TW200411926A - Structures and fabrication methods trench insulated gate bipolar transistors - Google Patents
Structures and fabrication methods trench insulated gate bipolar transistors Download PDFInfo
- Publication number
- TW200411926A TW200411926A TW91137558A TW91137558A TW200411926A TW 200411926 A TW200411926 A TW 200411926A TW 91137558 A TW91137558 A TW 91137558A TW 91137558 A TW91137558 A TW 91137558A TW 200411926 A TW200411926 A TW 200411926A
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- plug
- scope
- slot
- patent application
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thyristors (AREA)
Abstract
Description
200411926 五、發明說明(1) 【發明之技術領域】 本發明在於提供一種槽狀閘極絕緣閘雙極性電晶體的 抗輪射破壞的結構與製作方法,其係利用降低槽狀閘極絕 緣閘雙極性電晶體(Trench Insulated Gate Bipolar200411926 V. Description of the Invention (1) [Technical Field of the Invention] The present invention is to provide a structure and a manufacturing method for anti-rotation damage of a bipolar transistor with a slot-shaped gate insulated gate, which uses a reduction of the slot-shaped gate insulated gate. 1. bipolar transistor
Transistor ; TIGBT)的側向電阻值特性,來達成提高元 件的抗輻射能力。特別是,本發明在不改變槽狀閘極絕 緣閘雙極性電晶體結構與方法,而且不需複雜的製作步 驟,就能夠在不影響元件正常工作之下,改善元件抗輻射 能力。 【先前技術】 近年來絕緣閘雙極性電晶體的效能已經急遽的改善, 成為具高操作電壓的開關元件,使得絕緣閘^極性電i體 的應用範圍已經廣泛的擴展’可與金屬氧化半導於 (Metal Oxide Semiconductor ; M0S)和雔載子 ^blp〇iar )結構一起應用,尤其是在高功率的應用場 己。如:手機通訊領域及衛星通訊方面。而絕緣閘雙極性 電晶體又依其結構的不同劃分成平面閘極絕緣閘性電Transistor; TIGBT) to improve the radiation resistance of the device. In particular, the present invention can improve the anti-radiation ability of the component without affecting the normal operation of the component without changing the structure and method of the bipolar transistor of the gate-shaped gate insulator and without the need for complicated manufacturing steps. [Previous technology] In recent years, the efficiency of the insulated gate bipolar transistor has been rapidly improved, and it has become a switching element with a high operating voltage. (Metal Oxide Semiconductor; MOS) and the carrier blbl0iar structure are used together, especially in high-power applications. Such as: mobile phone communications and satellite communications. Insulated gate bipolar transistors are divided into planar gate insulated gate
晶體、槽狀閘極絕緣閘雙極性電晶體 望 y ^ L ••寺。但JL中所述 之槽狀閘極絕緣閘雙極性電晶體在功率招知士 、 u 亚I , 谓粍方面比傳統的 千面閘極絕緣閘雙極性電晶體有優異的特 的研究發現,絕緣閘雙極性電晶體仍有复丛g ^Crystal, slot-shaped gate insulated gate bipolar transistor Wang y ^ L •• Temple. However, the slot-shaped gate-insulated gate bipolar transistor described in JL has superior research findings in terms of power source, U-I, and so on, compared with the traditional thousand-face gate-insulated gate bipolar transistor. Insulated gate bipolar transistors still have complex clumps g ^
荆、s 7为具缺點存在。以N 型通道的絕緣閘雙極性電晶體(τ I GBT ) Αν, 七如 、 ^马例,由於内部 有寄生閘流體(thyristor)的關係會被曹離 里_子感應一種破 200411926 五、發明說明(2) 壞現象(hearvy - ion-induced destructive failures), 稱為單一事件的閂鎖(single event latch-up,SEL),形 成寄生的ρ _ η - p - n結構於I G B T内部,這會迅速的增加元件 電流。 這是由於槽狀閘極絕緣閘雙極性電晶體設計中並沒有 J F Ε Τ區域的存在,因此其會有較低的導通電阻存在。若環 土兄中有其誘發單一事件的閂鎖(S E L )因素存在,如大量輻 射環境存在,元件内部將被觸發產生閂鎖現象。目前在太 空應用的發展上正遇到上述之問題··絕緣閘雙極性電晶體 内部的寄生閘流體常會因為太空中之輻射效應而被觸發, 進而產生正回授機制,此正回授機制會迅速的增加元件電 流,最後燒毀元件。 如圖二所不,圖二為一般Ν型通道絕緣閘雙極性電晶 體之結構圖,其槽狀閘極絕緣閘雙極性電晶體主要包括 Ν+射極26 (Ν+ emitter)、一射極金屬29、一\_漂移區 域 22(N- drift regi〇n)、—N+緩衝層 21(N+ layer)、-P+基板20(P+ substrate)、一p 基極24(p 與一槽狀閘極(gate)25。其相關位置如圖二所示, ^心的疋如此之結構當有重離子效應感應時,其N -漂移 區域2 2、P基極2 3和N +射極2 β带士、 η=> 環境誘發時如重離子效:二升射成广:=結構’當有 馬4竿田射4,便容易引發SEL 〇 雙極性電晶體的飢現像提出保 ί雔==出,本發明即針對槽狀閘極絕緣 閑雙極性電晶體提出—個可提高抗H射能力的方法。Jing and s 7 are shortcomings. N-channel insulated gate bipolar transistor (τ I GBT) Αν, Qiru, ^ Ma examples, due to the internal parasitic gate fluid (thyristor) relationship will be Cao Lili_zi induction a break 200411926 V. Invention Explanation (2) Hearvy-ion-induced destructive failures, called single event latch-up (SEL), form a parasitic ρ _ η-p-n structure inside the IGBT, which will quickly Increase component current. This is due to the fact that there is no J F ET region in the design of the trough-gate insulated gate bipolar transistor, so it will have a lower on-resistance. If there is a latch-up (S E L) factor in the environment that induces a single event, such as the presence of a large amount of radiation environment, the latch-up phenomenon will be triggered inside the component. The above problems are currently encountered in the development of space applications. The parasitic gate fluid inside the insulated gate bipolar transistor is often triggered by the radiation effect in space, and then a positive feedback mechanism is generated. This positive feedback mechanism will Increase the component current quickly, and finally burn the component. As shown in Figure 2, Figure 2 shows the structure of a general N-channel insulated gate bipolar transistor. The grooved gate insulated gate bipolar transistor mainly includes N + emitter 26 (N + emitter) and an emitter. Metal 29, a drift region 22 (N-drift regi), -N + buffer layer 21 (N + layer), -P + substrate 20 (P + substrate), a p base 24 (p and a slot gate (Gate) 25. Its relevant position is shown in Figure 2. The structure of 心 heart is such that when there is heavy ion effect induction, its N-drift region 2 2, P base 2 3, and N + emitter 2 β band.士 = η = > When the environment is induced, such as heavy ion effect: two liters shot into wide: = structure 'When Arima 4 Kaneda shoots 4, it will easily trigger SEL 〇 Hungry image of bipolar transistor is proposed to protect 雔 雔 == 出The present invention proposes a method for improving the anti-H-radiation capability for the slot-shaped gate insulated bipolar transistor.
第6頁 五、發明說明(3) 【發明内容】 本發明的主要目的在於提供 性電晶體的結構和製作方法,其/裡僧狀閘極絕緣間雙極 閘雙極性電晶體的側向電阻值^寺^、彳用卩牛低槽狀閘極絕緣 工作特性與提高元件的抗輻射能力。’來達成符合元件正常 本發明之另一目的是提供一種 電晶體的結構,在N型通道的絕緣““^絕曰緣閑雙Μ 形成P+ Plug側向及垂直的延伸’以 體中藉由 :極性電晶體P"lug的面積,進而降===閉 發的可能性,0此可以有較高的抗輻射二生閘-體被觸 本發明之再一目的是提供一種槽狀閘極 200411926 五、發明說明(4) 層’最後進行射極金屬化(emitter metaUizati〇n)的 步驟’完成電晶體的製作。 【實施方式】 本發明係利用降低槽狀閘極絕緣閘雙極性雷曰體的你丨 向電阻值特性。如&,就會不因環境中的高;;;;而;1 發閃鎖現象。便可達成符合元件正常工作特性與提高元件 的抗輻射能力。而其中所述之側向電阻值(如圖一結構A所 示)係指在槽狀閘極絕緣閘雙極性電晶體的電洞電流 (hole current)經由P base區域流往N+射極下方,最 後流出emit ter電極所形成的電阻區域。為詳細說明本發 明之電晶體結構,本發明將提供製作N型通道的絕緣閘雙 極性電晶體作為實施例並配合圖示說明之。 首先,參考圖一所示,本發明之實施例中其中所述之 槽狀閘極絕緣閘雙極性電晶體主要包括一 N +射極丨6 ( N + emitter)、一射極金屬 19、一p+基板ι〇(ρ + substrate)、一 p+ 插塞 13 (P+ plug) 、一p 基極 14 (P + b a s e )與一槽狀閘極1 5 ( g a t e )。其製程步驟如下所述: 於石夕基板中進行摻雜步驟,使基板成為p+基板丨〇,接續使 用擴散或離子佈值方式於基板中形成!^+緩衝層11 (N + buffer layer)和N-漂移區 12(N— area),此^ 漂移區1 2作為承受高電壓之用。再下來,利用擴散方式 (diffusion)或離子佈值方式(i〇n impiantati〇n)形成 P+ Plugl3。此p+ piugl3之形成面積即為本發明之重點。Page 6 V. Description of the invention (3) [Summary of the invention] The main purpose of the present invention is to provide the structure and manufacturing method of the sexual transistor, and its side resistance The working characteristics of yak low-groove gate insulation for 寺, ^, and 彳, and to improve the radiation resistance of components. 'To achieve the normal element compliance, another object of the present invention is to provide a transistor structure in the N-type channel insulation "" ^ : The area of the polar transistor P " lug, which further reduces the possibility of hair loss. 0 This can have a high radiation resistance secondary gate. The body is touched. Another object of the present invention is to provide a grooved gate 200411926 V. Description of the invention (4) The layer 'finished the step of emitter metaUization' to complete the production of the transistor. [Embodiment] The present invention uses the characteristics of reducing the resistance of the bidirectional thunder body of the slot-shaped gate insulated gate bipolar thunder body. Such as &, it will not be caused by the high in the environment; and; This can meet the normal working characteristics of the component and improve the radiation resistance of the component. Wherein, the lateral resistance value (as shown in the structure A in FIG. 1) refers to the hole current of the bipolar transistor with a gate-shaped insulating gate flowing through the P base region under the N + emitter. Finally, the resistance area formed by the emit ter electrode flows out. In order to explain the transistor structure of the present invention in detail, the present invention will provide an insulated gate bipolar transistor made of an N-type channel as an example and illustrated with reference to the figure. First, referring to FIG. 1, the grooved gate insulated gate bipolar transistor described in the embodiment of the present invention mainly includes an N + emitter 6 (N + emitter), an emitter metal 19, an p + substrate ι〇 (ρ + substrate), a p + plug 13 (P + plug), a p base 14 (P + base), and a slot gate 15 (gate). The process steps are as follows: A doping step is performed in the Shixi substrate to make the substrate a p + substrate, and then a diffusion or ion distribution method is used to form the substrate in the substrate! + + Buffer layer 11 (N + buffer layer) and N-drift region 12 (N-area), which is used to withstand high voltage. Next, P + Plugl3 is formed by using diffusion or ionization (Ion impiantati). The formation area of p + piugl3 is the focus of the present invention.
200411926200411926
五、發明說明(5) 在N+射極16下方的p+ piUgi3藉著擴散方法一摻雜的低電 阻,如此可將原本在N+射極16下方,由p basel4所形成的 一段濃度低的大電阻,在此結構中P+ plugl3的摻雜濃度 比P basel4高。藉由此p+ piUg13的摻雜可以使得側向電 阻降低,並經由側向及垂直的延伸,加大p+ p 1 1 3的面 積,如同結構A所示。此結構會有較小的橫向電阻值,因 此使得寄生閘流體比較不易被驅動。 其上所述之N+緩衝層11和N-漂移區1 2亦可使用磊晶 方式形成(epi)之。 一 /、中所述之P + P 1 u S1 3右方的橫軸距離,在不影塑到 凡件原有的操作特性和達到最有效的減少橫向電阻原則 I,可向右方做側向延伸,使得抗輻射能力更加提高。而 至、=P 1 ug的深度,在不影響到元件原有的操作特性和達 j,有效的減少橫向電阻原則下,可向下方做垂直延 更传抗輻射能力更加提高。 形成本f明形成P+ PlUgU的目的係將原本由P basel4所 产古的崦度低大電阻區域,變成為P+ p 1 ug丨3所形成的濃 合=j電阻區域’就可以大大的降低側向電阻。也就是含兒 iί子撞擊之後,所產生的短暫電流源,將隨著元件内 向電阻值的降低,使得元件内部的寄生ΝρΝ電晶體更 破驅動,因為此短暫電流源的電洞電流經由射極端 出時,其所流過的範圍皆為小電阻的P+ plugl3,此方 一=卩< 有效的降低原本由p basel 4所形成的大電阻區域, 旦電阻降低後,此N+射極16與P+ piUgl3所形成的小壓V. Description of the invention (5) p + piUgi3 under N + emitter 16 is doped with a low resistance by the diffusion method, so that a low-concentration large resistance formed by p basel4 under N + emitter 16 can be used. In this structure, the doping concentration of P + plugl3 is higher than that of P basel4. By doping with p + piUg13, the lateral resistance can be reduced, and the area of p + p 1 1 3 can be increased by extending laterally and vertically, as shown in structure A. This structure will have a smaller lateral resistance value, making it less likely that the parasitic gate fluid will be driven. The N + buffer layer 11 and the N-drift region 12 described above can also be formed (epi) using an epitaxial method. The distance of the horizontal axis on the right side of P + P 1 u S1 3 mentioned in the above description, without affecting the original operating characteristics of all parts and achieving the most effective principle of reducing lateral resistance I, can be made to the right Extend to make the radiation resistance more improved. To the depth of = P 1 ug, without affecting the original operating characteristics and j of the element, and effectively reducing the lateral resistance, the vertical extension can be made downward to increase the radiation resistance. The purpose of the formation of P + PlUgU is to change the low- and high-resistance area originally produced by P basel4 into a concentration = j resistance area formed by P + p 1 ug 丨 3, which can greatly reduce the side.向 Resistance. That is, the transient current source generated after the impact of the child Iί will reduce the inward resistance of the element, making the parasitic NρN transistor inside the element more broken, because the hole current of this transient current source passes through the emitter terminal. When it exits, the range it flows through is P + plugl3 with small resistance. This one = 卩 < effectively reduces the large resistance area originally formed by p basel 4. Once the resistance decreases, the N + emitter 16 and Small pressure formed by P + piUgl3
200411926200411926
降,將會大 寄生閘流體 性。如此當 擊)刺激或 體,產生正 效應。 大的降低此 被重離子觸 元件受到外 内部所引發 回授機制皆 二極體的順 發的可能性 界(如照光 的大電流, 可以引用此 偏電壓,因 ,達到有效 或是受到該 只要是驅動 結構減低寄 此可以提高 的抗輻射特 重離子撞 其寄生閘流 生閘流體的 接續,如圖一所示,採用離子佈值方式 (implantation)形成 P-weU :即為 p_ba^e 區域 14。 續採用乾氧化方式於基板中形成閘氧化層丨8 ( g a七e oxide)、使用低壓化學氣相沈積方式(L〇w以“叫” chemical Vapor deposition ; LPCVD )沉積多晶矽材質以 製作.成槽狀閘極1 5 ( p ο 1 y g a t e )、用濺渡方式 、 (sputter)或物理氣相沈積方式(physical vaper deposition ;PVD)沉積金屬鋁矽銅形成N+射極16 (emitter )和用乾氧化方式形成gafe上層的氧化層I? (oxide layer )。最後,使用射極金屬化(emitter metallization)之步驟形成射極金屬19。 如此製作之電晶體,如前所述可降低寄生閘流體射極 與基極接面的側向電阻,如此會有穩定表現於衛星的電源 供應系統或高海拔的飛機等重離子環境之下。根據本發明 之重點’其中該槽狀閘極絕緣閘雙極性電晶體可型5"通 道槽狀閘極絕緣閘雙極性電晶體或Ρ型通道槽狀閘極絕緣 閘雙極性電晶體。而本發明之實施例僅說明Ν型通道槽狀 閘極絕緣閘雙極性電晶體之製作方式。It will greatly reduce the fluidity of the parasitic gate. Such a shock) stimulates the body or has a positive effect. It greatly reduces the possibility that this heavy ion touch element is subject to the external and internal feedback mechanisms of both diodes. (For large currents of light, this bias voltage can be cited, because it is effective or affected by the The driving structure reduces the continuity of the radiation-resistant extra-heavy ions that hit the parasitic sluice to generate sluice fluid. As shown in Figure 1, P-weU is formed by ion implantation: the p_ba ^ e region. 14. Continue to use a dry oxidation method to form a gate oxide layer in the substrate (Ga7e oxide), using low-pressure chemical vapor deposition (Low called "chemical Vapor deposition; LPCVD) deposition of polycrystalline silicon material to produce. Slot-shaped gate electrode 15 (p ο 1 ygate), sputter or physical vaper deposition (PVD) deposition of metal aluminum silicon copper to form N + emitter 16 (emitter) and The oxide layer I? Above the Gafe is formed by dry oxidation. Finally, the emitter metallization step is used to form the emitter metal 19. The thus-produced transistor is as previously described. It can reduce the lateral resistance of the parasitic gate fluid emitter and base interface, so it will be stable in heavy ion environments such as satellite power supply systems or high-altitude aircraft. Gate Insulated Gate Bipolar Transistor Type 5 " Channel Slotted Gate Insulated Gate Bipolar Transistor or P-type Channel Slotted Gate Insulated Gate Bipolar Transistor. The embodiments of the present invention only describe N-type channel slots The manufacturing method of the bipolar transistor with the shape of gate.
200411926 五、發明說明(7) 本發明實施例中所述之槽狀閘極絕緣閘雙極性電晶體 閘極並不侷限其尺寸’其尺寸可為次微米(s u b 一 m icron)、 深次微米(deep-sub-micron)或奈米(nano-meter)。 在本發明之實施例亦與傳統方式所製作出的槽狀閘極 絕緣閘雙極性電晶體(如圖二所示)或相似結構之電晶體 (如圖三所示)作一系列試驗比較其工作電壓情況(如圖 四所示)、在重離子撞擊後其SEL現象的敏感程度(如圖 五所示)和於電晶體相同位置經撞擊後其SEL現象的敏感 程度(如圖六所示)等狀況。 首先,先說明其參與試驗之電晶體結構。 I .結構A ··如圖一所示,為本發明之實施例。 Π ·結構B ··如圖二所示,為基本的槽狀閘極絕緣閘雙極性 電晶體結構B的垂直結構圖。 m ·結構c :如圖三所示,其係為在槽狀閘極絕緣閘雙極性 電晶體元件内,以類似DM0S的方式,但附加形成一層 P+擴散區域33 (以結構C代表之),但此p+擴散區域的深 度較圖一結構A淺。此結構包含包括一N+射極36 (N + emitter)、一射極金屬 39(Emitter metal) ' — p+基 板30(P+ substrate)、一P+ 插塞33 (P+ plug)、一p 基極3 4 (P+ base )、一槽狀閘極35 (gate )、一閘氧 化層38、一上氧化層37、N+緩衝層31 (N+ buffer layer)和N-漂移區32(N- drift area)。此結構的形 成主要是因為重離子撞擊元件後,其電洞電流將不只 疋會垂直的流,也會有側向的流,因此此結構可以達200411926 V. Description of the invention (7) The grooved gate insulated gate bipolar transistor gate described in the embodiment of the present invention is not limited in its size, and its size may be sub-micron, deep sub-micron (Deep-sub-micron) or nano-meter. In the embodiment of the present invention, a series of experiments are compared with the slot-shaped gate insulated gate bipolar transistor (shown in FIG. 2) or a similar structure transistor (shown in FIG. 3) made in the conventional manner. The working voltage (as shown in Figure 4), the sensitivity of the SEL phenomenon after the impact of heavy ions (as shown in Figure 5) and the sensitivity of the SEL phenomenon after the impact at the same position of the transistor (as shown in Figure 6) ) And other conditions. First, the transistor structure involved in the experiment will be described. I. Structure A. As shown in FIG. 1, it is an embodiment of the present invention. Π · Structure B ········································ • ············································· The direction is shown in Figure 2. m · Structure c: As shown in Figure 3, it is in a trench-gate insulated bipolar transistor element in a similar manner to DMOS, but additionally forms a layer of P + diffusion region 33 (represented by structure C), However, the depth of this p + diffusion region is shallower than the structure A of FIG. 1. This structure includes an N + emitter 36 (N + emitter), an emitter metal 39 '— p + substrate 30 (P + substrate), a P + plug 33 (P + plug), and a p base 3 4 (P + base), a trench gate 35, a gate oxide layer 38, an upper oxide layer 37, an N + buffer layer 31, and an N-drift area 32. The formation of this structure is mainly due to the fact that after heavy ions strike the element, the hole current will not only flow vertically but also laterally, so this structure can reach
200411926200411926
五、發明說明(8) 成歐米接觸(Ohmir r + 、 極性電晶體元件内 ct)與減父槽狀閘極絕緣閘雙 牛内部的側向壓降的目的。 具結果如下所ϋ · 結構的集極電流對先知 > 閱圖四,結構Α〜C三種不同 2。”,從此壓的曲線(固定集極電壓為 曲線,因此本荦的疒f 構八、B、C有相似的正常工作 電曰# I柞i f +昌射所採用的結構(結構〇與一般之 目同’並不會影響到其原始的操作特性。 電壓m使用^同的結構(結構b、c) ’使用固定集極 i中相同位晋用重離子(let=〇. 4pc/ #ffl)撞擊電晶 n… (一1 4以m ),觀察結構B、C對SEL·現象的敏 ί ^ 2彳之此圖中,可以看到結構c沒有發生SEL·現象,因 =^極電流錢著時間下降的,其最後會回到原先平衡 片=的漏電流值,也就是說在此結構之下,重離子並沒有 传槽狀閘極絕緣閘雙極性電晶體内部產生永久性破壞, 凡件會回到原始狀態。反之,從此張圖中,可看出結構b 内邛有大電流的產生,此大電流即為SEL電流,將會燒毀 =件。由此可知,本發明所提P+擴散區域卻有其存在之功 能0 接續,請參閱圖六,以重離子(LET=:0.4pC/ 撞擊 結構A和結構C的相同位置(Χ=14 “η),其中使用相同集極 偏壓(VO200V),然後可以看出,結構c已經引發了 SEL現 ,’、但結構A並沒有引發SEL現象。這是由於結構a的p+井 區域的截面積變大,因而可以降低橫向電阻值,.情 下表示其可以容許有較多的電流流往結構α =V. Description of the invention (8) The purpose of forming the Omega contact (Ohmir r +, ct in the polar transistor element) and reducing the lateral pressure drop inside the double slot trench gate insulated gate double gate. The results are as follows: · The collector current of the structure versus the prophet > ", From this curve (the fixed collector voltage is a curve, so the 荦 f structure of this frame, B, C have similar normal working electricity. # I 柞 if + 昌 射 The structure used (structure 0 and general "The same" does not affect its original operating characteristics. The voltage m uses the same structure (structures b, c), and uses the same position in the fixed collector i to use heavy ions (let = 0.4pc / #ffl) Hit the transistor n ... (1 to 14 m), observe the sensitivity of the structures B and C to the SEL · phenomenon. ^ 2 彳 In this figure, you can see that the structure c does not have the SEL · phenomenon, because = ^ pole current money As time goes by, it will eventually return to the leakage current value of the original balance sheet =, that is to say, under this structure, heavy ions do not pass through the slot-shaped gate insulated gate bipolar transistor to cause permanent damage. Where The component will return to the original state. Conversely, from this picture, it can be seen that a large current is generated in the structure b. This large current is the SEL current and will be burned = pieces. From this, it can be seen that the P + diffusion region proposed by the present invention But it has its own function. 0 Continuation, please refer to Figure 6, using heavy ions (LET =: 0.4pC / impact Structure A and Structure C are at the same position (X = 14 "η), where the same collector bias voltage (VO200V) is used, and then it can be seen that Structure c has triggered the SEL phenomenon, but Structure A does not trigger the SEL phenomenon. This is because the cross-sectional area of the p + well region of the structure a becomes larger, so the lateral resistance value can be reduced. In the case, it indicates that it can allow more current to flow to the structure α =
200411926 五、發明說明(9) -- 亚且不會驅動寄生的^^!^雙載子電晶體。也就是說,當有 部份的電流流經N+ emitter區域下方的p+井區域時,曰因 結構A的P+井區域比結構c的?+井區域大,所以使得社構a 的橫向電阻值小於結構C,最後橫向壓降也會跟著減少。 最後,便以表格來整理出結構A、B、c,在不同偏壓、 不同離子撞擊位置時,其有無發生SEL現象,來證明本案 所採用之結構(結構A)確實可以有效的達成提高槽狀閘極 絕緣閘雙極性電晶體的抗輻射能力,其結果請參閱表一、 表二和表三。 表一係顯示本發明之結構A經不同集極偏壓、在不同 位置疋否發生SEL現象進行量測之結果。從此表中可看 出,當以重離子(LET = 0.4 PC///m)撞擊在不同集極偏壓下 結構A的不同位置,只有當集極偏壓大於24(^的時候才會發 生SEL現象。要完成此表,可以依循兩個方法,第一個是 先固定離子撞擊的位置,再以結構Α的集極電壓為回圈, 從2 6 0V掃到l70V,然後觀察其集極電流對時間的曲線,如 果集極電流有大電流的現象發生,則將其記錄為¥(即為有 SEL現象的發生),反過來說,如果集極電流 回復到平衡狀態的漏電流,則將其記錄為"即為無SEL現 象的發生),第二個是以先固定結構A的集極電壓,铁後改 變離子的撞擊位置(x=2//m、6//m、10//m、14#m)7然後 按照上一個方法中記錄其有無發生SEL現象。 .、 表二中係以重離子(LET = 0.4 pC///m)撞擊在不同隼極 偏壓下結構B的不同位置,當集極偏壓大於8〇v的時候便會200411926 V. Description of the invention (9)-^^! ^ Double-carrier transistor that is sub- and does not drive parasitics. That is, when a part of the current flows through the p + well region below the N + emitter region, is the P + well region of the structure A better than that of the structure c? The + well area is large, so that the lateral resistance value of the structure a is smaller than that of the structure C, and finally the lateral pressure drop will also decrease. Finally, the structures A, B, and c are sorted out in a table. Whether the SEL phenomenon occurs under different bias voltages and different ion impact positions, to prove that the structure (structure A) used in this case can indeed effectively improve the groove. The bipolar transistor's radiation resistance ability is shown in Table 1, Table 2 and Table 3. Table 1 shows the measurement results of the structure A of the present invention with different collector bias and no SEL phenomenon at different locations. As can be seen from this table, when heavy ions (LET = 0.4 PC /// m) are struck at different positions of structure A under different collector biases, they only occur when the collector bias is greater than 24 (^ SEL phenomenon. To complete this table, two methods can be followed, the first is to first fix the position where the ions strike, and then use the collector voltage of structure A as a loop, sweeping from 260V to l70V, and then observe the collector The current vs. time curve, if the collector current has a large current phenomenon, it will be recorded as ¥ (that is, the occurrence of the SEL phenomenon). On the other hand, if the collector current returns to the equilibrium leakage current, then Record it as "No occurrence of SEL phenomenon", the second is to fix the collector voltage of structure A first, then change the impact position of ions after iron (x = 2 // m, 6 // m, 10 // m, 14 # m) 7 Then record whether there is SEL phenomenon according to the previous method. .. In Table 2, heavy ions (LET = 0.4 pC /// m) are struck at different positions of structure B under different 隼 biases. When the collector bias is greater than 80 volts,
200411926 五、發明說明(ίο) 發生SEL現象。完成此表,可以依循兩個方法,與表一操 作方式相同,僅將電壓範圍改成從掃到80 V。 表三中係以重離子(LET = 0.4 pC//zm)撞擊在不同集極 偏壓下結構C的不同位置,當集極偏壓大於1 7 0.V的時候會 發生SEL現象。完成此表,可以依循兩個方法,與表一操 作方式相同,僅將電壓範圍改成從220V掃到170V,然後觀 察其集極電流對時間的曲線。比較以上的表格(表一、表 二和表三),玎以發現結構A的確可以改善SEL現象的觸發 偏壓。 此外,從表一、表二和表三中也可以發現離子撞擊在 比較接近通道地方的位置下,結構比較容易會有SEL現象 的發生,然而’這種SEL現象卻沒有發生在比較遠離通道 地方。 圖七爲界 一々二 < 您、邗,係為離子撞擊在結構 A、B、C的不同及極偏壓下的不同的離子撞擊位置,^疚 其對SEL現象的敏感程度;可發現結構A操作情形最作規察 發SEL產生的電壓最高。 土’誘 本發明所述之參考例子係在特定領域中之特定每> 例,因此熟知此技藝的人士應能明瞭本發明要義疋貝施 行適當、些微的調整和應用,仍將不失本發明之在,進 在。接續的申請專利範圍中係包含在本發^中张=義所 應用、調整。 所有此類的200411926 V. Description of the Invention (ίο) SEL phenomenon occurred. To complete this table, you can follow two methods. The operation is the same as in Table 1. Only the voltage range is changed from sweep to 80 V. In Table 3, heavy ions (LET = 0.4 pC // zm) impinge on different positions of structure C under different collector biases. When the collector bias is greater than 170.V, the SEL phenomenon occurs. To complete this table, you can follow two methods. The operation is the same as in Table 1. Only the voltage range is changed from 220V to 170V, and then the collector current versus time is observed. Comparing the above tables (Table 1, Table 2 and Table 3), it is found that the structure A can indeed improve the trigger bias of the SEL phenomenon. In addition, from Tables 1, 2, and 3, it can also be found that the ions collide at a position closer to the channel, and the structure is more likely to have a SEL phenomenon. However, 'this SEL phenomenon does not occur in a place far from the channel. . Figure 7 shows the bounds of I and II. You and Y are the different ion impact positions of the ions impinging on the structures A, B, and C and the extreme bias voltage, and their sensitivity to the SEL phenomenon; the structure can be found. A operating situation is the most regulated. The voltage generated by the SEL is the highest. The reference examples described in the present invention are specific examples in a specific field, so those skilled in the art should be able to understand the proper and slight adjustments and applications of the present invention. It will still be cost-effective. Invented, in. The scope of subsequent patent applications is included in this publication. All such
200411926 圖式簡單說明 【圖示簡單說明】 圖一係為本發明實施 圖一係為本發明實施 圖二係為本發明實施 圖四係為本發明實施 集極電流對閘極電壓的曲 圖五係為本發明實施 偏壓’並撞擊在結構B、◦ 現象的敏感程度。 圖六係為本發明實施 偏 壓’並撞擊在結構a SEL現象的敏感程度。 表一係為本發明實施 極偏壓下的不同位置,觀 表二係為本發明實施 極偏壓下的不同位置,觀 表二係為本發明實施 極偏壓下的不同位置,觀 圖七係為本發明實施 不同汲極偏壓下的不同位 度。 例中結構A之垂直剖面圖。 例中結構B之垂直剖面圖。 例中結構C之垂直剖面圖。 例中結構A〜C三種之不同結構的 線。200411926 Schematic description of the diagram [Simplified illustration of the diagram] Figure 1 is the implementation of the invention Figure 1 is the implementation of the invention Figure 2 is the implementation of the invention Figure 4 is the curve diagram of the collector current versus gate voltage of the implementation of the invention 5 It is the sensitivity degree of the phenomenon of biasing and impacting the structure B, ◦ according to the present invention. Figure 6 shows the sensitivity of the SEL phenomenon when the bias voltage is applied to the structure and the impact is applied to the structure a. Table 1 shows the different positions under the extreme bias of the present invention. Table 2 shows the different positions under the extreme bias of the present invention. Table 2 shows the different positions under the extreme bias of the present invention. The different positions under different drain bias voltages are implemented in the present invention. Vertical sectional view of structure A in the example. Vertical sectional view of structure B in the example. Vertical sectional view of structure C in the example. In the example, the structures A to C are three different structures.
例中使用相同的重離子、相同的 的相同位置,而結構B、C對SEL 例中使用相同的重離子、相同的 、C的相同位置,而結構A、C對 例中離子撞擊在結構A的不同集 察其對SEL現象的敏感程度。 例中離子撞擊在結構B的不同集 察其對SEL現象的敏感程度。 例中離子撞擊在結構C的不同集 察其對S E L現象的敏感程度。 例中離子撞擊在結構A、B、C的 置,觀察其對SEL現象的敏感程 圖號說明: 10 P+基板 11 N+緩衝層 12 N-漂移區域In the example, the same heavy ion and the same position are used, and the structures B and C are paired with the SEL. In the example, the same heavy ion, the same and the same position with C are used, and in the structure A and C, the ions collide with the structure A in the example. Different sets of observations of their sensitivity to the SEL phenomenon. In the example, the ions impinge on different sets of structure B to observe their sensitivity to the SEL phenomenon. In the example, the ions impinge on different sets of structure C to observe their sensitivity to the S EL phenomenon. In the example, the ions impinge on the structures A, B, and C, and observe their sensitivity to the SEL phenomenon. Drawing number description: 10 P + substrate 11 N + buffer layer 12 N- drift region
第15頁 200411926 圖式簡單說明 13 P+ plug 區域 16 N +射極 19 射極金屬 2 2 N -漂移區域 2 6 N +射極 2 9 射極金屬 3 2 N -漂移區域 3 5 槽狀閘極 3 8閘氧化層 14 P基極 1 7 上氧化層 2 0 P +基板 2 4 P基極 2 7 上氧化層 3 0 P +基板 33 P+ plug 區域 3 6 N +射極 3 9 射極金屬 1 5槽狀閘極 1 8閘氧化層 21 N+緩衝層 2 5槽狀閘極 28 閘氧化層 31 N+緩衝層 3 4 P基極 37 上氧化層Page 15 200411926 Simple description of the diagram 13 P + plug region 16 N + emitter 19 emitter metal 2 2 N-drift region 2 6 N + emitter 2 9 emitter metal 3 2 N-drift region 3 5 slot gate 3 8 gate oxide layer 14 P base electrode 1 7 upper oxide layer 2 0 P + substrate 2 4 P base electrode 2 7 upper oxide layer 3 0 P + substrate 33 P + plug area 3 6 N + emitter 3 9 emitter metal 1 5 slot gate 1 8 gate oxide layer 21 N + buffer layer 2 5 slot gate 28 gate oxide layer 31 N + buffer layer 3 4 P base 37 upper oxide layer
第16頁 200411926 圖式 、却 age (V) 270 260 250 240 230 220 210 200 m ISO 170 X (μιίϊ)\ 2 一 Ν Ν Ν Ν Ν Ν Ν N _M Ν 6 一 Ν Ν Ν Ν Ν Ν Ν N Ν Ν 10 — Ν Ν Ν Ν Ν Ν Ν N Ν Ν 14 — Υ Υ Ν Ν Ν Ν Ν N Ν Ν 表一Page 16 200411926 Schema, but age (V) 270 260 250 240 230 220 210 200 m ISO 170 X (μιίϊ) \ 2-Ν Ν Ν Ν Ν Ν Ν N _M Ν 6-Ν Ν Ν Ν Ν Ν Ν N N Ν Ν 10 — Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν 14-Υ Υ Ν Ν Ν Ν Ν N Ν Ν Ν Table 1
^^Itage (V) Χ(μώ)\ 190 18» 170 160 150 140 130 120 110 100 90 so 2 一 一 Ν Ν Ν Ν Ν Ν X Ν Ν N 6 一 一 Ν Ν Ν Ν Ν Ν Ν Ν Ν N 10 一 一 Υ Υ Υ Υ Υ Υ Υ Υ Ν N 14 一 一 Υ 1 Υ Υ Υ Υ Υ Υ Υ Υ N 表 "Wtage(V) XijiraK. 270 260 2550 24Π 2^0 22Λ 210 20Π 190 m Ι7Π 2 Ν Ν Ν Ν Ν Ν 6 Ν Ν Ν Ν Ν Ν 10 Ν Ν Ν Ν Ν Ν 14 Υ Υ Υ Υ Υ Ν 表 第頁^^ Itage (V) Χ (μώ) \ 190 18 »170 160 150 140 130 120 110 100 90 so 2-one Ν Ν Ν Ν Ν X Ν Ν N 6-one Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν N N 10 一一 Υ Υ Υ Υ Υ Υ Υ Υ Ν N 14 11Υ1 Υ Υ Υ Υ Υ Υ Υ 表 Υ N Table " Wtage (V) XijiraK. 270 260 2550 24Π 2 ^ 0 22Λ 210 20Π 190 m Ι7Π 2 Ν Ν Ν Ν Ν Ν Ν 6 Ν Ν Ν Ν Ν Ν 10 Ν Ν Ν Ν Ν Ν Ν 14 Υ Υ Υ Υ Υ Ν table page
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91137558A TWI222743B (en) | 2002-12-23 | 2002-12-23 | Structures and fabrication methods trench insulated gate bipolar transistors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91137558A TWI222743B (en) | 2002-12-23 | 2002-12-23 | Structures and fabrication methods trench insulated gate bipolar transistors |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200411926A true TW200411926A (en) | 2004-07-01 |
TWI222743B TWI222743B (en) | 2004-10-21 |
Family
ID=34546073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91137558A TWI222743B (en) | 2002-12-23 | 2002-12-23 | Structures and fabrication methods trench insulated gate bipolar transistors |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI222743B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI424564B (en) * | 2011-01-13 | 2014-01-21 | Anpec Electronics Corp | Insulator gate with high operational response speed |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI570916B (en) * | 2014-11-17 | 2017-02-11 | 旺宏電子股份有限公司 | Semiconductor structure |
-
2002
- 2002-12-23 TW TW91137558A patent/TWI222743B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI424564B (en) * | 2011-01-13 | 2014-01-21 | Anpec Electronics Corp | Insulator gate with high operational response speed |
Also Published As
Publication number | Publication date |
---|---|
TWI222743B (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI225285B (en) | Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique | |
CN102623513B (en) | Diode structure with controllable injection efficiency for fast switching | |
JP2868728B2 (en) | MOS gate type power transistor and method of manufacturing the same | |
US6137139A (en) | Low voltage dual-well MOS device having high ruggedness, low on-resistance, and improved body diode reverse recovery | |
US9685523B2 (en) | Diode structures with controlled injection efficiency for fast switching | |
CN102439725B (en) | Insulated gate bipolar transistor(igbt) and method for manufacturing same | |
TWI388011B (en) | Semiconductor device and method of forming same | |
US10686038B2 (en) | Reverse conducting IGBT incorporating epitaxial layer field stop zone | |
CN103094324B (en) | Trench-type insulated gate bipolar transistor and preparation method thereof | |
CN110310983A (en) | A super junction VDMOS device | |
TW201236081A (en) | Methods for fabricating high voltage transistor and the semiconductor device | |
CN104332495B (en) | A kind of igbt and its manufacture method | |
CN104733457B (en) | Semiconductor device and method for manufacturing the same | |
JP2007095997A (en) | Semiconductor device and manufacturing method thereof | |
CN114678277B (en) | Split-gate planar MOSFET with center-injected P+ shielding region and method of making the same | |
CN103489776B (en) | A kind of realize a processing method for cut-off type insulated gate bipolar transistor npn npn | |
CN102891088A (en) | Method for manufacturing vertical double diffusion metal oxide semiconductor field effect transistor device | |
CN104716039B (en) | Improve the back process preparation method of IGBT performances | |
TW200411926A (en) | Structures and fabrication methods trench insulated gate bipolar transistors | |
CN110473905A (en) | A kind of separate gate TIGBT and preparation method thereof with automatic biasing PMOS | |
CN103489775A (en) | Novel field cut-off type insulated gate bipolar transistor manufacturing method | |
CN105914233B (en) | A kind of high robust restores superjunction power semiconductor transistor and preparation method thereof soon | |
CN108598148A (en) | A kind of radioresistance MOSFET structure with p-type island buffer layer structure | |
CN209963063U (en) | Super-junction VDMOS device | |
CN107359125A (en) | A kind of method and device for optimizing body diode reverse recovery characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |