)測定由黑色顯示(L1 )至白色顯示(L8 )的8階段之 視野角。其結果展示於表8。 〔比較例6〕 對使用TN型液晶胞之液晶顯示裝置(6E-A3、夏普(股 )公司製)使用測定機(EZ-Contrast 160D、ELDIM公司 -229- 200535465 製)測定由黑色顯示(L1 )至白色顯示(L8 )的8階段之 視野角。其結果展示於表8。 〔表 8〕 _ 液晶顯示裝置 視野角(對比爲10以上且無黑色1 則之階調反轉之範圍) 上 下 左右 實施例42 18° 23° 77° 比較例6 15 25° 37° (註)黑色側之階調反轉:L1與L2之間的反轉 本發明之實施例4 2,其無階調反轉之視野角範圍係已趨 於廣闊。 對經以實施例29至42所製得之液晶顯示裝置試料實施 如下所述之摩擦試驗。 (鉛筆手摩擦強度) 製造一種在金屬小皿之下側接合一可供插入鉛筆的管之 磨具,然後在該管插入經使芯突出3公分的鉛筆。芯之尖 端係加以磨成爲6(Τ角度之楔子狀。將液晶顯示裝置水平 擺置成使其抗反射膜朝上,然後在其上面放置裝載0.5公 斤的荷重之上述磨具,用手將磨具水平移動一次,移動長 度爲約2公分。適當地變更鉛筆硬度並更換5處的摩擦位 置,然後以目視觀察經摩擦後之抗反射膜面,以只能看得 到兩處以下之刮傷時的鉛筆之硬度視爲試料之硬度,以此 方式求出強度。 其結果展示於表9。 -230- 200535465 〔表9〕 液晶顯示裝置實施例 鉛筆手摩擦強度 實施例29至42 2H 比較例3 Η 比較例4 Η 比較例5 Η 比較例6 Η 由表9即得知本發明實施例29至42之液晶顯示裝置表 面的鉛筆硬度係比比較例3至6變得較硬。 〔實施例4 3〕Contrast 160D, manufactured by ELDIM Co., Ltd.) The angles of view in 8 stages from black display (L1) to white display (L8) were measured. The results are shown in Table 7. [Table 7] Viewing angle of liquid crystal display device (contrast range of 10 or more and no gradation reversal range on the black side) Direction of transmission axis and transmission axis at 45 ° Example 29 > 80 ° > 80 ° Example 30 > 80 ° > 80 ° Examples 31 to 41 > 80 ° > 80 ° Comparative Example 5 > 80 ° 44. (Note) Inversion of tone on the black side: Inversion between L1 and L2. Table 7 shows that the liquid crystal display devices of Examples 29 to 41 of the present invention have a comparison of the viewing angle range without tone inversion. Example 5 is broad. [Example 42] One pair of polarizing plates provided in a liquid crystal display device (6E-A3, manufactured by Sharp Corporation) using a TN-type liquid crystal cell was peeled off and replaced with the one obtained in Example 18 A polarizing plate was attached to the observer side and the backlight side so that each of the cellulose acetate film prepared in Example 5 was on the liquid crystal cell side. The polarizing plate transmission axis on the observer side and the polarizing plate transmission axis on the back light side are arranged in the 0 mode. The obtained liquid crystal display device was used to measure the viewing angles of 8 stages from black display (L1) to white display (L8) using a measuring machine (EZ-Contrast 160D, manufactured by ELDIM). The results are shown in Table 8. [Comparative Example 6] A liquid crystal display device (6E-A3, manufactured by Sharp Corporation) using a TN-type liquid crystal cell was measured using a measuring machine (EZ-Contrast 160D, manufactured by ELDIM Corporation -229-200535465). The black display (L1 ) To the angle of view of 8 stages from white display (L8). The results are shown in Table 8. [Table 8] _ Viewing angle of liquid crystal display device (contrast range of 10 or more and no black 1) The range of inversion is up and down Example 42 18 ° 23 ° 77 ° Comparative example 6 15 25 ° 37 ° (Note) Tone inversion on the black side: Inversion between L1 and L2 In Embodiment 4 2 of the present invention, the range of viewing angles without step inversion is widening. The liquid crystal display device samples prepared in Examples 29 to 42 were subjected to a friction test as described below. (Pencil Hand Friction Strength) An abrasive tool was manufactured by joining a tube into which a pencil can be inserted under the metal small dish, and then inserting a pencil with the core protruding 3 cm into the tube. The tip of the core is ground into a wedge shape with a 6 ° angle. The liquid crystal display device is placed horizontally with its anti-reflection film facing upward, and then the above-mentioned abrasive tool with a load of 0.5 kg is placed on it, and the grinding is performed manually The tool can be moved horizontally once, with a length of about 2 cm. Change the hardness of the pencil appropriately and change the friction position of 5 points, and then visually observe the anti-reflection film surface after rubbing, so that only two or less scratches can be seen The hardness of the pencil is regarded as the hardness of the sample, and the strength is obtained in this manner. The results are shown in Table 9. -230- 200535465 [Table 9] Examples of liquid crystal display device pencil hand friction strength Examples 29 to 42 2H Comparative Example 3 Η Comparative Example 4 Η Comparative Example 5 Η Comparative Example 6 Η Table 9 shows that the pencil hardness of the surfaces of the liquid crystal display devices of Examples 29 to 42 of the present invention is harder than that of Comparative Examples 3 to 6. [Example 4 3]
使用經以實施例5所調製之完成塗佈液,僅變更流延條 件(完成塗佈液之吐出量)來製得膜厚不相同之如下所述 之試料。 試料43 - 1膜厚80微米 試料43 - 2膜厚67微米 試料4 3 - 3膜厚5 4微米 試料43 - 4膜厚40微米 〔實施例44至62、比較例7至11〕The finished coating solution prepared in Example 5 was used, and only the casting conditions (the discharge amount of the finished coating solution) were changed to obtain samples as described below with different film thicknesses. Sample 43-1 film thickness 80 microns Sample 43-2 film thickness 67 microns Sample 4 3-3 film thickness 5 4 microns Sample 43-4 film thickness 40 microns [Examples 44 to 62, Comparative Examples 7 to 11]
將碘吸附於經延伸之聚乙烯醇薄膜以製得偏光膜。對經 以實施例43所製得之膜厚不相同的纖維素醋酸酯薄膜試料 43 - 1至43 - 4施加皂化處理,然後使用聚乙烯醇系黏著 劑將其貼合於偏光膜之單側。將經皂化處理之上述抗反射 膜試料101至109與試料201至204,使用聚乙烯醇系黏 著劑,貼附於隔著偏光膜的相反側面。並將偏光膜之透射 軸與經以上述實施例43所製得之纖維素醋酸酯薄膜之遲相 軸配置成平行。偏光膜之透射軸與抗反射膜試料的纖維素 三醋酸酯薄膜之遲相軸則加以配置成正交。以此等方式製 -231 - 200535465 得偏光板。 偏光板試料與抗反射膜試料之組合如下表1 〇所示。表中 也列出經使用市售商品級的纖維素三醋酸酯薄膜(富士照 相軟片(股)公司製,TD80UF、膜厚爲80微米)之偏光 板以作爲比較例。並且也舉例說明如下所述之比較例1 2與 同1 3之偏光板。 〔比較例1 2〕 取代使用於經以實施例16所製得之偏光板的以實施例3 所製得之纖維素醋酸酯薄膜,而對市售商品級之纖維素三 醋酸酯薄膜(Fujitac TD80UF、富士照相軟片公司製)施 加鹼化處理並使用聚乙烯醇系黏著劑加以貼附,並在與該 纖維素三醋酸酯薄膜面成相反側之面以與實施例1 6完全相 同方法貼附試料1 03之抗反射膜試料,以製得偏光板。 〔比較例1 3〕 製造傳統之偏光板。亦即製造在偏光膜之兩側並未貼附 光學補償片也未貼附抗反射膜,而經對市售商品級之纖,維 素三醋酸酯薄膜(Fujitac TD80UF、富士照相軟片公司製 )施加鹼化處理之薄膜,以聚乙烯醇系黏著劑加以貼附所 構成之偏光板。 -232- 200535465 〔表 1 〇〕 偏光板實施例 抗反射膜 附加光學補償功能之 纖維素醋酸酯薄膜 實施例44 試料101 實施例43-3 實施例45 試料102 II 實施例46 試料103 ” 實施例47 ” 實施例43-1 實施例48 ” 實施例43 - 2 實施例49 Μ 實施例43-4 實施例50 試料104 實施例43-3 實施例51 試料105 " 實施例52 試料106 ” 實施例53 試料107 ” 實施例54 試料108 ff 實施例55 試料109 " 比較例7 僅爲纖維素三醋酸酯 實施例43-1 比較例8 " 實施例43-2 比較例9 " 實施例43-4 比較例10 VV 實施例43-3 實施例56 試料201 99 實施例57 試料202 ” 實施例58 試料203 " 實施例59 II 實施例43-1 實施例60 " 實施例43-2 實施例61 VV 實施例43-4 實施例62 試料204 實施例43-3 比較例11 僅爲纖維素三醋酸酯 VI 比較例12 試料103 僅爲纖維素三醋酸酯 比較例13 僅爲纖維素三醋酸酯 僅爲纖維素三醋酸酯 (註)表1 〇中之「”」係意謂與上欄者相同。 對實施例44至62、比較例7至13之偏光板實施如下表 之評估。將試料內容與評估內容、結果展示於表1 1。 -233 - 200535465 〔表 1 1〕 偏光板實施例 鉛筆硬度 鏡面反射率(%) 實施例44 2H 2.26 實施例45 2H 2.30 實施例46 2H 1.69 實施例47 2H 1.70 實施例48 2H 1.72 實施例49 2H 1.68 實施例50 2H 1.67 實施例51 2H 2.21 實施例52 2H 2.17 實施例53 2H 2.51 實施例54 2H 2.65 實施例55 2H〜Η 2.30 比較例7 Η 3.95 比較例8 ΗΒ 3.96 比較例9 F 3.83 比較例10 3H 3.91 實施例56 3H 0.38 實施例57 3H 0.35 實施例58 3H 0.33 實施例59 3H 0.39 實施例60 3H 0.35 實施例61 3H 0.33 實施例62 3H〜Η 0.35 比較例11 Β 3.89 比較例12 2Η 1.85 比較例13 Β 4.04 由表1 1即得知,經配合本發明之附加光學補償功能的纖 維素醋酸酯薄膜而使用本發明抗反射膜之偏光板者,其鉛 筆硬度與反射率皆較佳。 例如藉由組合本發明之抗反射膜,藉此即使附加光學補 償功能之纖維素醋酸酯薄膜的膜厚有變化,也可使相對於 比較例7至1 0而使實施例46至49者之鉛筆硬度不致於造 成差距而變得較強,相對於比較例8至1 1而使實施例5 8 至6 1者之鉛筆硬度不致於造成差距而變得較強。 -234- 200535465 另外,實施例48至50,實施例58、6〇、61之情形係即 使其膜厚相對變得薄,但是其鉛筆硬度卻並未導致低化而 仍然是屬理想的偏光板。 〔實施例63〕 除將上述抗反射膜試料1 03之防眩性硬質塗層塗佈液變 更爲C以外,其餘則與上述試料丨03相同方式塗佈以製得 試料301。使用該抗反射膜試料與實施例43 - 3的附加光 學補償功能之纖維素醋酸酯薄膜試料,並與實施例1 6相同 方式製得偏光板。 〔實施例64〕 除將上述抗反射膜試料1 0 3之防眩性硬質塗層塗佈液變 更爲D以外,其餘則與上述試料丨03相同方式塗佈以製得 試料3 02。使用該抗反射膜試料與實施例43 - 3的光學補 償片試料,並與實施例1 6相同方式製得偏光板。 透射影像鮮明件之評估 使用Suga試驗機(股)公司製之繪圖式測定器(ICM-2D型),並以0.5毫米之光學梳測定透射影像鮮明性之値 將透射影像鮮明性與鉛筆硬度之評估結果展示於表1 2。 〔表 1 2〕 偏光板試料 抗反射膜 透射影像鮮明性 (%) 鉛筆硬度評估 實施例63 試料301 15 3H 實施例64 試料302 60 2H〜Η 實施例46 試料103 38 2Η 由表1 2即得知,使透射影像鮮明性降低者,其鉛筆硬度 -235 - 200535465 評估結果將變得較硬。 將實施例63與64之試料的背面加以塗成黑色以評估防 眩性。將試料擺放於桌上,然後以反射影像觀察天花之螢 光燈。結果實施例63之試料係幾乎不能辨認出螢光燈之輪 郭,相反地實施例64之試料則螢光燈之輪廓稍微不鮮明, 但是兩試料皆爲可允許範圍內之水準。 〔實施例65〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(VL_ 1530S、富士通(股)公司製)之一對偏光板及一對光學補 償片,並替代其而將經以實施例1 8所製得之偏光板,以黏 著劑在觀察者側以使經以實施例5所製得之纖維素醋酸酯 薄膜位於液晶胞側之方式而貼附一片。另外在背光側則貼 附一*片巾售商品級之偏光板(HLC2-5618HCS,Sanritz公 司製)。並且加以配置成使觀察者側之偏光板透射軸朝上 下方向,且使背光側之偏光板透射軸朝左右方向之正交尼 科耳配置。對所製得之液晶顯示裝置使用測定機(EZ-Contrast 16 0D、ELDIM公司製)測定由黑色顯示(L1 )至 白色顯示(L8 )的8階段之視野角。其結果,透射軸方向 與自透射軸成45。之方向的視野角(對比比率爲10以上且 在並無黑色側的階調反轉之範圍)皆爲80°以上之較佳者 。同時其係對畫面的背景之映入現象極爲少的顯示品質優 良者。 〔實施例66〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(VL- 200535465 1 5 3 0S、富士通(股)公司製)之一對偏光板及一對光學補 償片’並替代其而將經以實施例45所製得之偏光板,以黏 著劑在觀察者側以使所製得之纖維素醋酸酯薄膜位於液晶 胞側之方式各貼附一片。並且加以配置成使觀察者側之偏 光板透射軸朝上下方向,且使背光側之偏光板透射軸朝左 右方向之正交尼科耳配置。對所製得之液晶顯示裝置使用 測定機(EZ-Contrast 160D、ELDIM公司製)測定由黑色 顯示(L1 )至白色顯示(L8 )的8階段之視野角。其結果 ,透射軸方向與自透射軸成4 5。之方向的視野角(對比比 率爲10以上且在並無黑色側的階調反轉之範圍)皆爲80。 以上之較佳者。同時其係對畫面的背景之映入現象極爲少 的顯示品質優良者。 〔實施例67〕 剝下設置在使用垂直配向型液晶胞的液晶顯示裝置(6E-A3、夏普(股)公司製)之一對偏光板,並替代其而將經 以實施例4 5所製得之偏光板,以黏著劑在觀察者側及背光 側以使經以實施例4 3 - 3所製得之纖維素醋酸酯薄膜位於 液晶胞側之方式各貼附一片。並且使觀察者側之偏光板透 射軸與背光側之偏光板透射軸加以配置成爲0模式。對所 製得之液晶顯示裝置使用測定機(EZ-Contrast 160D、 ELDIM公司製)測定由黑色顯示(L1)至白色顯示(L8) 的8階段之視野角。其結果,視野角(對比比率爲1 〇以上 且在並無黑色側的階調反轉之範圍)係上方向爲1 8。,下 方向爲24°,左右方向爲77°。同時其係對畫面的背景之映 200535465 入現象極爲少的顯示品質優良者。 對經以實施例65至67所製成之液晶顯示裝置試料實施 上述鉛筆手摩擦強度試驗。其結果實施例65至67之鉛筆 硬度皆爲2 Η。結果,藉由與上述比較例3至6之鉛筆手摩 擦強度之比較即得知,實施例65至67之液晶顯示裝置, 其鉛筆硬度已變得較硬。 由表1所示之結果即得以明白下述功效。經組合Re延遲 値爲20至70奈米、Rth延遲値爲70至400奈米、且 Re/Rth比爲0.2至0.4之相位差薄膜,與設置具有內部散 射性的硬質塗層且Ra爲0.10微米以下之抗反射膜所構成 之偏光板,藉此當使用於VA模式液晶顯示裝置時,關於 對比、色調變化的視野角特性、抗反射性、可以黑色穩定 性所代表之在明室下之視認性,即可在極高的水準下獲得 改良。並且在低折射率層使用中空二氧化矽微粒,加上由 於積層中/高/低折射率層與多層的光干渉層,藉此即可顯 現極優良的抗反射性。 【圖式簡單說明】 第1圖係展示本發明之第一、第二方式之抗反射膜結構 實例剖面圖。 第2圖係展示本發明之第一、第二方式之抗反射膜結構 實例剖面圖。 第3圖係展示本發明之第一、第二方式之抗反射膜結構 實例剖面圖。 第4圖係展示本發明之第一、第二方式之偏光板結構實 -238 - 200535465 例剖面圖。 第5圖係展示可使用於本發明第三方式之抗反射膜之層 結構模式剖面圖。 第6圖係展示可使用於本發明第三方式之抗反射膜之層 結構模式剖面圖。 【主要元件符號說明】 1、32 透明支撐體 2A > 2B > 3 3 硬質塗層 3 ^ 35 低折射率層 4A、4B 透光性顆粒 5、37 中折射率層 6、38 高折射率層 10、20、30、3 1 抗反射膜 34 防眩性硬質塗層 36 消光劑顆粒 40 偏光膜 50 相位差膜 60 偏光板 -239-Iodine was adsorbed on the stretched polyvinyl alcohol film to prepare a polarizing film. Cellulose acetate film samples 43-1 to 43-4 having different film thicknesses prepared in Example 43 were subjected to saponification treatment, and then adhered to one side of the polarizing film using a polyvinyl alcohol-based adhesive. . Samples 101 to 109 and samples 201 to 204 of the above-mentioned anti-reflection films that had been saponified were attached to the opposite side of the polarizing film with a polyvinyl alcohol-based adhesive. The transmission axis of the polarizing film and the retardation axis of the cellulose acetate film prepared in the above Example 43 were arranged in parallel. The transmission axis of the polarizing film and the retardation axis of the cellulose triacetate film of the antireflection film sample are arranged orthogonally. Made in this way -231-200535465 to obtain a polarizing plate. The combination of the polarizing plate sample and the antireflection film sample is shown in Table 10 below. In the table, a polarizing plate using a commercially available cellulose triacetate film (manufactured by Fuji Photographic Film Co., Ltd., TD80UF, film thickness of 80 microns) is also listed as a comparative example. In addition, the polarizing plates of Comparative Examples 12 and 13 described below are also exemplified. [Comparative Example 1 2] Instead of the cellulose acetate film obtained in Example 3, which was used for the polarizing plate obtained in Example 16, a commercially available cellulose triacetate film (Fujitac TD80UF, manufactured by Fuji Photographic Film Co., Ltd.) Alkaliized and applied with a polyvinyl alcohol-based adhesive, and affixed on the side opposite to the cellulose triacetate film in the same manner as in Example 16 An anti-reflection film sample of sample 103 was attached to obtain a polarizing plate. [Comparative Example 1 3] A conventional polarizing plate was manufactured. That is to say, no optical compensation sheet or anti-reflection film is attached on both sides of the polarizing film, and the commercially available fiber grade, vitamin triacetate film (Fujitac TD80UF, manufactured by Fuji Photo Film) The polarizing plate composed of the alkali-treated film was attached with a polyvinyl alcohol-based adhesive. -232- 200535465 [Table 1 〇] Polarizing plate example Anti-reflection film cellulose acetate film with optical compensation function Example 44 Sample 101 Example 43-3 Example 45 Sample 102 II Example 46 Sample 103 ”Example 47 ”Example 43-1 Example 48” Example 43-2 Example 49 Μ Example 43-4 Example 50 Sample 104 Example 43-3 Example 51 Sample 105 " Example 52 Sample 106 '' Example 53 Sample 107 "Example 54 Sample 108 ff Example 55 Sample 109 " Comparative Example 7 Only cellulose triacetate Example 43-1 Comparative Example 8 " Example 43-2 Comparative Example 9 " Example 43 -4 Comparative Example 10 VV Example 43-3 Example 56 Sample 201 99 Example 57 Sample 202 "Example 58 Sample 203 " Example 59 II Example 43-1 Example 60 " Example 43-2 Implementation Example 61 VV Example 43-4 Example 62 Sample 204 Example 43-3 Comparative Example 11 Only cellulose triacetate VI Comparative Example 12 Sample 103 Only cellulose triacetate Comparative example 13 Only cellulose triacetate Cellulose ester Esters (Note) Table 1 billion in the "" 'system means that the same person on the field. The polarizing plates of Examples 44 to 62 and Comparative Examples 7 to 13 were evaluated as shown in the following table. The sample content, evaluation content, and results are shown in Table 11. -233-200535465 [Table 1 1] Example of polarizing plate pencil hardness Specular reflectance (%) Example 44 2H 2.26 Example 45 2H 2.30 Example 46 2H 1.69 Example 47 2H 1.70 Example 48 2H 1.72 Example 49 2H 1.68 Example 50 2H 1.67 Example 51 2H 2.21 Example 52 2H 2.17 Example 53 2H 2.51 Example 54 2H 2.65 Example 55 2H to Η 2.30 Comparative Example 7 Η 3.95 Comparative Example 8 ΗΒ 3.96 Comparative Example 9 F 3.83 Comparative Example 10 3H 3.91 Example 56 3H 0.38 Example 57 3H 0.35 Example 58 3H 0.33 Example 59 3H 0.39 Example 60 3H 0.35 Example 61 3H 0.33 Example 62 3H ~ Η 0.35 Comparative Example 11 Β 3.89 Comparative Example 12 2Η 1.85 Comparative Example 13 B 4.04 It is known from Table 11 that those who use the polarizing plate of the antireflection film of the present invention with the cellulose acetate film of the optical compensation function of the present invention have better pencil hardness and reflectance. For example, by combining the antireflection film of the present invention, even if the film thickness of the cellulose acetate film to which an optical compensation function is added is changed, the values of Examples 46 to 49 can be changed from Comparative Examples 7 to 10 The pencil hardness does not cause a gap and becomes stronger, and compared with Comparative Examples 8 to 11, the pencil hardness of Examples 5 8 to 61 does not cause a gap and becomes stronger. -234- 200535465 In addition, in the cases of Examples 48 to 50 and Examples 58, 60, and 61, even though their film thicknesses have become relatively thin, their pencil hardness has not been reduced and they are still ideal polarizing plates. . [Example 63] A sample 301 was prepared in the same manner as in the above-mentioned sample except that the anti-glare hard coating liquid of the anti-reflection film sample 103 was changed to C. Using this antireflection film sample and the cellulose acetate film sample of Example 43-3 with an additional optical compensation function, a polarizing plate was prepared in the same manner as in Example 16. [Example 64] Except that the anti-glare hard coat coating liquid of the above-mentioned anti-reflection film sample 103 was changed to D, the rest was coated in the same manner as in the above-mentioned sample 丨 03 to obtain sample 302. Using this antireflection film sample and the optical compensation sheet sample of Example 43-3, a polarizing plate was prepared in the same manner as in Example 16. The sharpness of the transmitted image was evaluated using a drawing measuring instrument (ICM-2D type) manufactured by Suga Testing Machine Co., Ltd., and the sharpness of the transmitted image was measured with a 0.5 mm optical comb. The evaluation results are shown in Table 12. [Table 1 2] Polarization plate sample Anti-reflection film transmission image sharpness (%) Pencil hardness evaluation Example 63 Sample 301 15 3H Example 64 Sample 302 60 2H ~ Η Example 46 Sample 103 38 2Η Obtained from Table 1 2 It is known that those who reduce the sharpness of the transmitted image will have a pencil hardness of -235-200535465. The back surfaces of the samples of Examples 63 and 64 were painted black to evaluate anti-glare properties. Place the sample on the table, and observe the fluorescent light of the ceiling in a reflected image. As a result, the sample of Example 63 could hardly recognize the wheel of the fluorescent lamp. On the contrary, the sample of Example 64 had a slightly unclear outline of the fluorescent lamp, but both samples were at a level within the allowable range. [Example 65] One pair of polarizing plates and one pair of optical compensation sheets provided on a liquid crystal display device (VL_1530S, manufactured by Fujitsu Co., Ltd.) using a vertically aligned liquid crystal cell were peeled off and replaced. One piece of the polarizing plate prepared in Example 18 was attached with an adhesive on the observer side so that the cellulose acetate film obtained in Example 5 was on the liquid crystal cell side. In addition, a commercial-grade polarizer (HLC2-5618HCS, manufactured by Sanritz) is attached to the backlight side. Further, it is arranged so that the transmission axis of the polarizing plate on the observer side faces upward and downward, and the transmission axis of the polarizing plate on the backlight side faces orthogonal Nicols in the left-right direction. Using the measuring machine (EZ-Contrast 160D, manufactured by ELDIM), the obtained liquid crystal display device was used to measure the viewing angles in 8 stages from black display (L1) to white display (L8). As a result, the transmission axis direction is 45 with the self-transmission axis. The viewing angle in the direction (the range where the contrast ratio is 10 or more and the tone inversion is not on the black side) is preferably 80 or more. At the same time, it is a display with excellent display quality with very little reflection on the background of the screen. [Example 66] A pair of polarizing plates and a pair of optical compensation sheets were peeled off and replaced in one of the liquid crystal display devices (VL-200535465 1 5 3 0S, manufactured by Fujitsu Co., Ltd.) provided with a vertically aligned liquid crystal cell, and replaced therewith. The polarizing plate prepared in Example 45 was attached with a piece of adhesive on the observer side so that the cellulose acetate film obtained was on the liquid crystal cell side. And it is arrange | positioned so that the transmission axis of a polarizing plate of a viewer side may face up and down, and the transmission axis of a polarizing plate of a backlight side may be arrange | positioned at orthogonal Nicols. The obtained liquid crystal display device was measured with a measuring machine (EZ-Contrast 160D, manufactured by ELDIM Co., Ltd.) for eight viewing angles from black display (L1) to white display (L8). As a result, the transmission axis direction and the self-transmission axis were 45. The viewing angle (the range of contrast ratio of 10 or more and the tone inversion without black side) in all directions is 80. The better of the above. At the same time, it is a display with excellent display quality with very little reflection on the background of the screen. [Example 67] A pair of polarizing plates provided in a liquid crystal display device (6E-A3, manufactured by Sharp Corporation) using a vertical alignment type liquid crystal cell was peeled off and replaced with the one prepared in Example 4 5 One of the obtained polarizing plates was attached with an adhesive on the observer side and the backlight side so that the cellulose acetate film prepared in Example 4 3-3 was on the liquid crystal cell side. The polarizer transmission axis on the observer side and the polarizer transmission axis on the backlight side are arranged in the 0 mode. A measuring machine (EZ-Contrast 160D, manufactured by ELDIM Co., Ltd.) was used for the obtained liquid crystal display device, and the viewing angles of 8 stages from black display (L1) to white display (L8) were measured. As a result, the viewing angle (the range where the contrast ratio is 10 or more and the tone is not reversed on the black side) is 18 in the up direction. , The downward direction is 24 °, and the left-right direction is 77 °. At the same time, it is a reflection of the background of the picture. The liquid crystal display device samples prepared in Examples 65 to 67 were subjected to the aforementioned pencil hand friction strength test. As a result, the pencil hardness of Examples 65 to 67 was 2 Η. As a result, it is known from the comparison with the rubbing strength of the pencil hands of Comparative Examples 3 to 6 that the pencil hardness of the liquid crystal display devices of Examples 65 to 67 has become harder. From the results shown in Table 1, the following effects can be understood. A retardation film having a Re retardation of 20 to 70 nm, an Rth retardation of 70 to 400 nm, and a Re / Rth ratio of 0.2 to 0.4 is combined with a hard coat layer having internal scattering properties and Ra being 0.10. A polarizing plate made of an anti-reflection film with a thickness of less than a micron, so that when used in a VA mode liquid crystal display device, the contrast, the viewing angle characteristics of the hue change, the anti-reflection, and the black stability can be represented in the bright room Visibility can be improved at a very high level. In addition, the use of hollow silica particles in the low refractive index layer, combined with the laminated middle / high / low refractive index layer and multiple photo-drying layers, can show excellent anti-reflection properties. [Brief description of the drawings] Fig. 1 is a sectional view showing an example of the structure of the antireflection film of the first and second modes of the present invention. Fig. 2 is a sectional view showing an example of the structure of the antireflection film in the first and second modes of the present invention. Fig. 3 is a sectional view showing an example of the structure of the antireflection film in the first and second modes of the present invention. Fig. 4 is a sectional view showing an example of the polarizing plate structure of the first and second modes of the present invention. Fig. 5 is a schematic cross-sectional view showing a layer structure of an antireflection film that can be used in the third embodiment of the present invention. Fig. 6 is a schematic cross-sectional view showing a layer structure of an antireflection film that can be used in the third embodiment of the present invention. [Description of main component symbols] 1. 32 Transparent support 2A > 2B > 3 3 Hard coating 3 ^ 35 Low refractive index layer 4A, 4B Light-transmitting particles 5, 37 Medium refractive index layer 6, 38 High refractive index Layers 10, 20, 30, 3 1 Anti-reflective film 34 Anti-glare hard coating 36 Matting agent particles 40 Polarizing film 50 Phase difference film 60 Polarizing plate -239-
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003427439 | 2003-12-24 | ||
JP2003434143A JP2005187770A (en) | 2003-12-26 | 2003-12-26 | Antireflection film, polarizing plate and liquid crystal display apparatus |
JP2004041223 | 2004-02-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200535465A true TW200535465A (en) | 2005-11-01 |
TWI341931B TWI341931B (en) | 2011-05-11 |
Family
ID=37256786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093139730A TWI341931B (en) | 2003-12-24 | 2004-12-21 | Antireflection film, polarizing plate and liquid crystal display device |
Country Status (2)
Country | Link |
---|---|
KR (3) | KR101194210B1 (en) |
TW (1) | TWI341931B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482738B (en) * | 2005-11-25 | 2015-05-01 | Jgc Catalysts & Chemicals Ltd | Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film |
US9835771B2 (en) | 2014-11-26 | 2017-12-05 | Samsung Sdi Co., Ltd. | Polarizing plate and liquid crystal display including the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101526650B1 (en) * | 2012-11-21 | 2015-06-05 | (주)엘지하우시스 | Antireflection film with excellent optical characteristics |
KR101526649B1 (en) | 2012-11-21 | 2015-06-05 | (주)엘지하우시스 | Antireflection film with excellent optical characteristics having a hard coating layer |
JP5922008B2 (en) | 2012-11-30 | 2016-05-24 | 富士フイルム株式会社 | TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE |
KR101975867B1 (en) | 2012-12-14 | 2019-05-08 | 삼성디스플레이 주식회사 | Window for display device and display device including the window |
JP6336873B2 (en) * | 2014-09-29 | 2018-06-06 | 富士フイルム株式会社 | Optical film manufacturing method, optical film, polarizing plate manufacturing method, and image display device manufacturing method |
KR101813707B1 (en) | 2015-11-04 | 2017-12-29 | 주식회사 엘지화학 | Anti-reflective film and preparation method of the same |
KR102017789B1 (en) | 2015-12-03 | 2019-09-03 | 주식회사 엘지화학 | Anti-reflective film |
CN108780163B (en) * | 2016-03-18 | 2020-01-24 | 富士胶片株式会社 | Laminate, method for producing laminate, and method for producing antireflection film |
JP2019053168A (en) | 2017-09-14 | 2019-04-04 | 日東電工株式会社 | Optical laminate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003057415A (en) * | 2001-08-21 | 2003-02-26 | Fuji Photo Film Co Ltd | Optical diffusion film, method for manufacturing the same, polarizing plate and liquid crystal display device |
JP3847130B2 (en) * | 2001-10-11 | 2006-11-15 | 富士写真フイルム株式会社 | Light scattering film, method for producing light scattering film, polarizing plate and liquid crystal display device |
JP4120196B2 (en) | 2001-10-19 | 2008-07-16 | コニカミノルタホールディングス株式会社 | Anti-glare low reflection film, method for producing the film, polarizing plate and display device |
TWI363779B (en) * | 2003-07-22 | 2012-05-11 | Fujifilm Corp | Cellulose composition, cellulose film and modifier used therein, and polarizing plate protective film, liquid crystal display device, silver halide photosensitive material with the said film |
-
2004
- 2004-12-21 TW TW093139730A patent/TWI341931B/en not_active IP Right Cessation
- 2004-12-21 KR KR1020040109843A patent/KR101194210B1/en not_active Expired - Lifetime
-
2011
- 2011-08-30 KR KR1020110087397A patent/KR101242806B1/en not_active Expired - Lifetime
-
2012
- 2012-09-24 KR KR1020120106107A patent/KR101242778B1/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI482738B (en) * | 2005-11-25 | 2015-05-01 | Jgc Catalysts & Chemicals Ltd | Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film |
TWI488813B (en) * | 2005-11-25 | 2015-06-21 | Jgc Catalysts & Chemicals Ltd | Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film |
US9835771B2 (en) | 2014-11-26 | 2017-12-05 | Samsung Sdi Co., Ltd. | Polarizing plate and liquid crystal display including the same |
TWI621884B (en) * | 2014-11-26 | 2018-04-21 | 三星Sdi 股份有限公司 | Polarizing plate and liquid crystal display including the same |
Also Published As
Publication number | Publication date |
---|---|
TWI341931B (en) | 2011-05-11 |
KR101242778B1 (en) | 2013-03-18 |
KR20050065345A (en) | 2005-06-29 |
KR101242806B1 (en) | 2013-03-12 |
KR20110114506A (en) | 2011-10-19 |
KR101194210B1 (en) | 2012-10-29 |
KR20120125206A (en) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5114438B2 (en) | Optical film, manufacturing method thereof, polarizing plate and image display device | |
JP5049628B2 (en) | Coating composition, optical film, polarizing plate, image display device, and method for producing optical film | |
JP4510124B2 (en) | Anti-glare hard coat film for image display device, polarizing plate and image display device using the same | |
JP4666983B2 (en) | Method for producing optical functional film | |
JP2007108724A (en) | Antiglare antireflection film, polarizing plate using same and liquid crystal display device | |
JP2007249191A (en) | Optical film, antireflection film, polarizing plate and image display device | |
JP2007264113A (en) | Optical film, polarizing plate, and image display device | |
JP2006106715A (en) | Anti-reflection film, polarizing plate and liquid crystal display device | |
TW200405030A (en) | Antireflection film, polarizing plate and image display device | |
JP2007045142A (en) | Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate | |
TW200401116A (en) | High refraction film, high refraction film-forming coating composition, anti-reflection film, protective film for polarizing plate, polarizing plate and image display device | |
JP4914858B2 (en) | Light scattering film, polarizing plate and liquid crystal display device | |
JP2006106714A (en) | Anti-reflection film, polarizing plate and liquid crystal display device | |
JP2011039332A (en) | Optical film, method for manufacturing the same, polarizing plate and image display device | |
JP2006010829A (en) | Anti-reflection coating, anti-reflection film, polarizing plate, and image display device using same | |
JP5102958B2 (en) | Method for producing antireflection film | |
JP2007065635A (en) | Optical film, particularly antireflection film and method of manufacturing the same, and polarizer and liquid crystal display device using antireflection film | |
JP4393232B2 (en) | Method for producing antireflection film | |
TW200535465A (en) | Antireflection film, polarizing plate and liquid crystal display device | |
JP2009086341A (en) | Light-scattering film, polarizing plate, and liquid crystal display | |
JP2009265651A (en) | Optical film, polarizing plate, and image display apparatus | |
JP2007102206A (en) | Optical film, antireflection film, and polarizing plate and image display device using same | |
JP2007133162A (en) | Antiglare film, its manufacturing method, polarizing plate and image display apparatus using the same | |
JP2012078539A (en) | Polarizing plate and liquid crystal display device | |
JP5352644B2 (en) | Manufacturing method of optical film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |