200532209 九、發明說明: 【發^明所屬之技糊"領】 相關申請案之交叉參考 本申請案宣告2004年1月28曰申請,標題為「多訊號單 5 束探針」之美國專利臨時申請案第60/539,916號的權益,其 揭露内容係全部以參考方式併入本文之中。 本申請案一般係有關於一種用於半導體晶圓探針檢測 以及微裝置之參數測量的探針之製造。 【先前技術]1 !〇發明背景 現代半導體以及其他微裝置係製造於矽晶圓或是其他 適當材料上’獲利與增強裝置性能的關鍵在於微型化。儘 管晶圓尺寸的範圍能夠上達12英吋或更多,各個晶圓包含 複數個個別的裝置’且各裝置之構造係相當微小且甚至越 15 來越小。一個具有八個接點的完整裝置可能僅有1/100平方 英吋的大小而已。必須在這些構造上進行電子測量,裝置 之微小尺寸必須使能夠連接到該等裝置之接觸區域(稱之 為墊片)相對變得微小,以便達到最大的益處。欲接觸該等 塾片,則必須要有實體上微小的探針。 20 在墊片之上表面係為不容易氧化的金屬(諸如金)之案 例中,其能夠使用許多由不同材料所製造的探針。當探針 檢測/沒有氧化物之墊片時,該探針能夠垂直或接近垂直 地截斷墊片表面,某些另外與探針相結合的機械構造則提 供/彈簧作用。200532209 IX. Description of the invention: [Issue the technical paste of the application] A cross-reference to related applications This application was announced on January 28, 2004, and is a US patent entitled "Multi-Signal Single 5-Beam Probe" The benefit of provisional application No. 60 / 539,916, the disclosure of which is incorporated herein by reference in its entirety. This application relates generally to the manufacture of a probe for semiconductor wafer probe detection and microdevice parameter measurement. [Previous Technology] Background of the Invention Modern semiconductors and other microdevices are manufactured on silicon wafers or other suitable materials. The key to profitability and enhancement of device performance is miniaturization. Although the wafer size range can be up to 12 inches or more, each wafer contains a plurality of individual devices' and the structure of each device is quite small and even smaller as 15 or more. A complete device with eight contacts may be as small as 1/100 square inch. Electronic measurements must be made on these configurations, and the tiny dimensions of the devices must make the contact areas (called shims) that can be connected to them relatively small in order to achieve the maximum benefit. To access these cymbals, a physically tiny probe is required. 20 In the case where the top surface of the gasket is a metal (such as gold) that is not easily oxidized, it can use many probes made of different materials. When the probe detects / no oxidized gasket, the probe can cut the gasket surface vertically or nearly perpendicularly, and some mechanical structure combined with the probe provides / spring action.
V 200532209 了编片由鋁所形成的特殊(但普遍可見)案例中,該墊片 之^層〜^由銘的氧化物(一絕緣體)所覆蓋,且探針必須一 5V 200532209 describes the special (but generally visible) case where the weaving sheet is formed of aluminum. The ^ layer ~ ^ of this gasket is covered by Ming's oxide (an insulator), and the probe must be a 5
10 子接觸I化物層’以便與位於其下方的墊片材料進行電 π驗上得知,穿過此氧化物層的難方式係使探 在替主體傾斜’以便形成—「懸臂探針」。當將此一探針麼 表面切m度會使得探針尖端在一點穿過 ^ 一’几且接著隨著施加越多麼力而「刮」入氧化物中,厂擦 方 又紅的溝槽。此方法會穿透氧化物,使得探針與下 狡Γ銘塾片相接觸,但是該動作會使接觸點從初始接觸點 、過塾片。因此’該墊片必須夠大’以便能夠容納額 的運動。由於裝置越做越小,故墊片也越來越小,且該 接觸點運動會轉财的墊片寬度,對於接觸點不準確: 而3並沒有留下任何餘裕量。The 10-substance contact I-layer is used to conduct an electrical test with the gasket material underneath. It is known that the difficult way to pass through this oxide layer is to tilt the probe for the main body so as to form a "cantilever probe". When the surface of this probe is cut by m degrees, the probe tip will pass through a few points and then "scrape" into the oxide as the force is applied, the factory rubs the red groove. This method will penetrate the oxide and make the probe contact the lower plate, but this action will make the contact point from the initial contact point to the plate. So 'the shim must be large enough' to be able to accommodate the movement of the amount. As the device is getting smaller and smaller, the gasket is getting smaller and smaller, and the contact point movement will change the width of the gasket, which is not accurate for the contact point: 3 does not leave any margin.
欲監控製造程序,則必須對於晶圓基板上之構造的各 5種電子特徵進行之精確測量,以便判定一特定裝置是否依 見才σ運作、描述一新開發裝置之特徵等等。 所有的4木針主體皆具有阻抗,且探針主體尖端與裝置 ^間的阻k永遠無法得知。在特殊案例巾,必須進行 量所需要的精確度需要使用一些方法,該等方法在面對、1 20些問題依然能夠進行準確的測量。一般而言,一單獨探^ 接觸將無法建立一種確切足夠良好的連接。使用單 接觸法進行參數測量基本上就不夠準確。 曾經發展出-種增進參數測量之準確性的技術,稱之 為飢文(Kdvin)連接系統。飢文連接降低或消除了由於 6 200532209 線路阻抗所產生的電壓損失(否則該損失在低電壓測量時 會產生誤差)。此系統係藉由對於—測量點提供 、 「+ t「 干獨的 5 10 15 施力」與★應」線路(凱文連接)所達成。電流僅透過談 「施力」線路供應到測量點’如此會在該「施力」線路: 二電壓降。但是測量點之電壓係藉由一高阻抗儀器加 ^,韻$透過「感應」線路連接測量點,並不會吸 引電流(在「感應」線路中不會導致電壓降),且因此不會產 生誤差。 欲使用飢文連接系統準確地測量位於一晶圓上的兩個 片之間的某些構造的阻抗,則該兩個塾片必須各放置兩 個探針(僅進行-次測量總共需要四個探針)。欲在一單獨的 =上容納兩個探針佈置’則必須使塾片大於單探針測試 而要的尺寸,但是經濟考量通常並不容許較大或是不同 、塾片尺寸。因此,佈置給各個墊片的兩個探針必然是接 乎彼此接觸,但是探針並不容許能互相接觸。由於 個㈣「觸地點」誤差’如果該對探針其 有〜個仏針稿微弯曲,則無法使兩個探針都落在微小墊 片的範圍内。 ®此而要-種改進的探針總成’用以測試電子裝置。 C 日月1^3 】 發明概要 乂康本毛月抑單束探針設置多個與一測試裝置相連 力“1接广此早束k針能夠用以對於-單獨墊片提供「施 」/、感應」接點,用於一飢文連接系統中。習用凯文 20 200532209 連接系統與一微小塾片進行個別之接觸,而同時不合彼此 相接觸所需要的兩個單獨探針便能夠藉由以一單獨探針束 所製造之一單獨雙接點總成加以取代。 依照本發明之實施例,一具有兩個電子單獨接點之探 針總成能夠藉由以一絕緣護套圍繞一中心金屬探針(其彤 成具有一個電子電路的一探針接點),且進一步圍繞一傳導 性護套(其形成具有一獨立電子電路之一第二探針接點)加 以製造。該兩個獨立的探針接點能夠以多種形式電子運 作,益實行多種功能。 10 15 20 依照本發明之實施例提供一種探針,該探針包含:一 第〆傳導7G素’其具有_末梢尾端以及—鄰近尾端、一第 二傳導元素,其具有-末梢尾端以及—鄰近尾端、一第一 介電質層’其設置於該第_傳導元素與第二傳導元素之 間、以及-尖端,其具有—接觸表面,該表面包含第一傳 導元素之末梢尾端以及第二傳導元素的末梢尾端。 依照本發明之實施例提供―種形成―探針的方H 方法包含:提供一第一傳導探針元素、以-第—介電質層 ===導探針元素、以―第二傳導探針元素塗佈該 依照本發明之實施例提供—種測試一探針的方法,該 方法包含·以一包含一内傳道-To monitor the manufacturing process, precise measurements of each of the five electronic features of the structure on the wafer substrate must be made in order to determine whether a particular device operates in accordance with the σ, describe the characteristics of a newly developed device, and so on. All four wooden needle bodies have impedance, and the resistance k between the tip of the probe body and the device ^ can never be known. In special case towels, the accuracy required for the measurement needs to use some methods. These methods can still accurately measure in the face of some problems. In general, a single probe contact will not establish a sufficiently good connection. Parameter measurement using the single-contact method is basically not accurate enough. A technique to improve the accuracy of parameter measurement has been developed and is called the Kdvin connection system. The hungry connection reduces or eliminates the voltage loss due to the line impedance of 2005200532209 (otherwise this loss will cause errors in low voltage measurements). This system is achieved by providing-measuring points, "+ t" 5 10 15 exerting force alone "and ★ should" line (Kevin connection). The current is only supplied to the measurement point through the "force" line, so it will be on the "force" line: Two voltage drops. However, the voltage at the measurement point is added by a high-impedance instrument. The rhyme is connected to the measurement point through the "inductive" line, and does not attract current (no voltage drop will be caused in the "inductive" line). error. To accurately measure the impedance of certain structures between two wafers on a wafer using the Hunger Connection System, two probes must be placed on each of the two cymbals (only four measurements are required for a total of four) Probe). To accommodate two probe arrangements on a single =, the cymbal must be larger than the size required for a single probe test, but economic considerations generally do not allow larger or different cymbal sizes. Therefore, the two probes arranged for the respective pads must be in contact with each other, but the probes are not allowed to be in contact with each other. Because of the “touching point” error ’, if the pair of probes has a small bend, it will be impossible for both probes to fall within the range of the tiny pads. ® Instead, an improved probe assembly ’is used to test electronic devices. C Sun and Moon 1 ^ 3】 Summary of the invention Ji Kang's single-beam probe with multiple beams is connected to a test device. "1 to expand this early beam k-pin can be used to provide- "Induction" contact, used in a text connection system. The conventional Kevin 20 200532209 connection system makes individual contact with a tiny cymbal, while the two separate probes required for contacting each other at the same time can be achieved by a single double contact assembly made with a separate probe bundle. To be replaced. According to an embodiment of the present invention, a probe assembly with two electronic separate contacts can surround a central metal probe (which is a probe contact with an electronic circuit) by an insulating sheath, It is further manufactured around a conductive sheath that forms a second probe contact with an independent electronic circuit. These two independent probe contacts can be operated electronically in a variety of forms, performing a variety of functions. 10 15 20 According to an embodiment of the present invention, a probe is provided. The probe includes: a first conductive 7G element, which has a _terminal tail end and an adjacent tail end, and a second conductive element, which has a -terminal tail end. And—adjacent to the tail end, a first dielectric layer is disposed between the _th conductive element and the second conductive element, and the tip has a contact surface, the surface including the tail end of the first conductive element And the trailing end of the second conductive element. According to an embodiment of the present invention, a method for providing a method for forming a probe includes: providing a first conductive probe element, a first dielectric layer === a conductive probe element, and a second conductive probe element. The needle element coats the method provided by an embodiment of the present invention—a method for testing a probe, the method comprising:
MiiL - 導7°素以及一外傳導元素(其與 該内傳導=同軸’細—介電質套管加以分隔)之探針接 觸-㈣_該㈣導元素或外傳中一者 供應一電流到接觸墊片、以及使用該内傳導元素或外傳導 8 200532209 元素其中另一者測量傳導墊片處的電位。 依照本發明之實施例提供一種雙接觸探針,該探針包 含·一傳導針頭、一圍繞該傳導針頭之第一介電質護套、 一圍繞該第一介電質護套之傳導護套、一第一電子連接連 到該傳導針頭、以及一第二電子連接連到該傳導護套,其 與該第一電子連接分開。MiiL-The contact of the conductive element and an external conductive element (which is separated from the internal conductive = coaxial 'thin-dielectric sleeve)-㈣ _ one of the ㈣ conductive elements or external transmission supplies a current to The contact pad, and the other using the inner conductive element or the outer conductive 8 200532209 element, measure the potential at the conductive pad. According to an embodiment of the present invention, a dual-contact probe is provided. The probe includes a conductive needle, a first dielectric sheath surrounding the conductive needle, and a conductive sheath surrounding the first dielectric sheath. , A first electronic connection is connected to the conductive needle, and a second electronic connection is connected to the conductive sheath, which is separated from the first electronic connection.
本發明之其他特性與觀點將由以下的詳細說明並結合 所附圖式(其藉由範例顯示依照本發明之實施例)而變得更 為明顯。此概要並非預計用以限制本發明之範疇,本發明 10 之範疇僅藉由本文所附的申請專利範圍加以界定。 圖式簡單說明 第1圖顯示依照本發明之實施例的一探針測試總成,其 能夠用以測試一電子裝置。 第2A圖顯示依照本發明之實施例所使用的一未管曲探 15 針針頭。 第2B圖顯示依照本發明之實施例所使用的一彎曲探針 針頭。 第3圖顯示依照本發明之實施例的一彎曲探針針頭(懸 臂構造),且其具有一絕緣護套。 2〇 第4圖顯示依照本發明之實施例的第3圖之探針總成, 其具有外傳導層、以及更外部的保護與絕緣層。 第5圖顯示依照本發明之實施例的第3圖之探針總成以 及探針接觸表面形狀。 第6A圖顯示依照本發明之實施例的第4圖之探針總成 9 200532209 以及接觸表面形狀。 第6 B圖顯示依照本發明之實施例的第6 A圖之探針總 成的探針接觸表片痕跡。 如 C 】 5較佳實施例之詳細說明 在以下的5兒明中係參考所附圖式加以進行,該等圖式 •、員示本發明之數個實施例。理解到的是,能夠使用其他的 實^例,且能夠進行機構、成分、構造、電子、以及操作 1〇方面的改變,而不會脫離本發明之精神與範疇。以下說明 僅作為解說之用,而並非作為本發明的限制。對於熟諳此 枝藝的人士而言,本發明之其他實施例將由此說明而變得 顯而易見。 第1圖顯示依照本發明之實施例的一探針測試總成 10 ’該總成能夠用以測試一電子裝置12(其上設置有複數個 接简墊片)。這些接觸墊片每個皆為欲進行測試之積體電路 上的金屬化位置。探針測試總成10包含一探針基板14,其 能夠包括一印刷電路板(PCB)以及一加強基板。一環件16 係安置到該探針基板,複數個探針20係使用例如環氧樹脂 17安置到該環件16。在顯示之實施例中,各個探針20具有 兩個電子連接到基板14、内側訊號銲料接點18以及外側訊 號鉾料接點19,以下將更為詳細加以說明。 第2A圖顯示依照本發明之實施例的探針20所使用之一 第〜傳導元素21。該第一傳導元素21包含一金屬探針,其 包括一形成一安置尾端24(用以將探針2〇附裝到葉片16)之 200532209 ¥近尾知、以及一結束一探針尖端23之末梢尾端22。該探 針尖端23與測試裝置12上的接觸墊片相接觸。 形成該第一傳導元素21之針頭能夠依照所需的應用而 採用不同的形式與尺寸。適當的針頭係由不同的公司製 5造,並以半導體探針針頭的名義販售,這些公司包括例如 科羅拉多州Boulder市的Point Technologies,Inc.以及科羅拉 多州 Boulder市的 Advanced Probing Systems,Inc·等等。形成 針頭之材料能夠依照應用以及所需的機械與電子特徵而加 以改變。例如,該針頭可為一純正元素(諸如鎢),或是元素 10合金(諸如金、鉑、鈀、銀、銅、鈹等等),一些常見的合金 包括鎢-銶、鈹-銅、以及鈀、金、鉑、銀、銅與辞之各種合 金。針頭亦能夠以一材料(選擇其加強之可銲性,諸如铑、 金、鎳或銀)加以電鍍,尤其是在安置尾端24。探針尖端23 之推拔能夠使用普通熟諳此技藝的人士所知道的各種方法 15形成,諸如研磨、電化學切削以及成型。 在某些實施例中,希望將探針2〇之尖端彎曲,使其對 於主轴之軸線成一角度而形成該探針2〇。在第26圖中所示 的實施例中,探針之尖端23係在覆蓋針頭21之層形成以前 2〇對於^轴之轴線彎曲成一角度0如同以下更為詳細的說 月藉著在接下來的製造步驟之前使針頭彎曲,能夠使得 施加到探針20之外層的應力強度減少。然而,在其他實施 忒4木針2〇忐夠在塗佈某些或所有的層以後方加以彎 曲。 中 層介電質材料25係塗佈到該針頭21,此 11 20Ό532209 介電質層25在針頭21上形成一絕緣護罩。在稍後的生產步 驟中’該絕緣材料將從探針尖端區域26移除,以便暴露出 針頭之尖端23 ’使得該針頭能夠與測試中的電子裝置12之 墊片進行電子接觸。該介電質層可包含:例如一環氧物、 5塑膠、聚醯胺或類似物。為了達到較佳的電子或機械性能, 可以塗敷一層以上的絕緣材料。介電質層25能夠使用不同 的技術加以塗敷’取決於針頭與介電質層25之成分以及其 他考量(例如介電質層厚度之均勻度、成本、製造速度等 等),並能夠包括例如沈浸與化學蒸汽沈積。 10 接著,如第4圖中所示,一第二傳導元素40係塗敷於該 介電質層25上。該第二傳導元素4〇能夠包含一種或更多電 子傳導層(如第4圖中所示的層27與28),其大體上圍繞該介 電質層25。電子傳導層27與28能夠形成一完整的圓柱(徑向 方向)或是一個部份的圓柱。 15 在第4圖中所示的實施例中,層27包含一電子傳導金屬 内含聚合物之基底層27。該基底層27可包含例如環氧物、 塑膠、聚醯胺或類似物,且其中内含有金屬或金屬合金, 以便提供導電性。依照基底層27中之傳導材料的内容,該 基底層27能夠具有不同的傳導品質。在某些實施例(其金屬 20含量高)中,該基底層27會具有足夠的傳導性,以便將一訊 號從探針之末梢尾端傳送到鄰近尾端。在某些實施例(其金 屬含ΐ低)中’該基底層27僅能夠傳送一殘留訊號。基底層 能夠使用業界所知的各種技術加以塗敷,諸如沈浸與化學 蒸Ά沈積。第二傳導層28在其下方的基底層27上能夠包含 12 200532209 例如一金屬層(諸如錄、金或銅)。 在某些實施例中,第二傳導元素40能夠單獨藉由基底 層27或是單獨藉由第二傳導層28所形成。如果將第二傳導 層28塗敷在基底層27上,則其會使第二傳導元素4〇之總有 5 效電子阻抗降低,能夠使基底層27對於其下方的介電質層 25提供較佳的黏著性。 能夠將一個或更多額外的保護與絕緣層3〇塗敷到該總 成之外部表面。該保護層30可包含例如一層環氧物、塑膠、 聚醯胺或類似物,其能夠同時用以保護第二傳導元素4〇免 10於損壞,並防止該第二傳導元素40與任何其他的導體(諸如 另楝針總成或疋一引入該楝針尖端區域中的外部本體) 產生意外的電子接觸。 探針20有兩個電子連接18〜19。第一電子連接18能夠連 到第傳導元素21之暴露安置尾端24,而第二電子連接19 15係連到第二傳導元素4〇(例如連到基底層27或是第二傳導 層抑。有可能希望移除—部份之保護層3(),以便露出該第 二傳導元素40,用以達成第二電子連接…同樣地,能夠 移除-部份之第二傳導元素40與介電質層25,以便露出第 -傳導元素(亦即金屬相川,肋達絲—電子連接18。 20該兩種電子連接18〜19能夠例如採用銲料與基板14上之傳 導跡線相接觸的形式,或是能夠採用連接到探針2〇之導線 的形式。 因此,此佈置提供-種探針2〇,其具有兩個與晶圓表 面相接觸的獨立電路,各個電路係單獨連到一接到一電子 13 20Ό532209 測試系統之電子路徑。由於兩個傳導元素係設置於一單獨 構件(¼針20)上,但是在電路方面卻有所隔絕,故該探針2〇 . 能夠用以在非常微小的接觸區域上進行參數測量(諸如凱 文連接測量)。 5 如第5圖中所示,第二傳導元素40之表面(其會接觸墊 片或是晶圓纟面)能夠具有一特殊形狀,該形狀係設計成用 以達成-特殊目的。由於本發明有許多可行的不同應用, _ 故其有許多不同的形狀。 在第6A®中所示之-實施例中,探針總成之尖端係形 1〇成斜面,以提供一平坦接觸表面60(顯示於第6B圖中),該 表面對於探針尖端之軸線成一角度扣該斜面能夠利用許多 - 不同的方法形成,諸如研磨或拋光。在成形以後,可能需 要藉由電化學或是機械方式拋光,以減少該探針2〇之接觸 表面60的粗糖度。在實際操作上,此接觸表面6〇係佈置成 5罪著進行測试中之裝置的接觸墊片。 • 第6B圖中所示,所產生的接觸表面6G包含—橢圓接 觸環61 ’其圍繞—小的橢圓接觸點62。該橢圓接觸環61(其 對應第-傳導元素21之末梢尾端)係藉著—_介電質環 2〇 Γ其f應介電質層25)而與該橢圓接觸點62(其對應第二傳 4〇之末梢尾端)隔開。在實際操作上,此接觸表面60 此夠佈置成與進行測試中之電子裝置12上的—墊片相接 觸、便對„亥墊片提供兩個分別的電路。在某些實施例中, 屬圓接觸點62之表面積範圍約從Q 25密爾(邮)到約】$密 爾;橢圓接觸輸之厚度範圍約從㈣爾到約Μ密爾;且 14 200532209 橢圓介電質環63之厚度範圍約從〇1密爾到約i5密爾。在其 他實施例中’各種元素之尺寸能夠加以改變。另外,依照 製造探針所使用的技術,該等層之尺寸的大小與均句性能 夠加以改變。 5 依照本發明之一實施例,一探針20能夠用以實行凱文 連接測量。當操作一飢文連接系統時,其對於一測試裝置 12上的-單獨電子接點建立兩個連接,其中—個連接包含 -低阻抗「施力」線路,且另_連接則形成_較高阻抗的 「感應」線路。在外部同軸料元素4G所提供之阻抗低於 10内部傳導70素21的案例中,該外部傳導元素4〇將提供「施 力」線路,而内部傳導元素21則將提供「感應」線路。在 外部同軸傳導元素40所提供之阻抗高於内部傳導元素21的 案例中,該外部傳導元素4〇將提供「感應」線路,而内部 傳導元素21則將提供「施力」線路。 15 當以一習用被動式屏蔽系統運作時,該外部傳導層將 提供一被動式遮罩,且内部探針將提供屏蔽的「施力」或 「感應」線路。當以一主動式或是驅動式屏蔽系統運作時, 該外部傳導層將提供一主動式或驅動式遮罩,且内部探針 將提供「感應」線路。 20 在另一實施例中,其能夠提供一第三傳導元素。該第 三傳導元素能夠與第一及第二傳導元素21、40同軸,並圍 繞該等元素。此第三傳導元素能夠提供一屏蔽層,同時該 第一與第二傳導元素21、40則運作成「施力」與「感應」 線路。 15 200532209 由於「施力」與「感應」接觸點在探針之接觸表面上 相當接近,故使探針由於探針尖端上之污染物所導致的接 觸點意外地短路之可能性增加。因此,希望在使用期間維 持一規律的清潔週期。 5 在一實施例中,其想像利用基底層27之固有或是增強 的撓性,以長:供一類似於彈簧針(P〇g〇_pin)的内建彈簧作 用。在垂直式針測時,如果基底層27伸過探針尖端,並接 觸到探針探測物件上的延伸區域,則基底層27之撓性便能 夠提供大量的接觸面積。 10 在上述之各種實施例中,該等探針能夠適用於測試電 子凌置。這些探針所具有確定直徑之範圍從約6密爾到約 费爾,且楝針尖端上之接觸表面所具有的面積約為丨平方密 爾(mil2)到約4平方密爾。某些實施例可能具有特殊的用 途,其用以測試硬碟機的讀取/寫入頭,這些讀取/寫入頭可 15忐具有表面積約為2平方密爾到約4平方密爾的接觸墊片。 為了使用虮文連接系統測試這些讀取/寫入頭,希望使探針 尖端儘可能具有-個小的接觸表面,以便配合晶粒塾片面 積。 儘管已經就特定實施例與解說圖式說明本發明,普通 20熟諳此技藝的人士將會理解到,本發明並非限定於所述的 實施例與圖式。例如,在上述的實施例中,該探針2〇具有 —彎曲尖端,其適用於一懸臂式探針測試總成1〇。在另一 實施例中,該探針20能夠能夠筆直或具有不同的形狀,諸 如曲線或圓形。 16 200532209 所提供的圖式僅作為顯示之用,且並未成比例繪出, 其某些部分可能加以誇大,而其他部分則可能加以縮到最 小。圖式係預計用以顯示本發明之各種實施例,普通熟諳 本發明之人士能夠暸解這些實施例,並適當的加以實行。 5 因此,應理解到的是,其能夠使修訂與改變在所附專 利申請範圍之精神以及範疇中實行本發明。此說明並非預 計用以詳括本發明,或是將本發明限制成所揭露的確切形 式。應理解到的是,其能夠以修訂與改變方式實行本發明, 且本發明僅藉由專利申請範圍以及其相等物加以限制。 10 【圖式簡單說明】 第1圖顯示依照本發明之實施例的一探針測試總成,其 能夠用以測試一電子裝置。 第2A圖顯示依照本發明之實施例所使用的一未彎曲探 針針頭。 15 第2B圖顯示依照本發明之實施例所使用的一彎曲探針 針頭。 第3圖顯示依照本發明之實施例的一彎曲探針針頭(懸 臂構造),且其具有一絕緣護套。 第4圖顯示依照本發明之實施例的第3圖之探針總成, 20 其具有外傳導層、以及更外部的保護與絕緣層。 第5圖顯示依照本發明之實施例的第3圖之探針總成以 及探針接觸表面形狀。 第6 A圖顯示依照本發明之實施例的第4圖之探針總成 以及接觸表面形狀。 17 20Ό532209 第6B圖顯示依照本發明之實施例的第6A圖之探針總 成的探針接觸表片痕跡。 【主要元件符號說明】 10...探針測試總成 24...安置尾端 12...電子裝置 25...介電質層 14...探針基板 26...探針尖端區域 16…環件 27...基底層 16…葉片 28...傳導層 17…環氧樹脂 30...保護與絕緣層 18...内側訊號銲料接點 40...第二傳導元素 19...外側訊號銲料接點 60...接觸表面 20...探針 61...橢圓接觸環 21...第一傳導元素 62...橢圓接觸點 22...末梢尾端 63...橢圓介電質環 23...探針尖端 18Other features and perspectives of the present invention will become more apparent from the following detailed description in conjunction with the accompanying drawings, which show examples according to the present invention by way of example. This summary is not intended to limit the scope of the invention, but the scope of the invention 10 is only defined by the scope of the patent application attached hereto. Brief Description of the Drawings Fig. 1 shows a probe test assembly according to an embodiment of the present invention, which can be used to test an electronic device. Figure 2A shows an unpiped probe 15-needle used in accordance with an embodiment of the present invention. Figure 2B shows a curved probe needle used in accordance with an embodiment of the present invention. Fig. 3 shows a curved probe needle (cantilever structure) according to an embodiment of the present invention, and it has an insulating sheath. 20 FIG. 4 shows the probe assembly of FIG. 3 according to an embodiment of the present invention, which has an outer conductive layer and an outer protective and insulating layer. Fig. 5 shows the shape of the probe assembly and the contact surface of the probe of Fig. 3 according to the embodiment of the present invention. Figure 6A shows the probe assembly 9 200532209 and the shape of the contact surface according to Figure 4 of an embodiment of the present invention. Fig. 6B shows traces of the probe of the probe assembly of Fig. 6A according to the embodiment of the present invention in contact with the sheet. Such as [C] 5 Detailed description of the preferred embodiment In the following 5 children's instructions are carried out with reference to the attached drawings, which illustrate several embodiments of the present invention. It is understood that other examples can be used, and changes in mechanism, composition, structure, electronics, and operation can be made without departing from the spirit and scope of the present invention. The following description is for illustrative purposes only, and not as a limitation of the present invention. For those skilled in the art, other embodiments of the present invention will become apparent from this description. Fig. 1 shows a probe test assembly 10 'according to an embodiment of the present invention. The assembly can be used to test an electronic device 12 (a plurality of contact pads are provided thereon). Each of these contact pads is a metallized location on the integrated circuit to be tested. The probe test assembly 10 includes a probe substrate 14 which can include a printed circuit board (PCB) and a reinforcing substrate. A ring member 16 is mounted on the probe substrate, and a plurality of probes 20 are mounted on the ring member 16 using, for example, epoxy resin 17. In the illustrated embodiment, each probe 20 has two electronically connected to the substrate 14, an inner signal solder contact 18, and an outer signal solder contact 19, which will be described in more detail below. FIG. 2A shows one of the first to conductive elements 21 used in the probe 20 according to the embodiment of the present invention. The first conductive element 21 includes a metal probe, which includes a 200532209 ¥ near the tail forming a seating end 24 (for attaching the probe 20 to the blade 16), and a probe tip 23之 tip 尾 尾 22。 The end of the tip 22. The probe tip 23 is in contact with a contact pad on the test device 12. The needles forming the first conductive element 21 can take different forms and sizes according to the desired application. Appropriate needles are manufactured by various companies and are sold under the name of semiconductor probe needles. These companies include, for example, Point Technologies, Inc., Boulder, Colorado, and Advanced Probing Systems, Inc., etc. of Boulder, Colorado. Wait. The materials from which the needles are formed can vary depending on the application and the required mechanical and electrical characteristics. For example, the needle can be a pure element (such as tungsten) or an element 10 alloy (such as gold, platinum, palladium, silver, copper, beryllium, etc.). Some common alloys include tungsten-rhenium, beryllium-copper, and Palladium, gold, platinum, silver, copper and various alloys. The needle can also be electroplated with a material that is selected for its enhanced solderability, such as rhodium, gold, nickel or silver, especially at the tail end 24. The push-out of the probe tip 23 can be formed using various methods 15 known to those skilled in the art, such as grinding, electrochemical cutting, and forming. In some embodiments, it is desirable to bend the tip of the probe 20 so that it forms an angle with respect to the axis of the main axis. In the embodiment shown in FIG. 26, the tip 23 of the probe is bent at an angle of 0 to the axis of the axis 0 before the layer covering the needle 21 is formed. As described in more detail below, Bending the needle prior to the next manufacturing step can reduce the stress intensity applied to the outer layer of the probe 20. However, in other implementations, the wooden needle 20 is sufficient to bend after coating some or all of the layers. A middle-layer dielectric material 25 is applied to the needle 21, and the dielectric layer 25 forms an insulating shield on the needle 21. In a later production step, 'the insulating material will be removed from the probe tip area 26 to expose the tip 23' of the needle so that the needle can make electronic contact with the gasket of the electronic device 12 under test. The dielectric layer may include, for example, an epoxy, 5 plastic, polyamide, or the like. In order to achieve better electrical or mechanical properties, more than one layer of insulating material can be applied. The dielectric layer 25 can be applied using different techniques' depending on the composition of the needle and the dielectric layer 25 and other considerations (such as the uniformity of the thickness of the dielectric layer, cost, manufacturing speed, etc.), and can include Examples include immersion and chemical vapor deposition. 10 Next, as shown in FIG. 4, a second conductive element 40 is applied on the dielectric layer 25. The second conductive element 40 can include one or more electronic conductive layers (such as layers 27 and 28 shown in FIG. 4), which substantially surrounds the dielectric layer 25. The electron conducting layers 27 and 28 can form a complete cylinder (radial direction) or a partial cylinder. 15 In the embodiment shown in Fig. 4, the layer 27 comprises an electron-conducting metal-containing polymer base layer 27. The base layer 27 may include, for example, epoxy, plastic, polyamide, or the like, and contains a metal or a metal alloy therein to provide conductivity. Depending on the content of the conductive material in the base layer 27, the base layer 27 can have different conductive qualities. In some embodiments (with a high content of metal 20), the base layer 27 will be sufficiently conductive to transmit a signal from the distal end of the probe to the proximal end. In some embodiments (whose metal content is low), the base layer 27 can only transmit a residual signal. The substrate layer can be applied using a variety of techniques known in the industry, such as immersion and chemical vapor deposition. The second conductive layer 28 can include 12 200532209 on the base layer 27 below it, for example, a metal layer (such as metal, gold, or copper). In some embodiments, the second conductive element 40 can be formed by the base layer 27 alone or by the second conductive layer 28 alone. If the second conductive layer 28 is coated on the base layer 27, it will reduce the total effective electron impedance of the second conductive element 40, and can make the base layer 27 provide a relatively low dielectric layer 25 below it. Good adhesion. One or more additional protective and insulating layers 30 can be applied to the exterior surface of the assembly. The protective layer 30 may include, for example, a layer of epoxy, plastic, polyamide, or the like, which can simultaneously protect the second conductive element 40 from being damaged, and prevent the second conductive element 40 from any other A conductor, such as another needle assembly or an external body that is introduced into the tip area of the needle, creates accidental electrical contact. The probe 20 has two electronic connections 18-19. The first electronic connection 18 can be connected to the exposed end 24 of the first conductive element 21, and the second electronic connection 19 to 15 is connected to the second conductive element 40 (for example, to the base layer 27 or the second conductive layer). It may be desirable to remove a part of the protective layer 3 () in order to expose the second conductive element 40 to achieve a second electronic connection ... Similarly, it is possible to remove a part of the second conductive element 40 and the dielectric Mass layer 25 in order to expose the first-conducting element (that is, the metal phase, the ribs-electronic connection 18. 20) The two electronic connections 18-19 can be in the form of, for example, solder in contact with the conductive traces on the substrate 14, Or it can take the form of a wire connected to the probe 20. Therefore, this arrangement provides a probe 20, which has two independent circuits in contact with the surface of the wafer, each circuit being separately connected to one The electron path of an electronic 13 20Ό532209 test system. Since the two conductive elements are arranged on a separate component (¼ pin 20), but the circuit is isolated, the probe 20. can be used in very small Parameter measurement on the contact area (Such as a Kevin connection measurement). 5 As shown in FIG. 5, the surface of the second conductive element 40 (which will contact the pad or the wafer face) can have a special shape, which is designed to Achieve-special purpose. Since the invention has many possible different applications, _ it has many different shapes. In the embodiment shown in Figure 6A®, the tip of the probe assembly is shaped 10 into a bevel, To provide a flat contact surface 60 (shown in Figure 6B), which is angled to the axis of the probe tip, the bevel can be formed using many-different methods, such as grinding or polishing. After forming, it may be necessary to borrow Polished electrochemically or mechanically to reduce the coarse sugar content of the contact surface 60 of the probe 20. In practice, this contact surface 60 is arranged as a contact pad for the device under test. • As shown in Figure 6B, the resulting contact surface 6G contains—an elliptical contact ring 61 'which surrounds—a small elliptical contact point 62. The elliptical contact ring 61 (which corresponds to the end of the distal end of the-conductive element 21) By —_ The electric mass ring 20 and its f should be dielectric layer 25) and separated from the elliptical contact point 62 (which corresponds to the end of the second pass 40). In actual operation, this contact surface 60 is enough to arrange Contact with the shim on the electronic device 12 under test, two separate circuits are provided for the shim. In some embodiments, the surface area of the round contact point 62 ranges from about Q 25 dense. The thickness of the elliptical contact gap ranges from approximately mil to approximately mil; and the thickness of the elliptical dielectric ring 63 ranges from approximately 0.1 mil to approximately i5 mil. In other embodiments, the dimensions of various elements can be changed. In addition, the size and uniformity of the dimensions of these layers can be changed according to the technology used to make the probe. 5 According to an embodiment of the present invention, a probe 20 can be used to perform a Kevin connection measurement. When operating a text connection system, it establishes two connections to a single electrical contact on a test device 12, one of which includes-a low-impedance "force" line, and the other _ connection forms _ higher "Inductive" line of impedance. In the case where the impedance provided by the external coaxial material element 4G is lower than the internal conduction element 70, the external conduction element 40 will provide a "force" line, and the internal conduction element 21 will provide an "inductive" line. In the case where the impedance provided by the external coaxial conductive element 40 is higher than that of the internal conductive element 21, the external conductive element 40 will provide an "inductive" line, and the internal conductive element 21 will provide a "forced" line. 15 When operating with a conventional passive shielding system, the external conductive layer will provide a passive shield, and the internal probes will provide shielded "force" or "induction" lines. When operating with an active or driven shielding system, the external conductive layer will provide an active or driven mask, and the internal probe will provide "inductive" wiring. 20 In another embodiment, it can provide a third conductive element. The third conductive element can be coaxial with and surround the first and second conductive elements 21, 40. The third conductive element can provide a shielding layer, and the first and second conductive elements 21 and 40 operate as a "force" and "induction" circuit. 15 200532209 Because the contact points of "force" and "induction" are quite close to the contact surface of the probe, the possibility of accidental short-circuiting of the contacts of the probe due to contamination on the probe tip increases. Therefore, it is desirable to maintain a regular cleaning cycle during use. 5 In one embodiment, it is imagined to use the inherent or enhanced flexibility of the base layer 27 to lengthen it for a built-in spring similar to a pogo pin. In the vertical needle test, if the base layer 27 extends over the tip of the probe and contacts the extended area on the probe detection object, the flexibility of the base layer 27 can provide a large contact area. 10 In the various embodiments described above, the probes can be adapted for testing electronic placement. These probes have a defined diameter ranging from about 6 mils to about fairs, and the contact surface on the tip of the needle has an area of about 1 square mil (mil2) to about 4 square mils. Some embodiments may have special uses for testing read / write heads of hard drives. These read / write heads may have a surface area of about 2 square mils to about 4 square mils. Contact pad. In order to test these read / write heads using a textual connection system, it is desirable to have the probe tip as small as possible with a contact surface to fit the die area. Although the present invention has been described with reference to specific embodiments and explanatory drawings, those skilled in the art will appreciate that the present invention is not limited to the embodiments and drawings described. For example, in the above embodiment, the probe 20 has a curved tip, which is suitable for a cantilever probe test assembly 10. In another embodiment, the probe 20 can be able to be straight or have a different shape, such as a curve or a circle. 16 200532209 The drawings provided are for display purposes only and are not drawn to scale. Some parts may be exaggerated and others may be minimized. The drawings are intended to show various embodiments of the present invention, and those skilled in the art can understand these embodiments and implement them as appropriate. 5 Therefore, it should be understood that it enables amendments and changes to implement the invention within the spirit and scope of the scope of the attached patent application. This description is not intended to be exhaustive or to limit the invention to the precise form disclosed. It should be understood that the invention can be implemented in a modified and changed manner, and the invention is limited only by the scope of the patent application and its equivalents. 10 [Brief description of the drawings] FIG. 1 shows a probe test assembly according to an embodiment of the present invention, which can be used to test an electronic device. Figure 2A shows an unbent probe tip used in accordance with an embodiment of the present invention. 15 Figure 2B shows a curved probe needle used in accordance with an embodiment of the present invention. Fig. 3 shows a curved probe needle (cantilever structure) according to an embodiment of the present invention, and it has an insulating sheath. FIG. 4 shows the probe assembly of FIG. 3 according to an embodiment of the present invention. 20 The probe assembly has an outer conductive layer and an outer protective and insulating layer. Fig. 5 shows the shape of the probe assembly and the contact surface of the probe of Fig. 3 according to the embodiment of the present invention. Fig. 6A shows the probe assembly and the contact surface shape of Fig. 4 according to an embodiment of the present invention. 17 20Ό532209 FIG. 6B shows the probe contact traces of the probe assembly of FIG. 6A according to the embodiment of the present invention. [Description of main component symbols] 10 ... probe test assembly 24 ... position tail 12 ... electronic device 25 ... dielectric layer 14 ... probe substrate 26 ... probe tip Area 16 ... Ring 27 ... Base layer 16 ... Blade 28 ... Conductive layer 17 ... Epoxy resin 30 ... Protective and insulating layer 18 ... Inner signal solder joint 40 ... Second conductive element 19 ... outer signal solder contact 60 ... contact surface 20 ... probe 61 ... elliptical contact ring 21 ... first conductive element 62 ... elliptical contact point 22 ... tip end 63 ... elliptical dielectric ring 23 ... probe tip 18