200532749 玖、發明說明 【發明所屬之技術領域】 本發明是有關於半導體元件製造領域,且特別是有關於 沖洗(rinse)在一半導體晶圓(semiconductor wafer)上的一基 材(substrate)且使此基材乾燥,其中此半導體晶圓包括但不 限於一石夕晶圓(silicon wafer)和一絕緣電路板(insulating circuit board),其中半導體元件藉由半導體元件製程被製造 於此半導體晶圓上。 【先前技術】 半導體元件製造是關於在一基材的一連串複數層中製 造積體電路的製程步驟,其中此基材被製造於一半導體晶 圓上。一些製程步驟會留下殘餘物,這些殘餘物將藉由沖 洗此半導體晶圓且使其乾燥而去除。 在本發明之前,使基材乾燥是完全藉由旋轉此半導體晶 圓,當此晶圓正被在一機器臂(robot arm)上的一晶圓握持器 (wafer holder)所握持時。不完全的使其乾燥會留下去離子 水(de·ionized water,DI water )的殘餘物在此基材上,而此 殘餘物會促進化學離子化(ionization)以及其他化學反應,其 中這些化學反應會降低被製造於此基材上的積體電路之良 率(yield)。然而/嘗試藉由延長使乾燥的週期期間(cycle period)以達到使基材完全乾燥會造成生產力(productivity) 以及晶圓整批產量(throughput)之無法接受的下降。嘗試藉 由一高的旋乾(spin-dry)速度與更快速旋轉晶圓以達到使基 200532749 材完全乾燥會增加沖洗液(rinsing fluid)質量的動旦 (momentum),因而濺濕及再度弄濕此基材。所以,需要— 種製程和裝置,用以在一合理的使乾燥之週期期間完全地 使基材乾燥。 ^ 【發明内容】 依據本發明,在一合理的使乾燥週期期間一基材被完全 地乾燥化。本發明的一實施例是一種沖洗在一半導體晶圓 上的一基材且使其乾燥的製程,藉由在一沖洗週期期間施 加分配沖洗液在此基材上;以及在一使乾燥之週期期間沿 著一旋轉轴的周圍旋轉此晶圓,以使此晶圓乾燥,同時對 著此基材施加分配處於壓力下的乾燥氣體,以完全地使此 晶圓乾燥。 本發明的另一實施例是一種裝置,具有一第一喷嘴與一 第二喷嘴。此第一喷嘴在一沖洗週期期間對著此基材施加 分配沖洗液。此第二喷嘴在一使乾燥之週期期間對著此基 材施加分配處於壓力下的乾燥氣體,以完全地使此基材乾 燥。 雖然本發明將藉由提到微影(photolithography)而敛 述’本發明應用到任何不同的積體電路製程,其中這些製 程會留下殘餘物,而這些殘餘物將藉由沖洗一半導體晶圓 且使其乾燥而去除。 本發明的一實施例現在將參考附加圖示被敘述,為了作 為乾例。 200532749 【實施方式】 範例的實施例之敘述是打算參照所附加的圖示而被閱 讀的,而這些所附加的圖示將被認為是整個書面敘述的一 部份。在此敘述中,相對性的詞囊例如較低的(1〇wer)、較 上的(upper)、水平的(h〇rizontal)、垂直的(verticai)、在上 (above)、在下(below)、向上(up)、向下(d〇wn)、最高的(top) 以及最低的(bottom)以及它們的衍生詞(例如水平地 (horizontally)、向下地(d〇wnwardly)與向上地(upwardiy)等 等)應被解釋為意指當其出現時所敘述的或如同討論中的圖 示所顯示的方位(orientation)。這些相對性的詞彙是為了敘 述的方便而且並不要求裝置在一特定的方位上被建造或操 作。關於附者(attachment)、耦接(coupling)以及類似的詞 彙,例如連接(connected)和内連接的(inte]rconnected)是意指 一種關係,其中複數個結構彼此之間是直接地或間接地藉 由其間的結構以及可移動的或堅固的附著或關係而被牢固 化或附著在一起,除非有明確不同地敘述。 第1圖揭示一基材1〇〇,其包括但不限於一或多層材 料。此基材100是在半導體晶圓102上,而此半導體晶圓 102包括但不限於一矽晶圓和一絕緣電路板,其中半導體元 件藉由半導體元件製程被製造於半導體晶圓1〇2上。本發 明是有關於沖洗在半導體晶圓1〇2上的基材1〇〇且使此基 材1〇〇乾燥。雖然本發明將藉由提到微影(photoHth〇graphy) 而敘述,本發明應用到任何不同的積體電路製程,其中這 200532749 些製程會留下殘餘物,而殘餘物將藉由沖洗半導體晶圓1 〇2 且使其乾燥而去除。 微影牵涉到一積體電路圖案(pattern)的製造,藉由首先 用被圖案化的光罩(patterned mask)將一光束圖案化,然後 將被圖案化的光束集中到作為光阻(photoresist,PR)的對光 敏感層(light sensitive layer)l〇4。此光阻層104覆蓋一位於 其下方的層(underlying layer),其中此層是屬於在半導體晶 圓102上的基材1〇〇。此光阻層1〇4被曝露到此被圖案化的 光束(即曝光)將把此圖案拍照到此光阻層1 〇4中。然後,此 已拍照圖案的光阻層104藉由具有化學顯影液的處理而被 顯影,以提供通過光阻層104的開放的圖案。 跟隨在微影之後,被圖案化的光阻層1〇4在蝕刻期間是 存在於其原來的地方,以在上述位於其下方的層(屬於基材 100)中蝕刻一積體電路圖案。 跟隨在此光阻層104的顯影之後,此基材丨〇〇必須被沖 洗和乾燥化。所以,化學顯影液是藉由以一沖洗液沖洗此 基材100而被去除,其中此沖洗液例如是去離子水。然後, 此基材100被乾燥化以去除此沖洗液。 第1圖更揭示一電動機驅動的(m〇t〇r driven)晶圓握持 器106的一部份。一商業上可取得的、工業上為人知曉的 晶圓製程裝置在一電動機驅動的機器臂(r〇b〇t arm)1〇8上具 有這樣的晶圓握持器106。此晶圓握持器和機器臂1〇8 是藉由電腦而被程式化(programmed),以自動地從一批晶圓 102中拾起個別的晶圓102 ’而且藉由一製造設備引導此晶 200532749 圓102,其中此製造設備在此晶圓102上進行一製造操作。 當此製程週期完成後,機器臂108將個別的晶圓102玫回 到整批晶圓中。 舉例來說,此晶圓握持器106和機器臂108藉由沖洗設 備引導此晶圓102,當一沖洗製程步驟被進行於此晶圓1〇2 上時。舉例來說,在一電動機驅動的輔助機器臂112上的一 第一喷嘴(nozzle) 110施加分配(dispense)沖洗液即去離子 水,其中此沖洗液藉由一電動機控制的閥(valve)ll〇a而被 供應到此第一喷嘴110。 跟隨在一沖洗週期之後,在機器臂108上的晶圓握持器 106被裝配上以斜向一邊地(edgewise)旋轉晶圓1〇2,其中 當這些晶圓被晶圓握持器106斜向一邊地握持時。在本發 明之前’使基材100乾燥是完全藉由旋轉半導體晶圓 當此晶圓正被在機器臂108上的晶圓握持器1〇6所握持時。 跟隨在一旋乾(spin-dry)週期之後幾乎所有的晶圓ι〇2 會具有沖洗液的微量痕跡。靠近晶圓1〇2的旋轉中心的此 沖洗液,也就是去離子水,無法被輕易地驅逐出去,因為 缺乏足夠的線性速度(linear velocity),以及因為蒸氣形式的 去離子水缺乏為了被驅逐出去之足夠的質量。在基材 上的此沖洗液會造成光阻層104從基材1〇〇上的局部區域 剝落,其中在一旋乾週期之後此沖洗液的痕跡留存在光阻 層104的這些局部區域。 於硬烤(hard bake)時,去離子水(DI)蒸氣的揮發將產生 DI和光阻間的應力(stl*ess),其將導致光阻層1〇4從基材ι〇〇 200532749 剝落。 會留存在光阻層1 〇4上的此沖洗液的痕跡會弱化光阻 層104和基材100之間的聯結(b〇nd)。因為被弱化的聯結, 光阻層104會剝落。光阻層104的剝落會降低被製造於此 基材100上的積體電路之製造良率。 本發明獲得基材1〇〇的完全乾燥,在不用延長旋乾週期 以及不用增加藉由晶圓握持器106所產生的旋轉速度的情 況下。請參照第丨圖,一第二喷嘴丨14在第一喷嘴丨丨Q的旁 邊。在一沖洗週期期間,第一喷嘴11〇被辅助機器臂U2 移動,以將第一喷嘴110的排放端(discharge⑶句指向基材 100罪近旋轉軸(axis of r〇tati〇n)的地方。旋轉軸的位置座標 疋通過藉由輔助機器臂112移動第一喷嘴no而得知。此沖 洗週期的進行是藉由從第一喷嘴110施加分配沖洗液到基 材10〇,當晶圓握持器1〇6沿著此旋轉軸的周圍(ab〇ut the axis of r〇tatlon)旋轉半導體晶圓1〇2時。跟隨在此沖洗週期 之後,沖洗液的流出從第一喷嘴丨丨〇停止了。 第1A圖揭示輔助機器臂112將第一喷嘴u〇移開旋轉 軸且移動第二喷嘴114以代替第一喷嘴的位置,藉此將第 一噴嘴114的排放端指向基材1〇〇靠近旋轉軸的地方。此使 乾燥週期的進行是藉由晶圓握持器106旋轉晶圓102,同時 乾燥氣體處於壓力下被施加分配以將冑近旋轉轴的沖洗液 驅逐出去。此氣體是藉由一電動機控制的閥U4a而被供應 ^ f 一噴嘴114,其中第二喷嘴114施加分配此氣體。此乾 燥亂體除去靠近旋轉轴的沖洗液的一蒸氣薄膜之水分。所 200532749 以,基材100是藉由合併驅逐(expelling)與脫水(desiccation) 而被乾燥化。舉例來說,此乾燥氣體是處於壓力之下氣體 的氮N2。 所以,一種沖洗在一半導體晶圓102上的一基材1〇〇 且使此基材1〇〇乾燥的製程牽涉到在一沖洗週期期間施加 分配沖洗液在此基材100上;以及在一使乾燥之週期期間 沿著一旋轉轴的周圍旋轉此晶圓102,以使此晶圓102乾 燥,同時對著此基材100施加分配處於壓力下的乾燥氣體, 以完全地使此晶圓102乾燥。 當使乾燥之週期結束時,此辅助機器臂112被移開,且 機器臂108將此晶圓102放回到此批晶圓,其中此晶圓ι〇2 被晶圓握持器106在此釋放。 第2圖揭示具有一微處理器(micr〇processor)2〇2之一控 制電路200,此微處理器202具有一輸入時脈(inpUt ci〇ck) 信號cki以及與一電腦或與一伺服器(server)之間的互連 (interconnection)V1,以連接到一網路。此微處理器202是 藉由一電腦而被程式化以發送以下的控制信號。第一控制 信號被送到第一機器臂108的一電動機(motor drive)的一控 制電路204。第二控制信號被送到晶圓握持器106的一電動 機的一控制電路206。第三控制信號被送到辅助機器臂112 的電動機的一控制電路208。第四控制信號被送到此電動 機控制的第一閥ll〇a的一控制電路210,其中第一閥11〇a 係供應沖洗液到第一喷嘴11〇。第五控制信號被送到此電動 機控制的第二閥U4a的一控制電路212,其中第二閥114a 200532749 係供應沖洗液到第二喷嘴1 1 4。 此微處理器202發信號給控制電路2 1 〇使其在一沖洗週 期期間打開與關閉第一閥11 〇a。此微處理器202發信號給 往制電路206使其在一使乾燥週期期間旋轉此晶圓丨〇2,以 使此晶圓102乾燥,同時發信號給控制電路212使其打開 與關閉第二閥114a,以對著此基材100施加分配處於壓力 下的乾燥氣體,以完全地使此晶圓1 〇2乾燥。 此微處理器202發信號給控制電路208以移動第一喷嘴 11 〇使其指向罪近旋轉轴116的基材1 〇〇,同時此微處理器 2〇2發信號給控制電路21〇使其打開與關閉第一閥u〇a,以 在一沖洗週期期間藉由第一喷嘴丨1〇施加分配沖洗液。此德 處理器202發信號給控制電路2〇8以移動第二噴嘴ιΐ4使其 指向靠近旋轉軸116的基材1〇〇,同時此微處理器2〇2發信 號給控制電路212使其打開與關閉第二閥U4a,以在一使 乾燥週期期間藉由第二喷嘴n4施加分配乾燥氣體。 —雖然本發明已以較佳實施例揭露如上,然其並非用以限 =本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 易懂, 說明如 讓本發明之上述和其他目的、特徵、和優點能更明顯 下文特舉一較佳實施例,並配合所附圖式,作 下: 。、、 200532749 第1A圖是一種沖洗在一 乾燥的裝置之圖解。 第1B圖是類似第a圖 步驟。 半導體晶圓上的一基.材且使其 之圖解,且揭示一使乾燥製程 第2圖是f路的電路圖,其中此電路控制—種沖洗在 半導體晶圓上的-基材且使其乾燥的裝置。 【元件代表符號簡單說明】 100 基材 102 半導體晶圓 104 光阻層 106 晶圓握持器 108 機器臂 110 第一噴嘴 ll〇a ··電動機控制的第一閥 112 :輔助機器臂 114 :第二喷嘴 114a ··電動機控制的第二閥 116 :旋轉轴 200 :控制電路 202 ··微處理器 204 :控制電路 206 :控制電路 208 :控制電路 200532749 210 :控制電路 212 :控制電路200532749 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to the field of semiconductor device manufacturing, and in particular, to rinsing a substrate on a semiconductor wafer and using the substrate. The substrate is dry. The semiconductor wafer includes, but is not limited to, a silicon wafer and an insulating circuit board. A semiconductor element is manufactured on the semiconductor wafer by a semiconductor element process. [Prior Art] Semiconductor device manufacturing is a process step of manufacturing an integrated circuit in a series of multiple layers on a substrate, where the substrate is manufactured on a semiconductor wafer. Some process steps leave residues that will be removed by washing the semiconductor wafer and drying it. Prior to the present invention, the substrate was dried completely by rotating the semiconductor wafer while the wafer was being held by a wafer holder on a robot arm. Incomplete drying will leave residues of deionized water (DI water) on this substrate, and this residue will promote chemical ionization and other chemical reactions, among which these chemical reactions Will reduce the yield of the integrated circuit fabricated on this substrate. However / trying to extend the drying cycle period to achieve complete drying of the substrate can cause an unacceptable decrease in productivity and overall wafer throughput. Attempt to spin the wafer with a high spin-dry speed and faster to achieve complete drying of the base 200532749 material, which will increase the quality of the rinsing fluid, so it is wet and splashed again. Wet this substrate. Therefore, there is a need for a process and equipment to completely dry the substrate during a reasonable drying cycle. ^ [Summary of the Invention] According to the present invention, a substrate is completely dried during a reasonable drying cycle. An embodiment of the present invention is a process of washing a substrate on a semiconductor wafer and drying the substrate, by applying a dispensing liquid to the substrate during a washing cycle; and a drying cycle During this period, the wafer is rotated around a rotation axis to dry the wafer, and a drying gas distributed under pressure is applied to the substrate to completely dry the wafer. Another embodiment of the present invention is a device having a first nozzle and a second nozzle. The first nozzle applies a dispensing rinse solution to the substrate during a rinse cycle. The second nozzle applies a distribution of a drying gas under pressure to the substrate during a drying cycle to completely dry the substrate. Although the present invention will be summarized by referring to photolithography, the present invention is applied to any of various integrated circuit processes, where these processes will leave residues, and these residues will be processed by washing a semiconductor wafer. And it was dried and removed. An embodiment of the present invention will now be described with reference to the accompanying drawings, as a dry example. 200532749 [Embodiment] The description of the exemplary embodiment is intended to be read with reference to the attached drawings, and these attached drawings will be considered as part of the entire written description. In this narrative, relative terms are, for example, lower (10wer), upper (horper), horizontal (horizontal), vertical (verticai), above (above), below (below) ), Up, down, top, bottom, and their derivatives (such as horizontally, downwardly, and upwardly ( upwardiy) and so on) should be interpreted to mean the orientation described when it appeared or as shown by the diagram in question. These relative terms are for convenience of description and do not require the device to be built or operated in a particular orientation. About attachment, coupling, and similar terms, such as connected and inte rconnected mean a relationship in which a plurality of structures are directly or indirectly with each other Secured or attached together by structures and removable or strong attachments or relationships, unless explicitly stated differently. Figure 1 discloses a substrate 100, which includes but is not limited to one or more layers of material. The substrate 100 is on a semiconductor wafer 102, and the semiconductor wafer 102 includes, but is not limited to, a silicon wafer and an insulating circuit board. A semiconductor element is manufactured on the semiconductor wafer 102 by a semiconductor element process. . The present invention relates to a substrate 100 washed on a semiconductor wafer 102 and the substrate 100 dried. Although the present invention will be described by referring to photolithography, the present invention is applied to any of various integrated circuit processes, of which 200532749 these processes will leave residues, and the residues will be washed by washing the semiconductor crystal. Circle 1 0 2 and allow to dry to remove. Lithography involves the fabrication of an integrated circuit pattern, by first patterning a light beam with a patterned mask, and then focusing the patterned light beam as a photoresist, PR) light sensitive layer 104. The photoresist layer 104 covers an underlying layer, wherein the layer is a substrate 100 on the semiconductor wafer 102. The photoresist layer 104 is exposed to the patterned light beam (ie, exposure), and the pattern is photographed into the photoresist layer 104. Then, the photographed patterned photoresist layer 104 is developed by a treatment with a chemical developer to provide an open pattern through the photoresist layer 104. Following the lithography, the patterned photoresist layer 104 exists in its original place during etching to etch a integrated circuit pattern in the above-mentioned layer (belonging to the substrate 100). Following the development of the photoresist layer 104, the substrate must be washed and dried. Therefore, the chemical developing solution is removed by rinsing the substrate 100 with a rinsing solution, such as deionized water. Then, the substrate 100 is dried to remove the rinse liquid. FIG. 1 further illustrates a part of a motor-driven wafer holder 106. A commercially available, industrially known wafer process apparatus has such a wafer holder 106 on a motor-driven robot arm 108. The wafer holder and robotic arm 108 are programmed by a computer to automatically pick up individual wafers 102 'from a batch of wafers 102 and guide this through a manufacturing facility Wafer 200532749 round 102, in which the manufacturing equipment performs a manufacturing operation on the wafer 102. When this process cycle is completed, the robot arm 108 returns the individual wafers 102 to the entire batch of wafers. For example, the wafer holder 106 and the robotic arm 108 guide the wafer 102 by a rinsing device when a rinsing process step is performed on the wafer 102. For example, a first nozzle 110 on a motor-driven auxiliary robotic arm 112 applies a dispense flushing fluid, ie, deionized water, where the flushing fluid is controlled by a motor-controlled valve ll 〇a is supplied to this first nozzle 110. Following a flushing cycle, the wafer holder 106 on the robot arm 108 is assembled to rotate the wafer 102 edgewise, where the wafers are tilted by the wafer holder 106 When holding it sideways. Prior to the present invention 'the substrate 100 was dried completely by rotating the semiconductor wafer while the wafer was being held by the wafer holder 106 on the robot arm 108. Almost all wafers that follow a spin-dry cycle will have traces of rinse fluid. This rinsing liquid, which is near the center of rotation of wafer 102, that is, deionized water, cannot be expelled easily because of the lack of sufficient linear velocity, and because of the lack of deionized water in the form of vapor to be expelled Out of sufficient quality. This rinsing solution on the substrate will cause the photoresist layer 104 to peel off from local areas on the substrate 100, where traces of this rinsing solution remain in these local areas of the photoresist layer 104 after a spin-drying cycle. During hard bake, the volatilization of DI water vapor will generate stl * ess between DI and photoresist, which will cause the photoresist layer 104 to peel off from the substrate 200532749. Traces of this rinse solution remaining on the photoresist layer 104 will weaken the bond (bond) between the photoresist layer 104 and the substrate 100. Because of the weakened connection, the photoresist layer 104 will peel off. The exfoliation of the photoresist layer 104 reduces the manufacturing yield of the integrated circuit manufactured on the substrate 100. The present invention achieves a complete drying of the substrate 100 without increasing the spin-drying period and without increasing the rotation speed generated by the wafer holder 106. Referring to the figure, a second nozzle 14 is beside the first nozzle Q. During a rinsing cycle, the first nozzle 110 is moved by the auxiliary robot arm U2 to point the discharge end of the first nozzle 110 toward the position of the substrate 100 near the axis of rotation. The position coordinates of the rotation axis 疋 are obtained by moving the first nozzle no by the auxiliary robot arm 112. This flushing cycle is performed by applying a dispensing flushing liquid from the first nozzle 110 to the substrate 100, and when the wafer is held When the device 106 rotates the semiconductor wafer 102 along the axis of rotation (abotat the axis of rotatlon). Following this rinse cycle, the outflow of the rinse liquid stops from the first nozzle 丨 丨Figure 1A reveals that the auxiliary robot arm 112 moves the first nozzle uo off the rotation axis and moves the second nozzle 114 to replace the position of the first nozzle, thereby directing the discharge end of the first nozzle 114 toward the substrate 100. Close to the axis of rotation. The drying cycle is performed by rotating the wafer 102 by the wafer holder 106 while the drying gas is under pressure and distributed to expel the flushing liquid near the axis of rotation. This gas is Valve U4a controlled by a motor A nozzle 114 is supplied, in which the second nozzle 114 is applied to distribute the gas. This dried mess removes the moisture of a vapor film of the rinsing liquid near the rotation axis. Therefore, the substrate 100 is expelled by merger ) And desiccation. For example, the dry gas is nitrogen N2, which is a gas under pressure. Therefore, a substrate 100 washed on a semiconductor wafer 102 and the substrate The process of drying the substrate 100 involves applying a dispensing rinse solution on the substrate 100 during a rinse cycle; and rotating the wafer 102 around a rotation axis during the drying cycle so that the crystals The circle 102 dries while applying a drying gas under pressure to the substrate 100 to completely dry the wafer 102. When the drying cycle ends, the auxiliary robot arm 112 is removed, and the robot arm 108 returns the wafer 102 to the batch of wafers, where the wafer ι2 is released here by the wafer holder 106. Figure 2 reveals that a microprocessor (microprocessor) 202 A control circuit 200, The processor 202 has an input clock signal cki and an interconnection V1 with a computer or with a server to connect to a network. The microprocessor 202 It is programmed by a computer to send the following control signals. The first control signal is sent to a control circuit 204 of a motor drive of the first robot arm 108. The second control signal is sent to the wafer A control circuit 206 of a motor of the holder 106. The third control signal is sent to a control circuit 208 of the motor of the auxiliary robot arm 112. The fourth control signal is sent to a control circuit 210 of the first valve 110a controlled by the motor, wherein the first valve 110a supplies the flushing liquid to the first nozzle 110. The fifth control signal is sent to a control circuit 212 of the second valve U4a controlled by this motor, wherein the second valve 114a 200532749 supplies the flushing liquid to the second nozzle 1 1 4. This microprocessor 202 signals the control circuit 2 10 to open and close the first valve 11 a during a flushing cycle. The microprocessor 202 sends a signal to the processing circuit 206 to rotate the wafer during a drying cycle to dry the wafer 102, and sends a signal to the control circuit 212 to open and close the second The valve 114a applies a distribution of a dry gas under pressure to the substrate 100 to completely dry the wafer 102. The microprocessor 202 sends a signal to the control circuit 208 to move the first nozzle 11 〇 to point to the substrate 100 near the rotation axis 116, and the microprocessor 202 sends a signal to the control circuit 21 〇 The first valve ua is opened and closed to dispense a rinsing liquid through the first nozzle 110 during a flushing cycle. The German processor 202 sends a signal to the control circuit 208 to move the second nozzle 4 to point to the substrate 100 near the rotation axis 116. At the same time, the microprocessor 202 sends a signal to the control circuit 212 to open it. And closing the second valve U4a to distribute the drying gas by applying the second nozzle n4 during a drying cycle. -Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and decorations without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application. [Brief description of the drawings] It is easy to understand, and if the above and other objects, features, and advantages of the present invention can be made more obvious, a preferred embodiment is given below, in conjunction with the attached drawings, as follows:. 200532749 Figure 1A is a diagram of a flushing device in a drying unit. Figure 1B is similar to Figure a. A substrate on a semiconductor wafer and its illustration, and reveal a drying process. Figure 2 is a circuit diagram of the f circuit, where this circuit controls a kind of substrate washed on the semiconductor wafer and allowed to dry. installation. [Simple description of component representative symbols] 100 substrate 102 semiconductor wafer 104 photoresist layer 106 wafer holder 108 robot arm 110 first nozzle 110a · motor-controlled first valve 112: auxiliary robot arm 114: Two nozzles 114a. The second valve 116 controlled by the motor: the rotating shaft 200: the control circuit 202. The microprocessor 204: the control circuit 206: the control circuit 208: the control circuit 200532749 210: the control circuit 212: the control circuit