TW200522352A - Silicon-controlled rectifier with dynamic holding voltage for on-chip electrostatic discharge protection - Google Patents
Silicon-controlled rectifier with dynamic holding voltage for on-chip electrostatic discharge protection Download PDFInfo
- Publication number
- TW200522352A TW200522352A TW92136932A TW92136932A TW200522352A TW 200522352 A TW200522352 A TW 200522352A TW 92136932 A TW92136932 A TW 92136932A TW 92136932 A TW92136932 A TW 92136932A TW 200522352 A TW200522352 A TW 200522352A
- Authority
- TW
- Taiwan
- Prior art keywords
- scr
- circuit
- transistor
- type
- voltage
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 39
- 239000010703 silicon Substances 0.000 title claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims description 62
- 238000009792 diffusion process Methods 0.000 claims description 57
- 230000003071 parasitic effect Effects 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 19
- 230000001960 triggered effect Effects 0.000 claims description 19
- 230000005611 electricity Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 3
- 241000270666 Testudines Species 0.000 claims 1
- 241000270708 Testudinidae Species 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000000428 dust Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 239000002019 doping agent Substances 0.000 abstract 4
- 238000010586 diagram Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 101150042035 Bpifa1 gene Proteins 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 101100011940 Thinopyrum elongatum ESI3 gene Proteins 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
200522352 玖、發明說明: 【發明所屬之技術領域】 本發明與半導體元件有關,且詳言之,係有關於一種 與正常操作期間不會發生栓鎖(latch-up)之靜電放電 (Electrostatic Discharge; ESD)防護元件。 【先前技術】 半導體積體電路(1C),例如具有高階全氧半(M0S)電晶 體之1C,一般皆容易受到靜電放電(ESD)之影響而遭破壞 或損毁。局階MOS電晶體傳統上具有諸如短通道長度,低 臨界電壓及薄閘極氧化層等特性。此等以深次微米互補式 全氧半(CMOS)製程所製造而具有輕掺雜汲極仏〇1))結構與 矽化物屏蔽區之M0S電晶體,更容易遭受ESD破。 ESD疋指在短瞬間大量流至Ic之帶有正或負電荷之電 流。此大電流之來源有多種,例如人體及機器放電,分另^ 稱為人體*電模织HBM)及機器放電模型(mm)。!刀制 造、傳輸或處理期間容易受到HBM及MM之破壞。 白知以C]V[0S製程所製造之esd防護結構— NMOS/PMOS | 曰 _ mm # + 奴匕祜 兒日日體、石夕控整流1(SCR)、二極體、 厚氧化層元件(F〇m乃令4 4 + + 兒阻為、 UOD)及可生式垂直/水平雙載子 (BJT)。在此等羽土n十文田见日日體 年白知之ESD防護結構中,SCr由於 性,例如财-電壓,而能在較小的佈局面積下m200522352 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to semiconductor devices, and in particular, it relates to an electrostatic discharge (Electrostatic Discharge) that does not occur latch-up during normal operation; ESD) protection element. [Prior Art] Semiconductor integrated circuits (1C), such as 1C with high-order full oxygen half (MOS) electric crystals, are generally susceptible to damage or damage by electrostatic discharge (ESD). Local-level MOS transistors traditionally have characteristics such as short channel lengths, low threshold voltages, and thin gate oxide layers. These MOS transistors, which are fabricated with deep sub-micron complementary CMOS process and have a lightly doped drain structure (1)) structure and silicide shield area, are more vulnerable to ESD damage. ESD 疋 refers to a large amount of positively or negatively charged current flowing to Ic in a short instant. There are many sources of this large current, such as human body and machine discharge, which are separately called human body * electric model weaving (HBM) and machine discharge model (mm). !! Knife is susceptible to damage by HBM and MM during knife manufacturing, transfer or handling. Bai Zhi's esd protective structure manufactured by C] V [0S process — NMOS / PMOS | __mm # + 祜 子 祜 儿 日 日 体, Shi Xi controlled rectifier 1 (SCR), diode, thick oxide layer element (F0m is the 4 4 + + child resistance, UOD) and the viable vertical / horizontal double carrier (BJT). In these Echidori n Shiwentian sun-like bodies, the ESD protection structure of Shibaizhi knows that SCr can be used in a small layout area due to its properties, such as financial-voltage.
製作 SCR 之—般CMOStH 200522352 用到較SCR之握住電壓為高之電 S C R的握住電壓一般約為】伏特, 二輪’習知 伏特。結果’ * ESD所引起之SCR栓鎖:=:2.7至5 ,SCR^it#^SnCR^1^^ :雜訊而容易形成栓鎖或暫態栓鎖。在正; 出現⑽栓鎖’則由此SCR所防護之=二-旦 甚至遭損毀。 竹热法正吊刼作, 生』有多之技術用來防正SCR於正常操作期間發 以下稱為m為美國專利第6,031,彻 ,(下稱405遽專利)之圖4。4〇5號專利係頒予 其發明名稱為「正常摔作期門 4人 木作期間不會發生栓鎖之ESD防言tt雷 路」。405號專利所揭為一種含 又 之μ〜 有 及一開/關控制器 門以r Π 咖連接於一1C墊片與一接地端之 1形成—ESD路徑。開/關控制器則連接至SCR之陰極。 :二常操作期間,即使出現雜訊干擾,開/關控制器將此條 ESD路徑斷路以防止拴鎖。 ’、、'、而’ ESD電流不只流經SCR,還流經開關電晶體 。有鐘於此,開/關控制器必須做得夠大以供ESD大電 流通過。必須佔用較大晶片尺寸面積的電晶體Ml就現今 j尺寸之ESD防4元件需求而言,不但不經濟,而且不 用0 、 圖2所示則為另一先前技術。圖2為美國專利第 6 J72,404號(下稱4〇4號專利)之圖4a。404號專利頒予chen 等人,其發明名稱為「可調整握住電壓之SCRESD防護」。 200522352 404號專利揭示一種SCR,其具有一 n+區40於此SCR之N 井區中。電阻50形成於pnp寄生式双載子電晶體之基極與 n+區40之間。電阻50可使更多電流通過,因而使該pnp 双載子電晶體難以開啟。結果使該SCR之握住電壓增加。 握住電壓之大小取決於n+區40在N井區中之位置。 雖然404號專利能將SCR之握住電壓提升至高過電源 電壓Vdd之位準,但此種握住電壓一旦決定則無法再加調 整。具有此固定、高握住電壓之SCR無法承受大的ESD電 流。此外,在其他條件不變下,高握住電壓之SCR所產生 之熱較低握住電壓之SCR者為多◦另外,高握住電壓之SCR 通常將ESD箝制於較電源電壓Vdd更高之電壓位準,如此 可能會破壞内部電路。 【發明内容】 因此,本發明係有關一種ESD防護元件,可克服因此 上述先前技藝之限制或缺點所衍生之諸多問題。 本發明之功效及優點將於下文中描述,且部分之功效 及優點將隨本文之描述或對本發明之實施而更加清楚。本 發明之目的及其他優點可由下文之描述,申請專利範圍及 圖示之揭露而予以暸解。 為達成上述目的及優點,本發明提供一種靜電放電防 護之積體電路,包括一矽控整流器(SCR),以及一連接至 SCR之控制電路,於第一狀況期間提供SCR之第一握住電 200522352 壓以使SCR不致栓鎖,以及於第二狀況期間提供SCR之第 二握住電壓以使SCR保持於栓鎖狀態,其中第一握住電壓 不同於第二握住電壓。 在本發明中,SCR包含一寄生雙載子電晶體及一連接 於該寄生双載子電晶體之基極與射極間之寄生電阻,且控 制電路係與寄生電阻並聯。 在本發明中,控制電路於第一狀況期間呈現小於該寄 生電阻之阻值,而於第二狀況期間呈現大於該寄生電阻之 阻值。 本發明亦提供一種靜電放電防護之積體電路,包括一 MOS觸發之SCR,其包含一矽控整流器(SCR)以及一連接 至SCR以觸發該SCR之金氧半(MOS)電晶體,以及一控制 電路,其係連接至MOS觸發之SCR以於第一狀況期間提 供一第一握住電壓至MOS觸發之SCR以使MOS觸發之 SCR不致栓鎖,以及於第二狀況期間提供一第二握住電壓 至MOS觸發之SCR以使MOS觸發之SCR保持於栓鎖狀 態,其中第一握住電壓不同於第二握住電壓。 在本發明中,控制電路包含一電容器,其一端連接至 一接觸墊片以耦合該接觸墊片之部分ESD電壓。 本發明亦提供一種靜電放電防護之積體電路,包括一 矽控整流器(SCR),其具有一第一摻雜型之基體、一形成於 基體中而為第二摻雜型之半導體井區、一形成於半導體井 區中而為第一摻雜型之第一擴散區,以及一形成於半導體 井區之外而為第二摻雜型之第二擴散區,以及一控制電 200522352 路,其係連接至SCR以於第一狀況期間提供一第一握住電 壓至SCR以使SCR不致栓鎖,以及於第二狀況期間提供一 第二握住電壓至SCR以使SCR保持栓鎖狀態,其中第一握 住電壓不同於第二握住電壓。 本發明另亦提供一種靜電放電之防護方法,包括提供 一個具有第一握住電壓之矽控整流器(SCR),以及於第一 狀況期間控制SCR之握住電壓使其高於一電源電壓以使 SCR不致栓鎖,以及於第二狀況期間控制SCR之握住電壓 使其低於電源電壓以使SCR保持於栓鎖狀態。 在本發明中,另包括將SCR連接於一第一電源線路及 一第二電源線路之間。 本發明提供一種靜電放電防護之積體電路,包括一個 矽控整流器(SCR); —個第一導電型之第一電晶體,與SCR 積體成型,具有一第一閘極;一個第二導電型之第二電晶 體,與SCR積體成型,具有一第二閘極;以及一個控制電 路,因應於一施加至第一與第二閘極之第一電壓,提供一 第一握住電壓至SCR以使SCR不致栓鎖,且因應於一施加 至第一與第二閘極之第二電壓,提供一第二握住電壓至 SCR以使SCR保持於栓鎖狀態。 本發明亦提供一種靜電放電防護之積體電路,包括一 個矽控整流器(SCR); —個與SCR積體成型之p型電晶體; 一個與SCR積體成型之η型電晶體;一個連接至p型與η 型電晶體之控制電路,其提供一第一電壓至SCR以使SCR 不致栓鎖,並且提供一第二電壓至SCR以使SCR保持於栓 10 200522352 鎖狀態。 本發明亦提供一種靜電放電(ESD)防護之積體電路,包 括一個具有第一電壓位準之第一電源線路;一個具有第二 電壓位準之第二電源線路;多個接觸墊片;多個矽控整流 器(SCR),每一個SCR皆包括一個p型電晶體與一個η型 電晶體,該ρ型與η型電晶體與SCR積體成型;以及一個 控制電路,經由ρ型與η型電晶體提供一第一握住電壓至 該等SCR以使該等SCR不致栓鎖,並且經由ρ型與η型電 晶體提供一第二握住電壓至該等SCR以使該等SCR於ESD 脈衝出現在第一電源線路或接觸墊片之一的ESD期間内保 持於栓鎖狀態。 本發明亦提供一種靜電放電防護之方法,包括提供一 個具有一握住電壓之矽控整流器(SCR);將一個第一導電型 之第一電晶體與SCR積體成型,第一電晶體具有一第一閘 極;將一個第二導電型之第二電晶體與SCR積體成型,第 二電晶體具有一第二閘極;提供一第一信號至第一與第二 閘極來提高SCR之握住電壓以使SCR不致栓鎖;以及提供 一第二信號至第一與第二閘極來降低SCR之握住電壓以使 SCR保持於栓鎖狀態。 本發明另亦提供一種對内部電路提供靜電放電(ESD) 防護之方法,包括提供一個具有第一電壓位準之第一電源 線路;提供一個具有第二電壓位準之第二電源線路;提供 多個接觸墊片;提供多個矽控整流器(SCR),每一個SCR 皆包括一個Ρ型電晶體與一個η型電晶體,該ρ型與η型 200522352 電晶體與SCR積體成型;經由p型與η型電晶體提供一第 一握住電壓至該等SCR以使該等SCR不致栓鎖;以及經由 ρ型與η型電晶體提供一第二握住電壓至該等SCR以使該 等SCR於ESD脈衝出現在第一電源線路或接觸墊片之一的 ESD期間内保持於栓鎖狀態。 上文對本發明之一般性描述以及下文詳細描述皆為範 例性及說明性質,旨在用以對本發明有進一步之瞭解。 【實施方式】 以下將參照上述圖式對本發明之實施例予以説明。圖 式中相同或相似之元件儘可能使用同樣的元件標號來表 示。 本發明提供一種ESD防護電路,其具有一 SCR以及一 連接至SCR之控制電路,以於第一狀況期間提供SCR之第 一握住電壓使SCR不致栓鎖,且於第二狀況期間提供SCR 之第二握住電壓使SCR呈栓鎖狀態。亦即,SCR之握住電 壓為可調。詳言之,SCR之握住電壓被提升至高於電源電 壓之第一握住電壓,以使SCR於正常操作期間不致栓鎖, 以及將SCR之握住電壓調降至低於電源電壓之值,以使 SCR於ESD期間保持栓鎖。 圖3為本發明一實施例之SCR 60與控制電路74之電 路圖。請參閱圖3,SCR 60包含一寄生式ρηρ双載子電晶 體62、一寄生式ηρη双載子電晶體64、一 Ν井區電阻66、 12 200522352 一基體電阻68(Rsub)以及形成於寄生式電晶體62、64之間 的寄生電阻70(RS1)及72(RS2) 。SCR 60之握住電壓% ^ 指SCR 60之陽極76與陰極78間之壓降。控制電路在 此電路中具有一 R'之阻值。將控制電路74之電阻R,與美 體笔阻Rsub並聯’ Vh可以下式表示: /The general CMOStH 200522352 used to make SCRs uses electricity that is higher than the holding voltage of SCRs. The holding voltage of S C R is generally about volts, and the second round ’is known as volts. Result ’* ESD caused by SCR latch: =: 2.7 to 5, SCR ^ it # ^ SnCR ^ 1 ^^: Noise and easy to form latch or transient latch. In the positive; the occurrence of ⑽ bolt lock 'is protected by this SCR = two-denier and even damaged. There are many techniques used in the bamboo thermal method to prevent the SCR from being issued during normal operation. The following is referred to as m in US Patent No. 6,031, Che, (hereinafter referred to as the 405 patent). Patent No. was awarded to its invention titled "ESD Anti-terrorist Road that does not lock up during the normal fall of the door during the wooden work of 4 people". Patent No. 405 discloses an ESD path consisting of a μ ~ and an on / off controller connected to a 1C gasket and a ground terminal. The on / off controller is connected to the cathode of the SCR. : During normal operation, even if there is noise interference, the on / off controller will open this ESD path to prevent latch-up. ’,,, and’ ESD current flows not only through the SCR, but also through the switching transistor. With this in mind, the on / off controller must be large enough for large ESD currents to pass. The transistor M1, which must occupy a larger wafer size area, is not only uneconomical in terms of today's j-size ESD protection components, but also does not use 0. Figure 2 shows another prior art. Figure 2 is Figure 4a of U.S. Patent No. 6 J72,404 (hereinafter referred to as Patent No. 404). Patent No. 404 was awarded to Chen et al., Whose invention is entitled "SCRESD protection with adjustable holding voltage". The patent No. 200522352 404 discloses an SCR having an n + region 40 in the N well region of the SCR. The resistor 50 is formed between the base of the pnp parasitic bipolar transistor and the n + region 40. The resistor 50 allows more current to pass, making it difficult for the pnp bipolar transistor to turn on. As a result, the holding voltage of the SCR is increased. The magnitude of the holding voltage depends on the position of the n + region 40 in the N well region. Although Patent No. 404 can raise the holding voltage of SCR to a level higher than the power supply voltage Vdd, once this holding voltage is determined, it cannot be adjusted. An SCR with this fixed, high holding voltage cannot withstand large ESD currents. In addition, under other conditions, the SCR with high holding voltage generates more heat than the SCR with lower holding voltage. In addition, the SCR with high holding voltage usually clamps ESD to a higher voltage than the power supply voltage Vdd. Voltage level, as this may damage internal circuits. SUMMARY OF THE INVENTION Therefore, the present invention relates to an ESD protection element, which can overcome many problems caused by the limitations or disadvantages of the foregoing prior art. The effects and advantages of the present invention will be described below, and some of the effects and advantages will become clearer with the description herein or the implementation of the present invention. The purpose and other advantages of the present invention can be understood from the following description, disclosure of patent application scope and illustrations. In order to achieve the above-mentioned objects and advantages, the present invention provides an integrated circuit for electrostatic discharge protection, which includes a silicon controlled rectifier (SCR) and a control circuit connected to the SCR to provide a first holding power of the SCR during a first condition. 200522352 is pressed to prevent the SCR from latching up, and a second holding voltage of the SCR is provided to keep the SCR in a latched state during the second condition, wherein the first holding voltage is different from the second holding voltage. In the present invention, the SCR includes a parasitic bipolar transistor and a parasitic resistance connected between the base and the emitter of the parasitic bipolar transistor, and the control circuit is connected in parallel with the parasitic resistor. In the present invention, the control circuit exhibits a resistance value smaller than the parasitic resistance during the first condition, and exhibits a resistance value greater than the parasitic resistance during the second condition. The invention also provides an integrated circuit for electrostatic discharge protection, which includes a MOS-triggered SCR, which includes a silicon controlled rectifier (SCR) and a metal-oxide-semiconductor (MOS) transistor connected to the SCR to trigger the SCR, and a A control circuit connected to the MOS-triggered SCR to provide a first holding voltage to the MOS-triggered SCR to prevent the MOS-triggered SCR from latching during a first condition, and to provide a second grip during a second condition Hold the voltage to the MOS-triggered SCR to keep the MOS-triggered SCR in a latched state, where the first holding voltage is different from the second holding voltage. In the present invention, the control circuit includes a capacitor having one end connected to a contact pad to couple a portion of the ESD voltage of the contact pad. The invention also provides an integrated circuit for electrostatic discharge protection, which includes a silicon controlled rectifier (SCR), which has a first doped substrate, a semiconductor well region formed in the substrate and a second doped semiconductor, A first diffusion region of a first doping type formed in a semiconductor well region, and a second diffusion region of a second doping type formed outside the semiconductor well region, and a control circuit 200522352, which Is connected to the SCR to provide a first holding voltage to the SCR during a first condition so that the SCR is not latched, and provides a second holding voltage to the SCR during a second condition to keep the SCR in a latched state, wherein The first holding voltage is different from the second holding voltage. The invention also provides an electrostatic discharge protection method, which includes providing a silicon controlled rectifier (SCR) with a first holding voltage, and controlling the holding voltage of the SCR to be higher than a power supply voltage during a first condition so that The SCR is not latched, and the holding voltage of the SCR is controlled to be lower than the power supply voltage during the second condition to keep the SCR in the latched state. In the present invention, the method further includes connecting the SCR between a first power line and a second power line. The invention provides an integrated circuit for electrostatic discharge protection, which includes a silicon controlled rectifier (SCR); a first conductive type first transistor, which is formed with the SCR integrated body and has a first gate; a second conductive A second transistor, which is integrated with the SCR, has a second gate; and a control circuit, which provides a first holding voltage to a first voltage applied to the first and second gates to The SCR prevents the SCR from being latched, and provides a second holding voltage to the SCR to maintain the SCR in a latched state in response to a second voltage applied to the first and second gates. The invention also provides an integrated circuit for electrostatic discharge protection, including a silicon controlled rectifier (SCR); a p-type transistor formed with the SCR integrated body; a n-type transistor formed with the SCR integrated body; one connected to Control circuits for p-type and η-type transistors, which provide a first voltage to the SCR so that the SCR is not latched, and a second voltage to the SCR to keep the SCR in the latched state 10 200522352. The invention also provides an integrated circuit for electrostatic discharge (ESD) protection, which includes a first power line with a first voltage level; a second power line with a second voltage level; a plurality of contact pads; Silicon controlled rectifiers (SCRs), each of which includes a p-type transistor and an n-type transistor, the p-type and n-type transistor and SCR are formed integrally; and a control circuit via the p-type and n-type The transistor provides a first holding voltage to the SCRs so that the SCRs are not latched, and a second holding voltage is provided to the SCRs through the p-type and n-type transistors to make the SCRs pulse on ESD. The latched state is maintained during the ESD period that occurs in one of the first power supply line or the contact pad. The invention also provides a method for electrostatic discharge protection, including providing a silicon controlled rectifier (SCR) with a holding voltage; forming a first conductive type first transistor and an SCR integrated body, the first transistor having a A first gate; a second transistor of a second conductivity type is integrated with the SCR, and the second transistor has a second gate; a first signal is provided to the first and second gates to improve the SCR Holding the voltage so that the SCR does not latch up; and providing a second signal to the first and second gates to reduce the holding voltage of the SCR to keep the SCR in a latched state. The invention also provides a method for providing electrostatic discharge (ESD) protection for internal circuits, which includes providing a first power line with a first voltage level; providing a second power line with a second voltage level; providing multiple Contact pads; multiple silicon controlled rectifiers (SCRs) are provided, each SCR includes a P-type transistor and an η-type transistor, the p-type and η-type 200522352 transistor and SCR are formed integrally; via p-type And a n-type transistor to provide a first holding voltage to the SCRs so that the SCRs are not latched; and a p-type and n-type transistor to provide a second holding voltage to the SCRs to enable the SCRs The latched state is maintained during the ESD period when the ESD pulse appears in one of the first power line or the contact pad. The foregoing general description of the present invention and the following detailed description are exemplary and illustrative in nature, and are intended to further understand the present invention. [Embodiment] An embodiment of the present invention will be described below with reference to the above drawings. Wherever possible, the same or similar components are represented by the same component numbers in the drawings. The present invention provides an ESD protection circuit having an SCR and a control circuit connected to the SCR to provide a first holding voltage of the SCR during a first condition so that the SCR does not latch up, and to provide an SCR during a second condition. The second holding voltage causes the SCR to latch up. That is, the SCR holding voltage is adjustable. In detail, the holding voltage of the SCR is increased to a first holding voltage higher than the power supply voltage, so that the SCR is not locked during normal operation, and the holding voltage of the SCR is reduced to a value lower than the power supply voltage. This keeps the SCR latched during ESD. FIG. 3 is a circuit diagram of the SCR 60 and the control circuit 74 according to an embodiment of the present invention. Referring to FIG. 3, the SCR 60 includes a parasitic ρηρ double-carrier transistor 62, a parasitic ηρη double-carrier transistor 64, an N-well resistance 66, 12 200522352, a substrate resistance 68 (Rsub), and a parasitic resistor Parasitic resistances 70 (RS1) and 72 (RS2) between the transistor 62 and 64. The holding voltage% of SCR 60 refers to the voltage drop between anode 76 and cathode 78 of SCR 60. The control circuit has a resistance value R 'in this circuit. Paralleling the resistance R of the control circuit 74 with the body pen resistance Rsub ’Vh can be expressed by the following formula: /
Vh ~~TVcep + vben X [1 + RS2 / (Rsub || R')] 其中Vcep為pnp電晶體62之集極(未標號)與射極(未標 號)間之電壓’ Vben為npn電晶體64之基極(未標號)與射^ (#未標^間之電壓。因此,當R'遠小於^時,Vh值上升, 若R遠大於Rsub則vH之值下降。 圖4為圖3所示SCR 60之π特性曲線。SCR 6〇且 有握住電壓VH以及觸發電壓Vtrig。請參閱圖4,VH可在、 vH1與、之間做動態調整。若R,遠小於u,則咖 之Ι-V曲線為曲線A。若R'遠大於^,則SCR6〇之^ 曲線為曲線B。亦即藉由改變與基體電阻^並連之r'的 阻值’可冑SCR60之握住電壓Vh提高到比電源電壓^ 大之vH2,或將%調降至比Vdd小之、。在―實施例中, VH1大約等於νΗ。而在另一實施例中,%〗約為】伏特。 圖5為本發明-實施例之E s D防護電路8 2之佈局剖 =圖。請參閱目5’ESD防護電路82包含似84及控制 電路86。SCR 84具有一 p型其麯e 基體88、n井區90、形成於n 井㈣中之第一 p型擴散㈣、部分形成於η井區%中 之弟二P型擴散區94以及部分形成於m井區%中之 第1型擴散區96。第- P型擴散區92、n井區90盘p 13 200522352 型基體88分別為寄生pnp双載子電晶體(未標號)之射極、 基極與集極。η井區90、p型基體88與第一 p型擴散區96 則分別是寄生ηρη電晶體(未標號)之集極、基極與射極。 SCR 84亦包含一位於通道(未標號)上方之閘極100,此通 道則形成於第一及第二Ρ型擴散區92、94之間。厚氧化層 102係用來做電氣絕緣之用。第一 ρ型區92、閘極100及 第二η型區104連接至接觸墊片108,例如是輸出入(I/O) 墊片。第一 η型區96及第三ρ型區106連接至一參考電壓 如Vss或接地。 控制電路86包含NMOS電晶體107、電阻110及電容 112。NMOS電晶體107具有一連接至SCR 84之第二ρ型 擴散區94之沒極(未標號)。電阻110之一端(未標號)連接 至電容112與NMOS電晶體107之閘極(未標號),另一端(未 標號)則接至電源電壓Vdd。電容112之一端(未標號)連接至 電阻110與NMOS電晶體107之閘極,另一端(未標號)則 連接至Vss。ESD防護電路82中,控制電路86於NMOS φ 電晶體107開啟時具有小於SCR 84之基體電阻之阻值,且 於NMOS電晶體107關閉時具有大於SCR 84之基體電阻 之阻值。 於正常操作期間,由電阻110及電容112所組成的RC 電路提供一高位準信號至NMOS電晶體107之閘極而啟動 NMOS電晶體107。結果,控制電路86呈現之阻值較SCR 84之基體電阻為小。SCR 84之握住電壓提高至高於Vdd之 位準,使SCR 84不致栓鎖。 14 200522352 在ESD期間,RC電路提供一低位準信號至NMOS電 晶體108之閘極而關閉NMOS電晶體107。結果,控制電 路86呈現之阻值較SCR 84之基體電阻為小。SCR 84之握 住電壓調降至小於Vdd之位準,例如約1伏特,使SCR 84 保持於栓鎖狀態以排放ESD電流。為使RC電路將NMOS 電晶體107之閘極於ESD發生時保持於低電壓位準,RC 電路之RC時間延遲設定為大約300奈秒(ns)至500奈秒, 較一般ESD脈衝之150 ns至300 ns為長。 圖6為本發明實施例之另一 ESD防護電路114。請參 閱圖6,ESD防護電路114具有SCR 84及控制電路116。 控制電路包含PMOS電晶體118、反相器124、二極體126、 電阻120及電容122。PMOS電晶體118具有一源極(未標 號)連接至SCR 84第二p型擴散區94。反相器124具有一 輸出端(未標號)連接至PMOS電晶體118之閘極(未標號)。 電阻110之一端(未標號)連接至電容122及反相器124之一 輸入端(未標號),另一端(未標號)則連接至Vdd。電容122 之一端(未標號)連接至電阻120及反相器124之輸入端,另 一端(未標號)則連接至Vss。ESD防護電路114中,控制電 路116於PMOS電晶體118開啟時呈現小於SCR 84之基體 電阻之阻值,且於PMOS電晶體118關閉時呈現大於SCR 84 之基體電阻之阻值。 於正常操作期間,由電阻120及電容122所組成的RC 電路經由反相器124提供一低位準信號至PMOS電晶體118 之閘極而啟動PMOS電晶體118。結果,控制電路116呈 15 200522352 現之阻值較SCR 84之基體電阻為小。SCR 84之握住電壓 提高至高於Vdd之位準,使SCR 84不致栓鎖。 在ESD期間,由於時間延遲,RC電路保持反相器124 之輸入端於低電壓位準。同時,來自接觸墊片108之部分 ESD電壓對反相器124偏壓使反相器124輸出一高電壓位 準至PMOS電晶體118之閘極而關閉PMOS電晶體118。 結果,控制電路116呈現之阻值較SCR 84之基體電阻為 大。SCR 84之握住電壓調降至小於Vdd之位準,例如約1 伏特,使SCR 84保持於栓鎖狀態以排放ESD電流。 圖7為本發明實施例之SCR 128與控制電路130之電 路圖。請參閱圖7,SCR 128包含一寄生式pnp双載子電晶 體132、一寄生式npn双載子電晶體134、一 N井區電阻 136或RNW、一基體電阻138以及形成於寄生式電晶體 132、134 之間的寄生電阻 140(RS3)及 142(RS4) 。SCR 128 之握住電壓Vh是指SCR 128之陽極146與陰極148間之壓 降。控制電路130在此電路中具有一 R”之阻值。將控制電 路130之電阻R’’與基體電阻RNW並聯,SCR 128之握住電 壓Vh可以下式表示:Vh ~~ TVcep + vben X [1 + RS2 / (Rsub || R ')] where Vcep is the voltage between the collector (not labeled) and emitter (not labeled) of the pnp transistor 62' Vben is the npn transistor The voltage between the base of 64 (unlabeled) and the emitter ^ (# 未 标 ^. Therefore, when R 'is far less than ^, the value of Vh increases, and if R is much greater than Rsub, the value of vH decreases. Figure 4 is Figure 3 The π characteristic curve of SCR 60 shown. SCR 60 has a holding voltage VH and a trigger voltage Vtrig. Please refer to Figure 4, VH can be dynamically adjusted between, vH1 and, if R is much smaller than u, then coffee The I-V curve is curve A. If R 'is far greater than ^, then the curve of SCR6〇 is curve B. That is, the resistance of SCR60 can be held by changing the resistance of r' in parallel with the substrate resistance The voltage Vh is increased to vH2 that is greater than the power supply voltage ^, or% is reduced to a value that is less than Vdd. In the embodiment, VH1 is approximately equal to νΗ. In another embodiment,% is approximately] volts. 5 is a cross-sectional view of the layout of an E s D protective circuit 82 according to an embodiment of the present invention. See FIG. 5. The ESD protective circuit 82 includes a loop 84 and a control circuit 86. The SCR 84 has a p-type curved body e 88 , N well area 90 The first p-type diffusion region formed in the n-well region, the second-type P-type diffusion region 94 partially formed in the n-well region%, and the first-type diffusion region 96 partially formed in the m-well region%. The -P Type diffusion region 92, n-well region 90 disks, p 13 200522352 type substrate 88 are the emitter, base, and collector of parasitic pnp bipolar transistor (not labeled). Η-well region 90, p-type substrate 88, and A p-type diffusion region 96 is a collector, a base, and an emitter of a parasitic ηρη transistor (not labeled). The SCR 84 also includes a gate 100 located above a channel (not labeled), and the channel is formed at the first Between the first and second P-type diffusion regions 92 and 94. The thick oxide layer 102 is used for electrical insulation. The first p-type region 92, the gate electrode 100, and the second n-type region 104 are connected to the contact pad 108 For example, it is an I / O pad. The first n-type region 96 and the third p-type region 106 are connected to a reference voltage such as Vss or ground. The control circuit 86 includes an NMOS transistor 107, a resistor 110, and a capacitor 112. The NMOS transistor 107 has a terminal (not labeled) connected to the second p-type diffusion region 94 of the SCR 84. One end (not labeled) of the resistor 110 Connected to the gate (unlabeled) of capacitor 112 and NMOS transistor 107, and the other end (unlabeled) to the power supply voltage Vdd. One end (unlabeled) of capacitor 112 is connected to the gate of resistor 110 and NMOS transistor 107 , The other end (unlabeled) is connected to Vss. In the ESD protection circuit 82, the control circuit 86 has a resistance value smaller than the SCR 84 substrate resistance when the NMOS φ transistor 107 is turned on, and has a resistance greater than when the NMOS transistor 107 is turned off. The resistance value of the base resistance of SCR 84. During normal operation, the RC circuit composed of the resistor 110 and the capacitor 112 provides a high level signal to the gate of the NMOS transistor 107 to start the NMOS transistor 107. As a result, the resistance value presented by the control circuit 86 is smaller than the substrate resistance of the SCR 84. The holding voltage of the SCR 84 is raised to a level higher than Vdd, so that the SCR 84 does not latch up. 14 200522352 During ESD, the RC circuit provides a low level signal to the gate of NMOS transistor 108 and turns off NMOS transistor 107. As a result, the resistance value exhibited by the control circuit 86 is smaller than the substrate resistance of the SCR 84. The holding voltage of the SCR 84 is adjusted to a level lower than Vdd, for example, about 1 volt, so that the SCR 84 is kept in a latched state to discharge ESD current. In order for the RC circuit to keep the gate of the NMOS transistor 107 at a low voltage level when ESD occurs, the RC time delay of the RC circuit is set to about 300 nanoseconds (ns) to 500 nanoseconds, which is 150 ns more than the average ESD pulse. Up to 300 ns is long. FIG. 6 is another ESD protection circuit 114 according to an embodiment of the present invention. Referring to FIG. 6, the ESD protection circuit 114 has an SCR 84 and a control circuit 116. The control circuit includes a PMOS transistor 118, an inverter 124, a diode 126, a resistor 120, and a capacitor 122. The PMOS transistor 118 has a source (not labeled) connected to the second p-type diffusion region 94 of the SCR 84. The inverter 124 has an output terminal (not labeled) connected to a gate (not labeled) of the PMOS transistor 118. One terminal (not labeled) of the resistor 110 is connected to one input terminal (not labeled) of the capacitor 122 and the inverter 124, and the other terminal (not labeled) is connected to Vdd. One terminal (not labeled) of the capacitor 122 is connected to the input terminal of the resistor 120 and the inverter 124, and the other terminal (not labeled) is connected to Vss. In the ESD protection circuit 114, the control circuit 116 exhibits a resistance value smaller than the substrate resistance of the SCR 84 when the PMOS transistor 118 is turned on, and exhibits a resistance value larger than the substrate resistance of the SCR 84 when the PMOS transistor 118 is turned off. During normal operation, the RC circuit composed of the resistor 120 and the capacitor 122 provides a low level signal to the gate of the PMOS transistor 118 via the inverter 124 to activate the PMOS transistor 118. As a result, the resistance of the control circuit 116 is lower than that of the SCR 84 substrate. The holding voltage of the SCR 84 is raised to a level higher than Vdd, so that the SCR 84 does not latch up. During the ESD period, the RC circuit keeps the input of the inverter 124 at a low voltage level due to the time delay. At the same time, part of the ESD voltage from the contact pad 108 biases the inverter 124 so that the inverter 124 outputs a high voltage level to the gate of the PMOS transistor 118 and turns off the PMOS transistor 118. As a result, the resistance value exhibited by the control circuit 116 is larger than the substrate resistance of the SCR 84. The holding voltage of the SCR 84 is adjusted to a level lower than Vdd, for example, about 1 volt, so that the SCR 84 is kept in a latched state to discharge ESD current. FIG. 7 is a circuit diagram of the SCR 128 and the control circuit 130 according to the embodiment of the present invention. Referring to FIG. 7, the SCR 128 includes a parasitic pnp bipolar transistor 132, a parasitic npn bipolar transistor 134, an N-well resistance 136 or RNW, a substrate resistance 138, and a parasitic transistor formed. Parasitic resistances 140 (RS3) and 142 (RS4) between 132 and 134. The holding voltage Vh of the SCR 128 refers to the voltage drop between the anode 146 and the cathode 148 of the SCR 128. The control circuit 130 has a resistance value of R ”in this circuit. The resistance R ′ ′ of the control circuit 130 is connected in parallel with the base resistance RNW, and the holding voltage Vh of the SCR 128 can be expressed by the following formula:
Vh ~Vcen + Vbep X [1 + Rs3 / (RnW II R’’)] 其中vcen為npn電晶體134之集極(未標號)與射極(未 標號)間之電壓,RS3為形成於寄生式電晶體132、134之間 的寄生電阻,Vbep為pnp電晶體132之基極(未標號)與射極 (未標號)間之電壓。因此,當R’’小於Rnw時,Vh值上升, 若R’’大於RNW則Vh之值下降。圖7之I-V特性曲線與圖 16 200522352 4者相似,因此不另加描述。 圖8為本發明實施例之ESD防護電路15〇。請參閱圖 8,ESD防護電路150包含SCR 128及控制電路130。SCR 128 具有一 p型基體152、η井區154、形成於n井區154中之 第一 P型擴散區156、部分形成於η井區154中之第一 n 型擴散區158以及部分形成於另一 η井區162中之第二n 型擴散區160。第一 p型擴散區156、n井區154與p型基 體152分別為寄生ρηρ双載子電晶體(未標號)之射極、基極 與集極。η井區154、Ρ型基體152與第二η型擴散區16〇 則分別是寄生ηρη電晶體(未標號)之集極、基極與射極。 SCR 128亦包含一位於通道(未標號)上方之閘極164,此通 運則形成於第一及第二η型擴散區158、16〇之間。第一 ρ 型區156及第三η型區168連接至接觸墊片17〇。第二打 型區160及第二ρ型區172則連接至ν 。 控制電路130包含PM0S電晶體174、反相器ρ。二 極體178、電阻180及電容182QpM〇s電晶體m具有一 連接至SCR 128之第一 n型擴散區158之没極(未標號)。 反相為176具有一輸出端(未標號)連接至pM〇s電晶體η 之閘極(未標號)。電阻180之-端(未標號)連接至電容18 與反相器176之輸入端(未標號),另-端(未標號)則接至: 極體178與Vdd。電容182之—端(未標號)連接至電阻… 與,相$ 176之輸人端,另—端(未標號)則連接至 防護電路1 5 0中,控制雷政n η μ μ τ缸刺包路130於pmos電晶體m開韵 日守具有小於SCR128之n井區電阻之阻值,錄PM0S1 200522352 晶體174關閉時具有大於SCR 128之η井區電阻之阻值。 於正常操作期間,由電阻1 80及電容1 82所組成的RC 電路經由反相器176提供一低位準信號至PMOS電晶體174 之閘極而啟動PMOS電晶體174。結果,控制電路130呈 現之阻值較SCR 128之η井區電阻為小。SCR 128之握住 電壓提高至高於Vdd之位準,使SCR 128不致栓鎖。 在ESD期間,由於時間延遲,RC電路保持反相器176 之輸入端於低電壓位準。同時,來自接觸墊片170之部分 ESD電壓對反相器176偏壓使反相器176輸出一高電壓位 準至PMOS電晶體174之閘極而關閉PMOS電晶體174。 結果,控制電路130呈現之阻值較SCR 128之η井區電阻 為大。SCR 128之握住電壓調降至小於Vdd之位準,例如約 1伏特,使SCR 128保持於栓鎖狀態以排放ESD電流。 圖9為本發明實施例之ESD防護電路184。請參閱圖 9,ESD防護電路184包含SCR 128及控制電路186。控制 電路186包含NMOS電晶體188、電阻190及電容192。 NMOS電晶體188具有一連接至SCR 128之第一 η型擴散 區158之源極(未標號)。電阻190之一端(未標號)連接至電 容192與NMOS電晶體188之閘極(未標號),另一端(未標 號)則接至電源電壓Vdd。電容192之一端(未標號)連接至電 阻190與NMOS電晶體188之閘極,另一端(未標號)則連 接至Vss。ESD防護電路1 84中,控制電路1 86於NMOS 電晶體188開啟時具有小於SCR 128之η井區電阻之阻 值,且於NMOS電晶體188關閉時具有大於SCR 128之η 18 200522352 井區電阻之阻值。 於正常操作期間,由電阻190及電容192所組成的 電路提供—高位準信號至咖⑽電晶體188之開極而啟動 NMOS電晶體188。結果,控制電路186呈現之阻值較scr 128之n井區電阻為小。SCR 128之握住電壓提高至高於 Vdd之位準,使SCR 128不致栓鎖。 。 ° 在ESD期間,由於時間延遲,RC電路保持電 晶體188之閘極於低電壓位準而關閉NM〇s電晶體。 結果,控制電路186呈現之阻值較SCR 84之n井區電阻為 大。SCR 128之握住電壓調降至小於Vdd之位準,°例二約1 伏特,使SCR 128保持於栓鎖狀態以排放ESD電流。 圖ίο為用於vdd至vssESD防護之ESD防護電路194。 請蒼閱圖10,ESD防護電路194包含PMOS觸發SCR 196 及控制電路198。ESD防護電路194之結構與圖5之電路 82相似,但另含一 PMOS電晶體2〇〇。pM〇s觸發SCR 196 包含一 SCR(未標號)與PMOS電晶體200。此SCR具有p 型基體 406(Psub)、η 井區 404 (NW)、p 型擴散區 402 (p+)、 η型擴散區408 (η+)以及寄生電阻410 (Rnw)、412 (Rsub) 〇 PMOS電晶體200具有一源極(未標號)連接至p+區402 、 一汲極(未標號)連接至p型基體406以及一基體(未標號) 連接至SCR之η井區404。控制電路198包含NMOS電晶 體202、電阻2〇4及電容2〇6。電阻204之一端(未標號)連 接至電容206、PMOS電晶體200之閘極(未標號)與NM0S 電晶體202之閘極(未標號),另一端(未標號)則接至Vdd。 19 200522352 電谷2 0 6之-一端(未^ 咕、、▲ & 示唬)連接至電阻204、PMOS電晶體2〇〇Vh ~ Vcen + Vbep X [1 + Rs3 / (RnW II R '')] where vcen is the voltage between the collector (not labeled) and emitter (not labeled) of the npn transistor 134, RS3 is formed in a parasitic type The parasitic resistance between the transistors 132 and 134, Vbep is the voltage between the base (not labeled) and the emitter (not labeled) of the pnp transistor 132. Therefore, when R '' is less than Rnw, the value of Vh increases, and if R '' is greater than RNW, the value of Vh decreases. The I-V characteristic curve of Fig. 7 is similar to that of Fig. 16 200522352, so it will not be described further. FIG. 8 is an ESD protection circuit 15o according to an embodiment of the present invention. Referring to FIG. 8, the ESD protection circuit 150 includes an SCR 128 and a control circuit 130. The SCR 128 has a p-type substrate 152, an n-well region 154, a first p-type diffusion region 156 formed in the n-well region 154, a first n-type diffusion region 158 partially formed in the n-well region 154, and a portion formed in A second n-type diffusion region 160 in another n-well region 162. The first p-type diffusion region 156, the n-well region 154, and the p-type substrate 152 are the emitter, base, and collector of a parasitic ρηρ bipolar transistor (not labeled), respectively. The n-well region 154, the P-type substrate 152, and the second n-type diffusion region 160 are the collector, base, and emitter of a parasitic ηρη transistor (not labeled), respectively. The SCR 128 also includes a gate electrode 164 located above the channel (not labeled), and this traffic is formed between the first and second n-type diffusion regions 158 and 160. The first p-type region 156 and the third n-type region 168 are connected to the contact pad 170. The second patterning region 160 and the second p-type region 172 are connected to ν. The control circuit 130 includes a PMOS transistor 174 and an inverter ρ. The diode 178, the resistor 180, and the capacitor 182QpMOS transistor m have an electrode (not labeled) connected to the first n-type diffusion region 158 of the SCR 128. The inverting phase 176 has an output terminal (not labeled) connected to the gate (not labeled) of the pMOS transistor η. The-terminal (not labeled) of the resistor 180 is connected to the input terminal (not labeled) of the capacitor 18 and the inverter 176, and the other-terminal (not labeled) is connected to: the pole body 178 and Vdd. One end (unlabeled) of the capacitor 182 is connected to the resistor ... and the input terminal of phase 176 is connected, and the other end (unlabeled) is connected to the protective circuit 1 50, which controls the thunder policy n η μ μ τ cylinder thorn The package circuit 130 has a resistance value smaller than that of the n-well area of the SCR128 when the pmos transistor m is turned on. The PM0S1 200522352 crystal 174 has a resistance value greater than the n-well area resistance of the SCR 128 when it is turned off. During normal operation, the RC circuit composed of the resistor 180 and the capacitor 82 provides a low level signal to the gate of the PMOS transistor 174 via the inverter 176 to activate the PMOS transistor 174. As a result, the resistance value presented by the control circuit 130 is smaller than the n-well resistance of the SCR 128. The holding voltage of SCR 128 is raised to a level higher than Vdd, so that SCR 128 cannot be locked. During the ESD period, the RC circuit keeps the input of the inverter 176 at a low voltage level due to the time delay. At the same time, a portion of the ESD voltage from the contact pad 170 biases the inverter 176 so that the inverter 176 outputs a high voltage level to the gate of the PMOS transistor 174 and turns off the PMOS transistor 174. As a result, the resistance value presented by the control circuit 130 is larger than the n-well resistance of the SCR 128. The holding voltage of SCR 128 is adjusted to a level lower than Vdd, for example, about 1 volt, so that SCR 128 is kept in a latched state to discharge ESD current. FIG. 9 is an ESD protection circuit 184 according to an embodiment of the present invention. Referring to FIG. 9, the ESD protection circuit 184 includes an SCR 128 and a control circuit 186. The control circuit 186 includes an NMOS transistor 188, a resistor 190, and a capacitor 192. The NMOS transistor 188 has a source (not labeled) connected to the first n-type diffusion region 158 of the SCR 128. One terminal (not labeled) of the resistor 190 is connected to the gate (not labeled) of the capacitor 192 and the NMOS transistor 188, and the other terminal (not labeled) is connected to the power supply voltage Vdd. One terminal (not labeled) of the capacitor 192 is connected to the gate of the resistor 190 and the NMOS transistor 188, and the other terminal (not labeled) is connected to Vss. In the ESD protection circuit 1 84, the control circuit 1 86 has a resistance value smaller than the η well area resistance of the SCR 128 when the NMOS transistor 188 is turned on, and has a resistance value greater than the η 18 well area of the SCR 128 when the NMOS transistor 188 is turned off. Of resistance. During normal operation, a circuit consisting of a resistor 190 and a capacitor 192 provides a high level signal to the open terminal of the coffee transistor 188 to start the NMOS transistor 188. As a result, the resistance value presented by the control circuit 186 is smaller than the n-well area resistance of the scr 128. The holding voltage of SCR 128 is raised to a level higher than Vdd, so that SCR 128 does not latch up. . ° During ESD, due to the time delay, the RC circuit keeps the gate of transistor 188 at a low voltage level and turns off the NMOS transistor. As a result, the resistance value presented by the control circuit 186 is greater than the n-well resistance of the SCR 84. The holding voltage of SCR 128 is adjusted to a level lower than Vdd, which is about 1 volt in the second example, so that SCR 128 is kept in a latched state to discharge ESD current. Figure ο is an ESD protection circuit 194 for vdd to vssESD protection. Please refer to FIG. 10. The ESD protection circuit 194 includes a PMOS trigger SCR 196 and a control circuit 198. The structure of the ESD protection circuit 194 is similar to that of the circuit 82 of FIG. 5, but it also contains a PMOS transistor 200. The pM0s trigger SCR 196 includes an SCR (unlabeled) and a PMOS transistor 200. This SCR has a p-type substrate 406 (Psub), an n-well region 404 (NW), a p-type diffusion region 402 (p +), an n-type diffusion region 408 (η +), and a parasitic resistance 410 (Rnw), 412 (Rsub). The PMOS transistor 200 has a source (not labeled) connected to the p + region 402, a drain (not labeled) connected to the p-type substrate 406, and a substrate (not labeled) connected to the n-well region 404 of the SCR. The control circuit 198 includes an NMOS transistor 202, a resistor 204, and a capacitor 206. One end (not labeled) of the resistor 204 is connected to the capacitor 206, the gate (not labeled) of the PMOS transistor 200 and the gate (not labeled) of the NMOS transistor 202, and the other end (not labeled) is connected to Vdd. 19 200522352 Electric valley 2 0 6-one end (not ^ Gu ,, ▲ & bluff) is connected to resistor 204, PMOS transistor 2〇〇
之閘極與NMOS %曰舰L 兒日日體202之閘極,另一端(未標號)則連 接至Vss。ESD防罐中々The gate of NMOS is the gate of the ship L Erri Sun body 202, and the other end (not labeled) is connected to Vss. ESD anti-tank
7邊電路194中,控制電路198於NMOS 私曰曰體2〇2開啟日t具有小於pM〇s觸發SCR i%之基體電 阻之阻值,且於NM〇S電晶體202關閉時具有大於PM〇s 觸發SCR 196之基體電阻之阻值。In the 7-side circuit 194, the control circuit 198 has a resistance value less than pM0s that triggers the SCR i% of the substrate resistance when the NMOS circuit is turned on, and it has a resistance greater than PM when the NMOS transistor 202 is turned off. 〇s Trigger the resistance value of the substrate resistance of SCR 196.
帝於正常操作期間,由電阻204及電容206所組成的rc 電路提供K立準信號至PMOS電晶體200與NMOS電晶 體202之閘極以關閉pM〇s電晶體2〇〇並開啟nm〇s電晶 體2〇2。結果’控制電路198呈現之阻值較PMOS觸發SCR 196^之基體電阻為小。pM〇s觸發scr 196之握住電壓提高 至冋於Vdd之位準,使PMOS觸發SCR 196不致栓鎖。During normal operation, an rc circuit composed of a resistor 204 and a capacitor 206 provides a K-level signal to the gates of the PMOS transistor 200 and the NMOS transistor 202 to turn off the pM0s transistor 200 and turn on the nms. Transistor 202. As a result, the resistance value presented by the control circuit 198 is smaller than the substrate resistance of the PMOS-triggered SCR 196 ^. pM〇s triggers the holding voltage of scr 196 to rise to a level below Vdd, so that PMOS triggers SCR 196 without latching.
在ESD期間,例如有正極性ESD出現在Vdd線路,Έ 於日守間延遲,RC電路提供一低位準信號至pM〇s電晶體 2〇〇與NMOS電晶體2〇2之閘極以開啟pM〇s電晶體2〇(] 亚關閉NMOS電晶體2〇2。結果,控制電路198呈現之阴 值較PMOS觸發SCR 196之基體電阻為大qPM〇s觸發sc 196之握住電壓調降至小於v心之位準,例如約1伏特,七 PMOS觸發SCR 196保持於栓鎖狀態以排放ES]□電流。 圖11為用於vdd至Vss ESD防護之另一 ESD防護電路 2〇8。請參閱圖U,ESD防護電路208包含NMOS觸發SCR 210及控制電路212。ESD防護電路208之結構與圖8之電 路150相似’但另含一 NMOS電晶體21hNMOS觸發SCR 210包含一 SCR(未標號)與NMOS電晶體214。此SCR具 20 200522352 有P型擴散區414 (p+)、η井區416 (NW)、p型基體 418(Psub)、n型擴散區420 (n+)以及寄生電阻422 (RNW)、 424 (Rsub)。NMOS電晶體214具有一汲極(未標號)連接至 n+區420、一源極(未標號)連接至η井區416以及一基體 (未標號)連接至SCR之ρ型基體418。控制電路212包含 PMOS電晶體216、反相器218、電阻220及電容222。反 相器218具有一輸出端(未標號)連接至NMOS電晶體214 之閘極(未標號)與PMOS電晶體216之閘極(未標號)。電 阻220之一端(未標號)連接至電容222與反相器218之輸入 端(未標號),另一端(未標號)則接至Vdd。電容222之一端(未 標號)連接至電阻220與反相器218之輸入端,另一端(未標 號)則連接至Vss。ESD防護電路208中,控制電路212於 PMOS電晶體216開啟時具有小於NMOS觸發SCR 210之 η井區電阻之阻值,且於PMOS電晶體216關閉時具有大 於NMOS觸發SCR 210之η井區電阻之阻值。 於正常操作期間,由電阻220及電容222所組成的RC 電路經由反相器218提供一低位準信號至NMOS電晶體 214與PMOS電晶體216之閘極以關閉NMOS電晶體214 並開啟PMOS電晶體216。結果,控制電路212呈現之阻 值較NMOS觸發SCR 210之η井區電阻為小。NMOS觸發 SCR 210之握住電壓提高至高於Vdd之位準,使NMOS觸 發SCR 210不致栓鎖。 在ESD期間,例如有正極性ESD出現在Vdd線路,由 於時間延遲,RC電路經由反相器218提供一高位準信號至 200522352 NMOS電晶體214與PMOS電晶體216之閘極以開啟NM〇s 電晶體214並關閉PM0S電晶體216。結果,控制電路2i2 呈現之阻值較NM0S觸發8〇1121〇之11井區電阻為大。 NMOS觸發SCR 210之握住電壓調降至小於Vdd之位準, 例如約1伏特,使NM0S觸發SCR 21〇保持於栓鎖狀態以During the ESD period, for example, a positive polarity ESD appears on the Vdd line. Due to the inter-day delay, the RC circuit provides a low level signal to the gate of the pM0s transistor 200 and the NMOS transistor 200 to turn on the pM. 〇s transistor 2〇 (] Sub-turn off the NMOS transistor 200. As a result, the negative value presented by the control circuit 198 is larger than the substrate resistance of the PMOS triggering SCR 196 qPM. The triggering voltage of the sc 196 is reduced to less than V heart level, for example, about 1 volt, seven PMOS triggers SCR 196 to stay in a latched state to discharge ES] □ current. Figure 11 is another ESD protection circuit 208 for vdd to Vss ESD protection. Please refer to In Figure U, the ESD protection circuit 208 includes an NMOS triggering SCR 210 and a control circuit 212. The structure of the ESD protection circuit 208 is similar to that of the circuit 150 of FIG. 8 ', but it also includes an NMOS transistor 21h. The NMOS triggering SCR 210 includes an SCR (unlabeled) and NMOS transistor 214. This SCR device 20 200522352 has P-type diffusion region 414 (p +), n-well region 416 (NW), p-type substrate 418 (Psub), n-type diffusion region 420 (n +), and parasitic resistance 422 (RNW ), 424 (Rsub). The NMOS transistor 214 has a drain (not labeled) connected to the n + region 420, and a source (not labeled) ) Is connected to the n-well region 416 and a substrate (not labeled) is connected to the SCR-type substrate 418. The control circuit 212 includes a PMOS transistor 216, an inverter 218, a resistor 220, and a capacitor 222. The inverter 218 has an output The terminal (not labeled) is connected to the gate (not labeled) of the NMOS transistor 214 and the gate (not labeled) of the PMOS transistor 216. One terminal (not labeled) of the resistor 220 is connected to the input of the capacitor 222 and the inverter 218 Terminal (not labeled), the other terminal (not labeled) is connected to Vdd. One terminal (not labeled) of the capacitor 222 is connected to the input terminal of the resistor 220 and the inverter 218, and the other terminal (not labeled) is connected to Vss. ESD In the protection circuit 208, when the PMOS transistor 216 is turned on, the control circuit 212 has a resistance value smaller than the n-well area resistance of the NMOS-triggered SCR 210, and when the PMOS transistor 216 is turned off, it has a resistance greater than the n-well area resistance of the NMOS-triggered SCR 210. During normal operation, the RC circuit composed of resistor 220 and capacitor 222 provides a low level signal to the gate of NMOS transistor 214 and PMOS transistor 216 via inverter 218 to turn off NMOS transistor 214 and turn it on. PMOS Transistor 216 As a result, the resistance value of the present control circuit 212 than NMOS η SCR 210 triggers the resistance of the well region holding small .NMOS trigger voltage of the SCR 210 is increased to above the level of Vdd, the NMOS triggered SCR 210 will not latch. During ESD, for example, positive ESD appears on the Vdd line. Due to the time delay, the RC circuit provides a high level signal to the 200522352 NMOS transistor 214 and the gate of the PMOS transistor 216 through the inverter 218 to turn on the NMOS. The crystal 214 also turns off the PMOS transistor 216. As a result, the resistance value presented by the control circuit 2i2 is larger than that of the 11 well area triggered by the NMOS triggering 8012110. The holding voltage of NMOS triggering SCR 210 is adjusted to a level lower than Vdd, for example, about 1 volt, so that NM0S triggers SCR 21 and maintains the latched state to
排放E S D電流。 N 圖12為本發明實施例之輸入級ESD防護電路224。請 參閱圖12,ESD防護電路224包含PMOS觸發SCR 226、 第一控制電路228、NMOS觸發SCR 230及第二控制電路 232。PMOS觸發SCR 226包含一 SCR(未標號)與PMOS電 晶體234。第一控制電路228包含電阻236、電容238及 NMOS電晶體240。NMOS觸發SCR 230包含另一 SCR(未 標號)與NMOS電晶體242。第二控制電路232包含電阻 244、電容246及PMOS電晶體248。 於正常操作期間,就PMOS觸發SCR 226而言,PMOS 電晶體234關閉而NMOS電晶體240則開啟。由於第一控 制電路228之NMOS電晶體240開啟,PMOS觸發SCR 226 之握住電壓提高至高於Vdd之位準,使PMOS觸發SCR 226 不致栓鎖。 另就NMOS觸發SCR 230而言,NMOS電晶體242關 閉而PMOS電晶體248則開啟。由於第二控制電路232之 PMOS電晶體248開啟,NMOS觸發SCR 230之握住電壓 提高至高於Vdd之位準,使NMOS觸發SCR 230不致栓鎖。 在正極性對Vss(PS)模式ESD期間,電容246耦合接觸 22 200522352 墊片250之部分ESD電壓至NMOS電晶體242與PM〇s電 晶體248之閘極。因此,NMOS電晶體242盥pM〇s帝: 體248之閘極受正偏壓使NMOS電晶體242開啟而pM〇s 電晶體248關閉。由於第二控制電路232之pM〇s電晶體 248關閉,NMOS觸發SCR 230之握住電壓調降至小Discharge E S D current. N FIG. 12 is an input stage ESD protection circuit 224 according to an embodiment of the present invention. Referring to FIG. 12, the ESD protection circuit 224 includes a PMOS triggering SCR 226, a first control circuit 228, an NMOS triggering SCR 230, and a second control circuit 232. The PMOS trigger SCR 226 includes an SCR (not labeled) and a PMOS transistor 234. The first control circuit 228 includes a resistor 236, a capacitor 238, and an NMOS transistor 240. The NMOS triggering SCR 230 includes another SCR (not numbered) and an NMOS transistor 242. The second control circuit 232 includes a resistor 244, a capacitor 246, and a PMOS transistor 248. During normal operation, as far as the PMOS triggers the SCR 226, the PMOS transistor 234 is turned off and the NMOS transistor 240 is turned on. Since the NMOS transistor 240 of the first control circuit 228 is turned on, the holding voltage of the PMOS trigger SCR 226 is increased to a level higher than Vdd, so that the PMOS trigger SCR 226 does not latch up. As far as the NMOS triggering SCR 230 is concerned, the NMOS transistor 242 is turned off and the PMOS transistor 248 is turned on. Since the PMOS transistor 248 of the second control circuit 232 is turned on, the holding voltage of the NMOS triggering SCR 230 is raised to a level higher than Vdd, so that the NMOS triggering SCR 230 does not latch up. During the positive polarity Vss (PS) mode ESD, the capacitor 246 couples the contact 22 200522352 part of the ESD voltage of the pad 250 to the gate of the NMOS transistor 242 and the PMMOS transistor 248. Therefore, the gate of the NMOS transistor 242 is pMOS: the gate of the body 248 is positively biased so that the NMOS transistor 242 is turned on and the pMOS transistor 248 is turned off. As the pM0s transistor 248 of the second control circuit 232 is turned off, the holding voltage of the SCR 230 triggered by NMOS is reduced to a small value.
Vdd之位準,例如約1伏特,使NMOS觸發SCR 23〇保轉 於栓鎖狀態。此外,由於NMOS電晶體242開啟,Nm〇 觸發SCR 230能迅速開啟以排放ESD電流。eSD防謹束 ' % % 224將出現在接觸墊片250之正極性ESD電壓箝位於約 伏特。 1 在負極性對Vdd(ND)模式ESD期間,電容238執含 觸墊片250之部分ESD電壓至NMOS電晶體240與麵 電晶體234之閘極。因此,NMOS電晶體240與PM〇s 晶體234之閘極受負偏壓使NMOS電晶體240關閉而% 電晶體234開啟。由於第一控制電路228之NMOS番。 224 240關閉,PMOS觸發SCR 226之握住電壓調降至小於γ 之位準,例如約-1伏特,使PMOS觸發SCR 226保轉私〜 鎖狀態。此外,由於PMOS電晶體234開啟,PMOS故$ SCR 226能迅速開啟以排放ESD電流。ESD防護電% 將出現在接觸墊片250之負極性ESD電壓箝位於約 特。 圖13為本發明另一實施例之輸入級ESD防護電& 252。請參閱圖13,ESD防護電路252包含PMOS觸聲 254、第一控制電路256、NMOS觸發SCR 258及第; 23 200522352 電路260。PMOS觸發SCR 254包含一 SCR(未標號)與pMOS 電晶體262。第一控制電路256包含電阻264、反相器266 及NM0S電晶體268°NMOS觸發SCR 258包含另一 SCR(未 標號)與NM0S電晶體270。第二控制電路260包含電阻 272、反相器274及PMOS電晶體276。 於正常操作期間,就PMOS觸發SCR 254而言,反相 器266提供一高電壓位準至pmos電晶體262與NMOS電 晶體268之閘極使PMOS電晶體262關閉而NM〇s電晶體 268開啟。由於第一控制電路256之NM〇s電晶體268開 啟,PMOS觸發SCR 254之握住電壓提高至高於〜之位 準,使PMOS觸發SCR 254不致栓鎖。 另就NMOS觸發SCR 258而言,、反相器w提供一低 私廢位準至NMQS電晶體27〇與pM〇s電晶體之問極 使NMOS電晶體270關閉而 關閉而電晶體276開啟。由於 第二控制電路260之PMOS |曰从 %晶體276開啟,NM0S觸發 SCR 258之握住電壓提高至高 捉门巧於Vdd之位準,使NMOS觸 發SCR 258不致栓鎖。 在PS模式ESD期間,及l . > ' 久相器274受接觸墊片278之 口P分ESD電壓偏壓而提供一客 、電壓位準至NMOS電晶體 270 與 PMOS 電晶體 276 q 閘極。因此,NM0S電晶體270 與PMOS電晶體276之閘極| χ μ ^ '正偏壓使NMOS電晶艚270 開啟而PMOS電晶體276關 :曰曰體謂 m1。由於弟二控制電路260之 PMOS電晶體276關閉, δ , ^ v 觸發SCR 258之握住電壓 调IV至小於vdd之位準,例如The level of Vdd, for example, about 1 volt, causes the NMOS to trigger the SCR 23 to maintain the latched state. In addition, since the NMOS transistor 242 is turned on, the Nm0 trigger SCR 230 can be quickly turned on to discharge the ESD current. The eSD precautions'%% 224 will appear on the contact pad 250 with a positive ESD voltage clamp at approximately volts. 1 During negative-to-Vdd (ND) mode ESD, the capacitor 238 performs a portion of the ESD voltage that touches the pad 250 to the gate of the NMOS transistor 240 and the surface transistor 234. Therefore, the gates of the NMOS transistor 240 and the PMOS transistor 234 are negatively biased to cause the NMOS transistor 240 to be turned off and the% transistor 234 to be turned on. Due to the NMOS of the first control circuit 228. 224 240 is turned off, the PMOS triggers the holding voltage of the SCR 226 to be lowered to a level lower than γ, for example, about -1 volts, so that the PMOS triggers the SCR 226 to remain private or locked. In addition, since the PMOS transistor 234 is turned on, PMOS 226 can be turned on quickly to discharge ESD current. The ESD protection voltage will appear at the negative ESD voltage clamp of the contact pad 250 located in Yot. FIG. 13 shows an input stage ESD protection circuit & 252 according to another embodiment of the present invention. Please refer to FIG. 13, the ESD protection circuit 252 includes a PMOS touch sound 254, a first control circuit 256, an NMOS triggering SCR 258 and a first; 23 200522352 circuit 260. The PMOS trigger SCR 254 includes an SCR (not labeled) and a pMOS transistor 262. The first control circuit 256 includes a resistor 264, an inverter 266, and an NMOS transistor 268 ° NMOS triggering SCR 258 includes another SCR (not labeled) and an NMOS transistor 270. The second control circuit 260 includes a resistor 272, an inverter 274, and a PMOS transistor 276. During normal operation, as far as PMOS triggers SCR 254, inverter 266 provides a high voltage level to the gates of pmos transistor 262 and NMOS transistor 268 to turn off PMOS transistor 262 and turn on NMOS transistor 268. . Since the NMOS transistor 268 of the first control circuit 256 is turned on, the holding voltage of the PMOS trigger SCR 254 is raised to a level higher than ~, so that the PMOS trigger SCR 254 does not latch up. As far as the NMOS triggering SCR 258 is concerned, the inverter w provides a low level of waste to the junction of the NMQS transistor 27 and the pMOS transistor, so that the NMOS transistor 270 is turned off and off and the transistor 276 is turned on. Since the PMOS of the second control circuit 260 is turned on from the% crystal 276, the NM0S triggers the holding voltage of the SCR 258 to be raised to a high level, so that the NMOS triggers the SCR 258 without latching. During the PS mode ESD, and l. ≫ 'The phase generator 274 is biased by the PSD ESD voltage of the contact pad 278 to provide a voltage level to the NMOS transistor 270 and the PMOS transistor 276 q gate . Therefore, the gate of the NMOS transistor 270 and the PMOS transistor 276 | χ μ ^ 'Positive bias causes the NMOS transistor 艚 270 to turn on and the PMOS transistor 276 to turn off: the body name is m1. Since the PMOS transistor 276 of the second control circuit 260 is turned off, δ, ^ v triggers the holding voltage of SCR 258 and adjusts IV to a level less than vdd, for example
、、々1伏特,使NMOS觸發SCR 200522352 258保持於栓鎖狀態。此外,由於NMOS電晶體27〇開啟, NMOS觸發SCR 258能迅速開啟以排放ESD電流。ESD防 護電路252將出現在接觸墊片278之正極性ESD電壓箝位 於約1伏特。 在ND模式ESD期間,反相器266受接觸墊片278之 部分ESD電壓偏壓而提供一低電壓位準至NMOS電晶體 268與PMOS電晶體262之閘極。因此,NMOS電晶體268 與PMOS電晶體262之閘極受負偏壓使NMOS電晶體268 關閉而PMOS電晶體262開啟。由於第一控制電路256之 NMOS電晶體268關閉,PMOS觸發SCR 254之握住電壓 調降至小於Vdd之位準,例如約-1伏特,使PM〇s觸發SCR 254保持於栓鎖狀態。此外,由於pmos電晶體262開啟, PMOS觸發SCR 254能迅速開啟以排放ESD電流。ESD防 護電路252將出現在接觸墊片278之負極性ESD電壓籍位 於約-1伏特。 圖14為本發明實施例之輸出級ESD防護電路28〇。請 參閱圖14,ESD防護電路280包含PMOS觸發SCR 282、 第一控制電路284、NMOS觸發SCR 286及第二控制電路 288。PMOS觸發SCR 282包含一 SCR(未標號)與pM〇s電 晶體290。第一控制電路284包含電阻292、電容294及 NMOS電晶體296。NMOS觸發SCR 286包含另一 SCR(未 標號)與NMOS電晶體298。第二控制電路288包含電阻 3〇〇、電容302及PMOS電晶體304。第一緩衝器3〇6與第 二緩衝器308用來緩衝由内部電路(圖中未示)送出至接觸 25 200522352 墊片310之信號。 於正常操作期間,就PMOS觸發SCR 282而言,PM〇s 電晶體290與NMOS電晶體296之閘極經由電阻連接 至Vdd,使PMOS電晶體29〇關閉而Nm〇S電晶體296開 啟。由於第一控制電路284之NMOS電晶體296開啟,PM〇S 觸發SCR 282之握住電壓提高至高於Vdd之位準,使pM〇s 觸發SCR 282不致栓鎖。 另就NMOS觸發SCR 286而言,NMOS電晶體298與 PMOS電晶體304之閘極經由電阻3〇〇連接至vss,使NM0S 電晶體298關閉而PMOS電晶體304開啟。由於第二控制 電路288之PMOS電晶體304開啟,NMOS觸發SCR 286 之握住電壓提高至高於Vdd之位準,使NMOS觸發SCR 286 不致检鎖。 在PS模式ESD期間,電容302耦合接觸墊片31〇之 部分ESD電壓至NMOS電晶體298與PMOS電晶體3〇4 之閘極。因此,NMOS電晶體298與PMOS電晶體3〇4之 閘極受正偏壓使NMOS電晶體298開啟而PMOS電晶體3〇4 關閉。由於第二控制電路288之PM〇S電晶體3〇4關閉, NMOS觸發SCR 286之握住電壓調降至小於Vdd之位準, 例如約1伏特,使NMOS觸發SCR 286保持於栓鎖狀態。 此外,由於NMOS電晶體298開啟,NMOS觸發SCR 286 能迅速開啟以排放ESD電流。ESD防護電路280將出現在 接觸墊片310之正極性ESD電壓箝位於約!伏特。 在ND模式ESD期間,電容294耦合接觸墊片31〇之 26 200522352 部分ESD電壓至NM0S電晶體296與pM〇s電晶體別 之閘極。因此,NMOS電晶體296與PM〇s電晶體29〇之 閘極受負偏壓使NM〇S電晶體296關閉而PM0S電晶體29〇 開啟。由於第一控制電路284之NM〇s電晶體關閉, PMOS觸發SCR 282之握住電壓調降至小於Vdd之位準, 例如約]伏特,使PM0S觸發SCR 282保持於检鎖狀態。 此外,由於PM0S電晶體29〇開啟,pM〇s觸發_282 能迅速開啟以排放ESD電流。細防護電路將出現在 接觸墊片31〇之負極性咖電壓箝位於約4伏特。, 々 1 volt, so that NMOS triggers SCR 200522352 258 to remain locked. In addition, since the NMOS transistor 27 is turned on, the NMOS trigger SCR 258 can be turned on quickly to discharge ESD current. The ESD protection circuit 252 clamps the positive polarity ESD voltage appearing on the contact pad 278 to about 1 volt. During the ND mode ESD, the inverter 266 is biased by a portion of the ESD voltage of the contact pad 278 to provide a low voltage level to the gates of the NMOS transistor 268 and the PMOS transistor 262. Therefore, the gates of the NMOS transistor 268 and the PMOS transistor 262 are negatively biased so that the NMOS transistor 268 is turned off and the PMOS transistor 262 is turned on. Since the NMOS transistor 268 of the first control circuit 256 is turned off, the holding voltage of the PMOS triggering SCR 254 is adjusted to a level lower than Vdd, for example, about -1 volt, so that the PM0s triggering the SCR 254 is kept in the latched state. In addition, since the pmos transistor 262 is turned on, the PMOS trigger SCR 254 can be quickly turned on to discharge the ESD current. The ESD protection circuit 252 will appear at the negative ESD voltage of the contact pad 278 at about -1 volts. FIG. 14 is an output stage ESD protection circuit 28 of the embodiment of the present invention. Referring to FIG. 14, the ESD protection circuit 280 includes a PMOS triggering SCR 282, a first control circuit 284, an NMOS triggering SCR 286, and a second control circuit 288. The PMOS trigger SCR 282 includes an SCR (not labeled) and a pMOS transistor 290. The first control circuit 284 includes a resistor 292, a capacitor 294, and an NMOS transistor 296. The NMOS trigger SCR 286 includes another SCR (not numbered) and an NMOS transistor 298. The second control circuit 288 includes a resistor 300, a capacitor 302, and a PMOS transistor 304. The first buffer 306 and the second buffer 308 are used to buffer the signals sent from the internal circuit (not shown) to the contact pad 310 200522352. During normal operation, for the PMOS triggering SCR 282, the gates of the PMMOS transistor 290 and the NMOS transistor 296 are connected to Vdd via a resistor, so that the PMOS transistor 29 is turned off and the NMOS transistor 296 is turned on. Since the NMOS transistor 296 of the first control circuit 284 is turned on, the holding voltage of the PM0S triggering the SCR 282 is increased to a level higher than Vdd, so that the pM0s triggering the SCR 282 does not latch up. As far as the NMOS trigger SCR 286 is concerned, the gates of the NMOS transistor 298 and the PMOS transistor 304 are connected to vss via a resistor 300, so that the NMOS transistor 298 is turned off and the PMOS transistor 304 is turned on. Since the PMOS transistor 304 of the second control circuit 288 is turned on, the holding voltage of the NMOS triggering SCR 286 is increased to a level higher than Vdd, so that the NMOS triggering SCR 286 does not detect the lock. During the PS mode ESD, the capacitor 302 couples part of the ESD voltage of the contact pad 31 to the gate of the NMOS transistor 298 and the PMOS transistor 304. Therefore, the gates of the NMOS transistor 298 and the PMOS transistor 304 are positively biased so that the NMOS transistor 298 is turned on and the PMOS transistor 304 is turned off. Since the PMOS transistor 304 of the second control circuit 288 is turned off, the holding voltage of the NMOS triggering SCR 286 is adjusted to a level lower than Vdd, for example, about 1 volt, so that the NMOS triggering SCR 286 is kept in a latched state. In addition, because the NMOS transistor 298 is turned on, the NMOS trigger SCR 286 can be turned on quickly to discharge ESD current. The ESD protection circuit 280 will appear on the positive ESD voltage clamp of the contact pad 310 at about! volt. During the ND mode ESD, the capacitor 294 couples the contact pads 31 to 26 200522352 part of the ESD voltage to the gates of the NMOS transistor 296 and the pMOS transistor. Therefore, the gates of the NMOS transistor 296 and the PMOS transistor 29 are negatively biased to cause the NMOS transistor 296 to turn off and the PMOS transistor 29 to turn on. Since the NMOS transistor of the first control circuit 284 is turned off, the holding voltage of the PMOS triggering SCR 282 is adjusted to a level lower than Vdd, for example, about volts, so that the PMOS triggering SCR 282 is maintained in the lock detection state. In addition, since the PM0S transistor is turned on, pM0s trigger_282 can be turned on quickly to discharge ESD current. A thin protective circuit will appear on the contact pad 31 and the negative voltage clamp is located at about 4 volts.
圖Μ為本發明另一實施例之輸出級ESD防護電路 312 閱圖15,ESD防護電路312包含PMOS觸發SCR 314第拴制電路(未標號)、NMOS觸發SCR 316及第二 才工制迅路(未輮唬)。PM〇s觸發SCR 包含一 (未標 與PMOS電晶體318。第一控制電路包含電阻㈣、電 合及NMOS電晶體324。NMOS觸發SCR 316包含另 ^ 下號)與NM0S電晶體326。第二控制電路包含 迅阻/^反相器328及PM〇S電晶體33G。第—緩衝器 〃第、、爰衝為334用來緩衝由内部電路(圖中未示)送出 至接觸墊片336之信號。 出 於正常刼作期間,就PM〇s觸發scr 314而言,由電 阻320及電容322所組成的rc電路提供一高位準信號至 ΓΓ電晶體318與觀仍電晶體324之閘極以關閉PMOS 笔晶體318並聞# + 文NMOS龟晶體324。由於第一控制電路 之NMOS電晶辦^ # 甩日日體324開啟,PM〇s觸發SCR314i握住電 27 200522352 壓提高至高於Vdd之位準,使PMOS觸發SCR 314不致栓 鎖。 另就NMOS觸發SCR 316而言,此RC電路經由反相 器328提供一低電壓位準至NMOS電晶體326與PMOS電 晶體330之閘極使NMOS電晶體326關閉而PMOS電晶體 330開啟。由於第二控制電路之PMOS電晶體330開啟, NMOS觸發SCR 316之握住電壓提高至高於Vdd之位準, 使NMOS觸發SCR 316於正常操作期間不致栓鎖。 在PS模式ESD期間,部分ESD電流經由一寄生二極 體(圖中未示)流至Vdd線路,此寄生二極體係由第二緩衝 器334之PMOS電晶體(未標號)中的p型擴散區(圖中未示) 及η井區所形成。RC電路因時間延遲經由反相器3 2 8提供 一高電壓位準至NMOS電晶體326與PMOS電晶體330之 閘極使NMOS電晶體326開啟而PMOS電晶體330關閉。 由於第二控制電路之PMOS電晶體330關閉,NMOS觸發 SCR 316之握住電壓調降至小於Vdd之位準,例如約1伏 特,使NMOS觸發SCR 316保持於栓鎖狀態。此外,由於 NMOS電晶體326開啟,NMOS觸發SCR 316能迅速開啟 以排放ESD電流。ESD防護電路312將出現在接觸墊片336 之正極性ESD電壓箝位於約1伏特。 在ND模式ESD期間,部分ESD電流經由一寄生二極 體(圖中未示)流至Vss線路,此寄生二極體係由第二緩衝 器334之NMOS電晶體(未標號)中的η型擴散區(圖中未示) 及ρ井區所形成。由於電容322耦合接觸墊片336之部分 28 200522352 ESD電壓,RC電败 與PMOS電晶體3l/、一低電堡位準至NMOS電晶體324 PM0S電晶體3 1 8門=亟/吏NM〇S電晶體324關閉而 體似關閉,nTH弟Γ控制電路之N腦電晶 vdd之位準,例如m /14之握住電壓調降至小於 於栓鎖狀態。此外,由二二P聰觸發SCR 314保持FIG. M is an output stage ESD protection circuit 312 according to another embodiment of the present invention. Referring to FIG. 15, the ESD protection circuit 312 includes a PMOS triggering SCR 314 throttling circuit (not labeled), an NMOS triggering SCR 316 and a second working system fast circuit. (Unbluffed). The PM0s triggering SCR includes one (not labeled with PMOS transistor 318. The first control circuit includes a resistor ㈣, a combination, and an NMOS transistor 324. The NMOS triggering SCR 316 includes another number below) and an NMOS transistor 326. The second control circuit includes a fast resistor / inverter 328 and a PMOS transistor 33G. The first—buffer The first, second, and third punches are 334 to buffer the signal sent from the internal circuit (not shown) to the contact pad 336. During normal operation, as far as PM0s triggers scr 314, the rc circuit composed of resistor 320 and capacitor 322 provides a high level signal to the gates of ΓΓ transistor 318 and transistor 324 to turn off PMOS.笔 晶 318 和 闻 # + 文 NMOS 龟 晶 324. As the first control circuit's NMOS electronic crystal office ^ # turned on, the PM s triggers the SCR314i to hold the power 27 200522352 The voltage is raised to a level higher than Vdd, so that the PMOS triggers the SCR 314 without latching. As for the NMOS triggering SCR 316, the RC circuit provides a low voltage level to the gate of the NMOS transistor 326 and the PMOS transistor 330 via the inverter 328 to turn off the NMOS transistor 326 and turn on the PMOS transistor 330. Since the PMOS transistor 330 of the second control circuit is turned on, the holding voltage of the NMOS triggering SCR 316 is increased to a level higher than Vdd, so that the NMOS triggering SCR 316 does not latch up during normal operation. During PS mode ESD, part of the ESD current flows to the Vdd line through a parasitic diode (not shown). This parasitic diode system is diffused by the p-type in the PMOS transistor (not labeled) of the second buffer 334. Area (not shown) and η well area. The RC circuit provides a high voltage level to the gates of the NMOS transistor 326 and the PMOS transistor 330 through the inverter 3 2 8 due to the time delay, so that the NMOS transistor 326 is turned on and the PMOS transistor 330 is turned off. Since the PMOS transistor 330 of the second control circuit is turned off, the holding voltage of the NMOS triggering SCR 316 is adjusted to a level lower than Vdd, for example, about 1 volt, so that the NMOS triggering SCR 316 is kept in a latched state. In addition, since the NMOS transistor 326 is turned on, the NMOS trigger SCR 316 can be turned on quickly to discharge ESD current. The ESD protection circuit 312 will clamp the positive ESD voltage appearing on the contact pad 336 at about 1 volt. During the ND mode ESD, part of the ESD current flows to the Vss line through a parasitic diode (not shown). This parasitic diode system is diffused by the n-type in the NMOS transistor (not labeled) of the second buffer 334 Area (not shown) and ρ well area. Because the capacitor 322 is coupled to the part of the contact pad 336 28 200522352 ESD voltage, the RC power failure and the PMOS transistor 3l /, a low power level to the NMOS transistor 324 PM0S transistor 3 1 8 gate = urgent / official NM〇S The transistor 324 is turned off and the body seems to be turned off. The nTH control circuit controls the level of the NEG crystal vdd of the circuit, for example, the holding voltage of m / 14 is adjusted to be less than the latched state. In addition, the SCR 314 hold is triggered by the two two P Satoshi
觸發SCR3H能迅速門啟乂排放電晶體318開啟,PM〇S 3 ! 2將出現在接觸墊/ 3 = 放:Dp電流。湖防護電路 蝥片336之負極性ESD電壓箝位於約 伏特。Triggering the SCR3H can quickly open the door and the discharge transistor 318 is turned on. PM0S 3! 2 will appear on the contact pad / 3 = discharge: Dp current. Lake protection circuit The negative ESD voltage clamp of cymbal 336 is located at about volts.
圖16為本發明實施例之混壓輸人輪出級ESD防護命 路338。請參_ 16,咖防護電路说包含pM〇s觸^ SCR 34〇及控制電路(未標號)。pM〇s觸發scr謂包含二 卿(未標號)與PM0S電晶體342。控制電路包含電阻 電容346及NMOS電晶體348。 4、 於正常操作期間,由電阻糾及電容346所組成的. 電路提供—高位準信號至刪⑽電晶體348與PM〇s你FIG. 16 is an ESD protection life path 338 for a mixed pressure human wheel output stage according to an embodiment of the present invention. Please refer to _16. The coffee protection circuit includes pM0s ^ SCR 34o and control circuit (not labeled). The pM0s trigger scr is said to contain two crystals (not labeled) and a PMOS transistor 342. The control circuit includes a resistor and capacitor 346 and an NMOS transistor 348. 4. During normal operation, it is composed of resistors and capacitors 346. Circuit supply-high level signal to delete transistor 348 and PM〇s you
2 342之間極以開啟NM0S電晶體348並關閉PM0“ ( f由於控制電路之麵⑽電晶體348開啟,\ 觸發SCR 340之握住命感但含。上 ^ 住屯壓挺向至向於Vdd之位準,使ρΜγBetween 2 and 342, the NM0S transistor 348 is turned on and the PM0 is turned off. "(Since the control circuit is turned on, the transistor 348 is turned on, which triggers the SCR 340 to hold the sense of life, but it is included. Top ^ Sumtun presses to the end The level of Vdd makes ρΜγ
觸發SCR 340不致栓铝。於τ W 鎖於正$知作期間,PMOS電晶& 342可能因正極性源極關 ^ 、p $ 5對閘極电壓之存在而意外開啟,込 漏電流。在本發明實施例中,為防止pm〇s電晶體 正常操作期間產生漏泰士,在脸_ 4 2方 兒肌係將二極體串350連接至 觸發 SCR 340。 29 200522352 在ESD期間’例如有正極性ESD出現在接觸墊片 ESD電流經由-寄生二極體354流至二極體串35_p_ 觸發SCR 340,此寄生二極體354係由_s電晶體 之没極(未標號)與基體(未標號)所形《。由於時間延遲 電路提供一低位準信號至nmos帝曰純 u主M〇s電晶體348與PMOS %曰 體342之閘極以關閉NMOS雷曰辦〜〇 曰曰 兒日日體348並開啟PMOS電晶 體342。由於NMOS電晶艚34s明甩日日 兒曰曰體348關閉,PMOS觸發SCR340 之握住電壓調降至小於V之彳進 位旱’使PMOS觸發SCR 340 保持於栓鎖狀態。此外,由於PlUnc +Triggering the SCR 340 does not cause aluminum bolting. During the period when τ W is locked in the positive phase, the PMOS transistor & 342 may be accidentally turned on due to the existence of the positive-polarity source switch ^, p $ 5 to the gate voltage, and leakage current. In the embodiment of the present invention, in order to prevent the leakage of the PMOS transistor during normal operation, a diode string 350 is connected to the trigger SCR 340 in the face 42 muscle system. 29 200522352 During ESD, for example, positive polarity ESD appears in the contact pad. ESD current flows through -parasitic diode 354 to diode string 35_p_ triggers SCR 340. This parasitic diode 354 is controlled by _s transistor. Shaped by pole (unlabeled) and base (unlabeled). Because the time delay circuit provides a low level signal to the gate of nmos pure u master MOS transistor 348 and the gate of PMOS% body 342 to turn off the NMOS thundering body ~ 0 day and day body 348 and turn on the PMOS power Crystal 342. Since the NMOS transistor 34s will be turned off tomorrow, the PMOS triggers the holding voltage of the SCR340 to be lowered to less than the V's carry dry ', so that the PMOS triggers the SCR 340 to remain locked. Also, since PlUnc +
、M〇s电晶體342開啟,PMOS 觸發隱描能迅速開啟以排放咖電流。HD防護電路 =將正=ESD電壓籍位於低於^之位準,而此位準 須視一極體串350中之二極體數目而定。 圖17為本發明實施例之混壓命 夕命攸-立岡咬▲ i包源ESD防護電路33δ 之电路m 17 ’此電路 例所討論之連接於高電壓線路 ^文所心: ^ . ”低包壓線路間之ESD防護 黾路358外,逖包含連接於兩苦 低帝壓蝮路V V 问電壓線路V如、Vdd2與兩 低电壓線路Vw、VSS2間之ESD防講帝 圖18為本發明實施例使用NM〇f 60。 壓電源ESD防護電路362 胃發SCR 364之混 罐帝攸、查拉认- #芩閱圖18,ESD防 4包路362連接於第—電源線路 之門。λ —杏浐办丨士 、弟二電源線路370 之間。在一貝轭例中,第一雷 370比Λ古愿+、盾綠 "、、、桌路368與第二電源線路 370 ^為冋壓電源線路,例如 〜2。在另—實施例中,第ι =相同電壓位準之 370比Α板壓+、/5綠 Λ、、、Ι路368與第二電源線路 370皆為低麼電源線路,例如相 、'相同電壓位準之Vssl、 200522352When the Mos transistor 342 is turned on, the PMOS trigger can be turned on quickly to discharge the coffee current. HD protection circuit = set positive = ESD voltage at a level below ^, and this level depends on the number of diodes in a pole string 350. FIG. 17 is an example of a mixed-voltage life-saving circuit in the embodiment of the present invention-Li Gang bit ▲ circuit m 17 of the i-source ESD protection circuit 33 δ 'The circuit example discussed is connected to a high-voltage line. ^ Heart: ^. ”Low The ESD protection circuit 358 between the enclosed lines includes the ESD protection circuit connected between the two low voltage circuits VV and the voltage lines V such as Vdd, Vdd2 and the two low voltage lines Vw and VSS2. Figure 18 shows the present invention. The embodiment uses NM〇f 60. The power supply ESD protection circuit 362 Weifa, SCR 364, and the mixed tank Diyao and Chalachen-# See Figure 18, ESD protection 4 packet road 362 is connected to the first-power line door. Λ —Apricot and prince power line 370. In a yoke example, the first thunder 370 is better than Λ ancient wish +, shield green, ", table road 368 and the second power line 370 ^ Press the power supply line, for example ~ 2. In another embodiment, the ι = 370 of the same voltage level is lower than the A plate voltage +, / 5 green, Λ, Ι, 368, and the second power line 370 are all lower. Power line, such as phase, Vssl of the same voltage level, 200522352
Vss2。ESD防護電路362包括NM〇s觸發SCR 364及一控 制電路366。NMOS觸發SCR364包含一SCR(未標號)與 NMOS電晶體372。控制電路366包含電阻374、電容376 及PM0S電晶體378。 假設第一電源線路368之電壓位準高於第二電源線路 370之電壓位準,例如Vddi>Vdd2,於正常操作期間,由電 阻374及黾谷376所組成的RC電路提供vdd2之電壓位準 至NMOS電晶體372與PM0S電晶體378之閘極。此時, PMOS電晶體378為開啟因其源極電位,即vddl,大於其 問極電位Vdd2。同時,NM0S電晶體372為關閉因其閘極 與源極等電位,皆為Vdd2。由於控制電路366之電 晶體378開啟,NM0S觸發SCR 364之握住電壓提高至高 於Vddl之位準’使NMOS觸發SCR 364不致栓鎖。 如有正極性ESD出現在Vddl線路368且Vdd2線路37〇 接地,由於電容376耦合部分之ESD電壓,RC電路提供 一正電壓至NMOS電晶體372與PMOS電晶體378之閘、 極’使NMOS電晶體372關閉而PMOS電晶體378開I 由於控制電路366之PM0S電晶體378關閉,NM〇s觸笋 SCR 364之握住電壓調降至小於vdd1之位準,例如約! ^ 特,使NMOS觸發SCR 364保持於栓鎖狀態。此外,由於 NMOS電晶體372開啟’ NM〇s觸發sCr 364能迅速開啟 以排放ESD電流,並將正極性ESD電壓箝位於約1伏特。 如有負極性ESD出現在Vdd2線路370且Vddl線路368 接地,由於時間延遲,RC電路提供一接地電壓至NlvI〇s 200522352 電晶體372與PM0S電晶體378之間極。此時,pM〇 = 其源極與閘極等電位1祕地電位。Vss2. The ESD protection circuit 362 includes a NMOS triggering SCR 364 and a control circuit 366. The NMOS trigger SCR 364 includes an SCR (not labeled) and an NMOS transistor 372. The control circuit 366 includes a resistor 374, a capacitor 376, and a PMOS transistor 378. It is assumed that the voltage level of the first power line 368 is higher than the voltage level of the second power line 370, such as Vddi > Vdd2. During normal operation, the RC circuit composed of resistor 374 and Kariya 376 provides the voltage level of vdd2. To the gate of NMOS transistor 372 and PMOS transistor 378. At this time, the PMOS transistor 378 is turned on because its source potential, that is, vddl, is greater than its interrogation potential Vdd2. At the same time, the NMOS transistor 372 is turned off because its gate and source equipotential are both Vdd2. Since the transistor 378 of the control circuit 366 is turned on, the holding voltage of the NMOS triggering the SCR 364 is raised to a level higher than Vddl ', so that the NMOS triggering the SCR 364 does not latch up. If positive ESD appears on Vddl line 368 and Vdd2 line 37 °, the RC circuit provides a positive voltage to the gate and pole of NMOS transistor 372 and PMOS transistor 378 due to the ESD voltage of the coupling portion of capacitor 376. The crystal 372 is turned off and the PMOS transistor 378 is turned on. Because the PM0S transistor 378 of the control circuit 366 is turned off, the holding voltage of NM0s touching the SCR 364 is adjusted to a level less than vdd1, for example, about! ^ In particular, the NMOS-triggered SCR 364 is kept in a latched state. In addition, since the NMOS transistor 372 is turned on, the NMCr triggers sCr 364 to turn on quickly to discharge the ESD current, and clamps the positive-polarity ESD voltage to about 1 volt. If negative ESD occurs on Vdd2 line 370 and Vddl line 368 is grounded, due to time delay, the RC circuit provides a ground voltage to between Nlv10s 200522352 transistor 372 and PM0S transistor 378. At this time, pM0 = its source and gate equipotential potentials.
苞晶體372為開啟因其閘極電 電位。由於控制電路366之PM0S電曰體37位大於其源核 ςΓΤ? 私日日體378關閉,NMOS 觸…364之握住電壓調降至小於 觸發一保持於拾鎖狀態。同時 产,並將^ Γ CR 364能迅速開敬以排放咖電 "L亚將負極忮ESD電壓箝位於約q伏特。 接地如有出現在Vdd2線路37°足V-線路368 二二為順偏’將正極性-電壓一 _、躺唑ESD出現在vdd]線路368且vdd2線路370 —極—380為頻偏,將負極性ESD電壓箝位於二極 體380之臨界電壓。 t ^ esd 11! I !8? ",J ^ ^ pmos ^ ^ SCR 3 84 ^ ^ ^ 電路叱連:第路3!?之電路圖。請參閱圖™護 門。在一一a 、弟屯源線路388與第二電源線路390之 比么古^貝也例中,第一電源線路388與第二電源線路390 问垫電源線路,例如相異或相同電壓位準之、Bract crystal 372 is turned on due to its gate potential. As the 37th position of the PM0S circuit of the control circuit 366 is larger than its source core, the private daytime body 378 is turned off, the holding voltage of the NMOS touch ... 364 is adjusted to be lower than the trigger one to maintain the locked state. At the same time, CR 364 can be quickly opened to discharge electricity " L sub-negative 忮 ESD voltage clamp is located at about q volts. If the ground appears on the Vdd2 line, 37 °, the V-line 368 is two-way forward. 'Positive polarity-voltage one _, the Ezdazole ESD appears on the vdd] line 368 and the vdd2 line 370 —pole — 380 is the frequency offset. The negative polarity ESD voltage clamp is located at the threshold voltage of the diode 380. t ^ esd 11! I! 8? ", J ^ ^ pmos ^ ^ SCR 3 84 ^ ^ ^ Circuit connection: Circuit diagram of No. 3!?. See Figure ™ Guard. In a 11a, the ratio of the Ditun source line 388 to the second power supply line 390 is also an example, the first power supply line 388 and the second power supply line 390 ask for power supply lines, such as different or the same voltage level Of,
Vdd2。在另一會从,,丄 39〇皆為低壓^ 第一電源線路388與第二電源線路 V 2。原、,泉例如相異或相同電壓位準之、 制S★路q 、電路382包括PM0S觸發SCR 384及一控 电86。PM〇S觸發SCR 384包含 未俨 PMOS雷θ騁) bCR(禾唬)與 日日體392。控制電路386包含電阻州、電容州 32 200522352 及NM0S電晶體398。 假二第一電源線路388之電壓位準高於第二電源線路 390之電壓位準,例如Vdcu>Vdd2,於正常操作期間,由電 阻394及電容396所組成的Rc電路提供v如之電壓位準 至PMOS電晶體392與NMOS電晶體398之閘極。此時, 丽〇二電晶體398為開啟因其間極電位,即,大於其 源極迅位vdd2。同日寺,PM0S電晶體392為關閉因其閘極 14源極等兒位,皆為Vddi。由於控制電路之電 晶體外8開啟,PM〇s觸發SCR 384之握住電壓提高至高鬌 於vdd〗之位準,使PM〇s觸發scr 384不致栓鎖。 如有正極性ESD出現在Vdd〗線路388且Vdd2線路39〇 接地由於時間延遲,RC電路輸出一接地電壓至PM〇s電 晶體392與NM0S電晶體398之閘極。此時,nm〇s電晶 體398為_因其源極與閘極等電位皆為接地電位。此外, PMOS兒晶體392為開啟因其源極電位大於其閘極電位。 由於控制電路386之NMOS電晶體398關閉,PMOS觸菸 SCR 384之握住電璧調降至小於、約1伏特Μ吏PM〇S觸^· SCR 384保持於栓鎖狀態。同時,由於pM〇s電晶體 開啟,PMOS觸發SCR 384能迅速開啟以排放ESD電谅 並將正極性ESD電壓箝位於約1伏特。 甩机, 如有負極性ESD出現在Vdd2線路390且V%線路3 接地,由於電容396耦合部分之ESD電壓,Rc電路 一負電壓至PMOS電晶體392與NMOS電晶體3% ^七、 δ之間 極’使PM〇S電晶體392開啟而nm〇S電晶體39 關閉。 33 200522352 由於控制電路386之NMOS電晶體398關閉,PMOS觸發 SCR 384之握住電壓調降至小於Vdd]之位準,例如約-1伏 特,使PMOS觸發SCR 3 84保持於栓鎖狀態。此外,由於 PMOS電晶體392開啟,PMOS觸發SCR 3 84能迅速開啟 以排放ESD電流,並將負極性ESD電壓箝位於約-1伏特。 如有正極性ESD出現在Vdd2線路390且Vddl線路388 接地,二極體400為順偏,將正極性ESD電壓箝位於二極 體400之臨界電壓。 如有負極性ESD出現在Vddl線路388且Vdd2線路390 接地,二極體400為順偏,將負極性ESD電壓箝位於二極 體400之臨界電壓。 本發明因此提供一種靜電放電之防護方法,包括提供 一個具有握住電壓之矽控整流器(SCR),以及控制SCR之 握住電壓使其高於或低於一電源電壓Vdd。詳言之,本發明 之方法於正常操作期間將握住電壓提升至高於vdd以使 SCR不致栓鎖,以及於ESD期間將握住電壓調降至低於 Vdd以使SCR保持於栓鎖狀態。 圖20A為本發明實施例之SCR 500的剖視圖。SCR 500 之結構與圖5之SCR 84或圖9之SCR 128相似,但圖5 控制電路86之NMOS電晶體107或圖9控制電路186之 NMOS電晶體188係埋入於SCR 500中。將原本控制電路 中之MOS電晶體整合至SCR中可簡化SCR佈局,減小SCR 尺寸以及簡化控制電路之複雜度。 請參閱圖20A,SCR 500包括一 p型基體502、一 η型 34 200522352 井區 504、一形成於η型井區504内之第一 P型擴散區506、 個部份形成於η井區504内之第二p型擴散區508、一個 刀形成於另—η井區512之第一 η型擴散區510、以及一 :成於Ρ型基體502内之第二η型擴散區514。第二η型擴 月丈區514藉由一金屬層或自動對準金屬矽化物(salicide)層 5 16連接* 5楚一 , 乐一P型擴散區508。P型電晶體520與η型電 日日體530與scr 500積體成型。ρ型電晶體520具有一閘 極522、一側壁間隔層524以及一形成於η井區$⑽内之通 ^ (未&號)。第一 Ρ型擴散區506與第二ρ型擴散區508 】作為Ρ型電晶體520之源極與沒極。η型電晶體530 八有閘極532、一側壁間隔層534以及一形成於ρ型基體 ^02。内之通逼(未標號)。第一 η型擴散區510與第二η型擴 散區514分別作為η型電晶體53〇之源極與汲極。ρ型電 3 520之作用在於促ISCR 500開啟。η型電晶體53〇 用則在於控制SCR 5〇〇之握住電壓。 料化層54〇係用以提供電氣絕緣。做為scr 之 的^一 ^擴散區506連接至接觸塾片55〇。做為SCI 位準(二㈣ST型擴散區510則連接至參考電位或㈣ 連接至—電源線路,例例中’弟—P型擴散區別 具有:電阻=上:路6。°。控制電路_ 與電容―成之電阻電容電路— 間延遲,"-脈衡之15。至3。。、二 35 200522352 為長。控制電路600連接於第一電源線路如vdd與第二電 源線路如Vss之間。輸出端606連接至圖2〇a所示之閘極 522、532。由SCR 500與控制電路600所提供之ESD防護 作用與圖5之ESD防遵電路82或圖9之ESI3防護電路1 $ 4 相似。 請參閱圖20A與20B,於正常操作期間,閉極522、 532偏壓於高電壓位準Vdd,使p型電晶體52〇關閉而n型 電晶體530開啟。控制電路600由於η型電晶體530之開 啟而主現出比SCR 500之基體電阻為小的阻值。scr 500 之握住電壓提高到Vdd之上,使SCR 500不致检鎖。 於ESD期間,閘極522、532由於電阻電容電路所提 供之時間延遲而偏壓於低電壓位準Vss,使p型電晶體52〇 開啟而η型電晶體530關閉。控制電路600由於、型電晶 體530之關閉而呈現出比sCR 500之基體電卩且為大之阻 值。SCR 500之握住電壓降低至、之下,使隱,保 持检鎖狀恶以排放E S D電流。 圖21為本發明另一實施例之ESD防護電路62〇。ESD 防複電路620具有-個SCR 5〇〇、—個pM〇s電晶體52〇、 一個NMOS電晶體530以及一個控制電路6〇〇。控制電路 6〇〇連接於第一電源線路Vdd與第二電源線路Vss之間。scr 5〇〇連接於接觸墊片550與第二電源線路Vss之間。pM〇s 電晶體520與NM0S電晶體53〇係與scr 5〇〇積體成形。 於正系操作期間,控制電路6〇〇提供一第一電壓位準 Vdd至PMOS電晶體520與丽〇s電晶體53〇,從而提供一 36 200522352 個高於Vdd之第一握住電壓至SCR 500,使SCR 500不致 栓鎖。 於ESD期間,例如有正極性ESD脈衝出現在接觸墊片 550且第二電源線路Vss接地,控制電路6〇〇提供一第二電 壓位準Vss至PMOS電晶體520與NMOS電晶體530,從 而提供一個低於Vdd之第二握住電壓至SCR 500,使SCR 500保持於栓鎖狀態’將ESD脈衝由接觸墊片550排放至 弟^一電源線路V s s。Vdd2. In another meeting, 丄 39〇 is a low voltage ^ the first power line 388 and the second power line V 2. For example, the source voltage is different or the same voltage level, the control circuit Q, the circuit 382 includes a PM0S trigger SCR 384 and a control circuit 86. PM0S triggers SCR 384, including un- PMOS thunder θ) bCR (hew) and sun-day body 392. The control circuit 386 includes a resistor state, a capacitor state 32 200522352, and an NMOS transistor 398. The voltage level of the first power line 388 is higher than the voltage level of the second power line 390, such as Vdcu > Vdd2. During normal operation, an Rc circuit composed of a resistor 394 and a capacitor 396 provides a voltage such as The gates of the PMOS transistor 392 and the NMOS transistor 398 are aligned. At this time, the LED 398 is turned on due to the inter-electrode potential, that is, greater than its source bit vdd2. On the same day temple, PM0S transistor 392 is closed because of its gate 14 source and other bits, all are Vddi. Because the transistor 8 of the control circuit is turned on, the holding voltage of PM0s triggering SCR 384 is increased to a level higher than vdd, so that PM0s triggers scr 384 without latching. If there is a positive polarity ESD on the Vdd line 388 and the Vdd2 line 39. Ground. Due to the time delay, the RC circuit outputs a ground voltage to the gate of the PMOS transistor 392 and the NMOS transistor 398. At this time, the nm os transistor 398 is at _ because its source and gate potentials are both ground potentials. In addition, the PMOS crystal 392 is turned on because its source potential is greater than its gate potential. Since the NMOS transistor 398 of the control circuit 386 is turned off, the PMOS touch smoke SCR 384's holding voltage is reduced to less than about 1 volt, and the PM0S touch ^ SCR 384 remains in the latched state. At the same time, because the pMOS transistor is turned on, the PMOS trigger SCR 384 can be turned on quickly to discharge the ESD voltage and clamp the positive polarity ESD voltage to about 1 volt. Shake off, if negative ESD appears on Vdd2 line 390 and V% line 3 is grounded, due to the ESD voltage of the coupling part of capacitor 396, a negative voltage from the Rc circuit to PMOS transistor 392 and 3% of NMOS transistor ^ 7, δ The intermediate electrode turns on the PMOS transistor 392 and the nmMOS transistor 39 turns off. 33 200522352 As the NMOS transistor 398 of the control circuit 386 is turned off, the holding voltage of the PMOS triggering SCR 384 is adjusted to a level lower than Vdd], for example, about -1 volts, which keeps the PMOS triggering SCR 3 84 in the latched state. In addition, since the PMOS transistor 392 is turned on, the PMOS trigger SCR 384 can be turned on quickly to discharge the ESD current and clamp the negative polarity ESD voltage to about -1 volts. If the positive ESD occurs on the Vdd2 line 390 and the Vddl line 388 is grounded, the diode 400 is forward biased, and the positive ESD voltage is clamped to the threshold voltage of the diode 400. If the negative polarity ESD appears on the Vddl line 388 and the Vdd2 line 390 is grounded, the diode 400 is forward biased, and the negative polarity ESD voltage is clamped to the threshold voltage of the diode 400. The present invention therefore provides a method for protecting against electrostatic discharge, including providing a silicon controlled rectifier (SCR) with a holding voltage, and controlling the holding voltage of the SCR to be higher or lower than a power supply voltage Vdd. In detail, the method of the present invention raises the holding voltage to higher than vdd during normal operation so that the SCR does not latch up, and reduces the holding voltage to below Vdd during ESD to keep the SCR in the locked state. FIG. 20A is a cross-sectional view of an SCR 500 according to an embodiment of the present invention. The structure of the SCR 500 is similar to the SCR 84 of FIG. 5 or the SCR 128 of FIG. 9, but the NMOS transistor 107 of the control circuit 86 of FIG. 5 or the NMOS transistor 188 of the control circuit 186 of FIG. 9 is embedded in the SCR 500. Integrating the MOS transistor in the original control circuit into the SCR can simplify the layout of the SCR, reduce the size of the SCR, and simplify the complexity of the control circuit. Referring to FIG. 20A, the SCR 500 includes a p-type substrate 502, an n-type 34 200522352 well region 504, a first P-type diffusion region 506 formed in the n-type well region 504, and a portion formed in the n-well region 504. A second p-type diffusion region 508 inside, a first n-type diffusion region 510 formed in another -n-well region 512, and a second n-type diffusion region 514 formed in the P-type substrate 502. The second n-type expanded region 514 is connected through a metal layer or a self-aligned metal silicide layer 5 16 * 5 Chu-I, Le-P-type diffusion region 508. The P-type transistor 520 and the n-type solar element 530 and the scr 500 are integrally formed. The p-type transistor 520 has a gate electrode 522, a sidewall spacer layer 524, and a through hole (not shown) formed in the n-well region. The first P-type diffusion region 506 and the second p-type diffusion region 508 are used as a source and an electrode of the P-type transistor 520. The n-type transistor 530 has a gate electrode 532, a sidewall spacer 534, and a p-type substrate ^ 02. Nei Tongtong (not labeled). The first n-type diffusion region 510 and the second n-type diffusion region 514 serve as the source and the drain of the n-type transistor 53. The role of the p-type electric 3 520 is to promote the opening of the ISCR 500. The n-type transistor 53 is used to control the holding voltage of the SCR 500. The materialized layer 54 is used to provide electrical insulation. The diffusion region 506 as the scr is connected to the contact pad 55. As the SCI level (two ㈣ ST-type diffusion regions 510 are connected to a reference potential or ㈣ is connected to a-power line, in the example, the difference between the "P-P" type diffusion is: resistance = on: way 6. °. Control circuit _ and Capacitance-Chengzhi's resistance-capacitance circuit-Delay, "pulse balance of 15. to 3 ...., 20052352 is long. The control circuit 600 is connected between the first power line such as vdd and the second power line such as Vss The output terminal 606 is connected to the gate electrodes 522 and 532 shown in Fig. 20a. The ESD protection provided by the SCR 500 and the control circuit 600 and the ESD compliance circuit 82 of Fig. 5 or the ESI3 protection circuit of Fig. 9 $ 4 is similar. Please refer to FIGS. 20A and 20B. During normal operation, the closed electrodes 522, 532 are biased to the high voltage level Vdd, so that the p-type transistor 52 is turned off and the n-type transistor 530 is turned on. The transistor 530 is turned on and the main resistance is smaller than that of the SCR 500. The holding voltage of the scr 500 is increased above Vdd, so that the SCR 500 does not detect the lock. During the ESD period, the gates 522, 532 Biased to low voltage level Vss due to the time delay provided by the resistor-capacitor circuit, making the p-type The crystal 52 is turned on and the n-type transistor 530 is turned off. The control circuit 600 exhibits a larger resistance than the sCR 500's base due to the shutdown of the type transistor 530. The holding voltage of the SCR 500 is reduced to In this way, the hidden lock is kept to keep the lock-shaped evil to discharge the ESD current. Fig. 21 is an ESD protection circuit 62 of another embodiment of the present invention. The ESD anti-recovery circuit 620 has one SCR 500 and one pM0s. The crystal 52, an NMOS transistor 530, and a control circuit 600. The control circuit 600 is connected between the first power line Vdd and the second power line Vss. The scr 500 is connected to the contact pad 550 and the first Between the two power supply lines Vss. The pM0s transistor 520 and the NMOS transistor 53o are integrated with the scr 5000. During the positive system operation, the control circuit 600 provides a first voltage level Vdd to PMOS Transistor 520 and Ress transistor 53 are used to provide a 36 200522352 first holding voltage higher than Vdd to SCR 500, so that SCR 500 does not latch up. During ESD, for example, positive ESD pulses appear in The contact pad 550 and the second power line Vss are grounded, and the control circuit 6 〇Provide a second voltage level Vss to PMOS transistor 520 and NMOS transistor 530, so as to provide a second holding voltage lower than Vdd to SCR 500 to keep SCR 500 in a latched state. The gasket 550 is discharged to the first power line V ss.
圖22為本發明又一實施例之ESD防護電路64〇。esd 防護電路640之結構與ESD防護電路620相似,但SCR 500 係連接於弟一電源線路Vdd與第二電源線路\^ss之間。於 ESD期間,例如有正極性ESD脈衝出現在第一電源線路 Vdd且第二電源線路vss接地,控制電路600提供一第二電 壓位準Vss至PMOS電晶體520與NMOS電晶體530,從 而提供一個低於Vdd之第二握住電壓至SCR 500,使SCR 500保持於栓鎖狀態。ESD脈衝由第一電源線路Vdd排放至 弟二電源線路Vss。 圖23為本發明再一實施例之ESD防護電路660。ESD 防護電路660具有多個SCR 5〇(M、5〇〇_2 5〇〇_n與 500_p,以及一個控制電路6〇〇。以SCR 5〇〇_n為代表,其 具有一個PM〇S電晶體520_n與一個NMOS電晶體530-n, 皆與SCR 500-n積體成形。控制電路6〇〇具有一輸出端6〇6 連接至該等SCR之PM〇s與NM〇s電晶體之閘極(未標 號)SCR 500 p連接於弟一電源線路vdd與第二電源線路 200522352FIG. 22 is an ESD protection circuit 64o according to another embodiment of the present invention. The structure of the esd protection circuit 640 is similar to the ESD protection circuit 620, but the SCR 500 is connected between the first power line Vdd and the second power line \ ^ ss. During the ESD period, for example, a positive polarity ESD pulse appears on the first power line Vdd and the second power line vss is grounded, the control circuit 600 provides a second voltage level Vss to the PMOS transistor 520 and the NMOS transistor 530, thereby providing a The second holding voltage lower than Vdd reaches the SCR 500, so that the SCR 500 is kept in a latched state. The ESD pulse is discharged from the first power line Vdd to the second power line Vss. FIG. 23 is an ESD protection circuit 660 according to another embodiment of the present invention. The ESD protection circuit 660 has a plurality of SCRs 50, 500, 500, and 500_p, and a control circuit 600. As an example, the SCR 500 has a PMS Transistor 520_n and an NMOS transistor 530-n are integrated with SCR 500-n. The control circuit 600 has an output terminal 606 connected to the PM0s and NMOS transistors of these SCRs. Gate (not labeled) SCR 500 p is connected to the first power line vdd and the second power line 200522352
Vss之間。每一個SCR 5004、500-2…500-n與連接於一個 相對應之接觸墊片550-1、550-2…550-n與第二電源線路Vss between. Each SCR 5004, 500-2 ... 500-n is connected to a corresponding contact pad 550-1, 550-2 ... 550-n and a second power line
Vss之間。 於正常操作期間,控制電路600經由此等PMOS與 NMOS電晶體提供一第一握住電壓至SCR 500-1、500-2… 500-n與500-p,使此等SCR不致栓鎖。 如有正極性ESD脈衝出現在某一接觸墊片,例如是接 觸墊片550-1,且第一電源線路Vdd接地,控制電路600經 由此等PMOS與NMOS電晶體提供一第二握住電壓至SCR 500-1、500-2…500-n與500-p,使此等SCR保持於栓鎖狀 態。ESD脈衝則由接觸墊片550-1經第二電源線路Vss排放 至第一電源線路Vdd,此為第一路徑P1。 如有正極性ESD脈衝出現在第一電源線路Vdd且某一 接觸墊片接地,例如是接觸墊片550-1,控制電路600經由 此等PMOS與NMOS電晶體提供一第二握住電壓至SCR 50(M、500-2…500-n與500-p,使此等SCR保持於栓鎖狀 態。ESD脈衝則由第一電源線路Vdd經第二電源線路Vss 排放至接觸墊片550-1,此為第二路徑P2。 如有正極性ESD脈衝出現在某一接觸墊片,例如是接 觸墊片550-2,且另一接觸墊片接地,例如是接觸墊片 550-n,控制電路600經由此等PMOS與NMOS電晶體提供 一第二握住電壓至 SCR 500-1、500-2 …500-n 與 500-p, 使此等SCR保持於栓鎖狀態。ESD脈衝則由接觸墊片550-2 經第二電源線路Vss排放至接觸墊片550-n,此為第三路徑 38 200522352 本發明亦提供一種靜電放電(ESD)之防護方法。提供一 個具有一握住電壓之矽控整流器(SCR)。將一個PM〇s電晶 體及一個NMOS電晶體與SCR積體成型。PMOS電晶體具 有一第一閘極,而NMOS電晶體則具有一第二閘極。在第 一狀況期間,提供一第一信號至第一與第二閘極來提高 SCR之握住電壓,使SCR不致栓鎖。在第二狀況期間,提 供一第一 k號至第一與第二閘極來降低SCR之握住電壓, 使SCR保持於栓鎖狀態。Vss between. During normal operation, the control circuit 600 provides a first holding voltage to the SCRs 500-1, 500-2, 500-n, and 500-p via these PMOS and NMOS transistors, so that these SCRs do not latch up. If a positive polarity ESD pulse appears in a contact pad, such as contact pad 550-1, and the first power line Vdd is grounded, the control circuit 600 provides a second holding voltage to the PMOS and NMOS transistors through these SCR 500-1, 500-2 ... 500-n and 500-p keep these SCRs in a latched state. The ESD pulse is discharged from the contact pad 550-1 through the second power line Vss to the first power line Vdd, which is the first path P1. If a positive-polarity ESD pulse appears on the first power line Vdd and a contact pad is grounded, such as contact pad 550-1, the control circuit 600 provides a second holding voltage to the SCR via these PMOS and NMOS transistors 50 (M, 500-2 ... 500-n and 500-p, keeping these SCRs in a latched state. ESD pulses are discharged from the first power line Vdd through the second power line Vss to the contact pad 550-1, This is the second path P2. If a positive-polarity ESD pulse appears on a contact pad, such as contact pad 550-2, and another contact pad is grounded, such as contact pad 550-n, control circuit 600 These PMOS and NMOS transistors provide a second holding voltage to SCR 500-1, 500-2… 500-n and 500-p to keep these SCRs in a latched state. ESD pulses are provided by contact pads 550-2 is discharged to the contact pad 550-n via the second power line Vss, which is the third path 38 200522352 The present invention also provides a method for protecting against electrostatic discharge (ESD). A silicon controlled rectifier with a holding voltage is provided. (SCR). A PMMOS transistor and an NMOS transistor are integrated with the SCR. PMOS transistor There is a first gate, and the NMOS transistor has a second gate. During the first condition, a first signal is provided to the first and second gates to increase the SCR holding voltage so that the SCR does not latch up. During the second condition, a first k number is provided to the first and second gates to reduce the SCR holding voltage and keep the SCR in a latched state.
在本發明之另一實施例中,ESD防護方法包括提供一 個具有第一電壓位準之第—電源線路與一個具有第二電壓 位準之第二電源線路,第二電壓位準不同於第一電壓位 準。提供多個接觸墊片。提供多個矽控整流器(SCR),每一 個SCR具有一個PMOS電晶體與一個NM〇s電晶體,皆與 SCR積體成型。此等SCR之至少一 SCR係連接於第一與第 二電源線路之間,而使其餘之SCr則連接於一相對應之接 觸塾片與第二電源線路之間。於正常操作期間,經由此等 PMOS與NMOS電晶體提供一第一握住電壓至此等㈣, 使此等SCR不致检鎖。於咖期間,、經由此等pM〇s與 NMOS電晶體提供-第二握住電壓至此等scr,使此等 保持於栓鎖狀態。 在-實施例中’ ESD脈衝由接觸墊片之一經由第二電 源線路排放至第-電源線路。在另—實施例中,脈衝 由第一電源線路經由第二電源線路排放至接觸墊片之一。 39 200522352 之一經由第二電源 在又一實施例中,ESD脈衝由接觸墊片 線路排放至另一接觸墊片。 本行人士射清楚瞭解在本發明之精神下仍可達成種 =同之修改或變化。本行人士經由詳讀本㈣書及實施 毛S #可清楚瞭解本發明之其他種種實施例。本說明 :及其中之實施例僅為範例。本發明之範圍及精神由如下 申請專利範圍所界並定。 【圖式簡單說明】 圖1為習知ESD防護元件之電路圖; 圖2為另一習知ESD防護元件之剖視圖; 圖3為本發明實施例之SCR與控制電路之電路圖; 圖4為圖3所示電路之j_v曲線圖; 圖5為ESD防護電路之佈局剖視圖; 圖6為另一 ESD防護電路之佈局剖視圖; ^ ·圖7為本發明另一實施例之SCR與控制電路之電路 圖8為本發明實施例之ESD防護電路之佈局; 圖9為另一 ESD防護電路之佈局; 圖10為本發明實施例之ESD防護電路; 圖11為本發明實施例之另一 ESD防護電路; 圖12為本發明實施例之輸入端esd防護電路; 圖13為本發明實施例之另一輸入端ESD防護電路 200522352 圖14為本發明實施例之輸出端ESD防護電路; 圖15為本發明實施例之另一輸出端ESD防護電路; 圖16為本發明實施例之混壓電源輸出入ESD防護電 路; 圖17為本發明實施例之混壓電源ESD防護電路示意 圖; 圖1 8為本發明實施例之使用NMOS觸發SCR之混壓 電源ESD防護電路; 圖19為本發明一實施例之使用PMOS觸發SCR之混 壓電源ESD防護電路; 圖20A為本發明實施例之SCR之剖視圖; 圖20B為本發明實施例之控制電路; 圖21為本發明另一實施例之ESD防護電路; 圖22為本發明又一實施例之ESD防護電路;以及 圖23為本發明再一實施例之ESD防護電路。 元件符號說明 60 :矽控整流器(SCR) 62 :寄生式pnp双載子電晶體 64 :寄生式npn双載子電晶體 66 : N井區電阻 68 :基體電阻 70 :寄生電阻 72 :寄生電阻 200522352 74 :控制電路 78 :陰極 84 :矽控整流器(SCR) 88 : p型基體 92 :第一 P型擴散區 96 :第一 P型擴散區 100 :閘極 104 :第二η型區 107 : NMOS電晶體 110 :電阻 114 :靜電放電防護電路 118 : PMOS電晶體 122 :電容 128 :矽控整流器(SCR) U2 :寄生式ρηρ双載子電晶 134 :寄生式ηρη双載子電晶 136 : [井區電阻 140 :寄生電阻 14 6 :陽極 150 :靜電放電防護電路 154 : η井區 158:第一 η型擴散區 162 : η井區 陽極 靜電放電防護電路 控制電路 η井區 第二Ρ型擴散區 η井區 厚氧化層 第三Ρ型區 接觸墊片 馨 電容 控制電路 電阻 反相器 控制電路 :基體電阻 :寄生電阻 :陰極 :Ρ型基體 :第一 Ρ型擴散區 :第二η型擴散區 :閘極 42 200522352 168 :第三η型 172 :第二ρ型 176 :反相器 180 :電阻 184 :靜電放電防護電路 188 : NMOS電晶體 192 :電容 196 :矽控整流器(SCR) 200 : PMOS電晶體 204 :電阻 208 :靜電放電防護電路 212 :控制電路 216 : PMOS電晶體 220 :電阻 224 :靜電放電防護電路 228 :控制電路 232 :第二控制電路 236 :電阻 240 : NMOS電晶體 248 : PMOS電晶體 252 : ESD防護電路 256 :控制電路 260 :控制電路 :接觸墊片 :PMOS電晶體 :二極體 :電容 :控制電路 :電阻 :靜電放電防護電路 :控制電路 :NMOS電晶體 ^ :電容 :矽控整流器(SCR) :NMOS電晶體 :反相器 :電容 :矽控整流器(SCR) :矽控整流器(SCR) · :PMOS電晶體 :電容 :NMOS電晶體 :接觸墊片 :矽控整流器(SCR) :矽控整流器(SCR) :PMOS電晶體 43 200522352 264 :電阻 268 : NMOS電晶體 272 :電阻 276 : PMOS電晶體 280 :靜電放電防護電路 284 :第一控制電路 288 :第二控制電路 292 :電阻 296 : NMOS電晶體 300 :電阻 304 : PMOS電晶體 308 :第二緩衝器 3 12 :靜電放電防護電路 316 :矽控整流器(SCR) 320 :電阻 324 : NMOS電晶體 328 :反相器 332 :第一緩衝器 336 :接觸墊片 340 ··矽控整流器(SCR) 344 :電阻 348 : NMOS電晶體 352 :接觸墊片 反相器 NMOS電晶體 反相器 接觸墊片 矽控整流器(SCR) 矽控整流器(SCR) PMOS電晶體 電容 i NMOS電晶體 電容 第一緩衝器 接觸墊片 矽控整流器(SCR) PMOS電晶 電容 NMOS電晶體 _ PMOS電晶體 第二緩衝器 靜電放電防護電路 PMOS電晶體 電容 二極體串 :二極體 44 •200522352 356 : 360 : 364 : 368 : 372 : 376 : 380 : 384 : 388 : 392 : 396 : 400 : 500-1 500 - p 502 : 506 : 510 : 514 : 516 : 520 : 522 : 530 : 532 : PMOS電晶體 358 :靜電放電防護電路 靜電放電防護電路 362 :靜電放電防護電路 矽控整流器(SCR) 366 :控制電路 第一電源線路 370 :第二電源線路 NMOS電晶體 374 :電阻 電容 378 : PMOS電晶體 二極體 382 :靜電放電防護電路 矽控整流器(SCR) 3 86 :控制電路 第一電源線路 390 :第二電源線路 PM0S電晶體 394 :電阻 電容 398 : NMOS電晶體 二極體 500 ··矽控整流器(SCR) :矽控整流器(SCR) 500-2 :矽控整流器(SCR) :矽控整流器(SCR) 500-n :矽控整流器(SCR) p型基體 504 : η型井區 第一 p型擴散區 508 ··第二ρ型擴散區 第一 η型擴散區 5 12 ·· η型井區 第二η型擴散區 自動對準金屬石夕化物(salicide)層 PM0S電晶體 520-n : PMOS 電晶體 閘極 524 :侧壁間隔層 NM0S電晶體 530-n : NMOS 電晶體 閘極 534 :側壁間隔層In another embodiment of the present invention, the ESD protection method includes providing a first power line having a first voltage level and a second power line having a second voltage level. The second voltage level is different from the first voltage level. Voltage level. Provide multiple contact pads. Provide multiple silicon controlled rectifiers (SCRs). Each SCR has a PMOS transistor and a NMOS transistor, all of which are integrated with the SCR. At least one of the SCRs is connected between the first and second power lines, and the remaining SCr is connected between a corresponding contact pad and the second power line. During normal operation, a first holding voltage is provided to these cells via these PMOS and NMOS transistors, so that these SCRs cannot be locked. During the coffee, it is provided through these pMOS and NMOS transistors-the second holding voltage to these scr, to keep these in a locked state. In the-embodiment, the ESD pulse is discharged from one of the contact pads to the -th power supply line via the second power supply line. In another embodiment, the pulse is discharged from the first power supply line to one of the contact pads via the second power supply line. 39 200522352 One via a second power supply In yet another embodiment, the ESD pulse is discharged from the contact pad circuit to the other contact pad. People in this bank know clearly that the same modifications or changes can be achieved within the spirit of the present invention. Persons in the bank can clearly understand other embodiments of the present invention by reading this book and implementing Mao S #. This note: and the examples in it are just examples. The scope and spirit of the present invention are defined by the following patent application scope. [Brief description of the drawings] FIG. 1 is a circuit diagram of a conventional ESD protection element; FIG. 2 is a sectional view of another conventional ESD protection element; FIG. 3 is a circuit diagram of an SCR and a control circuit according to an embodiment of the present invention; J_v curve of the circuit shown; Figure 5 is a sectional view of the layout of the ESD protection circuit; Figure 6 is a sectional view of the layout of another ESD protection circuit; ^ · Figure 7 is a circuit of the SCR and control circuit according to another embodiment of the present invention. The layout of the ESD protection circuit according to the embodiment of the present invention; FIG. 9 is the layout of another ESD protection circuit; FIG. 10 is the ESD protection circuit according to the embodiment of the present invention; FIG. 11 is another ESD protection circuit according to the embodiment of the present invention; This is an input esd protection circuit in the embodiment of the present invention; Figure 13 is another input ESD protection circuit in the embodiment of the present invention 200522352; Figure 14 is an output ESD protection circuit in the embodiment of the present invention; Figure 15 is an embodiment of the present invention; The other output end ESD protection circuit; Figure 16 is an input and output ESD protection circuit of a mixed voltage power supply according to an embodiment of the present invention; Figure 17 is a schematic diagram of an ESD protection circuit of a mixed voltage power supply according to an embodiment of the present invention; and Figure 18 is an embodiment of the present invention ESD protection circuit of mixed voltage power supply using NMOS to trigger SCR; FIG. 19 is an ESD protection circuit of mixed voltage power supply using PMOS to trigger SCR according to an embodiment of the present invention; FIG. 20A is a cross-sectional view of SCR according to an embodiment of the present invention; 21 is an ESD protection circuit according to another embodiment of the present invention; FIG. 22 is an ESD protection circuit according to another embodiment of the present invention; and FIG. 23 is an ESD protection circuit according to another embodiment of the present invention. Description of component symbols 60: silicon controlled rectifier (SCR) 62: parasitic pnp bipolar transistor 64: parasitic npn bipolar transistor 66: N-well resistance 68: substrate resistance 70: parasitic resistance 72: parasitic resistance 200522352 74: control circuit 78: cathode 84: silicon controlled rectifier (SCR) 88: p-type substrate 92: first P-type diffusion region 96: first P-type diffusion region 100: gate 104: second n-type region 107: NMOS Transistor 110: Resistor 114: Electrostatic discharge protection circuit 118: PMOS transistor 122: Capacitor 128: Silicon controlled rectifier (SCR) U2: Parasitic ρηρ bipolar transistor 134: Parasitic ηρη bipolar transistor 136: [ Well area resistance 140: parasitic resistance 14 6: anode 150: electrostatic discharge protection circuit 154: η well area 158: first η-type diffusion area 162: η well area anode electrostatic discharge protection circuit control circuit η well area second P-type diffusion Area η well area Thick oxide layer Third P-type area Contact pad Xin Capacitor control circuit Resistance inverter control circuit: substrate resistance: parasitic resistance: cathode: p-type substrate: first p-type diffusion region: second n-type diffusion Zone: Gate 42 200522352 168: Third n-type 172: No. Type 176: Inverter 180: Resistor 184: ESD protection circuit 188: NMOS transistor 192: Capacitor 196: Silicon controlled rectifier (SCR) 200: PMOS transistor 204: Resistor 208: ESD protection circuit 212: Control circuit 216: PMOS transistor 220: resistor 224: electrostatic discharge protection circuit 228: control circuit 232: second control circuit 236: resistor 240: NMOS transistor 248: PMOS transistor 252: ESD protection circuit 256: control circuit 260: control circuit : Contact pad: PMOS transistor: Diode: Capacitor: Control circuit: Resistance: ESD protection circuit: Control circuit: NMOS transistor ^: Capacitance: Silicon controlled rectifier (SCR): NMOS transistor: Inverter: Capacitor: Silicon Controlled Rectifier (SCR): Silicon Controlled Rectifier (SCR) ·:: PMOS Transistor: Capacitor: NMOS Transistor: Contact Pad: Silicon Controlled Rectifier (SCR): Silicon Controlled Rectifier (SCR): PMOS Transistor 43 200522352 264: resistor 268: NMOS transistor 272: resistor 276: PMOS transistor 280: electrostatic discharge protection circuit 284: first control circuit 288: second control circuit 292: resistor 296: NMOS transistor 300: resistor 304: PMOS transistor 308 : Second buffer 3 12: ESD protection circuit 316: Silicon controlled rectifier (SCR) 320: Resistance 324: NMOS transistor 328: Inverter 332: First buffer 336: Contact pad 340 · Silicon controlled rectifier (SCR) 344: Resistance 348: NMOS transistor 352: Contact pad inverter NMOS transistor inverter Contact pad Silicon controlled rectifier (SCR) Silicon controlled rectifier (SCR) PMOS transistor capacitor i NMOS transistor capacitor A buffer contact pad Silicon controlled rectifier (SCR) PMOS transistor capacitor NMOS transistor _ PMOS transistor second buffer electrostatic discharge protection circuit PMOS transistor capacitor diode string: diode 44 • 200522352 356: 360: 364: 368: 372: 376: 380: 384: 388: 392: 396: 400: 500-1 500-p 502: 506: 510: 514: 516: 520: 522: 530: 532: PMOS transistor 358: static electricity Discharge protection circuit ESD protection circuit 362: ESD protection circuit Silicon controlled rectifier (SCR) 366: Control circuit first power line 370: second power line NMOS transistor 374: resistance capacitor 378: PMOS power Body diode 382: ESD protection circuit silicon controlled rectifier (SCR) 3 86: Control circuit first power line 390: second power line PM0S transistor 394: resistance capacitor 398: NMOS transistor diode 500 ... silicon Controlled rectifier (SCR): Silicon controlled rectifier (SCR) 500-2: Silicon controlled rectifier (SCR): Silicon controlled rectifier (SCR) 500-n: Silicon controlled rectifier (SCR) p-type substrate 504: η-type well area first p-type diffusion region 508 ·· second ρ-type diffusion region first η-type diffusion region 5 12 ·· η-type well region second η-type diffusion region automatically aligns with metal salicide layer PM0S transistor 520-n : PMOS transistor gate 524: sidewall spacer NM0S transistor 530-n: NMOS transistor gate 534: sidewall spacer
45 200522352 540 : 550-1 550-n 602 : 606 : 640 : 厚氧化層 :接觸墊片 :接觸墊片 電阻 輸出端 靜電放電防護電路 550 :接觸墊片 550-2 :接觸墊片 600 :控制電路 604 :電容 620 :靜電放電防護電路 660 :靜電放電防護電路45 200522352 540: 550-1 550-n 602: 606: 640: Thick oxide layer: contact pad: contact pad resistance output terminal electrostatic discharge protection circuit 550: contact pad 550-2: contact pad 600: control circuit 604: capacitor 620: electrostatic discharge protection circuit 660: electrostatic discharge protection circuit
4646
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92136932A TWI224863B (en) | 2003-12-25 | 2003-12-25 | Silicon-controlled rectifier with dynamic holding voltage for on-chip electrostatic discharge protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92136932A TWI224863B (en) | 2003-12-25 | 2003-12-25 | Silicon-controlled rectifier with dynamic holding voltage for on-chip electrostatic discharge protection |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI224863B TWI224863B (en) | 2004-12-01 |
TW200522352A true TW200522352A (en) | 2005-07-01 |
Family
ID=34568732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92136932A TWI224863B (en) | 2003-12-25 | 2003-12-25 | Silicon-controlled rectifier with dynamic holding voltage for on-chip electrostatic discharge protection |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI224863B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI455435B (en) * | 2012-12-07 | 2014-10-01 | Issc Technologies Corp | Esd protection circuit, bias circuit and electronic apparatus |
-
2003
- 2003-12-25 TW TW92136932A patent/TWI224863B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI455435B (en) * | 2012-12-07 | 2014-10-01 | Issc Technologies Corp | Esd protection circuit, bias circuit and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
TWI224863B (en) | 2004-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW312848B (en) | ||
US5264723A (en) | Integrated circuit with MOS capacitor for improved ESD protection | |
US8039899B2 (en) | Electrostatic discharge protection device | |
TW457689B (en) | High current ESD protection circuit | |
TW511268B (en) | Output buffer with excellent electrostatic discharge protection effect | |
US6964883B2 (en) | Bi-directional silicon controlled rectifier for electrostatic discharge protection | |
US9356012B2 (en) | High voltage ESD protection apparatus | |
TWI224851B (en) | Electrostatic discharge protection element | |
US9705318B2 (en) | Over-limit electrical condition protection circuits for integrated circuits | |
TW578290B (en) | Electrostatic discharged protection device | |
US20130148243A1 (en) | Esd protecting circuit and semiconductor device including the same | |
TW200410393A (en) | Electrostatic discharge protection device for mixed voltage interface | |
TWI304640B (en) | Guard rings with local coupling capacitance | |
TW200427056A (en) | Electrostatic discharge device | |
US7408754B1 (en) | Fast trigger ESD device for protection of integrated circuits | |
US20030048588A1 (en) | Output buffer and I/O protection circuit for CMOS technology | |
CN101174622A (en) | Electrostatic discharge protection device of connecting pad and method and structure thereof | |
TW201201346A (en) | Esd protection circuit and semiconductor device equipped with the same | |
TW423160B (en) | Lateral silicon controlled rectifier for electrostatic discharge protection | |
TW392328B (en) | Electrostatic discharge protection circuit triggered by MOS transistor | |
TW529150B (en) | Integrated circuit device used in electrostatic discharge (ESD) protection and the ESD protection circuit using the same | |
JP2016035958A (en) | Protective element, protective circuit, and semiconductor integrated circuit | |
TWI221662B (en) | Semiconductor device having a protective circuit | |
CN101621198B (en) | Effective electrostatic discharge protection circuit | |
US7969697B2 (en) | Low-voltage CMOS space-efficient 15 KV ESD protection for common-mode high-voltage receivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |