TW200526786A - Automatic process for protein synthesis and apparatus therefor - Google Patents
Automatic process for protein synthesis and apparatus therefor Download PDFInfo
- Publication number
- TW200526786A TW200526786A TW93102979A TW93102979A TW200526786A TW 200526786 A TW200526786 A TW 200526786A TW 93102979 A TW93102979 A TW 93102979A TW 93102979 A TW93102979 A TW 93102979A TW 200526786 A TW200526786 A TW 200526786A
- Authority
- TW
- Taiwan
- Prior art keywords
- reaction
- protein synthesis
- cell
- translation
- replication
- Prior art date
Links
- 230000014616 translation Effects 0.000 title claims abstract description 264
- 238000000034 method Methods 0.000 title claims abstract description 201
- 238000001243 protein synthesis Methods 0.000 title claims abstract description 123
- 230000008569 process Effects 0.000 title claims abstract description 51
- 238000006243 chemical reaction Methods 0.000 claims abstract description 217
- 238000013519 translation Methods 0.000 claims abstract description 140
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 78
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 76
- 239000000284 extract Substances 0.000 claims abstract description 61
- 238000001556 precipitation Methods 0.000 claims abstract description 34
- 239000006228 supernatant Substances 0.000 claims abstract description 24
- 238000001035 drying Methods 0.000 claims abstract description 22
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 230000010076 replication Effects 0.000 claims description 60
- 238000003752 polymerase chain reaction Methods 0.000 claims description 26
- 230000002068 genetic effect Effects 0.000 claims description 24
- 241000209140 Triticum Species 0.000 claims description 23
- 235000021307 Triticum Nutrition 0.000 claims description 23
- 238000000605 extraction Methods 0.000 claims description 12
- 239000003153 chemical reaction reagent Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 241000196324 Embryophyta Species 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 230000001376 precipitating effect Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 229940123573 Protein synthesis inhibitor Drugs 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 239000000007 protein synthesis inhibitor Substances 0.000 claims 1
- 238000013518 transcription Methods 0.000 abstract description 15
- 230000035897 transcription Effects 0.000 abstract description 15
- 239000007788 liquid Substances 0.000 abstract description 12
- 230000001413 cellular effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 74
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 49
- 210000004027 cell Anatomy 0.000 description 37
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 108020004999 messenger RNA Proteins 0.000 description 18
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 16
- 238000012869 ethanol precipitation Methods 0.000 description 14
- 230000001086 cytosolic effect Effects 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- 235000002639 sodium chloride Nutrition 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229940063673 spermidine Drugs 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 239000005695 Ammonium acetate Substances 0.000 description 7
- 239000012901 Milli-Q water Substances 0.000 description 7
- 229940043376 ammonium acetate Drugs 0.000 description 7
- 235000019257 ammonium acetate Nutrition 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- DRBBFCLWYRJSJZ-UHFFFAOYSA-N N-phosphocreatine Chemical compound OC(=O)CN(C)C(=N)NP(O)(O)=O DRBBFCLWYRJSJZ-UHFFFAOYSA-N 0.000 description 6
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 235000013601 eggs Nutrition 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 5
- 235000011285 magnesium acetate Nutrition 0.000 description 5
- 239000011654 magnesium acetate Substances 0.000 description 5
- 229940069446 magnesium acetate Drugs 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 235000011056 potassium acetate Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 102000004420 Creatine Kinase Human genes 0.000 description 4
- 108010042126 Creatine kinase Proteins 0.000 description 4
- 102000016911 Deoxyribonucleases Human genes 0.000 description 4
- 108010053770 Deoxyribonucleases Proteins 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010230 functional analysis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 108091027963 non-coding RNA Proteins 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 210000001995 reticulocyte Anatomy 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229960003624 creatine Drugs 0.000 description 3
- 239000006046 creatine Substances 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- 238000002523 gelfiltration Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000003161 ribonuclease inhibitor Substances 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- SRRKNRDXURUMPP-UHFFFAOYSA-N sodium disulfide Chemical compound [Na+].[Na+].[S-][S-] SRRKNRDXURUMPP-UHFFFAOYSA-N 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 244000105975 Antidesma platyphyllum Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- COHYTHOBJLSHDF-UHFFFAOYSA-N Indigo Chemical compound N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 229960001701 chloroform Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229940014144 folate Drugs 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 235000009424 haa Nutrition 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 229950007002 phosphocreatine Drugs 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000000592 Artificial Cell Substances 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 101710141795 Ribonuclease inhibitor Proteins 0.000 description 1
- 229940122208 Ribonuclease inhibitor Drugs 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- HVYLDJKDVOOTHV-UHFFFAOYSA-N acetic acid;2-iminoethanethiol Chemical compound CC(O)=O.CC(O)=O.SCC=N HVYLDJKDVOOTHV-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 108010068991 arginyl-threonyl-prolyl-prolyl-prolyl-seryl-glycine Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000000463 effect on translation Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 150000002309 glutamines Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000000423 heterosexual effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000010874 maintenance of protein location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108020003519 protein disulfide isomerase Proteins 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
200526786 玖、發明說明: 【發明所屬之技術領域】 本發明係有關讓無細胞蛋白質合成自動進行的方法,以及為將其實施 的自動蛋白質合成設備。 【先前技術】 在基因混合(Genomix)快速發展,各種生物體染色體組計劃陸續完成的 今天,研究課題的重點已從遺傳因子結構的解析大幅轉換到遺傳因子機能 之解析。包含分離(Knock-out)的超遺傳因子(Transgenic)技術在機能已被 闡明之遺傳因子的導入、破壞下,在附加目的機能的突變體製造上已帶來 極大成果,但在未知的遺傳因子機能解析方面,目前仍停留在對於根據透 過細胞這個黑盒子所獲得之表現形態的資訊解讀。而此一現狀從只有極少 數的遺傳因子可藉由這些技術鑑定的事實亦可明白。另外,機能已被闡明 的遺傳因子幾乎可以說是必然具有生化性的佐證。因此,對於從染色體組 所得到的未知遺傳因子之機能解析而言,遺傳因子產物的生化性解析可以 說是必要的。 在蛋白質的合成方面,使庫侖(C〇ui〇mi3)化的遺傳因子以活細胞呈現 的基因工學性方法被廣為應用,但可從此種方法獲得的外來蛋白質,只限 於了潛入伯主之生命維持機構的分子種。另外,在有機合成技術的進展下 ’肽(縮氨暖peptide)自動合成機已普及,將數十個氨基酸形成的肽進 行合成已是《常便飯,但將分子量較大的蛋白質予以化學性合成則因收成 率、副反應等的界限下即使在目前也是極其_的。且,在歐美,直接利 200526786 用以往形態的活體之蛋白質生產及對於新分子探索法的倫理性批判極嚴苛 ,也令人擔心國際性規範將更為嚴峻。 為解決此種問題,做為新式蛋白質合成法,可採用無細胞蛋白質合成 法,該方法係採用生化學手法,將生物體的優秀特性予以最大限度地利用 。此種方法是,將活體遺傳情報的複寫系統、翻譯系統置入人工容器内, 從設計、合成的複寫模重建出可以取入想要的,包含非天然形態的氨基酸 之系統。此種系統因為不受制於生命體,所以可望將能夠合成的蛋白質擴 大到幾乎無限大。此種無細胞蛋白質合成法在40年前曾有報告指出磨碎的 細胞液中殘留蛋白質合成能以來,已有各種方法被開發,來自大腸菌、小 麥胚芽、兔子網狀紅血球的細胞萃取液,即使在當前仍被當成蛋白質合成 用途廣為利用。尤其,如來自小麥胚芽的細胞萃取液等等來自真核生物之 細胞萃取液,其蛋白質合成能之高及蛋白質保持之精確而極受重視。 從龐大基因情報所獲得的遺傳因子,為將其闡明,期待出現可短時間 、簡便地合成多檢體蛋白質的High through卯七合成系統。在無細胞蛋白 質合成法方面,j可從複寫模獲得翻譯模mRNA的複寫反應k以mRNA為模子合 成蛋白質的翻譯反應等各項工程,將之分別自動進行的設備已被開發出來 。另外,如為採用來自屬於原核生物的大腸菌的細胞萃取液,為使其能在 個’谷液中進行複寫反應、翻譯反應,將經過複寫反應、翻譯反應從複寫 模使蛋白質自動合成的設備已被開發出來。然而具有極佳蛋白質合成能的 小麥胚芽等來自真核生物之細胞萃取液,如上所述,從複寫反應所得到的 翻譯模,在將其做為翻譯反應之前不可避免地必須要手動操作,因此在由 200526786 稷寫板使被其編碼的蛋白f生成之前的_連串操作即無法自動進行。 亦即’採用來自上述真核生物的細胞萃取液的過去之無細胞合成方法 ’因為複寫反射的未反絲質制生物會妨礙後來的翻譯反應 ’因此被 認為必須要將它們除去,而進行酒精沈澱及凝膠過濾柱等去除操作(如以 往的方法中的典型原案(Protocol),請參照的工程bl2〜bl6,包括有 •使用醋酸錄的乙醇沈澱(bl2)、裂柱處理(bl3)、使用氯化納的乙醇沈殿 (bl4)、使用醋酸鋼的乙醇沈澱(W5)、7〇%乙醇沈澱(W6))。此時,用於 凝膠過濾的緩衝器(buffer)中所含的鹽會妨礙後來的翻譯反應,因此如果 不進行再次沈澱及/或洗淨操作,至少對於一部份蛋白質而言將只能獲得 一點點或疋完全得不到蛋白質。然而如果進行再沈殿、洗淨操作,在反應 谷器底部以表面張力維持著的翻譯模之沈澱將會剝離,而用可當作自動合 成設備結構的離心分離器,再次離心也只成為在液體中浮遊的狀態,為使 翻譯模不失誤地除去上清,實驗者必須用吸移管(Pipette)小心地用手進 行0 另外,精製過的翻譯模,在過去,一旦溶解於含有超純水及翻譯反應 下的基貝、能置來源等的溶液(翻譯反應用>谷液)後,與含有核糖核蛋白 體等蛋白質合成設備之細胞萃取液混合後提供給翻譯反應(圖1工程bl8、 bl9) ’但翻澤核niRNA極難溶解於翻譯反應用>谷液’實驗者必須對每個檢體 用吸移管之前端攪拌後使其溶解。 【發明内容】 200526786 因此,本發明的目的乃在於解決無細胞蛋白質合成自動化中如上述之 課題,提供一種從複寫模到經該模子編碼的蛋白質生成之一連串工程中, 從複寫模的製作到蛋自質生成之工程令其自祕行的方法,並提供可將該 方法付諸實行的自動蛋白質合成設備,特別是同時可合成多種類蛋白質之 自動蛋白質合成設備。 本案發明人,為解決上述課題,經過精心研究後,發現(1)複寫反應 後所得到_賴,使其沈澱後,除去未反絲質的卫程及畴的緩沖器 更換而來之洗淨工程、沈殿工程等即使省略,亦不會影響蛋白質的翻譯效 率,並且(2)不將翻譯模的沈澱一度溶解於水或翻譯反應用溶液中,而直 接添加蛋白質合成用細胞萃取液時,沈澱意外地可極其容易地溶解。本發 明人,根據這些創見開發出新的無細胞蛋白質合成之原案(Pr〇t〇c〇1),並 成功建構出可將該原案實行的自動蛋白質合成設備,乃至完成本發明。 亦即,本發明如下: 1·在無細胞蛋白質合成工程裡,從複寫模到經該模子編碼的蛋白質生 成之反應工程中,使複寫反應後的反應液中之翻譯模沈澱,在除去上清液 及該翻澤模的乾燥程後,以直接在該沈澱裡添加蛋白質合細細胞萃取 液之方式,使該沈版浴解的工程,包含上述工法的無細胞蛋白質合成方法 Ο 2·將目的物蛋白質編碼的複寫模,使該複寫模放大再予調製的工程亦 含在内之前項1所載的無細胞蛋白質合成方法。 3-含有將目的物蛋白質符號化的遺傳因子之宿主細胞直接供作聚合酶 200526786 連鎖反應’放大«模再調製的卫程為其特徵的前項丨或2所記載之無細胞 蛋白質合成方法。 4·從複寫模的製制生成被該複寫模編碼的蛋白料止之反應,以自 動進行為特徵的前項1〜3任一項所載之無細胞蛋白質合成方法。 5·將翻譯反細驗重疊於含翻賴的蛋自f合顧細鮮取液後, 使進行翻譯反應者為特徵之前項1〜4任-項所記載的無細胞蛋白質合成方 法。 6.將翻譯反應用溶液添加、混合在含翻譯模的蛋白質合成用細胞萃取 液後’使it油譯反絲膽蚊前項丨〜4任—酬域的無細胞蛋白質 合成方法。 7·包各以下任項工私之則項1〜6任一項記载之無細胞蛋白質合成方 法。 (1) 將複寫模以PCR放大後調製的工程。 (2) 將複寫反應用溶液與複寫模混合的工程。 (3) 將複寫反應贿液與複寫模的混合物進行—定時間培養處理之工程。 (4) 使翻譯模沈澱的工程。 (5) 使翻譯模之沈澱物乾燥的工程。 (6) 除去反應溶液上清的工程以及 ⑺將蛋自質合賴細鮮取餘人6槪_職,將編職溶解之 工程。 8·讓所有反應工程在同一個反應容器内進杆 ^ ^ ^ 疋仃之則項1〜7任一項記載的無 200526786 細胞蛋白質合成方法。 9·同時將數種蛋白質在數個反應容器内反應合成者為特徵之前項1〜8任 一項記載的無細胞蛋白質合成方法。 10·前述蛋白質合成用細胞萃取液係植物種子胚芽萃取液之前項丨〜9任 一項記載的無細胞蛋白質合成方法。 11 ·前述植物種子胚芽萃取液係小麥種子胚芽萃取液之前項i 〇記載之無 細胞蛋白質合成方法。 12·前述小麥種子胚芽萃取液,係胚芽的胚乳成份及低分子的蛋白質合成· 阻礙劑物質已實質地被除去的萃取液之前項11記載的無細胞蛋白質合成方 法。 ϋ係為實施前項1〜12任一項記載之無細胞蛋白質合成方法的設備,至 少具備以下任一個控制手段的無細胞蛋白質合成裝置。 (a) 將反應容器内的溫度予以可變控制之手段。 (b) 在反應容器分別注入樣品或試劑之手段。 (c) 沈殿手丨}。 (d) 除去上清之段。 (e) 乾燥手段以及 (0為使上述(a)〜(e)之手段依照前項1〜12任一項所記載的工程動作之 控制手段 14·前述除去上清的手段係讓翻轉反應容器之動作進行的手段之前項13 所記載的無細胞蛋白質合成設備。 200526786 15·再者,以包含進行反應容器蓋開閉手段為特徵之前項13或μ所記载的 無細胞蛋白質合成設備。 【實施方法】 本發明為提供至少從提供給反應系統之複寫模到經該模符號化的蛋白 質生成為止之反應操作,以自動使該操作進行的方法(以下有時僅簡稱「本 發明的方法」)。此處所謂「使操作以自動進行」是指,在一連串的工程中 實驗者不對反應糸統(反應谷)直接加以手動的操作。因此,各工程在 實施時,所採_本發明之自動蛋白質合成設備上所設的既定操作按叙及 開關等操作,由實驗者以手動進行者並不損及本發明中的「自動」聲件。 又’所用的反應容ϋ在各項X程巾亦可是不同的容II s但在進行本發明的 方法之設備構造單純化,並為防賴、生成物失鱗目的下,最好一連串 的工程是設計在同一反應器内進行較佳。 本發明的方法分為複寫反應王程、翻譯模的精製玉程及翻譯反應工程 又最好的疋’本發明的方法是將從複寫模的製作到經該模編碼之蛋白 質生成為止的程以自動進行者為特徵。因此,在最佳樣態中,本發明的 方法領先複寫反應工程,更包含複寫模的製作工程。以下,針對各工程以 具體性實施樣_述之,但本發_方法在翻賴之精製王財,只要是 具有上述2個特徵巾至州_徵者,即不得姐於其中。 (1)複寫棋的製作工程 本^明的方法中’本卫程並不—定需要以自動進行,可以杨獲得的 11 200526786 複寫核亦可用在以下之自動缸程上,但包含本卫程從複寫模的製作到 被該模編碼之蛋白質生成為止的—連串卫程最好是以自動來進行。 本發明細書中所稱「複寫模」係指可用於體外複寫反應的模子分子之 腿’至少在適當的助聚劑(Promoter)順序之下游具有將目標蛋白質(c〇de) 予以編碼_基順序。所謂適當之助聚劑順序是指,可以識別在複寫反應 中所使用觀A聚合酶之助聚劑順序,例如SP6助聚劑、T7助聚劑等。將目 標蛋白質編碼的DNA可以是任何一種。 複寫模最好具有,在助聚劑順序與將目標蛋白質編碼的械基順序之間 ’控制翻譯效率的活性鹹基順序者,例如可使时自香煙鑲般病毒的Ω順序 等來自RNA病毒之5,非翻譯領域,以及/或庫薩克順序等。再者,複寫模最 好疋包含,在制標蛋白質編碼的械基順彳之下游涵蓋複寫終端領域的3, 非翻譯領域。3’非翻譯領域最好採用距終止密碼子(CQdQn)下游壯〇〜約 3.0 kilobase左右者,這些3’非翻譯領域並不一定必須是將目標蛋白質編 碼的遺傳因子原來之領域。 複寫模的製作,可依本身周知的手法來進行。例如,含有與所要的複 寫模相同之鹹基順序的DNA,具有已摻入該DNA的胞質遺傳體之大腸菌等 的宿主細胞,培養該宿主細胞,用周知的精製方法,大量調製該胞質遺傳 體(bl)後,使用適當的限制酵素,從該胞質遺傳體剔出複寫模隨从说), 經過苯酚處理(b3)及三氣甲烷處理(b4)後除去限制酵素,再藉由使用乙醇 及異丙醇的酒精沈澱(b5)(視需要,添加適量的醋酸銨、醋酸鈉、氣化 鈉等的鹽)精製複寫模的方法。所獲得的DNA之沈澱溶解在超純水(b6)及 12 200526786 後述的複寫反應用溶液後,即可提供以下的複寫反應之用。 為將所需的一連串操作以自動或半自動(在工程的一部份,實驗者對 反應系統直接加上手動操作之情形)進行之設備為既有,將該設備納入本 發明的自動蛋白質合成設備後,即可將從複寫模的製作到目的蛋白質之生 成以自動進行,考慮本發明的目的是為了解析High through put,而提供 自動無細胞蛋白質合成系統,以及設備的單純化、縮短所需時間等,最好 是利用以下的聚合酶連鎖反應(PCR)法之複寫模製作方法。 本發明的方法中’最佳實施樣態方面係採用,將目的物蛋白質編碼的 DNA被庫倫化之宿主(例如,具有含該DNA的胞質遺傳體之大腸菌等),將該 宿主直接利用PCR,放大複寫模的方法。例如,具有控,適當的助聚劑順序 、翻譯效率活性的5非翻譯順序’及將目的物蛋白質編碼之祖,並將含 有該DNA5’端領域一部份的低核苷酸,採用DNA自動合成機以公知的手法予 以合成後,將之sense primer,再將具有3,非翻譯順序的3,端領域順序之 低核苷酸予以anti-sense primer,當作模子將目的物蛋白質編碼的DNA以 及在其下游含該3’非翻譯順序之胞質遺傳體的大腸菌等宿主直接加入pcR 反應液中’在一般的條件下,使其進行放大反應後即可獲得想要之複寫模 (al)。又,為了防杜因非特異性放加大所生之短鏈DNA(結果是產生目的產 物之收量降低及低分子翻譯產物雜音)的生成,亦可採用國際公開第 02/18586號手冊所記載的助聚劑分斷型primer。 放大反應也可使用市售的PCR用熱循環器(Thermal circler)在市售之 PCR用96孔板(plate)進行,亦可將相同的溫度可變控制設備與本發明之自 13 200526786 動蛋白質合成设備連動’或者將各種方法直接適用在PCR上,以便進行本 發明的自動蛋白質合成設備之複寫、翻譯反應。 如上述方法下所狀複寫模DM經過三氯?鮮取及酒精沈殿精製後 ’亦可供做複寫反應’但為了設備的單純化、縮短所需時間,最好將pcR反 應液直接當作複寫模雜使用。在複寫模製作上,藉由採用來自上述宿主 的直接PCR,-度大量調製胞質遺傳體後,將之進行限制酵素處理後獲得 複寫模的方法,與此财法她可场省略球,可賴少球數在短時 間内大量合成複寫模(參照圖2)。亦即,不需要培養具有編人目的物遺傳 因子之胞質遺傳體的大腸g,再大量婦歸遺傳體缸程⑽工程⑷ ,因此即可縮短培養及精製胞質遺傳體必需之超離心所需時間(例如,如圖 1及圖2所示,㈣辦敎_轉辦)。χ,献歸遺傳體剔出 複寫模而進行的關_:處理(工餓),及除去關酵鱗的苯紛處理、 三氣甲烧處理(卫程b3及b4)、複寫模精製所需的賴沈殿(工程⑹、溶解 複寫模DNA的沈殿工程(工程b6),上述工程皆可省略,因此具有·不會有 因為苯盼/三氯甲域留引起賴寫反應障礙,及目多卫㈣精製操作下 π來之複寫模失誤,並且因為可減少反應所需的步驟,而可減少使用的晶 片等好處。 (2)複寫反應工程 本發明的方法包括,將制本身周知的方法所調製之目的物蛋白質予 以編碼的複寫模DNA,到以體外複寫反應生成翻譯模111職的工程。該工程 是,將含有做為反應系統(例如96孔滴定度板等市售容器)的複寫模之溶液 14 200526786 ’最好是上述的PCR反應液與含有適合複寫模中的助聚劑之RNA聚合酶(例如 SP6RNA聚合酶等),及RNA合成用基質(4種核糖核苷3磷酸)等複寫反應所需 成分的溶液(亦稱「複寫反應用溶液」)混合(a2、b7)後,在大約20°C〜 60<>C ’最好是大約3(TC〜42°C,將該混合液培養處理約30分〜16小時,最 好大約2小時〜5小時(a3、b8)。將複寫模溶液、複寫反應用溶液分注、 、混合到反應容器的操作可採用後述之自動蛋白質合成設備的分注手段(例 如’吸液管(如用市售的96孔滴定度板做為反應容器時,最好使用具有適合 Well間隔的8連或12連之分注晶片者。又,複寫反應所需的保溫可藉由 後述之自動蛋白質合成設備的控溫方法, 一面控制在一定溫度一面進行。 (3)翻譯模的精製工程 如上述所生成的複寫產物(亦即「翻譯模」)是具有包含按照需要,且 有控制插入複寫模中的翻譯效率之活性的5,非翻譯順序及/或3,非翻譯順 序的將目的物蛋白質編碼之鹹基順序的RNA分子。在複寫反應後的反應液 中’除鱗麵A外,統人了未反躺雛㈣3概及反·生物焦填 酸、含在其他複寫反應用溶液的鹽等,但因這些物質已知會妨礙後面的翻 譯反應,因此選擇性沈澱翻譯模後將未反應基質等予以分離去除。所用的 沈殿手段可以是例如歸等方法,最好是如例補麟沈澱法,但不受其 限疋。如採酒精沈澱法時,所用的酒精如果是可將RNA選擇性沈澱者即無 特別限制。例如乙醇、異轉等,而乙醇最佳。如果是乙醇,最好是複寫 反應液的大約2倍〜3倍量,如果是異丙醇,則使用複寫反應液的大約〇· 6倍 1倍里。又’利用加人適當鹽的共存法,可増加沈澱的收獲。該種鹽可以 15 200526786 疋醋酸銨、醋酸鈉、氯化鈉、氯化鋰等。例如,若採用醋酸銨最好將最後 濃度添加到大约〇·5Μ〜3M。另外,酒精沈澱可在室溫下進行。 酒精及鹽溶液的添加,可採用後述的自動蛋白質合成設備之分注手段 進行,且翻譯模RNA的析出可採用後述的自動蛋白質合成設備之溫度控制 手段,在一定溫度條件下進行。 又,複寫反應液中亦存在有複寫模DNA,但因有報告指出會妨礙後面 的翻譯反應,因此一直以來是在複寫反應結束後進行DNase處理(b9),再 進行笨酚處理(bio)、三氣甲烷處理(bii)後變性除去DNase的操作(參照圖 1右欄工程b9〜bll)。本發明人們,在本發明的方法中,發現即使複寫模在 翻譯反液中共存也不會降低翻譯效率,為了自動蛋白質合成設備的單純化 、縮短所需時間,並為防止因苯酚/三氯甲烷殘留而妨礙翻譯及因多項工 程的精製作業下所生之翻譯模失誤,而省略了DNase處理。因此,本發明 的方法是以不進行複寫反應後分解、去除複寫模的工程為特徵者。 經由上述所析出的翻譯模RNA,以本身周知的任意方法,可沈澱在反 應容器的底部(a4、bl2)。此種手段可以是例如離心分離、過濾、靜置、束 結乾燥等,但最好是離心分離。若利用離心分離,例如可在室溫以下,最 好約25C以下’更好的是大約4°C〜15°C,以大約4000xg〜22000xg進行。 所使用的離心分離操作,可將用於周知的桌上離心機等之離心分離方法組 合進後述的自動蛋白質合成設備當作沈澱手段來進行。 在最初的沈溯l操作下沈澱在反應容器底部之翻譯模,因表面張力而維 持在該底部,因此該沈澱操作後的上清去除作業,不需要實驗者以手動進 16 200526786 行,例如亦可採用本身周知的設備(例:BioR〇bot8000 (Kiagen公司製)進 行’或是只單純地將反應容器上下反轉即可。如考慮設備的單純化、縮短 所需時間、減少所用晶片數等,後者的方法對自動化較為有利。 除去上清後,使翻譯模RNA的沈澱乾燥(a5、bl7),乾燥是,若以超過 在殘留的上清中可能成為妨礙翻譯反應因素的成份(例如酒精)被去除時所 需時間,且引發因完全乾燥帶來的不溶化後,不致降低翻譯效率的時間以 内進行,則其方法及時間不特別受限,但例如,以自然乾燥、風乾、減壓 乾燥等本身周知的方法,則可進行最好大約1〇分鐘以下,更佳的是大約3〜 8分鐘。 乾燥後的翻譯模之沈澱為供作以下的翻譯反應工程之用,以蛋白質合 成用細胞萃取液使之溶解(a6)。此處所用的蛋白質合成用細胞萃取液,只 要疋將翻譯模翻澤後可將經該模編碼的蛋白質生成者,任何萃取液皆可, 但具體而言可採用大腸菌、植物種子胚芽、兔子網狀紅血球等的細胞萃取 液。這些亦可採用市售的萃取液,而其本身周知的方法具體而言,則可依 照Pratt, J.M· etal·,Transcription and Tranlntion,Hames,179-209, B.D· & Higgins,S· J·,eds),IRL Press,Oxford (1984)所記載的方法 調製。 市售的蛋白質合成用細胞萃取液則可以是,來自大腸菌者如Ε· col i S3〇 extract system (Promega 公司製)及RTS 500 Rapid Tranlation200526786 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a method for automatically performing cell-free protein synthesis, and an automatic protein synthesis device for implementing the same. [Previous technology] With the rapid development of gene mix (Genomix) and the completion of chromosomal plans of various organisms, the focus of research topics has largely changed from the analysis of genetic factor structure to the analysis of genetic factor function. With the introduction and destruction of genetic factors whose functions have been clarified, Knock-out-based transgenic technology has brought great results in the manufacture of mutants with additional functions, but unknown genetic factors In terms of functional analysis, it is still based on the interpretation of information based on the expression form obtained through the black box of cells. This situation can be understood from the fact that only a few genetic factors can be identified by these techniques. In addition, genetic factors whose functions have been elucidated can almost be said to be evidence that they must be biochemical. Therefore, for the functional analysis of unknown genetic factors obtained from the chromosome, the biochemical analysis of genetic factor products can be said to be necessary. In terms of protein synthesis, genetic engineering methods that make Coulomb-like genetic factors present in living cells are widely used, but foreign proteins that can be obtained from this method are limited to sneaking into the host Molecular species of life support institutions. In addition, with the advancement of organic synthesis technology, automatic peptide synthesizers have become popular. It is common practice to synthesize peptides formed from dozens of amino acids, but chemically synthesize large-molecular-weight proteins. However, due to the limits of yield, side reactions, etc., it is extremely serious even at present. Moreover, in Europe and the United States, 200526786 directly uses the living form of living protein production and the ethical critique of the new molecular exploration method is extremely strict, and it is also worrying that international regulations will be more severe. To solve this problem, as a new type of protein synthesis method, a cell-free protein synthesis method can be adopted. This method uses a biochemical method to maximize the excellent characteristics of the organism. In this method, a replication system and a translation system for living genetic information are placed in an artificial container, and a system containing a non-natural form of amino acids that can be taken in from a designed and synthesized replication model is reconstructed. Since such a system is not restricted to living organisms, it is expected that the protein that can be synthesized can be expanded to almost infinity. This type of cell-free protein synthesis method has been reported 40 years ago that residual protein synthesis energy in ground cell fluid has been developed. Various methods have been developed, including cell extracts from coliforms, wheat germ, and rabbit reticulocytes. It is still widely used for protein synthesis. In particular, cell extracts from wheat germs and other cell extracts from eukaryotes are highly valued for their high protein synthesis energy and their precise protein retention. In order to clarify the genetic factors obtained from huge genetic information, it is expected that a High through VII synthesis system capable of synthesizing multi-sample proteins in a short time and easily will be presented. In the cell-free protein synthesis method, j can obtain the transcription reaction of the translation mode mRNA from the replication mode, k, and other projects that synthesize proteins by using the mRNA as a mold. Equipment for automatically performing these tasks has been developed. In addition, if a cell extract from a coliform belonging to a prokaryote is used, in order to enable it to perform a transcription reaction and a translation reaction in a valley fluid, the equipment for automatically synthesizing proteins from the transcription mode after the transcription reaction and translation reaction has been performed. Was developed. However, eukaryotic cell extracts such as wheat germs with excellent protein synthesis ability, as mentioned above, the translation model obtained from the replication reaction must unavoidably be operated manually before it can be used as a translation reaction. The series of operations before the protein f encoded by the 200526786 transcription board cannot be automated. That is, 'the past cell-free synthesis method using cell extracts from the eukaryotes mentioned above', because non-anti-filamental organisms that replicate reflections hinder subsequent translation reactions, 'it was considered necessary to remove them and perform alcohol Removal operations such as precipitation and gel filtration columns (such as the typical original protocol in the previous method, please refer to the projects bl2 to bl6, including: • ethanol precipitation using acetic acid (bl2), column treatment (bl3), Ethanol precipitation (bl4) using sodium chloride, ethanol precipitation (W5) using steel acetate, 70% ethanol precipitation (W6)). At this time, the salt contained in the buffer used for gel filtration will hinder subsequent translation reactions. Therefore, without reprecipitation and / or washing operations, at least a part of the protein will only be used. Get a little or no protein at all. However, if the re-sinking and washing operations are performed, the precipitation of the translation mold maintained by the surface tension at the bottom of the reactor will be peeled off. Using a centrifugal separator that can be used as an automatic synthesis equipment structure, the centrifugation will only become a liquid. In the floating state, in order to remove the supernatant without error, the experimenter must carefully carry out 0 with a pipette. In addition, in the past, once the refined translation mold was dissolved in ultrapure water and After the solution of the translation reaction, the solution of Kibe, energy source, etc. (for translation reaction) is mixed with a cell extract containing protein synthesis equipment such as ribonucleosomes, etc., and then provided to the translation reaction (Fig. 1, Project bl8, bl9) 'However, it is extremely difficult to dissolve the niRNA in translation nucleus for translation reaction> Grain fluid' The experimenter must stir each sample with the front end of a pipette to dissolve it. [Summary of the Invention] 200526786 Therefore, the object of the present invention is to solve the above-mentioned problems in the automation of cell-free protein synthesis, and to provide a series of projects from copy mode to protein generation encoded by the mold, from the production of copy mode to eggs The self-producing engineering makes it a secret method, and provides automatic protein synthesis equipment that can put this method into practice, especially automatic protein synthesis equipment that can synthesize multiple types of proteins at the same time. In order to solve the above-mentioned problems, the inventor of this case, after careful research, found that (1) Lai obtained after the replication reaction, after it was precipitated, the non-anti-filamentary sanitary process and the buffer from the domain were replaced, and the cleaning process was replaced. Even if Shen Dian Engineering is omitted, it will not affect the translation efficiency of the protein, and (2) the precipitation of the translation mold is not once dissolved in water or the solution for translation reaction, and when the cell extract for protein synthesis is directly added, the precipitation unexpectedly Dissolves extremely easily. Based on these ideas, the inventors have developed a new original proposal for cell-free protein synthesis (Protto), and successfully constructed an automatic protein synthesis device that can implement the original proposal, and even completed the present invention. That is, the present invention is as follows: 1. In the cell-free protein synthesis project, from the replication model to the reaction engineering of the protein encoded by the mold, the translation model in the reaction solution after the replication reaction is precipitated, and the supernatant is removed. After the liquid and the drying process of the turning mold, the process of immersing the plate by adding protein and fine cell extract directly to the precipitate, the cell-free protein synthesis method including the above method 〇 2 · Purpose The process of enlarging and then modulating the replication model of a protein protein is also included in the cell-free protein synthesis method described in item 1 above. 3- The host cell containing the genetic factor that symbolizes the protein of interest is directly supplied as a polymerase. 200526786 Chain reaction “Amplification of the remodeling process” is characterized by the cell-free protein synthesis method described in the preceding item 丨 or 2. 4. The method for synthesizing the cell-free protein described in any one of the preceding paragraphs 1 to 3, which is characterized by automatic progress, from the production of a replica model to produce a protein material encoded by the replica model. 5. Superimpose the translation inverse test on the egg containing the clams and extract the liquid from f. Then take the translation responder as the characteristic of the cell-free protein synthesis method described in any one of items 1 to 4 above. 6. A method for synthesizing a cell-free protein by adding a solution for translation reaction and mixing it with a cell extract for protein synthesis containing a translation mold to make it oily. 7. A method for synthesizing cell-free protein as described in any one of the items 1 to 6 below in accordance with any of the following items. (1) A process of modulating a replica mode by PCR amplification. (2) A process in which a solution for copying reaction is mixed with a copying mold. (3) A process of cultivating a mixture of the transcription reaction bribe and the replication mold—the cultivation process for a fixed time. (4) The process of precipitating translation dies. (5) The process of drying the deposit of the translation mold. (6) The process of removing the supernatant of the reaction solution, and the process of removing the eggs from their own quality and taking the remaining 6 jobs, and dissolving the positions. 8. Let all reaction projects enter the same reaction vessel. ^ ^ ^ 疋 仃 No. 200526786 Cell protein synthesis method described in any one of items 1 to 7. 9. A method of synthesizing a plurality of proteins simultaneously in a plurality of reaction vessels and synthesizing the cell-free protein according to any one of items 1 to 8. 10. The cell extract for protein synthesis described above is a cell-free protein synthesis method according to any one of the preceding items 1 to 9 of the plant seed germ extract. 11. The aforementioned plant seed germ extract is a method for synthesizing a cell-free protein as described in item i 0 of the wheat seed germ extract. 12. The aforementioned wheat seed germ extract, the endosperm component of the germ and the low-molecular-weight protein synthesis, and the extract from which the inhibitor material has been substantially removed. The cell-free protein synthesis method according to item 11 above. System A is a device for carrying out the cell-free protein synthesis method described in any one of the preceding paragraphs 1 to 12, and has a cell-free protein synthesis device having at least one of the following control means. (a) Means for variably controlling the temperature in the reaction vessel. (b) Means of separately injecting a sample or a reagent into a reaction container. (c) Shen Dianshou 丨}. (d) Remove the supernatant. (e) Drying means and (0 means the means (a) to (e) for controlling the engineering operation according to any of the preceding paragraphs 1 to 12 The means for performing the action is the cell-free protein synthesis device according to item 13 above. 200526786 15 · Furthermore, the cell-free protein synthesis device according to item 13 or μ is characterized by including means for opening and closing the lid of the reaction container. [Implementation method The present invention provides a method for automatically performing a reaction operation from at least a replication mode provided to a reaction system to the production of a protein symbolized by the mode (hereinafter sometimes referred to simply as "the method of the invention"). Here, the “making operation to be performed automatically” means that the experimenter does not directly perform manual operation on the reaction system (reaction valley) in a series of projects. Therefore, when each project is implemented, the automatic protein of the present invention is adopted The predetermined operation set on the synthesizing device is operated according to the description and the switch, and it is performed by the experimenter manually, without damaging the "automatic" sound piece in the present invention. The reaction capacity can be different in each of the X-paths. However, under the simplification of the equipment structure for carrying out the method of the present invention, and for the purpose of preventing staleness and product loss of scale, it is best to design a series of projects in the same process. The method is preferably carried out in a reactor. The method of the present invention is divided into a copying reaction process, a refined jade process of a translation mode, and the best translation reaction engineering. The method of the present invention is from the production of a copy mode to the encoding of the mode. The process up to the generation of proteins is characterized by an automatic performer. Therefore, in the best mode, the method of the present invention leads the replication reaction engineering, and also includes the production process of replication molds. Hereinafter, specific implementation of the sample for each process_ As mentioned above, but the method of the present invention is to refine the Wangcai of the Lai Lai, as long as it has the two characteristics mentioned above to the state, it is not allowed to be among them. 'This course is not necessary-it must be done automatically. The 11 200526786 copy core that can be obtained by Yang can also be used in the following automatic cylinder process, but it includes the process from the creation of the copy model to the protein encoded by this model. -The series of guarding processes is preferably performed automatically. The "replication mode" in the book of the present invention refers to the legs of the mold molecules that can be used for the in vitro replication reaction, at least in the order of the appropriate promoter. The downstream has the sequence of encoding the target protein (code). The so-called proper sequence of the promoter refers to the sequence of the promoter of the polymerase A used in the replication reaction, such as the SP6 promoter, T7 co-agent, etc. The DNA encoding the target protein may be any type. The replication mode preferably has an active base sequence that controls translation efficiency between the sequence of the co-agent and the mechanical base sequence encoding the target protein, For example, the Ω sequence of the cigarette-like virus can be derived from RNA virus 5, non-translated field, and / or Kusak sequence, etc. Furthermore, it is better to include the replication model in the mechanical base of the protein encoding standard. Downstream covers 3 areas of replication terminal, non-translated areas. The 3 ′ non-translated field is best to be about 3.0 kilobases from the downstream of the stop codon (CQdQn). These 3 ’untranslated fields do not necessarily have to be the original fields of the genetic factors encoding the target protein. The production of the replica mold can be performed according to a well-known method. For example, a host cell containing a DNA having the same salty sequence as the desired replica, a coliform having a cytoplasmic genetic body incorporated with the DNA, the host cell is cultured, and the cytoplasm is largely prepared by a well-known purification method. After the heredity (bl), use appropriate restriction enzymes to remove the copy model from the cytoplasmic heredity (say, followers), and then remove the restriction enzymes after phenol treatment (b3) and three-gas methane treatment (b4). A method of refining a replica using alcohol precipitation (b5) of ethanol and isopropanol (if necessary, adding an appropriate amount of ammonium acetate, sodium acetate, sodium vaporization salt, etc.). The precipitate of the obtained DNA is dissolved in ultrapure water (b6) and a solution for an overwrite reaction described later in 2005 2005786 to provide the following overwrite reactions. In order to integrate the required series of operations automatically or semi-automatically (in the case of a part of the project where the experimenter directly adds a manual operation to the reaction system), the existing equipment is incorporated into the automatic protein synthesis device of the present invention. After that, it can be performed automatically from the creation of the replica to the production of the target protein. It is considered that the purpose of the present invention is to provide an automatic cell-free protein synthesis system in order to analyze High through put, and the simplification of the equipment and shorten the time required. For example, it is preferable to use the following method for making a replica of a polymerase chain reaction (PCR) method. In the method of the present invention, the aspect of best practice is to use a host (for example, a coliform having a cytoplasmic heredity containing the DNA) in which the DNA encoded by the protein of interest is coulombized, and use the host directly for PCR. , Enlarge the copy mode. For example, a 5 untranslated sequence with controlled, appropriate aggregator sequence, translation efficiency activity, and the ancestor that encodes the protein of interest, and will contain oligonucleotides that are part of the 5 'end domain of the DNA, using DNA automatically After the synthesizer synthesizes it by a known method, it applies a sense primer, and then applies an anti-sense primer to a 3, untranslated sequence of 3, terminal domain sequence oligonucleotides, and uses it as a model to encode the DNA of the target protein. And coliform bacteria containing the 3 'untranslated cytoplasmic heredity downstream are directly added to the pcR reaction solution.' Under normal conditions, the amplified copy can be obtained to obtain the desired replica (al) . In addition, in order to prevent the generation of short-stranded DNA due to non-specific amplification due to non-specific amplification (as a result, the yield of the target product is reduced and the low-molecular translation product murmurs) are generated, the International Publication No. 02/18586 can also be used. The recorded co-agent break type primer. The amplification reaction can also be performed using a commercially available thermal cycler for PCR on a commercially available 96-well plate for PCR. The same temperature-variable control device and the protein of the invention since 13 200526786 can also be used. The synthesizing equipment is linked, or various methods are directly applied to the PCR, so as to perform the replication and translation reactions of the automatic protein synthesis equipment of the present invention. As described above, the replication mode DM is subjected to trichloride? After fresh extraction and alcohol Shen Dian refinement, it is also available for copying reaction. However, in order to simplify the equipment and shorten the required time, it is best to use the pcR reaction solution as a copying mold. In the production of replication models, by using direct PCR from the above-mentioned host, the cytoplasmic genetic body is modulated in a large amount and then subjected to restriction enzyme treatment to obtain a replication model. With this financial method, she can omit the ball. Lai Shao's number of balls synthesized a large number of duplication modules in a short time (see Figure 2). That is, there is no need to cultivate the large intestine g of the cytoplasmic heredity with the genetic factor of the edited target, and a large number of feminine hereditary organisms can be used. Therefore, the ultracentrifugation facility necessary for the cultivation and purification of the cytoplasmic hereditary can be shortened. It takes time (for example, as shown in Figures 1 and 2, ㈣ 办 敎 _ 转 办). χ, the key for the hereditary body to remove the replica model_: treatment (work hungry), benzene removal process to remove the yeast scales, three-gas torrefaction treatment (Weicheng b3 and b4), replica model refining Lai Shen Dian (Engineering Project, Shen Dian Project (Solution b6) that dissolves replica DNA, the above-mentioned projects can be omitted, so there is no obstacle to Lai-Wen's reaction due to phenanthrene / trichloromethyl domain retention, and Meida Wei复 The copy mode error from π in the refining operation, and the benefits of reducing the number of steps required for the reaction can be reduced. (2) Copy reaction engineering The method of the present invention includes modulating a method known per se. The copy DNA of the target protein is coded to generate a translation model 111 in vitro copy reaction. This project is a copy model containing a reaction system (such as a commercially available container such as a 96-well titer plate). Solution 14 200526786 'It is better to copy the above PCR reaction solution with RNA polymerase (such as SP6 RNA polymerase) suitable for the polymerization aid in replication mode, and the substrate for RNA synthesis (4 ribonucleoside 3 phosphates), etc. Ingredients required for reaction After mixing the solution (also referred to as a "solution for overwriting reaction") (a2, b7), the mixture is preferably cultured at about 20 ° C to 60 < > C 'about 3 (TC to 42 ° C) for about 30 minutes to 16 hours, preferably about 2 hours to 5 hours (a3, b8). Dispensing and copying the replica mold solution, the replication reaction solution, and the reaction container can be performed by the automatic protein synthesis equipment described below. Means (such as 'pipettes' (e.g. when using commercially available 96-well titer plates as reaction vessels, it is best to use wafers with 8- or 12-well dispensing intervals suitable for the Well interval). The heat preservation can be performed by a temperature control method of the automatic protein synthesis equipment described below, while controlling at a certain temperature. (3) The refining product of the translation mold refining process (ie, the "translation mold") generated by the 5, untranslated sequence and / or 3, untranslated sequence RNA molecules that encode the protein of the target protein in the transcription solution required to have the activity of controlling the translation efficiency inserted in the transcription mode. In the reaction solution after the transcription reaction 'Except for scaly face A, it's all over Anti-lying chicks 3 and anti-biochar filling acids, salts contained in other replication reaction solutions, etc., but these substances are known to hinder subsequent translation reactions, so unreacted substrates are separated after selective precipitation of the translation mold Removal. The method used in Shen Dian can be, for example, a method of equalization, and it is best to use the method of precipitation, but it is not limited. For example, when using alcohol precipitation method, if the alcohol used can selectively precipitate RNA, that is, There is no particular limitation. For example, ethanol, reversal, etc., and ethanol is the best. If it is ethanol, it is best to duplicate the reaction solution by about 2 to 3 times. If it is isopropanol, use the replication reaction solution. 6 times and 1 time. Also, the coexistence method of adding appropriate salt can increase the harvest of precipitation. This kind of salt can be 15 200526786 疋 Ammonium acetate, sodium acetate, sodium chloride, lithium chloride, etc. For example, if ammonium acetate is used, it is best to add the final concentration to about 0.5M to 3M. Alternatively, alcohol precipitation can be performed at room temperature. The addition of alcohol and salt solution can be performed using a dispensing method of an automatic protein synthesis device described later, and the precipitation of translation mold RNA can be performed under a certain temperature condition by using a temperature control method of an automatic protein synthesis device described later. In addition, transcription DNA also exists in the transcription reaction solution, but it has been reported that it will hinder the subsequent translation reaction. Therefore, DNase treatment (b9) and phenol treatment (bio), The operation of denaturing and removing DNase after three gas methane treatment (bii) (refer to the projects b9 to bll in the right column of FIG. 1). The present inventors found that in the method of the present invention, even if the replication mode coexists in the translation reaction liquid, the translation efficiency will not be reduced. In order to simplify the purification of the automatic protein synthesis equipment and shorten the time required, and to prevent the phenol / trichloride Residual methane hinders translation and due to errors in the translation model caused by the refining operations of many projects, DNase treatment is omitted. Therefore, the method of the present invention is characterized by a process of decomposing and removing the copy mode without performing the copy reaction. The translation-mode RNA thus precipitated can be deposited on the bottom of the reaction container (a4, bl2) by any method known per se. Such means may be, for example, centrifugation, filtration, standing, binding drying and the like, but centrifugation is preferred. If centrifugation is used, it can be carried out at a temperature below room temperature, preferably about 25C or less, more preferably about 4 ° C to 15 ° C, and about 4000xg to 22000xg. The centrifugation operation used can be performed as a precipitation means by combining a centrifugation method used in a well-known tabletop centrifuge or the like into an automatic protein synthesis apparatus described later. The translation mold that settled at the bottom of the reaction vessel under the initial sinking operation was maintained at the bottom due to surface tension. Therefore, the supernatant removal operation after the precipitation operation does not require the experimenter to manually enter 16 200526786 lines, for example, also It can be performed using well-known equipment (for example: BioRobot 8000 (manufactured by Kiagen)) or simply inverting the reaction vessel up and down. For example, considering the simplification of the equipment, shortening the required time, reducing the number of wafers used The latter method is more advantageous for automation. After removing the supernatant, the precipitation of the translation mold RNA is dried (a5, bl7). Drying is, if it exceeds the residual supernatant, it may become a component that hinders the translation reaction (such as alcohol). ) Is removed within the time required to cause insolubilization due to complete drying and does not reduce translation efficiency, the method and time are not particularly limited, but for example, natural drying, air drying, and reduced pressure drying By a method known per se, it can be carried out preferably for about 10 minutes or less, and more preferably for about 3 to 8 minutes. For the following translation reaction engineering, the cell extract for protein synthesis is used to dissolve it (a6). The cell extract for protein synthesis used here can be used to generate the protein encoded by the mold after translating the translation mold. Any extraction solution may be used, but specifically, cell extracts of coliform, plant seed germ, rabbit reticulocytes, etc. may be used. These may also be commercially available extracts, and the methods known per se, specifically, It can be modulated according to the method described in Pratt, JM, etal, Transcription and Tranlntion, Hames, 179-209, BD & Higgins, SJ, eds), IRL Press, Oxford (1984). Commercially available cell extracts for protein synthesis may be those derived from coliforms such as E. coli i S30 extract system (promega) and RTS 500 Rapid Tranlation.
System(Roche公司製)所添附者,來自兔子網狀紅血球者則如Rabbit Reticulocyte Lysate Sytem (Promega公司製)所添付者,以及來自小麥胚 17 200526786 芽者如PR0TEI0STMCT0Y0B0公司製)所添付者。其中,最好採用植物種子的 芽萃取液系、、先植物種子方面最好是小麥、大麥、稻子、玉米等稻科植 物及菠雜_子,_是小麥種子胚料輯最適合。另外,胚芽的胚 乳成伤及低77子之蛋自質合成阻礙劑物質被實質性去除的小麥種子胚芽萃 取液更為適當。因為這些與過切小麥種子胚芽萃取液概,與萃取液中 蛋白質合成阻礙有關的成份及物質被減少之故。 小麥胚芽萃取液的製作方法則可採用,例如Johnston, F· B· etal·, Nature, 179, 160^161(1957),ilErickson, A. H. etal., (1996) Meth. In Enzymol·,96,38-50等所載的方法。另外,除去含在該萃取液中的阻礙 翻譯因子,例如含三硫崎、硫僅、核酸分解酵素等的胚乳等處理(特開 2000-236896公報等)及,抑制阻礙翻譯因子的活性化處理(特開平7 2〇3984 號公報)等最好也進行。 若採用小麥胚芽等植物種子胚芽的萃取液,有時可在加入翻譯模的沈 澱前將該萃取液,例如以大約15°C〜26°C,3分鐘以上預培養後提高翻譯效 率。 也可將蛋白質合成用細胞萃取液直接加入翻譯模的沈澱中,或是將翻 譯反應所需或是極為適合的其他成分,亦即當作基質的氨基酸、能量源、 各種離子、緩衝液、ATP再生系統、核酸分解酵素阻礙劑、伐να、還原劑 、聚乙二醇、3,,5, 一cAMP、葉酸鹽、抗菌劑等其中一個以上事先與細 胞萃取液混合後再加入該沈澱。 將蛋白質合成用細胞萃取液直接加入翻譯模的沈澱,該沈澱極易溶解 18 200526786 。因此,例如’採用後述的自動蛋白質合成設備的分注手段,將細胞萃取 液加入翻譯模的沈澱後,予以靜置或是將分注手段設計成可利用為液體的 混合手段(例如:吸移、攪拌等)時,在進行該混合操作下,在短時間即可 開始以下的翻譯反應工程。 (4)翻譯反應工程 在含有上述方法所得之翻譯模的蛋白質合成用細胞萃取液中加入,含 有成為基質的氨基酸、能量源、各種離子、緩衝液、ATP再生系統、核酸分 解酵素阻礙劑、tRNA、還原劑、聚乙二醇、3,,5, 一cAMP、葉酸鹽、抗 菌劑等,翻譯反應必須或最適合的成份之溶液(亦稱「翻譯反應用溶液」) ,以適合翻譯反應的溫度在適當時間培養後即可進行翻譯反應。成為基質 的氨基酸一般是構成蛋白質的20種天然氨基酸,但也可視目的採用其類比 及異性體。 又,能量源方面,可用ATP及/或GTP。而各離子則有醋酸卸、醋酸鎂 、醋酸銨等醋酸鹽、谷氨酰胺酸鹽等。緩衝液則採用Hepes—Κ0Η、Tris~ 醋酸等。APT再生系統則為磷烯醇丙酮與丙酮激酶的組合,或肌磷酸(肌酸 磷酸酯)與肌酸激酶的組合。核酸分解酵素阻礙劑則有核糖核酸酶抑制劑及 核酸S#抑制劑等。其中核糖核酸姆抑制劑的具體例,則如來自人類胎盤的 RNase inhibitor (Τ0Υ0Β0公司製等)。tRNA則可用Moniter,R.,et al·, Biochim· Biophys· Acta·,43,1 (1960)等所記載的方法取得,或 者也可採用市售的成品。還元劑方面則如DTT(Dithiothreito)等。抗菌 劑則有迭氮化鈉、氨苄青霉素(Ampicillin)等。這些的添加量可以在無細 19 200526786 胞蛋白質合成上一般可使用的範圍内適當選擇。 翻譯反應用溶液的添加情形可視所用的翻譯反應系統適當選擇。本發 明的方法所採用之翻譯反應系統可以是能適用在本發明的自動蛋白質合成 設備上的本身周知之任一系統,例如程序組法(BatchXPratt,J. M etal.System (manufactured by Roche), those from rabbit reticulocytes such as Rabbit Reticulocyte Lysate Sytem (promega), and wheat germ 17 200526786 buds (such as PR0TEI0STMCT0Y0B0). Among them, it is best to use a plant seed bud extract liquid, and the first plant seeds are preferably wheat, barley, rice, corn and other rice plants and spinach seeds, which are the most suitable for wheat seed material. In addition, wheat seed germ extracts from which the endosperm of the germ is wounded and eggs with low 77 seeds are substantially removed from the substance that inhibits the synthesis of the substance are more suitable. Because these are related to the extract of overcut wheat seed germ, the components and substances related to the protein synthesis hindrance in the extract are reduced. Wheat germ extract can be prepared by methods such as Johnston, F.B. etal, Nature, 179, 160 ^ 161 (1957), ilErickson, AH etal., (1996) Meth. In Enzymol., 96, 38 -50 and other methods. In addition, removal of inhibitors of translation factors contained in the extract, such as endosperm containing trisulfazine, sulfur, nuclease, etc. (Japanese Patent Laid-Open No. 2000-236896, etc.), and suppression of activation of inhibitors of translation factors (Japanese Patent Application Laid-Open No. 7 2 03984) and the like are preferably performed. If an extraction solution of plant germ such as wheat germ is used, the extraction solution may be added before the precipitation of the translation mold, for example, at a temperature of about 15 ° C ~ 26 ° C for more than 3 minutes to increase the translation efficiency. The cell extraction solution for protein synthesis can also be directly added to the precipitation of the translation mold, or other components required or extremely suitable for the translation reaction, that is, amino acids, energy sources, various ions, buffers, ATP used as a substrate One or more of a regeneration system, a nucleic acid degrading enzyme inhibitor, a vα, a reducing agent, a polyethylene glycol, 3,5, a cAMP, a folate, an antibacterial agent, etc. are mixed with the cell extract before adding the precipitate. The cell extract for protein synthesis is directly added to the precipitation of the translation mold, which is easily soluble 18 200526786. Therefore, for example, 'the dispensing method of the automatic protein synthesis device described later is used, the cell extract is added to the precipitation of the translation mold, and then it is left to stand or the dispensing method is designed to be a liquid mixing method (e.g., pipetting) , Stirring, etc.), under this mixing operation, the following translation reaction process can be started in a short time. (4) Translation reaction engineering is added to a cell extract for protein synthesis containing a translation mold obtained by the above method, and contains amino acids, energy sources, various ions, buffers, ATP regeneration systems, nucleic acid degrading enzyme inhibitors, and tRNAs that serve as substrates. , Reducing agent, polyethylene glycol, 3,5, cAMP, folate, antibacterial agent, etc., the translation reaction must be or the most suitable solution (also known as "translation reaction solution") to suit the translation reaction After incubation at the appropriate temperature, the translation reaction can proceed. The amino acids that form the matrix are generally the 20 natural amino acids that make up proteins, but analogies and heterosexuals can also be used depending on the purpose. As the energy source, ATP and / or GTP can be used. Each ion includes acetate, magnesium acetate, ammonium acetate, and other acetic acid salts, and glutamine salts. The buffer solution was Hepes-K0Η, Tris ~ acetic acid, etc. The APT regeneration system is a combination of phosphoenol acetone and acetone kinase, or a combination of creatine (creatine phosphate) and creatine kinase. Nucleolytic enzyme inhibitors include ribonuclease inhibitors and nucleic acid S # inhibitors. A specific example of the ribonucleic acid inhibitor is RNase inhibitor (manufactured by TOZO 0B0, etc.) from a human placenta. The tRNA can be obtained by the method described in Moniter, R., et al., Biochim. Biophys. Acta, 43, 1 (1960), or a commercially available finished product. Reducing agents such as DTT (Dithiothreito) and so on. Antibacterial agents include sodium azide and ampicillin. The amount of these additives can be appropriately selected within a range generally available for synthesis of cytoproteins. The addition of the solution for translation reaction may be appropriately selected depending on the translation reaction system used. The translation reaction system used in the method of the present invention may be any system known per se that can be applied to the automatic protein synthesis device of the present invention, such as a program group method (BatchXPratt, J. M et al.
Transcription and Tranlation,Hames,179-209,Β· D· & Higgins, J·,eds),IRLPress,0xford(1984))及,氨基酸、能量源等連續供給反 應系的連續式無細胞蛋白質合成法(Spirin,A. S. etal.,Science, 1162-1164(1988))、透析法(木川等、第21屆日本分子生物學會wiD6)、 或者是多層重疊法(國際公開第02/24939號手冊)等。再者,在必要時將 模子RNA、氨棊酸、能量源等供給合成反應系統,將合成物及分解物必要 時排出的不連續凝膠過濾法(特開2000-333673公報)及,合成反應槽用可 分子篩的擔體調製,上述合成材料等以該擔體做為移動相展開,在展開時 實施合成反應,結果可回收已合成的蛋白質之方法(特開2〇〇〇—316595公報 )。然而,若從對於自動蛋白質合成設備的構造單純化、省空間、低成本、 high through put解析上可適用的多檢體同時合成系統之提供來看,程序 組法或多層重疊法較佳,可獲得較大量蛋白質的這一點來看,則多層重疊 法特別好用。 以程序級法進行翻譯反應時,將翻譯反應用溶液加入含有翻譯模的蛋 白質合成用细胞萃取液中混合即可。或是,將含在翻譯反應用溶液的成份 預先與蛋白質合成用細胞萃取液混合時,亦可省略翻譯反應用溶液的添加 。將含有翻澤模的蛋白質合成用細胞卒取液與翻譯反應用溶液混合後所得 20 200526786 之「翻譯反應液」有,例如採用小麥胚芽萃取液當作蛋白質合成用細胞萃 取液時,可採用 10 〜SOmMHEPES-ΚΟΗ(ΡΗ7·8)、5 5〜1 20mM醋酸鉀' 1〜5mM醋酸鎂、〇·卜⑴6mM亞精胺 、各0·025〜ImM L-氨基酸、2〇〜7〇μΜ、最好是3〇〜5〇_ 的DTT、1 〜1·5πιΜ ΑΤΡ、〇·2〜〇·5πιΜ GTP、lQ〜2QmM 肌 磷酸、0· 5〜1· OU/μ 1核糖核酸酶抵制劑、〇· 〇1〜1〇μΜ蛋白質二硫化 物異構酶、及含2 4〜7 5%小麥胚芽萃取物者。如採用這種翻譯反應液 時’預培養約1 0〜約4 0 C,大約5〜1 〇分鐘,本反應(翻譯反應)的 培養相同約1 0〜4 0°C,最好是大約丄8〜3 (rC ,更佳的是大約2〇 〜2 6°C,到反應停止為止,以程序組法一般進行χ 〇分鐘〜7小時左右 〇 以多層重疊法進行翻譯反應時,在含有翻譯模的蛋白質合成用細胞萃 取液中,將翻譯反應用溶液避免弄亂界面地多層重疊後進行蛋白質合成(a7 、b20)。具體而言,例如,視需要將適當時間預培養處理的蛋白質合成用 細胞萃取液加入翻譯模之沈澱中,使其溶解,做成反應相。在該反應相的 上層將翻譯反應用溶液(供給相)避免弄亂界面地多層重疊後,進行反應。 兩相的界面不一定要以多層重疊使成水平面狀,亦可將含有兩相的混合液 以離心分離’形成水平面。兩相的圓形界面直徑如為7ππη,反應相與供給 相的容量比以1:4〜1:8為適當,但以1:5最為恰當。兩相所形成的界面面 積愈大在擴散下的物質交換率會愈高,蛋白質合成效率即升高。因此,兩 相的容量比會因兩相的界面面積而變化。翻譯反應,例如採用小麥胚芽萃 21 200526786 取液的系統時,在靜置條件下,以大約1 〇〜4 0°C,最好是約1 8〜3 0°C,更佳的是約2 0〜2 6°C,通常可進行約1 0〜2 〇小時(a8、b21) 。又,如採用大腸菌萃取液時,反應溫度大約3 0°C〜3 7 °C為適當。 本發明的無細胞蛋白質合成法在翻譯模之精製工程上 ,(1)使複寫反應後的反應液中之翻譯模沈澱的工程之後,除去未反應基 質的工程以及隨之而來的1或數次洗淨工程、沈澱工程予以省略,提供翻 譯反應,及(2)藉由在獲得的翻譯模之沈澱中直接加入蛋白質合成用細胞 萃取液,溶解該沈澱的方法下首度完成了以自動化進行複寫模到經該模編 碼的蛋白質生成為止之-連串操作。然而,上述⑴及⑵的特徵,各自為 獨立的新方法,且獲得有利的效果。因此,只要具有這些方法之一方的特 徵,而無另一方的特徵之無細胞蛋白質合成法(亦即,將只有該另一方的 特徵部份所麟之課題’以其他手段解_祕細祕自質合成法或 ’〜方的特徵私所解決之課題,如般由實驗者以手動進行的「 動」之無細胞蛋白質合成法)也包含在本發明中。 其他Γ㈣,本發_方法,只_上述⑴及7或⑵_,對於 即可,並化只要_可翻之過去周知的㈣次序及條件等 1項工程者聰/1 ’但除了上述⑴及__之外,具有以下至少 春將複寫模以PCR放大後調製的工程 •將複寫反應用溶液與複寫模混合的工程 •將複寫反應用溶液親寫模的混合物以一定時間培養的工程 22 200526786 ❿讓複寫產物(亦即翻譯模)沈澱的工程 _使翻譯模的沈殿物乾燥之工程 ❿將蛋白質合成用細胞萃取液加入已乾燥的翻譯模,將該翻譯模溶解白勺 工程 •在含有翻譯模的蛋白質合成用細胞萃取液多層重疊翻譯反應用溶液% 工程 •在含有翻譯模的蛋白質合成用細胞萃取液多層重疊翻譯反應用溶液後 ,將之以一定時間培養的工程或是 •將複寫模以PCR放大後調製的工程 •將複寫反應用溶液與複寫模混合的工程 ⑩將複寫反應用溶液與複寫模的混合物以一定時間培養的工程 ♦讓複寫產物(亦即翻譯模)沈澱的工程 _使翻譯模的沈澱物乾燥之工程 鲁將蛋白質合成用細胞萃取液加入已乾燥的翻譯模,將該翻譯模溶解的 工程 ♦將蛋白質合成反應用程序組法進行的工程 如果使用本發明的無細胞蛋白質合成方法,則實驗者在中途不必進行 手動操作,即可以自動化進行無細胞蛋白質合成反應。又,如採用本發明 的方法,蛋白質合成效率方面,與過去沒有不同,可減少反應全體所需的 工程(從自動化的觀點來看,減少工程數意味著不易發生失誤,也是很重 要的),可大幅縮短蛋白質合成所需的時間,同時,在分解下也可減少損失 23 200526786 翻譯模, 可減少所用的DNA量等等好處。 模,並具有可縮小複寫反應系統,可 又’如採財發明―胞蛋白質 合成的全體反應在同一個反應容Transcription and Tranlation, Hames, 179-209, Beta D & Higgins, J., eds), IRLPress, Oxford (1984)), and continuous cell-free protein synthesis method in which amino acids and energy sources are continuously supplied to the reaction system (Spirin, AS etal., Science, 1162-1164 (1988)), dialysis method (Kikawa et al., 21st Japanese Molecular Biology Society wiD6), or multi-layer overlap method (International Publication No. 02/24939). In addition, if necessary, mold RNA, amino acid, energy source, etc. are supplied to a synthetic reaction system, and a discontinuous gel filtration method in which synthetic and decomposed substances are discharged when necessary (Japanese Patent Application Laid-Open No. 2000-333673) and a synthetic reaction The tank is prepared with a molecular sieve-capable support, and the synthetic material and the like are developed using the support as a mobile phase, and a synthetic reaction is performed during the development to recover the synthesized protein (Japanese Patent Application Laid-Open No. 2000-316595). . However, from the point of view of the provision of a multi-sample simultaneous synthesis system applicable to the structure of an automatic protein synthesis device, which is simplistic, space-saving, low-cost, and high-throughput analysis, a program group method or a multi-layer overlapping method may be preferred. From the standpoint of obtaining a larger amount of protein, the multi-layer overlap method is particularly useful. When a translation reaction is performed by a program-level method, the solution for translation reaction is added to a cell extract for protein synthesis containing a translation mold and mixed. Alternatively, when the components contained in the solution for translation reaction are mixed with the cell extract for protein synthesis in advance, the addition of the solution for translation reaction may be omitted. 20 200526786 "translation reaction solution" obtained by mixing a cell death solution for protein synthesis containing a transdermal mold and a solution for translation reaction. For example, when wheat germ extract is used as a cell extraction solution for protein synthesis, 10 can be used. ~ SOmMHEPES-K0Η (PΗ7 · 8), 5 5 ~ 1 20mM potassium acetate '1 ~ 5mM magnesium acetate, 0 · 6mM spermidine, each 0.025 ~ ImM L-amino acid, 2 ~ 7〇μM, most Fortunately, DTT of 3 ~ 5 ~ _, 1 ~ 1 · 5πιΜ ΑΡΡ, 0.2 ~ 0 · 5πιΜ GTP, 1Q ~ 2QmM creatine, 0.5 ~ 1 · OU / μ 1 ribonuclease inhibitor, 〇 〇1 ~ 10μM protein disulfide isomerase, and those containing 24 to 7 5% wheat germ extract. When using this translation reaction solution, 'pre-cultivate at about 10 to about 40 ° C for about 5 to 10 minutes. The culture of this reaction (translation reaction) is the same at about 10 to 40 ° C, preferably about 丄8 ~ 3 (rC, more preferably about 20 ~ 2 6 ° C, until the reaction is stopped, it is generally performed by the program method χ 〇 minutes ~ 7 hours 〇 When the translation reaction is performed by the multi-layer overlapping method, when the translation reaction is included In the cell extract solution for protein synthesis of the mold, the solution for translation reaction is multilayered to avoid disturbing the interface, and then the protein is synthesized (a7, b20). Specifically, for example, if necessary, a protein for protein synthesis is precultured for an appropriate time. The cell extract is added to the precipitation of the translation mold to dissolve it to form a reaction phase. The reaction reaction solution (supply phase) is layered on the upper layer of the reaction phase to avoid disturbing the interface, and then the reaction is performed. The interface of the two phases It is not necessary to use multiple layers to form a horizontal plane, and the mixed liquid containing two phases can be centrifuged to form a horizontal plane. If the circular interface diameter of the two phases is 7ππη, the capacity ratio of the reaction phase to the supply phase is 1: 4 ~ 1: 8 for Appropriate, but 1: 5 is the most appropriate. The larger the interface area formed by the two phases, the higher the material exchange rate under diffusion, and the higher the protein synthesis efficiency. Therefore, the capacity ratio of the two phases will depend on the interface between the two phases. The area varies. Translation reaction, for example, when using a wheat germ extract 21 200526786 liquid extraction system, under static conditions, at about 10 ~ 40 ° C, preferably about 18 ~ 30 ° C, more preferably It is about 20 ~ 2 6 ° C, and usually can be carried out for about 10 ~ 20 hours (a8, b21). In addition, when using coliform extract, the reaction temperature is about 30 ° C ~ 3 7 ° C is appropriate The process of cell-free protein synthesis of the present invention involves the following steps: (1) the process of precipitating the translation mold in the reaction solution after the replication reaction, the process of removing the unreacted substrate, and the subsequent 1 or Several washing processes and precipitation processes were omitted to provide translation reactions, and (2) by adding the cell extract for protein synthesis directly to the precipitation of the obtained translation mold, the method of dissolving the precipitation was completed for the first time by automation Copy mode to protein protein encoded by this mode Become a stop-series operation. However, each of the above-mentioned features of ⑴ and 各自 are independent new methods and obtain beneficial effects. Therefore, as long as one of these methods has the characteristics of the other and has the characteristics of the other cell-free Protein synthesis method (that is, the problem that is only covered by the characteristic part of the other party 'is solved by other means The "cell-free protein synthesis method" performed manually is also included in the present invention. Other Γ㈣, this method _, only _ and ⑵ and 7 or __ above, and only need to be combined, as long as _ can be turned over A well-known engineering order and conditions, such as one engineer Satoshi / 1 'But in addition to the above-mentioned ⑴ and __, there are at least the following processes to modulate the replication mode by PCR amplification: • Mixing the solution for the replication reaction with the replication mode Engineering • Project in which the mixture of the solution-producing mold for replication reaction is cultivated for a certain period of time 22 200526786 的 Engineering for precipitating the replication product (that is, the translation mold) Synthetic cell extract is added to the dried translation mold to dissolve the translation model. • The cell extract for protein synthesis containing the translation mold is multi-layered and overlapped with the reaction solution for translation.% Project • The protein synthesis cell containing the translation mold is used. Extraction solution is multi-layered and the reaction solution is cultured for a certain period of time, or • the replication mode is amplified by PCR, and the process is prepared by mixing the replication reaction solution with the replication mode. The process of cultivating the mixture of replication molds over a certain period of time ♦ The process of precipitating the replication products (that is, the translation molds) _ The process of drying the precipitation of the translation molds Add the cell extract for protein synthesis to the dried translation molds, Engineering of translation model dissolution ♦ Engineering of protein synthesis reaction by program method If the cell-free protein synthesis method of the present invention is used, the experimenter can perform the cell-free protein synthesis reaction automatically without having to perform manual operations in the middle. In addition, if the method of the present invention is adopted, the protein synthesis efficiency is not different from that in the past, and the process required for the entire reaction can be reduced (from an automation point of view, reducing the number of processes means that errors are less likely to occur, and it is also important) It can greatly reduce the time required for protein synthesis. At the same time, it can also reduce the loss under decomposition. 23 200526786 Translation mode can reduce the amount of DNA used and so on. Model, and it can reduce the replication reaction system.
反應及翻譯反應所用的反應容器, 且’如採用本發明的方法,為進行複寫 例如可用96孔板等,可同時簡便地合成 麵(特別是多數種)蛋白f,可作為如後述的蛋白質high through put的 機能解析等用途。The reaction container used for the reaction and translation reaction, and if the method of the present invention is used, for copying, for example, a 96-well plate can be used at the same time to synthesize the surface (especially most) protein f, which can be used as a protein as described later. Functional analysis of through put and other uses.
(a) 將反應谷斋内的溫度予以可變控制的手段 (b) 在反應容器内分別注入樣品或試劑的手段 (c) 沈澱手段 (d) 除去上清的手段 (e) 乾燥手段;及 (f) 控制上述(a)〜(e)的手段,依照上述本發明的方法動作之控制手段 採用至少具有(a)〜(f)構成的設備,即可將上述本發明的無細胞蛋白質合 成反應以自動進行。以下針對各構成予以具體詳述。 (a)將反應容器内的溫度予以可變控制的手段 所謂將反應容器内的溫度予以可變控制的手段係,採用複寫反應、翻 譯反應的培養、翻譯模的沈澱,或本發明的自動蛋白質合成設備,將PCR 法的複寫模製作工程以自動化實施時,於該PCR法的放大反應等時,將反 24 200526786 應容器_液溫調整_當溫度條件之手段。可變控制的溫度範圍雖無特 別限制,但在包含複寫模製作的無細胞蛋白質合成f_連串反應操作中, 如在一般視為必要的溫度範圍(例如約4°C〜l〇〇°c,最好約26〇c〜99。〇 内,即可將反應容11_液溫予以可變控制之手段,如做為可將之實現的 手段時則無制限制。例如,過去周知的TA_A pGR_環灘(tak舰削 股份有限公司製)、Gene Amp PCR System 9700(Applied Bi〇systeins Inc., 製)等。具體而言,如在進行吸移的場所,與載放反應容器的作業台分開 ,在設備内設置數個載放反應容器的工作台,將工作台上的全部空間之溫 度予以可變控制,最後即可達到將反應容器内的溫度予以可變控制。 (b) 在反應容器内分別年入樣品或試劑的手段 所謂在反應容器内將樣品或試劑分別注入的手段係,在反應容器内為 使複寫反應、翻譯反應、PCR等一連串無細胞蛋白質合成反應進行時,在 反應容器内分別注入樣品或試劑的手段。此處「樣品」是指複寫模、翻譯 模、PCR用模胞質遺傳體(或是具有胞質遺傳體的宿主(例大腸菌))等,r 試劑」則指複寫反應用溶液、蛋白質合成用細胞萃取液、翻譯反應用溶液 、酒精、鹽溶液、PCR反應用溶液等。所用的分注手段,如果是依照工程 之不同,可將試劑分量調整後分注者,即可不加以特別限制使用過去周知 的適當自動化分注的吸移管臂等予以達成。又,該分注手段除了上述功能 外,如果準備2種以上溶液的均一化及沈殿溶解等混合功能(例如吸移、攪 拌等)則更佳。 (c) 沈澱手段 25 200526786 所謂沈殿手段係,使反應容n内的適當對象(例如複寫反應後的翻譯 模等)沈賴手段。顧的沈軒段,如果是可將反應容器_上述對象 沈殿,並可陳分離者,可不受__以触周知的適當手段予以達成 。例如,可湖使驗乙醇沈鱗過去周知的離心分賴、及其他在過滤 及凍結乾燥上過去所用的適當設備即可完成沈澱手段。 (d) 除去上清的手段 所謂除去上清的手段係,藉由±述聽手段,使反應容適當對 象沈殿後,應將該沉殿及上清分離的除去上清之手段。在本發明的設備中 ,除去該上清的手段可採用,例如,為進行翻轉反應容器的手段,只吸引 反應谷器内的上π之手&等來元成。亦即,如上所述,如果採用本發明的 無細胞蛋白質合成方法,在使複寫反應後反應液中的翻譯模沈澱之工程完 成後,省略除去未反應基質的工程及隨之而來的丨或數次清洗工程、沈澱 工程,為提供翻譯反應之用,可在翻譯模(mRNA)附著在反應容器底部的狀 態下供做乾燥的工程。因此,以上述的除去上清手段即可在不損失翻譯模 之沈澱下自動從沈澱中將上清分離出來。所用的除去上清之手段,具體而 如係為了使反應容器翻轉,例如,可利用馬達等旋轉動力直接將反應 容器固定於其上即可翻轉的板等裝置,以及可抓牢反應容器予以反轉的機 器人手臂之裝置等,以上述裝置即可達成。又,只吸引反應容器内的上清 之手段,則例如可採用Bi〇R〇b〇t8000(KiAGen公司製)等過去周知的適當工 具即可達成。 (e) 乾燥手段 26 200526786 所謂乾燥手段係,如以自然乾燥以外的方法乾燥時,舉例而言,可用 離。乾^機、碰轉來完成。但,本發明之自動蛋自質合成方法設備中 ’亦可採用可組合仙部或連接在外部之過賴知的乾燥裝置。 (f)控制手段 控制手段,包含可控制使上述⑷〜⑹的手段動作之各手段所用的驅 動源(馬達、^壓、油壓機器、其他可控制動作的執行器等)的動作開關 、動作程度及狀鮮之㈣設備。其__成是,按照本發·方法( 例如,按如圖2所示的順序之無細胞蛋白質合成反應),可控批述(a)〜⑹ 的手段之動作,使該方法的X程進行,達成該方法的目的之構成。 前述控槪備係,例如,包含具有控齡式的電腦之控伽路、頻率 控制回路等,控制上述各手段的動作所必要之㈣齡,將之組合後構成 者亦可,按照本發明方法的順序,使上述各手段動作,對各手段依照訊號 及需要可提供電力、空壓、油壓等之控制結構。又,對上述各手段的驅動 源送出直接驅動訊號所必須的Driver、為驗出上述各手段的驅動源狀態所 需之各種感應器、開關等亦可適當加入。 又’對於可適用在本發明的設備上之反應容器並無特別限制,亦可使 用可用於無細胞蛋白質合成反應之過去周知的各種反應容器,例如96孔pCR 用板、96孔滴定度板、8連軟管及軟管a 5m L、15m L、5〇m L等),但 如使用程序組法及多層重疊法當作翻譯反應系統時,可用96孔板等較小的 反應系統進行翻譯反應,另外,如採用本發明的方法也可用較小的反應系 統進行複寫反應,因此,可用數個反應系統針對數種蛋白質同時進行複寫 27 200526786 反應'翻譯模的精製、翻譯反應及依所需,將包含製作複寫反應用的複寫 模之PCR在内的一連串無細胞蛋白質合成法等反應操作,在短時間裡合成 多數的蛋白質。 又,使複寫反應、翻譯反應進行時,最好將反應容器在密閉中進行, 從這個觀點來看,最好採用有蓋的反應容器,而且在其設備中具有可控制 該反應容器蓋子開關的手段者為佳。上述的蓋子,以反應容器而言,如使 用96孔板時,如例示有橡膠製蓋子可將每個孔分別密封。在關上的狀態下 可使蓋子密合於反應容器上者為佳,因此可使用具有一定程度重量(例如 500g左右)的蓋子’或是用像夾子(Crip)般的東西夾住蓋子與反應容器再關 上盖子。又’進行反應谷裔的盡子開閉之手段方面,例如,可採用過去周 知的將勾釦(Chucking)、吸附裝置與機器人臂組合之裝置來達成。 本發明的自動蛋白質合成設備,除上述的各手段以外,可視需要亦可 具有儲存反應試劑的手段。 又,mRNA乾燥工程方面,如採用自然乾燥以外的方法乾燥時,亦可具 有為使之乾燥的手段(如以離心乾燥機、蒸發器等完成)。 如上所述,本發明的方法及設備可同時將數種蛋白質,簡便且自動地 合成。例如,備齊數個將各種變異體的蛋白質編碼之複寫模、翻譯模,將 數個變異體之蛋白質同時數個合成後,可不需要變異體的詳細設計即能供 做解析,極為有用。 又,本發明的方法及設備,可極為適合提供各種蛋白質之high thr〇ugh Put的機能解析之用。例如,人類邏輯學檢索的結果、將含有所保存的共通 28 200526786 領域(例如激酶領鱗)蛋白質編碼的遺_子群#作模子,採用本發明 的設備’依照本發明的方法,同時合成該蛋白質,另外,將可成為碌酸化 目的物之蛋白質群(例如複寫因子等)同樣地合成後,將兩者以各種組合混 合’例如將32P標識之ATP取入做為指標,可鑑定出何種蛋白質激酶將何種 蛋白質磷酸化。 或疋,在複寫因子裡含有特有主題,例如&恤卿、白氨酸(a) means for variable control of the temperature in the reaction chamber (b) means for separately injecting samples or reagents into the reaction container (c) means for precipitation (d) means for removing the supernatant (e) means for drying; and (f) Means for controlling the above (a) to (e), and the means for controlling the operation of the method according to the present invention using the equipment having at least (a) to (f) can synthesize the above-mentioned cell-free protein of the present invention The reaction proceeds automatically. Each component will be described in detail below. (a) Means for variable control of the temperature in the reaction container The means for variable control of the temperature in the reaction container is a replication reaction, culture of translation reaction, precipitation of translation mold, or automatic protein of the present invention When synthesizing equipment to automate the process of making replicas of the PCR method, when the amplification reaction of the PCR method is performed, etc., the reaction method of the container _ liquid temperature adjustment _ when the temperature conditions are used. Although the temperature range of the variable control is not particularly limited, in the cell-free protein synthesis f_ series reaction operation including the production of replica molds, if the temperature range generally regarded as necessary (for example, about 4 ° C ~ 100 ° c, preferably within 26 ° c ~ 99 °, the reaction volume 11_ liquid temperature can be controlled by means of variable control, if used as a means to achieve it, there is no limit. For example, TA_A is known in the past pGR_Tantan (manufactured by Tak Shipbuilding Co., Ltd.), Gene Amp PCR System 9700 (manufactured by Applied Biosystems Inc., etc.), etc. Specifically, for example, in a place where suction is performed, and a reaction vessel is placed there. Separate the stations, set several workbenches for reaction vessels in the equipment, and control the temperature of the entire space on the workbenches variably, and finally you can achieve the variable control of the temperature in the reaction vessel. (B) In The method of injecting samples or reagents into the reaction container each year is a method of injecting samples or reagents into the reaction container separately. In the reaction container, a series of cell-free protein synthesis reactions, such as replication reactions, translation reactions, and PCR, are performed. Means of injecting a sample or a reagent into a reaction container respectively. Here, "sample" refers to a copy model, a translation model, a PCR model cytoplasmic heredity (or a host having a cytoplasmic heredity (such as coliform)), etc. `` Reagent '' refers to the solution for copying reaction, cell extract for protein synthesis, solution for translation reaction, alcohol, salt solution, solution for PCR reaction, etc. If the dispensing method used is different according to the engineering, the amount of reagent can be divided. Dispensers after adjustment can be achieved without special restrictions by using pipette arms, etc., which are known to be suitable for automatic dispensing in the past. In addition to the above-mentioned functions, the dispensation method can be used to homogenize two or more solutions and dissolve Shen Dian. Other mixing functions (such as pipetting, stirring, etc.) are better. (C) Precipitation method 25 200526786 The so-called Shen Dian method system allows appropriate objects in the reaction volume n (such as copying the translation model after the reaction) to be laudable. Gu The Shen Xuan section of the Shen Xuan section can be achieved by appropriate means known to the public, such as the above-mentioned object Shen Dian, and can be separated. Precipitation can be accomplished by centrifugal separation known in the past, and other appropriate equipment used in filtration and freeze drying. (D) Means of removing the supernatant The method of removing the supernatant is by ± Hearing means, after the reaction capacity is appropriate for Shen Dian, the method of removing the supernatant should be separated from the Shen Dian and the supernatant. In the device of the present invention, the means for removing the supernatant can be used, for example, to perform a flip reaction The means of the container only attracts the hands of the upper pi & etc. in the reaction trough. That is, as described above, if the cell-free protein synthesis method of the present invention is used, the translation in the reaction solution after the replication reaction is performed After the mold precipitation process is completed, the process of removing the unreacted substrate and the subsequent cleaning process or precipitation process are omitted. To provide translation reactions, the translation mold (mRNA) can be attached to the bottom of the reaction container. In the state for dry engineering. Therefore, the above-mentioned means for removing the supernatant can be used to automatically separate the supernatant from the precipitate without losing the translation mold. The means for removing the supernatant is specifically, for example, in order to reverse the reaction container. For example, a rotating power such as a motor can be used to directly fix the reaction container on the plate and the device can be reversed. The above-mentioned devices can be achieved by turning the robot arm device and the like. In addition, the means for attracting only the supernatant in the reaction container can be achieved by using a suitable tool known in the past such as BiROBot8000 (manufactured by KiAGen). (e) Drying means 26 200526786 The so-called drying means is, for example, when drying by a method other than natural drying. Dry, touch and finish. However, the automatic egg self-synthesizing method and equipment of the present invention can also use an overly unknown drying device that can be combined with a fairy part or connected to the outside. (f) Control means The control means includes operation switches and operations of a drive source (motor, hydraulic, hydraulic equipment, other actuators that can control operation) that can control each of the means for causing the operations of ⑷ to ⑷. The extent and shape of the fresh ㈣ equipment. The result is that according to the method of the present invention (for example, the cell-free protein synthesis reaction in the order shown in FIG. 2), the actions of the means of commenting (a) to ⑹ can be controlled to make the X-path of the method Performed to achieve the purpose of this method. The aforementioned control system includes, for example, a computer with an age-controlling computer, a frequency control circuit, and the like, which control the age necessary for the operations of the above-mentioned means, and can also be combined to form a method according to the method of the present invention. In the sequence, the above-mentioned means are operated, and each means can provide power, air pressure, oil pressure and other control structures according to the signal and needs. In addition, a driver necessary for sending a direct driving signal to a driving source of each of the above-mentioned means, and various sensors, switches, etc. necessary for detecting the state of the driving source of each of the above-mentioned means may be appropriately added. There are no particular restrictions on the reaction vessels applicable to the apparatus of the present invention, and various conventionally known reaction vessels that can be used for cell-free protein synthesis reactions, such as 96-well pCR plates, 96-well titer plates, 8 hoses and hoses (a 5m L, 15m L, 50m L, etc.), but when using the program group method and multi-layer overlapping method as a translation reaction system, you can use a smaller reaction system such as a 96-well plate for translation In addition, if the method of the present invention is adopted, a smaller reaction system can also be used for the replication reaction. Therefore, several reaction systems can be used for simultaneous replication of several proteins. 27 200526786 Reaction 'refining of translation model, translation reaction, and as required A large number of proteins can be synthesized in a short time by performing a series of reaction operations including a cell-free protein synthesis method including PCR for making a replication model for a replication reaction. In addition, when the copying reaction and the translation reaction are performed, it is preferable to carry out the reaction container in a closed state. From this viewpoint, it is preferable to use a covered reaction container, and the device has a means for controlling the opening and closing of the lid of the reaction container. Those are better. In the case of the above-mentioned lids, for example, when a 96-well plate is used for a reaction container, a rubber lid can be used to seal each well separately. In the closed state, it is better to close the lid to the reaction container, so a lid with a certain weight (for example, about 500 g) can be used, or the lid and the reaction container can be clamped with something like a clip Close the lid again. In addition, the method of performing the opening and closing of the descent of the descent can be achieved by, for example, using a conventionally known device that combines a chuck, a suction device, and a robot arm. The automatic protein synthesis device of the present invention may have a means for storing a reaction reagent, in addition to the above-mentioned means, if necessary. In addition, in the case of mRNA drying engineering, if it is dried by a method other than natural drying, it may also have a means for drying (for example, a centrifugal dryer or an evaporator). As described above, the method and apparatus of the present invention can synthesize several kinds of proteins easily and automatically at the same time. For example, it is very useful to have several copy models and translation models that encode the proteins of various variants and synthesize several proteins of several variants at the same time, which can be used for analysis without detailed design of the variants, which is extremely useful. In addition, the method and equipment of the present invention can be extremely suitable for providing functional analysis of high thrugh put of various proteins. For example, the results of a human logic search, using the apparatus of the present invention to synthesize the __subgroup # containing the encoded common 28 200526786 domain (such as kinase collar scale) protein as a model, using the device of the present invention, In addition, the protein group (such as replication factor) that can be the target of acidification is synthesized in the same way, and the two are mixed in various combinations. For example, 32P-labeled ATP is taken as an index, and what kind of protein can be identified. What proteins are phosphorylated by protein kinases. Or 疋, contains specific topics in the transcription factor, such as & shirt, leucine
Zipper等)的蛋白質,將其編碼的遺傳因子群當作模子,翻本發明的設 備,按照本發明的方法,將該蛋白質同時合成,可經過與已知的ciselement 排列的結合、與其他複寫控制因子的異二聚物形成力,以及與特定遺傳因 子助聚劑的複寫控制領域之結合力等的触,可獲得解開複寫@子所織成 的 crosstalk 情報。 實施例 以下用實施例具體說明本發明,但本發明並不受限於下列的實施例。 實驗例1 ··以乙醇沈澱產生之mRNA沈澱中,在70%酒精洗淨處理後的翻 譯效率之效果檢討。 (1)翻譯模mRNA的調製 針對海蜇的GFP遺傳因子及大腸菌的DHFR遺傳因子,分別插入小麥胚 芽細胞系專用胞質遺傳體媒介物pEU後,將之做為複寫模,採用含有SP 6 RNA聚合酶(Promega公司製)的複寫反應用溶液(8 OmM Hepes-Κ0Η、1 6 mM醋酸鎂、2 mM 亞精胺、1 〇 mM D T T、3 mM ΝΤΡ、ΐυ/μ1 SP6 RNA聚合酶、lU/μΙ Rnasin)進行複寫 29 200526786 反應。將得到的mRΝΑ分成,使用醋酸銨的乙醇沈殿後,用7 0%酒精 洗淨沈澱mRNΑ與未洗淨的,分別做為翻譯模使用。 (2)以小麥胚芽無細胞蛋白質合成系(多層重疊法)合成蛋白質 調製含有小麥胚芽萃取液5· 8μΙ的翻譯反應用溶液25μΙ(個別最後濃度 為 2 9 mM Hepes—ΚΟΗ (ρΗ7· 8)、9 5 mM醋酸鉀、2· 7mM醋酸鎂、〇· 4 mM亞精胺(那克萊公司製)、各〇.23mM L型氨基酸2 0種、2.9mM DTT 、1.2mM ATP(和光純藥公司製)、〇.25mM GTP(和光純藥公司製) 、1 5mM肌酸鱗酸(和光純藥公司製)、〇 · 9υ/μΙ RNa s e i n h i b i t ο r (TAKARA公司製)、5 0 η g/μΙ t RNA (Moniter, R·, et al·,Biochim· Biophys· Acta·,43,1 -(1960))、〇 · 46μθ/1 肌 酸激酶(Roche公司製)、2nCi/pll4C-leu(莫拉貝克公司製))2 5μΙ。洗 淨上述沈殿的mRNA,與未洗淨沈澱的mRNA,分別以多層重疊法進 行蛋白質合成反應。在上述翻譯反應用溶液添加翻譯模8 Mg/μ 1做為下 相,多層重疊上相(個別最後濃度為2 9 mM Hepes—Κ0Η (Ph7· 8)、9 5 mM醋酸鉀、2·7ιηΜ醋酸鎮、0.4mM亞精胺(那克萊公司製)、各0.23m 熥1型氨基酸2 0種、2.9111]^017、1.21111^八丁?(和光純藥公司製) 、0.25mM GTP(和光純藥公司製)、2nCi/M14C_leu(莫拉貝克公司製 ))1 2 5μ卜分別以2 6°C進行1 6小時培養。 反應開始後,將16小時後的翻譯反應用溶液分別點滴5μ 1在濾紙上, 以固體支撐法,採用液體閃煉計數管(LS6000IC··貝克門柯特公司製),測量 14C— leu的取入。在DHFR、GFP兩個遺傳因子中,針對因乙醇沈澱產生之 30 200526786 _A沈澱’對於以慨酒精進行洗淨處理者與未處理者在目的物蛋白質 之合成量方面未發現差異。此現象表示出,在蛋白質合成系統(多層重疊法 )中’因乙醇沈澱產生之祝似沈澱中的以7⑽酒精進行的洗淨處理對翻譯效 率並無成效。上述結果,不限於重疊法,可利用於小麥胚芽無細胞蛋白質 中其他所有的合成法。 由以上可知,即使將過去所進行的mRNA沈澱之7〇%酒精洗淨處理的工 程予以刪除’也不會對翻譯效率帶來任何影響。有翻譯模抓似的消失及減 少之虞的本工程,在刪除後,不僅目的物蛋白質合成量的再現性提升,且 可減少作業時間。這些對於大量進行樣品處理的全自動蛋白質合成機特別 有效。 實驗例2 : _A顆粒(Pellet)的Milli Q水與蛋白質合成用細胞萃取液 的可溶化率。 將ΡΕϋ-DHFR用Sense primer及anti primer進行PCR,採用可將之複寫 到模子上之mRNA。調製反應系400μ 1,使複寫成為8〇mM Hepes-Κ0Η、16mM 醋酸鎮、2mM亞精胺、10InMDΠ、3InMNTP、lU/μlSP6RNA酶聚Zipper, etc.), using its encoded genetic factor group as a model, turn the device of the present invention, and synthesize the protein at the same time according to the method of the present invention, which can be combined with the known ciselement arrangement and other replication control Factors such as the formation of heterodimers of factors and the binding force with the replication control field of specific genetic factor promoters can obtain crosstalk information unraveling the replication @ 子 所 woven. Examples The present invention will be specifically described below by way of examples, but the present invention is not limited to the following examples. Experimental Example 1 · The effect of translation efficiency after washing with 70% alcohol in the mRNA precipitation produced by ethanol precipitation. (1) Modulation of translation mode mRNA The GFP genetic factor for the jellyfish and the DHFR genetic factor of E. coli were inserted into the wheat germ cell line-specific cytoplasmic heredity vector pEU, respectively, and used as replication models. SP 6 RNA was used for polymerization. Enzyme (promega) overwrite reaction solution (8 OmM Hepes-K0Η, 16 mM magnesium acetate, 2 mM spermidine, 10 mM DTT, 3 mM NTP, ΐυ / μ1 SP6 RNA polymerase, 1U / μΙ Rnasin) performed a copy 29 200526786 response. The obtained mRNA was divided into two parts, and after being precipitated with ethanol using ammonium acetate, the precipitated mRNA was washed with 70% alcohol and the unwashed one was used as a translation mold, respectively. (2) Using wheat germ cell-free protein synthesis system (multi-layer overlapping method) to synthesize proteins to prepare a translation reaction solution containing wheat germ extract 5.8 μl 25 μl (individual final concentration is 2 9 mM Hepes-KOΗ (ρΗ7 · 8), 9 5 mM potassium acetate, 2.7 mM magnesium acetate, 0.4 mM spermidine (manufactured by Nakley), 20 kinds of each 0.23 mM L-amino acid, 2.9 mM DTT, 1.2 mM ATP (Wako Pure Chemical Industries, Ltd. Manufactured), 0.25 mM GTP (manufactured by Wako Pure Chemical Industries, Ltd.), 15 mM creatine phosphonate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.9 υ / μΙ RNa seinhibit οr (manufactured by TAKARA), 50 η g / μΙ t RNA (Moniter, R., et al., Biochim. Biophys. Acta., 43, 1-(1960)), 0.46 μθ / 1 creatine kinase (manufactured by Roche), 2nCi / pll4C-leu (Morra (Made by Baker)) 25 μl. The above-mentioned Shendian mRNA was washed, and the unwashed mRNA was subjected to a protein synthesis reaction by a multi-layer overlapping method. In the above translation reaction solution, a translation mold of 8 Mg / μ 1 was added as the lower phase, and the multiple layers overlapped the upper phase (individual final concentrations were 2 9 mM Hepes-K0Η (Ph7 · 8), 9 5 mM potassium acetate, and 2 · 7ιηΜ acetic acid). Jin, 0.4mM spermidine (manufactured by Naklai Co.), 0.23m each of 20 types of 熥 1 type amino acids, 2.9111] ^ 017, 1.21111 ^ octabutane? (Manufactured by Wako Pure Chemical Industries, Ltd.), 0.25mM GTP (Wako Pure Chemical Industries, Ltd.) (Manufactured by the company), 2nCi / M14C_leu (manufactured by Morabeck Co.), and cultivated at 25 ° C for 16 hours at 26 ° C. After the reaction started, 5 μl of the translation reaction solution after 16 hours was dripped on the filter paper, and the solid support method was adopted to use a liquid flash counting tube (LS6000IC · Beckmencott Co., Ltd.) to measure 14C- leu. Into. Among the two genetic factors, DHFR and GFP, there was no difference in the amount of target protein synthesis between those treated with ethanol and those who were not treated with ethanol. This phenomenon indicates that in a protein synthesis system (multilayer overlapping method), the washing treatment with 7⑽ alcohol in the wish-like precipitate produced by ethanol precipitation has no effect on translation efficiency. The above results are not limited to the overlap method, and can be applied to all other synthesis methods of wheat germ cell-free protein. From the above, it can be seen that even if the 70% alcohol washing process of mRNA precipitation performed in the past is deleted ', it will not have any effect on the translation efficiency. This project, which may cause the disappearance and reduction of translation molds, will not only improve the reproducibility of the target protein synthesis amount, but also reduce the operation time after deletion. These are particularly effective for fully automatic protein synthesizers that process a large number of samples. Experimental Example 2: Solubility of Milli Q water and protein extraction solution for _A particles (Pellet). PCR was performed on PEE-DHFR using a Sense primer and an anti primer, and an mRNA that can be copied onto the mold was used. The reaction system was prepared by 400μ1, and the replication was changed to 80mM Hepes-K0Η, 16mM acetate, 2mM spermidine, 10InMDΠ, 3InMNTP, 1U / μl SP6 RNase polymerase.
合酶、1 U/μ 1 Rnasin、1 〇% P CR產物,以3 7°C培養3小時。將 mRNA以放射同位素32P標識時,將UTP濃度調成1.2mM,加入[α— 32Ρ] UTP 8μ1,將反應系統調為400μ1。在以32Ρ標識的mRNA 加入7· 5M醋酸敍53μ 1、乙醇1 ml後仔細攪拌,進行20, OOOxg、15分鐘 離心。將顆粒(Pellet)溶於100μ 1的Milli Q水中,加上預先以100mM氣 化鈉、10mM Tris-HCl(pH 7· 6)、0· 5mM EDTA3 m 1 平衡過的NICK 31 200526786Synthase, 1 U / μ 1 Rnasin, 10% P CR product, cultured at 37 ° C for 3 hours. When the mRNA is labeled with the radioisotope 32P, adjust the UTP concentration to 1.2 mM, add [α-32P] UTP 8μ1, and adjust the reaction system to 400μ1. The mRNA labeled with 32P was added with 53 μl of 7.5 M acetic acid and 1 ml of ethanol, followed by careful stirring, and centrifuged at 20,000 × g for 15 minutes. Pellet was dissolved in 100 μ 1 of Milli Q water, and NICK 31 200526786 equilibrated with 100 mM sodium gas, 10 mM Tris-HCl (pH 7.6), and 0.5 mM EDTA 3 m 1 was added in advance.
Column(Amacia Biosience),以400μ 1 的lOOmjy[氯化納、i〇mM Tris-HCl(pH 7· 6)、0· 5mM EDTA清洗,用棚μ 1 的i〇〇mM氯化鈉、i〇m M Tris-HCl(pH 7· 6)、0· 5 mM EDTA溶解,進行精製。 未以32P標識的mRNA 2 3μ1與用32P標識的mRNA 2μ1加 入Milli Q水2 5μ 1、7· 5mM醋酸銨7· 7μ 1、乙醇1 4 4μ 1,仔細攪 拌,進行20, OOOxg,1 5分鐘離心。除去上清風乾顆粒(peiiet),再加上Column (Amacia Biosience), 400 μl of 100 mjy [sodium chloride, 10 mM Tris-HCl (pH 7.6), 0.5 mM EDTA, and washed with 100 μm of 100 mM sodium chloride, i. m M Tris-HCl (pH 7 · 6) and 0.5 mM EDTA were dissolved and purified. MRNA 2 3μ1 not labeled with 32P and mRNA 2μ1 labeled with 32P are added to Milli Q water 2 5μ1, 7. 5mM ammonium acetate 7. 7μ1, ethanol 1 4 4μ1, carefully stir, and perform 20,000xg for 15 minutes Centrifuge. Remove the supernatant air-dried particles (peiiet), plus
Milli Q水 6· 25μ 1,或 3 0 mM Hepes-KOH (pH 7· 8)、1· 2mM A T P 、0· 25mM G T P、1 6 mM 磷肌酸、2 mM DTT、0· 3mM 亞精胺、 0· 3mM 2 0種氨基酸、2· 7mM醋酸鎮、lOOmM醋酸鉀、0· 005%二硫化 鈉、4 Ο Ο n g/μ 1肌酸激酶、調製成260n m中光學密度(〇. d. ) (A260) 為6 Ο的小麥胚芽萃取液之翻譯反應液2 5μ1。將5分鐘後的溶液5μ 1 用柴連可夫(Cherenkov)法測量。 上述實驗結果如圖3所示。乙醇沈澱前的值為,使用萃取液者是66143 、使用於Mi 11 i Q水者是66741。溶解後的cpm值為,使用於萃取液者是22, 285 ’使用於Milli Q水者是13,828。由此可知萃取液較Milli Q水易於溶解。 實驗例3 :採用自動蛋白質合成設備的蛋白質合成法 採用為實施本發明的方法而研發之自動蛋白質合成設備,分別選擇以 下的對象進行無細胞蛋白質合成。 •複寫模 將DHFR及GFP組成的p e U胞質遺傳體媒介物採用Sense primer及Anti sense primer以3 Ομί系統進行P CR所得之D ΝΑ (收容 32 200526786 在 9 6Well P CR 板) _複寫反應用溶液 含有最後濃度8 OmM Hepes-Κ0Η、1 6mM醋酸鎂、2mM亞精胺、1 0mMDTT、3mMNTP、lU/ml SP6 RNA聚合酶、1 U/m 1 Rnasin 的溶液 •乙醇沈澱用混合液 祕1111(}水3.541111、7.5]^醋酸錢1.3 21111、乙醇24.66111 1 的混 合液 _翻譯反應用溶液 含有其最後濃度為 3 0 mM Hepes-KOH (pH 7.8)、L 2mM A T P、0· 25 • ♦Milli Q water 6.25μ 1, or 30 mM Hepes-KOH (pH 7.8), 1.2 mM ATP, 0.25 mM GTP, 16 mM phosphocreatine, 2 mM DTT, 0.3 mM spermidine, 0.3 mM 20 amino acids, 2.7 mM acetic acid, 100 mM potassium acetate, 0.005% sodium disulfide, 4.0 ng / μ 1 creatine kinase, adjusted to an optical density of 260 nm (0. d.) (A260) Translation reaction solution of wheat germ extract of 60, 25 μ1. The solution 5 μ 1 after 5 minutes was measured by the Cherenkov method. The above experimental results are shown in Figure 3. The values before ethanol precipitation were 66143 for the extraction solution and 66741 for the Mi 11 i Q water. The cpm value after dissolution is 22,285 for the extraction solution, and 13,828 for the Milli Q water. It can be seen that the extract is easier to dissolve than Milli Q water. Experimental Example 3: Protein synthesis method using automatic protein synthesis equipment Using the automatic protein synthesis equipment developed to implement the method of the present invention, the following subjects were selected for cell-free protein synthesis, respectively. • Copy mode DH U and GFP composed of pe U cytoplasmic genetic media using Sense primer and Anti sense primer to perform D CR from 3 Ομί system P CR (containment 32 200526786 on 9 6Well P CR board) _ for copy reaction The solution contains a final concentration of 8 OmM Hepes-K0Η, 16 mM magnesium acetate, 2 mM spermidine, 10 mMDTT, 3 mM NTP, 1 U / ml SP6 RNA polymerase, 1 U / m 1 Rnasin, and a solution for ethanol precipitation 1111 ( } Water 3.541111, 7.5] ^ A mixed solution of acetic acid 1.3 21111 and ethanol 24.66111 1_The solution for translation reaction contains a final concentration of 30 mM Hepes-KOH (pH 7.8), L 2mM ATP, 0.25 • ♦
* . mM G T P、1 6 mM 填肌酸、2 mM DTT、0· 3mM 亞精胺、0· 3mM 2 0種氨基酸、2· 7mM醋酸鎮、lOOmM醋酸鉀、0· 005%二硫化鈉、400 η g/μΐ肌酸激酶,在260nm中的光學密度(O.D.) (A260)為6 0單位的 小麥胚芽萃取液之溶液 _多層重疊液 調製成其最後濃度分別是3 OmM Hepes-KOH (pH 7.8)、1.2mM AT P、0.25mM GTP、1 6mM磷肌酸、2mM DTT、〇· 3mM亞精胺 、〇· 3mM 2 0種氨基酸、2.7mM醋酸鎮、1 0 mM醋酸钟、0· 005%二硫 化納的多層重疊液 鲁反應容器 可耐離心者,圓底96孔微板(Plate)2片 33 200526786 _分注用晶片 2 0 0μ 1日日片9 6片51目(複寫反應麟液專用、翻譯反顧溶液專用 1相、乙醇沈殿用x2微板、多層重疊用鳴χ2微板)、2_晶 片9 6片2箱(PCR產物用1# χ 2微板)乙醇沈殿上清回收用微板 •無細胞蛋白質合成按下列順序進行: (1) 將PCR板從冷卻台移到作業台上*. mM GTP, 16 mM cranial acid, 2 mM DTT, 0.3 mM spermidine, 0.3 mM 20 amino acids, 2. 7 mM acetate, 100 mM potassium acetate, 0.005% sodium disulfide, 400 η g / μΐ Creatine kinase, a solution of wheat germ extract with an optical density (OD) (A260) of 60 units at 260 nm_Multi-layer overlay solution prepared to a final concentration of 3 OmM Hepes-KOH (pH 7.8 ), 1.2 mM AT P, 0.25 mM GTP, 16 mM phosphocreatine, 2 mM DTT, 0.3 mM spermidine, 0.3 mM 20 amino acids, 2.7 mM acetate, 10 mM ethyl acetate, 0.005% Sodium disulfide multi-layer superimposed liquid reaction container can withstand centrifugation, 2 pieces of round bottom 96-well microplates 33 200526786 _Dispensing wafers 2 0 0μ 1 day piece 9 6 pieces 51 mesh (replicate reaction liquid Dedicated, special for translation retrospective solution 1 phase, x2 microplate for ethanol Shendian, χ2 microplate for multilayer overlap), 2 wafers 9 6 pieces 2 boxes (1 # χ 2 microplate for PCR products) ethanol Shendian supernatant recovered Microplate and cell-free protein synthesis is performed in the following order: (1) Move the PCR plate from the cooling stage to the workbench
(2) 將微板從冷卻台移到作業台上 (3) 拿掉PCR板的蓋子 (4) 拿掉微板的蓋子 (5) 在微板上分注22· 5μ1複寫反應用溶液。 (6) 將PCR板的PCR產物2· 5μ卜及移1〇次轉移至微板。 (7) PCR板蓋上蓋子。 (8) 微板蓋上蓋子。(2) Move the microplate from the cooling stage to the workbench. (3) Remove the cover of the PCR plate. (4) Remove the cover of the microplate. (5) Dispense 22.5 μl of the reaction solution on the microplate. (6) Transfer the PCR product of the PCR plate 2.5 μb and transfer it to the microplate 10 times. (7) Cover the PCR plate. (8) Cover the microplate.
(9) 將PCR板歸回原位。 (10) 將微板以37°C培養3小時。 (11) 打開微板蓋子置放。 (12) 在微板分注乙醇沈澱用混合液147. 6μ 1。吸移10次。 (13) 微板在不蓋蓋子下,進行l,〇〇〇xg,30分鐘離心。 (14) 在微板上覆蓋附脫脂棉的板翻轉後,除去上清。 (15) 自然乾燥5分鐘。 (16)在微板上分注翻譯反應液25μ1。 34 200526786 (17) 在微板上,於翻譯反應液25μ 1的上層徐徐疊放/重疊液12印2 ^ (18) 在微板上蓋好蓋子。 (19) 將微板以26。〇培養20小時。 用以上的操作進行蛋白質合成,作為比較,進行手動蛋白質合成。(9) Return the PCR plate to its original position. (10) Incubate the microplate at 37 ° C for 3 hours. (11) Open the microplate cover and place. (12) Dispense the ethanol precipitation mixed solution 147.6 μl in a microplate. Pipet 10 times. (13) The microplate was centrifuged at 1,000 × g without a lid for 30 minutes. (14) After the plate covered with absorbent cotton is turned over on the microplate, the supernatant is removed. (15) Allow to dry for 5 minutes. (16) Dispense 25 μ1 of the translation reaction solution on the microplate. 34 200526786 (17) On the microplate, place the superimposed / overlap solution on the upper layer of the translation reaction solution 25μ1 slowly and print 2 ^ 2 (18) Close the lid on the microplate. (19) Move the microplate to 26. 〇 Incubate for 20 hours. Protein synthesis was performed as described above, and for comparison, manual protein synthesis was performed.
圖4為上述貫驗結果的SDS-PAGE照片。從SDS-PAGE確認了蛋白質合成量 。將合成後的DHFR與GFP仔細吸移物 1〇μ 1、3xSDS Sample buffer [150mMFIG. 4 is an SDS-PAGE photograph of the above-mentioned test results. The amount of protein synthesis was confirmed from SDS-PAGE. Pipette the synthesized DHFR and GFP carefully 10μ1, 3xSDS Sample buffer [150mM
Tns-HCl pH 6· 8、6% SDS、0· 2%(W/W)漠盼藍、3〇%(V/V)甘油酿、3%(v/V) β-疏基乙醇]20μ 1、Milli Q水15μ 1混合,以98°C5分鐘煮沸物9μ 1以12· 5% 聚丙烯酰胺凝膠進行電泳。 上述貫驗結果’自動蛋白質合成設備及以手動進行的蛋白質合成量為 同樣程度。 產業上利用之可行性 如以上說明可知,如採用本發明,可將無細胞蛋白質合成反應以自動 化進行的方法’以及可以提供可用於該方法上的蛋白質合成設備。 【圖式簡單說明】 圖式說明: 圖1 :係習式方法之工程流程及所需時間示意圖。 圖2 :係本發明方法之工程流程及所需時間示意圖。 圖3 :係實驗例2的實驗結果圖表。 圖4 ··係實驗例3的實驗結果SDS—page之照片。 圖號說明: (bl) 大量調製該胞質遺傳體 35 200526786 (b2)------將胞質遺傳體DNA進行限制酵素處理 (b3)------苯酚處理Tns-HCl pH 6.8, 6% SDS, 0.2% (W / W) indigo blue, 30% (V / V) glycerol, 3% (v / V) β-mercaptoethanol) 20 μ 1. Mix 15 μl of Milli Q water, boil 9 μl at 98 ° C for 5 minutes, and perform electrophoresis on a 12 · 5% polyacrylamide gel. The results of the above-mentioned test were the same as those of the automatic protein synthesis equipment and the amount of protein synthesis performed manually. Industrial feasibility As can be seen from the above description, if the present invention is adopted, a method for automatically performing a cell-free protein synthesis reaction 'and a protein synthesis device that can be used for the method can be provided. [Schematic description] Schematic description: Figure 1: Schematic diagram of the engineering process and required time. Figure 2: Schematic diagram of the engineering process and the time required for the method of the present invention. Figure 3: A graph of the experimental results of Experimental Example 2. Figure 4 is a photograph of the SDS-page of the experimental result of Experimental Example 3. Explanation of drawing number: (bl) Mass modulation of this cytoplasmic heredity 35 200526786 (b2) ------ Restriction enzyme treatment of cytosolic heredity DNA (b3) ------ Phenol treatment
Cb4)------三氯甲烷處理 (b5)------使用氯化鈉的乙醇沈澱 (b6)------將DNA溶解在超純水中 (al)------將大腸菌直接PCR處理後製作複寫模Cb4) ------ Trichloromethane treatment (b5) ------ Ethanol precipitation using sodium chloride (b6) ------ Dissolve DNA in ultrapure water (al)- ---- Copying coliform directly after PCR treatment
(a2、b7)--與複寫反應用溶液混合 (a3、b8)--37°C、3小時培養 (b9)------DNase 處理 (blO)-----苯酚處理 (bll)-----三氯曱烷處理 (a4、bl2)-使用醋酸銨的乙醇沈澱 (M3)-----裂柱處理(a2, b7)-Mixed with the solution for replication reaction (a3, b8)-37 ° C, 3 hours incubation (b9) ------ DNase treatment (blO) ----- phenol treatment (bll ) ----- Trichloromethane treatment (a4, bl2)-ethanol precipitation using ammonium acetate (M3) ----- split column treatment
(M4)-----使用氯化鈉的乙醇沈澱 (bl5)-----使用醋酸鈉的乙醇沈澱 (M6)-----70%乙醇沈澱 (a5、bl7)-使mRNA乾燥 (bl8)-----將mRNA溶在超純水中 (a6、bl9)-與蛋白質合成用細胞萃取液混合 (a7、b20)-多層重疊翻譯反應用溶液 (a8、b21)-----26°C、20小時培養 36(M4) ----- ethanol precipitation using sodium chloride (bl5) ----- ethanol precipitation using sodium acetate (M6) ----- 70% ethanol precipitation (a5, bl7)-drying the mRNA (bl8) ----- dissolving mRNA in ultrapure water (a6, bl9)-mixed with cell extract for protein synthesis (a7, b20)-multi-layer overlapping translation reaction solution (a8, b21) --- --26 ° C, 20 hours incubation 36
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003033009 | 2003-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200526786A true TW200526786A (en) | 2005-08-16 |
Family
ID=32844358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93102979A TW200526786A (en) | 2003-02-10 | 2004-02-10 | Automatic process for protein synthesis and apparatus therefor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2004070047A1 (en) |
TW (1) | TW200526786A (en) |
WO (1) | WO2004070047A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262299A1 (en) * | 2021-06-18 | 2022-12-22 | 江苏支点生物科技有限公司 | Cell-free protein synthesis system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008029203A (en) * | 2004-11-12 | 2008-02-14 | Cellfree Sciences Co Ltd | Method for synthesizing cell-free protein |
KR20130023091A (en) * | 2011-08-26 | 2013-03-07 | (주)바이오니아 | Protein synthesis kit, protein expression and purification method using automatic purification apparatus |
SG10201808286TA (en) * | 2012-08-16 | 2018-10-30 | Synthetic Genomics Inc | Digital to biological converter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027260A1 (en) * | 1999-10-15 | 2001-04-19 | Wakenyaku Co., Ltd. | Template molecule having broad applicability and highly efficient function means of cell-free synthesis of proteins by using the same |
KR100749053B1 (en) * | 2000-08-29 | 2007-08-13 | 셀프리 사이언스 코 엘티디 | Cell-free protein synthesis |
CN1252261C (en) * | 2000-08-30 | 2006-04-19 | 株式会社无细胞科学 | Design and construction of transcription template for synthesizing cell-free protein, and dilution batch-type method of synthesizing cell-free wheat germ protein |
JP4750299B2 (en) * | 2001-03-08 | 2011-08-17 | 独立行政法人理化学研究所 | Protein production method using cell-free protein synthesis system |
JP4768155B2 (en) * | 2001-07-02 | 2011-09-07 | 独立行政法人理化学研究所 | Method for producing template DNA and method for producing protein by cell-free protein synthesis system using the same |
-
2004
- 2004-02-10 JP JP2005504911A patent/JPWO2004070047A1/en active Pending
- 2004-02-10 WO PCT/JP2004/001364 patent/WO2004070047A1/en active Application Filing
- 2004-02-10 TW TW93102979A patent/TW200526786A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022262299A1 (en) * | 2021-06-18 | 2022-12-22 | 江苏支点生物科技有限公司 | Cell-free protein synthesis system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2004070047A1 (en) | 2006-05-25 |
WO2004070047A1 (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kroos | The Bacillus and Myxococcus developmental networks and their transcriptional regulators | |
US10927385B2 (en) | Increased nucleic-acid guided cell editing in yeast | |
Nurse et al. | Understanding the cell cycle | |
Chater et al. | Origin and function of stomata in the moss Physcomitrella patens | |
CN107407691B (en) | Device and system for molecular barcoding of nucleic acid targets in single cells | |
Wakayama et al. | Equivalency of nuclear transfer‐derived embryonic stem cells to those derived from fertilized mouse blastocysts | |
Filipovska et al. | Specialization from synthesis: how ribosome diversity can customize protein function | |
DK2403961T3 (en) | DEVICE AND METHOD OF MAKING A COPY OR DERIVATIVE OF AN ARRAY OF MOLECULES AND APPLICATIONS THEREOF | |
JP2021525550A (en) | Methods and equipment for processing tissue samples | |
RU2615446C2 (en) | Devices for automatic cell-free production of proteins and methods for proteins production using this product | |
US11149260B2 (en) | Simultaneous multiplex genome editing in yeast | |
US11746347B2 (en) | Simultaneous multiplex genome editing in yeast | |
CN105463089A (en) | Assay for transposase accessible chromatin using sequencing (ATAC-seq) method applied to zebrafish embryos | |
CN112313247A (en) | Automated instrument for generating T cell receptor peptide libraries | |
Blow et al. | Xenopus cell-free extracts and their contribution to the study of DNA replication and other complex biological processes | |
TW200526786A (en) | Automatic process for protein synthesis and apparatus therefor | |
Pogany et al. | A High‐Throughput Approach for Studying Virus Replication in Yeast | |
Peskett et al. | A protein condensation network contextualises cell fate decisions | |
Cleere et al. | Optogenetic Control of Phosphate-Responsive Genes Using Single-Component Fusion Proteins in Saccharomyces cerevisiae | |
Zou et al. | Light activation and deactivation of Cas9 for DNA repair studies | |
Bora | The role of p38-MAPKs in mouse preimplantation embryonic development: Regulating translation towards blastocyst maturation and lineage specification. | |
Minchey | Conserved Targets of Isl1 during Hindlimb Initiation and Outgrowth of the External Genitalia | |
Miller | Mechanisms of Size Control in Pipid Frogs | |
Woźniak | Exploring the role of early transcription on the zygotic genome activation in the zebrafish embryo | |
Ataei | Nucleolar function and organization during human embryonic development |