TW200427829A - Novel preparation of sulfide phosphors - Google Patents
Novel preparation of sulfide phosphors Download PDFInfo
- Publication number
- TW200427829A TW200427829A TW92115434A TW92115434A TW200427829A TW 200427829 A TW200427829 A TW 200427829A TW 92115434 A TW92115434 A TW 92115434A TW 92115434 A TW92115434 A TW 92115434A TW 200427829 A TW200427829 A TW 200427829A
- Authority
- TW
- Taiwan
- Prior art keywords
- powder
- item
- patent application
- scope
- precursor
- Prior art date
Links
- 239000000843 powder Substances 0.000 claims abstract description 105
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000002243 precursor Substances 0.000 claims abstract description 37
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000012190 activator Substances 0.000 claims abstract description 18
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 56
- 239000013078 crystal Substances 0.000 claims description 49
- 239000002245 particle Substances 0.000 claims description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 230000004907 flux Effects 0.000 claims description 14
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical group [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 14
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 10
- 239000005083 Zinc sulfide Substances 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 235000002639 sodium chloride Nutrition 0.000 claims description 9
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical group [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 9
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 8
- 238000000227 grinding Methods 0.000 claims description 7
- 239000011572 manganese Substances 0.000 claims description 6
- -1 ion compound Chemical class 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- 150000008040 ionic compounds Chemical group 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical group [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 2
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 2
- 238000000975 co-precipitation Methods 0.000 claims description 2
- 238000007580 dry-mixing Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 229910001437 manganese ion Inorganic materials 0.000 claims description 2
- 239000011698 potassium fluoride Substances 0.000 claims description 2
- 235000003270 potassium fluoride Nutrition 0.000 claims description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims 2
- 229910001629 magnesium chloride Inorganic materials 0.000 claims 1
- 235000011147 magnesium chloride Nutrition 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000001103 potassium chloride Substances 0.000 claims 1
- 235000011164 potassium chloride Nutrition 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 238000001354 calcination Methods 0.000 abstract description 9
- 238000002360 preparation method Methods 0.000 abstract description 5
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 7
- 230000007704 transition Effects 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006184 cosolvent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- PKRPQASGRXWUOJ-UHFFFAOYSA-L dipotassium;dichloride Chemical compound [Cl-].[Cl-].[K+].[K+] PKRPQASGRXWUOJ-UHFFFAOYSA-L 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 150000002611 lead compounds Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 150000003283 rhodium Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
200427829 ⑴ 玫;、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 一、 發明所屬之技術領域 本發明主要係關於一種製備螢光體之方法,特別地,係 關於一着利用種晶助熔法以製備硫化物螢光體之方法。 二、 先前技術 螢光粉體係廣泛地應用於日常生活週遭之許多發光物件中 ,例如電視影像管、顯示器影像管、觀測用影像管、雷達、飛 點掃描器影像增感器、影印機影像管、真空螢光顯示管、電漿 顯示器、照明設備、交通標誌、、螢光板、增感紙及發光二極體 等,近年來,由於人們對於顯像品質如解析度與亮度等、以及 照明效果之要求普遍提高,有關螢光粉體之研究亦受到相當程 度之重視。. 螢光體材料通常區分為有機螢光體及無機螢光體,其中 _ — 無機螢光體包含一母體材料(Host)與適當之活化劑(Dopant ,又稱為Activator)所形成的發光中心。目前業界習用之母 體材料多為二六族(II-VI)的離子化合物,舉例言之,如鈣 (Ca)、總(Sr)、鋇(Ba)(IIA族)或是鋅(Zn)、鎘(Cd)、汞(Hg)(IIB 族)與硫(S)、硒(Se)(VI族)形成之離子化合物。活化劑之種 類則決定發光顏色,一般業界習用之活化劑多為錳(Μη) 、銅(Cu)、銀(Ag)及鑭系元素如銪(Eu)、釤(Sm)、铽(Tb)之 過渡金屬離子或稀土族元素離子。此類螢光體之發光機制 因發光中心之外層電子受到一次電子加速衝擊而產生遷 移,使此外層電子被提升至母體材料結晶傳導帶之能階, 形成自由電子,同時發光中心也產生離子化,最後自由電 (2)200427829 子與離子化1 目前已知: 082110013號「 係先製備包 性有機瀹粒 溶液至該漿 一種水合金 得該發光化、 及其製造方 化物、溴化: 中選出之無 粒子反應而 ,以生成附 中華民國 一純性顆粒 或純性顆粒 產品之粒徑 操作不易且 之方法以硬 子上形成層 另需一以脫 職是之故 方法,以達」 品之目的。 的發光中心再結合’以光的形式釋出能階差。 貧多種製備螢光體之方法:·如中華民國專利第 發光粉末組合物及其製備方法」揭系之方法 含一種或多種鍛燒過之純性顆粒的水性或水 裝液,再添加包含至少一種金屬螯合物的穩定 液中,並控制適當之p Η值及溫度,以使至少 屬氧化物沈積於該顆粒上,並锻燒該顆粒以獲 合物;及中華民國專利第087119146號「螢光體 法」揭示將呈亳微結構之碳微粒子材料與由氯 杨、硝酸鹽、以及彼等之結晶混合體所成組群 機鹽混合,以200至800°C加熱,使之與該碳微 形成層間化合物,再以脫離劑處理層間化合物 著於碳材料之發光性無機化合物顆粒。 專利第082110013號於一水溶性反應液中提供 ’以使反應液中所發生之生成反應附著於該核 上,再由水溶液中回收其產物,由該方法製得 並不均勻,且另需自水溶液回收之步驟,不但 產品純度不高,而中華民國專利第〇87119146號 极粒子材料與無機鹽混合且加熱,使於碳微粒 間化合物,該方法雖免除了回收之步驟,但卻 離劑處理之步驟,依舊需要繁雜之製備程序。 ,本發明乃致力於開發一新穎之製備螢光體之 操作簡便、製得平均粒徑均勻且性質優異產 200427829200427829 ⑴ Rose ;, description of the invention (the description of the invention should state: the technical field to which the invention belongs, the prior art, the content, the embodiments and the drawings are briefly explained) 1. The technical field to which the invention belongs The present invention is mainly related to the preparation of a phosphor The method, in particular, relates to a method for preparing a sulfide phosphor using a seed crystal flux method. 2. The prior art fluorescent powder system is widely used in many light-emitting objects around daily life, such as television image tubes, monitor image tubes, observation image tubes, radars, flying spot scanner image sensitizers, and photocopier image tubes. , Vacuum fluorescent display tubes, plasma displays, lighting equipment, traffic signs, fluorescent panels, sensitization paper, and light-emitting diodes, etc. In recent years, due to people's concerns about the display quality such as resolution and brightness, and lighting effects The requirements have generally increased, and research on fluorescent powder has also received considerable attention. Phosphor materials are generally divided into organic phosphors and inorganic phosphors, where _ — inorganic phosphors include a luminous center formed by a host material (Host) and an appropriate activator (Dopant, also known as Activator). . Currently, the parent materials commonly used in the industry are group II-VI ionic compounds, such as calcium (Ca), total (Sr), barium (Ba) (Group IIA), or zinc (Zn), An ionic compound formed by cadmium (Cd), mercury (Hg) (Group IIB), sulfur (S), and selenium (Se) (Group VI). The type of activator determines the luminous color. Generally, the activators commonly used in the industry are manganese (Μη), copper (Cu), silver (Ag), and lanthanides such as europium (Eu), europium (Sm), and europium (Tb). Transition metal ion or rare earth element ion. The luminescence mechanism of this kind of phosphor is caused by the electrons in the outer layer of the luminous center to be migrated by an accelerated acceleration of the electrons, so that the outer layer electrons are elevated to the energy level of the crystalline conduction band of the parent material, forming free electrons, and the luminous center is also ionized. , And finally free electricity (2) 200427829 ions and ionization 1 It is currently known: 082110013 "The system first prepares an encapsulated organic spheroid solution to the slurry and an aqueous alloy to obtain the luminescence, and its production of cubes, bromide: Medium The selected particle-free reaction is not easy to operate in order to generate a pure particle or pure particle product with the Republic of China. The method is to form a layer on a hard son, and the other method is to quit the job. Purpose. The light-emitting center is combined with ′ to release the energy step difference in the form of light. Diverse methods for preparing phosphors: · For example, the patented luminescent powder composition of the Republic of China and its preparation method. "The uncovered method contains one or more calcined pure particles in an aqueous or water-containing liquid, and then contains at least A stable solution of a metal chelate, and controlling an appropriate pΗ value and temperature so that at least a metal oxide is deposited on the particle, and the particle is calcined to obtain a compound; and the Republic of China Patent No. 087119146 " The "fluorescent method" reveals that carbon microparticle materials with a rhenium microstructure are mixed with a group of organic salts composed of chloramphenicol, nitrate, and their crystalline mixtures, and heated at 200 to 800 ° C to make them The carbon is micro-formed into an interlayer compound, and the interlayer compound is then treated with a release agent to impregnate the luminescent inorganic compound particles of the carbon material. Patent No. 08211013 is provided in a water-soluble reaction solution so that the generation reaction occurring in the reaction solution adheres to the core, and then the product is recovered from the aqueous solution. The step of recovering the aqueous solution not only has a low product purity, but the ROC Patent No. 087119146 is mixed with the inorganic salt and heated to make the compound between the carbon particles. Although this method eliminates the recovery step, it removes the agent. The steps still require complicated preparation procedures. The present invention is devoted to the development of a novel method for preparing phosphors with simple operation, uniform average particle size and excellent properties. 200427829
(3) 三、發明内容 本發明之目的在於提供一種製備螢光體之方法,該螢光 體包含一硫化物母體及一發光中心,該方法包含下列步驟: (a) 乾混硫化物母體粉末、可作為發光中心之活化劑粉 末及可皞低燒結溫度之助熔劑粉末而成一前驅物,其中該 硫化物母體粉末包含0至100重量%之塊材粉末及0至100重 里%之種晶粉末,·及(3) III. Summary of the Invention The object of the present invention is to provide a method for preparing a phosphor. The phosphor includes a sulfide precursor and a luminescent center. The method includes the following steps: (a) dry-mixing the sulfide precursor powder A precursor that can be used as the activator powder of the luminous center and the flux powder that can reduce the sintering temperature, wherein the sulfide precursor powder contains 0 to 100% by weight of block powder and 0 to 100% by weight of seed crystal powder ,·and
(b) 烺蜂步驟(a)之前驅物,以製得該螢光體。 四、實施方式 本發明係關於一種新穎且操作簡便之製備螢光體之方 法,其可製得平均粒徑均勻且性質優異產品,特定言之, 本發明之方法係以種晶助溶法以製得一螢光體,該螢光體 包含一硫化物母體及一發光中心,其簡易流程如圖1所示 ,該方法包含下列步騾:(b) the precursor before step (a) to obtain the phosphor. 4. Embodiments The present invention relates to a novel and easy-to-use method for preparing phosphors, which can produce products with uniform average particle size and excellent properties. In particular, the method of the present invention uses the seed crystal assisting method to A fluorescent body is prepared. The fluorescent body includes a sulfide matrix and a light-emitting center. The simplified process is shown in Figure 1. The method includes the following steps:
(a) 乾混硫化物母體粉末、可作為發光中心之活化劑粉 末及可降低燒結溫度之助熔劑粉末而成一前驅物,其中該 硫化物母體粉末包含0至100重量%之塊材(bulk)粉末及0至 100重量%之種晶(seed)粉末;及 (b) 煅燒步驟(a)之前驅物,以製得該螢光體。 本發明所言之「螢光體」乙詞係指包含一母體(Host)與 適當的活化劑(Dopant,又稱為Activator)所形成發光中心之 發光體。_ 本發明所言之「硫化物螢光體」係指由含硫化合物作為 母體之螢光體,較佳地,其係以二六族(II-VI)的硫化物, -9- 200427829(a) A precursor made of dry-mixed sulfide precursor powder, activator powder that can be used as a luminescent center, and flux powder that can reduce the sintering temperature, wherein the sulfide precursor powder contains 0 to 100% by weight of a bulk material. Powder and 0 to 100% by weight of seed powder; and (b) calcining the precursor of step (a) to obtain the phosphor. The term "phosphor" used in the present invention refers to a luminous body comprising a luminous center formed by a host (Host) and an appropriate activator (Dopant, also called Activator). _ The "sulfide phosphor" referred to in the present invention refers to a phosphor containing a sulfur-containing compound as a precursor, preferably a sulfide of group II-VI, -9- 200427829
舉例言 (Cd) ,其係 本發 之物質 素如銪 素離子 本發 體過程 施例中 離子型 結時相 ,該助 之離子 、氣化 溫煅燒 低溫煅 係導因 根據 末及助 發明之 莫耳% 母體粉 種晶粉 (4) 之,如鈣(Ca)、總(Sr)、鋇(Ba)(IIA族)或是鋅(Zn)、 、汞(Hg)(IIB族)的硫化物為母體·之螢光體,更佳地 以硫化鋅為母體之螢光體。 明所言之「活化劑」係指於螢光體中作為發光中心 ,舉例言之,如錳(Μη)、銅(Cu)、銀(Ag)及鑭系元 (Eu)、釤(Sm)、铽(Tb)之過渡金屬離子或稀土族元 。較佳地,.該活化劑係為由氧化錳提供之錳離子。 明-所S之「助熔劑(fluxing agent)」係指於燒結螢光 中,可降低燒結溫度之物質。在本發明之一具體實 ’忒助溶劑係為離子型化合物,當該作為助溶劑之 化合物熔解時,其釋放出之熔解熱可提供螢光體燒 轉變之能量,使螢光體之燒結溫度降低。舉例言之 熔劑為鉛、鈣、鎂、鉀、鋇、鈉、鋰、錫、鋅或鈦 化合物,較佳地,其係為氯化鋰、氯化鈉、氯化鎂 鉀、氟化鉀、氟化鋰或氟化鋇。根據本發明,於高 時,添加氯化鈉所製得之螢光體發光度較佳;但於 燒時,添加氯化鋰所製得之螢光體發光度較佳,其 於兩者溶點不同’所適用之烺燒條件亦不相同。 本發明,步驟(a)為將硫化物母體粉末、活化劑粉 熔劑粉末以乾混方式形成一前驅物(precursor)。在本 一具體實施例中,該活化劑於前驅物中之含量為i ;該助熔劑於前驅物中之含量為丨莫耳%。該硫化物 末I έ 0至100重量%之塊材粉末及〇至^ 〇〇重量%之 末,該塊材粉末於種晶上與活化劑反應形成所欲之For example, (Cd), which is the ionic junction phase in the process examples of the material elements such as hafnium ion, and the auxiliary ion, gasification temperature, and low-temperature calcination system. Mole% of parent powder (4), such as calcium (Ca), total (Sr), barium (Ba) (IIA group) or zinc (Zn), mercury (Hg) (IIB group) vulcanization The substance is a fluorescent substance of the matrix, and more preferably a phosphor of zinc sulfide. The term "activator" as used in the Ming refers to the light emitting center in the phosphor, for example, manganese (Mn), copper (Cu), silver (Ag), lanthanide (Eu), thorium (Sm) , Tb transition metal ions or rare earth elements. Preferably, the activator is a manganese ion provided by manganese oxide. Ming-Suo's "fluxing agent" refers to a substance that can reduce the sintering temperature in sintering fluorescent light. In one embodiment of the present invention, the co-solvent is an ionic compound. When the compound serving as the co-solvent is melted, the heat of fusion released by the compound can provide the energy for the burning transition of the phosphor, so that the sintering temperature of the phosphor reduce. For example, the flux is lead, calcium, magnesium, potassium, barium, sodium, lithium, tin, zinc, or titanium compounds. Preferably, it is lithium chloride, sodium chloride, potassium potassium chloride, potassium fluoride, fluoride Lithium or barium fluoride. According to the present invention, at high times, the luminosity of the phosphor obtained by adding sodium chloride is better; but at the time of firing, the luminosity of the phosphor obtained by adding lithium chloride is better, which is soluble in both. Different points' also apply to different simmering conditions. In the present invention, step (a) is to form a precursor by dry-blending the sulfide precursor powder, the activator powder, and the flux powder. In this specific embodiment, the content of the activator in the precursor is i; the content of the flux in the precursor is mol%. The sulfide powder is from 0 to 100% by weight of the bulk powder and from 0 to ^ 00% by weight, the bulk powder reacts with the activator on the seed crystal to form the desired
-10- 200427829-10- 200427829
(5) 螢光體;較佳地,其包含100重量%之塊材粉末、99重量% 之塊材粉末及1重量%之種晶粉末、90重量%之塊材粉末及 1 〇重量%之種晶粉末、6 0重量%之塊材粉末及4 0重量%之 種晶粉末或100重量%之種晶粉末;更佳地,其包含99重量 %之塊材’粉末及1重量%之種晶粉末,其發光強度最強,隨 著種晶粉末比例增加,過多之種晶會產生MnS04及ZnO等雜 相而不利於螢光體的發光。於本發明之一具體實施例中, 該塊材粉末、之平均粒徑為0.1微米至1 0微米;該種晶粉末 之平均粒徑為1奈米至1 0奈米。根據本發明,種晶粉末可 經由研磨平均粒徑較大之硫化物粉末而得。於本發明之一 具體實施例中,該種晶粉末可藉由膠體共沈法以製得該硫 化物,再經研磨製得。另一方面,為使該前驅物所含之成 分更佳均勻且更利於反應,可另包含一研磨該前驅物之步 驟。 根據本發明,步騾(b)為煅燒該前驅物,使該前驅物燒 結而獲得該螢光體,其溫度可隨該前驅物之成分而定。根 據本發明之具體實施例,該煅燒之溫度可為40(^(:至1000QC ,較佳為600°C至1000°C,更佳為900°C。另一方面,此煅燒 過程較佳係於無氧環境中進行,更佳地,其係於氫氣還原 環境中進行。 螢光體之發光強度與其晶體結構有密切之關係,當晶體 結構由立方晶相轉變為六方晶相時,其螢光體之發光強度 將增加,本發明之方法可以提高所製得之螢光體之六方晶 相轉變率並提升發光強度,配合不同之比例之種晶粉末、 -11 - (6) 200427829(5) Fluorescent body; preferably, it contains 100% by weight of block powder, 99% by weight of block powder and 1% by weight of seed crystal powder, 90% by weight of block powder and 10% by weight Seed crystal powder, 60% by weight block powder and 40% by weight seed crystal powder or 100% by weight seed crystal powder; more preferably, it contains 99% by weight block powder and 1% by weight seed Crystal powder has the strongest luminous intensity. As the proportion of seed powder increases, excessive seed crystals will generate heterogeneous phases such as MnS04 and ZnO, which is not conducive to the emission of phosphors. In a specific embodiment of the present invention, the average particle diameter of the bulk powder is 0.1 micrometer to 10 micrometers; the average particle diameter of the seed crystal powder is 1 nanometer to 10 nanometers. According to the present invention, the seed crystal powder can be obtained by grinding a sulfide powder having a large average particle diameter. In one embodiment of the present invention, the seed crystal powder can be obtained by colloid co-precipitation method, and then obtained by grinding. On the other hand, in order to make the components contained in the precursor more uniform and more conducive to the reaction, a step of grinding the precursor may be further included. According to the present invention, step (b) is to calcine the precursor and sinter the precursor to obtain the phosphor, and the temperature may depend on the composition of the precursor. According to a specific embodiment of the present invention, the calcining temperature may be 40 ° C. to 1000 QC, preferably 600 ° C. to 1000 ° C., and more preferably 900 ° C. On the other hand, the calcination process is preferably It is performed in an oxygen-free environment, and more preferably, it is performed in a hydrogen reducing environment. The luminous intensity of a phosphor is closely related to its crystal structure. When the crystal structure changes from a cubic phase to a hexagonal phase, its fluorescence The luminous intensity of the light body will increase. The method of the present invention can increase the hexagonal phase transition rate of the obtained phosphor and increase the luminous intensity. With different proportions of seed crystal powder, -11-(6) 200427829
助炫為丨a 、 、1 2 3 4 5 6 7 8成为及不同之煅燒溫度,可製得不同性質的螢光峰 末^本發明之-較佳實例中,使用^量%硫化鋅種晶: 。、9重量%硫化鋅塊材粉末作為母體材料,並添加1莫 二%。之氧化錳粉末及1莫耳%氧化鈉粉末成為前驅物,= C坡繞後可製得發光強度佳之螢光體。 為使應用更加便利,本發明可於製得螢光體後,另包含 一研磨步騾,以製得一螢光體粉末。Assistance is as follows: a, 1, 2 3 4 5 6 7 8 and different calcination temperatures, which can produce fluorescent peaks of different properties. ^ In the preferred embodiment of the present invention, ^% zinc sulfide seed crystals are used. :. 9% by weight of zinc sulfide block powder was used as a base material, and 1% by mole was added. The manganese oxide powder and 1 mole% sodium oxide powder became the precursors, and the fluorescent body with good luminous intensity can be obtained after the slope of C. In order to make the application more convenient, the invention may further include a grinding step after preparing the phosphor to obtain a phosphor powder.
II
*\列1例予以詳細說明本發明,唯並不意味本發明 僅偈限於此等實例所揭示之内容。 將事先製備好之平均粒徑分別為約4奈米或0丨微米至 10微米 < 硫化鋅粉末作為種晶粉末及塊材粉末,並且加入* \ List 1 example to explain the present invention in detail, but it does not mean that the present invention is limited to the content disclosed by these examples. The average particle diameters prepared in advance are about 4 nanometers or 0 丨 microns to 10 micrometers < zinc sulfide powder as seed crystal powder and block powder, and added
-12- 1 吴耳%之氧化錳粉末及1莫耳%之氣化鋰粉末或氯化鈉粉 末混合形成前驅物並研磨,於氫氣還原氣氛下煅燒2小時 後再次研磨製得硫化鋅:錳(ZnS: Μη)螢光體粉末。 2 將製得之粉末以Χ_射線進行繞射分析,以分析其六方晶 相轉變率,其計算式如下: 3 Μβ /Μα =0.0968* Ιβ/Ια 4 /、中/3為τς方晶相;α為立方晶相;Μρ/Μα為石相與α 5 相足重量比;ϊβΗα為(100)冷與(200) α之強度比。 6 另一方面’將製得之螢光粉末以光致發光光譜儀 7 (photoluminescence spectrometer)於 343nm波長之光激發該樣品 8 ’並進行勞光積分強度分析。 9 則驅物中種晶粉末比例、煅燒溫度、助熔劑成分與六方 200427829-12- 1 Wu Er% manganese oxide powder and 1 Mo Er% lithium gas powder or sodium chloride powder are mixed to form a precursor and ground, calcined in a hydrogen reducing atmosphere for 2 hours and then ground again to obtain zinc sulfide: manganese (ZnS: Mn) phosphor powder. 2 Diffraction analysis of the obtained powder with X-rays to analyze the hexagonal crystal phase transition rate, the calculation formula is as follows: 3 Μβ / Μα = 0.0968 * Ιβ / Ια 4 /, and / 3 is τς cubic phase ; Α is a cubic phase; Μρ / Μα is a sufficient weight ratio of a stone phase to an α 5 phase; ϊβϊα is an intensity ratio of (100) cold to (200) α. 6 On the other hand, the obtained fluorescent powder was excited with a photoluminescence spectrometer 7 at a light wavelength of 343 nm 8 ′, and the integrated intensity analysis was performed. The ratio of seed crystal powder, calcination temperature, flux composition, and hexagon in 9 flooding materials 200427829
⑺ 晶相比例、及螢光積分強度之結果示於表1 : 表1 : 懷燒溫度-種晶粉_ 六方晶相比例(%) 積分強度(a.u·) 末比例(Wt°/o) 1莫耳% 1莫耳% 1莫耳% 1莫耳% 氯化鋰 氯化納 氯化鋰 氯化鋼 400°C-0 wt% 0 0 0 0 400°C-1 wt% 0 0 0 0 400°C-l〇wt% 0 0 0 0 400〇C-40 wt% 0 0 0 0 400°C-100wt% 35.2 41.9 3363 600°C-〇wt% 9 63 87095 ~38549~ 600°C-1 wt% 10.8 8.7 102184 39056 600°C-10wt% 12.8 10.9 70174 22357 600〇C-40 wt% 42.9 39.6 65516 9685 600°C-100wt% lbo 100 16290 10418 800°C-〇 wt% 42.3 3Z6 149865 208881 800°C-1 wt% 25.6 51.2 188685 467885 800°C-10wt% 73.3 35 95901 70039 800〇C-40wt% 63 41.5 73681 52865 800°C-100wt% 100 100 13609 11469 900°C-0wt% 45.7 46.3 237765 419719 900°C-1 wt% 42.2 58.2 258539 507329 900°C-10wt% 78.8 69.7 52507 80334 900〇C-40 wt% 49.7 27.4 42334 4364 900°C-100wt% 100 100 19928 21569 1000°C-0wt% 100 51 168952 ^194951~ 1000°C-1 wt% 100 70 219944 335182 1000°C-10wt% 100 100 41403 47113 1000°C-40wt% 100 100 2650 29920 1000°C-100 wt% 100 100 28732 30512 由表1之結果可知,當烺燒溫度為400 °(:時,除 種晶粉末 比例為lOOwt·%之樣品發生相轉變外,其餘樣品皆無法偵-測 付方晶相’其原 因推定係 因種晶粉末熔點較低 ,其結晶 成長速度亦較快, 故可於較低溫度下產 生相轉移 ;當烺燒 溫度高於600 QC時 ,所有樣 品皆產生相 轉變,其 中種晶末 -13 - 200427829The results of the 相比 crystal comparative example and the integrated fluorescence intensity are shown in Table 1: Table 1: Comparison of burn temperature-seed powder _ hexagonal crystal comparative example (%) integrated intensity (au ·) final ratio (Wt ° / o) 1 Mole% 1 Mole% 1 Mole% 1 Mole% Lithium chloride NaCl Lithium chloride Steel 400 ° C-0 wt% 0 0 0 0 400 ° C-1 wt% 0 0 0 0 400 ° Cl〇wt% 0 0 0 0 400〇C-40 wt% 0 0 0 0 400 ° C-100wt% 35.2 41.9 3363 600 ° C-〇wt% 9 63 87095 ~ 38549 ~ 600 ° C-1 wt% 10.8 8.7 102 184 39056 600 ° C-10wt% 12.8 10.9 70174 22357 600 ° C-40 wt% 42.9 39.6 65516 9685 600 ° C-100wt% lbo 100 16290 10418 800 ° C-〇wt% 42.3 3Z6 149865 208881 800 ° C-1 wt% 25.6 51.2 188685 467885 800 ° C-10wt% 73.3 35 95901 70039 800 ° C-40wt% 63 41.5 73681 52865 800 ° C-100wt% 100 100 13609 11469 900 ° C-0wt% 45.7 46.3 237765 419719 900 ° C- 1 wt% 42.2 58.2 258539 507329 900 ° C-10wt% 78.8 69.7 52507 80334 900 ° C-40 wt% 49.7 27.4 42334 4364 900 ° C-100wt% 100 100 19928 21569 1000 ° C-0wt% 100 51 168952 ^ 194951 ~ 1000 ° C-1 wt% 100 70 219944 335182 1000 ° C-10wt% 100 100 41403 47113 1000 ° C-40wt% 100 100 2650 29920 1000 ° C-100 wt% 100 100 28732 30512 As can be seen from the results in Table 1, when the sintering temperature is 400 ° (:, the proportion of seed crystal powder is 100wt · Except for the phase transformation of% of the samples, the other samples could not be detected-the square crystal phase was detected. The reason is presumed that the seed crystal powder has a lower melting point and a faster crystal growth rate, so phase transfer can occur at a lower temperature. ; When the sintering temperature is higher than 600 QC, phase transformation occurs in all the samples, among which the seed crystal is -13-200427829.
⑻ 比例為100 wt%之樣品在600 Qc懷燒時,其結晶相已完全轉 換為六方晶相,此溫度遠低於傳統塊材之相轉變溫度1 〇 2 0 °C。六方晶相之比例隨著烺燒溫度及種晶粉末比例之提升 ,而有增加之趨勢,但並非完全呈對應增加,如當锻燒溫 度為800’°C及900 QC而種晶粉末比例提升為40wt%時,其相 轉移率反而下降,可知過多之種晶粉末於高溫燒結時反而 會不利於六方晶相轉變。 另一方面、,於400 °C煅燒時,種晶粉末比例過高會形成 MnS〇4及ZnO雜相,而不利於螢光體之發光強度;於較高 温·度(>600°C)懷燒時’可知種晶比例為時,樣品 之發光強度最強,依樣品之發光強度,種晶粉末較佳比例 可歸納為:lwt%>0wt%> 10wt%>40wt%> l〇〇wt%。 再觀察助熔劑種類之影響,添加氯化鋰助溶劑之樣品, 於煅燒溫度為1000°c時,其結晶相完全轉換為六方晶相, 但添加氯化鈉助熔劑之樣品,於較低之種晶粉末比例時, 則仍有立方晶相的存在’故可知於高溫懷燒條件時,添加 氯化叙助熔劑之樣品的相轉移率較添加氯化鈉助溶劑的 樣品還要高’其推知因氯化麵之、熔點(614 °C)小於氯化韵 熔點(801 °C),使得添加氯化鋰助熔劑之樣品其相轉移溫 度較低,而具較高之相轉移率。 於發光強度方面’種晶粉末比例低(〇 wt%及1 wt%)時, 添加乳化鋼之樣品於8 0 0。C以上有較佳之發光強产·作〉 溫時(600 °C),添加氯化鋰之樣品則具有較佳之發光強产 :種晶比例高(10 wt%、40 wt%及1〇〇 wt%)時,添加氣化 -14 - (9) (9)200427829 納之樣品於高溫(大於或签从 (文於次寺於9〇〇。〇烺燒時有較佳發光 強度,但在800 °C以下溫度炮燒#,添加氯化兹之樣品則 有較佳發光效率。整體而言,氯…溶劑之添加於低溫 燒結時有助於發光強度提升;但於高溫馈燒時,氣化納助 熔劑之添加反而有助於發光。其推知係因兩者溶點不同, 以致於咖加熔點較尚《氯化鈉樣品於高溫燒結時對螢光 體發光強度優於低熔點之氯化趣。 當“粉末比例4l wt%且添加ι莫耳% f化鈉之前驅物於900烺燒所獲得之樣品,其發光強度 最佳,該樣品之X-射線繞射結果示於圖2,且以光致發光 光譜儀錢之結果示於圖3,其粒徑之估算係由感應偶合 電漿質講儀測量而得並示^圖4,可得知其粒徑分你相當 均勻而知.末外觀又掃描式電子顯微圖及穿透式電子顯微 圖則分別示於圖5及圖6,同時,其電子繞射圖亦示於圖7 ’且由本發明製備之螢光體於色度座標圖之位置相當靠近 譜色軌跡之邊緣,可知其色純度佳。 上述實施例僅為說明本發明之原理及其功效,而非限制 本發月因此,白於此技術之人士對上述實施例所做之修 改及變化仍*達背本發明之精神。本發明之權㈣圍應如 後述之申請專利範園所列。 圖式簡要說明^ 圖1表7F本發明製備硫化物螢光體之方法流程圖。· 圖2表示根據本發明之方法所製得之螢光體粉末之乂_射 線繞射圖。 -15 - 200427829 (ίο) ,續頁 圖3表示以光致發光光譜儀於343nm波長之光激發根據 本發明之方法所製得之螢光體粉末結果圖。 圖4表示將根據本發明之方法所製得之螢光體粉末以感 應偶合電漿質譜儀測量之結果圖。 圖5表 > 根據本發明之方法所製得之螢光體粉末之掃描 式電子顯微圖。 圖6表示根據本·發明之方法所製得之螢光體粉末之穿透 式電子顯微肩。 圖7表示根據本發明之方法所製得之螢光體粉末之電子 繞射穿透式電子顯微圖。 -16 -样品 When the sample with a proportion of 100 wt% is burned at 600 Qc, the crystal phase has been completely transformed into a hexagonal crystal phase, which is much lower than the phase transition temperature of traditional block materials of 10 ° C. The proportion of the hexagonal crystal phase increases with the increase of the sintering temperature and the proportion of seed crystal powder, but it does not increase correspondingly. For example, when the calcination temperature is 800 '° C and 900 QC, the proportion of seed crystal powder increases. When it is 40% by weight, the phase transfer rate is decreased. It can be seen that excessive seed crystal powder is not conducive to hexagonal phase transformation when sintered at high temperature. On the other hand, when it is calcined at 400 ° C, if the proportion of seed crystal powder is too high, it will form MnS04 and ZnO heterophases, which is not conducive to the luminous intensity of the phosphor; at higher temperatures (> 600 ° C) When burned, it can be seen that when the proportion of seed crystals is, the sample's luminous intensity is the strongest. According to the luminous intensity of the sample, the preferred ratio of seed crystal powder can be summarized as: lwt% > 0wt% > 10wt% > 40wt% > l 〇〇wt%. Observe the effect of the type of flux again. When the calcination temperature is 1000 ° C, the crystal phase of the sample is completely converted to hexagonal phase. However, the sample of sodium chloride flux is added to the lower When the proportion of seed crystal powder, the cubic crystal phase still exists. Therefore, it can be known that under high temperature scorching conditions, the phase transfer rate of the sample with the chlorinated flux is higher than that of the sample with the sodium chloride co-solvent. It is inferred that the melting point (614 ° C) of the chloride surface is lower than the melting point (801 ° C) of the chlorinated rhodium, so that the phase transition temperature of the sample to which the lithium chloride flux is added is lower, and the phase transition rate is higher. In terms of luminous intensity, when the proportion of seed crystal powder is low (0 wt% and 1 wt%), the sample of emulsified steel is added at 800. Above C, there is better luminous intensity production. At temperature (600 ° C), the samples with lithium chloride added have better luminous intensity production: high proportion of seed crystals (10 wt%, 40 wt% and 100 wt. %), The gasification-14-(9) (9) 200427829 nanometer sample is added at high temperature (greater than or signed from (Wen Yuci Temple at 90. 00). There is a better luminous intensity when burned, but at 800 ° C 以下 温 炮 烧 #, the sample with added chloride has better luminous efficiency. In general, the addition of chlorine ... solvent helps to increase the luminous intensity when sintered at low temperature; but when it is fed at high temperature, it vaporizes The addition of the nano-flux helps to emit light instead. It is inferred that the melting point of the two is so high that the melting point of the coffee is higher than that of the sodium chloride sample. Interestingly, when the "powder ratio is 4l wt% and the sodium sulfide is added before the precursor is calcined at 900 ° C, the sample has the best luminous intensity. The X-ray diffraction results of this sample are shown in Figure 2. The results of the photoluminescence spectrometer are shown in Figure 3. The particle size estimates were obtained by measuring with an inductively coupled plasma quality analyzer. As shown in Figure 4, you can know that the particle size is quite uniform. You can see the scanning electron micrographs and transmission electron micrographs at the same time. Figure 5 and Figure 6 show the electron appearance. The radiograph is also shown in Fig. 7 ', and the phosphor prepared by the present invention is relatively close to the edge of the spectral trajectory at the position of the chromaticity coordinate chart, and it can be seen that its color purity is good. The above embodiments are only to illustrate the principle of the present invention and its effects. Therefore, instead of limiting this month, the modifications and changes made by those skilled in the art to the above-mentioned embodiments still * remember the spirit of the present invention. The scope of the rights of the present invention should be listed in the patent application park described later Schematic description ^ Figure 1 Table 7F Flow chart of the method for preparing sulfide phosphors according to the present invention. Figure 2 shows the 乂 -ray diffraction pattern of phosphor powders prepared according to the method of the present invention. -15 -200427829 (ίο), continuation Figure 3 shows the result of phosphor powder produced according to the method of the present invention excited by a photoluminescence spectrometer at a wavelength of 343 nm. Figure 4 shows the result obtained by the method of the present invention. Phosphor powder measured by induction coupled plasma mass spectrometer The results are shown in Fig. 5. Table 5> Scanning electron micrograph of the phosphor powder produced by the method of the present invention. Fig. 6 shows the penetration of the phosphor powder produced by the method of the present invention. Electron microscopy shoulder. Figure 7 shows an electron diffraction transmission electron micrograph of a phosphor powder prepared according to the method of the present invention. -16-
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92115434A TW200427829A (en) | 2003-06-06 | 2003-06-06 | Novel preparation of sulfide phosphors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92115434A TW200427829A (en) | 2003-06-06 | 2003-06-06 | Novel preparation of sulfide phosphors |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200427829A true TW200427829A (en) | 2004-12-16 |
Family
ID=52341426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92115434A TW200427829A (en) | 2003-06-06 | 2003-06-06 | Novel preparation of sulfide phosphors |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200427829A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI447208B (en) * | 2011-10-05 | 2014-08-01 | Univ Nat Kaohsiung Applied Sci | Sulfide phosphors doped with an activator |
-
2003
- 2003-06-06 TW TW92115434A patent/TW200427829A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI447208B (en) * | 2011-10-05 | 2014-08-01 | Univ Nat Kaohsiung Applied Sci | Sulfide phosphors doped with an activator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106544025B (en) | A kind of preparation method of rare earth doped gadolinium oxysulfide phosphor | |
Du et al. | Optimization and complexing agent-assisted synthesis of green SrAl2O4: Eu2+, Dy3+ phosphors through sol–gel process | |
TW200536927A (en) | Phosphor, process for producing the same, lighting fixture and image display unit | |
WO2010029654A1 (en) | Green phosphor | |
Kshatri et al. | Effects of Dy concentration on luminescent properties of SrAl2O4: Eu phosphors | |
Chien | Synthesis of Y2O3: Eu phosphors by bicontinuous cubic phase process | |
JP2017088719A (en) | Red phosphor | |
Duan et al. | Synthesis process dependent white LPL in Zn2GeO4 ceramic and the long afterglow mechanism | |
CN109957400B (en) | A kind of preparation method of Mn4+ ion-activated fluoride phosphor | |
JP4708507B2 (en) | Phosphor | |
US9115309B2 (en) | Zinc manganese silicate containing metal particles luminescent materials and preparation methods thereof | |
Ai et al. | Synthesis of Y2O2S: Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route | |
EP2915863B1 (en) | Silicate luminescent material and preparation method therefor | |
JP5655141B2 (en) | Silicate luminescent material and preparation method thereof | |
Wu et al. | Synthesis of (Ca, Zn) TiO3: Eu3+ red phosphors via the sol–gel method and their luminescence properties | |
ZHANG et al. | Microwave synthesis and characterization of new red long afterglow phosphor Sr3Al2O6: Eu | |
TW200427829A (en) | Novel preparation of sulfide phosphors | |
Fang et al. | Hydrothermal synthesis of uniform CdWO4: Eu3+ microrods as single component for UV-based WLEDs | |
US9605202B2 (en) | Silicate luminescent materials doped with metal nano particles and preparation methods therefor | |
CN102341478A (en) | Oxide luminescent materials activated by trivalent thulium and their preparations | |
JP2015519437A (en) | Manganese-doped magnesium stannate luminescent material and preparation method thereof | |
JP4343267B1 (en) | Green phosphor | |
Zhang et al. | The low temperature synthesis of Eu2+ and Dy3+ activated Sr3Al2O6 nanophosphors by microwave method | |
Ryu et al. | An efficient co-doping of Eu and Er in CaAl2O4 aluminate phosphor | |
JP2008174690A (en) | Europium-activated yttrium oxide fluorophor material and production method thereof |