TW200532938A - Light emitting diode and fabrication method thereof - Google Patents
Light emitting diode and fabrication method thereof Download PDFInfo
- Publication number
- TW200532938A TW200532938A TW093107439A TW93107439A TW200532938A TW 200532938 A TW200532938 A TW 200532938A TW 093107439 A TW093107439 A TW 093107439A TW 93107439 A TW93107439 A TW 93107439A TW 200532938 A TW200532938 A TW 200532938A
- Authority
- TW
- Taiwan
- Prior art keywords
- emitting diode
- light
- scope
- item
- patent application
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 229910002601 GaN Inorganic materials 0.000 claims description 78
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 77
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 59
- 239000000758 substrate Substances 0.000 claims description 44
- 229910052738 indium Inorganic materials 0.000 claims description 15
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 14
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 12
- 229910052733 gallium Inorganic materials 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 229910052594 sapphire Inorganic materials 0.000 claims description 7
- 239000010980 sapphire Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001312 dry etching Methods 0.000 claims description 2
- 238000000609 electron-beam lithography Methods 0.000 claims description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 2
- 230000005404 monopole Effects 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000000386 microscopy Methods 0.000 claims 1
- 230000001954 sterilising effect Effects 0.000 claims 1
- 238000001039 wet etching Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 44
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000025 interference lithography Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000227425 Pieris rapae crucivora Species 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum indium gallium nitride Chemical class 0.000 description 1
- SZZXSKFKZJTWOY-UHFFFAOYSA-N azanylidynesamarium Chemical compound [Sm]#N SZZXSKFKZJTWOY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012053 enzymatic serum creatinine assay Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
Landscapes
- Led Devices (AREA)
Abstract
Description
五、發明說明(1) 發明所屬之技術領域 本發明係有關於一種發光二極體及其製造方法,且特 別有關於一種特殊結構之發光二極體及其製造方法,以楛 南其發光效率。 【先前技術】 發,二極體(light emitting diode,簡稱LED)為 一種固癌兀件,可產生在光譜中特定波長區域的光,常用 來作為指示燈、照明設備與顯示器。 *第1圖為一常見之發光二極體結構,包括基材10、發 光二極體晶粒20、η型歐姆接觸電極“與卩型歐姆接觸電極 4〇,其中發光二極體晶粒2〇包括η型半導體層21、活化声 22與ρ型半導體層23,型歐姆接觸電極3()與?型歐姆▲ =電極40分別與n型半導體層21與?型半導體層^電性連 接,而出光面為發光二極體晶粒2〇之上表自,但如幻圖 =示,η型歐姆接觸電極“與㈣歐姆接觸電極4〇皆位於發 20 : Ϊ Ϊ晶粒2〇之上表面,此結構會使得發光二極體晶粒 的光被η型歐姆接觸電極3 0與ρ型歐姆接觸電極4〇 _使付發光一極體之整體發光效率下降。此外,如第 2圖所示’ η型歐姆接觸電極3〇可&於基材ι〇之下表面此 J 2 :材1 G必須為導電材料才可使η型半導體層21與η型歐 電性接觸’但發光二極體晶粒2。所發出的光 -:二? 姆接觸電極4 0遮住,同樣地也會使使發光 一極體之整體發光效率下降。 而上述之問題可藉由覆晶⑴ip chip)技術解決,V. Description of the invention (1) The technical field to which the invention belongs The present invention relates to a light-emitting diode and a method for manufacturing the same, and more particularly to a light-emitting diode with a special structure and a method for manufacturing the light-emitting diode. . [Previous technology] Light emitting diode (LED) is a kind of cancer-fixing element that can generate light in a specific wavelength region in the spectrum. It is often used as indicator lights, lighting equipment and displays. * Figure 1 is a common light-emitting diode structure, including substrate 10, light-emitting diode grains 20, n-type ohmic contact electrode "4" and 卩 -type ohmic contact electrode 40, of which light-emitting diode crystal 2 〇 Including n-type semiconductor layer 21, activated acoustic 22 and p-type semiconductor layer 23, type ohmic contact electrode 3 () and? -Type ohm ▲ = electrode 40 is electrically connected to n-type semiconductor layer 21 and? -Type semiconductor layer, respectively, The light emitting surface is shown above the light-emitting diode grains 20, but as shown in the magic diagram, the n-type ohmic contact electrode and the ㈣ohmic contact electrode 4 are both located at 20: Ϊ Ϊ grains 20 On the surface, this structure makes the light of the light-emitting diode crystal grains be reduced by the n-type ohmic contact electrode 30 and the p-type ohmic contact electrode 40_, and the overall luminous efficiency of the sub-light-emitting diode is reduced. In addition, as shown in FIG. 2, the n-type ohmic contact electrode 30 may be & the surface below the substrate ι0. This J 2: material 1 G must be a conductive material to enable the n-type semiconductor layer 21 and n-type European Electrical contact with 'but light emitting diode grains 2. The light emitted :: Two? Covering the contact electrode 40 also reduces the overall luminous efficiency of the light-emitting monopole. The above problems can be solved by flip chip ⑴ip chip) technology,
200532938 五、發明說明(2) ' " " 如第3圖所不,就是將第丨圖中之發光二極體之結構上下顛 倒,使η型歐姆接觸電極3 〇與p型歐姆接觸電極4 〇位於最下 方,2為發光面的基材10位於最上方,由於基材本身為透 明材質且其上表面並無遮光物質存在,並且有ρ型反射層 可將往下的光反射向上,故可提高發光二極體之整體發光 效率。 此外,由於發光二極體的折射率通常大於外界(如空 氣)的折射率,且習知發光二極體的形狀主要為立方體, 因此’當發光二極體所產生的光到達與空氣之界面時,大 於臨界角的光就會全反射到發光二極體内部,且發光二極 體又為界面皆相互平行的立方體,使得大於臨界角的光線 只能一直在内部全反射而無法向外發射出,導致發光二極 體之整體發光效率下降。 為解決上述問題,惠普(HP )公司發展出一種截頭倒 置 i合型發光二極體(truncated inverted pyramid LED, 簡稱TIP LED ),利用直接切割的方式將發光二極體晶粒 側面加工成倒金字塔型,使其側面不再是相互平行的面, 以使光線可有效地引出晶粒外進而以提高發光效率。此 TIP LED之相關文獻及專利如下:m. R. Krames et al.,200532938 V. Description of the invention (2) '" " As shown in Figure 3, it is to reverse the structure of the light-emitting diode in Figure 丨 upside down, so that the n-type ohmic contact electrode 3 〇 and p-type ohmic contact electrode 4 〇 is located at the bottom, 2 is the light-emitting surface of the substrate 10 is located at the top, because the substrate itself is transparent material and there is no light-shielding substance on its upper surface, and a p-type reflective layer can reflect the downward light upward, Therefore, the overall luminous efficiency of the light emitting diode can be improved. In addition, since the refractive index of a light-emitting diode is usually larger than that of the outside world (such as air), and the shape of the conventional light-emitting diode is mainly a cube, so 'when the light generated by the light-emitting diode reaches the interface with the air At this time, light larger than the critical angle is totally reflected to the inside of the light-emitting diode, and the light-emitting diodes are cubes whose interfaces are parallel to each other, so that light larger than the critical angle can only be totally reflected inside and cannot be emitted outward. This leads to a decrease in the overall luminous efficiency of the light emitting diode. In order to solve the above problems, Hewlett-Packard (HP) developed a truncated inverted pyramid LED (TIP LED), which uses direct cutting to process the side of the light emitting diode crystals into an inverted Pyramid type, so that the sides are no longer parallel to each other, so that light can be effectively led out of the crystal grains to improve the luminous efficiency. The relevant literature and patents of this TIP LED are as follows: m. R. Krames et al.,
Appli· Phys· Lett· 75(16),236 5, 1 999、美國專利第 6, 2 2 9,1 6 0號與美國專利第6,3 2 3,0 6 3號。但此方式只能用在 容易加工(如切割)的材料上,如A1GaInP/GaP,但常見 之白光發光二極體通常為氮化鎵發光二極體,其基板大多 為藍寶石(sapphire )基板,而藍寶石基板相當堅硬不易Appli. Phys. Lett. 75 (16), 236 5, 1 999, U.S. Patent No. 6, 2 2 9, 16 and U.S. Patent No. 6, 3 2 3, 0 6 3. However, this method can only be used on materials that are easy to process (such as cutting), such as A1GaInP / GaP, but common white light emitting diodes are usually gallium nitride light emitting diodes, and their substrates are mostly sapphire substrates. And the sapphire substrate is quite hard
0338-A20289TWF(Nl);08-920110;i ce.ptd 第7頁 200532938 五、發明說明(3) 加工,故無法利用此方式來改善發光效率。 此外’ CREE利用較易加工的碳化矽(s i c )基板取代 氣化鎵發光二極體的藍寶石基板,也成功地將氮化鎵發光 一極體做成TIP形狀(Compound Semiconductor,7(1), 7,2 0 0 1 ) ’但氮化鎵與碳化矽之晶格並不匹配且碳化矽 在短波長範圍其對光的吸收係數會增大,反而會使發光效 率減低。 除利用倒金字塔型之發光二極體外,還有利用表面紋 理(surface texture)結構的設計來改變出光角度以提 南發光效率。 美國專利第6, 133, 589號提出在藍寶石基板或氮化鋁 鎵銦層上形成表面紋理後再繼續成長磊晶,當光到達此表 面紋理時,此表面紋理可改變光的方向使出光率增加。但 藍寶石基板的硬度相當高,要形成表面紋理相當困難;^ 氮化鋁鎵銦層上雖可形成表面紋理,但卻會導致磊晶品 不佳的問題。 、 另外,在美國專利第6, 258, 6 1 8號中是直接將表面紋 理做在p型半導體層上,但這會使得p型半導體層不再是一 平坦表面而導致電阻升高,而且因為?型半導體層並不 厚,所以在p型半導體層上製作表面紋理時常會挖穿口型 導體層,造成發光層發光區域減少或電子電動表面結合 (surface recombination)的現象,影響整體發光二極 的效能。 € 此外在C〇mpound Semic〇nduct〇r January 2〇〇2.0338-A20289TWF (Nl); 08-920110; ice.ptd Page 7 200532938 V. Description of the invention (3) Processing, so this method cannot be used to improve luminous efficiency. In addition, CREE replaced the sapphire substrate of the gallium-emitting gas-emitting diode with a relatively easy-to-process silicon carbide (sic) substrate, and successfully made the gallium-nitride-emitting diode into a TIP shape (Compound Semiconductor, 7 (1), 7, 2 0 0 1) 'However, the lattice of gallium nitride and silicon carbide does not match, and the absorption coefficient of light of silicon carbide in the short wavelength range will increase, but the luminous efficiency will decrease. In addition to using an inverted pyramid-type light emitting diode body, there is also a design using a surface texture structure to change the light output angle to improve the light emitting efficiency. U.S. Patent No. 6,133,589 proposes to continue growing epitaxy after forming a surface texture on a sapphire substrate or aluminum gallium indium layer. When light reaches this surface texture, this surface texture can change the direction of light and make the light output rate increase. However, the hardness of the sapphire substrate is very high, and it is very difficult to form the surface texture; ^ Although the surface texture can be formed on the aluminum gallium indium nitride layer, it will cause the problem of poor epitaxial products. In addition, in US Patent No. 6,258,618, the surface texture is directly made on the p-type semiconductor layer, but this will cause the p-type semiconductor layer to no longer be a flat surface and cause an increase in resistance, and because ? The type semiconductor layer is not thick, so the surface conductor layer is often cut through when forming the surface texture on the p-type semiconductor layer, which results in the reduction of the light emitting area of the light emitting layer or the surface recombination of the electronic motor, which affects the overall light emitting diode. efficacy. € Also in C〇mpound Semic〇nduct〇r January 2000.
200532938200532938
(Schmid et al·,Windisch et ai.)中也曾報導藉由曰 片接合(wafer bonding )的方式將電極放在承载層曰曰曰 (carrier layer)與半導體層間,並藉由剝落法曰 (lift-off )形成無電極出光面,再於此出光面上 面紋理以增加出光效率。但此方式雖可以解決卩型導表 層不再是一平坦表面而導致電阻升高的問題,但 面層的可能性,響整體發光 一和體的效此,此外,由於此技術還需要多製作一 層,所以也會使製程更加複雜。 θ m 一種可以解決上述問題的發光 效率。 二極 所以業界亟需提出 體與其製法來提高發光 【發明内容】 奸恭ί發明的目的之一就是提供-種發光二極 體’以長:咼其發光效率。 為達上述目的,本發明提供一種發光二極體, 光二極體晶粒包括1型半導體層、—活化層盘一括型 1導體層;^n型歐姆接觸電極與上述η型半導體層電性連 接,一Ρ型歐姆接觸電極與上述1)型半導體層電性 及-氮化錢鎵厚膜位於上述發光三極體晶’ 化銘銦鎵厚膜具有一斜側面與一紋理化的上表面。此鼠 本發明之發光二極體具有下列優點: 1.由於本發明之發光二極體為覆晶結構,且以氮 銦鎵厚膜為出光面,故在氮化鋁钿餿度描^ +見以虱化鋁 觸電極專其匕非透光物將光遮住,故可提高發光二極體的(Schmid et al., Windisch et ai.) Also reported that the electrode was placed between the carrier layer and the semiconductor layer by wafer bonding, and by peeling ( lift-off) to form an electrodeless light emitting surface, and then texture the light emitting surface to increase the light emitting efficiency. However, although this method can solve the problem that the 卩 -type guide surface layer is no longer a flat surface and the resistance is increased, the possibility of the surface layer responds to the overall luminescence effect. In addition, because this technology requires more production One layer, so it will make the process more complicated. θ m A luminous efficiency that can solve the above problems. Diodes So the industry urgently needs to propose a body and its manufacturing method to improve luminescence. [Summary of the Invention] One of the purposes of the invention is to provide a kind of light-emitting diode 'to grow: its luminous efficiency. In order to achieve the above object, the present invention provides a light-emitting diode. The photodiode crystal grains include a type 1 semiconductor layer and an active layer disk including a type 1 conductor layer. The n-type ohmic contact electrode is electrically connected to the n-type semiconductor layer. A P-type ohmic contact electrode and the above-mentioned 1) -type semiconductor layer are electrically and the gallium nitride thick film is located on the light-emitting triode crystal. The indium gallium thick film has an oblique side surface and a textured upper surface. The light-emitting diode of the present invention has the following advantages: 1. Because the light-emitting diode of the present invention has a flip-chip structure and a thick film of indium gallium nitride as the light emitting surface, it is described in aluminum nitride ^ + Seeing that the aluminum contact electrode is used to shield light by non-light-transmitting objects, it can improve the light-emitting diode.
200532938 五、發明說明(5) 整體發光效率。 2 ·由於作為出光面的氮化鋁銦鎵厚膜的侧面具有斜 度,可降低全反射而使發光二極體的整體發光效率提高。 3·由於作為出光面的氮化鋁銦鎵厚膜其上表面具有表 面紋理(surface texture),以提高發光二極體 發光效率。 ^ 4·由於氮化鋁銦鎵厚膜的厚度遠大於一般氮化鎵層的 厚度故可減低製作表面紋理時表面紋理深過此層的機 率〇 此外,本發明的另一目的就是提供一種發光二極體的 衣造方法,以更容易製造出高發光效率的發光二極體。 、為達上述目的,本發明尚提供一種發光二極體的製造 方法’包括.提供一基板;形成一第一圖案於上述基板 上2利用磊晶法形成一具有斜侧面的氮化鋁銦鎵厚膜於上 述第一圖案上,且此氮化鋁銦鎵厚膜具有一第一平△表 :丄形成一發光二極體晶粒於上述氮化鋁銦鎵厚膜:第一 、’σ表面上且此發光一極體晶粒包括一 η型半導體声 :活化層與一ρ型半導體層;形成1型歐姆接觸電極曰盘上 述=導體層電性連接;形成一ρ型歐姆接觸電極盥: Ρ型半導體層電性連接;將上述結構上下錯置; 上 基板以露出上述氮化鋁銦鎵厚膜之一第_ *上迷 紋理化(texture)上述第二平台表面弟以一表面;以及 表面。 4币一卞口表面以形成一紋理化的 本發明之發光二極體具有下列優點·, 0338-A20289TWF(Nl);08-920110;i ce.ptd 第10頁 200532938 五、發明說明(6) 習知之氮化鎵發光二極體基板硬度高,要利用切割方 式形成斜側面相當不胃;而由於本發明之氮化铭姻嫁厚膜 形成後自然就具有斜側面,並不需額外加工(如切割),、 故可簡化製程、提升良率與降低製作成本。 【實施方式】 *為使本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細 說明如下。此外,本實施方式會在許多例子中重複使用相 同的符號與/或名稱,這是為了簡化與清楚描述,並不是 表示這些組成之間有關係。 本發明之發光二極體的結構 第4圖為本發明發光二極體1〇〇之結構剖面圖,包括氮 化鋁銦鎵厚膜11 〇與發光二極體晶粒丨2 0。其中發光二極體 晶粒120包括η型半導體層121、活化層122與P型半導體層 123,且η型歐姆接觸電極130與η型半導體層121電性連 接,Ρ型歐姆接觸電極140與ρ型半導體層電性連接123,此 外,位於發光二極體晶粒1 2 〇上的氮化鋁銦鎵厚膜11 ο具有 斜側面1 1 1與紋理化的上表面丨丨2。其中具有斜側面丨丨1與 紋理化的上表面1 1 2的氮化鋁銦鎵厚膜;[丨〇為本發明最重要 的特徵。 氮化鋁銦鎵厚膜1 1 〇所具之斜側面丨丨1有下列特徵··氮 化銘銦鎵厚膜110的成分為氮化鋁銦鎵ΙηγΝ, 0 SX,Υ < 1,0 gX + γ < 1 ),其中氮化鋁銦鎵之鋁、銦、 鎵各金屬比例並非固定值,所以此層非由單一化合物所組 0338-A20289TWF(Nl);08-920110;ice.ptd 第11頁 200532938 五、發明說明(7) " ------ 成,故稱為氮化鋁銦鎵厚膜。氮化鋁銦鎵厚膜丨丨〇的厚度 大,2 0 //m,且較佳為2〇 1〇〇 ,比一般發光二極體 之氮化鎵層來得厚,故稱為厚膜,此較厚之厚度是為了防 止表面紋理過深而穿過此層,並增加出光視窗大小。氮化 鋁銦鎵厚膜110的内徑大於15〇 ,且較佳為2〇〇 1〇〇〇 ^ m底4的形狀為多邊形(如四邊形或六邊形)、圓形 或橢圓形’底部與斜側面U1之夾角為43〜62。。 此外’氮化銘銦鎵厚膜1 1 0所具有的紋理化的上表面 11 2有下列特徵:紋理化的上表面丨丨2為凸狀結構或凹狀結 構,且此凸狀結構或凹狀結構的形狀為多邊形、圓形或橢 圓形’如第5 A〜5 D圖所示之氮化鋁銦鎵厚膜丨丨〇之紋理化 的上表面11 2依序為三角形凸狀結構、三角形凹狀結構、 圓形凸狀結構與圓形凹狀結構,且此形狀的尺寸小於發光 二極體晶粒120的尺寸且約為lnm〜5〇〇 //m。此外,凸狀結 構或凹狀結構的側面與底部呈垂直或傾斜,如第6 A〜6 Η圖 所示’其中第6Α圖為氮化鋁銦鎵厚膜丨丨〇之紋理化的上表 面112之凸狀結構與底部垂直之剖面圖、第6B〜6D圖為氮 化銘銦鎵厚膜11 〇之紋理化的上表面丨丨2之凸狀結構與底部 傾斜之剖面圖、第6 E圖為氮化鋁銦鎵厚膜1 1 〇之紋理化的 上表面112之凹狀結構與底部垂直之剖面圖、第6F〜6H圖 為氮化鋁銦鎵厚膜11 〇之紋理化的上表面丨丨2之凹狀結構與 底部傾斜之剖面圖。此外,此凸狀結構或凹狀結構重覆出 現’而重覆出現之週期小於該發光二極體晶粒的尺寸,此 週期為約1 nm〜5 0 0 // m。此外,此凸狀結構或凹狀結構之200532938 V. Description of the invention (5) Overall luminous efficiency. 2 · The side surface of the aluminum indium gallium nitride thick film as the light emitting surface has a slope, which can reduce total reflection and improve the overall light emitting efficiency of the light emitting diode. 3. Since the aluminum indium gallium nitride film as a light emitting surface has a surface texture on its upper surface, to improve the light emitting diode light emitting efficiency. ^ 4.Since the thickness of the aluminum indium gallium nitride thick film is much larger than the thickness of a general gallium nitride layer, the probability that the surface texture is deeper than this layer when reducing the surface texture can be reduced. In addition, another object of the present invention is to provide a light emitting device. The method of fabricating a diode makes it easier to produce a light emitting diode with high luminous efficiency. In order to achieve the above-mentioned object, the present invention also provides a method for manufacturing a light-emitting diode, which includes: providing a substrate; forming a first pattern on the substrate; and forming an aluminum indium gallium nitride with beveled sides by an epitaxial method. The thick film is on the above first pattern, and the aluminum indium gallium nitride thick film has a first flat △ table: 丄 forms a light emitting diode crystal grain on the aluminum indium gallium nitride thick film: first, 'σ On the surface and this light emitting polar crystal grain includes an n-type semiconductor sound: an active layer and a p-type semiconductor layer; forming a type 1 ohmic contact electrode; the above-mentioned = conductive layer is electrically connected; forming a p-type ohmic contact electrode; : The P-type semiconductor layer is electrically connected; the above structure is shifted up and down; the upper substrate is exposed to one of the above aluminum indium gallium nitride thick films. * The texture is a surface of the second platform; As well as the surface. The surface of a coin of 4 coins to form a textured light-emitting diode of the present invention has the following advantages: 0338-A20289TWF (Nl); 08-920110; ice.ptd Page 10 200532938 V. Description of the invention (6) The conventional gallium nitride light-emitting diode substrate has high hardness, and it is rather insufferable to form a beveled side surface by cutting. However, since the nitrided film of the present invention is formed with a beveled side, it does not need additional processing ( Such as cutting), so it can simplify the process, improve yield and reduce production costs. [Embodiments] * In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments will be specifically described below, and will be described in detail with the accompanying drawings. In addition, in this embodiment, the same symbols and / or names are repeatedly used in many examples. This is for simplicity and clear description, and does not indicate that there is a relationship between these components. Structure of the Light-Emitting Diode of the Present Invention FIG. 4 is a cross-sectional view of the structure of the light-emitting diode 100 of the present invention, including a thick aluminum indium gallium nitride film 110 and light-emitting diode grains 20. The light-emitting diode die 120 includes an n-type semiconductor layer 121, an activation layer 122, and a P-type semiconductor layer 123. The n-type ohmic contact electrode 130 is electrically connected to the n-type semiconductor layer 121. The p-type ohmic contact electrode 140 and ρ The semiconductor layer is electrically connected to 123. In addition, the aluminum indium gallium nitride thick film 11 on the light-emitting diode crystal grains 120 has an oblique side surface 1 1 1 and a textured upper surface 丨 2. Among them, a thick aluminum indium gallium nitride film having a slanted side surface 1 and a textured upper surface 1 12; [丨 〇 is the most important feature of the present invention. The oblique side of the aluminum indium gallium nitride thick film 1 1 〇 1 has the following characteristics: · The composition of the indium gallium nitride thick film 110 is aluminum indium gallium nitride ΙηγN, 0 SX, Υ < 1, 0 gX + γ < 1), where the ratios of the aluminum, indium, and gallium metal of aluminum indium gallium nitride are not fixed values, so this layer is not composed of a single compound 0338-A20289TWF (Nl); 08-920110; ice.ptd Page 11 200532938 V. Description of the invention (7) " ------ It is called aluminum indium gallium nitride thick film. The thickness of the aluminum indium gallium nitride thick film is large, 20 // m, and preferably 20000, which is thicker than the gallium nitride layer of a general light emitting diode, so it is called a thick film. This thicker thickness is to prevent the surface texture from passing too deep through this layer, and to increase the light window size. The inner diameter of the aluminum indium gallium nitride thick film 110 is greater than 150, and preferably 20001 ^ m. The shape of the bottom 4 is a polygon (such as a quadrangle or a hexagon), a circle or an oval. The included angle with the oblique side U1 is 43 ~ 62. . In addition, the textured upper surface 11 2 of the indium gallium nitride indium gallium film 1 1 0 has the following characteristics: The textured upper surface 丨 2 is a convex structure or a concave structure, and the convex structure or the concave structure The shape of the structure is a polygon, a circle, or an ellipse. The textured upper surface of the aluminum indium gallium nitride thick film as shown in Figs. 5A to 5D. The triangular concave structure, the circular convex structure, and the circular concave structure, and the size of this shape are smaller than the size of the light-emitting diode crystal grains 120 and are about 1 nm˜500 // m. In addition, the sides of the convex structure or concave structure are perpendicular or inclined to the bottom, as shown in Figures 6A ~ 6 (where Figure 6A is the textured upper surface of the aluminum indium gallium nitride film) Sectional view of the convex structure of 112 perpendicular to the bottom, and Figures 6B ~ 6D are the textured upper surface of the Indium gallium nitride thick film 11 〇 丨 2 Sectional view of the convex structure and the inclined bottom, 6 E The figure is a cross-sectional view of the concave structure of the textured upper surface 112 of the aluminum indium gallium nitride thick film 1 1 0 perpendicular to the bottom, and Figures 6F to 6H are the textured upper surface of the aluminum indium gallium nitride thick film 11 〇 A cross-sectional view of the concave structure on the surface and the slope at the bottom. In addition, the convex structure or the concave structure repeatedly appears', and the cycle of the repeated appearance is smaller than the size of the light-emitting diode crystal grains, and the cycle is about 1 nm to 5 0 0 // m. In addition, this convex or concave structure
200532938 五、發明說明(8) 高度差小於氮化鋁銦鎵厚膜1 1 0之厚度,否則會挖穿氮化 紹銦鎵厚膜11 〇使此元件受損,且此凸狀結構或凹狀結構 之高度差為lnm至氮化鋁銦鎵厚膜之厚度。 本發明之發光二極體的製造方法 第7A〜7F圖為一系列剖面圖,用以說明本發明發光二 極體的製造方法。首先提供基板丨〇5,接著在基板1〇5上形 成第一圖案,如第7A圖所示,再利用磊晶法形成具有斜側 面111的氮化铭銦鎵厚膜110於第一圖案上,且此氮化鋁銦 鎵厚膜110具有第一平台表面113,如第7β圖所示。接著形 成發光二極體晶粒1 2 0於氮化鋁銦鎵厚膜1 1 〇之第一平台表 面113上,此發光二極體晶粒12〇包括n型半導體層121 :活 化層122與p型半導體層123,再形成n型歐姆接觸電極13〇 與η型半導體層121電性連接以及形成ρ型歐姆接觸電極14〇 與Ρ型半導體層123電性連接,如第7C圖所示。接著提供下 底板(submount ) 150,在下底板15〇上具有第一凸塊 (bump ) 151與第二凸塊152,再將上述本發明之發光二極 體結構上下錯置,將n型歐姆接觸電極13〇與第一凸塊 (bump ) 151電性連接且將ρ型歐姆接觸電極14〇與第二凸 塊(bump) 152電性連接,如第7D圖所示。接著將基板1〇5 移除,以露出氮化鋁銦鎵厚膜11〇之第二平台表面114,如 第7E圖所不。再紋理化(texture )所露出的氮化铭銦鎵 厚膜110之第二平台表面114,以形成一紋理化的表面 112 ’如第7F圖所示。 如上所述其中之基板可為藍寳石(ΜρρΗπ) ΪΗ 0338-A20289TW(Nl);08-920110;ice.ptd 第13頁 200532938 五、發明說明(9) 基板、碳化矽(SiC )基板、矽(Si )基板、砷化鎵 (GaAs)基板或氮化紹(ain)基板等。而在基板上所 形成的第一圖案可為多邊形、圓形或橢圓形等圖形,且其 中之多邊形可為四邊形或六邊形,且圖案的内徑大於15〇 // m,且較佳為2 〇 〇 // m- 1 〇〇〇 v m,此圖案將決定之後形成 之氮化鋁銦鎵厚膜110的底部圖案。 此外,此氮化鋁銦鎵厚膜11 〇為氮化鋁銦鎵厚膜 (A lxGa (1_χ_γ )ΙηγΝ ’0$Χ,γ<1,〇$χ + γ<ι),是由蠢晶 法所l成的’如氮化物氣相蠢晶法(hydride vapor200532938 V. Description of the invention (8) The height difference is less than the thickness of the aluminum indium gallium nitride thick film 1 10, otherwise it will cut through the indium gallium nitride thick film 11 〇 and damage this component, and the convex structure or concave The height difference of the structure is from 1 nm to the thickness of the aluminum indium gallium nitride thick film. Manufacturing Method of Light Emitting Diode of the Present Invention FIGS. 7A to 7F are a series of cross-sectional views for explaining the manufacturing method of the light emitting diode of the present invention. First, a substrate is provided, and then a first pattern is formed on the substrate 105. As shown in FIG. 7A, an epitaxial method is used to form a thick indium gallium nitride film 110 with an oblique side 111 on the first pattern. Moreover, the aluminum indium gallium nitride thick film 110 has a first platform surface 113, as shown in FIG. 7β. Next, a light emitting diode crystal 120 is formed on the first platform surface 113 of the aluminum indium gallium nitride thick film 110, and the light emitting diode crystal 120 includes an n-type semiconductor layer 121: an activation layer 122 and The p-type semiconductor layer 123 is further formed with an n-type ohmic contact electrode 13o to be electrically connected to the n-type semiconductor layer 121 and a p-type ohmic contact electrode 14o is electrically connected to the p-type semiconductor layer 123, as shown in FIG. 7C. Next, a lower substrate (submount) 150 is provided, and a first bump (151) and a second bump (152) are provided on the lower substrate (15). Then, the above-mentioned light emitting diode structure of the present invention is shifted up and down, and n-type ohmic contacts The electrode 13o is electrically connected to the first bump 151 and the p-type ohmic contact electrode 14o is electrically connected to the second bump 152, as shown in FIG. 7D. Then, the substrate 105 is removed to expose the second platform surface 114 of the aluminum indium gallium nitride thick film 110, as shown in FIG. 7E. The second platform surface 114 of the exposed indium gallium nitride thick film 110 is retextured (texture) to form a textured surface 112 'as shown in FIG. 7F. As mentioned above, the substrate can be sapphire (ΜρρΗπ) ΪΗ 0338-A20289TW (Nl); 08-920110; ice.ptd page 13 200532938 V. Description of the invention (9) substrate, silicon carbide (SiC) substrate, silicon ( Si) substrate, gallium arsenide (GaAs) substrate, or ain substrate. The first pattern formed on the substrate may be a polygon, a circle, or an ellipse, and the polygon may be a quadrangle or a hexagon, and the inner diameter of the pattern is greater than 15 // m, and is preferably 2000 // m-1000vm, this pattern will determine the bottom pattern of the aluminum indium gallium nitride thick film 110 to be formed later. In addition, the aluminum indium gallium nitride thick film 11 is a thick aluminum indium gallium nitride film (AlxGa (1_χ_γ) 1ηγN '0 $ X, γ < 1, 〇 $ χ + γ < ι), which is obtained by a stupid crystal method. The resulting 'such as nitride vapor phase stupid method (hydride vapor
Phase epitaxy,簡稱HVPE)等,藉由控制HVPE磊晶成長 的各式參數來形成斜側面11 1,使此氮化鎵混成厚膜丨丨〇在 形成後自然具有斜側面111。由於此氮化鋁銦鎵厚膜i丨〇是 形成於基板105之第一圖案上,所以若此第一圖案為四邊 形,所形成的氮化鋁銦鎵厚膜11 〇就如倒金字塔型;若此 第一圖案為六邊形,所形成的氮化鋁銦鎵厚膜110就如第8 圖所示之圖形。由於氮化鋁銦鎵厚膜丨1〇的厚度大於2〇 # m,且較佳為zO/zDi-ioOvm,比一般氮化鎵發光二極體之 厚度還厚,利於之後之表面紋理化(surface texture) 步驟。而此氮化鋁銦鎵厚膜11〇的内徑大於15〇 ,且較 佳為200//111- 1000/^,且其底部與斜側面ιη之夾角為43 〜62。,此夾角是在磊晶時所自然形成的,且此夾角與氮 化鋁銦鎵厚膜11 〇晶格排列相關。 此外,發光二極體晶粒1 2 0是利用習知的發光二極體 晶粒形成方法所形成,如金屬有機化學氣相沉積法Phase epitaxy (referred to as HVPE), etc., forms the oblique side 11 1 by controlling various parameters of the epitaxial growth of HVPE, so that the gallium nitride is mixed into a thick film 丨 丨 naturally has oblique side 111 after formation. Since the aluminum indium gallium nitride thick film i 丨 0 is formed on the first pattern of the substrate 105, if the first pattern is a quadrangle, the thick aluminum indium gallium nitride film 11 is formed like an inverted pyramid; If the first pattern is a hexagon, the formed aluminum indium gallium nitride thick film 110 is as shown in FIG. 8. Since the thickness of the aluminum indium gallium nitride film 10 is larger than 20 # m, and preferably zO / zDi-ioOvm, it is thicker than the thickness of general gallium nitride light-emitting diodes, which is beneficial for subsequent surface texturing ( surface texture) step. The inner diameter of this aluminum indium gallium nitride film 11 is larger than 150, and preferably 200 // 111-1000 / ^, and the angle between the bottom and the oblique side ιn is 43-62. This angle is formed naturally during epitaxy, and this angle is related to the lattice arrangement of the aluminum indium gallium nitride thick film 110. In addition, the light emitting diode crystal grains 120 are formed by a conventional light emitting diode crystal grain forming method, such as a metal organic chemical vapor deposition method.
200532938 五、發明說明(10) (metal organic chemical vapor deposition ,簡稱 MOCVD )等。接下來,為要將氮化鋁銦鎵厚膜1 i〇之表面紋 理化,故必須將基板1 〇 5移除以使被紋理化的表面露出, 此移除基板1 05的步驟可利用雷射剝離法、乾式蝕刻法或 濕式#刻法等方式進行,以將氮化鋁銦鎵厚膜丨丨〇之第二 平台表面114露出,以進行之後的表面紋理化(surface texture )步驟 ° 最後對所露出的氮化鋁銦鎵厚膜11〇之第二平台表面 114進行表面紋理化(surface texture)步驟,此步驟包 括先在此第二平台表面114形成第二圖案(未顯示),如 利用光罩製程、電子束微影術、干涉式微影術等,此第二 圖案為多邊形、圓形或橢圓形,且圖案的尺寸小於該發光 二極體晶粒的尺寸,如約為lnm〜5〇〇 ;接著再立體化 上述第二圖案,如利用蝕刻或切割的方式立體化上述第二 圖案,使氮化鋁銦鎵厚膜110的第二平台表面114形成一: :化的=112,此紋理化的表面為凸狀結構或凹狀結、 ,二:第5A〜5D圖所示,且此凸狀結構或凹狀結構的侧面 與底邓呈垂直或傾斜狀,如第6A〜6H圖所示,且 小於氮化鋁銦鎵厚膜1 i 0之厚度,、冋又 厚削,此高度差約為 外’此凸狀結構或該凹狀結構重覆出現, : 期小於該發光二極體晶粒的尺寸,其 =之週 50 0 /zm 〇 马 lnm 〜 而第9圖所示即為在氮化鎵膜 上製作凹凸狀結構的電200532938 V. Description of the invention (10) (metal organic chemical vapor deposition, MOCVD for short) and so on. Next, in order to texture the surface of the aluminum indium gallium nitride thick film 1 i0, the substrate 105 must be removed to expose the textured surface. A method such as an ablation method, a dry etching method, or a wet engraving method is performed to expose the second platform surface 114 of the aluminum indium gallium nitride thick film 丨 丨 for subsequent surface texture steps. Finally, a surface texture step is performed on the exposed second platform surface 114 of the aluminum indium gallium nitride thick film 110. This step includes first forming a second pattern (not shown) on the second platform surface 114, If the photomask process, electron beam lithography, interference lithography, etc. are used, the second pattern is polygonal, circular, or oval, and the size of the pattern is smaller than the size of the light emitting diode crystal grains, such as about 1 nm ~ 500; Then, the second pattern is three-dimensionally sterilized. For example, the second pattern is three-dimensionally etched or cut to form a second platform surface 114 of the aluminum indium gallium nitride thick film 110 :: 化 = 112, this textured surface is a convex knot Or concave knots, two: as shown in Figures 5A to 5D, and the sides of this convex or concave structure are perpendicular or inclined to the bottom, as shown in Figures 6A to 6H, and less than aluminum nitride The thickness of the indium gallium thick film 1 i 0 is thicker and thicker, and the height difference is about 'outside' The convex structure or the concave structure appears repeatedly: The period is smaller than the size of the light-emitting diode grains, which = Zhou 50 0 / zm 〇Ma lnm ~ and Figure 9 shows the electrical structure of the uneven structure on the gallium nitride film.
200532938 五、發明說明(11) 子片,此一試片是先以干涉式微影技術在光阻上 形成週』為約330 nm ’尺寸為約3〇〇nm的凹凸狀圖案,再 經由反應式離子蝕刻等相關製程所得到之凹凸狀結構,置 1低f為約200·左右。由此結果可知,在氮化鎵系列材、 料上製作凹凸狀結構是實際可行的。 而第1G圖為藉由上述之雷射剝離法,將氮化㈣嫁厚 膜110之第三平台表面114露出,所得到之np型晶粒的⑽ 照^ ,此圖顯示藉由雷射剝離法的確可將氮化紹銦錄厚膜 與氧化鋁基板分開,露出氮化鋁銦鎵厚膜11〇之第二平么、 表面114,以進行之後的表面紋理化(surface te^ 口 步驟。 ; 最後再經過切割上底板(subm〇unt)之步驟(未顯示 )即可直接得到在上底板(subm〇unt)上封裝好之分離 一,顆表面紋理化之出光面之ΤΙρ型覆晶晶粒,這樣不但 可簡化晶粒切割步驟、增加良率與降低生產成本的效益, 還:直接彳寸到覆晶型式晶粒,使得晶粒散熱及出光等問題 獲知更佳的改善效果,提升發光二極體整體的發光效率。 雖然本發明已揭露較佳實施例如上,然其並非用以阳 ^本發明,任何熟習此技藝者,在不脫離本發明之精神^ 範圍内,當可作些許之更動與潤飾,因此本發明之^護二 圍當視後附之申請專利範圍所界定者為準。 乾200532938 V. Description of the invention (11) The sub-sheet, this test sheet is first formed by a photolithography using interference lithography technology. The concave-convex pattern with a size of about 330 nm and a size of about 300 nm is then reacted. The uneven structure obtained by related processes such as ion etching is set to a low f of about 200 ·. From this result, it can be known that it is practically feasible to produce a concave-convex structure on a gallium nitride series material. Fig. 1G is a photo of the np-type crystal grains obtained by exposing the third platform surface 114 of the samarium nitride thick film 110 by the above-mentioned laser stripping method. This figure shows the stripping by laser. The method can indeed separate the indium nitride thick film from the alumina substrate, and expose the second flat surface 114 of the aluminum indium gallium nitride thick film 110 to perform the subsequent surface texturing step. ; Finally, after the step of cutting the upper substrate (submunt) (not shown), the separated one packaged on the upper substrate (submunt) can be directly obtained, and the surface-textured light-emitting surface of the ΤΙρ type flip chip This not only simplifies the die cutting step, increases the yield and reduces the benefits of production costs, but also: directly cuts to the flip-chip type die, so that issues such as heat dissipation and light emission of the die can be better understood and the light emission can be improved. The overall luminous efficiency of the diode. Although the preferred embodiment of the present invention has been disclosed above, it is not intended to be used to illuminate the present invention. Anyone skilled in this art can make some changes without departing from the spirit of the present invention. Changes and retouches, so The second protection of the present invention shall be determined by the scope of the attached patent application.
200532938 圖式簡單說明 第1圖為一剖面圖,用以說明習知發光 構 二極體之結 結構 第2圖為一剖面圖,用以說明習知另一發光二 極體之 結構 構 第3圖為面圖,用以說明習知發光二極體之覆晶 〇 第4圖為一剖面圖,用以說明本發明發光二極體之結 第5A〜5D圖為一系列側視圖,用以說明本發明 極體之氮化鋁銦鎵厚膜之紋理化的上表面特徵。 第6A〜6H圖為一系列剖面圖,用以說明本發明發光二 極體之氮化鋁銦鎵厚膜之紋理化的上表面特徵。 第7:〜7F圖為一系列剖面圖,用以說本 極體的製造方法。 、% 〒8圖為一上視圖’用以說明本發明發光二極體之六 邊形氮化鋁銦鎵厚膜結構。 第9圖為一電子顯微鏡照片,用以說明本發明發光 極體之凹凸狀結構的氮化鎵膜。 之 第1 0圖為'一 S Ε Μ昭片,用Μ …、月用以說明本發明發光二極體 TIP型晶粒結構。 % 4 @ 【符號說明】 10、110〜基材 2 0、1 2 0〜發光二極體晶粒 21、121〜η型半導體層200532938 Brief description of the drawings. Figure 1 is a cross-sectional view for explaining the junction structure of a conventional light-emitting diode. Figure 2 is a cross-sectional view for explaining the structure of another conventional light-emitting diode. The figure is a side view, which is used to explain the flip chip of the conventional light-emitting diode. Figure 4 is a cross-sectional view, which is used to illustrate the knot of the light-emitting diode of the present invention. Figures 5A to 5D are a series of side views for The textured upper surface characteristics of the aluminum indium gallium nitride thick film of the polar body of the present invention will be described. Figures 6A to 6H are a series of cross-sectional views illustrating the textured upper surface characteristics of the aluminum indium gallium nitride thick film of the light emitting diode of the present invention. Figures 7: ~ 7F are a series of cross-sectional views used to describe the manufacturing method of the polar body. Fig. 8 is a top view 'for explaining the hexagonal aluminum indium gallium nitride thick film structure of the light emitting diode of the present invention. Fig. 9 is an electron microscope photograph for explaining the GaN film of the uneven structure of the light emitting body of the present invention. The tenth figure is a 'S E Zhao film, using M ..., to illustrate the light-emitting diode TIP type crystal structure of the present invention. % 4 @ [Explanation of symbols] 10, 110 to substrate 2 0, 1 2 0 to light-emitting diode grain 21, 121 to n-type semiconductor layer
200532938 圖式簡單說明200532938 Schematic description
11、 122 活 化層 23 > 123 P型半導體層 30 ^ 130 η型歐姆接觸電極 40、 140 ρ型歐姆接觸電極 100 〜發 光 二 極體 105 〜基 板 111 〜斜 側 面 112 〜紋 理 化 的上表面 113 〜第 一 平 台表面 114 〜第 二 平 台表面 150 底 板 (submount ) 151 〜第 一 凸 塊(bump) 152 〜第 二 凸 塊(b u m ρ ) 0338-A20289TWF(Nl);08-920110;ice.ptd 第18頁11, 122 active layer 23 > 123 P-type semiconductor layer 30 ^ 130 n-type ohmic contact electrode 40, 140 ρ-type ohmic contact electrode 100 ~ light emitting diode 105 ~ substrate 111 ~ slant side 112 ~ textured upper surface 113 ~ First platform surface 114 ~ Second platform surface 150 Submount 151 ~ First bump (bump) 152 ~ Second bump (bum ρ) 0338-A20289TWF (Nl); 08-920110; ice.ptd 18 pages
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093107439A TWI227063B (en) | 2004-03-19 | 2004-03-19 | Light emitting diode and fabrication method thereof |
JP2004106580A JP2005268734A (en) | 2004-03-19 | 2004-03-31 | Light emitting diode and manufacturing method thereof |
US11/069,567 US7358537B2 (en) | 2004-03-19 | 2005-03-02 | Light emitting diode and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093107439A TWI227063B (en) | 2004-03-19 | 2004-03-19 | Light emitting diode and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI227063B TWI227063B (en) | 2005-01-21 |
TW200532938A true TW200532938A (en) | 2005-10-01 |
Family
ID=35054903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093107439A TWI227063B (en) | 2004-03-19 | 2004-03-19 | Light emitting diode and fabrication method thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US7358537B2 (en) |
JP (1) | JP2005268734A (en) |
TW (1) | TWI227063B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185069A (en) * | 2011-04-02 | 2011-09-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Patterned substrate with multiple annulus structure distribution as well as manufacturing method and application thereof |
TWI387136B (en) * | 2009-04-10 | 2013-02-21 | Everlight Electronics Co Ltd | Semiconductor and its forming method and flip-chip light emitting diode package structure |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3705791B2 (en) * | 2002-03-14 | 2005-10-12 | 株式会社東芝 | Semiconductor light emitting element and semiconductor light emitting device |
US8294166B2 (en) | 2006-12-11 | 2012-10-23 | The Regents Of The University Of California | Transparent light emitting diodes |
WO2007091704A1 (en) * | 2006-02-08 | 2007-08-16 | Showa Denko K.K. | Light-emitting diode and fabrication method thereof |
JP5091233B2 (en) | 2006-06-23 | 2012-12-05 | エルジー エレクトロニクス インコーポレイティド | Vertical light emitting device and manufacturing method thereof |
WO2008060586A2 (en) | 2006-11-15 | 2008-05-22 | The Regents Of The University Of California | Textured phosphor conversion layer light emitting diode |
JP2008182069A (en) * | 2007-01-25 | 2008-08-07 | Toshiba Corp | Semiconductor light emitting device |
US9634191B2 (en) | 2007-11-14 | 2017-04-25 | Cree, Inc. | Wire bond free wafer level LED |
US7906786B2 (en) * | 2008-01-11 | 2011-03-15 | Industrial Technology Research Institute | Light emitting device |
US8536614B2 (en) | 2008-01-11 | 2013-09-17 | Industrial Technology Research Institute | Nitride semiconductor light emitting device with magnetic film |
TWI398020B (en) * | 2008-12-01 | 2013-06-01 | Ind Tech Res Inst | Illuminating device |
CN103311418B (en) * | 2012-03-06 | 2017-05-24 | 展晶科技(深圳)有限公司 | Light emitting diode module |
US10096742B2 (en) * | 2012-03-28 | 2018-10-09 | Sensor Electronic Technology, Inc. | Light emitting device substrate with inclined sidewalls |
US9276170B2 (en) * | 2012-10-23 | 2016-03-01 | Toyoda Gosei Co., Ltd. | Semiconductor light emitting element and method of manufacturing semiconductor light emitting element |
WO2014203123A1 (en) * | 2013-06-19 | 2014-12-24 | Koninklijke Philips N.V. | Led with patterned surface features based on emission field patterns |
JP6608352B2 (en) * | 2016-12-20 | 2019-11-20 | Dowaエレクトロニクス株式会社 | Semiconductor light emitting device and manufacturing method thereof |
US11592166B2 (en) | 2020-05-12 | 2023-02-28 | Feit Electric Company, Inc. | Light emitting device having improved illumination and manufacturing flexibility |
US11876042B2 (en) | 2020-08-03 | 2024-01-16 | Feit Electric Company, Inc. | Omnidirectional flexible light emitting device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5779924A (en) * | 1996-03-22 | 1998-07-14 | Hewlett-Packard Company | Ordered interface texturing for a light emitting device |
US6229160B1 (en) * | 1997-06-03 | 2001-05-08 | Lumileds Lighting, U.S., Llc | Light extraction from a semiconductor light-emitting device via chip shaping |
US6291839B1 (en) * | 1998-09-11 | 2001-09-18 | Lulileds Lighting, U.S. Llc | Light emitting device having a finely-patterned reflective contact |
US6133589A (en) * | 1999-06-08 | 2000-10-17 | Lumileds Lighting, U.S., Llc | AlGaInN-based LED having thick epitaxial layer for improved light extraction |
US6987613B2 (en) * | 2001-03-30 | 2006-01-17 | Lumileds Lighting U.S., Llc | Forming an optical element on the surface of a light emitting device for improved light extraction |
TW565957B (en) * | 2002-12-13 | 2003-12-11 | Ind Tech Res Inst | Light-emitting diode and the manufacturing method thereof |
-
2004
- 2004-03-19 TW TW093107439A patent/TWI227063B/en not_active IP Right Cessation
- 2004-03-31 JP JP2004106580A patent/JP2005268734A/en active Pending
-
2005
- 2005-03-02 US US11/069,567 patent/US7358537B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI387136B (en) * | 2009-04-10 | 2013-02-21 | Everlight Electronics Co Ltd | Semiconductor and its forming method and flip-chip light emitting diode package structure |
CN102185069A (en) * | 2011-04-02 | 2011-09-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | Patterned substrate with multiple annulus structure distribution as well as manufacturing method and application thereof |
CN102185069B (en) * | 2011-04-02 | 2013-02-13 | 中国科学院苏州纳米技术与纳米仿生研究所 | Patterned substrate with multiple annulus structure distribution as well as manufacturing method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI227063B (en) | 2005-01-21 |
JP2005268734A (en) | 2005-09-29 |
US20050221527A1 (en) | 2005-10-06 |
US7358537B2 (en) | 2008-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102361052B (en) | There is light-emitting diode and the manufacture method thereof of vertical topology | |
TW200532938A (en) | Light emitting diode and fabrication method thereof | |
KR100631981B1 (en) | Vertical group III-nitride light emitting device and method of manufacturing the same | |
US8895329B2 (en) | Patterned substrate for light emitting diode and light emitting diode employing the same | |
TWI506811B (en) | Light-emitting device with current blocking structure and method for manufacturing light-emitting device with current blocking structure | |
US9041005B2 (en) | Solid state lighting devices with cellular arrays and associated methods of manufacturing | |
TWI420688B (en) | Method for removing a growth substrate of a semiconductor light emitting device | |
CN106058000B (en) | Light-emitting diode and method of manufacturing the same | |
TWI304278B (en) | Semiconductor emitting device substrate and method of fabricating the same | |
CN105009308B (en) | Method and apparatus for creating porous reflective contact part | |
JP2010500774A (en) | Improvement of external luminous efficiency of light emitting diode | |
US20130009167A1 (en) | Light emitting diode with patterned structures and method of making the same | |
KR20110031248A (en) | Highly efficient group-iii nitride based light emitting diodes via fabrication of structures on an n-face surface | |
KR20100099523A (en) | Light emitting device | |
KR20100099477A (en) | Light emitting device and method for fabricating the same | |
CN101931039A (en) | GaN-based light-emitting diode with double-layer staggered through-holes and its manufacturing process | |
TW201128803A (en) | Devices on textured substrates and methods for fabricating semiconductive devices | |
CN108110105A (en) | A kind of UV LED chip, the production method of UV LED chip and a kind of ultraviolet LED | |
JP4148846B2 (en) | Light emitting diode device manufacturing method and light emitting diode device | |
TW201003980A (en) | Substrate for making light emitting element and light emitting element using the same | |
CN104218134B (en) | LED (Light Emitting Diode) vertical chip structure with special coarsening morphology and preparation method thereof | |
CN106876547A (en) | Thin-film type light-emitting diode and preparation method thereof | |
CN101438422A (en) | Laser-lifted light-emitting diodes with improved light extraction | |
CN108110111A (en) | Galliumnitride base LED chip and manufacturing method | |
JP5702165B2 (en) | High efficiency gallium nitride based light emitting diodes by surface roughening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |