TW200412942A - Appetite control method - Google Patents
Appetite control method Download PDFInfo
- Publication number
- TW200412942A TW200412942A TW092120520A TW92120520A TW200412942A TW 200412942 A TW200412942 A TW 200412942A TW 092120520 A TW092120520 A TW 092120520A TW 92120520 A TW92120520 A TW 92120520A TW 200412942 A TW200412942 A TW 200412942A
- Authority
- TW
- Taiwan
- Prior art keywords
- long
- pufa
- chain
- dha
- brain
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 235000021407 appetite control Nutrition 0.000 title abstract description 3
- 210000004556 brain Anatomy 0.000 claims abstract description 86
- 206010033307 Overweight Diseases 0.000 claims abstract description 16
- 230000012010 growth Effects 0.000 claims abstract description 14
- 208000008589 Obesity Diseases 0.000 claims abstract description 12
- 235000020824 obesity Nutrition 0.000 claims abstract description 12
- 235000020978 long-chain polyunsaturated fatty acids Nutrition 0.000 claims abstract description 11
- 235000013305 food Nutrition 0.000 claims description 76
- 235000019789 appetite Nutrition 0.000 claims description 31
- 230000036528 appetite Effects 0.000 claims description 31
- 235000020660 omega-3 fatty acid Nutrition 0.000 claims description 31
- 241000124008 Mammalia Species 0.000 claims description 17
- 230000037396 body weight Effects 0.000 claims description 9
- 230000000638 stimulation Effects 0.000 claims description 7
- 241001465754 Metazoa Species 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000003042 antagnostic effect Effects 0.000 claims description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 claims 7
- 241000382353 Pupa Species 0.000 claims 1
- 235000005911 diet Nutrition 0.000 abstract description 54
- 235000012631 food intake Nutrition 0.000 abstract description 31
- 230000037406 food intake Effects 0.000 abstract description 27
- 239000000047 product Substances 0.000 abstract description 26
- 230000000378 dietary effect Effects 0.000 abstract description 24
- 239000002621 endocannabinoid Substances 0.000 abstract description 21
- 235000016709 nutrition Nutrition 0.000 abstract description 20
- 150000001200 N-acyl ethanolamides Chemical class 0.000 abstract description 16
- 101800001509 Large capsid protein Proteins 0.000 abstract description 11
- 229920000106 Liquid crystal polymer Polymers 0.000 abstract description 11
- 235000015872 dietary supplement Nutrition 0.000 abstract description 9
- 239000005557 antagonist Substances 0.000 abstract description 7
- 102000009132 CB1 Cannabinoid Receptor Human genes 0.000 abstract description 2
- 108010073366 CB1 Cannabinoid Receptor Proteins 0.000 abstract description 2
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 246
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 194
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 124
- 229940090949 docosahexaenoic acid Drugs 0.000 description 123
- 235000014113 dietary fatty acids Nutrition 0.000 description 98
- 235000021342 arachidonic acid Nutrition 0.000 description 97
- 229940114079 arachidonic acid Drugs 0.000 description 97
- 239000000194 fatty acid Substances 0.000 description 94
- 229930195729 fatty acid Natural products 0.000 description 92
- 241000700159 Rattus Species 0.000 description 91
- 150000004665 fatty acids Chemical class 0.000 description 89
- 235000013350 formula milk Nutrition 0.000 description 72
- 239000000203 mixture Substances 0.000 description 69
- 230000000694 effects Effects 0.000 description 49
- 241000699670 Mus sp. Species 0.000 description 35
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 35
- 102000005962 receptors Human genes 0.000 description 32
- 108020003175 receptors Proteins 0.000 description 32
- 230000037213 diet Effects 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 229910001868 water Inorganic materials 0.000 description 29
- 235000019197 fats Nutrition 0.000 description 26
- -1 7,10,13,16- Eicosatetraenylethanolamine Chemical compound 0.000 description 25
- 239000003921 oil Substances 0.000 description 24
- 235000019198 oils Nutrition 0.000 description 24
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 22
- 239000003557 cannabinoid Substances 0.000 description 22
- 229930003827 cannabinoid Natural products 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 150000002632 lipids Chemical class 0.000 description 21
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 18
- 150000003904 phospholipids Chemical class 0.000 description 18
- 239000000523 sample Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 17
- 108090000623 proteins and genes Proteins 0.000 description 17
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- YXYPSYDCUBSOOB-LUAWRHEFSA-N (Z)-N-hydroxy-11-methyldodec-2-enamide Chemical compound CC(C)CCCCCCC\C=C/C(=O)NO YXYPSYDCUBSOOB-LUAWRHEFSA-N 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 238000009472 formulation Methods 0.000 description 14
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 13
- 230000035882 stress Effects 0.000 description 13
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 102000029797 Prion Human genes 0.000 description 12
- 108091000054 Prion Proteins 0.000 description 12
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 12
- 239000012528 membrane Substances 0.000 description 12
- 238000011160 research Methods 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 150000001720 carbohydrates Chemical class 0.000 description 11
- 235000014633 carbohydrates Nutrition 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 238000001030 gas--liquid chromatography Methods 0.000 description 11
- 229960004488 linolenic acid Drugs 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000002775 capsule Substances 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 235000004626 essential fatty acids Nutrition 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 10
- 235000020778 linoleic acid Nutrition 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 235000010755 mineral Nutrition 0.000 description 10
- 239000011707 mineral Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 9
- 108050007331 Cannabinoid receptor Proteins 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 9
- 210000003016 hypothalamus Anatomy 0.000 description 9
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 102000004877 Insulin Human genes 0.000 description 8
- 108090001061 Insulin Proteins 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000284 extract Substances 0.000 description 8
- 235000019138 food restriction Nutrition 0.000 description 8
- 229940125396 insulin Drugs 0.000 description 8
- 230000035764 nutrition Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229940088594 vitamin Drugs 0.000 description 8
- 239000011782 vitamin Substances 0.000 description 8
- 235000013343 vitamin Nutrition 0.000 description 8
- 229930003231 vitamin Natural products 0.000 description 8
- 229940074909 cerebral phospholipid Drugs 0.000 description 7
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 7
- 239000000546 pharmaceutical excipient Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 240000002234 Allium sativum Species 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- LGEQQWMQCRIYKG-DOFZRALJSA-N anandamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCO LGEQQWMQCRIYKG-DOFZRALJSA-N 0.000 description 6
- 235000021229 appetite regulation Nutrition 0.000 description 6
- LGEQQWMQCRIYKG-UHFFFAOYSA-N arachidonic acid ethanolamide Natural products CCCCCC=CCC=CCC=CCC=CCCCC(=O)NCCO LGEQQWMQCRIYKG-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 6
- 235000019577 caloric intake Nutrition 0.000 description 6
- 210000003169 central nervous system Anatomy 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 235000005686 eating Nutrition 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 229940088597 hormone Drugs 0.000 description 6
- 239000005556 hormone Substances 0.000 description 6
- 235000012054 meals Nutrition 0.000 description 6
- 235000013336 milk Nutrition 0.000 description 6
- 239000008267 milk Substances 0.000 description 6
- 210000004080 milk Anatomy 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000013589 supplement Substances 0.000 description 6
- 235000017060 Arachis glabrata Nutrition 0.000 description 5
- 244000105624 Arachis hypogaea Species 0.000 description 5
- 235000010777 Arachis hypogaea Nutrition 0.000 description 5
- 235000018262 Arachis monticola Nutrition 0.000 description 5
- 206010020710 Hyperphagia Diseases 0.000 description 5
- 102000016267 Leptin Human genes 0.000 description 5
- 108010092277 Leptin Proteins 0.000 description 5
- 239000005862 Whey Substances 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 235000004611 garlic Nutrition 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 5
- 229940039781 leptin Drugs 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002858 neurotransmitter agent Substances 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 235000020830 overeating Nutrition 0.000 description 5
- 235000020232 peanut Nutrition 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- SVUQHVRAGMNPLW-UHFFFAOYSA-N 2,3-dihydroxypropyl heptadecanoate Chemical compound CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 4
- NHQKAFUJSAGLEY-UHFFFAOYSA-N 2-(9H-fluoren-1-ylamino)ethanol Chemical compound C1(=CC=CC=2C3=CC=CC=C3CC1=2)NCCO NHQKAFUJSAGLEY-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 235000010469 Glycine max Nutrition 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- 241000283984 Rodentia Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 125000000747 amidyl group Chemical group [H][N-]* 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000012263 liquid product Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 150000003722 vitamin derivatives Chemical class 0.000 description 4
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 3
- 102000009135 CB2 Cannabinoid Receptor Human genes 0.000 description 3
- 108010073376 CB2 Cannabinoid Receptor Proteins 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 208000010340 Sleep Deprivation Diseases 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003240 coconut oil Substances 0.000 description 3
- 235000019864 coconut oil Nutrition 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000013401 experimental design Methods 0.000 description 3
- 230000004634 feeding behavior Effects 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 235000020256 human milk Nutrition 0.000 description 3
- 210000004251 human milk Anatomy 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000011813 knockout mouse model Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000037081 physical activity Effects 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002464 receptor antagonist Substances 0.000 description 3
- 229940044551 receptor antagonist Drugs 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 235000013619 trace mineral Nutrition 0.000 description 3
- 239000011573 trace mineral Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- JNBVLGDICHLLTN-DZUOILHNSA-N (2s)-2-acetamido-n-[(2s,3s)-4-[[[(2s)-2-acetamido-3-methylbutanoyl]amino]-(cyclohexylmethyl)amino]-3-hydroxy-1-phenylbutan-2-yl]-3-methylbutanamide Chemical compound C([C@H](NC(=O)[C@@H](NC(C)=O)C(C)C)[C@@H](O)CN(CC1CCCCC1)NC(=O)[C@@H](NC(C)=O)C(C)C)C1=CC=CC=C1 JNBVLGDICHLLTN-DZUOILHNSA-N 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- BXWHLWURRJYLHZ-UHFFFAOYSA-N C1(=CC=CC=2C3=CC=CC=C3CC12)C(CO)(O)CO Chemical compound C1(=CC=CC=2C3=CC=CC=C3CC12)C(CO)(O)CO BXWHLWURRJYLHZ-UHFFFAOYSA-N 0.000 description 2
- 102100033868 Cannabinoid receptor 1 Human genes 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 241000199914 Dinophyceae Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 210000003056 antler Anatomy 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229960003453 cannabinol Drugs 0.000 description 2
- 235000013351 cheese Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000020595 eating behavior Effects 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000000105 evaporative light scattering detection Methods 0.000 description 2
- 235000021149 fatty food Nutrition 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000002035 hexane extract Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 150000004668 long chain fatty acids Chemical class 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 240000004308 marijuana Species 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- JBXYCUKPDAAYAS-UHFFFAOYSA-N methanol;trifluoroborane Chemical compound OC.FB(F)F JBXYCUKPDAAYAS-UHFFFAOYSA-N 0.000 description 2
- XPQPWPZFBULGKT-UHFFFAOYSA-N methyl undecanoate Chemical compound CCCCCCCCCCC(=O)OC XPQPWPZFBULGKT-UHFFFAOYSA-N 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 210000000118 neural pathway Anatomy 0.000 description 2
- 230000010004 neural pathway Effects 0.000 description 2
- 230000003227 neuromodulating effect Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000000813 peptide hormone Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229940117728 pre milk Drugs 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000011552 rat model Methods 0.000 description 2
- 108091006082 receptor inhibitors Proteins 0.000 description 2
- 235000018770 reduced food intake Nutrition 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 235000021055 solid food Nutrition 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 235000021404 traditional food Nutrition 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- AUHDWARTFSKSAC-HEIFUQTGSA-N (2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-(6-oxo-1H-purin-9-yl)oxolane-2-carboxylic acid Chemical compound [C@]1([C@H](O)[C@H](O)[C@@H](CO)O1)(N1C=NC=2C(O)=NC=NC12)C(=O)O AUHDWARTFSKSAC-HEIFUQTGSA-N 0.000 description 1
- DVSZKTAMJJTWFG-SKCDLICFSA-N (2e,4e,6e,8e,10e,12e)-docosa-2,4,6,8,10,12-hexaenoic acid Chemical compound CCCCCCCCC\C=C\C=C\C=C\C=C\C=C\C=C\C(O)=O DVSZKTAMJJTWFG-SKCDLICFSA-N 0.000 description 1
- PLSDWRYNZIVQKX-BGKYVOMCSA-N (3S)-3-amino-4-[[(2S)-1-[[2-[[(2S)-1-[[2-[[(2S)-5-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S,3R)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(1S)-1-carboxy-3-methylsulfanylpropyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-2-oxoethyl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC2=CNC=N2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC3=CC=CC=C3)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)CNC(=O)[C@H](CC4=CNC=N4)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CC(=O)O)N PLSDWRYNZIVQKX-BGKYVOMCSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical class C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical compound CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- DYTUAOUIQFNOIH-UHFFFAOYSA-N 2,3-diethyl-2,3-dihydroxybutanedioic acid Chemical compound CCC(O)(C(O)=O)C(O)(CC)C(O)=O DYTUAOUIQFNOIH-UHFFFAOYSA-N 0.000 description 1
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 description 1
- FIINVRHWVBUYAJ-UHFFFAOYSA-N 2-[(2-methoxyphenyl)methylamino]-1-[3-(trifluoromethoxy)phenyl]ethanol Chemical compound COC1=CC=CC=C1CNCC(O)C1=CC=CC(OC(F)(F)F)=C1 FIINVRHWVBUYAJ-UHFFFAOYSA-N 0.000 description 1
- DNLDXOPTFYQILE-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]tetradecan-1-ol Chemical compound CCCCCCCCCCCCC(CO)N(CCO)CCO DNLDXOPTFYQILE-UHFFFAOYSA-N 0.000 description 1
- NAVWVHRQSDHCHD-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;potassium Chemical compound [K].OC(=O)CC(O)(C(O)=O)CC(O)=O NAVWVHRQSDHCHD-UHFFFAOYSA-N 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical compound BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N 2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- CYAYCOCJAVHQSD-UHFFFAOYSA-N 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxylic acid Chemical compound CC=1C(C(O)=O)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 CYAYCOCJAVHQSD-UHFFFAOYSA-N 0.000 description 1
- HLXHCNWEVQNNKA-UHFFFAOYSA-N 5-methoxy-2,3-dihydro-1h-inden-2-amine Chemical compound COC1=CC=C2CC(N)CC2=C1 HLXHCNWEVQNNKA-UHFFFAOYSA-N 0.000 description 1
- GZJLLYHBALOKEX-UHFFFAOYSA-N 6-Ketone, O18-Me-Ussuriedine Natural products CC=CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O GZJLLYHBALOKEX-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102100036214 Cannabinoid receptor 2 Human genes 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 241000555825 Clupeidae Species 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 241000199912 Crypthecodinium cohnii Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 101710093617 Dihydroxyacetone synthase Proteins 0.000 description 1
- NSTJYLJXTUKKJO-UHFFFAOYSA-N Docosatetraenoyl Ethanolamide Chemical compound CCC=CCC=CCC=CCC=CCCCCCC(=O)NCCO NSTJYLJXTUKKJO-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- PANDVJNMJNDSCF-UHFFFAOYSA-N Erythramide Natural products COC1CC=C2CCN3CCc4cc(OC)c(cc4C23C1)C(=O)N PANDVJNMJNDSCF-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- XYZZKVRWGOWVGO-UHFFFAOYSA-N Glycerol-phosphate Chemical compound OP(O)(O)=O.OCC(O)CO XYZZKVRWGOWVGO-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- GRSZFWQUAKGDAV-UHFFFAOYSA-N Inosinic acid Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-UHFFFAOYSA-N 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 241000235575 Mortierella Species 0.000 description 1
- 241000907999 Mortierella alpina Species 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- SUHOOTKUPISOBE-UHFFFAOYSA-N O-phosphoethanolamine Chemical compound NCCOP(O)(O)=O SUHOOTKUPISOBE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 244000131316 Panax pseudoginseng Species 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 208000007683 Pediatric Obesity Diseases 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102100024304 Protachykinin-1 Human genes 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000197220 Pythium insidiosum Species 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000037208 balanced nutrition Effects 0.000 description 1
- 235000019046 balanced nutrition Nutrition 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 1
- 230000034149 carbohydrate storage Effects 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- UETQVDZZPKAQIC-UHFFFAOYSA-N chlorane Chemical compound Cl.Cl.Cl.Cl UETQVDZZPKAQIC-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 231100000876 cognitive deterioration Toxicity 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- LMEDOLJKVASKTP-UHFFFAOYSA-N dibutyl sulfate Chemical group CCCCOS(=O)(=O)OCCCC LMEDOLJKVASKTP-UHFFFAOYSA-N 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 235000020930 dietary requirements Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical compound CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- KAUVQQXNCKESLC-UHFFFAOYSA-N docosahexaenoic acid (DHA) Natural products COC(=O)C(C)NOCC1=CC=CC=C1 KAUVQQXNCKESLC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 229960004242 dronabinol Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 239000006274 endogenous ligand Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000003031 feeding effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 230000009246 food effect Effects 0.000 description 1
- 235000014106 fortified food Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 210000005153 frontal cortex Anatomy 0.000 description 1
- VZCCETWTMQHEPK-QNEBEIHSSA-N gamma-linolenic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/CCCCC(O)=O VZCCETWTMQHEPK-QNEBEIHSSA-N 0.000 description 1
- 235000020664 gamma-linolenic acid Nutrition 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000037219 healthy weight Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- VAMFXQBUQXONLZ-UHFFFAOYSA-N icos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 210000003552 inferior colliculi Anatomy 0.000 description 1
- 239000004245 inosinic acid Substances 0.000 description 1
- 229940028843 inosinic acid Drugs 0.000 description 1
- 235000013902 inosinic acid Nutrition 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 210000002660 insulin-secreting cell Anatomy 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- XRLCEUMZRRZTJT-UHFFFAOYSA-N methyl docosa-2,4,6-trienoate Chemical compound CCCCCCCCCCCCCCCC=CC=CC=CC(=O)OC XRLCEUMZRRZTJT-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000001730 monoaminergic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QAPAPLIQQTVEJZ-UHFFFAOYSA-N n-[(3-fluorophenyl)methyl]ethanamine Chemical compound CCNCC1=CC=CC(F)=C1 QAPAPLIQQTVEJZ-UHFFFAOYSA-N 0.000 description 1
- 230000004007 neuromodulation Effects 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000006180 nutrition needs Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 230000001830 phrenic effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- MXXWOMGUGJBKIW-YPCIICBESA-N piperine Chemical compound C=1C=C2OCOC2=CC=1/C=C/C=C/C(=O)N1CCCCC1 MXXWOMGUGJBKIW-YPCIICBESA-N 0.000 description 1
- WVWHRXVVAYXKDE-UHFFFAOYSA-N piperine Natural products O=C(C=CC=Cc1ccc2OCOc2c1)C3CCCCN3 WVWHRXVVAYXKDE-UHFFFAOYSA-N 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-M pivalate Chemical compound CC(C)(C)C([O-])=O IUGYQRQAERSCNH-UHFFFAOYSA-M 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 229940001470 psychoactive drug Drugs 0.000 description 1
- 239000004089 psychotropic agent Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 230000003893 regulation of appetite Effects 0.000 description 1
- 230000009892 regulation of energy homeostasis Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- JZCPYUJPEARBJL-UHFFFAOYSA-N rimonabant Chemical compound CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 JZCPYUJPEARBJL-UHFFFAOYSA-N 0.000 description 1
- 229960003015 rimonabant Drugs 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 230000036186 satiety Effects 0.000 description 1
- 235000019627 satiety Nutrition 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 230000002295 serotoninergic effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- PVFDPMYXCZLHKY-MLLWLMKGSA-M sodium [(1R,2R,4aR,8aS)-2-hydroxy-5-[(2E)-2-[(4S)-4-hydroxy-2-oxooxolan-3-ylidene]ethyl]-1,4a,6-trimethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]methyl sulfate Chemical compound [Na+].C([C@@H]1[C@](C)(COS([O-])(=O)=O)[C@H](O)CC[C@]11C)CC(C)=C1C\C=C1/[C@H](O)COC1=O PVFDPMYXCZLHKY-MLLWLMKGSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 108010073085 tachykinin neuropeptide gamma Proteins 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 230000001331 thermoregulatory effect Effects 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000021076 total caloric intake Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 210000001177 vas deferen Anatomy 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000011684 zucker rat (obese) Methods 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/23—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
- A61K31/232—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Obesity (AREA)
- Child & Adolescent Psychology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
200412942 玫、發明說明: 【發明所屬之技術領域】 本發明為關於營養補充物及配方之產物,其包括長鏈多 元不飽和脂肪酸(LCPs或LC-PUFAs),尤其是心3 LCps ;及 利用該產品來控制食慾及幫助治療及/或預防肥胖及調整 過重之方法,尤其是對於小兒群。 【先前技術】 1.1緒言 過去1〇年,西方社會兒童的過重及肥胖明顯增加,治療 之策路包括增加體力活動及刻意的限制熱量,以便影響負 的能量平衡。也曾嘗試作醫藥之介入。預防策略強調均衡 的營養伴隨體力活動之養生。 本發明測試所攝取之脂肪·品質是否可經由腦中形成之 n-6及n-3脂肪醯基化合物扮演調節食慾之角色。 内生類大麻紛為一組自然發生之化合物,其顯示擬大麻 酚性質,如:止痛、攝食過度、認識變質及運動控制,特 別是包括食慾先生理效果。於過去的10年中,發現了結合 在類大麻齡受體上之内生脂肪驢基衍生物。該受體較為知 名之稱呼為CBiKCB2。該脂肪醯基衍生物為化合物N-醯基 乙醇胺(NAEs)及單醯基甘油(MAGs ;美可蘭(Mechoulam)等 人’ 1998)之一族。花生浸晞基乙醇胺,2〇 : 4n-6 ΝΑΕ為由 花生浸缔酸與乙醇胺所製成,最近顯示當被注射進飲食受 限之小鼠及預先餵飽之大鼠時,增加了食物之消耗(Ha〇等 人,2001 及 Williams及 Kirkham,2001)。20 : 4n-6 MAG為由 86783 200412942 花生浸晞酸及甘油所製成,最近被證明當被注射進大鼠之 腦中時,會增加食物之攝取(Kirkham等人,2002)。其他n-6 及n-3族之脂肪醯基化合物也結合至該CB受體,亦即那些含 -20破及至少3個雙键者(Mechoulam等人,1998)。 花生浸烯酸(AA,20 : 4n-6)及二十二碳六晞酸(DHA ’ 22 : 6n-3)可在活體内,將必需脂肪酸,亞油酸及亞麻酸經由去 飽和及延長之過程而製造出’或得自食物。於’’大腦生長衝 刺,,期間之動物模式研究顯示改變飲食必需脂肪酸及長鏈 η-6及n-3多元不飽和脂肪酸之含量水平,會導致大腦中相應 的長鏈n-6及n-3脂肪酸之改變,特別是AA及DHA(Ward等 人,1998及 1999 ; de la Presa Owens及 Innis,1999及 2000) ° 對於以配方餵食之小豬,一個最近之研究證實攝食A A及 DHA將導致大腦中相應η-6及n-3 NAEs及一些單酿基甘油 之增加(MAGs ; Berger等人,2001)。 20 ·· 4n-6 ΝΑΕ經由類大麻酚受體,CB!,行使其神經傳導 樣之效果已被充分建立(Chaperon及Thi6bot,1999)。該CB! 受體被發現遍佈_於大腦,包括在食慾調節上重要的下視丘。 * 1.2文獻一覽 1.2.1流行的肥胖 在過去二十年間,全美國及許多西方國家,過重及肥胖 之兒童及青春期青年的數目穩定的增加(Harnack等人, 2000 ; Schneider,2000 ; Onis 及 Bl6ssner,2000 ; Muller 等 人,1999 ; Heird,2000 ; Spruijt-Metz等人,2002)。疾病管 制中心定義過重為與被接受之標準期望體重相比,相對於 86783 200412942 身高所增加之體重;定義肥胖為相對於痩肌肉團之體脂脉 過量(CDC,2002)。過重及肥胖一般更被定義為具有體團塊 指數(體重/身高2)分別在25與29.9之間,或^ 30(CDC, 2002)。2000年過重兒童(6-17歲)之普遍程度為11-24%之 間,較大之兒童有較高之百分比(Schneider,2000)。過重兒 童及青春期小孩常維持過重或成年後變成肥胖,因此,增 加共同發病之風險,例如第二型糖尿病及心血管疾病。 研究以確認著手於預防兒童肥胖為重要之主要之公共健 康問題。雖然許多因素促成體重增加,導致過重或肥胖, 大部分研究聚焦於基因、文化、行為及環境上之因素,如, 社會經濟狀況,缺少活動之生活型態及缺乏體力活動。本 研究則聚焦於中樞神經系統對食物攝取之調節。 1.2.2 中樞神經系統對食物攝取之調節 於食慾的調節及最終食物之消耗上,中樞神經系統扮演 了主要的角色。無論成人或小孩之健康體重,需要食物攝 取之調節。需要能量攝取與能量支出之平衡。當該平衡因 能量攝入之支持.而反轉,身體傾向於貯存該多餘之能量。 一再或長期產生多餘能量貯存之行為可導致成為過重,若 持續,會導致肥胖。 食物攝取之調節為高度複雜之過程,該過程相當大程度 由大腦中之下視丘控制。供維持體重能量攝取之中點控 制,需要由周邊及腦中各區域之神經、内分泌、感覺及熱 調節信號之複雜統合(Williams等人,2000 ; Hovel,2001 ; van Dijk等人,2000 ; Berthoud,2000) 〇 些研究者已從研究餵食行為及飽足本身轉移至研究中 柩神經系統對食慾之調節(Wllllams等人,2000; Kaiyala等 人’ 1995)。下視丘在能量平衡的調節上扮演重要之角色。 例如,於下視丘,增加神經胜肽γ之含量水平刺激了食慾, 増加α-黑細胞刺激贺爾蒙之含量水平,抑制進食,導致體 重減少,而食慾神經在相應於低血糖水平時,似從事於刺 激進食。1几亞拉(Kaiyala)等人(1995),其研究中框神經系統 之此里平衡碉節,及多脂肪性,建議兩個不同系列之週邊 仏唬。短期的用餐相關信號及長期多脂肪性相關信號調控 大腦中之神經徑路以影響用餐之起始及結束。 (1) 痩蛋白(Leptin)與胰島素 θ瘦蛋白及胰島素為以有關貯存於體内之脂肪含量訊息來 =供給大腦之已知贺爾蒙(van Dijk等人,2_)。如此,瘦 蛋白及胰島素幫助調節食物之攝取。痩蛋白為分泌自肥胖 細胞《胜肽賀爾蒙。痩蛋白之分泌量顯示直接按比例於脂 肪之貯存量。胰島素也是分泌自胰臟B細胞之胜肽賀爾蒙, 於控制葡萄糖㈣性及脂肪之利用及貯存,扮演中央之角 :。任何時間胰島素之分泌量也直接依比例於身體脂肪 里。瘦蛋白及胰島素經由大腦中下視丘之受體來活動。該 受體發現於下視丘之事實提供了由脂肪及碳水化合物貯存 土大細《直接㈣之證據,並暗示了該贺爾蒙在食慾調節 上之角色(Berthoud,2000)。 (2) 内生類大麻紛(End〇cannabin〇ys) 有許多相關之神經徑路、贺爾蒙及受體不僅伴隨體重, 86783 200412942 也伴隨體脂肪之維持。最近之研究已解明產生於大腦中之 脂肪酸衍生化合物,及作用於已知會影響食慾之特定受 體。該化合物為内因性的類大麻酚(亦即内生性類大麻酚) 並顯示在調節食慾上扮演神經調控之角色。該領域之主要 歷史描述如下,繼而是兩個主要類大麻酚族N-醯基乙醇胺 (NAEs)及單醯基甘油(MAGs)之更詳細描述。 大麻之活性成分,Δ9-四氫大麻酚(THC),具有刺激食慾 之效果,被一些醫生處方來幫助病患保持體重(Mechoulam 及Fride,2001)。由於Δ9-ΤΗ(3之生物學效果,研究者開始 尋找内生的化合物,内生類大麻酚,該△ 9-THC由叫作CB! 受體之特定類大麻酚受體來傳達。於1990年早期,一組在 類大麻酚受體顯示神經調控者活性之具生物活性脂肪醯基 化合物被鑑別出(Devane等人,1992 ; HanuS等人,1993)。 其後,鑑別出另一組在類大麻g分受體顯示神經調控活性之 單酸基甘油或MAGs(Sugiura等人,1995 ; Mechoulam等人, 1995) 〇 最近之研究顯示該内生類大麻酚族二者(NAEs及MAGs) 被牵連於下視丘中之痩蛋白信號路徑(Di Marzo等人, 2001 ; Mechoulam及 Fride,2001)。痩蛋白被顯示抑制了 NAEs 及MAGs之形成。於DiMarzo及Colleagues(2001)之研究中, 靜脈注射痩蛋白,減少了大腦中20 : 4n-6 ΝΑΕ及20 : 4n-6 MAG之含量水平(DiMarzo等人,2001)。該結果暗示:在痩 蛋白與内生類大麻酚之間的交互作用,調節下視丘中CB! 受體之活化,進而調節食物之攝取。 200412942200412942 Rose, description of the invention: [Technical field to which the invention belongs] The present invention relates to nutritional supplements and formula products, which include long-chain polyunsaturated fatty acids (LCPs or LC-PUFAs), especially Xin 3 LCps; and the use of the Products to control appetite and help treat and / or prevent obesity and overweight, especially for the pediatric population. [Previous technology] 1.1 Introduction Over the past 10 years, children's overweight and obesity in Western society have increased significantly. The treatment strategies include increasing physical activity and deliberately limiting calories in order to affect the negative energy balance. Attempts have also been made to intervene in medicine. Prevention strategies emphasize balanced nutrition with physical activity. The present invention tests whether the ingested fat · quality can play an appetite-regulating role through n-6 and n-3 fatty amidin compounds formed in the brain. Endocannabinoids are a group of naturally occurring compounds that exhibit quasi-cannabinol properties, such as: analgesics, over-eating, cognitive deterioration, and exercise control, especially the effects of appetite. Over the past 10 years, endogenous fatty donkey-based derivatives that bind to cannabinoid receptors have been discovered. This receptor is better known as CBiKCB2. The fatty fluorenyl derivatives are a family of compounds N-fluorenylethanolamine (NAEs) and monofluorenyl glycerol (MAGs; Mechoulam et al. '1998). Peanut immersion ethanolamine, 20: 4n-6 ΝΑΕ is made of arachidonic acid and ethanolamine. Recently it has been shown that when injected into diet-restricted mice and pre-fed rats, the food content was increased. Consumption (Hao et al., 2001 and Williams and Kirkham, 2001). 20: 4n-6 MAG is made from 86783 200412942 arachidonic acid and glycerol and has recently been shown to increase food intake when injected into the brain of rats (Kirkham et al., 2002). Other n-6 and n-3 fatty amidyl compounds also bind to the CB receptor, i.e. those containing -20 cleavage and at least 3 double bonds (Mechoulam et al., 1998). Arachidonic acid (AA, 20: 4n-6) and docosahexahexanoic acid (DHA '22: 6n-3) can be used in vivo to desaturate and prolong essential fatty acids, linoleic acid and linolenic acid Process 'to produce' or derived from food. During the "brain growth sprint," animal model studies during this period have shown that changing dietary essential fatty acids and long-chain η-6 and n-3 polyunsaturated fatty acid levels can cause corresponding long-chain n-6 and n- 3 Changes in fatty acids, especially AA and DHA (Ward et al., 1998 and 1999; de la Presa Owens and Innis, 1999 and 2000) ° For piglets fed a formula, a recent study has confirmed that ingestion of AA and DHA will cause Increases in the brain of corresponding n-6 and n-3 NAEs and some monoglycerides (MAGs; Berger et al., 2001). 20 ·· 4n-6 ΝΑΕ through the cannabinoid receptor, CB !, to exert its nerve conduction-like effect has been fully established (Chaperon and Thi6bot, 1999). The CB! Receptor is found throughout the brain, including the hypothalamus, which is important for appetite regulation. * 1.2 Literature overview 1.2.1 The prevalence of obesity Over the past two decades, the number of overweight and obese children and adolescents has increased steadily throughout the United States and many Western countries (Harnack et al., 2000; Schneider, 2000; Onis and Bl6ssner , 2000; Muller et al., 1999; Heird, 2000; Spruijt-Metz et al., 2002). The Centers for Disease Control defined overweight as the weight gain relative to the accepted standard expected weight relative to 86783 200412942 height; and defined obesity as an excess of body lipids relative to the sacroiliac muscle mass (CDC, 2002). Overweight and obesity are generally defined as having a mass index (weight / height 2) between 25 and 29.9, or 30 (CDC, 2002). The prevalence of overweight children (ages 6-17) in 2000 was between 11-24%, with older children having a higher percentage (Schneider, 2000). Overweight children and adolescents often remain overweight or become obese as adults, and therefore increase the risk of co-morbidity, such as type 2 diabetes and cardiovascular disease. Studies have identified major public health issues that are important in addressing childhood obesity prevention. Although many factors contribute to weight gain, leading to overweight or obesity, most research focuses on genetic, cultural, behavioral, and environmental factors, such as socioeconomic status, inactive lifestyles, and lack of physical activity. This study focused on the regulation of food intake by the central nervous system. 1.2.2 Regulation of food intake by the central nervous system The central nervous system plays a major role in regulating appetite and final food consumption. Regardless of the healthy weight of an adult or child, food intake regulation is required. A balance of energy intake and energy expenditure is required. When the balance is reversed by the support of energy intake, the body tends to store the excess energy. Repeated or prolonged excess energy storage can lead to becoming overweight and, if sustained, can lead to obesity. The regulation of food intake is a highly complex process, which is controlled to a large extent by the inferior optic mast in the brain. For midpoint control of energy intake for maintaining body weight, complex integration of neural, endocrine, sensory, and thermoregulatory signals in peripheral and various regions of the brain is required (Williams et al., 2000; Hovel, 2001; van Dijk et al., 2000; Berthoud (2000) Some researchers have moved from studying feeding behavior and satiety to studying the regulation of appetite by the phrenic nervous system (Wllllams et al. 2000; Kaiyala et al. 1995). The hypothalamus plays an important role in regulating energy balance. For example, in the hypothalamus, increasing the level of neuropeptide γ stimulates appetite, and increasing α-black cells stimulates the level of hormones, inhibits eating and leads to weight loss, and when the appetite nerve corresponds to low blood glucose levels, Seems engaged in stimulating eating. 1 Kaiyala et al. (1995), in his research on the balance of sacral ganglia in the box nervous system and its fatty nature, suggested two different series of peripheral bluffing. Short-term meal-related signals and long-term fat-related signals regulate neural pathways in the brain to influence the start and end of meals. (1) Leptin and insulin Theta leptin and insulin are based on information about fat content stored in the body = known hormones supplied to the brain (van Dijk et al. 2_). As such, leptin and insulin help regulate food intake. Prion protein is secreted from the obese cells, peptide hormone. The secretion of prion protein is directly proportional to the fat storage amount. Insulin is also a peptide hormone secreted from pancreatic B cells. It plays a central role in controlling the use and storage of glucose and fat. The amount of insulin secreted at any time is also directly proportional to body fat. Leptin and insulin move through receptors in the hypothalamus in the brain. The fact that the receptor is found in the hypothalamus provides direct evidence of fat and carbohydrate storage, and hints at the role of this hormone in appetite regulation (Berthoud, 2000). (2) Endogenous cannabinoids (End〇cannabin〇ys) have many related neural pathways, hormones and receptors not only with body weight, but also with the maintenance of body fat 86783 200412942. Recent studies have identified fatty acid-derived compounds that are produced in the brain and act on specific receptors known to affect appetite. The compound is an endogenous cannabinoid (ie, an endogenous cannabinoid) and has been shown to play a neuromodulatory role in regulating appetite. The main history of the field is described below, followed by a more detailed description of the two major cannabinoid N-fluorenylethanolamines (NAEs) and monofluorenyl glycerols (MAGs). The active ingredient in marijuana, Δ9-tetrahydrocannabinol (THC), has an appetite stimulating effect and is prescribed by some doctors to help patients maintain weight (Mechoulam and Fride, 2001). Due to the biological effects of Δ9-ΤΗ (3), researchers began to look for endogenous compounds, endocannabinoids. The Δ9-THC was conveyed by a specific cannabinoid receptor called the CB! Receptor. In 1990 Earlier, a group of bioactive fatty amidin compounds showing neuromodulator activity at cannabinoid receptors were identified (Devane et al., 1992; HanuS et al., 1993). Thereafter, another group was identified Cannabinoid G receptors show monoacid glycerol or MAGs with neuromodulation activity (Sugiura et al., 1995; Mechoulam et al., 1995). Recent studies have shown that both the endocannabinol family (NAEs and MAGs) are implicated in The prion protein signal pathway in the hypothalamus (Di Marzo et al., 2001; Mechoulam and Fride, 2001). Prion protein has been shown to inhibit the formation of NAEs and MAGs. In the study of DiMarzo and Colleagues (2001), intravenous injection of peptone Protein, reducing the levels of 20: 4n-6 ΝΑΕ and 20: 4n-6 MAG in the brain (DiMarzo et al., 2001). The results suggest that the interaction between prion protein and endocannabinoids is regulated by Activation of the CB! Receptor in the optic mast, The regulation of food intake. 200 412 942
在相同的研究中,為評估痩蛋白在内生類大麻酚系統中 之角色,Di Marzo等人(2001)將125或250 pg之痩蛋白以靜脈 注入正常Sprague-D awl ey大鼠中。在30分鐘内,與未處理之 控制組相比,20 : 4n-6 ΝΑΕ及20 : 4n-6 MAG之下視丘含量 水平減少了 40-50%。此外,缺乏痩蛋白信號之肥胖的Zucker 大鼠,與不肥胖之Zucker控制組大鼠相比,顯示減少了下 視丘中20 : 4n-6 MAG之含量水平。對瘦蛋白缺乏小鼠之更 多觀察顯示在下視丘中,20 ·· 4η·6 MAG或20 : 4n-6 ΝΑΕ或 兩者均增加。因此,痩蛋白在内生類大麻酚的調節上,扮 演實際的角色。 1.2,3 内因類大麻酚的鑑別 以神經調控活性來鑑別NAEs作為生物活性之研究開始 於近100年前。該研究史之優秀評論可利用(例如, Mechoulam等人,1998; Di Marzo等人,1999; Hillard,2000 ; Onaivi等人,2002),本文不重複該研究史。In the same study, to assess the role of prion protein in the endocannabinoid system, Di Marzo et al. (2001) injected 125 or 250 pg of prion protein intravenously into normal Sprague-Dawley rats. In 30 minutes, compared with the untreated control group, the level of the optic mound content under 20: 4n-6 ΝΑΕ and 20: 4n-6 MAG decreased by 40-50%. In addition, obese Zucker rats lacking prion protein signals showed reduced levels of 20: 4n-6 MAG in the inferior colliculus compared with non-obese Zucker control rats. More observations of leptin-deficient mice show an increase in 20 ·· 4η · 6 MAG or 20: 4n-6 ΝΕΕ or both in the hypothalamus. Therefore, prion protein plays an actual role in the regulation of endogenous cannabinoids. 1.2,3 Identification of endogenous cannabinoids The study of the identification of NAEs as a biological activity using neuromodulatory activity began nearly 100 years ago. Excellent reviews of this research history are available (eg, Mechoulam et al., 1998; Di Marzo et al., 1999; Hillard, 2000; Onaivi et al., 2002), and the history of this research is not repeated in this article.
△ 9-THC及其他合成的類大麻酚激動劑顯示可結合至特 定的類大麻酚受_體,抑制腺苷酸環酶及N-型鈣通道G蛋白之 連結信號路徑,該受體典型地稱作CB1&CB2受體(Felder等 人,1993)。031受體主要被發現於大腦,含部分的mRNA 也表現於週邊器官(腎上腺、心、肺、前列腺、子宮、卵巢、 睪丸、骨髓、胸腺、爲桃腺及睪丸)。CB2受體發現於免疫 系統細胞(Buckley 等人,1998)。McLaughlin等人(1994)研究 Sprague-Dawley幼鼠之類大麻受體之發展,發現類大麻酉分 受體mRNA出現早在幼鼠出生後第3天,便有成年鼠之水平。 86783 -10- 200412942 隨後,腦中CBi受體之鑑別,研究者開始在腦中尋找内生 配位基之出現。在1992年,Devane等人報告結合於類大麻 酚受體之天然腦分子之鑑別及結構式(Devane等人,1992)。 他們發現豬腦萃取物之分組含有結合於CBi受體之化合 物。他們將該化合物命名為anandamide,現在一般稱它為 N-花生浸烯基乙醇胺(20 : 4n-6 ΝΑΕ)。他們純化20 : 4η·6 ΝΑΕ,以測量抑制離體的鼠輸精管之抽動反應之能力,來 測試其擬大麻之藥理活性,該測試方法為研究趨精神性藥 劑作用模式之標準模式。anandamide之構造式由質譜測定法 φ 及核磁共振法來決定。20: 4η-6ΝΑΕ之化學名為[5,8,11,14-二十碳四締酸胺,(Ν-2-羥乙基)-(al 1-Ζ)]。Anandamide及其 效果也描述於 WO 2001/24645 A1 (Nestle,2001)。 從那時起,數個也結合至該類大麻酚受體之其他脂肪醯 基化合物被鑑別出。在1993年,Hanug等人鑑別出兩個結合 於CBi受體之其他長鏈脂肪醯基乙醇胺,高-γ-亞油基乙醇 胺(20 : 3η-6 ΝΑΕ)及7,10,13,16-二十碳四烯基乙醇胺(22 : 4η-6 ΝΑΕ)。在 1-995 年,Sugiura等人及Mechoulam等人分別 _ 由大鼠腦及狗腸中,分離出不同的脂肪醯基化合物,2-花 生浸晞基甘油,或20 : 4n-6 MAG,具有類大麻盼受體激動 劑之活性。20 : 4n-6 MAG也被顯示結合至CB1&CB2受體, 並在體外及體内均表現擬大麻之活性。雖然大部分之研究 對於結合至腦中CBi受體之内生類大麻酚之特定角色與 20 : 4n-6 ΝΑΕ有關,‘其他的脂肪醯基NAEs及MAGs也結合 至CBi受體(Mechoulam等人,1998),並可在食物攝取的中 86783 -11 - 200412942 樞神經系統調節上,扮演一角(Di Marzo等人,2001 ; Berger 等人,2001 ; Kirkham等人,2002)。 1.2.4 内生類大麻酚之組織分布 20 : 4n-6 ΝΑΕ被發現於包括鼠、豬、母牛及人類之許多 物種及許多組織(Schmid等人,1995 ; Felder等人,1996 ; Kondo等人,1998 ; Bisogno等人,1999 ; Schmid等人,2000)。 NAEs被發現於具有CBi受體之組織,包括腦、腎、脾、睪 丸、皮膚、血漿及子宮。它們存在於大鼠腦中之濃度範圍 由沒有被偵測到至29 pmol/g(Mechoulam等人,1998)。 由於20 : 4η·6 MAG結合至CBi&CB2兩者,其似乎也是生 理上重要及具生物活性的分子。它們曾被發現於狗腸、聘^、 胰及大腦中(Mechoulam等人,1998 ; Bisogno等人,1999 ·△ 9-THC and other synthetic cannabinoid agonists have been shown to bind to specific cannabinoid receptors and inhibit the signal pathways of adenylate cyclase and N-type calcium channel G protein. The receptor is typically Called the CB1 & CB2 receptor (Felder et al., 1993). The 031 receptor is mainly found in the brain, and some mRNAs are also expressed in peripheral organs (adrenal, heart, lung, prostate, uterus, ovary, testes, bone marrow, thymus, peach glands and testes). The CB2 receptor is found in cells of the immune system (Buckley et al., 1998). McLaughlin et al. (1994) studied the development of cannabis receptors such as Sprague-Dawley pups, and found that the cannabis-like receptor mRNA appeared as early as 3 days after the pups were born. 86783 -10- 200412942 Subsequently, the identification of CBi receptors in the brain, researchers began to look for the emergence of endogenous ligands in the brain. In 1992, Devane et al. Reported the identification and structural formula of natural brain molecules that bind to cannabinoid receptors (Devane et al., 1992). They found that the group of pig brain extracts contained compounds that bound to the CBi receptor. They named the compound anandamide, and it is now commonly referred to as N-arachidene alcoholamine (20: 4n-6 ΝΑΕ). They purified 20: 4η · 6 NAE to test their ability to inhibit the twitch response of isolated rat vas deferens to test their pharmacological activity of cannabis. This test method is the standard model for studying the mode of action of psychotropic drugs. The structural formula of anandamide is determined by mass spectrometry φ and nuclear magnetic resonance method. 20: The chemical name of 4η-6ΝΑΕ is [5,8,11,14-icosatetraassociate, (N-2-hydroxyethyl)-(al 1-Z)]. Anandamide and its effects are also described in WO 2001/24645 A1 (Nestle, 2001). Since then, several other fatty sulfonyl compounds have also been identified that bind to this type of cannabinol receptor. In 1993, Hanug et al. Identified two other long-chain fatty fluorenylethanolamines that bind to the CBi receptor, high-γ-linoleylethanolamine (20: 3η-6 ΝΑΕ), and 7,10,13,16- Eicosatetraenylethanolamine (22: 4η-6 ΝΑΕ). In 1-995, Sugiura et al. And Mechoulam et al. Isolated different fatty amidine compounds, 2-peanut-impregnated glycerol, or 20: 4n-6 MAG from rat brain and dog intestine, respectively. Activity of cannabis-like receptor agonists. 20: 4n-6 MAG has also been shown to bind to the CB1 & CB2 receptor, and exhibits cannabis-like activity in vitro and in vivo. Although most of the studies on the specific role of endocannabinoids that bind to CBi receptors in the brain are related to 20: 4n-6 ΝΑΕ, 'other fatty amidyl NAEs and MAGs also bind to CBi receptors (Mechoulam et al., 1998) and can play a role in the regulation of the central nervous system in food intake 86783-11-200412942 (Di Marzo et al., 2001; Berger et al., 2001; Kirkham et al., 2002). 1.2.4 Tissue distribution of endocannabinoids 20: 4n-6 ΝΑΕ is found in many species and tissues including rats, pigs, cows, and humans (Schmid et al., 1995; Felder et al., 1996; Kondo et al. , 1998; Bisogno et al., 1999; Schmid et al., 2000). NAEs are found in tissues with CBi receptors, including brain, kidney, spleen, testes, skin, plasma, and uterus. Their concentration in the rat brain ranges from undetected to 29 pmol / g (Mechoulam et al., 1998). Since 20: 4η · 6 MAG binds to both CBi & CB2, it also appears to be a physiologically important and biologically active molecule. They have been found in dog intestines, dogs, pancreas and brain (Mechoulam et al., 1998; Bisogno et al., 1999 ·
Schmid等人,2000 ; Kondo等人,1998)腦中之湛洛上 /辰反鬲於 anandamide 800倍(Suguira及 Waku,2000)。 1,2.5 NAEs及MAGs之生合成 ΝΑΕ生合成之提議機轉包括將脂肪醯基鏈從磷g旨@ 之sn-1位置,依_Ca+2轉移至一級胺的磷酯酸乙醇妝 叶妝’形成 N-酸基磷酯酸乙醇胺(NAPE)及溶血磷酯酿膽驗(pat^eeu· 及Cravatt 2001)。NAPE其後由像磷脂酶D之酵素水解,、、 哪,以產 生相當之ΝΑΕ及磷脂酸。該二反應被認為是緊密的合作 MAG生合成之提議機轉與被顯示為依賴Ca+2之ναε4目4乂 (Mechoulam等人,1998)。肌醇磷脂特定之磷脂酶c引起一 醯基甘油及肌醇三磷酸酯之釋出,其後利用Sn_ 1 _二 —"基甘 油脂酶水解產生MAG(Ameri,1999)。 86783 -12- 200412942 1.2.6 NAEs及MAGs之轉移及降解 NAEs及MAGs從磷脂膜被釋出後,用於結合至CBi受體。 它們也快速的由連結於膜之酵素,稱為脂肪醯基醯胺水解 酶(FAAH)或有時叫做’anandamide [20: 4n-6 ΝΑΕ]水解酶’ 所水解(Patricelli 及 Cravatt,2001 ; Goparaju等人,1998 ; Giang及 Cravatt,1997)。Giuffrida等人(2001)提議 20 : 4n-6 ΝΑΕ及20 : 4n-6 MAG以兩個步騾之過程所水解,該過程包 括由特定載體輸送至降解部位後之酵素水解。由於其快速 降解,内生類大麻酚被認為在貼近於CBi受體處形成及被使 用。母載體運送NAEs及MAGs進入細胞被提議是基於作用 之速率、依溫度、飽和度及基質選擇性。 需要特別研究以便更了解NAEs及MAGs之降解是如何被 調節的。然而大部分之研究者同意FAAH為關於内生類大麻 齡之水解的關键酵素。FAAH似為總水解性酵素,作用於許 多生物活性脂質及酯類上(Giuffrida等人,2001)。20 ·· 4n-6 ΝΑΕ被FAAH水解成自由的花生浸晞酸及乙醇胺。20 : 4η·6 MAG經由FAA^i之酵素性作用被分解成為自由的花生浸烯 酸及甘油。雖尚未被堅固地證實,MAGs降解之另一機轉已 被提議,可能為單醯基甘油酯酶。 1.2.7飲舍脂肪酸及腦脂肽酸之組成 配方餵食之大鼠(Ward等人,1998及1999 ; Wainwright等 人,1999)及小豬(de la Presa Owens及 Innis,1999及 2000 ; Arbuckle及Innis,1993)之研究顯示餵食不同飲食長鏈n-6及 n_3脂肪酸將導致大腦中不同的相對含量之長鏈n-6及n-3脂 86783 -13- 200412942 肪酸。明確地’不同量及比例之飲食的必需脂肪酸、亞油 酸(18: 2n-6)及亞麻酸(18: 3n-3),及/或其長鏈多元不飽和 脂肪酸衍生物,花生浸烯酸(20 : 4n-6)及二十二碳六烯酸 (22 : 6n-3),分別導致大腦磷脂膜中20 : 4n-6及22 : 6n-3含 量水平之不同。生命第1年期間死亡之餵母乳及配方餵食嬰 兒,其腦中20. 4n-6及22: 6n-3含量水平之不同也曾被報告 (Farquharson等人,1995 ; Makrides等人,1994)。 \¥&^等人(1998)示範改變鼠乳配方中20:411-6及22:611-3 之含量時,與”劑量”相關之餵食效果。利用3x3設計,以胃 造口術管將出生後第5天至第18天之幼鼠餵食20 : 4n-6及 22 : 6n-3三種含量水平之一種(總脂肪酸之〇%,0.4%或 2.4%)。該配方經考慮過之適當含量之必需脂肪酸,總脂肪 酸的10%為18 : 2η·6及1%為18 : 3n-3。到出生後第18天, 紅血球及大腦磷脂膜之脂肪酸通常反映補充配方進食之脂 肪酸組成。此外,當僅進食20 : 4η·6或22 : 6n-3,未添加之 n-6或n-3長鏈脂肪酸在紅血球及大腦磷脂中之含量水平低 於相對未補充冬控制組(亦即當與未補充之控制組相比單 獨補充20 : 4n-6導致腦磷脂中20 ·· 4n_6增加,及22 ·· 6n-3 減少)。 於 1999年,de la Presa Owens及 Innis以 0%或 0.2%之 20 : 411-6及0%或〇.16%之22:611-3研究食物缺乏必需脂肪酸之效 應(總脂肪酸之0.8%為18 : 2n-6及0.05%為18 : 3η·3)。他們 餵食配方之一給小豬從出生到出生後第18天,發現補充配 方增加大腦磷脂膜之20 : 4η-6及22 : 6η-3。餵食缺乏脂肪酸 86783 -14- 200412942 之小豬,當與餵食適當量必需脂肪酸之小豬相比(8.3% 18 : 2n-6 及 0.8% 18 : 3n-3)具有較低之 20 : 4n-6 及 22 ·· 6n-3。 1.2.8飲食脂肪酸輿NAEs及MAGs 由於飲食之脂肪酸顯示影響大腦磷脂中20 : 4n-6及22 ·· 6n-3脂肪酸之含量水平,有理由來假設不同的n-6及n-3飲食 的脂肪會導致大腦中生物活性物20 : 4n-6 ΝΑΕ及20 : 4n-6 MAG含量水平之相似改變。配方進食小豬之一個研究 (Berger等人,2001)提供該效果之最初證據。Berger等人做 出了證據,該證據為不同含量水平之飲食20 : 4n-6及22 : 6n-3脂肪酸增加其相當NAEs及一些MAGs,也增加其他長 鏈脂肪醢基NAEs及MAGs。在生命的最初1 8天期間,小豬 進食 了包含0.3% 20 ·· 4n-6或0.2% 22 : 6n-3,或0.3% 20 ·· 4n-6 及0.2% 22 : 6n-3兩者之配方。所有的配方包括足夠含量水 平之必需脂肪酸(總脂肪酸的15_16%之18 : 2n-6及1.5% 18 : 3n-3)。他們顯示含20 : 4n-6及22 : 6n-3之小豬食物,使大 腦中長鏈n-6及n-3之NAEs及MAGs增加。20 : 4n-6 ΝΑΕ增加 4倍,20 : 5n-3 JNAE增加 5倍,22 : 5η-3 及 22 : 6η_3 ΝΑΕ增 加了9-10倍;22:4卜6 1^人〇及22:611_3 1^人〇增加近二倍; 雖然20 : 4n-6 MAG不增加。他們提議以改變ΝΑΕ前驅物之 含量水平,或以提供基質供生合成,飲食的脂肪酸調控ΝΑΕ 之含量水平。 1.2.9可注射之NAEs及含物攝取/含慾控制 有一成長身體之證據供連接20 : 4n-6 ΝΑΕ與進食行為。 預先飽足大鼠進食行為之研究(Williams及Kirkham,1999) 86783 -15- 200412942 及斷食小鼠進食行為之研究(Hao等人,2000)報告在注射了 2〇: 4n-6 ΝΑΕ後,對食物攝取之效果。乳鼠(Fride等人,2〇〇1) 及〇丑1受體剔除之小鼠Marz〇等人,2001)之其他研究報 告於投予CB!受體抑制劑(Sr141716A)[(N-六氫吡啶-1-基)_5-(4-氯苯基)-1-(2,4_二氯苯基)-4-甲基-1-11-吡唑-3-羧 醯胺]之後,減少了食物之攝取。 於預先飽足之大鼠,Williams及Kirkham(1999)研究是否 20: 4n-6 ΝΑΕ會引發過度進食及這是否與cBi受體之特定作 用有關。於同一研究,但為第二系列之評估中,8隻大鼠在 接受了 1.0 mg/kg的20 : 4n-6 ΝΑΕ注射之前,接受特定的CBi 受體结抗劑之皮下注射。所有劑量之2〇 : 4η-6 ΝΑΕ引發了 顯著之過度進食。由投予2〇 : 4η-6 ΝΑΕ所引發之過度進食 也被CBj#抗劑之預處理所阻斷。作者提議皮下所給之2〇 : 4n-6 ΝΑΕ可模仿關於食慾調節之内生的N•醯基乙醇胺系統 之作用,而該系統包括下視丘中之CB i受體。 在限制食物的模式中,Hao等人(2001)研究對於4〇%之熱 量限制後,低劑·量之20 : 4η·6 ΝΑΕ(0·001 mg/kg)對食物攝 取反應上之效果。在其研究中,近親繁殖之雌BALB/c小鼠 被Ik機分派至賦形劑組或20 : 4n-6 ΝΑΕ處理組。該小鼠被 供給餵食前後均秤重之食物群,包括溢出的部份。該小鼠 每天餵食2.5小時共7天(上午9點至下午12點之間)。餵食前 10 分鐘,將賦形劑中之0.001,0.7 或 4mg/kg<2〇: 4η-6ΝΑΕ 或單獨賦形劑,以O.i mL體積/10 g體重,腹膜内注射。控 制組接文足夠之熱量以維持重量,而食物限制組接受的為 86783 -16- 200412942 給控制組熱量之40%。食物的限制持續至重量的高丘或達 到15 g或更少。該研究顯示小鼠以〇·〇〇1 mg/kg的20 : 4n-6 ΝΑΕ注射會明顯的比控制組消耗更多的食物。該以〇.〇〇ι mg/kg 20 : 4η-6 ΝΑΕ處理組也顯示改善認知功能及逆轉因嚴 重食物限制之效果。其他兩個20 : 4η-6 ΝΑΕ處理組不顯示 任何明顯的改變。該結果暗示2〇 ·· 4η-6 ΝΑΕ在食慾上之效 果可依劑量及實驗情況而改變。該CBl受體活性似乎呈現兩 相。Schmid et al., 2000; Kondo et al., 1998) Zhanluo / Chen in the brain was 800 times more anandamide (Suguira and Waku, 2000). 1,2.5 Biosynthesis of NAEs and MAGs The proposed mechanism of NAE biosynthesis includes the transfer of fatty amidyl chain from the position of phosphoryl g @@ sn-1 to _Ca + 2 to primary amines. 'Formation of N-acid phosphonoethanolamine (NAPE) and lysophosphate ester biliary test (pat ^ eeu · and Cravat 2001). NAPE is then hydrolyzed by enzymes such as phospholipase D to produce equivalent NAE and phosphatidic acid. This two reaction is considered to be a close collaboration between the proposed mechanism of MAG biosynthesis and the ναε4 mesh 4 乂 shown to be dependent on Ca + 2 (Mechoulam et al., 1998). Inositol phospholipid-specific phospholipase c causes the release of mono-glycerol and inositol triphosphate, which is then hydrolyzed with Sn_1_di- " glycan lipids to produce MAG (Ameri, 1999). 86783 -12- 200412942 1.2.6 Transfer and degradation of NAEs and MAGs NAEs and MAGs are released from the phospholipid membrane and used to bind to the CBi receptor. They are also rapidly hydrolyzed by membrane-bound enzymes called fatty amidinohydrolase (FAAH) or sometimes 'anandamide [20: 4n-6 ΝΑ] hydrolase' (Patricelli and Cravat, 2001; Goparaju Et al., 1998; Giang and Cravat, 1997). Giuffrida et al. (2001) proposed that 20: 4n-6 NAE and 20: 4n-6 MAG are hydrolyzed in a two-step process, which involves the hydrolysis of enzymes after they are delivered to a degradation site by a specific carrier. Due to its rapid degradation, endocannabinoids are thought to form and be used close to the CBi receptor. The delivery of NAEs and MAGs into cells by the parent carrier is proposed based on the rate of action, temperature, saturation, and matrix selectivity. Special research is needed to better understand how degradation of NAEs and MAGs is regulated. However, most researchers agree that FAAH is a key enzyme for the hydrolysis of endocannabinoid age. FAAH appears to be a total hydrolytic enzyme that acts on many biologically active lipids and esters (Giuffrida et al., 2001). 20 ·· 4n-6 ΝΑΕ is hydrolyzed by FAAH to free peanut immersion acid and ethanolamine. 20: 4η · 6 MAG is decomposed into free arachidonic acid and glycerol by the enzymatic action of FAA ^ i. Although it has not been empirically confirmed, another mechanism for the degradation of MAGs has been proposed, which may be monoglyceride. 1.2.7 Composition of House Fatty Acids and Brain Lipoic Acid Composition Rats (Ward et al., 1998 and 1999; Wainwright et al., 1999) and piglets (de la Presa Owens and Innis, 1999 and 2000; Arbuckle and Innis, 1993) showed that feeding different diets of long-chain n-6 and n-3 fatty acids will lead to different relative levels of long-chain n-6 and n-3 lipids in the brain. 86783-13-200412942 fatty acids. Explicitly 'Different amounts and ratios of dietary essential fatty acids, linoleic acid (18: 2n-6) and linolenic acid (18: 3n-3), and / or their long-chain polyunsaturated fatty acid derivatives, arachidene Acid (20: 4n-6) and docosahexaenoic acid (22: 6n-3), respectively, cause different levels of 20: 4n-6 and 22: 6n-3 content in the cerebral phospholipid membrane. Breast milk and formula-fed infants who died during the first year of life have also been reported to have different levels of 20. 4n-6 and 22: 6n-3 in their brains (Farquharson et al., 1995; Makrides et al., 1994). \ ¥ & ^ et al. (1998) demonstrated the feeding effect related to "dose" when changing the content of 20: 411-6 and 22: 611-3 in rat milk formula. Using a 3x3 design, the young rats from the 5th to the 18th day after birth were fed one of three levels of 20: 4n-6 and 22: 6n-3 with a gastrostomy tube (0%, 0.4% of total fatty acids or 2.4%). The formula takes into account the appropriate content of essential fatty acids, with 10% of the total fatty acids being 18: 2η · 6 and 1% being 18: 3n-3. By the 18th day after birth, the fatty acids in erythrocytes and cerebral phospholipid membranes usually reflect the fatty acid composition of dietary supplements. In addition, when only 20: 4η · 6 or 22: 6n-3 were consumed, the levels of unadded n-6 or n-3 long-chain fatty acids in red blood cells and cerebral phospholipids were lower than those in the relatively unsupplemented winter control group (ie, When supplemented with 20: 4n-6 alone compared with the control group without supplementation, 20 ·· 4n_6 increased and 22 ·· 6n-3 decreased in cerebral phospholipids). In 1999, de la Presa Owens and Innis studied the effects of foods lacking essential fatty acids with 0: 0.2% 20: 411-6 and 0% or 0.16% 22: 611-3 (0.8% of total fatty acids was 18: 2n-6 and 0.05% are 18: 3η · 3). They fed one of the formulas to the piglets from birth to the 18th day after birth and found that the supplement formula increased the cerebral phospholipid membranes by 20: 4η-6 and 22: 6η-3. Piglets fed with fatty acids 86783 -14- 200412942 have lower 20: 4n-6 when compared with piglets fed with appropriate amounts of essential fatty acids (8.3% 18: 2n-6 and 0.8% 18: 3n-3) And 22 ·· 6n-3. 1.2.8 Dietary fatty acids, NAEs and MAGs. As dietary fatty acids appear to affect the levels of 20: 4n-6 and 22 · 6n-3 fatty acids in brain phospholipids, it is reasonable to assume that different diets of n-6 and n-3 Fat causes similar changes in the levels of 20: 4n-6 NAE and 20: 4n-6 MAG in the brain. A study of piglets formulated (Berger et al., 2001) provided initial evidence of this effect. Berger et al. Provided evidence that different levels of dietary 20: 4n-6 and 22: 6n-3 fatty acids increased their equivalent NAEs and some MAGs, as well as other long-chain fatty fluorene-based NAEs and MAGs. During the first 18 days of life, the piglets consumed 0.3% 20 · 4n-6 or 0.2% 22: 6n-3, or 0.3% 20 · 4n-6 and 0.2% 22: 6n-3 Formula. All formulations include sufficient levels of essential fatty acids (15_16% 18: 2n-6 and 1.5% 18: 3n-3 of total fatty acids). They showed that piglet foods containing 20: 4n-6 and 22: 6n-3 increased NAEs and MAGs of long chains n-6 and n-3 in the brain. 20: 4n-6 ΝΑΕ increased by 4 times, 20: 5n-3 JNAE increased by 5 times, 22: 5η-3 and 22: 6η_3 ΝΑΕ increased by 9-10 times; 22: 4, 6 1 ^ person, and 22: 611_3 1 ^ person〇 increased almost twice; although 20: 4n-6 MAG did not increase. They proposed to change the level of NAE precursors, or to provide a matrix for biosynthesis, and dietary fatty acids to regulate the level of NAE. 1.2.9 Injectable NAEs and Ingestion / Aspirin Control There is evidence for growing the body to connect 20: 4n-6 ΝΑΕ with eating behavior. Studies on the feeding behavior of presatisfied rats (Williams and Kirkham, 1999) 86783 -15- 200412942 and studies on the feeding behavior of fasting mice (Hao et al., 2000) reported that after injection of 2: 4n-6 ΝΑΕ, Effect on food intake. Other studies of suckling mice (Fride et al., 2001) and mice with 0 receptor 1 knockout (Marz, et al., 2001) were reported in the CB! Receptor inhibitor (Sr141716A) [(N-VI Hydropyridine-1-yl) _5- (4-chlorophenyl) -1- (2,4-dichlorophenyl) -4-methyl-1-11-pyrazole-3-carboxamide], Reduced food intake. In pre-satiated rats, Williams and Kirkham (1999) investigated whether 20: 4n-6 ΝΑΕ triggers overeating and whether this is related to the specific role of cBi receptors. In the same study, but in the second series of evaluations, 8 rats received subcutaneous injections of specific CBi receptor antagonists before receiving a 20: 4n-6 ΝΑΕ injection at 1.0 mg / kg. 20: 4η-6 NAE of all doses caused significant overeating. The overeating caused by the administration of 20: 4η-6 ΝΑΕ was also blocked by the pretreatment of the CBj # antagonist. The authors propose that the 20: 4n-6 NAE given subcutaneously mimics the effect of the endogenous N • fluorethanolamine system on appetite regulation, which includes the CB i receptor in the hypothalamus. In the model of food restriction, Hao et al. (2001) studied the effect of a low dose of 20: 4η · 6 ΝΑΕ (0 · 001 mg / kg) on food intake response after a 40% heat limit. In their study, inbreeding female BALB / c mice were assigned by Ik machine to either the vehicle group or the 20: 4n-6 ΝΑΕ treatment group. The mice were fed food groups that were weighed before and after feeding, including spilled portions. The mice were fed 2.5 hours a day for 7 days (between 9 am and 12 pm). Ten minutes before feeding, 0.001, 0.7 or 4 mg / kg < 20: 4η-6NAE or the excipient alone was injected intraperitoneally at a volume of 0.1 mL / 10 g body weight. The control group received sufficient heat to maintain weight, while the food restriction group accepted 86783 -16- 200412942 to give the control group 40% of the calories. Restrictions on food continue to high hills of weight or to 15 g or less. This study showed that mice injected with 0.001 mg / kg of 20: 4n-6 NAE consumed significantly more food than the control group. The treatment group with 0.00 mg / kg 20: 4η-6 ΝΑΕ also showed effects of improving cognitive function and reversing severe food restriction. The other two 20: 4η-6 NAE treatment groups did not show any significant changes. The results suggest that the effect of 2 ·· 4η-6 ΝΑΕ on appetite may vary depending on the dose and experimental conditions. The CBl receptor activity appears to be biphasic.
Fride等人(2001)研究乳鼠中阻斷cb^體活性之效果。於 出生後第1天或第2天,將小鼠以20 mg/kg之CBi受體抑制劑 (SR141716A)腹膜内注射。研究者觀察到死亡率壓倒性之效 果。在出生第1天,注射該拮抗劑導致全部小鼠到第4天死 i ’在出生後第2天注射,導致小鼠50%死亡。相同之研究, 但不同實驗(Fride等人,2001)小鼠從出生第2天至第8天, 每天注射20 mg/kg之拮抗劑。所有小鼠立即停止增重並於 第8天死亡。併用Δ9订HC與該拮抗劑導致經第8天後輕微增 重。併用20 : 4.0 MAG與該拮抗劑未能提升重量之獲得或 延長生命。研究者從該實驗下結論”在老鼠生命之早期,内 生類大麻酚系統在吸乳及生長與發展上扮演維生之角色,,。 最近CB!文體剔除小鼠之研究中,Di Marz〇等人(2〇〇1)評 估了關於維持食物攝取之痩蛋白及内生類大麻酚。在斷食 】寺後1雙體基因剔除小鼠及野生型控制組被以腹膜 内注射了賦形劑或CBi受體拮抗劑。被給賦形劑之cB 1受體 基因剔除小鼠明顯的比野生型控制組少吃。CB1受體拮抗劑 86783 -17- 200412942 減少野生型控制組之食物攝取至給賦形劑之CBi受體基因 剔除小鼠之食物攝取水平;投予拮抗劑至CBi受體基因剔除 小鼠,結果為不改變食物之攝取。該結果進一步提供内生 類大麻酚係關於食物攝取調節之證據。 概要描述,研究顯示不同的飲食的n-6及n-3脂肪酸影響了 大腦中η-6及n-3轉脂脂膀酸之組成,及相關的大腦η-6及n-3 之NAEs及MAGs。進一步,包含注射20 : 4η-6 ΝΑΕ於齧齒 動物之研究實證了在食慾及進食行為上之效果。 1.3參考文獻 以下為依字母排列之相關參考文獻名單。每一主要描述 見於以上或他處應用上之背景討論。Fride et al. (2001) investigated the effect of blocking cb activity in suckling rats. Mice were injected intraperitoneally with a CBi receptor inhibitor (SR141716A) at 20 mg / kg on the first or second day after birth. Researchers have observed an overwhelming effect on mortality. On the 1st day of birth, injection of the antagonist caused all mice to die on day 4 i 'injection on the 2nd day after birth caused 50% of mice to die. The same study, but different experiments (Fride et al., 2001) mice were injected with 20 mg / kg of antagonist daily from day 2 to day 8 of birth. All mice immediately stopped gaining weight and died on day 8. The combination of Δ9 and HC with this antagonist caused a slight increase in weight after the 8th day. Using 20: 4.0 MAG with the antagonist failed to gain weight or gain life. Researchers concluded from this experiment that "in the early life of rats, the endocannabinoid system played a vital role in breast pumping and growth and development. In the recent study of CB! Stylistic mice, Di Marz〇 et al. Humans (2001) evaluated prion protein and endocannabinoids for maintaining food intake. After fasting, the 1-diploid gene knockout mice and the wild-type control group were injected with an excipient or CBi receptor antagonists. CB 1 receptor knockout mice given excipients ate significantly less than the wild-type control group. CB1 receptor antagonists 86783 -17- 200412942 reduced food intake to the Food intake levels of excipient CBi receptor knockout mice; administration of antagonists to CBi receptor knockout mice resulted in unchanged food intake. The results further provided that endocannabinoids can regulate food intake In summary, studies have shown that different diets of n-6 and n-3 fatty acids affect the composition of n-6 and n-3 translipids in the brain, and related brain n-6 and n-3 NAEs and MAGs. Further, including notes 20: 4η-6 ΝΑΕ studies in rodents confirm the effect on appetite and eating behavior. 1.3 References The following is a list of related references arranged in alphabetical order. Each major description can be found in the background discussion above or elsewhere. .
Ameri A. The effects of cannabinoids on the brain. Progress in Neurobiology, 58:315-348, (1999).Ameri A. The effects of cannabinoids on the brain. Progress in Neurobiology, 58: 315-348, (1999).
Arbuckle LD and Innis SM. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J Nutr, 123(10):1668-1675, (1993).Arbuckle LD and Innis SM. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J Nutr, 123 (10): 1668-1675, (1993).
Auestad N,Korsak RA5 Bergstrom JD,and Edmond J. Milk-substitutes comparable to rat’s milk; their preparation, composition,and impact on development and metabolism in the artificially reared rat. British Journal of Nutrition, 61:495-518,(1989).Auestad N, Korsak RA5 Bergstrom JD, and Edmond J. Milk-substitutes comparable to rat's milk; their preparation, composition, and impact on development and metabolism in the artificially reared rat. British Journal of Nutrition, 61: 495-518, (1989 ).
Barinaga M. Pot? Heroin unlock new areas for neuroscience. Science, 25 8:1882-1884, (1992).Barinaga M. Pot? Heroin unlock new areas for neuroscience. Science, 25 8: 1882-1884, (1992).
Berger A,Crozier G,Bisogno T,Cavaliere,Innis S,and Di 86783 -18- 200412942Berger A, Crozier G, Bisogno T, Cavaliere, Innis S, and Di 86783 -18- 200412942
Marzo V. Anandamide and diet: Inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. PNAS, 98(11):6402-6406, (2001).Marzo V. Anandamide and diet: Inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. PNAS, 98 (11): 6402-6406, (2001).
Berthoud H-R. An overview of neural pathways and networks involved in the control of food intake and selection. In: Neural and Metabolic Control of Macronutrient Intake (H-R Berthoud and RJ Seeley,Eds). CRC Press,Boca Raton, FL. Chapter 24:361-387, (2000).Berthoud HR. An overview of neural pathways and networks involved in the control of food intake and selection. In: Neural and Metabolic Control of Macronutrient Intake (HR Berthoud and RJ Seeley, Eds). CRC Press, Boca Raton, FL. Chapter 24: 361-387, (2000).
Bisogno T,Berrendero F,Ambrosino G,Cebeira M,Ramos JA,Fernandez-Ruiz JJ,and Di Marzo V. Brain regional distribution of endocannabinoids: implications for their bisynthesis and biological function. Biochemical and Biophysical Research Communications, 256:377-380, (1999).Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos JA, Fernandez-Ruiz JJ, and Di Marzo V. Brain regional distribution of endocannabinoids: implications for their bisynthesis and biological function. Biochemical and Biophysical Research Communications, 256: 377-380 , (1999).
Buckley NE? Hansson S5 Harta G, and Mezey E. Expression of the CBi and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience, 82(4):1131-1149,(1998).Buckley NE? Hansson S5 Harta G, and Mezey E. Expression of the CBi and CB2 receptor messenger RNAs during embryonic development in the rat. Neuroscience, 82 (4): 1131-1149, (1998).
Centers for Disease Control and Prevention. Obesity and Overweight: Basics about overweight and obesity. http://www. cdc,gov/nccdplip/dnpa/obesitv/basics.htm (2002)Centers for Disease Control and Prevention. Obesity and Overweight: Basics about overweight and obesity. Http: // www. Cdc, gov / nccdplip / dnpa / obesitv / basics.htm (2002)
Chaperon F and Thiebot M-H. Behavioral effects of cannabinoid agents in animals. Critical Reviews in Neurobiology, 13(3):243-281, (1999). 86783 -19- 200412942 de la Presa Owens S and Innis SM. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and α-linolenic acid deficient diet in formula-fed piglets. Journal of Netrition, 129:2088-2093, (1999). de la Presa Owens S and Innis SM. Diverse, region-specific effects of addition of arachidonic and docosahexanoic acids to formula with low of adequate linoleic and α-linolenic acids on piglet brain monoaminergic neurotransmitters. Pediatric Research, 48:125-130, (2000).Chaperon F and Thiebot MH. Behavioral effects of cannabinoid agents in animals. Critical Reviews in Neurobiology, 13 (3): 243-281, (1999). 86783 -19- 200412942 de la Presa Owens S and Innis SM. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and α-linolenic acid deficient diet in formula-fed piglets. Journal of Netrition, 129: 2088-2093, (1999). de la Presa Owens S and Innis SM Diverse, region-specific effects of addition of arachidonic and docosahexanoic acids to formula with low of adequate linoleic and α-linolenic acids on piglet brain monoaminergic neurotransmitters. Pediatric Research, 48: 125-130, (2000).
Devane WA, Hanus L5 Breuer A? Petwee RG, Stevenson LA, Griffin G, Gibson D,Mandelbaum Av Etinger A,and Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258:1946-1949,(1992)·Devane WA, Hanus L5 Breuer A? Petwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum Av Etinger A, and Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258: 1946-1949 (1992) ·
Di Marzo V,De Petrocellis L,Bisogno T,and Melck D· Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. Lipids, 34:S319-S325? (1999).Di Marzo V, De Petrocellis L, Bisogno T, and Melck D. Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. Lipids, 34: S319-S325? (1999).
Di Marzo V,Goparaju SK,Wang L,Liu J,Batkal S,Jaral Z, Fezza F,Miura GI,Palmiter RD5 Sugiura T? and Kunos G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 410:822-825, (2001).Di Marzo V, Goparaju SK, Wang L, Liu J, Batkal S, Jaral Z, Fezza F, Miura GI, Palmer RD5 Sugiura T? And Kunos G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature, 410: 822 -825, (2001).
Farquharson J? Jamieson EC, Abbasi KA? Patrick WJ3 Logan 86783 -20- 200412942 RW,and Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child, 72(3):198-203, (1995).Farquharson J? Jamieson EC, Abbasi KA? Patrick WJ3 Logan 86783 -20- 200412942 RW, and Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child, 72 (3): 198 -203, (1995).
Felder CC,Briley EM,Axelrod J,Simpson JT,Mackie K, and Devane WA. Anandamide, an endogenous cannabimimetic eicosanoid,binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc.Felder CC, Briley EM, Axelrod J, Simpson JT, Mackie K, and Devane WA. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc.
Natl· Acad· Sci·,90:7656-7660,(1993).Natl · Acad · Sci ·, 90: 7656-7660, (1993).
Felder CC,Nielsen A,Briley EM,Palkovits M,Priller J, · Axelrod J, Nguyen DN,Richardson JM, Riggin RM,Koppel GA,Paul SM? Becker GW. Isolation and measurement of the endogenous cannabinoid receptor agonist,anandamide,in brain and peripheral tissues of human and rat. FEBS Letters, 393:231-235,(1996).Felder CC, Nielsen A, Briley EM, Palkovits M, Priller J, · Axelrod J, Nguyen DN, Richardson JM, Riggin RM, Koppel GA, Paul SM? Becker GW. Isolation and measurement of the endogenous cannabinoid receptor agonist, anandamide, in brain and peripheral tissues of human and rat. FEBS Letters, 393: 231-235, (1996).
Folch J5 Lees and Sloane-Stanley GA. J. Biol. Chem. 226: 497,(1957).Folch J5 Lees and Sloane-Stanley GA. J. Biol. Chem. 226: 497, (1957).
Fontana A,Di Marzo V,Cadas H,and Piomelli D. Analysis of anandamide,an endogenous canabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukotrienes and Essential Fatty Acids,53:301-308,(1995).Fontana A, Di Marzo V, Cadas H, and Piomelli D. Analysis of anandamide, an endogenous canabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukotrienes and Essential Fatty Acids, 53: 301-308, (1995).
Fride E,Ginzburg Y,Breuer A,Bisogno T,Di Marzo V,Fride E, Ginzburg Y, Breuer A, Bisogno T, Di Marzo V,
Mechoulam R. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. European Journal of Pharmacology,419:207-214,(2001). 86783 -21 - 200412942Mechoulam R. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. European Journal of Pharmacology, 419: 207-214, (2001). 86783 -21-200412942
Gaoni Y and Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc. 86:1646 (1964).Gaoni Y and Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc. 86: 1646 (1964).
Giang DK and Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc. Natl. Acad. Sci·,94:2238-2242,(1997).Giang DK and Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc. Natl. Acad. Sci., 94: 2238-2242, (1997).
Giuffrida A, Beltramo M, and Piomelli D. Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. Journal of Pharmacology and Experimental Therapeutics, 298(1):7-14, (2001).Giuffrida A, Beltramo M, and Piomelli D. Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. Journal of Pharmacology and Experimental Therapeutics, 298 (1): 7-14, (2001).
Goparaju SK,Ueda N, Yamaguchi H,and Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol? another cannabinoid receptor ligand. FEBS Letters, 422:69-73, (1998).Goparaju SK, Ueda N, Yamaguchi H, and Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol? Another cannabinoid receptor ligand. FEBS Letters, 422: 69-73, (1998).
Guzman M and Sanchez C. Effects of cannabinoids on energy metabolism. Life Sciences, 65(6/7):657-664, (1999).Guzman M and Sanchez C. Effects of cannabinoids on energy metabolism. Life Sciences, 65 (6/7): 657-664, (1999).
Hanus L? Gopher A, Almog S5 and Mechoulam R. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med. Chem.5 36:3032-3034, (1993).Hanus L? Gopher A, Almog S5 and Mechoulam R. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med. Chem. 5 36: 3032-3034, (1993).
Hao S,Avraham Y,Mechoulam,and Berry EM. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. European Journal of Pharmacology, 392:147-156, (2000). 86783 -22- 200412942Hao S, Avraham Y, Mechoulam, and Berry EM. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. European Journal of Pharmacology, 392: 147-156, (2000). 86783 -22 -200412942
Harnack LJ? Jeffrey RW? and Boutelle KN. Temporal trends in energy intake in the United States: an ecological perspective. Am J Clin Nutr, 71:1478-1484, (2000).Harnack LJ? Jeffrey RW? And Boutelle KN. Temporal trends in energy intake in the United States: an ecological perspective. Am J Clin Nutr, 71: 1478-1484, (2000).
Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Bio Med, 226(11): 963-977,(2001).Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Bio Med, 226 (11): 963-977, (2001).
Heird WC. Parental feeding behavior and children's fat mass. Am J Clin Nutr? 75:451-452, (2002).Heird WC. Parental feeding behavior and children's fat mass. Am J Clin Nutr? 75: 451-452, (2002).
Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins and other Lipid Mediators, 61:3-18, (2000).Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins and other Lipid Mediators, 61: 3-18, (2000).
Kaiyala KJ? Woods SC, and Schwartz MW. New model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr, 62(suppl): 1223S-1234S, (1995).Kaiyala KJ? Woods SC, and Schwartz MW. New model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr, 62 (suppl): 1223S-1234S, (1995).
Kempe K? Hsu F-F? Bohrer A? and Turk J. Isotope dilution mass spectrometric measurements indicate that arachidonylethanolamine, the proposed endogenous ligand of the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at low levels in or is absent from fresh tissue. Journal of Biological Chemistry, 271(29): 17287-17295,(1996). 86783 -23- 200412942Kempe K? Hsu FF? Bohrer A? And Turk J. Isotope dilution mass spectrometric measurements indicate that arachidonylethanolamine, the proposed endogenous ligand of the cannabinoid receptor, accumulates in rat brain tissue post mortem but is contained at low levels in or is absent from fresh tissue. Journal of Biological Chemistry, 271 (29): 17287-17295, (1996). 86783 -23- 200412942
Kirkham TC,Williams CM,Fezza F,and Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding, and satiation: stimulation of eating by 2-arachidonogyl glycerol. British Journal of Pharmacology, 136:550-557, (2002).Kirkham TC, Williams CM, Fezza F, and Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding, and satiation: stimulation of eating by 2-arachidonogyl glycerol. British Journal of Pharmacology, 136: 550- 557, (2002).
Kondo S,Kondo H,Nakane S,Kodaka T,Tokumura A,Waku K,and Sugirua T. 2-Arachidonoylglycerol,an endogenous cannabinoid receptor agonist: identification as one of the major species on monoacylglycerols in various rat tissues, and evidence for its generation through Ca -dependent and -independent mechanisms. FEBS Letters, 429:152-156, (1998).Kondo S, Kondo H, Nakane S, Kodaka T, Tokumura A, Waku K, and Sugirua T. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species on monoacylglycerols in various rat tissues, and evidence for its generation through Ca -dependent and -independent mechanisms. FEBS Letters, 429: 152-156, (1998).
Liu J,Lee T,Bobik,Jr. E,Guzman-Harty M,and Hastilow C· Quantitative Determination of Monoglycerides and Diglycerides by High-Performance Liquid Chromatography and Evaporative Light-Scattering Detection. Journal of the American Oil Chemists1 Society, 70(4):343-347, (1993).Liu J, Lee T, Bobik, Jr. E, Guzman-Harty M, and Hastilow C · Quantitative Determination of Monoglycerides and Diglycerides by High-Performance Liquid Chromatography and Evaporative Light-Scattering Detection. Journal of the American Oil Chemists1 Society, 70 ( 4): 343-347, (1993).
Makrides M,Neumann MA,Byrad RW,Simmer K,and Gibson RA. Fatty acid composition of brain,retina,and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr? 60(2):189-194, (1994).Makrides M, Neumann MA, Byrad RW, Simmer K, and Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr? 60 (2): 189-194, ( 1994).
McLaughlin CR5 Martin BR? Compton DR, and Abood ME. Cannabinoid receptors in developing rats: detection of mRNA and receptor blinding. Drug and Alcohol Dependence, 86783 -24- 200412942 36:27-31,(1994).McLaughlin CR5 Martin BR? Compton DR, and Abood ME. Cannabinoid receptors in developing rats: detection of mRNA and receptor blinding. Drug and Alcohol Dependence, 86783 -24- 200412942 36: 27-31, (1994).
Mechoulam R, Ben-Shabat S,Hanus L,Ligumski L, Kaminski NE,Schatz AR,Gopher A,Amolg S,Martin BR,and Comton DR. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol, 50:83-90, (1995).Mechoulam R, Ben-Shabat S, Hanus L, Ligumski L, Kaminski NE, Schatz AR, Gopher A, Amolg S, Martin BR, and Comton DR. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol, 50: 83-90, (1995).
Mechoulam R and Fride E. A hunger for cannabinoids. Nature, 410:763-764, (2001).Mechoulam R and Fride E. A hunger for cannabinoids. Nature, 410: 763-764, (2001).
Mechoulam R? Fride E? and Di Marzo V. Endocannabinoids. European Journal of Pharmacology, 359:1-18, (1998).Mechoulam R? Fride E? And Di Marzo V. Endocannabinoids. European Journal of Pharmacology, 359: 1-18, (1998).
Muller MJ,Koertringer I,Mast M,Languix,and Frunch A. Physical activity and diet in 5 to 7 years old children. Public Health Nutrition,2(3a):443-444,(1999).Muller MJ, Koertringer I, Mast M, Languix, and Frunch A. Physical activity and diet in 5 to 7 years old children. Public Health Nutrition, 2 (3a): 443-444, (1999).
Onaivi ES,Leonard CM,Ishiguro H,Zhang PW,Lin Z, Akinshola BE, and Uhl GR. Endocannabinoids and cannabinoid receptor genetics. Progress in Neurobiology, 66: 307-344, (2002),Onaivi ES, Leonard CM, Ishiguro H, Zhang PW, Lin Z, Akinshola BE, and Uhl GR. Endocannabinoids and cannabinoid receptor genetics. Progress in Neurobiology, 66: 307-344, (2002),
Onis M de and Bl6ssner M. Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr, 72:1032-1039, (2000).Onis M de and Bl6ssner M. Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr, 72: 1032-1039, (2000).
Patricelli MP and Cravatt BF. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. Vitamins and Hormones, 62:95-131, (2001).Patricelli MP and Cravatt BF. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides. Vitamins and Hormones, 62: 95-131, (2001).
Reeves PG? Nielsen FH5 and Fahey GC5 Jr. AIN-93 purified 86783 -25- 200412942 diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition, 123:1939-1951,(1993).Reeves PG? Nielsen FH5 and Fahey GC5 Jr. AIN-93 purified 86783 -25- 200412942 diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123: 1939-1951 (1993).
Salzet M,Breton C,Bisogno T,and Di Marzo V· Comparative biology of the endocannabinoid system - possible role in the immune response. Eur J Biochem, 267:4917-4927, (2000).Salzet M, Breton C, Bisogno T, and Di Marzo V · Comparative biology of the endocannabinoid system-possible role in the immune response. Eur J Biochem, 267: 4917-4927, (2000).
Schmind PC,Krebsbach RJ,Perry SR,Dettmer TM, Maasson JL,and Schmid HHO. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Letters,375: 117-120,(1995).Schmind PC, Krebsbach RJ, Perry SR, Dettmer TM, Maasson JL, and Schmid HHO. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Letters, 375: 117-120, (1995).
Schmid PC,Schwartz KD, Smith CN, Krebsbach RJ, Berdyshev EV? and Schmid HHO. A sensitive endocannabinoid assay. Thesimultaneous analysis of N-acylethanolamines and 2-mono acyl glycerols. Chemistry and Physics of Lipids,104: 185-191, (2000).Schmid PC, Schwartz KD, Smith CN, Krebsbach RJ, Berdyshev EV? And Schmid HHO. A sensitive endocannabinoid assay. Thesimultaneous analysis of N-acylethanolamines and 2-mono acyl glycerols. Chemistry and Physics of Lipids, 104: 185-191, ( 2000).
Schneider D. International trends in adolescent nutrition. Social Science & Medicine, 51:955-967 (2000).Schneider D. International trends in adolescent nutrition. Social Science & Medicine, 51: 955-967 (2000).
Smart JL, Stephens DN, and Katz HB. Growth and development of rats artificially reared on a high or a low plane of nutrition. British Journal of Nutrition, 49:497-506,(1983).Smart JL, Stephens DN, and Katz HB. Growth and development of rats artificially reared on a high or a low plane of nutrition. British Journal of Nutrition, 49: 497-506, (1983).
Smart JL,Stephens DN,Tonkiss J,Auestad NS,and Edmond 86783 -26- 200412942 J. Growth and development of rats artificially reared on different milk-substitutes. British Journal of Nutrition, 52: 227-237,(1984).Smart JL, Stephens DN, Tonkiss J, Auestad NS, and Edmond 86783 -26- 200412942 J. Growth and development of rats artificially reared on different milk-substitutes. British Journal of Nutrition, 52: 227-237, (1984).
Sonnenberg N, Bergstrom JD,Ha YH,and Edmond J. Metabolism in the artificially reared rat pup: effect of an atypical rat milk substitute. Journal of Nutrition, 112: 1506-1514, (1982).Sonnenberg N, Bergstrom JD, Ha YH, and Edmond J. Metabolism in the artificially reared rat pup: effect of an atypical rat milk substitute. Journal of Nutrition, 112: 1506-1514, (1982).
Spruijt-Metz D,Linquist CH,Birch LL,Fisher JO,and Goran MI. Relation between mothers* child-feeding practices and children’s adiposity. Am J Clin Nutr,75:581_586,(2002)Spruijt-Metz D, Linquist CH, Birch LL, Fisher JO, and Goran MI. Relation between mothers * child-feeding practices and children ’s adiposity. Am J Clin Nutr, 75: 581_586, (2002)
Sugiura T,Kodaka T,Nakane S,Kishimoto A,Konda S,and Waku K. 2-Arachidonylglycerol: a possible endogenous cannabinoid ligand in brain. Biochem. Biophys. Res. Commun, 215:89-97,(1995).Sugiura T, Kodaka T, Nakane S, Kishimoto A, Konda S, and Waku K. 2-Arachidonylglycerol: a possible endogenous cannabinoid ligand in brain. Biochem. Biophys. Res. Commun, 215: 89-97, (1995).
Sugiura T and Waku K. 2-Arachidonylglycerol: a possible multifunctional lipid mediator in the nervous and immune systems. Annals -New York Academy of Sciences, VOL: 344-346,(2000).Sugiura T and Waku K. 2-Arachidonylglycerol: a possible multifunctional lipid mediator in the nervous and immune systems. Annals-New York Academy of Sciences, VOL: 344-346, (2000).
Van Dijk G,Chavez M,Riedy CA,and Woods SC. Adiposity signals and macronutrient selection. In: Neural and Metabolic Control of Maconutrient Intake. (H-R Berthoud and RJ Seeley, Eds). CRC Press, Boca Raton, FL. Chapter 30:465-472, (2000).Van Dijk G, Chavez M, Riedy CA, and Woods SC. Adiposity signals and macronutrient selection. In: Neural and Metabolic Control of Maconutrient Intake. (HR Berthoud and RJ Seeley, Eds). CRC Press, Boca Raton, FL. Chapter 30 465-472, (2000).
Wang Y, Liu Y,Ito Y,Hashiguchi T,Kitajima I,Yamakuchi 86783 -27- 200412942 M,Shimizu H,Matsuo S? Imaizumi H5 and Maruyama I. Simultaneous measurement of anandamide and 2-arachidonoylglycerol by polymyxin B-selective adsorption and subsequent high performance liquid chromatography analysis: increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Analytical Biochemistry, 294: 73-82, (2001).Wang Y, Liu Y, Ito Y, Hashiguchi T, Kitajima I, Yamakuchi 86783 -27- 200412942 M, Shimizu H, Matsuo S? Imaizumi H5 and Maruyama I. Simultaneous measurement of anandamide and 2-arachidonoylglycerol by polymyxin B-selective applied and Subsequent high performance liquid chromatography analysis: increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Analytical Biochemistry, 294: 73-82, (2001).
Ward GR,Huang YS,Bobik E,Xing H-C,Mutsaers L, Auestad N,Montalto M,and Wainwright P. Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. Journal of Nutrition,128:2473-2487,(1998).Ward GR, Huang YS, Bobik E, Xing HC, Mutsaers L, Auestad N, Montalto M, and Wainwright P. Long-chain polyunsaturated fatty acid levels in formulae influence deposition of docosahexaenoic acid and arachidonic acid in brain and red blood cells of artificially reared neonatal rats. Journal of Nutrition, 128: 2473-2487, (1998).
Ward GR5 Huang Y-S? Xing H-C5 Bobik E3 Wauben I? Auestad N5 Montalto M, and Wainwright PE. Effects of γ-linolenic acid and docosahexaenoic acid in formulae on brain fatty acid composition in artificially reared rats. Lipids, 34:1057-1063,(1999)·Ward GR5 Huang YS? Xing H-C5 Bobik E3 Wauben I? Auestad N5 Montalto M, and Wainwright PE. Effects of γ-linolenic acid and docosahexaenoic acid in formulae on brain fatty acid composition in artificially reared rats. Lipids, 34: 1057- 1063, (1999) ·
Wainwright PE,Xing H-C,Ward GR,Huang Y-S,Bobik E, Auestad N,and Montalto M. Water maze performance is unaffected in artificially reared rats fed diets supplemented with arachidonic acid and docosahexaenoic acid. Journal of Nutrition,129: 1079-1089,(1999).Wainwright PE, Xing HC, Ward GR, Huang YS, Bobik E, Auestad N, and Montalto M. Water maze performance is unaffected in artificially reared rats fed diets supplemented with arachidonic acid and docosahexaenoic acid. Journal of Nutrition, 129: 1079-1089 , (1999).
Williams CM and Kirham TC. Anandamide induces 86783 -28- 200412942 overeating: mediation by central cannabinoid (CBi) receptors. Psychopharmacology, 143:315-317, (1999).Williams CM and Kirham TC. Anandamide induces 86783 -28- 200412942 overeating: mediation by central cannabinoid (CBi) receptors. Psychopharmacology, 143: 315-317, (1999).
Williams G,Harrold JA,and Cutler DJ· The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proceedings of the Nutritional Society, 59:385-396? (2000). 【發明内容】 本發明有數個方面。第一方面,本發明包括減少哺乳動 物食慾的方法,該方法包括投予有效含量之長鏈n-3 PUFA 於該哺乳動物,以減少該哺乳動物之食慾。 第二方面,本發明包括拮抗哺乳動物大腦中CBi受體之方 法,該方法包括投予有效含量之長鏈n-3 PUFA至該哺乳動 物,以抑制該哺乳動物大腦中CBi受體之活性。 第三方面,本發明包括在哺乳動物的群體中,減少肥胖 或過重身分的方法,該方法包括投予進有效含量的長鏈n-3 PUFA到至少該居民之一些成員,來反向的調控該哺乳動物 之食慾。 每一方面,較佳的長鏈n-3 PUFA為DHA ;而這可與AA各 自投予。較佳地,該長鏈n-3 PUFA在成長期投予。長鏈n-3 PUFA在衝擊食慾之刺激物之前或同時被投予較佳。每一方 面,嬰兒較佳有效的劑量水平為約8至約396 mg/kg/天,(較 佳約127至165 mg/kg/天);15歲以下大約84到約11610 mg/ 天,成人約84到約15,8 3 2 mg/天。更佳的水平包含於本文。 最後,本發明包括調控哺乳動物食慾的方法,其包括投 86783 -29- 200412942 予於該哺乳動物有效相對含量的長鏈n-3 pUFA及長鏈n-6 PUFA ’來調控孫哺乳動物之食慾。該長鏈n_3 pUFA較佳包 括DHA及長鏈n-6 PUFA較佳包括AA。較佳地,該長鏈n-3 PUFA在成長期間投予。長鏈n_3 pUFA在食慾衝擊刺激物之 前或同時被投予較佳。每一方面,較佳有效劑量水平為大 約8至約396 mg/kg/天(較佳約;^至⑹mg/kg/天);15歲以 下之兒重約84至約11610 mg/天,成人約84至約15,832 mg/ 天。更佳之水平包含於本文。 【實施方式】 詳細說明 2.1脂質用語 脂肪酸為重要之營養成分。脂肪酸屬羧酸,基於碳鏈的 長度及飽和特性來分類。長鏈脂肪酸有16至24或更多個 碳,也呈飽和或不飽和。於較長之脂肪酸中,可有一或多 個的不飽和處,分別以術語"單元不飽和”及”多元不飽和,, 表示。本發明特別感興趣於具有20或更多碳之長鏈多元不 飽和脂肪酸(LCp’s或LC-PUFAs)。 依據生化專家均瞭解之命名法,按照脂肪酸中雙键之數 目及位置來分類LC-PUFAs。依靠近脂肪酸甲基端之雙鍵位 置,有兩個主要系列或家族之LC-PUFAs :雖然n_6系列直到 弟6個碳才有雙键’ η - 3系列在第3個碳含雙鍵。因此,花生 浸婦酸(n A Aπ或n AR Aπ)具有2 0個碳之鏈長及4個雙鍵開始 於第6個碳。結果,其被稱為”2〇 : 4η-6”。同樣地,二十二 碳六稀酸(’’DHA’’)具有鏈長22個碳,6個雙鍵開始於從甲基 86783 -30- 200412942 端第3個碳,因此被設計成”22: 6n_3”。本發明中,aa及dha 特別重要。 其他重要之LCPs為C18脂肪酸,其為該生合成徑路中之 前趨物,描述於美國專利第5,223,285號。因此,已知亞油 酸(18 : 2n-6,”LA,,)及中間體 γ·亞麻酸(18 : 3n_6,,,GLA”) 及二高个亞麻酸(20 : 3ii-6,"DHGLA”)為到 AA(2〇 ·· 4n-6) 之重要前驅體。同樣地,α-亞麻酸(1 8 ·· 3n-3,,,ALA,,)及中 間體十八碳四婦酸(18 ·· 4n_3)及ΕΡΑ(2〇 ·· 5n_3)為到 DHA(22 : 6n-3)之重要前驅體。 脂肪酸常見於自然界中,作為醯基被脂化至醇類。甘油 酯為一或多個脂肪酸與甘油(1,2,3_丙三醇)之那種酯類。若 僅該甘油主幹分子的一個位置被脂肪酸脂化,則產出”單酸 甘油酯,’;若兩個位置被脂化,則產出”二酸甘油酯”;若甘 油 < 全邵三個位置被脂肪酸g旨化,則產出,,三酸甘油酯,,或 三酸基甘油。 磷脂為二酸甘油酯之特別型式,其中甘油主幹之第三位 置被經由磷酸酶結合至含氮之化合物如膽素、絲胺酸 醇胺、肌醇等。三酸甘㈣及磷料依據所連接之脂肪酸, 分類為長鏈或中鏈。脂肪酸之”來源” + /原可包括來自天然或其 他基源之任何該型式之甘油酯。 π脂質"為描述脂肪酸或油狀成分之摘 又通.。於營養中,月旨 質提供能量及必需脂肪酸及加強油溶料 令丨土、、隹生素之吸收。所 消耗脂質之型態影響許多生理上士灸叙 多數,如血漿脂質剖 面、細胞膜及器官脂質組成及免癌符 I媒介物之合成,例 86783 -31- 200412942 如,前列腺素及thromboxanes。脂質之其他生理效果描述於 背景中。 較長LCPs之來源包括乳製品像蛋及奶油;海產油,如鱈 魚、曼哈頓魚、沙丁魚、鮪魚及許多其他之魚;某些動物 油,豬油、獸脂及微生物油如菇類及藻類油,詳細的描述 於美國專利第5,374,657,5,550,156,及5,658,767。尤其魚 油為DHA之好來源,它們以”高ΕΡΑΠ&Π低ΕΡΑΠ各式樣於市 面出售,後者具有高DHA : ΕΡΑ比,較佳至少3 : 1。海藻油 如由 Dinophyceae網之 dinoflagellates,尤其 Crypthecodinium cohnii也是DHA之來源(含DHASCO™),如美國專利第 5,397,591,5,407,957, 5,492,938及 5,711,983所示。Mortierella 屬,特別是M.alpina及Pythiuminsidiosum為AA之好來源, 包括ARASCO™,如美國專利第5,658,767號所揭示及 Yamada等人於J· Dispersion Science and Technology,10(4&5), PP 561-579 (1989)及 Shinmen 等人,於 Appl. Microbiol. Biotechnol. 31:11-16 (1989)所揭示。 當然,LCPs之來源可以被合成方式開發,或經其他有機 體之基因操縱,尤其是蔬菜及/或帶油之植物所開發。從許 多有機體已辨認出去飽和酶及延長酶之基因,而可由基因 工程之方式植入植物或其他宿主細胞而以低成本讓彼等製 造出大量含油之LCP。該合成或基因重組之油也涵蓋於本 發明。 2.2刺激或壓力 一方面,本發明使用於結合環境壓力或刺激。齧齒動物 86783 •32- 200412942 之研究顯示溫和至中等的壓力導致增加食物攝取,雖然更 嚴重之壓力並不如此(Harris等人,2000)。壓力在食物攝取 上之效果,依賴壓力之持續時間,及包括生理及精神上的 壓力。已知能引起大鼠增加食物攝取之溫和壓力包括挾 尾、短期的束縛或觸摸、限制食物及剝奪睡眠。 西化社會經驗之小孩,間歇的溫和壓力,被推論可引起 食慾之反應。實例可包括不規律之用餐時間,剝奪睡眠 (Sekme等人,2〇〇2 ; Buboltz等人,2〇〇1)及在學校及/或運動 上勝出之父母的期望。門鎖鑰题之小孩可能遭到額外之間 歇壓力。壓力或刺激其有增加食物攝取之效果(亦即引起食 怂之反應)在本文意指”影響食慾”之壓力或刺激。 在本研先的食物限制期,表現出如此溫和之壓力,以至 於引起食慾之反應。it在整晚的4()%食物限制期間第似 〈後最為明顯’而在第2〇天的整晚禁食後變弱了。不同的 R物限制範例之後’不同的食慾反應可用受限之樣品大 小’對禁食/進食範例之適應反應來解釋,否則後者(整晚禁 食)超越溫和/中等的壓力低限。 2·3製品型態 *本發明之飲食脂肪酸可有許多的型態,包括(但不限於 營養產品、飲食補充物、藥品或其他產品。它們可用射 何年紀,例如嬰兒 '小孩或成人。在㈣成長期間如嬰兒 小孩及青春期使用時特別右僧 ,^ 〇 、, J哥知值本發明的飲食的脂肪越 可併入營養的”賦形劑或載劑 、 ,其包括(但不限於)FdA的法 足食物分類··傳統食物、特 、 付〜奴③用途乏食物、飲食補无 86783 -33- 200412942 劑及醫藥用食物。 營卷製品 營養製品含大營養成分,gp,脂肪,蛋白質及碳水化合 物,依希望使用者之年紀及條件而調整其相對含量,及^ 包括微量營養物,如維生素、礦物質及微量礦物質。名詞 ,’營養製品”包括(但不限於)該FDA之法定食物分類:傳統食 物、特別飲食用途之食物、醫用食物及嬰兒配方製品。,,特 別飲食用途之食物,,被期望以供營養物補充該飲食或作為 該飲食之單一項目,來提供由於身體、生理、病理上之條 件而產生之特別飫食需求。”醫用食物”為調配供消耗或在 醫生之監督下内服之食物,基於醫學評價所建立之科學原 理之認知,希望作為疾病之特別飲食管理,或區別營養需 求。 此外,飲食補充物”為期望以錠、膠囊或液體之形態攝 取以補充飲食,並不代表用於傳統食物或作為單項餐飲或 飲食。 2.3.1嬰免配方 嬰兒配方意指符合嬰兒配方法案(21 usc § 35〇(a)et. s叫.) 標準及基準纟營養調配㉗,及#月望取代或#充人乳。雖然 孩配方用於至少3種不同之型態(粉末、液體濃縮物及即可 食用液("RTF”)。習慣上提起營養濃縮物是在作為進食之基 礎上,因此RTF常被描述,當然,其他型態可依據製造者之 指示,必然的再構成或稀釋成相同組成,而熟諳此液者可 計算該關連性之組成,供濃縮或使粉末形成。 86783 -34- 200412942 π標準’’或”足月’’嬰兒配方意指期望足月出生之嬰兒作為 最初餵奶之嬰兒配方。蛋白質、脂肪及碳水化合物組分分 別提供了從約8至10,46至50及41至44%之熱量;該熱量密 度範圍,狹窄地從約660至約700 Kcal/L(或19-21Cal/fl.oz.) ,通常約675至680(20 Cal/fl.oz.)。在脂肪、蛋白質及碳水 化合物組分之熱量分布,可在不同的期間嬰兒配方之製造 者間作部分之調整。SIMILAC™ (Ross Products Division, Abbott Laboratories)^ ENFAMIL™(Mead Johnson Nutritionals) 及GOOD STARTTM(Carnation)為足月嬰兒配方之實例。 ’’營養強化’’配方意指強化相對於π標準”或"足月”配方之 嬰兒配方。區別營養強化配方之原始定義特徵為熱量密 度;第二個因素為蛋白質的濃度。例如,熱量密度約7〇〇 kcal/L以上或蛋白質濃度約18 g/L以上之配方可視為”營養 強化π。營養強化配方也典型的包括較高量之药(即約650 mg/L以上)及/或磷(即約450 mg/L以上)。其實例包括similac NEOSURE™及 Similac Special CareTM配方。 2.3.3飲含補.充劑 飲食補充劑為具有特定營養物之軟膠劑、膠囊劑、散齋j、 鍵劑、液劑及其他劑型,通常希望其支持身體之正常結構 及功能。飲食補充劑可用適當之賦形劑及載劑來調配,很 像醫藥製品。 軟膠廣泛的用於醫藥工業,作為口服劑製,其包含許多 不同型態之醫藥及維生素製品。軟膠被使用於很多不同的 大小及形狀’包括圓形、|卩形、長方形、管形及其他特別 86783 -35- 200412942 2形態如星形。成品膠囊或軟膠可製成各種顏色,含或不 含乳白劑。軟膠主要用於圍繞住液體,更特別用於油狀溶 液、懸浮液及乳液。正常被使用之充填物為蔬菜、動物或 礦物油、液態烴類、揮發性油及聚乙二醇。 ,軟明膠膠囊可利用熟諳此項技藝者已知之技術來製造。 吴國:利第4,935,243,4,817,367及4,744,988號說明軟膠囊 《製达方去。製造上疋變異必然為熟諳醫藥科學者所熟 知士。典型地,包括主要由明膠、塑化劑及水製成之外殼了 及殼中所含之充填物。該充填物可選自任何各式各 膠殼相容之物質。 〃 、=說來’明膠膠囊製造系統包括三個主要系統:薄片 成形早7C ’㈣成形單元及膠囊再現單元。熔融之明膠被 形成為所期望厚度之薄片’該薄片被插入於一對捲模之 間,,該捲模安裝於膠囊成形單元中所要的模頭卜對於充 ^夜:《如裏’擺放充填噴嘴以便在兩明膠片間放出所期 望含量之充填液體。當明膠薄片被帶成互為接觸,使形成 无填好《膠囊時,調整流出之時間,因此由該模頭所形成 义凹邵被无填液所充填。模捲擦刷將形成之明膠膠囊從該 ^員移除。在域料料容器前,將明歸囊 進大的容器中貯存。回乾已充填之膠囊,殼的兩半可各自 形成,並在充填後密封。 /走劑通常由活性成分常以”醫藥上可接受的鹽,,連同結合 月!/閏/月W及其他賦形劑於模型中壓縮而成形。形成膠囊 及錠劑之❹卜細節任何數㈣主敎^取得,包括 86783 -36- 200412942Williams G, Harrold JA, and Cutler DJ · The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proceedings of the Nutritional Society, 59: 385-396? (2000). [Abstract] The present invention has several Aspects. In a first aspect, the present invention includes a method of reducing appetite of a mammal, the method comprising administering an effective amount of long-chain n-3 PUFA to the mammal to reduce the appetite of the mammal. In a second aspect, the invention includes a method of antagonizing the CBi receptor in the brain of a mammal, the method comprising administering an effective amount of a long chain n-3 PUFA to the mammal to inhibit the activity of the CBi receptor in the mammal's brain. In a third aspect, the present invention includes a method for reducing obesity or overweight in a mammalian population, the method comprising administering an effective amount of long-chain n-3 PUFA to at least some members of the population to reverse regulation Appetite of the mammal. In each respect, the preferred long-chain n-3 PUFA is DHA; this can be administered separately from AA. Preferably, the long-chain n-3 PUFA is administered during the growth period. Long chain n-3 PUFAs are preferably administered before or at the same time as appetite stimuli. In each aspect, the preferred effective dosage level for infants is from about 8 to about 396 mg / kg / day, (preferably from about 127 to 165 mg / kg / day); from about 84 to about 11610 mg / day under 15 years of age for adults About 84 to about 15, 8 3 2 mg / day. Better levels are included here. Finally, the present invention includes a method for regulating mammalian appetite, which comprises administering 86783 -29- 200412942 to the mammal in an effective relative amount of long-chain n-3 pUFA and long-chain n-6 PUFA 'to regulate the appetite of grandchildren. . The long-chain n_3 pUFA preferably includes DHA and the long-chain n-6 PUFA preferably includes AA. Preferably, the long chain n-3 PUFA is administered during growth. Long chain n_3 pUFA is preferably administered before or at the same time as the appetite stimulus. In each aspect, the preferred effective dose level is from about 8 to about 396 mg / kg / day (preferably about; ^ to ⑹mg / kg / day); children under 15 years old weigh about 84 to about 11610 mg / day, and adults About 84 to about 15,832 mg / day. Better levels are included here. [Embodiment] Detailed description 2.1 Terms of lipids Fatty acids are important nutritional components. Fatty acids are classified based on the length of carbon chains and their saturation characteristics. Long-chain fatty acids have 16 to 24 or more carbons and are also saturated or unsaturated. In longer fatty acids, there may be one or more unsaturations, which are represented by the terms "unit unsaturation" and "multiple unsaturation," respectively. The present invention is particularly interested in long-chain polyunsaturated fatty acids (LCp's or LC-PUFAs) having 20 or more carbons. According to the nomenclature familiar to biochemical experts, LC-PUFAs are classified according to the number and position of double bonds in fatty acids. Depending on the position of the double bond near the methyl end of the fatty acid, there are two main series or families of LC-PUFAs: although the n_6 series does not have double bonds until the first 6 carbons, the η-3 series contains a double bond on the third carbon. Therefore, peanut humic acid (n A Aπ or n AR Aπ) has a chain length of 20 carbons and 4 double bonds start at the 6th carbon. As a result, it is referred to as "20: 4η-6". Similarly, docosahexacarboxylic acid (`` DHA '') has a chain length of 22 carbons, and 6 double bonds start at the third carbon from the methyl 86783 -30- 200412942 end, so it was designed as "22 : 6n_3 ". In the present invention, aa and dha are particularly important. Other important LCPs are C18 fatty acids, which are precursors in this biosynthetic pathway and are described in U.S. Patent No. 5,223,285. Therefore, linoleic acid (18: 2n-6, "LA,") and intermediate γ · linolenic acid (18: 3n_6 ,,, GLA ") and two high linolenic acid (20: 3ii-6, & quot DHGLA ") is an important precursor to AA (2 ·· 4n-6). Similarly, α-linolenic acid (18 ·· 3n-3 ,,, ALA ,,) and the intermediate octadecyl four Folic acid (18 ·· 4n_3) and EPA (2〇 ·· 5n_3) are important precursors to DHA (22: 6n-3). Fatty acids are common in nature and are lipidated as alcohols to alcohols. Glycerides Are one or more fatty acids and glycerol (1,2,3-glycerol) esters. If only one position of the glycerol backbone molecule is fatty acidized, a "monoglyceride," is produced; If two positions are fatified, a "diglyceride" is produced; if glycerol < all three positions are targeted by a fatty acid g, a triglyceride, or a triglyceride is produced. Phospholipids are a special form of diglycerides in which the third position of the glycerol backbone is bound to nitrogen-containing compounds such as choline, serine amine, inositol, etc. via phosphatase. Glycine triphosphate and phosphorous materials are classified as long-chain or medium-chain based on the fatty acids to which they are attached. The "source" + / of the fatty acid may include any such type of glyceride from a natural or other source. π lipids is a common way to describe fatty acids or oily ingredients. In nutrition, the purpose of the month is to provide energy and essential fatty acids and enhance oil-soluble materials to absorb soil, and biotin. The type of lipids consumed affects most physiologists, such as plasma lipid profiles, lipid composition of cell membranes and organs, and the synthesis of cancer-free velocities I vehicles, such as 86783-31- 200412942, such as prostaglandins and thromboxanes. Other physiological effects of lipids are described in the background. Sources of longer LCPs include dairy products like eggs and cream; seafood oils such as cod, Manhattan fish, sardines, catfish and many other fish; certain animal oils, lard, tallow and microbial oils such as mushroom and algae oils Is described in detail in U.S. Pat. Nos. 5,374,657, 5,550,156, and 5,658,767. In particular, fish oil is a good source of DHA. They are sold in the market as "high ΕΡΑΠ & Πlow ΕΡΑΠ", which has a high DHA: ΕΡΑ ratio, preferably at least 3: 1. Seaweed oil such as dinoflagellates from Dinophyceae net, especially Crypthecodinium cohnii It is also a source of DHA (including DHASCO ™), as shown in U.S. Patent Nos. 5,397,591, 5,407,957, 5,492,938 and 5,711,983. Mortierella, especially M. alpina and Pythiuminsidiosum are good sources of AA, including ARASCO ™, such as U.S. Patent No. No. 5,658,767 and Yamada et al. J. Dispersion Science and Technology, 10 (4 & 5), PP 561-579 (1989) and Shinmen et al., Appl. Microbiol. Biotechnol. 31: 11-16 (1989) Revealed. Of course, the source of LCPs can be developed synthetically, or genetically manipulated by other organisms, especially vegetables and / or oil-bearing plants. Genes for saturating and elongating enzymes have been identified from many organisms, and They can be genetically engineered into plants or other host cells to allow them to produce large amounts of oil-containing LCPs at low cost. Recombinant oils are also encompassed by the present invention. 2.2 Stimulation or Stress On the one hand, the present invention is used in conjunction with environmental stress or stimulation. Research in Rodents 86783 • 32- 200412942 shows that mild to moderate stress leads to increased food intake, although more severe This is not the case for stress (Harris et al., 2000). The effect of stress on food intake depends on the duration of stress, and includes both physical and mental stress. Mild stresses known to cause increased food intake in rats include mandarin tail, Short-term restraint or touch, food restriction, and sleep deprivation. Children with Westernized social experience, intermittent mild stress, are inferred to cause appetite responses. Examples can include irregular meal times, sleep deprivation (Sekme et al., 2000) 2; Buboltz et al., 2001) and expectations of parents who have won in school and / or sports. Children with door locks may experience additional intermittent stress. Stress or stimulation may have the effect of increasing food intake (also In other words, it means the stress or stimulus of "affecting appetite". In the food restriction period before this study, Showed such mild pressure that it caused an appetite response. It seemed to be most obvious after 4 (%) food restriction throughout the night and weakened after fasting all night on day 20. Different Following the R substance restriction example, the 'different appetite response can be explained by the restricted sample size' adaptive response to the fasting / eating paradigm, otherwise the latter (fasting all night) exceeds the low / moderate stress limit. 2.3 Product Types * The dietary fatty acids of the present invention can have many types, including (but not limited to, nutritional products, dietary supplements, medicines, or other products. They can be used at any age, such as infants, children, or adults. In特别 Special right monks when growing up, such as infants and children and adolescents, ^ 〇, J brothers know that the more fat in the diet of the present invention can be incorporated into nutritional "excipients or vehicles," including (but not limited to) FdA's French foot food classification ·· Traditional food, special, pay ~ slave ③ lack of food, dietary supplement 86783 -33- 200412942 agent and food for medicine. The nutrition products of camping products contain large nutrients, gp, fat, protein And carbohydrates, and adjust their relative content according to the age and conditions of the intended user, and ^ includes micronutrients such as vitamins, minerals and trace minerals. Noun, 'nutrition products' include (but are not limited to) the FDA's Legal Food Classification: Traditional foods, foods for special dietary uses, medical foods and infant formulas. Foods for special dietary uses are expected to provide nutrients Supplement the diet or as a single item of the diet to provide special dietary requirements due to physical, physiological, and pathological conditions. "Medical food" is food prepared for consumption or taken orally under the supervision of a doctor, based on The understanding of the scientific principles established by medical evaluation is intended to be used as a special dietary management of diseases or to differentiate nutritional needs. In addition, "dietary supplements" are intended to be taken in the form of tablets, capsules or liquids to supplement the diet, and do not represent traditional use. Food or as a separate meal or diet. 2.3.1 Infant-free infant formula means compliance with the Infant Formula Act (21 usc § 35〇 (a) et. S.). Standards and benchmarks (nutritional formulation), and # 月 望 replaced Or # filled with human milk. Although the formula is used in at least 3 different forms (powder, liquid concentrate and ready-to-eat liquid (" RTF)). It is customary to mention nutritional concentrates on the basis of eating, Therefore, RTF is often described. Of course, other types can be reconstituted or diluted to the same composition according to the manufacturer's instructions, and those who are familiar with this solution can calculate the correlation. Composition for concentration or powder formation. 86783 -34- 200412942 π standard or "term" infant formula means infants who are expected to be born at term as the initial formula for feeding. Protein, fat and carbohydrate components, respectively Provides heat from about 8 to 10, 46 to 50, and 41 to 44%; this heat density range is narrow from about 660 to about 700 Kcal / L (or 19-21Cal / fl.oz.), Usually about 675 Up to 680 (20 Cal / fl.oz.). The caloric distribution of fat, protein and carbohydrate components can be adjusted among infant formula makers at different times. SIMILAC ™ (Ross Products Division, Abbott Laboratories ) ^ ENFAMIL ™ (Mead Johnson Nutritionals) and GOOD STARTTM (Carnation) are examples of term infant formulas. The "'nutrition fortification'" formula means fortified infant formula relative to the π standard "or " term" formula. The original definition of differentiated nutrition fortified formulas was calorie density; the second factor was the concentration of protein. For example, a formula with a caloric density of about 700 kcal / L or more or a protein concentration of about 18 g / L or more can be considered as "nutrition-enhancing π." Nutrition-enhancing formulas also typically include higher amounts of drugs (ie, about 650 mg / L or more). ) And / or phosphorus (ie, about 450 mg / L or more). Examples include similac NEOSURE ™ and Similac Special CareTM formulas. 2.3.3 Drinking supplements. Fillings Dietary supplements are soft gums and capsules with specific nutrients Agents, sanzhai j, bonding agents, liquids, and other dosage forms are usually expected to support the normal structure and function of the body. Dietary supplements can be formulated with appropriate excipients and carriers, much like pharmaceutical products. Soft gels are widely used Used in the pharmaceutical industry, as an oral preparation, it contains many different types of medicines and vitamin products. Soft gums are used in many different sizes and shapes' including round, | 卩, rectangular, tubular and other special 86783 -35- 200412942 2 The shape is star-shaped. The finished capsules or soft gels can be made into various colors, with or without opacifying agent. Soft gels are mainly used to surround liquids, and more particularly for oily solutions, suspensions and emulsions. positive The fillings used are vegetables, animal or mineral oils, liquid hydrocarbons, volatile oils and polyethylene glycols. Soft gelatin capsules can be manufactured using techniques known to those skilled in the art. Wu Guo: Li Di 4,935,243, Nos. 4,817,367 and 4,744,988 describe the soft capsules "preparation of formulas. The manufacturing of variations on the upper bound must be familiar to those skilled in medicine and medicine. Typically, it includes a shell made mainly of gelatin, a plasticizer, and water and the contents of the shell. The filling can be selected from any of a wide variety of materials compatible with the plastic shell. 、, = Speaking of 'gelatin capsule manufacturing system includes three main systems: sheet forming early 7C' ㈣ forming unit and capsule reproduction unit. The melted gelatin is formed into a sheet of a desired thickness. The sheet is inserted between a pair of roll molds, which are installed in a desired die head in a capsule forming unit. For charging: "Ruli" display The filling nozzle is used to release the desired amount of filling liquid between the two gelatin sheets. When the gelatin flakes are brought into contact with each other so that an unfilled capsule is formed, adjust the outflow time, so it is controlled by the die. Chengyi Ao Shao was filled with no filling solution. The formed gelatin capsules were removed from the member by wiping with a roll. Before the material container was filled, the Ming capsule was stored in a large container for storage. Back to the filled The two halves of the capsule and shell can be formed separately and sealed after filling. / The agent is usually composed of the active ingredient, usually a "pharmaceutically acceptable salt," in combination with the month! / 闰 / 月 W and other excipients in the model Medium compression and forming. Details of how to form capsules and lozenges can be obtained from any source, including 86783 -36- 200412942
Remington’s Pharmaceutical Sciences,XV版(1975) 〇 醫藥上可接受的鹽為此項技藝界所習知。例如,S. M. Berge等人在以參考白勺方式併入本文的J· Pharmaceutical Science,1977,66:1 et seq.中詳細的描述醫藥上可接受的 鹽。於本發明的化合物最後分離及純化期間,可當場製備 該鹽,或各自以適當的有機酸來反應自由鹼之官能來製 備。代表性的酸加成鹽包括(但不限於)醋酸鹽、己二酸鹽、 海藻酸鹽、檸檬酸鹽、天門冬酸鹽、苯甲酸鹽、苯磺酸鹽、 硫酸氫鹽、丁酸鹽、樟腦酸鹽、樟腦磺酸鹽、二葡萄酸鹽、 甘油磷酸鹽、半硫酸鹽、庚酸鹽、己酸鹽、胡延索酸鹽、 鹽酸鹽、溴酸鹽、破酸鹽、2-羧乙績酸鹽(isethionate)、乳 酸鹽、順丁晞二酸鹽、甲磺酸鹽、菸鹼酸鹽、2-莕磺酸鹽、 草酸鹽、pamoate、果膠酸鹽、過硫酸鹽、3-苯基丙酸鹽、 苦味酸鹽、三甲基乙酸鹽、丙酸鹽、琥珀酸鹽、酒石酸鹽、 硫氰酸鹽、磷酸鹽、麩胺酸鹽、碳酸氫鹽、P-甲苯磺酸鹽 及十一酸鹽。含氮之鹼性基也能與該藥劑四級化成為較低 燒基鹵化物,如/甲基、乙基、丙基及丁基之氯化物、溴化 物及琪化物;二甲基硫酸酯,如二甲基、二乙基、二丁基 及二戊基硫酸I旨;長鍵函化物,如十二燒基、十四燒基、 十六烷基及十八烷基之氯化物、溴化物及碘化物;芳基烷 基鹵化物,如苄基及苯乙基溴化物及其他。因此取得水溶 或油溶的或可分散之製品。被採用而形成醫藥上可接受之 酸加成鹽之酸實例包括無機酸如鹽酸、溴酸、硫酸及磷酸, 有機酸如草酸、順丁烯二酸、琥珀酸及擰檬酸。 86783 -37- 200412942 將含羧酸之部分與適當之鹼,如醫藥上可接受的金屬陽 離子之氫氧化物、碳酸化物、碳酸氫化物反應,或與氨或 有機級、二級或三級胺反應,所得之化合物,其最終分 離及純化期間可當場製備鹼加成鹽。醫藥上可接受的鹽包 括(但不限於)基於鹼金屬或鹼土族金屬之陽離子,如鋰、 鈉、鉀、鈣、鎂及鋁鹽及其類似物,及無毒性的四級氨及 胺陽離子包括銨、四甲基銨、四乙基銨、甲基胺、二甲基 胺、三甲基胺、三乙基胺、二乙基胺、乙基胺及其類似物。 其他用於形成鹼加成鹽之代表性的有機胺包括乙二胺、乙 醇胺、二乙醇胺、六氫吡啶、哌畊及其類似物。 2·4劑量 配万中特定脂肪酸之含量,典型地以總脂肪酸之百分比 來表不。該百分比乘上配方中總脂肪酸之絕對濃度匕几或 g/i〇〇 kCal)得到該脂肪酸之絕對濃度(分別以g/L或g/i〇〇 kcal)。總脂肪酸可被推估約為總脂肪之95%,來計算該甘 幹之重量。依熱量密度。從mg/1〇〇 kcal轉變至mg/L& 簡單之计异,此.為熟諳此項技藝者所已知。 依據本發明,強化DHA之營養組合物可提供從單一來源 進食情形如嬰兒配方之100%至傳統便餐食物情況下的少 於每日熱量攝取的約5%。若調配物為餵食新生兒,可用一 些人乳補充。當嬰兒長到約2_4個月,常開始以固體食物來 供給部分熱量’調配物之含量可依總熱量攝取之百分比來 減少。任何補充品或醫藥之營養或熱量的組分常被縮小及 輕視。 86783 -38- 200412942 依據本發明,結合DHA劑量與溫和的壓力如前面所提, 是有利的。 在幼鼠之研究實例中,以總脂肪酸的2.5%之DHA,無關 於ARA含量水平(0%或2.5%)具邊緣含量水平之亞油酸及α-亞麻酸進食之大鼠,在一種衝擊食慾之溫和壓力的食物限 制期間後的最初2小時内,吃了少於斷奶時11 %之飲食。另 有他人利用相同之鼠乳模式,顯示與劑量有關不同飲食含 量水平之ARA(總脂肪酸的0, 0·4%,及2.3%)及DHA(0, 0.4% 及2.3%)對大腦中長鏈η-6及n-3脂肪酸之效果(Ward等人, 1999) 〇 在本研究中,餵食〇及2.5% DHA食物之大鼠腦中,22 : 6n-3含量水平相關之不同與由Ward等人(1999)對0及2.3% DHA飲食所報告者相似。基於聯結實例中DHA大腦中之含 量水平與食慾,及飲食DHA與大腦中DHA含量水平間之關 係(本實例及Ward等人1999),有理由預期由於0.4%之飲食 DHA,而減少約5%之食物攝取。從公共衛生之觀點來看, 人們持續的減少:_5%之熱量攝取,能降低成為過重及肥胖風 險。 表A : DHA之含量水平(攝入總脂肪酸之%) 營養製品 設計供 範圍 較佳 更佳 嬰兒 未足月 0.10-2.5 0.10-1.0 0.15-0.50 出生時 0.10-2.5 0.10-1.0 0.15-0.50 86783 -39 200412942 2-6個月 0.10-2.5 0.10-1·° 0.15-0.50 6-12個月 0.10-3.0 0.10-1·3 0.15-0.70 小孩 1-5歲 0.10-5.0 0.10-2.0 0.30-1.00 5-15 歲 0.10-5.0 0.10-2.0 0.30-1.00 成人 成人 0.10-5.0 0.10-2.〇_- 0.30-1.00 攝取DHA強化食物之較佳時期為當長键n-6及n-3脂肪酸 之增加為最快的時候-亦即在嬰兒期、小孩及青春期。大腦 之成長最快速率發生在嬰兒期。然而,大腦之生長及神經 成熟繼續進行,直到約12-20歲。成人腦中脂肪酸之内容也 可被成人食物所影響,但需較長時間之作用。依據本發明, 卜由乏表B,提出了有 有效劑量之成分,DHA,不分是否所給為營養製品的 2Γ AL· 4 知 分,補充物或藥物 表B :飲食之dha 各年齡群較佳之攝取量 ϋ圍 嬰兒 較佳 最佳 每曰 消耗的熱 未足月 平常 13 較低範圍 8 較高範圍 396 出生至6個月 本 ^mg/kg/天*** 13 19 8 13 158 79 本 **mg/kg/天*** kcal/kg/天 120 90 150 kcal/kg/天 86783 .40- 200412942 平常 11 11 16 100 較低範圍 8 8 13 80 較高 317 127 63 120 6-12個月 * * *mg/kg/ 夭^ * 氺 * kcal/kg/天 平常 11 11 16 100 較低範圍 8 8 13 80 較高 380 165 89 120 小孩 1-5歲 氺氺氺mg/χ*** kcal/天 平常 137 137 412 1300 較低範圍 84 84 253 800 較高 9499 3800 1900 1800 5-15 歲 本本氺mg/i*** kcal/天 平常 190 190 570 1800 較低範圍 84 84 253 800 較南 11610 4644 2322 2200 成人 成人 氺氺氺mg/i氺氺氺 kcal/天 平常 211 211 633 2000 較低範圍 84 84 253 800 較高 15832 6333 3166 3000 如此,例如,小孩1 -5歲之有效劑量範圍是每天84-9499 mg,較佳為每天84-3800 mg,最佳為每天253-2322 mg。成 人之可比較值為84-15832,較佳為84-6333,最佳為253- 86783 -41 - 200412942 3 166。請注意:小孩及成人所給之值以mg/天為單位,嬰兒 則以mg/kg/天為單位。因此,嬰兒大到約6個月年紀之可比 較值為8-3 80 mg/kg/天,較佳為8-165 mg/kg/天,最佳為13-89 mg/kg/天。經此應用,所給作為”x-y”之數目範圍應被解釋 為”從約X至約y";當然,,,大約”修飾\值及y值兩者。此外, 該範圍當然表示在X與y之間的不定數值由該範圍簡單及不 曖昧的揭示。例如,0.10-2.5明確地揭示該值如019,〇5, 0.823,1.25,1.64,1.999等以及值”約(Μ〇或”約,,2 5。 2.5製造方法 以热讀此技藝已知之一般習用方法可製造本發明的液體 及粉末營養製品。簡要地製備三種糊狀物,一起混合,加 熱處理、標準化,噴霧乾燥(若可適用),包裝及滅菌(若可 適用)。 2.5.1液體製品 先以熱水製備碳水化合物/礦物質糊,在攪拌中至一提高 了的溫度。然後加入礦物質。礦物質可包括(但不限於)擰檬 酸鈉、氯化鈉、"檸檬酸鉀、氯化鉀、氯化鎂、磷酸鈣、碳 酸鈣、碘化鉀及預混之微量礦物質。碳水化合物來源,如 一或多種的乳糖、玉米糖漿固體、蔗糖及/或麥芽糊精溶於 水,由此形成碳水化合物溶液。食物纖維源,如大豆多醣 體也可加入。完成的碳水化合物/礦物質糊於加高之溫度下 攪拌’放置直到與其他之糊塊混合,較佳為不長過約十二 小時。 混合及加熱基本油狀混合物來製備油狀糊。該基本油狀 86783 -42- 200412942 混合物典型地含有一些大豆、椰子、棕櫚油、高油紅花或 葵花油及中鏈三酸甘油酯之結合物。乳化劑,如單、二酸 甘油酯之二乙醯基酒石酸酯、大豆單、二酸甘油酯及大豆 卵磷脂可被使用。任何或所有的油溶性維生素A,dE(天 然的R,R,R型或合成的)及K可各別添加或作4_合^ 邵分。體内功能為抗氧化劑之貝他胡羅蔔素也可加入,如 同作為安定劑之鹿角膠。含特定之LCPs,對本發明重要之 油(例如,DHA及AA)可被加入於油狀漿。該Lcpg須被小 心使用’因為它們易於分解及變腐敗。所完成之油狀漿, 在攪拌中保存,直到與其他漿狀混合。最好是不長於約12 小時之時間。 设製備水名狀蛋白質’先將水在攪拌中加熱至適當昇高之 溫度’然後將該蛋白質來源在攪拌中加入水中。典型地, =蛋白質源為完整的或水解的乳蛋白(例如,乳清、乳酷), 人正的或水解的疏菜蛋白(例如,大豆),游離胺基酸及其混 泛物。通常’任何已知的胺基氮源可使用於本發明。所完 2蛋白漿在攪拌中保持昇高之溫度,直到與其他的浆狀 此合’較佳為不長於大約2小時。作為一代替品,一些蛋 白…、水包蛋白混合’不如脂肪包蛋白混合之乳劑。 、:水中《蛋白質與碳水化合物/礦物質漿攪拌混合,所得 匕口水保持於較尚之溫度。於短暫的延遲後(例如數分 :)’將該油狀漿由前步驟在攪掉中加入於混合浆中。作為 妹人代曰:加進於油混合⑼,該LCP油可被直接加入於由 蛋白貝奴水化合物/礦物質及油狀漿所得之混合物。 86783 -43. 200412942 於充足的攪拌至完全結合所有的成分後,將完全混合物 的pH調整至所要之範圍。然後將該混合漿接受暴氣、超高 溫熱處理、乳化及均質,然後冷卻至冷藏溫度。較佳地, 完成以上步驟之後,進行適當的分析試驗供品質管制。基 於品管試驗之分析結果,加入適當量之水至一批量中,攪 拌稀釋。 含水溶性維生素及微量礦物質之維生素水溶液(包括矽 酸鈉)被製備及攪拌中加入於前面漿狀混合物。製備含核苷 酸之各別溶液,也在攪拌下被加入於前面混合漿中。 可再調整最終製品之pH值,以達成最佳之製品安定性。 然後將該完成之製品充填進適當的金屬、玻璃或塑膠容器 中,並利用習用之技術,接受最後之滅菌。或者,將該液 體製品無菌地消毒,再充填入塑膠容器中。 2.5.2粉末製品 以前面所描述之液體製品製造方式來製備碳水化合物/ 礦物質漿。 以前面所描述之液體製品製造方式及以下之例外來製備 油漿:1)乳化劑(單,二酸甘油酿,卵鱗脂)及安定劑(鹿角 膠)典型的不加入於散劑,2)在任何隨後的噴霧乾燥過程期 間,除了貝他胡羅蔔素,其他之抗氧化劑如混合的生育醇 及棕櫚酸抗壞血酸酯可被加入來幫助維持該製品之氧化性 質及3)對本發明重要之特定LCPs與其被加入於油漿,不如 在混合該漿後加入。 如前面所描述之液體製品製造方式來製備蛋白質水漿。 86783 -44- 200412942 如描製品製造同樣之方式來混合碳水化合物/石廣 物質漿、蛋白質水漿及油漿。調整完成混合物之pH後,然 後將LCPs在攪拌中加入至該已混合漿。當該混合物經由管 各万、m要均貝化岫’以一定速率通過時,最好該礎慢 地計量加入製品(線上混合)。 於曝氣、超高溫度處理、乳化及均質化之後,可將製程 混合物蒸餾以增加該混合物之固體含量以促進更有效之噴 務乾燥。然後,混合物通過一預熱器及高壓泵,利用習用 的τ霧乾燥技術噴霧乾燥。喷霧乾燥粉末凝固,然後在真 空、氮氣或其他惰性環境下,充填入金屬或塑膠罐或金屬 箔袋。 任何琢製造程序之變異,對熟請此項技藝者為已知或顯 而易見。本發明並不期望被限制於任何特定之製程。本文 所提之全部美國專利出處以引用的方式併入。 醫藥劑型 醫藥劑型可適用於藥物及食物補充物兩種型態。習知於 熟諳此項技藝者·,包括錠、膠囊、丸、散、及其他劑型。 製造每一該劑型之方法為已知,除了較早章節所提,此處 不重複。 實例 3 ·1實驗設計 計畫為以不同的n-6及n-3配方人工飼養幼鼠,然後在斷奶 銀食半固體食物後評估食物之攝取。一组大鼠在二月被飼 養及測試,另一組則在2002年四月。其原意為結合二月及 86783 -45- 200412942 四月之結果,然而方法上的問題(以下描述)限制了二月份部 分結果之可靠性。四月份的數據為可靠及完全的。該人工 飼養及食物攝取之研究在洛杉磯的加州大學之約翰愛德蒙 博士之實驗室,羅斯可沙克(Rose korsak)親切的照顧下舉 行,其為雙盲於不同鼠乳配方之組合物及飼養組。 3.1.1實驗設計之基礎 利用新生胃造口術飼養配方飼養大鼠之模式,使用2x2 因子設計。先前之研究曾以配方飼養之大鼠(Ward等人, 1998及 1999)及小豬(de la Presa Owens及 Innis,1999及 2000) 顯示:大腦中花生浸烯酸(AA)及二十二碳六晞酸(DHA)之 脂肪酸含量水平會分別地隨著AA及DHA不同的飲食含量 水平具有(Ward等人,1998 及 1999; de la Presa Owens 及 Innis, 1999)或不具(de la Presa Owens及Inis,2000)充分的其前軀 體,亞油酸及亞麻酸之含量水平而改變,在本研究中,AA 及DHA之飲食含量水平選自利用相同胃造口術飼養大鼠模 式,研究AA及DHA相似含量水平之Ward等人(1998)及 Wainwright等人(1999)發表之數據。所研究的AA及DHA含量 水平為總脂肪酸的0%及2.5%,單獨或併用;第四組不餵食 AA或DHA(表3.1及表3.2)。研究之該期為AA及DHA(進食) 飼養期。 花生浸烯酸(20 : 4n-6 ; AA) 二十二碳六烯酸 0.0% 2.5% (22 : 6n-3 ; DHA) 2.5% 2.5% 表3.1 2x2因子設計。脂肪酸百分比以總脂肪酸%來表示。 86783 -46- 200412942 設計顯示相當於無AA,無DHA ;無AA,+DHA ; +AA,無 DHA ; +AA,+DHA之鼠乳配方組合(見表3.2)。 配方組合 AA DHA 無AA,無DHA 0.0% 0.0% 無AA,+DHA 0.0% 2.5% +AA,無 DHA 2.5% 0.0% +AA,+DHA 2.5% 2.5% 表3.2實驗組顯示AA及DHA飼養期之四個不同的鼠乳配 方組合。脂肪酸以總脂肪之%來表示。AA,花生浸晞酸(20 : 4n-6) ; DHA,二十二碳六婦酸(22 : 6n_3)。 基本配方被設計來包含邊際充足含量水平之亞油酸及無 法偵測到含量水平之α-亞麻酸,在大鼠的四個實驗組間, 來使ΑΑ及DHA的大腦中含量水平之區別極大化,該配方曾 使用於大鼠(Wainwright等人,1999)及小豬(de la Presa Owens及 Innis,1999及 2000)之研究。 3.1.2參考組 除了四個鼠乳_配方組合,也研究兩個參考組合。一參考 組為正常乳兒組,其中幼鼠留在母鼠直到第20天,取得其 腦組織。該正常乳鼠不包含於實驗之食物攝取期。第二個 乳鼠參考組作為實驗設計參考組。於實驗的食物攝取期的 開始,幼鼠從母鼠移開,在第19及第20天參與了餵食之測 量。該鼠在食物攝取期開始之前,不斷奶或被引介飼料食 物。 3 · 1 · 3統計分析 86783 -47- 200412942 利用 SAS/Stat software,version 8.2(SAS® Institute,Inc., Cary,NC)分析數據結果。利用雙線,無交互作用模式,評 估AA及DHA之主要效果。使含AA之配方與含DHA配方之間 之比較得以進行。增加每組之動物數使統計分析更有效 力。利用調整樣本大小,但不多次比較之單線變異分析, 比較乳兒參考組與其他組。顯著水平定在0.05。每組之動物 數選在8與16之間。 3.2飼養期 3.2.1人工飼養過程 由查爾斯河實驗室(Wilmington,MA)在任娠期的第14天 取得懷孕的Sprague-Dawley鼠。安置於具有12小時光/暗循 環之溫控環境中。幼鼠在24小時内於妊娠期第21天出生。 該出生日定為第0天。 出生後第6天,雄幼鼠從母鼠移走,以鼠乳配方人工飼養 至第1 8天。該步驟已詳細描述於Sonnenberg等人,1982 ; Smart等人,1983及1984;及Auestad等人,1989之文獻中。 相似之步驟也曾由Ward等人,1998及Wainwright等人,1999 所描述。於出生後第6天,將幼鼠隨機分派至四個鼠乳配方 組合之一(表3 ·2)。將幼鼠輕微麻醉,裝上胃内套管,個別 放置在自由浮於保持36 土 2。(:水浴上之品托大小之塑膠容 器内。個別幼鼠之套管均以聚乙烯管連結至充滿4個實驗鼠 乳配方之一的針頭。從第6天至第丨8天,以間歇、胃内浸泡 方式銀養該幼鼠。利用置於枱頂冷藏器中之可程式泵,依 該鼠之年紀,將調配物每小時2〇或3〇分鐘傳送到該幼鼠。 86783 -48- 200412942 每天修訂泵之設定來傳遞特定量之鼠乳配方至該幼鼠,以 支持正常之生長。該研究計畫顯示於表3.3。 3.2.2鼠乳配方之組合物 除了蛋白質源是乳清及乳酪粉,如文獻(Auestad等人, 1989 ; Ward等人,1998)之描述,製備鼠乳配方(由Abbott 實驗室Ross製品部門慷慨提供)。先簡短的製備由乳酶、乳 清及水組成之預乳基。然後,脂肪混合物(見表3.4)、乳糖、 礦物質、維生素,及其他見於鼠乳之營養物被加入至該預 乳基,利用Polytron均質機混合(見表3.5)。用於鼠乳製備之 脂肪混合物,調配以提供亞油酸、亞麻酸之邊際含量及A A 與DHA之不同含量。 出生後年紀,天 6-15 16 17 18 19 20 熱量之攝入,所需熱量之% : 鼠乳配方(AA及DHA飼養期) 100 80 80 20 0 0 飼料 0 20 20 20 進食期,飲食之%(不限) 飼料 100 100 表3.3實驗的AA及DHA飼養期及進食期間之熱量源。四 個鼠乳配方組合之進食計畫。實驗的鼠乳配方被隨機分派 至出生後第6天及餵食至第18天。該鼠乳配方含:無A A或 DHA ;無 AA,2.5% DHA ; 2.5% AA,無 DHA ;或 2.5% AA, 2.5% DHA。飼料為半固體食物,於第16天被引介至所有4 組,在食物引入期間專吃飼料。該飼料符合AIN-93之營養 推薦書,不包含AA或DHA。 86783 -49- 200412942 無AA +AA 無DHA +DHA 無DHA +DHA 脂防混合物,總油的% 可可豆油 67.5 60.0 60.1 52.6 MCT 油1 32.5 27.5 27.4 22.6 AA油2 0.0 0.0 12.5 12.4 DHA 油3 0.0 12.5 0.0 12.4 脂肪酸,總脂肪酸4之% C8:0 28.1 14.7 14.3 0.0 C10:0 20.1 10.5 10.1 0.2 C12:0 27.7 15.1 13.9 0.9 C14:0 10.7 12.0 6.1 7.4 C16:0 5.9 11.1 9.9 15.4 C18:0 1.7 1.3 6.5 6.3 C22:0 0.0 0.1 0.8 1.0 C24:0 0.0 0.1 0.9 0.9 合計(飽和) 32.1 64.8 62.3 94.2 C16:l 0.0 0.6 0.1 0.7 C18:l 4.0 12.9 8.3 17.6 合計(不飽和的) 4.0 13.4 8.4 18.2 C18:2n-6 1.1 0.9 4.2 4.0 C18:3n-6 0.0 0.0 1.7 1.7 C20:3n-6 0.0 0.0 1.8 1.8 C20:4n-6(AA) 0.1 0.0 19.9 20.1 86783 -50- 200412942 合計 n-6 1.2 0.9 27.5 27.6 C22:6n-3(DHA) 0.0 20.4 0.0 20.3 合計 n-3_0.0 20.4 0.0 20.3 表3.4脂肪混合物之脂肪酸組合物,該混合物使用於製備 實驗的鼠乳配方。結果以總脂肪酸的%表示。AA,花生浸 烯酸或C20 : 4n-6 ; DHA,二十二碳六烯酸或C22 : 6n-3、 iMCT油,中鏈三酸甘油酯油。2AA油,ARASCOtm&3DHA 油,DHASCOTM(Martek Biosciences Corp·,Columbia,MD), 大約分別為20% AA及DHA。濃度少於總脂肪酸0.5%之4脂 肪酸不予顯示。__ 成分__g/2.5 L_ 蛋白質: 乳酪 157.5 乳清 105.8 水 1987 混合胺基酸 2.425 碳水化合物: 乳糖 87.5 脂肪混合物(見表3.4) 350.0 礦物質: 碳酸鈣 15.08 葡萄酸鈣 3.413 氯化鈣 6.95 無鈣之碳物質混合物(含鐵) 15.1 86783 -51 - 200412942 硫酸銅溶液1 0.0749 硫酸鋅溶液2 0.2845 維生素: 維生素混合物(Teklad) 10.0 維生素混合物(補充的) 1.375 其他: 肉驗 0.1 肌胺酸 0.175 乙醇胺 0.0855 表3.5鼠乳配方之成分。以每2.5公升列出成分。硫酸銅溶 液1為 30.9 g CuS04 · 5H20/L H20 ;硫酸鋅溶液 2為 379.3 g ZnS04 · 7H20/L H20(如 Auestad 等人,1989 之描述)。 以氣相層析來決定鼠乳配方之脂肪酸組合物,結果顯示 於表3.6。脂肪酸亞油酸、亞麻酸、AA及DHA之標的百分比, 其濃度之達成正如或接近預期目標。二月飼養之一個配 方,其AA似較低(1.4%相對於總脂肪酸2.5%之標的值)。此 似由於在GC分析時不適當之實驗室操作,或其他的實驗錯 誤。其結果大概會接近於2.5%,因為完全相同的脂肪混合 物用於製備該二月及四月飼養兩者之配方。其他加有AA之 配方如所預期含約2.5%之AA。 二月飼養 四月飼養 無AA +AA 無AA +AA 無DHA +DHA 無DHA +DHA 無 DHA +DHA 無 DHA +DHA 06:01 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.5 86783 -52- 200412942 C8:0 23.8 21.6 22.6 19.7 24.0 22.4 22.1 20.2 C10:0 17.2 15.7 16.4 14.7 17.0 15.9 15.7 14.6 C12:0 29.8 29.3 29.8 27.8 31.0 29.3 29.3 27.7 C14:0 12.0 12.4 11.9 12.1 12.1 12.2 11.6 11.7 C16:0 7.8 8.4 7.9 9.2 7.0 7.7 7.6 8.2 C18:0 2.3 2.3 2.6 3.0 2.1 2.1 2.7 2.7 C18:ln-9 5.1 6.1 5.3 6.8 4.8 5.9 5.4 6.5 C18:2n-6 1.3 1.3 1.5 1.7 1.3 1.2 1.7 1.6 C20:4n-6(AA) 0.0 0.0 1.4 2.4 0.0 0.0 2.5 2.5 C22:6n-3(DHA) 0.0 2.3 0.0 2.4 0.0 2.6 0.0 2.6 表3·6 AA及DHA飼養期,鼠乳配方之脂肪酸組合物。結果 以總脂肪酸之%表示。AA,花生浸烯酸或C20: 4n_6; DHA, 二十二碳六締酸或C 2 2 : 6 η - 3。小於總脂肪酸0.5 %之脂肪 酸1不顯示。 3 · 2 · 3成長評估 每曰將人工飼養的幼鼠秤重。ΑΑ及DHA飼養期的開始及 結束時秤重,也·在食物引入期將被報告時秤重。 3.3食物引入期 奶泛不含脂肪之粗粉(Bioserv inc·,Frenchtown,NJ)、脂肪 /此占物(椰子油· MCT油,70 : 30,w/w)及水直到黏度變脆 來製備用於二月實驗之食物飼料。由於食物飼料之黏度, 二月實驗的食物引入測量的正確性是有疑問的,因此,具 有相同營養組成之小粒狀食物飼養被製備(Research Diets Inc·,Princeton,NJ)供四月之實驗。該小粒非常密實及堅 86783 -53- 硬,擔心剛斷奶之老鼠不易吃該固體小粒。因此,將小粒 疋碎成知末’與水混合,形成1/4"至1/2,,半固體球用於食物 ^ 兩個良物飼料之飲食之營養物剖面符合AIN-93之 推薦(Reeves等人,1993)。食物飼料進行脂肪酸分析,其結 果顯示於表3.7。 第16天,幼鼠被引導成飼料斷奶食物。該飼料含10 g/100 g濕重之脂肪,其為椰子油:MC1^ (7〇 : 3〇,w/w)之混合 物。所有的鼠實驗組均斷奶成為相同不含Aa或DHA之食物 飼料以消除由貫驗設計而來之特殊香味之強烈混亂效果。 第16及第17天,每日熱量需求的80%來自所分派之實驗鼠 礼配方’ 20%熱量來自食物飼料(表3.3)。在數分鐘内,幼 」^月1 四月2 C6:03 0.6 1.3 C8:0 23.6 27.1 C10:0 17.0 12.0 C12:0 31.4 31.8 C14:0 12.2 12.8 C16:0 7.0 7.1 C18:0 2.1 7.1 C18:ln-9 4.7 0.9 C18:2n-6 1.3 0.2 C20:4n-6(AA)* 0.0 0.0 C22:6n-3(DHA)* 0.0 0.0 表3 · 7用於實驗的斷奶及食物引入期的食物飼料之脂肪酸 86783 -54- 200412942 組成。結果以總脂肪酸的%表示。脂肪混合物為椰子油: MCT油(70 : 30,w/w)。1二月的食物飼料以不含油脂之粉 末所做成,孩脂肪混合物與水一起被加入飼料以形成脆的 黏度。2四月食物飼料以小粒製成,含相同的脂肪混合物; 將該小粒壓碎,加入小量的水來形成1/4”至1/2,,之飼料球。 脂肪等於或少於0.5%不被報告出,除了求其清楚以*號指示 者。 第18天下午5點開始,以來自鼠乳配方之2〇%熱量需求及 來自濕飼料之2G%來限制幼鼠之熱量。該配方以水稀釋至 起始熱含量的2G%。水的引人不予限制以保持該動物適當 的水份。第19天上午9點,將㉝鼠刺激以便排尿然後秤重。 將胃内套管移除,然後將幼鼠放置於個別的籠中,該籠含 水瓶及約15 g的”脆”飼料於陶製碟中(二月之實驗)或直接 加入籠底的”飼料球”(四月之實驗)。該籠有透明的塑膠底及 邊,約8英叶寬,12英叶長,以絲網帶有水瓶之斜頂圍繞。 每2小時共8小時’秤重所留下之飼料以決定已吃掉之食物 量。由於食物引.入期間之蒸發,包括了三個飼料,,控制組,, 以測量重量之損失。食物引入期的結尾,再#重該鼠。 然後將飼料從籠中移出,該鼠斷食以下之18小時並自由 攝取水。於第20天上午9點,再刺激該鼠使排尿,种重,置 於其籠中,供應水及約l5g之㈣。2小時後,定出所吃的 食物量及該鼠之最後重量。 3 · 4組織之收集 於第20天’食物引入期之後,將幼鼠斬首犧牲,取得最 86783 -55- 200412942 終體重。將大腦移開、秤重,以液態氮快速冷;東(5分鐘内)。 腦組織貯存於-70°C冷凍箱。由頸部之殘肢收集血液,與肝 素混合,置於冰上,離心來確定有充分之相分離以製備血 漿。血漿貯於-70°C。 將大腦及血浆樣本以乾冰隔夜從UCLA運至Ross Products Division of Abbott Labs,Columbus,Ohio,到達時完全冷滚。 檢查所運送之樣品是否受損及融解之徵象並立即轉送至 -70°C之冰箱貯存直至分析。取得血漿樣本,但不分析,作 為本論題之成分。 3.5脂質之萃取及分析 ’ 3.5.1 腦中三種脂質部分之脂肪組合物被決定。磷脂脂肪酸甲 基酯以相似於Ward等人(1999)所描述之方法決定。除了 HPLC,還有氣相層析質譜儀(GC/MS)、液相層析-質譜儀 (LC/MS/MS)之方法供測量MAG及ΝΑΕ脂肪酸曾被描述 (Berger等人,2001 ; Kempe等人,1996 ; Fontana等人,1995 ; Felder等人,1996 ; Wang等人,2001)。然而,測量腦組織 中該脂肪酸之較少成本及較簡單之方法被開發出來。 利用典型供脂質萃取之Folch萃取方法(Folch等人, 1957),從鼠之大腦中萃取總脂質。利用矽膠匣,將每一鼠 腦中萃取的總脂質分開成中性脂質及磷脂的部分。利用高 效液相層析(HPLC),更將中性脂質部分分開成MAG及ΝΑΕ 的部分。在衍生成相應脂防酸甲基酯之後,利用氣液相層 析(GLC)定出MAG、ΝΑΕ及磷酯部分之脂肪酸組合物。該脂 86783 -56- 200412942 肪酸組合物之結果相應於大腦中磷脂膜之總脂肪酸,該 MAG及ΝΑΕ月旨肪酸之結果代表鼠腦中該脂肪醯基衍生物的 濃度。 3.5.2試劑及供應者 花生浸烯酸乙醇醯胺及二十二碳四烯基乙醇醯胺來自 Cayman Chemical Co· (Ann Arbor, ΜΙ)。二十二碳六稀 si 氯 及脂肪酸標準品來自Nu-Chek Prep,Inc.(Elysan,MN)。乙醇 胺及三氟化硼-甲醇錯合物(BF3)來自Sigma-Aldrich (Milwaukee,WI)。二氯甲烷、甲醇、氯仿、己烷、乙酸乙 酉旨及異丙醇來自Burdick & Jackson (Muskegon,MI),石油醚 來自 Mallinckrodt (Paris, KY)及甲酸來自 J.T. Baker (Phillipsburg,NJ)。所有使用之試劑均為分析級。LHPK石夕 膠薄層層析板及滤紙來自Whatman(Clifton,NJ)。微量吸 管、試管及瓶子來自 VWR Scientific (Bridgeport,NJ)。HPLC 分離管(Chromegasphere SI-60,4.6 X 150 mm,10 μ,6〇A)來 自 ES Industries (Marlton,NJ) 〇 3.5.3脂肪酸標準品 製備GLC脂肪酸標準品。以短時間將脂肪酸甲基酯(-98%之純度)之代表性混合物,以特定之順序,正確地秤重 於已除去空瓶重之100 mL梨形三角瓶,以確定適當之混 合。全部脂肪酸甲基酯被加入及混合後,將該瓶秤重以取 得標準品之最後重量。將一百毫克之標準品加入安瓿,充 入氮氣,以丙烷火焰熔封,貯於-20°C之冰箱直到使用。 以定量的轉移一個安訊之内容物至一 25 mL之容量瓶 86783 -57- 200412942 中,以己烷稀釋至該容量來製備GLC貯備標準品。以己烷 來稀釋GLC貯備標準品1 : 3(v/v)來製備GLC操作標準品, 並在1與5 μί之間注射入GLC。 3.5.4内標準品 需有兩個内標準品,monoheptadecanoin供MAG部分及二 十二碳三稀醯基乙醇胺(22 : 3n-3 ΝΑΕ)供ΝΑΕ部分。以正 確地秤重100 mg於10 mL容量瓶,用氯仿稀釋至其容量來製 備單十七烷。如Hand等人於1993年之描述來製備二十二碳 三烯醯基乙醇胺。簡便地,將約100 mg之二十二碳三缔醯 氯溶於1 mL之二氯甲烷。然後將該混合物轉移至試管。將1 mL之乙醇胺溶液(20%於二氯甲烷)於0°C加入於試管,充氮 氣。每3分鐘將該試管以振搖充分地混合,共15分鐘。加入 8 mL之二氯曱烷使容量為10 mL。然後將該樣本以5 mL水, 在氮氣下充分混合。將該樣本以2000 rpm,於20°C離心2分 鐘以分開水及有機層。將有機(底)層吸至清潔的試管,再用 5 mL H2〇於N2下洗。樣品如上述離心,再將有機層吸至清 潔的試管。將合·併之有機層在化氣下蒸乾。然後將該樣本 再形成於10.0 mL氯仿:甲醇(1 : 1,v/v),以N2氣吹乾,密 蓋,貯於-20°C。甲基化,繼而以GLC定量來決定所得二十 二碳三烯醯基乙醇胺内標準品之濃度。 3·5·5樣本之萃取Remington's Pharmaceutical Sciences, XV version (1975). Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al. Describe pharmaceutical acceptable salts in detail in J. Pharmaceutical Science, 1977, 66: 1 et seq., Which is incorporated herein by reference. During the final isolation and purification of the compounds of the present invention, the salts can be prepared on the spot, or each can be prepared by reacting the function of a free base with an appropriate organic acid. Representative acid addition salts include, but are not limited to, acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, hydrogen sulfate, butyrate Salt, camphor salt, camphor sulfonate, digluconate, glycerol phosphate, hemisulfate, heptanoate, hexanoate, fumarate, hydrochloride, bromate, broken salt, 2-carboxythioate, lactate, maleate, mesylate, nicotinate, 2-sulfonate, oxalate, pamoate, pectate, Sulfate, 3-phenylpropionate, picrate, trimethylacetate, propionate, succinate, tartrate, thiocyanate, phosphate, glutamate, bicarbonate, P -Tosylate and undecanoate. Nitrogen-containing basic groups can also be quaternized with the agent to form lower alkyl halides, such as / methyl, ethyl, propyl and butyl chlorides, bromides, and chiral compounds; , Such as dimethyl, diethyl, dibutyl and dipentyl sulfate I; long bond functions, such as dodecyl, tetradecyl, cetyl and octadecyl chloride, Bromides and iodides; arylalkyl halides such as benzyl and phenethyl bromide and others. Thus obtain water-soluble or oil-soluble or dispersible products. Examples of acids used to form pharmaceutically acceptable acid addition salts include inorganic acids such as hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid, and organic acids such as oxalic acid, maleic acid, succinic acid, and citric acid. 86783 -37- 200412942 react a carboxylic acid-containing moiety with an appropriate base, such as a pharmaceutically acceptable metal cation hydroxide, carbonate, hydride carbonate, or with ammonia or an organic, secondary, or tertiary amine During the reaction, the resulting compound can be prepared as an alkali addition salt on the spot during the final isolation and purification. Pharmaceutically acceptable salts include, but are not limited to, cations based on alkali metals or alkaline earth metals, such as lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like, and non-toxic quaternary ammonia and amine cations Including ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine and the like. Other representative organic amines used to form base addition salts include ethylenediamine, ethanolamine, diethanolamine, hexahydropyridine, piperin, and the like. 2.4 doses The content of specific fatty acids in the formulation is typically expressed as a percentage of the total fatty acids. This percentage is multiplied by the absolute concentration of the total fatty acid in the formula or g / i00kCal) to obtain the absolute concentration of the fatty acid (in g / L or g / i00kcal, respectively). The total fatty acid can be estimated to be about 95% of the total fat to calculate the weight of the dried sugar. By heat density. The simple transition from mg / 100 kcal to mg / L & is known to those skilled in the art. According to the present invention, a DHA-enriched nutritional composition can provide less than about 5% of daily caloric intake from a single source eating situation, such as 100% of infant formula, to a conventional light meal. If the formulation is for a newborn, it can be supplemented with some human milk. When the baby grows to about 2 to 4 months, it is often started to supply part of the calories with solid food. The content of the formulation can be reduced according to the percentage of total calorie intake. The nutritional or calorie component of any supplement or medicine is often downsized and underestimated. 86783 -38- 200412942 According to the present invention, it is advantageous to combine DHA dose with mild pressure as mentioned before. In the case of young rats, rats fed with 2.5% DHA of total fatty acids, without ARA content levels (0% or 2.5%) and marginal levels of linoleic acid and α-linolenic acid, were exposed to a shock Appetite mild stress foods eat less than 11% of the diet at weaning within the first 2 hours after the food restriction period. Others have used the same rat milk model to show that dose-related ARA (0, 0.4%, and 2.3% of total fatty acids) and DHA (0, 0.4%, and 2.3%) have different effects on brain growth. Effects of Chain η-6 and n-3 Fatty Acids (Ward et al., 1999) 〇 In this study, the brains of rats fed 0 and 2.5% DHA diets were associated with 22: 6n-3 levels that differed from those by Ward Et al. (1999) reported similar results for 0 and 2.3% DHA diets. Based on the relationship between the level of DHA in the brain and appetite in the linked example, and the relationship between dietary DHA and the level of DHA in the brain (this example and Ward et al. 1999), it is reasonable to expect a reduction of about 5% due to 0.4% dietary DHA Food intake. From a public health point of view, people continue to reduce: _5% of calorie intake can reduce the risk of becoming overweight and obese. Table A: DHA content levels (% of total fatty acids intake) Nutritional products are designed to be better and better. Babies under term 0.10-2.5 0.10-1.0 0.15-0.50 0.10-2.5 0.10-1.0 0.15-0.50 86783 at birth 39 200412942 2-6 months 0.10-2.5 0.10-1 · ° 0.15-0.50 6-12 months 0.10-3.0 0.10-1 · 3 0.15-0.70 Child 1-5 years 0.10-5.0 0.10-2.0 0.30-1.00 5- 15 years old 0.10-5.0 0.10-2.0 0.30-1.00 Adult Adult 0.10-5.0 0.10-2.〇_- 0.30-1.00 The better period of intake of DHA fortified food is when the increase of long bond n-6 and n-3 fatty acids is the most Quick time-that is, in infancy, children and adolescence. The fastest rate of brain growth occurs during infancy. However, brain growth and neural maturity continue until about 12-20 years of age. The content of fatty acids in the adult brain can also be affected by adult food, but it takes a longer time. According to the present invention, from the lack of Table B, it is proposed that there is an effective dose of the component, DHA, regardless of whether it is given as a 2Γ AL · 4 knowledge point for supplements or drugs. Table B: Diet dha for each age group The best intake is best for infants with the best heat consumption per month. 13 Lower range 8 Higher range 396 Birth to 6 months ^ mg / kg / day *** 13 19 8 13 158 79 ** mg / kg / day *** kcal / kg / day 120 90 150 kcal / kg / day 86783 .40- 200412942 Normal 11 11 16 100 Lower range 8 8 13 80 Higher 317 127 63 120 6-12 Month * * * mg / kg / 夭 ^ * 氺 * kcal / kg / day normal 11 11 16 100 lower range 8 8 13 80 higher 380 165 89 120 children 1-5 years old mg / χ *** kcal / days usual 137 137 412 1300 lower range 84 84 253 800 higher 9499 3800 1900 1800 5-15 years old books mg / i *** kcal / days usual 190 190 570 1800 lower range 84 84 253 800 southerly 11610 4644 2322 2200 Adult Adult 氺 氺 氺 mg / i 氺 氺 氺 kcal / day usual 211 211 633 2000 Lower range 84 84 253 800 Higher 15832 6333 3166 3000 So, for example, the effective dosage range for children 1 to 5 years is 84-9499 mg per day, preferably 84-3800 mg per day, and most preferably 252-322 mg per day. The comparable value for adults is 84-15832, preferably 84-6333, and most preferably 253- 86783 -41-200412942 3 166. Please note: Values given by children and adults are in mg / day, infants are in mg / kg / day. Therefore, the comparable value for infants up to about 6 months of age is 8-3 80 mg / kg / day, preferably 8-165 mg / kg / day, and most preferably 13-89 mg / kg / day. With this application, the number range given as "x-y" should be interpreted as "from about X to about y", of course, about "to modify both the \ value and the y value. In addition, this range naturally indicates that an indefinite value between X and y is revealed simply and unambiguously by this range. For example, 0.10-2.5 clearly reveals the values such as 019, 05, 0.823, 1.25, 1.64, 1.999, etc. and the values "about (MO or" about ,, 25. 2.5) 2.5 manufacturing methods to read the general knowledge of this technology Conventional methods can be used to make the liquid and powder nutritional products of the present invention. Three pastes are briefly prepared, mixed together, heat treated, standardized, spray dried (if applicable), packaged and sterilized (if applicable). 2.5.1 Liquid The product first prepares a carbohydrate / mineral paste with hot water, and stirs to an elevated temperature. Then minerals are added. Minerals can include (but not limited to) sodium citrate, sodium chloride, " citric acid Potassium, potassium chloride, magnesium chloride, calcium phosphate, calcium carbonate, potassium iodide, and pre-mixed trace minerals. Carbohydrate sources such as one or more of lactose, corn syrup solids, sucrose, and / or maltodextrin are soluble in water. This forms a carbohydrate solution. A source of dietary fiber, such as soy polysaccharides, can also be added. The completed carbohydrate / mineral paste is stirred at an elevated temperature and placed until mixed with other paste pieces, It is preferably not more than about twelve hours. The base oily mixture is mixed and heated to prepare an oily paste. The base oily 86783 -42- 200412942 mixture typically contains some soybeans, coconut, palm oil, high oil safflower or sunflower oil And medium chain triglyceride combinations. Emulsifiers such as diethyl tartaric acid mono- and di-glycerides, soy mono-, di-glycerides and soy lecithin can be used. Any or all oil-soluble Vitamin A, dE (natural R, R, R type or synthetic) and K can be added separately or made into 4_ ^ Shao points. Betacarotoxin, which functions as an antioxidant in the body, can also be added, like Antlers as stabilizers. Containing specific LCPs, oils important to the present invention (for example, DHA and AA) can be added to oily slurries. The Lcpg must be used with care because they are prone to decomposition and spoilage. What is done The oily slurry is kept under stirring until mixed with other slurry. It is best not to be longer than about 12 hours. Let's prepare the water-like protein 'first heat the water to a suitable elevated temperature while stirring' and then Protein source is stirring Add water to the mix. Typically, the protein source is whole or hydrolyzed milk protein (eg, whey, whey), human or hydrolyzed vegetable protein (eg, soy), free amino acids and their Blends. Generally 'any known source of amine nitrogen can be used in the present invention. The finished protein syrup is kept at elevated temperature during stirring until combined with other syrups', preferably no longer than about 2 Hours. As a substitute, some proteins ..., water-in-protein mixes are not as good as fat-in-protein mixes in emulsions. :: water, protein and carbohydrate / mineral slurry are stirred and mixed, and the resulting dagger water is kept at a relatively high temperature. After a delay (for example, several minutes :) 'Add the oily slurry to the mixed slurry from the previous step while stirring. As the sister said: add to the oil mixture, the LCP oil can be directly added to the A mixture of protein Benito water compounds / minerals and oily pulp. 86783 -43. 200412942 After sufficient stirring to fully combine all the ingredients, adjust the pH of the complete mixture to the desired range. The mixed slurry is then subjected to aeration, ultra-high temperature heat treatment, emulsification and homogenization, and then cooled to a refrigerated temperature. Preferably, after completing the above steps, an appropriate analysis test is performed for quality control. Based on the analysis results of the quality control test, add an appropriate amount of water to one batch and stir and dilute. Aqueous vitamin solutions (including sodium silicate) containing water-soluble vitamins and trace minerals are prepared and added to the pasty mixture while stirring. Individual solutions containing nucleotides were prepared and added to the previous mixing slurry with stirring. The pH value of the final product can be adjusted to achieve the best product stability. The finished product is then filled into appropriate metal, glass or plastic containers and subjected to final sterilization using conventional techniques. Alternatively, the liquid product is aseptically sterilized and filled into a plastic container. 2.5.2 Powder products Carbohydrate / mineral pulps are prepared using the liquid product manufacturing methods previously described. Use the liquid product manufacturing method described above and the following exceptions to prepare oil slurry: 1) emulsifiers (mono-, di-glycerol, egg-lipid fat) and stabilizers (antler) are typically not added to powders, 2) During any subsequent spray-drying process, in addition to betacarotene, other antioxidants such as mixed tocopherol and ascorbyl palmitate can be added to help maintain the oxidative properties of the product and 3) specific to the invention Instead of adding LCPs to the slurry, add them after mixing the slurry. The protein water slurry was prepared by the liquid product manufacturing method described previously. 86783 -44- 200412942 Mix carbohydrate / stone material pulp, protein water slurry, and oil slurry in the same manner as described in the manufacture of tracing products. After adjusting the pH of the completed mixture, LCPs were then added to the mixed slurry while stirring. When the mixture is passed through the tube at a certain rate, it is better to meter in the product slowly (on-line mixing). After aeration, ultra-high temperature treatment, emulsification, and homogenization, the process mixture can be distilled to increase the solids content of the mixture to promote more effective spray drying. The mixture is then spray-dried through a preheater and high-pressure pump using conventional τ mist drying techniques. The spray-dried powder is solidified and then filled into metal or plastic cans or metal foil bags under vacuum, nitrogen or other inert environments. Any variation of the manufacturing process is known or obvious to those skilled in the art. The invention is not intended to be limited to any particular process. All US patent references cited herein are incorporated by reference. Pharmaceutical dosage form Pharmaceutical dosage form can be applied to two types of medicine and food supplement. Those who are familiar with this skill include tablets, capsules, pills, powders, and other dosage forms. The method of making each of these dosage forms is known and is not repeated here except as mentioned in the earlier sections. Example 3.1 Experimental design The plan was to raise young rats artificially with different formulas of n-6 and n-3, and then evaluate the food intake after weaning the silver solid food. One group of rats was fed and tested in February, and the other was in April 2002. The original intention is to combine the results of February and 86783 -45- 200412942 in April, but methodological issues (described below) limit the reliability of some of the results in February. Data for April are reliable and complete. The study on captive feeding and food intake was held in the laboratory of Dr. John Edmond of the University of California, Los Angeles, under the kind care of Rose korsak, which is double-blinded with different composition of rat milk and Feeding group. 3.1.1 The basis of experimental design The model of feeding rats with neonatal gastrostomy feeding formula is designed with 2x2 factor. Rats (Ward et al., 1998 and 1999) and piglets (de la Presa Owens and Innis, 1999 and 2000) previously formulated in previous studies have shown that arachidonic acid (AA) and twenty-two carbons in the brain The level of fatty acids in hexadecanoic acid (DHA) will vary with the dietary levels of AA and DHA (Ward et al., 1998 and 1999; de la Presa Owens and Innis, 1999) or not (de la Presa Owens and Inis, 2000) changes in the levels of their precursors, linoleic acid and linolenic acid. In this study, the dietary levels of AA and DHA were selected from the model of feeding rats with the same gastrostomy. Data on similar levels of DHA published by Ward et al. (1998) and Wainwright et al. (1999). The levels of AA and DHA studied were 0% and 2.5% of total fatty acids, used alone or in combination; the fourth group was not fed AA or DHA (Tables 3.1 and 3.2). The study period was the AA and DHA (feeding) feeding period. Arachidonic acid (20: 4n-6; AA) docosahexaenoic acid 0.0% 2.5% (22: 6n-3; DHA) 2.5% 2.5% Table 3.1 2x2 factor design. Fatty acid percentages are expressed as% of total fatty acids. 86783 -46- 200412942 The design shows the equivalent of a rat milk formula combination without AA, DHA; AA, + DHA; + AA, DHA; + AA, + DHA (see Table 3.2). Formula combination AA DHA no AA, no DHA 0.0% 0.0% no AA, + DHA 0.0% 2.5% + AA, no DHA 2.5% 0.0% + AA, + DHA 2.5% 2.5% Table 3.2 Experimental group shows AA and DHA feeding period Of four different rat milk formula combinations. Fatty acids are expressed as% of total fat. AA, Peanut Dipping Acid (20: 4n-6); DHA, Docosaic Acid (22: 6n_3). The basic formula is designed to contain marginal sufficient levels of linoleic acid and undetectable levels of α-linolenic acid. In the four experimental groups of rats, the levels of AA and DHA in the brain are greatly different. This formulation has been used in studies on rats (Wainwright et al., 1999) and piglets (de la Presa Owens and Innis, 1999 and 2000). 3.1.2 Reference group In addition to the four rat milk_formulation combinations, two reference combinations were also studied. A reference group was a normal infant group, in which the young rats remained in the female rats until the 20th day to obtain their brain tissue. The normal suckling rats were not included in the experimental food intake period. The second suckling rat reference group was used as the experimental design reference group. At the beginning of the experimental food intake period, the pups were removed from the females and the feeding measurements were taken on the 19th and 20th days. The rat continued to milk or be introduced to feed before the food intake period began. 3 · 1 · 3 Statistical Analysis 86783 -47- 200412942 The data results were analyzed using SAS / Stat software, version 8.2 (SAS® Institute, Inc., Cary, NC). Use the two-line, non-interaction mode to evaluate the main effects of AA and DHA. This enables comparison between AA-containing formulations and DHA-containing formulations. Increasing the number of animals in each group makes statistical analysis more effective. Single-line variation analysis with adjusted sample size but no multiple comparisons was used to compare the infant reference group to other groups. The significance level was set at 0.05. The number of animals in each group was chosen between 8 and 16. 3.2 Feeding period 3.2.1 Artificial feeding process Pregnant Sprague-Dawley rats were obtained by Charles River Laboratory (Wilmington, MA) on the 14th day of pregnancy. Placed in a temperature-controlled environment with a 12-hour light / dark cycle. Pups were born on the 21st day of pregnancy within 24 hours. The birthday is set to day 0. On the 6th day after birth, male pups were removed from the females and reared artificially with rat milk formula until the 18th day. This step has been described in detail in the literature by Sonnenberg et al., 1982; Smart et al., 1983 and 1984; and Auestad et al., 1989. Similar steps have been described by Ward et al., 1998 and Wainwright et al., 1999. On the 6th day after birth, the young rats were randomly assigned to one of the four rat milk formula combinations (Table 3.2). The pups were lightly anesthetized, fitted with intragastric cannulas, and individually placed in a free-floating hold to maintain 36% soil. (: In a pin-sized plastic container on a water bath. Individual young rats' cannulae are connected by polyethylene tubes to a needle filled with one of the four experimental rat milk formulas. From day 6 to day 8 The stomach was immersed in a stomach so that the young rat was raised. Using a programmable pump placed in a refrigerator on the table top, the preparation was delivered to the young rat at 20 or 30 minutes per hour depending on the age of the rat. 86783 -48 -200412942 The pump settings are modified daily to deliver a specific amount of rat milk formula to the young rat to support normal growth. The research plan is shown in Table 3.3. 3.2.2 The composition of the rat milk formula is whey in addition to the protein source And cheese powder, as described in the literature (Auestad et al., 1989; Ward et al., 1998), to prepare a rat milk formula (generously provided by the Ross Products Division of Abbott Laboratories). A short preparation consists of lactase, whey and water. The composition is a pre-milk base. Then, a fat mixture (see Table 3.4), lactose, minerals, vitamins, and other nutrients found in rat milk are added to the pre-milk base and mixed using a Polytron homogenizer (see Table 3.5). Fat mixture for rat milk preparation Blended to provide the marginal content of linoleic acid, linolenic acid, and different levels of AA and DHA. Age after birth, days 6-15 16 17 18 19 20 Calorie intake,% of calories required: Rat milk formula (AA and DHA feeding period) 100 80 80 20 0 0 Feed 0 20 20 20 Feeding period,% of diet (unlimited) Feed 100 100 Table 3.3 AA and DHA heat sources during feeding and feeding period. Four rat milk formula combinations The feeding plan of the experiment. The experimental rat milk formula was randomly assigned to the 6th day after birth and fed to the 18th day. The rat milk formula contains: no AA or DHA; no AA, 2.5% DHA; 2.5% AA, no DHA Or 2.5% AA, 2.5% DHA. The feed is a semi-solid food and was introduced to all 4 groups on the 16th day. It was exclusively eaten during the food introduction period. The feed complies with the AIN-93 nutrition recommendation and does not contain AA or DHA 86783 -49- 200412942 No AA + AA No DHA + DHA No DHA + DHA Fat-proof mixture,% of total oil Cocoa oil 67.5 60.0 60.1 52.6 MCT oil 1 32.5 27.5 27.4 22.6 AA oil 2 0.0 0.0 12.5 12.4 DHA oil 3 0.0 12.5 0.0 12.4 Fatty acids, 4% of total fatty acids C8: 0 28.1 14.7 14.3 0.0 C10: 0 20.1 10.5 10.1 0.2 C12: 0 27.7 15.1 13.9 0.9 C14: 0 10.7 12.0 6.1 7.4 C16: 0 5.9 11.1 9.9 15.4 C18: 0 1.7 1.3 6.5 6.3 C22: 0 0.0 0.1 0.8 1.0 C24 : 0 0.0 0.1 0.9 0.9 Total (saturated) 32.1 64.8 62.3 94.2 C16: l 0.0 0.6 0.1 0.7 C18: l 4.0 12.9 8.3 17.6 Total (unsaturated) 4.0 13.4 8.4 18.2 C18: 2n-6 1.1 0.9 4.2 4.0 C18: 3n -6 0.0 0.0 1.7 1.7 C20: 3n-6 0.0 0.0 1.8 1.8 C20: 4n-6 (AA) 0.1 0.0 19.9 20.1 86783 -50- 200412942 Total n-6 1.2 0.9 27.5 27.6 C22: 6n-3 (DHA) 0.0 20.4 0.0 20.3 Total n-3_0.0 20.4 0.0 20.3 Table 3.4 Fatty acid composition of fat mixture, which is used in the preparation of rat milk formula for experiments. Results are expressed as% of total fatty acids. AA, arachidonic acid or C20: 4n-6; DHA, docosahexaenoic acid or C22: 6n-3, iMCT oil, medium chain triglyceride oil. 2AA oil, ARASCOtm & 3DHA oil, DHASCOTM (Martek Biosciences Corp., Columbia, MD), approximately 20% AA and DHA, respectively. 4-fatty acids at concentrations less than 0.5% of total fatty acids are not shown. __ Ingredients __g / 2.5 L_ Protein: cheese 157.5 whey 105.8 water 1987 mixed amino acid 2.425 carbohydrate: lactose 87.5 fat mixture (see table 3.4) 350.0 minerals: calcium carbonate 15.08 calcium gluconate 3.413 calcium chloride 6.95 calcium-free Carbon substance mixture (containing iron) 15.1 86783 -51-200412942 Copper sulfate solution 1 0.0749 Zinc sulfate solution 2 0.2845 Vitamins: Vitamin mixture (Teklad) 10.0 Vitamin mixture (supplemented) 1.375 Others: Meat test 0.1 Inosinic acid 0.175 Ethanolamine 0.0855 Table 3.5 Composition of rat milk formula. List ingredients at 2.5 liters. Copper sulfate solution 1 is 30.9 g CuS04 · 5H20 / L H20; zinc sulfate solution 2 is 379.3 g ZnS04 · 7H20 / L H20 (as described by Auestad et al., 1989). The fatty acid composition of the rat milk formula was determined by gas chromatography. The results are shown in Table 3.6. The target percentages of fatty acids linoleic acid, linolenic acid, AA, and DHA have achieved their concentrations as close to or as close as expected. For a formula raised in February, the AA appeared to be low (1.4% vs. 2.5% of the total fatty acid target). This appears to be due to improper laboratory operations during GC analysis or other experimental errors. The result will probably be close to 2.5%, because the exact same fat mix was used to prepare the formula for both February and April rearing. Other AA-added formulations contain about 2.5% AA as expected. February breeding April breeding No AA + AA No AA + AA No DHA + DHA No DHA + DHA No DHA + DHA No DHA + DHA 06:01 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.5 86783 -52- 200412942 C8: 0 23.8 21.6 22.6 19.7 24.0 22.4 22.1 20.2 C10: 0 17.2 15.7 16.4 14.7 17.0 15.9 15.7 14.6 C12: 0 29.8 29.3 29.8 27.8 31.0 29.3 29.3 27.7 C14: 0 12.0 12.4 11.9 12.1 12.1 12.2 11.6 11.7 C16: 0 7.8 8.4 7.9 9.2 7.0 7.7 7.6 8.2 C18: 0 2.3 2.3 2.6 3.0 2.1 2.1 2.7 2.7 C18: ln-9 5.1 6.1 5.3 6.8 4.8 5.9 5.4 6.5 C18: 2n-6 1.3 1.3 1.5 1.7 1.3 1.2 1.7 1.6 C20: 4n-6 (AA) 0.0 0.0 1.4 2.4 0.0 0.0 2.5 2.5 C22: 6n-3 (DHA) 0.0 2.3 0.0 2.4 0.0 2.6 0.0 2.6 Table 3.6 AA and DHA feeding period, fatty acid composition of rat milk formula. Results are expressed as% of total fatty acids. AA, arachidonic acid or C20: 4n_6; DHA, docosahexaenoic acid or C 2 2: 6 η-3. Fatty acids less than 0.5% of total fatty acids are not shown. 3 · 2 · 3 Growth Evaluation The captive young rats were weighed each day. Weigh at the beginning and end of AA and DHA feeding periods, and also at the time when the food introduction period will be reported. 3.3 Food introduction milk-free coarse meal (Bioserv inc., Frenchtown, NJ), fat / this product (coconut oil · MCT oil, 70:30, w / w) and water until the viscosity becomes brittle Food feed for the February experiment. Due to the viscosity of the food and feed, the accuracy of the food introduction measurement in the February experiment is questionable. Therefore, small granular foods with the same nutritional composition were prepared (Research Diets Inc., Princeton, NJ) for the April experiment. The pellets are very dense and firm. 86783 -53- Hard, worried that freshly weaned mice will not eat the solid pellets easily. Therefore, the small grains of mashed mashed into Zhizhi 'and mixed with water to form 1/4 " to 1/2, semi-solid spheres are used for food ^ The nutrient profile of the diet of two good feeds conforms to the recommendations of AIN-93 ( Reeves et al., 1993). Fatty acid analysis was performed on food feeds and the results are shown in Table 3.7. On the 16th day, the young rats were guided to feed weaning food. The feed contained 10 g / 100 g wet fat, which was a mixture of coconut oil: MC1 ^ (70:30, w / w). All rat experimental groups were weaned into the same Aa or DHA-free food feed to eliminate the strong and chaotic effects of the special flavors that were designed by trial and error. On the 16th and 17th days, 80% of the daily caloric requirement came from the laboratory rat formula that was assigned ’20% of the caloric requirement came from the food feed (Table 3.3). In a few minutes, younger "April 1 April 2 C6: 03 0.6 1.3 C8: 0 23.6 27.1 C10: 0 17.0 12.0 C12: 0 31.4 31.8 C14: 0 12.2 12.8 C16: 0 7.0 7.1 C18: 0 2.1 7.1 C18: ln-9 4.7 0.9 C18: 2n-6 1.3 0.2 C20: 4n-6 (AA) * 0.0 0.0 C22: 6n-3 (DHA) * 0.0 0.0 Table 3 Fatty acids 86783 -54- 200412942. Results are expressed as% of total fatty acids. The fat mixture was coconut oil: MCT oil (70:30, w / w). The food feed for February is made from non-fat powder. The fat mixture is added to the feed with water to form a crispy viscosity. 2April food feed is made of small grains, containing the same fat mixture; crush the small grains and add a small amount of water to form a 1/4 "to 1/2, feed ball. The fat is equal to or less than 0.5% Not reported, except for those who are indicated by an *. Beginning at 5 pm on the 18th day, the caloric value of the young rats will be limited by 20% of the caloric requirement from rat milk formula and 2G% from the wet feed. The formula Dilute with water to 2G% of the initial heat content. The introduction of water is not restricted to maintain the proper moisture of the animal. At 9 am on day 19, mole rats are stimulated to urinate and then weighed. Stomach cannula Remove and place the young rats in individual cages. The cages contain water bottles and about 15 g of "brittle" feed on a ceramic dish (February experiment) or directly add a "feed ball" to the bottom of the cage (April (Experiment). The cage has a transparent plastic bottom and sides, about 8 inches wide and 12 inches long. It is surrounded by a sloping top with a silk screen and a water bottle. Every 2 hours, a total of 8 hours' weigh the leftover feed To determine the amount of food that has been eaten. Due to the evaporation of food during the introduction period, three feeds are included, the control group, The weight loss was measured. At the end of the food introduction period, the rat was re-weighed. Then the feed was removed from the cage, and the rat was fasted for 18 hours and freely ingested water. At 9 am on the 20th day, the rats were stimulated again The rats were allowed to urinate, seeded, placed in their cages, and supplied with water and about 15 g of pupae. After 2 hours, the amount of food eaten and the final weight of the rats were determined. 3.4 Tissues were collected on day 20 'Food After the introduction period, the young rats were beheaded and sacrificed to obtain a maximum body weight of 86783 -55- 200412942. The brain was removed, weighed, and quickly cooled with liquid nitrogen; east (within 5 minutes). Brain tissues were stored frozen at -70 ° C Box. Blood is collected from the stump of the neck, mixed with heparin, placed on ice, and centrifuged to determine sufficient phase separation to prepare plasma. Plasma is stored at -70 ° C. Brain and plasma samples are taken from UCLA overnight on dry ice. Shipped to Ross Products Division of Abbott Labs, Columbus, Ohio, completely cold rolled upon arrival. Check the samples for damage and signs of melting and immediately transfer to -70 ° C refrigerator for analysis. Plasma samples were obtained, but Not analyzed as this 3.5. Extraction and analysis of lipids 3.5.1 Fat composition of the three lipid moieties in the brain was determined. Phospholipid fatty acid methyl esters were determined in a similar manner to that described by Ward et al. (1999). In addition to HPLC, There are methods of gas chromatography mass spectrometry (GC / MS) and liquid chromatography-mass spectrometry (LC / MS / MS) for measuring MAG and NAE fatty acids (Berger et al., 2001; Kempe et al., 1996) Fontana et al., 1995; Felder et al., 1996; Wang et al., 2001). However, a less expensive and simpler method for measuring this fatty acid in brain tissue has been developed. Total lipids were extracted from rat brains using a typical Folch extraction method for lipid extraction (Folch et al., 1957). The total lipids extracted from each mouse brain were separated into neutral lipids and phospholipids using a silicone cartridge. The high performance liquid chromatography (HPLC) was used to separate the neutral lipid fraction into MAG and NAE fractions. After derivatization into the corresponding fatty acid-resistant methyl ester, the fatty acid composition of the MAG, NAE, and phosphoric acid ester fractions was determined by gas-liquid phase chromatography (GLC). The result of the fat 86783 -56- 200412942 fatty acid composition corresponds to the total fatty acids of the phospholipid membrane in the brain, and the results of the MAG and NAE fatty acid represent the concentration of the fatty amidyl derivative in the rat brain. 3.5.2 Reagents and suppliers Erythramide and docosa tetraenoylethanolamide were obtained from Cayman Chemical Co. (Ann Arbor, M1). Twenty-two carbon dilute si chloride and fatty acid standards were obtained from Nu-Chek Prep, Inc. (Elysan, MN). Ethanolamine and boron trifluoride-methanol complex (BF3) were from Sigma-Aldrich (Milwaukee, WI). Dichloromethane, methanol, chloroform, hexane, ethyl acetate and isopropanol were from Burdick & Jackson (Muskegon, MI), petroleum ether was from Mallinckrodt (Paris, KY) and formic acid was from J.T. Baker (Phillipsburg, NJ). All reagents used are analytical grade. LHPK Shixi gel thin-layer chromatography plate and filter paper were from Whatman (Clifton, NJ). Micropipettes, tubes, and bottles were from VWR Scientific (Bridgeport, NJ). HPLC separation tube (Chromegasphere SI-60, 4.6 X 150 mm, 10 μ, 60A) from ES Industries (Marlton, NJ). 3.5.3 Fatty acid standard A GLC fatty acid standard was prepared. In a short time, the representative mixture of fatty acid methyl esters (-98% purity) is correctly weighed in a specific order over a 100 mL pear-shaped triangular flask with the empty bottle weight removed to determine the proper mixing. After all fatty acid methyl esters have been added and mixed, the bottle is weighed to obtain the final weight of the standard. Add one hundred milligrams of the standard to an ampoule, fill it with nitrogen, seal with a propane flame, and store in a refrigerator at -20 ° C until use. Quantitatively transfer the contents of one Anxun to a 25 mL volumetric flask 86783 -57- 200412942, and dilute to this volume with hexane to prepare a GLC stock standard. The GLC stock standard was diluted 1: 3 (v / v) with hexane to prepare the GLC working standard, and injected into the GLC between 1 and 5 μL. 3.5.4 Internal Standards Two internal standards are required, monoheptadecanoin for the MAG part, and dodecyltriethanolamine (22: 3n-3 ΝΑΕ) for the ΝΑΕ part. A single heptadecane was prepared by properly weighing 100 mg in a 10 mL volumetric flask and diluting to its capacity with chloroform. Docosatrienylethanolamine was prepared as described by Hand et al. In 1993. Conveniently, approximately 100 mg of 222 trichloride chloride is dissolved in 1 mL of dichloromethane. The mixture was then transferred to a test tube. Add 1 mL of ethanolamine solution (20% in dichloromethane) to the test tube at 0 ° C and fill with nitrogen. The tube was thoroughly mixed with shaking every 3 minutes for a total of 15 minutes. Add 8 mL of dichloromethane to a volume of 10 mL. The sample was then mixed thoroughly with 5 mL of water under nitrogen. Centrifuge the sample at 2000 rpm at 20 ° C for 2 minutes to separate the water and organic layers. Aspirate the organic (bottom) layer into a clean test tube and wash with 5 mL of H2O under N2. Centrifuge the sample as described above and aspirate the organic layer into a clean test tube. The combined organic layers were evaporated to dryness under a chemical gas. The sample was then reconstituted in 10.0 mL of chloroform: methanol (1: 1, v / v), dried with N2 gas, sealed, and stored at -20 ° C. Methylation was followed by GLC quantification to determine the concentration of the obtained standard in docosatrienylethanolamine. Extraction of 3 · 5 · 5 samples
貯存於-70°C冷凍之鼠腦樣本被分開成兩半球;一半用於 決定磷脂、MAG及ΝΑΕ部分之脂肪酸,另一半於_70°C下冷 凍。該供分析之大腦被轉移至50 mL玻璃離心管中。加8 mL 86783 -58- 200412942 之甲辱,利用Polytron分散及混合系統(Kinematica, Switzerland)直到好好混合。以直接加進離心管之2 mL甲醇 濕潤均質機探針。然後加入20 mL之氯仿至該樣本,振搖充 分混合。樣本在室溫下令其未受擾亂至少1小時。加入已知 含量之内標準品 9.91 pgimonoheptadecanoin 及 3.32 pg 之二 十二破三烯醯基乙醇胺。加6 mL 0.9%之生理食鹽水,以振 搖充分混合樣本。然後該樣本被以2000 rpm,15°C離心7分 鐘直到使用(Beckman AllegraTM 6R Centrifuge; Fullerton CA) 有機的及水層被好好的分開。氯仿(底部)層被吸至清潔的30 mL試管。然後將樣本在N2氣下蒸乾,貯存於-20°C或再形成 於500 pL之氯仿。 3.5.6 SEP-PAK匣之純化 將再形成之腦萃取物的每一樣本,以使用一次便丟之玻 離吸管,裝入 Silica Plus SEP_PAK 匣(Waters/Millipore, Milford,ΜΑ)。含腦萃取物之試管以500 μΐ^之氯仿洗2次, 然後將該氯仿裝入匣以確定所有萃取物被轉移至該匣。將 中性脂質以15 mL氣仿:甲醇(99 : 1,v/v)溶出,磷脂則以 15 mL甲醇溶出。該中性脂質溶出液,經由連接於SEP-PAK 匣底部之針濾器(Gelman Acrodisc® CR PTFE,0.45 μ或 0.2 μ,25 mm ; Ann Arbor,MI)過濾。收集每一溶出液進入試管, 在N 2氣下蒸乾。 3.5.7高效層析之分步分離Frozen rat brain samples stored at -70 ° C were divided into two hemispheres; one half was used to determine the fatty acids of the phospholipid, MAG, and NAE fractions, and the other half was frozen at -70 ° C. The brain for analysis was transferred to a 50 mL glass centrifuge tube. Add 8 mL of 86783 -58- 200412942, using a Polytron dispersion and mixing system (Kinematica, Switzerland) until well mixed. Wet the homogenizer probe with 2 mL of methanol added directly to the centrifuge tube. Then add 20 mL of chloroform to the sample and shake well to mix. The samples were left undisturbed for at least 1 hour at room temperature. Add the known standard 9.91 pgimonoheptadecanoin and 3.32 pg of dodecadienylethanolamine. Add 6 mL of 0.9% physiological saline and shake well to mix the sample. The sample was then centrifuged at 2000 rpm, 15 ° C for 7 minutes until used (Beckman AllegraTM 6R Centrifuge; Fullerton CA). The organic and aqueous layers were well separated. The chloroform (bottom) layer was aspirated into a clean 30 mL test tube. The samples were then evaporated to dryness under N2 and stored at -20 ° C or reconstituted in 500 pL of chloroform. 3.5.6 Purification of the SEP-PAK Cassette Each sample of the reconstituted brain extract was loaded into a Silica Plus SEP_PAK cassette (Waters / Millipore, Milford, MA) using a disposable glass pipette. The brain extract-containing test tube was washed twice with 500 μΐ of chloroform, and then the chloroform was put into a cassette to confirm that all extracts were transferred to the cassette. Neutral lipids were dissolved in 15 mL of aerosol: methanol (99: 1, v / v), and phospholipids were dissolved in 15 mL of methanol. The neutral lipid eluate was filtered through a needle filter (Gelman Acrodisc® CR PTFE, 0.45 μ or 0.2 μ, 25 mm; Ann Arbor, MI) connected to the bottom of the SEP-PAK cassette. Collect each eluate into a test tube and evaporate to dryness under N 2 gas. 3.5.7 Stepwise separation of high performance chromatography
每一溶出液蒸乾後,再懸浮於125 μ!^或300 μί之己烷··異 丙醇(ΙΡΑ ; 90 : 10,v/v),注入於Hewlett Packard HPLC 86783 -59- 200412942 (Roseville,CA)中,該 HPLC含 Chromegasphere SI-60之分離 管 ’ 4.6 χ 150 mm,10 μ,6〇A(ES Industries,Marlton,NJ) 及条發光散射债測器(Alltech ELSD, Deerfield,IL)供分離 MAGs及NAEs。該移動相梯度顯示於表3.8(改寫自Liu等 人,1993) 〇 含有内標準品二十三垸酸、monoheptadecanoin及二十二 碳三缔醯基乙醇胺之溶液於每一 HPLC運作前,注射三份來 確認游離酸,MAGs及NAEs之阻延時間。確認阻延時間後, 切斷蒸發光散射偵測器,將HPLC移動相線直接連至部份組 收集器中(BioRad,Model 2128 ; Hercules,CA)。___ 行動相之%己烷 混合溶劑1 0.0 98 2 8.0 65 35 8.5 2 98 15.0 2 98 15.1 98 2 98 2 表3.8 HPLC移動相梯度,供分離脂肪酸,單酸基甘油及N-醯基乙醇胺。1己烷:異丙醇:乙酸乙酯:10%甲酸之異丙 醇(80 : 10 : 10 : 1,v/v/v/v)。流速為 2_0 mL/分。 然後,將2 5 0 μι之再懸浮之中性脂質邵份組萃取物(即氯 仿··甲醇SEP-PAK溶出物)注入於該HPLC分離管中,收集 MAGs及NAEs之相應溶出時間之部份組。將收集自每一鼠 腦樣本之HPLC之MAG及ΝΑΕ部份組,在N2氣下蒸乾。 86783 -60- 200412942 3.5.8甲基化製程 將MAG及ΝΑΕ部份組再懸浮於己烷:異丙醇:乙酸乙酯 (80 ·· 10 : 10,ν/ν/ν),轉移至2 mL琥ί白色螺旋蓋瓶中。將 該部份組於室溫Ν2氣下再蒸乾。 然後,將含MAGs,NAEs及磷脂質之樣本,由加入過量 之三氟化硼-甲醇複合物,BF3,在N2下甲基化。以鐵弗龍 襯裏蓋子緊密蓋上後,將該樣本置於95 °C之方形熱板上20 分鐘。樣本冷卻至室溫,小心打開。將MAG及ΝΑΕ樣本以 甲醇轉移至15 mL試管中。然後,將2 mL之0.9%鹽水及4 mL 己烷加入至樣本,以振搖充分混合。對每一樣本,利用一 次用完即丟之玻璃吸管移出己烷層,轉移至乾淨的15 mL 試管,於1^2氣下蒸乾。將MAG及ΝΑΕ甲基化之己烷萃取物 再形成於100 pL之己烷,供以GLC分析脂肪酸之組成。將已 乾燥之磷脂甲基化己烷萃取物再形成於10 mL之己烷,以 150 μΕ之己烷稀釋50 μί再形成之萃取物,供以GLC分析脂 肪酸之組成。 3 · 5 · 9氣-液相層.析 利用Hewlett Packard 6890氣-液相層析(GLC)來分析脂肪 酸甲基酯,該層析儀裝置有火焰離子化偵測器;及 Omegawax320包覆有聚乙二醇之熔石夕分離管,0.32 mm ID X 30 m,0·25 mm 之膜厚(Supelco,Inc·; Bellefonte,PA)。將氣 相層析裝置之設定調整到相似於Ward等人(1999)所描述條 件之最佳信號敏感度。利用自動樣本注入器(Hewlett Packard 7673A)將5 μΐ^之每一樣本注入該氣相層析儀。 86783 -61 - 200412942 以相應的脂肪酸甲基酯内標準品經由共溶出以鐘別出個 別的脂肪酸。已典型報告於文獻之總脂肪酸相對百分比, 來報告鼠大腦中磷脂部份組之胺基酸水平。以相對於nae 内標準品,二十二碳三烯酸甲酯來定量腦中脂質萃取物個 別的ΝΑΕ脂肪酸之特定含量。同樣地,以相對於單酸甘、、由 之内標準品,十一烷酸甲基酯來定量腦中脂質萃取物個別 MAG脂肪酸之含量。MAG及ΝΑΕ之相應脂肪酸分別以ng/g 及gg/g鼠腦之濕重被報告。 4.1研究組合 兩組老鼠被人工飼養,一組於2002年2月,另一為2〇02年 4月。計晝為共套管64隻老鼠,每次飼養32隻,每試驗配方 組8隻。數隻老鼠夕匕於人工飼養系統。死亡之老鼠以二月研 究之雄乳鼠代替,但在四月研究的出生後第7天之後不被代 替。只有在裝置套管第1天(出生後第6天)的24小時内被代替 的老鼠才包括在最後的數據中。因此,最後數據之所有老 鼠被人工飼養從出生後第6天至第18天,共13天,因此,任 何飲食脂肪酸對大腦中磷脂膜之脂肪酸組成全組一致。 共74隻老鼠裝置套管,π隻死亡。表4.1顯示每實驗配方 組每一飼養,被套管、死亡之老鼠數目。值得注意的是當 DHA不包含於配方時比當DHA包含在配方中,有更多之老 鼠死亡(分別是10隻老鼠對應3隻老鼠,p=〇.054)。 86783 -62 - 200412942 鼠乳配方 組1 無DHA 無ΑΑ +DHA 無DHA +ΑΑ +DHA 二月飼養 裝有套管 11 9 10 9 死亡 3 1 2 1 四月飼養 裝有套管 9 9 9 8 死亡 3 1 2 0 合併飼養 裝有套管 20 18 19 17 死亡 6 2 4 1 表4·1二月及四月飼養,裝套管及死亡老鼠之數目。從出 生後第6天至第16天熱量的100%,第17及第18天熱量的80% 及食物引入研究前最後18小時熱量的20%,以胃開口術 管’將含有不同含量之AA及DHA之鼠乳配方(見表3.6)餵 。當DHA不在配方中,發生更多的死亡(ρ = 〇·〇54)。在配 方組合間沒有發現其他明顯之關連。ΑΑ,花生浸晞酸; DHA,一十二碳六婦酸。 4 · 2成長之資料 以合併的資料(二月及四月)及主要的資料(四月)來評估 成長。除了食物引入實驗的結尾(出生後第2〇天),當人工飼 養的開始(出生後第6或7天,資料未顯示)及結束(出生後第 1 8天)’鼠乳配方組之體重沒有明顯的不同(表4·2)。在乳鼠 參考組及其他實驗配方組之間’體重有明顯的不同 86783 -63- 200412942 (ρ<0·05)。該乳鼠參考餵食組顯著的在第ι8天大於該四配方 組。乳鼠參考正常組在第2〇天大於該配方組及參考銀食 組。明顯的不同也見於大腦重。餵食含DHA配方之鼠略微 但明顯的比餵食不含DHA配方之老鼠有較小的大腦重量 (p<0.05)。全部的腦重均於丨.3 g至1.4 g之範圍。 4.3食物引入研究 一個食物引入之研究開始於第19天,在此期間,所有的 老鼠均無限制的給相同的飼料食物(表4·3)。其結果提供給 二月及四月(合併的資料)及單獨提供給四月(主要之資 料),因為該食物引入的測量實質上改善於二月與四月的飼 養期間。 在斷奶之後的食物引入上,有餵食含AA之鼠乳配方的顯 著主要效果(表4.3)。先前餵食含AA之配方之老鼠比先前餵 食不含AA,不管DHA之含量水平之配方之老鼠多吃約13% 的飼料。該效果見於合併資料中的第19天,食物引入期的 最初2小時’及主要資料中第19與第2〇天兩天之最初2小時。 在fe/f奶之後的·食物引入上,也有DHA的顯著主要效果。 先前餵食含DHA配方之老鼠比先前餵食不含DHA,不管AA 的含量水平配方之老鼠少吃約丨1%之飼料。此效果見於合併 資料及主要資料兩者中第丨9天,食物引入期的最初2小時。 86783 •64- 200412942 ^4.2岭!碲攀晋蚧涔ILfrR^+旌鵡蜱綷巌時。i窝H-阼漭铖6沙昀铖16^100%炒渰i -铖17 沣 1 8^80% S 沴^-铖 19沙呤參?一 4S擲寐 1 8、J> — 20% S»4 -洤远 f 翌 ptf - δ笫 吟一: s ΑΑ沣DffiA? ,3 ·6)^^'IL晋蚧齋呤咖獬。私铖一7沣18外-δ 20%渰i ^ ~ -f m鷂瀹单111>0-3:麻玲-知^^玲麥2>^冷~^丨吟參翱。」徵呤>>涔01^~卜彻涔洳0-A^OVA>»^; (+)方洳 _^_涔米^施才14^乂-)^沐^沏涔谁冲第$14-*:。^1獬,#贫^卜_ s IL濘;搽玲洚冷弦(Fdg)i^it冷洚拎4S铖19^漭汾渰S犛含-奋鉍畸繆鸩♦聆。 "命乘客衅韋聆命(11"9-15涔/聆)菇胜l·』沣3』愈參客命傘。-^沏3:衅幸贫命9"5-8声/聆)菇111> 3 b客栖瀚瀹咖-^巌卡^函袅今^蒜缔繆^薄浼辟。麥7鈐涔聆晋蚧聆遴^=* =詾75^?<0*05 外了鷂時涔斜涇邀3:^冽。會?5。^^^翁钋,4夔囀烴^錶畤^^^冽-扭^函哳砟~^巌14^ g Ah^^^ 铖 l00>(T+3^) 命傘卩 玲參51 铖 20^(-f + 12b?) 命傘 汁巌時,g 铖 20>H $ 1.34±0.05么 1.35±oo4f 私 7·5±1.7 私 7·7±1ο 43.3±1.6。 44.4±1.4 H]f 晋^: 1.32+0.0^L37±0_05 言 L34±0b5 仏 0056 (+) 0035 (-) L42±0b5eL40±0b5— L33±oo3。L40±oo5& 1.35±oo4。0.097 (+) 0.026 (-) L42±oo5& L46±oo°p 矣 2±3b 47.3±3.1 私4.6±2.私 厶 3.9Η-1.3After each eluate was evaporated to dryness, it was resuspended in 125 μ! ^ Or 300 μί of hexane · isopropanol (IPA; 90: 10, v / v) and injected into Hewlett Packard HPLC 86783 -59- 200412942 (Roseville , CA), the HPLC contains a separation tube of Chromegasphere SI-60 '4.6 χ 150 mm, 10 μ, 60A (ES Industries, Marlton, NJ) and a strip light scattering detector (Alltech ELSD, Deerfield, IL) For separation of MAGs and NAEs. The mobile phase gradient is shown in Table 3.8 (adapted from Liu et al., 1993). A solution containing the internal standards triclosan, monoheptadecanoin, and docosatriolethanolamine was injected before each HPLC run. To confirm the delay time of free acids, MAGs and NAEs. After confirming the delay time, cut off the evaporative light scattering detector and connect the HPLC mobile phase line directly to the partial collector (BioRad, Model 2128; Hercules, CA). ___ Mobile phase% hexane Mixed solvent 1 0.0 98 2 8.0 65 35 8.5 2 98 15.0 2 98 15.1 98 2 98 2 Table 3.8 HPLC mobile phase gradient for separation of fatty acids, monoglycerides and N-fluorenylethanolamine. 1 Hexane: isopropanol: ethyl acetate: 10% formic acid in isopropanol (80: 10: 10: 1, v / v / v / v). The flow rate is 2_0 mL / min. Then, a 250 μm resuspended neutral lipid fraction extract (ie, chloroform · methanol SEP-PAK eluate) was injected into the HPLC separation tube, and the corresponding dissolution time of MAGs and NAEs was collected group. HPLC and MAG fractions collected from each mouse brain sample were evaporated to dryness under N2 gas. 86783 -60- 200412942 3.5.8 Methylation process Re-suspend MAG and NAE fractions in hexane: isopropanol: ethyl acetate (80 ·· 10: 10, ν / ν / ν) and transfer to 2 mL sulphur in a white screw cap bottle. The portion was re-evaporated to dryness under a N2 atmosphere at room temperature. Then, samples containing MAGs, NAEs, and phospholipids were methylated by adding excess boron trifluoride-methanol complex, BF3, under N2. After tightly closing the lid with a Teflon liner, place the sample on a square hot plate at 95 ° C for 20 minutes. The sample was cooled to room temperature and opened carefully. Transfer the MAG and NAE samples to a 15 mL tube using methanol. Then, add 2 mL of 0.9% saline and 4 mL of hexane to the sample and mix thoroughly by shaking. For each sample, use a disposable glass pipette to remove the hexane layer, transfer to a clean 15 mL test tube, and evaporate to dryness under 1 ^ 2 gas. The methylated hexane extracts of MAG and NAE were reconstituted in 100 pL of hexane for GLC analysis of fatty acid composition. The dried phospholipid methylated hexane extract was reconstituted in 10 mL of hexane, and the reconstituted extract was diluted by 50 μί with 150 μE of hexane for GLC analysis of fatty acid composition. 3 · 5 · 9 gas-liquid layer analysis. Hewlett Packard 6890 gas-liquid chromatography (GLC) was used to analyze fatty acid methyl esters. The chromatograph was equipped with a flame ionization detector; and Omegawax320 was coated with Polyethylene glycol lava stone separation tube, 0.32 mm ID X 30 m, and film thickness of 0.25 mm (Supelco, Inc .; Bellefonte, PA). The settings of the gas chromatography device were adjusted to optimal signal sensitivity similar to the conditions described by Ward et al. (1999). Each sample of 5 μΐ was injected into the gas chromatograph using an automatic sample injector (Hewlett Packard 7673A). 86783 -61-200412942 The corresponding fatty acid methyl ester internal standard was co-dissolved to separate individual fatty acids. Relative percentages of total fatty acids have been typically reported in the literature to report amino acid levels in the phospholipid portion of the mouse brain. The specific content of individual NAE fatty acids in lipid extracts in the brain was quantified with methyl docosatrienoate relative to the nae internal standard. Similarly, the content of individual MAG fatty acids in lipid extracts in the brain was quantified with methyl undecanoate relative to the monoglyceride standard. Corresponding fatty acids of MAG and NAE are reported as wet weight of ng / g and gg / g mouse brain, respectively. 4.1 Study combination Two groups of mice were reared artificially, one in February 2002 and the other in April 2000. A total of 64 mice were cannulated each day, and 32 mice were reared each time, with 8 mice per experimental formula group. Several mice were kept in captivity. Dead mice were replaced by male rats from the February study, but were not replaced after the 7th day after birth in the April study. Only rats that were replaced within 24 hours of the first day of the device cannula (day 6 after birth) were included in the final data. Therefore, all the old mice in the last data were kept in captivity from the 6th day to the 18th day after birth for a total of 13 days. Therefore, any dietary fatty acid has the same group of fatty acids in the phospholipid membrane in the brain. A total of 74 mice were cannulated and π died. Table 4.1 shows the number of mice that were housed, cannulated and killed per experimental formula group. It is worth noting that when DHA was not included in the formulation, more rats died than when DHA was included in the formulation (10 mice versus 3 mice, respectively, p = 0.054). 86783 -62-200412942 Rat milk formula group 1 without DHA without ΑΑ + DHA without DHA + ΑΑ + DHA February feeding with casing 11 9 10 9 death 3 1 2 1 April feeding with casing 9 9 9 8 death 3 1 2 0 Combined breeding with cannula 20 18 19 17 Death 6 2 4 1 Table 4.1 Number of mice that were fed, cannulated and dead in February and April. From the 6th to the 16th day after birth, 100% of the calories, 80% of the calories on the 17th and 18th days, and 20% of the calories in the last 18 hours before the introduction of food, the stomach opening tube will contain different amounts of AA And DHA rat milk formula (see Table 3.6). When DHA was not in the formulation, more deaths occurred (ρ = 0.05). No other obvious associations were found between the formulation combinations. AA, peanut dipping acid; DHA, dodecahexaacid. 4.2 Growth data Growth is assessed using consolidated data (February and April) and key data (April). Except for the end of the food introduction experiment (day 20 after birth), when the start of captive breeding (6 or 7 days after birth, data not shown) and end (day 18 after birth), the weight of the rat milk formula group There are no significant differences (Table 4.2). There was a significant difference in 'body weight' between the suckling rat reference group and other experimental formula groups. 86783 -63- 200412942 (ρ < 0.05). The suckling rat reference feeding group was significantly larger than the four formula group on the 8th day. The suckling rat reference normal group was larger than the formula group and the reference silver food group on the 20th day. Significant differences are also seen in brain weight. Rats fed the DHA formula were slightly but significantly less brain weight than mice fed the DHA-free formula (p < 0.05). All brain weights ranged from 1.3 g to 1.4 g. 4.3 Food introduction study A food introduction study began on day 19, during which all rats were given the same diet without restriction (Table 4.3). The results are provided for February and April (combined data) and separately for April (main data), as the measurement of the introduction of the food substantially improved during the feeding period in February and April. There was a significant main effect of feeding AA-containing rat milk formula on food introduction after weaning (Table 4.3). Rats previously fed the formula containing AA ate about 13% more feed than mice previously fed the formula without AA, regardless of the level of DHA. This effect was seen on the 19th day in the combined data, the first 2 hours of the food introduction period, and the first 2 hours on the 19th and 20th days in the main data. There is also a significant main effect of DHA on the food introduction after fe / f milk. The rats previously fed the DHA-containing formula consumed about 1% less feed than the mice previously fed the DHA-free formula, regardless of the level of AA. This effect was seen on day 9 of the combined data and the main data, the first 2 hours of the food introduction period. 86783 • 64- 200412942 ^ 4.2 Ridge! Tellurium climbs to ILfrR ^ + Jingmu tick time. i nest H- 阼 漭 铖 6 昀 铖 16 ^ 100% fried 渰 i-铖 17 沣 1 8 ^ 80% S 沴 ^-铖 19 1 4S Throw 1 8. J > — 20% S »4-洤 远 f 翌 ptf-δ 笫 吟 一: s ΑΑ 沣 DffiA ?, 3 · 6) ^^ IL Private 铖 7 沣 18 outside -δ 20% 渰 i ^ ~ -f m 鹞 瀹 Single 111 > 0-3: Ma Ling-Zhi ^ lingmai 2 > ^ Cold ~ ^ Yin Shen 翱"Zhen Ling > > 涔 01 ^ ~ 卜彻 涔 洳 0-A ^ OVA >»^; (+) Fang 洳 _ ^ _ 涔 米 ^ 施 才 14 ^ 乂-) ^^ $ 14- * :. ^ 1 獬, # Poor ^ 卜 _ s IL; 搽 Ling 洚 Cold String (Fdg) i ^ it 冷 洚 拎 4S 铖 19 ^ 漭 fen 渰 S 牦 Han-Fen Bi Bi Miao 鸩 ♦ Listen. " Let the passengers defy Wei Lingming (11 " 9-15 涔 / Listen) Mushroom l · 『沣 3』, Yushen Umbrella. -^ 沏 3: Fortunately, poor life 9 " 5-8 sounds / listening) Mushroom 111 > 3 b Guest habitat Han 瀹 Cafe-^ 巌 卡 ^ 信 袅 今 ^ 蒜 袅 定 缪 ^ 浼 浼. Mai 7 钤 涔 钤 涔 Jin 蚧 蚧 ^ = * = 詾 75 ^? ≪ 0 * 05 It ’s time to go outside and ask for 3: ^ 冽. meeting? 5. ^^^ 翁 钋, 4 夔 啭 hydrocarbon ^ 表 畤 ^^^ 冽 -twist ^ letter 哳 砟 ~ ^ 巌 14 ^ g Ah ^^^ 铖 l00 > (T + 3 ^) Life umbrella 卩 玲 参 51 铖 20 ^ (-f + 12b?) When the life of the umbrella is 巌 20, g & 20 > H $ 1.34 ± 0.05? 1.35 ± oo4f Pri. 7 · 5 ± 1.7 Pri. 7 · 7 ± 1 ο 43.3 ± 1.6. 44.4 ± 1.4 H] f Jin: 1.32 + 0.0 ^ L37 ± 0_05 Speech L34 ± 0b5 仏 0056 (+) 0035 (-) L42 ± 0b5eL40 ± 0b5— L33 ± oo3. L40 ± oo5 & 1.35 ± oo4. 0.097 (+) 0.026 (-) L42 ± oo5 & L46 ± oo ° p 矣 2 ± 3b 47.3 ± 3.1 private 4.6 ± 2. Private 3.9Η-1.3
龄AA 龄 DHA +DHA 厶oobH-1.5 私 8.0±1.9 払 3·5±2·2 42.9Η-2.9 払7·2±2·6 专4±2.2 私 3.2±1.9 私 3·5±1.2Age AA age DHA + DHA
+AA 龄 DHA +DHA VP1 VP1 vo.l vpl 払 7.1±1_5 51.2±5b* 払 7.1±1.5 V0.1 VP1 vpl vpl 48.2±1.6* 矣.2±1.2*+ AA age DHA + DHA VP1 VP1 vo.l vpl 払 7.1 ± 1_5 51.2 ± 5b * 払 7.1 ± 1.5 V0.1 VP1 vpl vpl 48.2 ± 1.6 * 矣. 2 ± 1.2 *
MA NA pitMA NA pit
MiMi
ANOVAK彻涔^k » DHAANOVAK 涔 涔 k »DHA
Fdg i£^> 86783 -65- 200412942 >4.3 ♦乘涔 一^s-阼漭铖6沙_铖16^100%炒渰J:-铖17涔18沙80%客涂i -皱19^吟參51>^冷缉艺诹漭18 VB令 20%s渰^-洼远 f 逦 pt^f - δρ>^:f5!3^#sAA 涔 DHAS>3·6)~ 齊 IL 晋蚧脔呤洙濟。 私铖17沣100> - s 20%»i -以吟AA^DHA~^glft念牮ila-s麻玲-涔奋如玲參51 冷卜诱 丨吟象翱。铖19^二泛^呤棼~族»〇〇子眾-渰萍-洙部1奸滁泠族辦-卜^窆^呤參族»2二/0令。 :XANOVA^^脔玲AAiLDnA-^h沏涔洳;(+)方>^沏涔米^施才呤參3:茜»二-)^4^.彻涔湃 Λ族^玲棼艺族»。^1獬,#贫鉍-£_紗鈐濟;條吟^冷贫(2巴^條吟^拎43:铖19^^^漭 踔华(nH5l8fcR)^iJ铖2窗#一參-拉汁巌+ ;f冽袅岑β蒜缔繆多薄浼辦。±SD ; **na -^4 菇烴;AA -斜阼濰尊隳;DHA - b +卜雞外審鵁。 械19^协赴2^B令 械 19^gt^8、Ji令 械20>鄭赴2二4令 挪 19>鄭普 2v^ 鱗 19^擦4:8二4令 铖20>御啟2VB令 lp3±rl 17·1±1.3 13·1±1·2 10.8±1.仁 17·2±1·6 12/7±1.3 16bo±1.7 12·3±1·5 9·6±1·6 16bo±lbo 12·0±1·2 17·7±1.8 12·9±2·0 12·3±1ο 18·4±1·00 14ο±1.5 1Ρ5Η-10 17·7±1·2 13·9±2」 s00±p9 17·7±1ο 13·8±2·1 ΡΛ逾牮鎿/100 gft時 9.8H-L3 11·2±1·6 s^cFdg i £ ^ &86; 86783 -65- 200412942 > 4.3 ♦ Take a ^ s- 阼 漭 铖 6 沙 _ 铖 16 ^ 100% stir fry J:-铖 17 涔 18 sand 80% customer coated i-wrinkle 19 ^ Yin sang 51 > ^ Leng Yiyi 诹 漭 18 VB order 20% s ^ -Wayuan f 逦 pt ^ f-δρ > ^: f5! 3 ^ # sAA 涔 DHAS > 3 · 6) ~ Qi IL 蚧Prairin relief. Private 铖 17 沣 100 >-s 20% »i-吟 Yin AA ^ DHA ~ ^ glft read 牮 ila-s Ma Ling-如 Fen Ru Ling 51 51 Leng Bu 诱 Yin 吟.铖 19 ^ 二 泛 ^ 岭 棼 ~ Clan »〇〇 子 众-渰 萍-洙 部 1 滁 滁 族 族 --Bu ^ 窆 呤 岭 参 族» 2 2/0 order. : XANOVA ^^ 脔 玲 AAiLDnA- ^ h 涔 洳 涔 洳; (+) Fang > ^ 涔 涔 米 ^ 施 才 呤 参 3: 茜 »二-) ^ 4 ^. 涔 湃 涔 湃 Λ 族 ^ 玲 棼 艺 族». ^ 1 獬, # Poor bismuth- £ _ sacrifice; Tiao Yin ^ Cold Poverty (2 bar ^ Tiao Yin ^ 43: 铖 19 ^ ^ 漭 踔 华 (nH5l8fcR) ^ iJ 铖 2 窗 # 一 参-拉Juice 巌 +; f 冽 袅 β β garlic to establish a thinner handle. ± SD; ** na-^ 4 quaternary hydrocarbon; AA-oblique 阼 Wei Zun 隳; DHA-b + 卜 chicken external examination 鵁 19 ^ Assistance 2 ^ B order 19 ^ gt ^ 8, Ji order 20 > Zheng Go 2 2 4 order 19 > Zheng Pu 2v ^ Scale 19 ^ rub 4: 8 2 4 order 铖 20 > Yu Kai 2VB order lp3 ± rl 17 · 1 ± 1.3 13 · 1 ± 1 · 2 10.8 ± 1. Ren17 · 2 ± 1 · 6 12/7 ± 1.3 16bo ± 1.7 12 · 3 ± 1 · 5 9 · 6 ± 1 · 6 16bo ± lbo 12 · 0 ± 1 · 2 17 · 7 ± 1.8 12 · 9 ± 2 · 0 12 · 3 ± 1ο 18 · 4 ± 1 · 00 14ο ± 1.5 1Ρ5Η-10 17 · 7 ± 1 · 2 13 · 9 ± 2 」 s00 ± p9 17 · 7 ± 1ο 13 · 8 ± 2 · 1 9.8 at PLA / 100 gft 9.8H-L3 11 · 2 ± 1 · 6 s ^ c
龄DHADHA
+DHA+ DHA
i^DHAi ^ DHA
+DHA+ DHA
»>AA»≫ AA
+AA+ AA
na na np 6.8±lo lbo—•8 na na na np np nana na np 6.8 ± lo lbo— • 8 na na na np np na
Fdg^^ 86783 -66- 200412942 4.4鱗脂質脂肪酸之結果 表4.4顯示以總脂肪酸之百分比表示的大腦中磷脂膜之 脂肪酸含量水平之結果(即g/l〇〇 g總脂肪酸)。在本研究中, 飲食n-6及n-3脂肪酸對大腦中n-6及n-3脂肪酸組成之效 果,與先前顯示於文獻的(Ward等人,1999; de la Presa Owens 及Innis,1999)相似。在各組間,飽和脂肪酸沒有顯著之不 同。AA對大腦磷脂的不飽和脂肪酸(C18 ·· 1及C20 : 1),有 顯著的主要效果。在磷脂質中,有飲食的AA減少及飲食的 DHA增加亞油酸(C18 : 2n-6)及C20 : 3n_6含量水平之一致全 面的效果。對於其他的n-6磷脂脂肪酸,也有飲食的AA增加 及飲食的DHA減少AA及C22 ·· 4n-6含量水平之一致全面的 主要效果。也有飲食AA減少大腦中磷脂DHA之顯著主要效 果;同樣地,飲食DHA增加大腦磷脂中之DHA。 4.5 N-醯基乙醇胺(ΝΑΕ)脂肪酸之結果 η-6及n-3 NAEs之結果顯示於表4.5,以ng/g大腦來表示。 AA有增加大腦中20 : 4n-6 ΝΑΕ之顯著主要效果。AA也有 增加大腦中總η-6 ΝΑΕ之顯著主要效果。未見其他的顯著的 主要效果。未見飲食DHA對η-6或η_3脂肪酸之顯著的主要效 果。 4·6單醯基甘油(MAG)脂肪酸之結果 η-6及n-3 MAG之結果顯示於表4.6,以pg/g大腦來表示。 飲食AA對η-6或n-3 MAG沒有明顯的效果。然而,DHA有增 加大腦中之22 : 6n-3 MAG也有增加大腦中之總n-3 MAG之 顯著主要效果。 86783 -67- 200412942 相關之資料 除了測試飲食AA及DHA的主要效果之數據,及實驗與乳 兒組間之ANOVA比較,Spearman之相關性被以電腦來評估 是否在特定的NAEs及MAGs(包括n-6/n-3比)與食物引入之 間有相關。當將數據分類並消去可能的邊緣重量後,挑選 出Spearman之相關性。其結果顯示於表4.7及4.8。 顯著的正相關(r=0.45,p=0.03)見於 20: 4n-6 NAE/22: 6n-3 ΝΑΕ含量比與第19天最初2小時期間之食物引入以及第19 及第20天累積之食物引入(表4.7)。 顯著的正相關也見於MAG脂肪酸與食物引入之間(表 4·8)。在 MAG 比(20 : 4n-6 MAG/22 : 6n-3 MAG與 n-6 MAG 之和/n-3 MAG之和)與食物引入有正關聯,該食物之引入於 第19及第20天測量2小時,也於第19及第20天之累積食物引 入測量 2小時(r=0.42至 62,ρ=0·001 至 0.005)。在聯結 22 : 6n-3 MAG及n-3 MAG之和,與食物引入之間也具有趨勢(ρ<〇·1) ,該食物之引入包括第19天之最初2小時及整個進食研究之 累積食物引入(r=-0.39,ρ=0.06)。 86783 -68- 200412942 ,4.4岭尝畸繆聆濘錶淼蒜满~蒜茚髁吟一:矢雀。淼洳^翁蒜部繆炒%>>钋。盤蒜碱薄令闽_茸 荈奇薛遄鸸冷#蚧蔬缔髁菜湮沴>3.6。Mit玲AAiLDHA-^^沏涔^&AMOVA>^^; (+) ^>h彻涔米鉍蒜才呤參.^族»二-)方^^%涔米鉍族义玲參~族»二*)^^斜潑雄3:冷^^;|^ 渰aii^會噸钋彻涔米。^1涔,♦贫鉍ittsIL声.it玲(fdgHi冷聆鉍條吟鸟冷鱗-铖一9 ^JL^S:汾涂犛含-奋離鸩,<%聆。 014:0 016:0 018:0 C200 C22:0 ^#,^3: C16:ls C18:ls C20:ls 016:4 n-6蒜却嵙 clsn-6 c20:2n—6 C20:3n_6 C20:4n-6 C22:4n 丨 6 C22:5n-6 n-3BS^_ C22:5n-3 C22:6n-3 1·1±0·1 16.9H-2·私 18·5±0·5 p3±oo plH-pl P7H-S 15·3±0.9 1·2±0·2 2.8±ε Ρ6Η-Ρ0 plK-oo ο·7±οο 14_4±1.0 4.4Η-Ρ3 2.8Η-0.5 Ρ2Κ-Ρ0 18.4Η-1.2 UH-P1 17·7±0.9 180Η-0.4- SH-PO ρ1±οο ιοΗ-0.3 15·2±0·8 1ο±0.2 3ο±ε Ρ8±Ρ1 Ρ2±Ρ1 0.9Η-Ρ1 S.2H-P7 Ζ2Η-Ρ1 Ρ9±Ρ1 Ρ7Η-Ρ1 25·6±ρ6 1·1±ρ1 18·1±14 18·4±ε Ρ2Η-0.0 ρ1±0·0 0·9±0·3 14·2±0·2 Ρ9Η-Ρ1 2·9±ρ3 0.3±οο ο·1±οο ο·3±οο 16·1±ρ5 6ο±ρ5 5·2±0_8 ρ3±οο 13·9±1·1 UH-P1 17·9±0.9 18·4±ρ3 Ρ2Η-Ρ0 Ρ1±0.0 ΙοΗ-0.3 13.9Κ-Ρ00 Ρ8±ρ2 3ο±ΟΛ δΗ-οο Ρ1Κ-Ρ0 Ρ4Η-Ρ0 14·4±0·7 SH-P2 1·0±0·1 Ρ2Η-0.0 2L6=tp5 * * <0·001 () Λ0.001 (+)Fdg ^ 86783 -66- 200412942 4.4 Results of squamous lipid fatty acids Table 4.4 shows the results of fatty acid content levels of phospholipid membranes in the brain expressed as a percentage of total fatty acids (ie g / 100 g of total fatty acids). In this study, the effects of dietary n-6 and n-3 fatty acids on the composition of n-6 and n-3 fatty acids in the brain were similar to those previously shown in the literature (Ward et al., 1999; de la Presa Owens and Innis, 1999 )similar. There were no significant differences in saturated fatty acids between groups. AA has significant main effects on unsaturated fatty acids (C18 ·· 1 and C20: 1) in cerebral phospholipids. Among the phospholipids, there is a consistent overall effect of reducing the AA of the diet and increasing the content of linoleic acid (C18: 2n-6) and C20: 3n_6 in the diet. For other n-6 phospholipid fatty acids, there is a consistent and comprehensive main effect of increasing dietary AA and reducing dietary DHA by AA and C22 · 4n-6 levels. There are also significant main effects of dietary AA in reducing phospholipid DHA in the brain; likewise, dietary DHA increases DHA in brain phospholipids. 4.5 Results of N-fluorenylethanolamine (NAE) fatty acids The results of η-6 and n-3 NAEs are shown in Table 4.5 and are expressed in ng / g brain. AA has a significant main effect of increasing 20: 4n-6 ΝΑΕ in the brain. AA also has a significant main effect of increasing total η-6 ΝΑΕ in the brain. No other significant main effect was seen. No significant major effect of dietary DHA on n-6 or n-3 fatty acids was seen. Results of 4.6 monofluorinated glycerol (MAG) fatty acids The results of η-6 and n-3 MAG are shown in Table 4.6 and expressed in pg / g brain. Diet AA had no significant effect on n-6 or n-3 MAG. However, DHA has a significant major effect of increasing 22: 6n-3 MAG in the brain and also increasing total n-3 MAG in the brain. 86783 -67- 200412942 Related data In addition to data on the main effects of testing diet AA and DHA, and comparison of ANOVA between the experiment and the infant group, Spearman's correlation was evaluated by computer to determine whether it was in specific NAEs and MAGs (including n- 6 / n-3 ratio) and food introduction. After classifying the data and eliminating possible edge weights, Spearman's correlation was picked. The results are shown in Tables 4.7 and 4.8. Significant positive correlation (r = 0.45, p = 0.03) found at 20: 4n-6 NAE / 22: 6n-3 ΝΑΕ content ratio with food introduction during the first 2 hours on day 19 and food accumulated on days 19 and 20 Introduced (Table 4.7). A significant positive correlation was also seen between MAG fatty acids and food introduction (Table 4 · 8). The ratio of MAG (20: 4n-6 MAG / 22: 6n-3 MAG and n-6 MAG / n-3 MAG) is positively related to food introduction, which was introduced on days 19 and 20 The measurement was performed for 2 hours, and the cumulative food introduction measurement was also performed for 2 hours on the 19th and 20th days (r = 0.42 to 62, ρ = 0.001 to 0.005). There is also a trend between the 22: 6n-3 MAG and the sum of n-3 MAG and the introduction of food (ρ <〇; 1), the introduction of the food includes the first 2 hours of day 19 and the accumulation of the entire food study Food introduction (r = -0.39, ρ = 0.06). 86783 -68- 200412942, 4.4 Ridge tastes abnormal, listen to the muddy surface Miao garlic full ~ garlic indigo groaning one: Yaque. Miao 洳 ^ Weng Jiao Bu Miao fried% > > 钋. Pan-carnitine thin order min_Rong 茸 奇 薛 遄 鸸 冷 # 蚧 Vegetables association with vegetables> 3.6. Mit Ling AAiLDHA-^^ 涔 涔 & AMOVA >^^; (+) ^ > h 涔 铋 bismuth garlic garlic ginseng. ^ Family »二-) 方 ^^% 涔 米 bismuth yilingshen ~ Clan »Two *) ^^ Xiao Ping Xiong 3: Cold ^^; | ^ 渰 aii ^ will make tons of rice. ^ 1 涔, ♦ bismuth-poor ittsIL sound. It Ling (fdgHi cold listening bismuth bark bird cold scale-铖 a 9 ^ JL ^ S: Fen Tu 牦 Han-Fen Li 鸩, <% listening. 0 018: 0 C200 C22: 0 ^ #, ^ 3: C16: ls C18: ls C20: ls 016: 4 n-6 garlic but clsn-6 c20: 2n-6 C20: 3n_6 C20: 4n-6 C22: 4n 丨 6 C22: 5n-6 n-3BS ^ _ C22: 5n-3 C22: 6n-3 1 · 1 ± 0 · 1 16.9H-2 · Private 18 · 5 ± 0 · 5 p3 ± oo plH-pl P7H -S 15 · 3 ± 0.9 1 · 2 ± 0 · 2 2.8 ± ε P6Η-P0 plK-oo ο · 7 ± οο 14_4 ± 1.0 4.4Η-P3 2.8Η-0.5 P2KK-P0 18.4Η-1.2 UH-P1 17 7 ± 0.9 180Η-0.4- SH-PO ρ1 ± οο ιοΗ-0.3 15 · 2 ± 0 · 8 1ο ± 0.2 3ο ± ε P8 ± P1 P2 ± P1 0.9Η-P1 S.2H-P7 Zn2Η-P1 P9 ± P1 P7Ρ-P1 25 · 6 ± ρ6 1 · 1 ± ρ1 18 · 1 ± 14 18 · 4 ± ε P2Η-0.0 ρ1 ± 0 · 0 0 · 9 ± 0 · 3 14 · 2 ± 0 · 2 ρ9 -P1 2 · 9 ± ρ3 0.3 ± οο ο · 1 ± οο ο · 3 ± οο 16 · 1 ± ρ5 6ο ± ρ5 5 · 2 ± 0_8 ρ3 ± οο 13 · 9 ± 1 · 1 UH-P1 17 · 9 ± 0.9 18 · 4 ± ρ3 P2Η-P0 P1 ± 0.0 ΙοΗ-0.3 13.9K-P00 P8 ± ρ2 3ο ± ΟΛ δΗ-οο P1K-P0 P4Η-P0 14 · 4 ± 0 · 7 SH-P2 1 · 0 ± 0 · 1 P2Η- 0.0 2L6 = tp5 * * < 0 · 001 () Λ0.001 (+)
i±SD ΡΛ1 VP1 VP1 0085 VP1 VP1 νο·1 ΛΡ001 0007 VP1 * (丨) 〈0001 * () * (+) * (+) p—Nt vpl vpl vpl vpl >0,1vpl (丨)vs (_) vpl vpl * (+) (丨)vs * (+) * (丨) * (丨) * (丨) uH-0.1 l?°3±0bo 18.4K-S 0·2±0·0 plH-oo loHhs 13·6±ρ3 p8±0.1 2.8H-P6 p9±oo p2±oo p6ioo 14,9±p払 4·7±Ρ1 1.4H-P1 ρ3±0·0 19.7H-P5 lbH-pl 18.1H-0.6 1?°2±£ ο·3±οο P2H-P0 ρ9±0·3 14.4±1.0 ro±0.2 2.7±s LlK-pl 0·2±0·1 ρ7±0·1 14.2H-P9 ί±ρ2 1.2±0·1 Ρ4±0.0 19·6±Ρ6i ± SD ΡΛ1 VP1 VP1 0085 VP1 VP1 νο · 1 ΛΡ001 0007 VP1 * (丨) <0001 * () * (+) * (+) p--Nt vpl vpl vpl vpl > 0,1vpl (丨) vs (_ ) vpl vpl * (+) (丨) vs * (+) * (丨) * (丨) * (丨) uH-0.1 l? ° 3 ± 0bo 18.4KS 0 · 2 ± 0 · 0 plH-oo loHhs 13 6 ± ρ3 p8 ± 0.1 2.8H-P6 p9 ± oo p2 ± oo p6ioo 14,9 ± p 払 4 · 7 ± P1 1.4H-P1 ρ3 ± 0 · 0 19.7H-P5 lbH-pl 18.1H-0.6 1 °° 2 ± £ ο · 3 ± οο P2H-P0 ρ9 ± 0 · 3 14.4 ± 1.0 ro ± 0.2 2.7 ± s LlK-pl 0 · 2 ± 0 · 1 ρ7 ± 0 · 1 14.2H-P9 ί ± ρ2 1.2 ± 0 · 1 Ρ4 ± 0.0 19 · 6 ± P6
3^DHA +DHA3 ^ DHA + DHA
+AA _DHA +DHA+ AA _DHA + DHA
βχκ Fdg^^JL·^ 86783 -69- 200412942 >4.5衅爆费钟涔ιί贫炒t N-si^pgl赛妗呤^关+。雜米^5^巌時搿洳邻。奇寐諒鸸莾 -声 ILgs^^gg缔涔皱^芩择 3.6。Ma-ANOVA^^>齋玲 AAiLDHtA 炒,涔洳;(+)^>.^沏涔梆 ^兹才命參夕族 |€二士^>^沏涔^^第^命參0^^»二*)^>^^潑堆^^.5.^^二沖^斜潑堆 s .i%涔米二IL濘聆鉍jE f s IL濘;腠呤(fdg)^冷聆敏it玲洚冷鱗-铖19^Ags汾渰犛豸j ^^崎#鸩4:,^^。 C20:4n-6 C22:5n 丨 6 n-6〆^ C22:5n 丨 3 022:6n_3 ?3 4N9±S5 私 0.2Κ-12Λ 83.1H-11.5 1500±14·7 39·5±7·57 55.2±21·6 3£±9.93 33ο±17·仁 69·4±25·5 払一·3±23ο 払 7.1Η-9.12 88.4±29·5 51·7±10·8 —±3.8 91·7— 払 2.3Η-14.6 払 6·0±9·07 8?°3η-15·7 55·4±20·4 私 3·7±25ο 99·0±44·8 33·1±18·2 払 8·5±19ο 8L6±32.1 0.008 c+vo.lvo.l vpl 0027 (+) VP 1 3 3 vpl ναι vo.l vo.l pxi pA.iβχκ Fdg ^^ JL · ^ 86783 -69- 200412942 > 4.5 Provoking Expenses 涔 ί tp N-si ^ pgl Seline 关 Pass +. Miscellaneous rice ^ 5 ^ 巌 when neighbors.奇 寐 懂 鸸 莾-Acoustic ILgs ^^ gg Ma-ANOVA ^^ > Zhailing AAiLDHtA Fried, 涔 洳; (+) ^ >. ^ 涔 梆 涔 梆 ^ 才 才 命 参 夕 族 | € 2 ^^^^^^^^^^^ ^^ »二 *) ^ > ^^ Splash pile ^^. 5. ^^ Two punches ^ oblique splash pile s .i% 涔 rice two IL mud listening bismuth jE fs IL mud; purine (fdg) ^ cold listening敏 it Ling 洚 冷 scale- 铖 19 ^ Agsfen 渰 牦 豸 j ^^ 崎 # 鸩 4:, ^^. C20: 4n-6 C22: 5n 丨 6 n-6〆 ^ C22: 5n 丨 3 022: 6n_3? 3 4N9 ± S5 Private 0.2K-12Λ 83.1H-11.5 1500 ± 14 · 7 39 · 5 ± 7 · 57 55.2 ± 21 · 6 3 £ ± 9.93 33ο ± 17 · Ren 69 · 4 ± 25 · 5 払 1 · 3 ± 23ο 払 7.1Η-9.12 88.4 ± 29 · 5 51 · 7 ± 10 · 8 — ± 3.8 91 · 7—払 2.3Η-14.6 払 6.0 ± 9 · 07 8? ° 3η-15 · 7 55 · 4 ± 20 · 4 Private 3 · 7 ± 25ο 99 · 0 ± 44 · 8 33 · 1 ± 18 · 2 払 8 5 ± 19ο 8L6 ± 32.1 0.008 c + vo.lvo.l vpl 0027 (+) VP 1 3 3 vpl ναι vo.l vo.l pxi pA.i
^AA »>DHA +DHA^ AA »> DHA + DHA
+AA 龄 DHA +DHA+ AA age DHA + DHA
50b±29.4 36.7±18·3 86.7H-44.3 27bo±16.7 私 6·7±7·53 74·5±20.7 払 7.2±11.7 2S±17.7 77·1±26·5 33·3±7·72 払 7·7±13.5 81·0±19·2 IL^,4r冰匕 86783 -70- 200412942 >4.6衅簿晋蚧綷|L H ,妹聆fvJI奇邾·~呤^关+。郗米^:^的巌14^>邻。卞^蒜鸸莾庄。‘二1晋蚧梁^沴>4」紗棼涇。“&>之0<>^^徵玲>>^0^^卜.±.彻涔^;(+)^>^嘟涔>^ 兹穿玲參^¾、求二^_涔米釦族A呤參蛉族渰二^浬¾蝌S汾^衾逆二冲>扣涔 米。^1涔,♦^^J£砖s IL涔;it玲(fdg)^玲聆知條呤鸟冷缉-铖19^^3S汾渰聲豸丄分 #蹲4,4:^。 n20:2n-6 n20:3n—6 n20:4n-6 022:5n-6 C22:5n-3 022:6n 丨 3 n丨3^才 0b59±0b05 0.199±oo20 3·386±0.870 p145±oo29 3.7oooo±0.889 oo20±oo23 0.904±0.155 0·924±0·177 P125±P103 P345H-0.101 3.24^1±1.03 私 0.035S.026 3/746±1.102 oo5?oo36 1.638±0.512 1.688±0.4S350b ± 29.4 36.7 ± 18 · 3 86.7H-44.3 27bo ± 16.7 Private 6.7 ± 7 · 53 74 · 5 ± 20.7 払 7.2 ± 11.7 2S ± 17.7 77 · 1 ± 26 · 5 33 · 3 ± 7 · 72 払7 · 7 ± 13.5 81 · 0 ± 19 · 2 IL ^, 4r ice dagger 86783 -70- 200412942 > 4.6 book Jin Jin | LH, my sister fvJI 邾 邾 呤 关 关 +.郗 米 ^: ^ 's 巌 14 ^ >卞 ^ Garlic Zhuang. "2 1 Jin 蚧 liang ^ 沴 > 4" yarn 棼 泾. "&Amp; > of 0 < > ^^ 征 玲 > > ^ 0 ^^ 卜. ±. 涔 涔 ^ (()) ^ > ^^ 涔 > ^ Two ^ _ 涔 米 扣 族 A 呤 参 蛉 族 渰 二 ^ 浬 ¾ 蝌 Sfen ^ 衾 逆 二 冲 > 涔 涔 米. ^ 1 涔, ♦ ^^ J £ Bricks IL 涔; it Ling (fdg) ^ Ling hears the cold bird-缉 19 ^^ 3Sfen 渰 声 豸 丄 分 # squat 4,4: ^. N20: 2n-6 n20: 3n-6 n20: 4n-6 022: 5n-6 C22 : 5n-3 022: 6n 丨 3 n 丨 3 ^ 0b59 ± 0b05 0.199 ± oo20 3.386 ± 0.870 p145 ± oo29 3.7oooo ± 0.889 oo20 ± oo23 0.904 ± 0.155 0924 ± 0177 P125 ± P103 P345H- 0.101 3.24 ^ 1 ± 1.03 Private 0.035S.026 3/746 ± 1.102 oo5? Oo36 1.638 ± 0.512 1.688 ± 0.4S3
^AA i^DffiA +DHA 0b32±0b20 0.126±0.039 3_495±p940 p324±oo97 3.97s±lo51 oo27±oo26 p7soo±0.310 0OO15H-0.298 0b54±0b38 0.141±oo4^ 3.897±lo05 oo30±oo30 払·123±1ο私 5 oo23±oo23 1·3003±ρ413 1.406±0.39〇〇^ AA i ^ DffiA + DHA 0b32 ± 0b20 0.126 ± 0.039 3_495 ± p940 p324 ± oo97 3.97s ± lo51 oo27 ± oo26 p7soo ± 0.310 0OO15H-0.298 0b54 ± 0b38 0.141 ± oo4 ^ 3.897 ± lo05 oo30 ± oo30 払 123 ± 1ο Private 5 oo23 ± oo23 1.3003 ± ρ413 1.406 ± 0.39〇〇
+AA 龄 DffiA4-DHA pA.i 0067 *vpl *vpl *vpl vpl 0002 (+) pool s pxi vpl * vpl 关vpl * p107±0b26 0.212±oo56 3.997±0·989 oo44±oo42 4.359±1.054 0.052±0.045 1.236±P435 1.287±P460 p124±0b72 0·244±ρ116 3.471H-1.200 oo78±oo33 3.917H-1.39 私 003719 1.260±P566 1.297±P588+ AA age 1.236 ± P435 1.287 ± P460 p124 ± 0b72 0 · 244 ± ρ116 3.471H-1.200 oo78 ± oo33 3.917H-1.39 Private 003719 1.260 ± P566 1.297 ± P588
ANOVAW^涔 AA DHA ILR,^冰匕 Fdg^^i^> 86783 -71 - 200412942 ^4·7ZAE 呤^7JC+^^#2>~spearman^^^^o^AE-N-sii^sl^^a-s^l^#A^#?l >碎韋。^濟冷象2>^3泊^參3:皱19沣20^^^都~冷#翁^。^-兹题^。^6311^11^今縈^ η丨6 NAEs 20:4η_6 ΝΑΕ n-6 NAEtp n-3 NAEs 22:6n-3 NAE n-3 NAE^·^ (NAES》b 20:4n-6/22:6n-3 n丨 6A^/n-3A^ 0.341 P336 丨P95 0.108 P447 P377 ^i 0.111 P117 P667 PS5 0033 0076 铖 19>-2νΒ 兔 0073 丨 0074 -0.160 丨 0089 P271 —0029 P740 0.737 P466 P687 P211 0.897 P207puo -P238 -0.182 P446 P231 P344 P618 P27仁 0.406 0033 0.288ANOVAW ^ 涔 AA DHA ILR, ^ Ice Fdg ^^ i ^ > 86783 -71-200412942 ^ 4 · 7ZAE ^ 7JC + ^^ # 2 > ~ spearman ^^^ o oAE-N-sii ^ sl ^ ^ as ^ l ^ # A ^ #? l > Suwei. ^ Ji Leng Xiang 2 > ^ 3 Po ^ Reference 3: Wrinkle 19 沣 20 ^^^ 都 ~ 冷 # 翁 ^. ^ -Here ^. ^ 6311 ^ 11 ^ 今 萦 ^ η 丨 6 NAEs 20: 4η_6 ΝΑΕ n-6 NAEtp n-3 NAEs 22: 6n-3 NAE n-3 NAE ^ · ^ (NAES》 b 20: 4n-6 / 22: 6n -3 n 丨 6A ^ / n-3A ^ 0.341 P336 丨 P95 0.108 P447 P377 ^ i 0.111 P117 P667 PS5 0033 0076 铖 19 > -2νΒ rabbit 0073 丨 0074 -0.160 丨 0089 P271 —0029 P740 0.737 P466 P687 P211 0.897 P207puo- P238 -0.182 P446 P231 P344 P618 P27 Kernel 0.406 0033 0.288
铖 2?2S 一 r PNV 翁呤參 r s 86783 -72- 200412942 >4boMAG^^7JC^^^#^;v-^spearITmn^^^^^CMAG-^gl;SL4';a-^a-sin^^^L^^ 卜燁鶴。M縴呤參?一 >S泊愈♦铖19沣20^^卉某~呤參箨^。:二1!3蟊^。^6311^11鉍今潋碑 单^Mls。 η丨 6 MAGs 20:4n-6 MAG η丨 6 MAGe^ n-3 MAGs 22:6n-3 MAG n-3 MAG~t (MAGS)vrb 20:4n-6/22:6n-3 n 丨 6^^/n-3^·^ P208 0.221 -0394 丨P393 P615 P646 phf P342 P310 0063 0063 0.S2 0001 铖 19沙-2二4♦一 0035 0018 丨 P301 丨 P291 P457 0.424^ 0*0076 P936 0.162 PI 79 0029 004 払 0.50 0.094^ -0396 丨 P389 0.570 P565 铖20沙-2二4兔 r pii pifi 0.660 P670 0061 0066 0005 0005 86783 -73- 200412942 5.0討論與結論 這是顯示斷奶前餵食不同飲食的n-6及n-3多元不飽和脂 肪酸,且不再餵食該脂肪酸後,對食物引入效果的第一個 研究。不論二十二碳六烯酸(DHA)之含量水平如何,從出生 後第6天至第18天餵食飲食的花生浸烯酸(AA),導致食物限 制後,於第19及第20天約13%食物消耗的增加。同樣地, 不論AA之含量如何,從出生後第6天至第1 8天餵食飲食的 DHA,導致食物限制後於出生後第19天減少食物消耗高達 12%。 象 如先前之研究之所曾論證(Ward等人,1998及1999 ; Wainwright等人,1999),利用人工飼養老鼠之模式,經由 不同的飲食的n-6及n-3脂肪酸之引入,我們修飾了大腦磷脂 膜之脂肪酸組成。由於餵食期間正逢快速大腦成長期間, 故人工飼養老鼠模式為修飾大腦磷脂膜組成之優秀選擇。 吾人磷脂膜脂肪酸之結果,也與利用缺乏必需脂肪酸邊緣 之相似飲食之先前研究結果一致(de la Pres a Owens及Innis, 1999^2000)〇 ^ 我們見到以含AA配方餵食之老鼠大腦中20 : 4n-6 NAE的 顯著增加(p=0.008)。然而,該40%之增加,不同於由Berger 等人於2001年所報告的增加幅度。Berger及報告:餵食0.2% AA(總脂肪酸之百分比)的小豬,20 : 4n-6 ΝΑΕ增加4倍。? 2? 2S-r PNV Onionin rs 86783 -72- 200412942 > 4boMAG ^^ 7JC ^^^ # ^; v- ^ spearITmn ^^^^^ CMAG- ^ gl; SL4 '; a- ^ a- sin ^^^ L ^^ Bu Yihe. M fibrin? A > S Park Yu ♦ 铖 19 沣 20 ^^ Huimou ~ Ling Shen 箨 ^. : 2 1! 3 蟊 ^. ^ 6311 ^ 11 Bismuth Today's Monument Dan ^ Mls. η 丨 6 MAGs 20: 4n-6 MAG η 丨 6 MAGe ^ n-3 MAGs 22: 6n-3 MAG n-3 MAG ~ t (MAGS) vrb 20: 4n-6 / 22: 6n-3 n 丨 6 ^ ^ / n-3 ^ · ^ P208 0.221 -0394 丨 P393 P615 P646 phf P342 P310 0063 0063 0.S2 0001 铖 19 Sha-2 22 4 ♦ one 0035 0018 丨 P301 丨 P291 P457 0.424 ^ 0 * 0076 P936 0.162 PI 79 0029 004 払 0.50 0.094 ^ -0396 丨 P389 0.570 P565 铖 20 sand -2 2 4 rabbit r pii pifi 0.660 P670 0061 0066 0005 0005 86783 -73- 200412942 5.0 Discussion and conclusion This is n-6 showing different diets before weaning And n-3 polyunsaturated fatty acids, and the first study on the effect of food introduction after no longer feeding this fatty acid. Regardless of the level of docosahexaenoic acid (DHA), arachidonic acid (AA) was fed from 6 to 18 days after birth, resulting in food restrictions on the 19th and 20th days. 13% increase in food consumption. Similarly, regardless of the AA content, feeding DHA from 6 to 18 days after birth resulted in food consumption reductions of up to 12% on the 19th day after birth. As demonstrated in previous studies (Ward et al., 1998 and 1999; Wainwright et al., 1999), we modified the diet by introducing n-6 and n-3 fatty acids in a model of captive mice, and we modified The fatty acid composition of the brain phospholipid membrane. Since the feeding period coincides with the rapid brain growth period, the captive rat model is an excellent choice for modifying the composition of the cerebral phospholipid membrane. The results of our human phospholipid membrane fatty acids are also consistent with the results of previous studies using similar diets lacking essential fatty acid margins (de la Pres a Owens and Innis, 1999 ^ 2000). ○ We have seen in the brains of rats fed AA-containing formulas20 : Significant increase in 4n-6 NAE (p = 0.008). However, this 40% increase is different from the increase reported by Berger et al. In 2001. Berger and report: Piglets fed 0.2% AA (percent of total fatty acids) increased 4 times 20: 4n-6 ΝΑΕ.
Berger等人也報告數種n-3 NAEs增加了 5到9倍之間。我們沒 有顯示任何統計上n-3 ΝΑΕ含量水平的顯著增加,但確實見 到了由Berger等人所報告的腦中MAG脂肪酸的相似結果。 86783 -74- 200412942 我們沒有在任何n-6 MAGs中顯示出統計上顯著之區別,然 而,我們確實顯示出統計上顯著地增加了 22 : 6n-3 MAG, 也增加了 n-3 MAG之和。在研究設計中有數個區別可解釋 為何我們的結果與Berger所報告的不同。首先,我們使用含 0%及2.5%含量水平之AA及/或DHA之人工飼養鼠模式,而 Berger等人使用的為含0.2% AA及0.16% DHA(%總熱量)之 以瓶餵食之小豬模式。其次,我們的配方為缺乏脂肪酸邊 緣,Berger等人餵食充分含量水平之亞油酸及亞麻酸,及報 告當存在充足的必需脂肪酸,飲食的AA及DHA僅能增加n-6 及n-3 NAEs之含量水平。第三,我們在最後食物引入研究 後立即犧牲老鼠(即,將老鼠斬首),而Berger等人則在最後 配方餵食之後等3至4小時。Kirkham等人(2002)最近報告了 在禁食,進食及斬首期間,大腦中ΝΑΕ及MAG含量水平之 不同。他們發現禁食後20 ·· 4n-6 ΝΑΕ及MAG之含量水平增 加;飲食期間20 : 4n-6 MAG減少,斬首時與控制組比較不 變。該研究設計之不同至少部分可說明為何n-6及n-3 ΝΑΕ 及MAG脂肪酸含量水平之飲食效果聲明,少於Berger所報 告的。我們的結果於飲食的AA所謗發20 : 4n-6 ΝΑΕ之增加 與食物引入之間不顯示直接的關係,如可能基於已發表文 獻(Williams等人1999 ; Hao等人2000)之預期,但本結果反 而建議在n-6及n-3 ΝΑΕ及MAG脂肪酸之比與食物引入間之 關連。20 : 4n-6 ΝΑΕ為有關於食慾研究最多的内生類大麻 酉分。然而,n-6及η_3兩族之其他的内生類大麻酴扮演食慾調 節之角色為言之有理。含至少20個碳及3個雙键之内生類大 86783 -75- 200412942 麻酚在類大麻酚受體與11_3内生類大麻酚呈現其活性,該 内生類大麻酚比n-6族更顯示出不同的結果含親=性 (Mechoulam等人,1998; Klrkham等人,2〇〇2)。有趣的是, 我們發現在飲食誘發wn_6/n-3 NAEs比與食物引入之間,有 顯著的正相關,n-6/n_3MAG比與食物引入之間亦然。我們 也發現飲食的D Η A與食物引入的減少有相關之顯著主要效 果。此外,在22 : 6n-3 MAG(及n-3 MAG之和)與食物引入 之間的相關性顯示了負的趨勢㈣屬),使得當22: MAG(及n-3 MAGs)增加,食物的消耗便減少。似乎大腦中 個別的ΝΑΕ及MAG之n-6及n-3脂肪酸,比相對含量的NAE 及MAG之n-6及n-3脂肪酸,對刺激後的食慾調節較少影響。 全部我們的研究產生了關於中樞神經系統食慾調節之有 潛力的重要的發現。最重要的,我們顯示了飲食的n_6及卜3 脂肪酸影響食物之引入。因為該不同的n_6及n_3食物於食物 引入研艽别,以胃開口術管來餵食,所有的老鼠於食物引 入研究期間被餵食相同之飼料食物,因此所觀察到的效果 不能被嗅覺或該食物(飼料)之其他特性來說明。這些觀察到 的可能有其他的解釋,例如,餵食不同的食物對已知是有 關於調節食慾的激素(如,胰島素;痩蛋白)及神經傳導物 (如,血清張力素)之釋出或活性。然而,基於我們的資料, 有理由來結論出:對食物消耗所觀察到之效果,可經由改 變大腦磷脂膜的n-6及n-3脂肪酸之组成來媒介傳遞,因此亦 即改變其ΝΑΕ-及MAG-脂肪酸之含量水平來媒介傳遞。内 生形成的NAEs及MAGs經由類大麻酚受體(CBl)來作用。確 86783 -76- 200412942 立:增加20 : 4η-6 ΝΑΕ導致過度飲食。飲食的DHA對食物 引入之效果先前未曾被研究,與食物引入減少之關聯未被 預期。飲食的脂肪酸對食物引入所謗發之效果之其他可能 性需要被評估,例如,刺激後會導致食物消耗之痩蛋白, 胰島素及其他激素及神經傳導物之反應(如,睡眠之剝奪) 本文沒有研究。本文所報告的斬首老鼠之20 : 4n-6 ΝΑΕ及 20 : 4n-6 MAG之含量水平非常相似於最近由Kirkham等人 (2001)所報告斬首老鼠之含量水平。有了這些相似性,有理 由結論出:相對於標準的GC/MS之方法,新開發的定量大 · 腦中MAGs及NAEs之方法為可行的代替品。 結論:我們最先證明飲食的n-6及n-3脂肪酸,可能經由形 成特定的n-6及n-3 NAEs及MAGs來影響食物之引入。需要 另再研究來更明確的決定飲食的脂肪酸如何的可媒介中樞 神經系統對食慾之調節。 86783 77-Berger et al. Also reported increases in several n-3 NAEs between 5 and 9 times. We have not shown any statistically significant increase in the level of n-3 NAE, but we did see similar results for MAG fatty acids in the brain as reported by Berger et al. 86783 -74- 200412942 We did not show statistically significant differences in any of the n-6 MAGs, however, we did show a statistically significant increase of 22: 6n-3 MAG, and also the sum of n-3 MAG . There are several differences in the study design that explain why our results differ from those reported by Berger. First, we used a captive rat model containing AA and / or DHA at levels of 0% and 2.5%, while Berger et al. Used small bottles fed with 0.2% AA and 0.16% DHA (% total calories). Pig pattern. Secondly, our formula is deficient in fatty acids. Berger et al. Fed sufficient levels of linoleic acid and linolenic acid, and reported that when sufficient essential fatty acids are present, dietary AA and DHA can only increase n-6 and n-3 NAEs. Content level. Third, we sacrificed the mice immediately after the final food introduction study (ie, decapitated the mice), while Berger et al. Waited 3 to 4 hours after the final formula was fed. Kirkham et al. (2002) recently reported different levels of NAE and MAG in the brain during fasting, eating, and decapitation. They found that the levels of 20 ·· 4n-6 ΝΑΕ and MAG increased after fasting; 20: 4n-6 MAG decreased during the diet, and remained unchanged when compared with the control group during decapitation. The differences in the study design at least partly explain why the dietary effect statement for n-6 and n-3 NAE and MAG fatty acid levels is less than that reported by Berger. Our results do not show a direct relationship between the increase in 20: 4n-6 ΝΑΕ and the introduction of food in the AA diet of the diet, as may be based on the expectations of published literature (Williams et al. 1999; Hao et al. 2000), but This result instead suggests a relationship between the ratio of n-6 and n-3 NAE and MAG fatty acids and food introduction. 20: 4n-6 ΝΑΕ is the endocannabinoid fraction that has the most research on appetite. However, it is reasonable that other endocannabinoids of the n-6 and η_3 families play an appetite-regulating role. Endophytic compounds containing at least 20 carbons and 3 double bonds 86783 -75- 200412942 Mephol exhibits its activity at cannabinoid receptors and 11_3 endogenous cannabinoids. This endogenous cannabinoids show more than n-6 family Different results contain affinity (Mechoulam et al., 1998; Klrkham et al., 2002). Interestingly, we found a significant positive correlation between the diet-induced wn_6 / n-3 NAEs ratio and food introduction, as well as the n-6 / n_3MAG ratio and food introduction. We have also found that dietary D Η A has a significant main effect associated with reduced food introduction. In addition, the correlation between 22: 6n-3 MAG (and the sum of n-3 MAG) and food introduction shows a negative trend (genera), so that when 22: MAG (and n-3 MAGs) increase, food Consumption is reduced. It seems that individual NAE and MAG n-6 and n-3 fatty acids in the brain have less influence on appetite regulation after stimulation than the relative contents of NAE and MAG n-6 and n-3 fatty acids. All our studies have produced important findings about the potential appetite regulation of the central nervous system. Most importantly, we show that dietary n-6 and b-3 fatty acids affect food introduction. Because the different n_6 and n_3 foods were introduced into the food research laboratory and fed with a gastrotomy tube, all rats were fed the same dietary food during the food introduction study, so the observed effect could not be smelled or the food (Feed) other characteristics to illustrate. These observations may have other explanations, such as the release or activity of feeding different foods on hormones known to regulate appetite (eg, insulin; prion protein) and neurotransmitters (eg, serotonin) . However, based on our data, it is reasonable to conclude that the effects observed on food consumption can be mediated by altering the composition of the n-6 and n-3 fatty acids in the phospholipid membrane of the brain, thus changing its ΝΑΕ- And MAG-fatty acid levels. Endogenous NAEs and MAGs act via cannabinoid receptors (CBl). Indeed 86783 -76- 200412942 Li: Adding 20: 4η-6 ΝΑΕ leads to overeating. The effect of dietary DHA on food introduction has not been previously studied, and the association with reduced food introduction has not been expected. Other possibilities for the effects of dietary fatty acids on food introduction need to be assessed, such as the response of prion protein, insulin and other hormones and neurotransmitters (such as sleep deprivation) to food consumption after stimulation the study. The levels of 20: 4n-6 ΝΑΕ and 20: 4n-6 MAG reported in decapitated rats are very similar to those recently reported by Kirkham et al. (2001). With these similarities, it is reasonable to conclude that, compared to the standard GC / MS method, the newly developed method for quantitative large brain MAGs and NAEs is a viable alternative. Conclusion: We first demonstrated that dietary n-6 and n-3 fatty acids may affect the introduction of food by forming specific n-6 and n-3 NAEs and MAGs. Further research is needed to more clearly determine how fatty acids in the diet mediate appetite regulation by the central nervous system. 86783 77-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40146602P | 2002-08-06 | 2002-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200412942A true TW200412942A (en) | 2004-08-01 |
Family
ID=31495965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092120520A TW200412942A (en) | 2002-08-06 | 2003-07-28 | Appetite control method |
Country Status (4)
Country | Link |
---|---|
AR (1) | AR040810A1 (en) |
AU (1) | AU2003256983A1 (en) |
TW (1) | TW200412942A (en) |
WO (1) | WO2004012727A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513872A (en) * | 2003-10-24 | 2007-05-31 | ゾルファイ ファーマスーティカルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Novel medical uses of compounds exhibiting CB1 antagonism and combination therapy with said compounds |
TW200528102A (en) * | 2003-10-24 | 2005-09-01 | Solvay Pharm Gmbh | Novel medical combination treatment of obesity involving 4,5-dihydro-1h-pyrazole derivatives having cb1-antagonistic activity |
CA2543197A1 (en) * | 2003-10-24 | 2005-05-06 | Solvay Pharmaceuticals Gmbh | Combination treatment of obesity involving selective cb1-antagonists and lipase inhibitors |
SE0303513D0 (en) * | 2003-12-19 | 2003-12-19 | Pronova Biocare As | Use of a fatty acid composition comprising at least one of epa and any or any combination thereof |
RU2007119315A (en) | 2004-10-25 | 2008-11-27 | Зольвай Фармасьютиклз Гмбх (De) | PHARMACEUTICAL COMPOSITIONS CONTAINING CB1 CANNABINOID RECEPTOR ANTAGONISTS AND POTASSIUM CHANNEL OPENERS INTENDED FOR TREATMENT OF TYPE I SUITERS, CREAM |
EP1888727B1 (en) | 2005-05-04 | 2015-04-15 | Pronova BioPharma Norge AS | New dha derivatives and their use as medicaments |
WO2007100562A2 (en) * | 2006-02-28 | 2007-09-07 | Bristol-Myers Squibb Company | Use of dha and ara in the preparation of a composition for reducing triglyceride levels |
WO2007100561A2 (en) * | 2006-02-28 | 2007-09-07 | Bristol-Myers Squibb Company | Use of dha and ara in the preparation of a composition for preventing or treating obesity |
EP1886680A1 (en) | 2006-05-23 | 2008-02-13 | Nestec S.A. | Maternal supplement |
WO2008045739A1 (en) | 2006-10-03 | 2008-04-17 | Myers Michael D | Meal replacement compositions and weight control method |
US8399516B2 (en) | 2006-11-01 | 2013-03-19 | Pronova Biopharma Norge As | Alpha-substituted omega-3 lipids that are activators or modulators of the peroxisome proliferators-activated receptor (PPAR) |
WO2010018856A1 (en) * | 2008-08-13 | 2010-02-18 | 持田製薬株式会社 | Prophylactic/ameliorating or therapeutic agent for cannabinoid receptor-related disease |
EP2353595B1 (en) | 2010-01-19 | 2015-10-28 | MJN U.S. Holdings LLC | Nutritional compensation for western-type diet |
US10251928B2 (en) | 2014-11-06 | 2019-04-09 | Mead Johnson Nutrition Company | Nutritional supplements containing a peptide component and uses thereof |
US11109607B2 (en) | 2013-11-18 | 2021-09-07 | Gary Hall | Oil-based compositions for enhancing oral health and general wellness in humans |
JP2022545226A (en) | 2019-08-21 | 2022-10-26 | コーダ バイオセラピューティクス, インコーポレイテッド | Compositions and methods for neurological disorders |
EP4568502A2 (en) * | 2022-08-11 | 2025-06-18 | Helaina Inc. | Edible composition comprising recombinant human secretory protein |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0813776B2 (en) * | 1990-08-10 | 1996-02-14 | 株式会社資生堂 | Method for separating and purifying docosahexaenoic acid compound |
US5578334A (en) * | 1995-04-07 | 1996-11-26 | Brandeis University | Increasing the HDL level and the HDL/LDL ratio in human serum with fat blends |
US6428832B2 (en) * | 1996-03-26 | 2002-08-06 | Dsm N.V. | Late addition of PUFA in infant formula preparation process |
PT843972E (en) * | 1996-11-20 | 2002-12-31 | Nutricia Nv | NUTRITIVE COMPOSITION THAT INCLUDES FATS FOR THE TREATMENT OF METABOLIC SYNDROME |
US6495599B2 (en) * | 2000-04-13 | 2002-12-17 | Abbott Laboratories | Infant formulas containing long-chain polyunsaturated fatty acids and uses therof |
US7025984B1 (en) * | 2000-06-26 | 2006-04-11 | The Procter & Gamble Company | Compositions and methods for body weight management |
IT1320180B1 (en) * | 2000-12-29 | 2003-11-26 | Hunza Di Marazzita Maria Carme | NUTRITIONAL AND THERAPEUTIC PREPARATIONS EQUIPPED WITH ANTI-OXIDANT ACTIVITY AND ABLE TO CONTROL THE PONDERAL EXCESSES AND |
-
2003
- 2003-07-28 TW TW092120520A patent/TW200412942A/en unknown
- 2003-07-30 WO PCT/US2003/023708 patent/WO2004012727A1/en not_active Application Discontinuation
- 2003-07-30 AU AU2003256983A patent/AU2003256983A1/en not_active Abandoned
- 2003-08-06 AR AR20030102826A patent/AR040810A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
AR040810A1 (en) | 2005-04-20 |
AU2003256983A1 (en) | 2004-02-23 |
WO2004012727A1 (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schuchardt et al. | Bioavailability of long-chain omega-3 fatty acids | |
Seo et al. | Omega-3 fatty acids: molecular approaches to optimal biological outcomes | |
TW200412942A (en) | Appetite control method | |
Ye et al. | Triglyceride structure modulates gastrointestinal digestion fates of lipids: A comparative study between typical edible oils and triglycerides using fully designed in vitro digestion model | |
Dias et al. | Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness | |
Meijerink et al. | N‐acyl amines of docosahexaenoic acid and other n–3 polyunsatured fatty acids–from fishy endocannabinoids to potential leads | |
Lo Verme et al. | Regulation of food intake by oleoylethanolamide | |
Yaqoob | The nutritional significance of lipid rafts | |
Mancuso et al. | Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats | |
Heird et al. | The role of essential fatty acids in development | |
Simopoulos | Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain | |
Murru et al. | Nutritional properties of dietary omega‐3‐enriched phospholipids | |
Cardoso et al. | Dietary DHA, bioaccessibility, and neurobehavioral development in children | |
Querques et al. | Retina and omega‐3 | |
German et al. | Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules | |
Garg et al. | Means of delivering recommended levels of long chain n‐3 polyunsaturated fatty acids in human diets | |
Calder et al. | Polyunsaturated fatty acids, inflammation and immunity | |
Kelly | Conjugated linoleic acid: a review | |
Kurlak et al. | Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates | |
Tallman et al. | Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice | |
RU2301668C2 (en) | Method for controlling body weight | |
Meynier et al. | Molecular and structural organization of lipids in foods: their fate during digestion and impact in nutrition | |
Pham et al. | Correlating digestion-driven self-assembly in milk and infant formulas with changes in lipid composition | |
Werner et al. | Treatment of EFA deficiency with dietary triglycerides or phospholipids in a murine model of extrahepatic cholestasis | |
Sihag et al. | (Wh) olistic (E) ndocannabinoidome-microbiome-axis modulation through (N) utrition (WHEN) to curb obesity and related disorders |